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This paper, to be published in two parts, presents
a Direct Synthesis Method of digital controller de-
sign, applicable to single and cascade loop con-
figurations, One parameter is selected per loop to
achieve desired response speed and disturbance
suppression. Part I describes the theory, and is illus-
trated with simulation results. Part II will describe
a multivariable control application.

Part 1

OPULARITY OF proportional, integral, and deri-

vative control modes results largely from economy
of implementation with analog hardware and familiarity
among designers and operators. Systems controlling
many process variables normally depend on these con-
trollers in independent and cascaded loops, or in feed-
forward or ratio connections. The classical algorithms,
however, may be inefficient or unsuitable in many proc-
ess control situations (e.g., those including transport
delays).

In most computer applications, there is no con-
straint imposed by prefabricated controllers with fixed
algorithms. The ideal algorithm for a particular portion
of a system considers design ease and parameter tun-
ing. Absence of other simple algorithms often leads
designers to assign PI to less critical loops without con-
sidering alternatives.

The Direct Synthesis design method features indi-
vidual loop sampling rates, analytic simplicity, design
of integrated control systems by loop cascades, simple
inclusion of smoothing filters, and good loop behavior
regardless of process transport delays.

Individual loop sampling rates result in economical
computer utilization. For example, a controller pro-

Table I—Nomenclature.
C = process output or controlled variable
D = controller transfer function algorithm -
G = process .transfe‘r function
K’ = closed loop transfer function
' N = nearest integer of /T
n = sample number
R = setpoint
S = Laplace transform operator
T = sampling interval
x = controller input
y = controller output
Z = Z transform operator
A = tuning parameter defining closed loop characteristics
+ = transport delay

= [.' 133 e—kT] / [1 - e—XTZ—l_ (1 |5 B—RT) z——N—l]
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gram with low execution frequency may be kept in
bulk storage (saving space in working storage), while
algorithms requiring frequent execution (e.g., flow
regulator loops) are kept in working storage. Execution
time for programs is minimized if loops are executed
as infrequently as dynamics permit.

Totally integrated digital controllers have filtering
and cascade control strategies included in the algo-
rithms. These demand more involved tuning than clas-
sical systems (for which filters and cascaded loops op-
erate on local disturbances at lower system structural
levels).

In control of paper-making machines, frequent sys-
tem retuning (to counteract changes in dynamics) or-
dinarily necessitates process identification and con-
troller tuning programs (Ref. 2). The Direct Synthesis
method, in which parameters (computed from process
data) were inserted automatically in the control algo-
rithms, eliminated manual tuning. :

General Synthesis Formula

Consider a control loop (Fig. 1) with no distinction
between continuous (analog) or sampled (digital)
data operation. For the latter, sampling and holding
devices are included in the process. Laplace transforms
are used for continuous, and Z-transforms for sam-
pled transfer functions. The closed loop transfer func-
tion, K’, (process output/setpoint) is given in Eq. 1;
if K’ is known, the required algorithm is the general
synthesis formula of Eq. 2.

c DG
l = = ——— 1
K R 1 + DG W
1 K
D=-a—-———1_K, (2)

This formula is the origin of many controller designs
(Ref. 1). Defined by system structure, it is valid for
any system with the configuration shown.

DISTURBANCE
CONTROLLED

CONTROLLER PROCESS

VARIABLE

FIG. I. CONTROL system structure.
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FIG. 2. DIGITAL control system for first-order process with trans-
port delay.

The transfer function must be selected such that the
controller is physically possible (e.g., at K’ — 1, D is
infinite and the controller is nonexistent). The algo-
rithm must have no predictor elements (positive pow-
ers of Z; terms of the form €3V, ¥ >0). In addition,
D must not cancel a non-minimum phase singularity*
of G (if G has a zero outside the unit circle in the Z-
domain, a pole of D cancelling this zero promotes in-
stability).

Although the model is assumed minimum phase,
process singularities may approach non-minimum con-
ditions, necessitating special precautions (to be shown).

Controller Synthesis

The general synthesis formula, Eq. 2, will be used
to develop an analog controller, and an equivalent digi-
tal algorithm. The latter, a special case of the controller
to be derived by Direct Synthesis, is useful in multi-
loop systems to transfer algorithms between continuous
and sampled domains, and to illuminate the origin of
the “ringing” phenomenon.

Analog Controller

Transport delay, =, in a control loop must be can-
celled with transport delay in the closed loop response
function, K’ (S), to avoid a predictor element in D.
If K’ (S) is selected to have first order exponential re-
sponse, as in Eq. 3, the control algorithm becomes
that of Eq. 4. Although the delay in G (S) cancels the
exponential in the numerator of the algorithm, the de-
nominator still contains e$7, complicating analog im-
plementation. If - = 0 (no transport delay), the first
order process, and corresponding algorithm, are found
as in Eqs. 5 and 6. This represents a proportional plus
reset controller with gain (A/KA4) and reset rate 4
repeats/sec.

K(S) = ¢ — _XH @)
ok A
D (8) = = 4)
G40 SEEATEE D
@ ©) = K f . ®)

Digital Equivalent of Analog Controller

If a digital controller with sampling devices and
zero order hold is substituted for the analog controller
(Fig. 2), a high sampling rate can result in nearly
identical loop behavior. Algorithms can be found from

* Non-minimum phase singularity: A pole or zero in the
right half S-plane or outside the unit circle in the Z-plane.
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certain difference approximations of Eq. 4. For ex-
ample, the process transfer function, Eq. 7, corres-
ponds to the differential equation, Eq. 8.

st A
G(S) =Ke S+ 4 7)
i) SEA Ly
T AN = (G ) @

A sampled data equation is formed by backward
differences as in Eq. 9. Solving this for y, yields the
control algorithm of Eq. 10. In the Z-domain, the de-
sired digital control algorithm becomes that of Eq. 11,
This algorithm works well under the conditions of Egq,
12, because response equals that of the original analog
loop when the sampling interval, T, approaches zero.

Yn

'—_qw—y"_l— + A (yn—l + yn—N—l) =

A ( Ty — Tp
KA T
Yn = (1 - >\T) Yn1 — ANYn—_N-1 +

+ A$n~1) 9)

A
7 [ — A —AD) 2] (10)
A 1— (1 — AT) 2™
R ras (1 = \T) 27 — AZ~N— an
0.2 0.4
At e ol NS Bt
T< 1 ST (12)

Direct Synthesis of Digital Controller

The general synthesis formula can be used with
direct specification of a sampled data function, K’ (Z).
An exponential first order closed loop has the differ-
ence equation given in Eq. 13, where tuning parameter
a = e'AT, The Z-transform of K’ (Z) is found as Eq.
14,

Cho=0a0Ch, + (1 = a) Ruona (13)
; €@  1-a z¥
K5 RIZ)“T A =a) 2= (14)

The general control algorithm for the Direct Synthesis
method, which will be used subsequently as a synthesis
formula, may then be found as Eq. 15. Substituting
A for a in this algorithm makes the tuning parameter
invariant to sampling interval changes.

—N-1 Wy

1—e

Z P
G (Z) R e-M' Z_l 0= e_M') Z-—N—l

The process of Eq. 7 (sample and zero order hold)
yields the sampled data transfer function of Eq. 16.
The control algorithm for this case is expressed as in

Eq. 17 where a=[1 —¢™|/[1 -2~ (1 —¢")
Z—N—l]

D (Z) = (15)

1 — e4T

1 = AT 7}

G (Z) = KZ~N11 (16)‘

Q@1 — e AT Z71)

g Koy (1 — e47) 0y
Note that this algorithm is more general than Eq.
11 (Eq. 11 is a special case of Eq. 17, valid
for AT « 1, AT « 1). )\ is physically similar in both
methods; closed loop behavior (defined by Eq. 3),
resembles that of Eq. 14 for small T' (useful in cascade
control loop synthesis); this demonstrates that analog
controller synthesis is a workable intermediate step for

small sampling intervals.
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Eq. 13 implies zero steady state error for step input
to the closed loop. Inherent in controllers having at
Jeast one integration, the specification automatically
guarantees a reset algorithm.

Ringing

The synthesis methods described, applied to the
first order process, produce no difficulties. Higher or-
der processes may introduce two complications: non-
minimum process phase characteristics and controller
ringing. Techniques to cope with these are similar.

A minimum phase continuous process, with zero
order holding, may produce a non-minimum phase
process at some sampling frequency. Ringing occurs
when singularities approach (but have not reached)
the non-minimum phase region.

ing node. Complex as well as single poles near the ring-
ing node (Z = —0.5) give rise to ringing (examples
2, 3, and 4). Transfer function zeros in the right half
plane aggravate ringing (example 4) while poles in the
right half plane reduce it (example 3).

For the first order system previously analyzed, the
algorithm R4 is (A—A) T for indirect synthesis, and
(eAT—e M) for direct. If A< 4, then RA <0 (no ring-
ing). Higher order processes require special attention

For a double pole process (Fig. 2), G(S) is given as
in Eq. 20. The Z-transform, with zero order holding,
is found as Eq. 21, where variables f, and f, are defined
in Eq. 22. The direct method synthesis (Eq. 15) gives
the control algorithm of Eq. 23, with the corresponding
ringing amplitude found in Eq. 24.

Consider the general transfer function, Eq. 18, with Qg = o KA B 20)
1 N a non-negative delay integer. Ringing amplitude, Eq. S+A S+B
; 19, is the difference between the first and second ampli-
’ tude of the step response. M defines system order. B
| M 14 7
! 2 —N-1 d 1
1+ Z a2 G(2) = KR 2= iz (1 — P Z) )
= Syolhm et
D)5 Hes M (e fi=1l+ - = (Bek Ay Ty
14 Z br Z-r
r=1 f, = e A4+ BT +A e (Be BT — Ae4T) (22)
RA = b1 — Q. (19)
The significance is shown in Table 2. The undamped D g L A eI 27 eIt 2, S
oscillator (example 1) has R4 = 1. The controller (1 + e Z—l)
behaves in an oscillatory fashion, with ringing fre- K Nt
quency half the sampling frequency. The point at Z = BA T AT 51
—1 which produces undamped oscillation is the ring- e s ol R (24)
Table 2—Ringing Characteristics of Representative Systems.
; Impulse Step !
D (2) Response Response RA Time Plots
\ DIZ)OUTPUT
1 1 1 T ’
1 —1 0
1 _ 1 1 RA
1+4+1/2 o 0
1 1 9 a3 a3 783
TIME
1 D(ZIOUTPUT
1 s b o wf e e
! 2 _— .25 75 | I I
1+ .5/Z —.125 .625 0
TIME
1 1 3 1 DIZ)OUTPUT
3 1 1 3 m{ [, e | SETRGVARE T
(1 + 5/2) (1 — .2/2) —.087 .803
.045 .848 f
TIME
| D(Z)OUTPUT
1 1 .8 :
4 1-.5/Z "‘gs '%0 m\{ SETTLING VALUE
A+ 5/2) (1 — 2/2) 1188 37 J [
.0924 .46 0 b ) [
TIME
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FIG. 3(a). STEP response of controller with double pole process
for various A.

0.8+

CONTROLLED VARIABLE

0.4

o e

100 200 300 400 500 €00 200
TIME
FIG. 3(b). STEP response of double pole process control loop with
K=1,A=004B =0l 7=250and T = I0.

—

If T—0 then f,/fi—>1, eAT—>1, eAT>1, eBPT1,
and R4 —2. Thus the pole at Z = —f,/f; approaches
the ringing node for short sampling times with a large
ringing amplitude (Fig. 3a). The controlled variable is
not affected by ringing since the ringing controller pole
is cancelled by a process zero (Fig. 3b). However,
ringing on the controller output may cause unnecessary
equipment wear; it may reduce the transient capability
of the control loop if the output is tightly clamped (the
useful portion of the controller output is the average
over successive ringing cycles; clamping prevents the
process from receiving its proper input). In multivari-
able control systems, loop interaction may convert a
damped ringing oscillation for a single loop into an
undamped oscillation, making ringing a threat to
stability.

To retain the useful portion of the controller output,
yet eliminate the ringing, the problem pole is deleted
and a constant added to assure long-term settling be-
havior. Since response for #— oo corresponds to Z— 1,
[1 4+ (fo/f1) Z7] is replaced by [1 + fo/f1] in Eq. 23,
which yields the algorithm of Eq. 25 for the ringing-free
controller.

1 — (e-AT —BTY 7-1 _ o—(A+B)T 7—2
D@ =2 (e + e7BT) Z ) Z

(25)

K (I — ¢ AT — ¢=BT | ¢~(4+B)T)

2,07

CONTROLLED VARIABLE

1 § R (] 1 Lt bt}
o001 2 1] 4 5 & 78 o0 2 3 4 5 6708 o1
RADIANS / SECOND

The simulation result for this process (Fig. 4) shows
that ringing is essentially eliminated. Closed loop re-
sponse is improved, particularly at higher A, and no
undesirable transient effects are introduced.

Frequency Response Characteristics

The specification used in the algorithm synthesis is
a response to setpoint change. Disturbance suppression
is also of interest. Consider the disturbance to enter at
the controlled variable of a high-rate (approximately
continuous) sampled data system. The response of the
controlled variable to a disturbance, V, can be derived
as Eq. 26 by transfer function algebra. (Continuous
closed loop behavior is specified in Eq. 3.)

C(S)_ _ ST A
R e T

(26)

For 40, transfer function amplitude exceeds unity
(the complex transfer locus will spiral about S=1),
and delays lead to disturbance amplification at some
frequencies (Fig. 5). Longer transport delays have
more pronounced peaks. Disturbance frequencies be-
low a noise cut-off are attenuated by the loop, frequen-
cies above may be amplified. If T3 is the time in sec for

044

CONTROLLED VARIABLE

o
™

1 1 .l I 1 1 1 ¥ T B P
0.001 2 3 4 3 878 o0 2 ) 4 35 e78 0O
RADIANS / SECOND

FIG. 5. AMPLITUDE of controlled variable for sinusoidal disturbance with unit amplitude for various 7.
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FIG. 4(a). STEP response of controller in double pole process

with ringing pole removed.

3
P
I

CONTROLLED VARIABLE
£

TIME

FIG. 4(b). STEP response of double pole process with ringing
pole removed, for K = I, A = 0.04, B = 0.I, 7 = 50, and T = 10.

the step response to reach 0.63 of its final value, it is
related to = (sec) and A (radian/sec) by Eq. 27.

Tes =74 1/ 27

Noise cut-off frequency, NCOF, is 1/Ts; (radian/
sec). As a rule of thumb, NCOF is the smaller of A
and 1/r; therefore either A or = may dominate loop
disturbance suppression.

For the transients in the simulated system (Fig. 4)
response times and cut-off frequencies are shown in
Table 3. The relation between control loop frequency
response (disturbance attenuation) and tuning param-
eter A allows direct observation of tuning accuracy.
During steady state operation a dominant disturbance
cycle is often evident. If this is much below cut-off
frequency, poor tuning or abnormal excitation is indi-
cated. If frequency is much above cut-off, the control
loop is not effective in the range, and amplification at
certain disturbance frequencies may be possible. This
is typical for long transport delays (Fig. 5). For long
sampling times, characteristic response still prevails.
Disturbance amplitude at 0.005 radian/sec is reduced
by about 0.64 with A = 0.02. A continuous, or a short
sampling interval digital system would cause reduction
to 0.53.

CONTROLLED.VARIABLE

1
0.001 2 3 4 5 6 78 o0 2 3 4 5 678 o
RADIANS / SECOND

June 1968

Table 3—Response Times and Cut-off Frequencies for
Simulated System (Fig. 4).

0.005 .01 .02

Tes 250 150 100
Observed Ts; 230 130 90
NCOF (rad/sec) .004 .006 .01

Cascade Control

Cascade loops eliminate effects of local disturbances
and nonlinearities in major control loops. Direct synthe-
sis permits simple tuning of cascaded loops by making
external controllers look into first order closed loops
with known response times.

CONTROLLED VARIABLE

1 1 [ B T B ST T T
0.001 2 3 4 35 e 78 oo 2 L] 4 5 eT8 01
RADIANS / SECOND
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FIG. 6. (above) DIGITAL controller system with cascaded digital
flow regulator loop; (below) approximate system model for con-
troller synthesis.

As an example, it is desired to regulate output C with
controller D(Z) using manipulation of a particular
process feed rate (Fig. 6a). Due to upstream fluctua-
tion of the head, a local cascaded loop regulates flow
(using digital controller D’). The setpoint of D’ is
manipulated by the main controller D.

Response in feed rate to change in valve signal is
assumed given as Eq. 28. The cascaded loop is speci-
fied to have its tuning parameter A = L. From the ex-
ample of Eq. 17, with + — 0, and with ¢ representing
sampling rate in the cascaded loop, D’(Z) is found in
Eq. 29. The dynamic equivalent of the control system
(Fig. 6b) shows a double pole process, and from the
example of Eq. 25, this has the algorithm of Eq. 30. O
is valve gain, R is valve pole.

F R
e R (28)
A 15l e s 1 e R 7T
o It e eR) 1 — 71 gy,
D@ = a 1 — (e7AT 4 ¢ LT) Z-1 | ¢~(R+L)T Z—2 (é0)

R (1 — BT — LT { ¢~ ®tL)T)

FIG. 8. MODEL of a single rate system.

Note that the response of the continuous transfer
function A/(S + A) is equivalent to the specification
of Eq. 13. The sampling rates in the cascade and outer
loops determined by ¢ and T, respectively, can be inde-

.pendently selected without changing tuning formulas.
The cascade loops normally use more frequent sam-
pling.

Simulation using the tuning formulas (Fig. 7) shows
good loop behavior for all outer loop A values chosen.
The cascade loop parameter, L is equal to that previ-
ously used (Fig. 4), and system behavior is conse-
quently similar. This verifies that the sampled data cas-
caded loop influences the outer loop approximately as
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FIG. 7. SIMULATION of feed flow rate and step variable re.
sponse for system of Fig. 6.

a continuous first order system with a pole equal to the
A\-value of the sampled data loop.

Digital Filtering
The signal representing the controlled variable may
be smoothed to prevent a highly fluctuating output from
increasing equipment wear and in processes with trans-
port delays, to prevent control loop cycling at closed

12

e==aWITHOUT FILTER
e WITH FILTER

CONTROLLED VARIABLE

100 200 300 400 500 €00 90
TIME

FIG. 9. RESPONSE of the controlled variable for a first order

system with and without the average filter.

loop frequency response peaks. Heavy smoothing in-
troduces filter effects on control loop dynamics. Includ-
ing filter functions in the dynamic description of the
system results in a multiple sampling rate situation,
cumbersome to handle analytically, especially when
there are large differences between sampling rates. The
direct synthesis method considers only the execution
rate of the control algorithm (lower than the sampling
rate used for data filtering). In addition, the filter can
be included in the system without appreciable de-
terioration of loop response. For the special smoothing
filter to be discussed, the A-tuning method is nearly
independent of filter parameters.

The filter averages a given number, M, of samples,
updates, and thus accumulates data values into a sum.
The system has dual sampling rates—for data accumu-
lation and filtering and, lower, for execution of control
algorithm, D.

An actual process is represented by a single sampling
rate system (Fig. 8), which uses an analog integrator
and a difference operator (1—Z) to represent the fil-
ter. The latter converts the integrator to fixed period with
non-overlapping integrations.

Instruments & Control Systems—Vol. 41




The total process transfer function to be used in the
synthesis formula is defined by the Z-transform of Eq.
31. If the transform contains multiple poles, it is help-
ful to approximate larger poles with an addition to the
actual transport delay (Refs. 3, 4) or to combine sev-
eral time constants. The first order process illustrates
the method. Evaluating G(Z) and inserting into the
synthesis formula gives the control algorithm of Eq.
32, where functions H; and H, are defined in Eq. 33.

1 — e-sT 1
GZ) =0 —-2Y2Z (—Te— G'(S)ﬁ) 31)
— AT Z-1
D@ =0 1 ¢ — (32)
2 s 5
KHl(l ey )
1 —e4T
Byl = oper 3)
1 — ¢—AT
= e Biiog—

When AT—O, H,/H;— —1, the ringing node. For
small sampling times, T, severe ringing occurs with the
amplitude of Eq. 34. When the ringing pole is re-
moved at —H,/H;, the algorithm becomes that of Eq.
35, identical to Eq. 17, for the first order system with-
out filtering.

B e S (34)
H,
1 — ¢-AT Z1
—g 85
D (@) = g D

The filter thus adds a ringing node which does not
contribute significantly to the response of the controlled
variable, although it oscillates the controller output.
Therefore, a filter can be added using the control
algorithm developed without a filter, a conclusion found
valid on higher order systems as well as in on-line
multi-loop control.

The simulation using the control algorithm with a
first order system shows the response to a step change
in setpoint with and without a digital filter (Fig. 9).
Sampling times are long compared with process trans-
port delay and time constant. The responses are simi-
lar except for the largest A-value (0.02 rad/sec) where
some overshoot occurs with the filter. Tests with other
sampling intervals verifies that the filter does not sig-
nificantly alter the behavior of the controlled variable.

007

= PROCESS OUTPUT
== CONTROLLER OUTPUT

>
bd

o
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”
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'w’*lw" [k *“ MH‘ | mf‘ "‘N"-'L""--N
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i

200 400 [15) sbo 1000 12bo Hoo
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FIG. 10. CONTROLLER and process outputs for white noise in-
puts, with digital filter.
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The filter also reduces the controller output. White
noise is introduced directly on the controlled variable.
The stock flow or manipulated variable without a filter
(Fig. 10) has approximately 20 times the amplitude
with the filter (Fig. 11). The times for control execu-
tion and transport delay are 50 and 60 sec. respectively.
The unfiltered loop has low frequency cycling near cut-
off which is reduced when the filter is used.

Tuning Procedure

Tuning is based on dynamic process parameters.
These may be estimated from observations of transients
or calculated from physical principles, or can be deter-
mined automatically by computer (Ref. 2). Knowing
the process parameters, only A must be selected to com-
pute control algorithm coefficients. One starting point
for manual selection of A\ is the dominant (smallest)
pole. High A corresponds to tight control and is desir-
able. Highest possible A is recognized by overshoot
caused by mismatch between actual and assumed
parameters, nonlinearities and ignored dynamic char-
acteristics. Gradually increasing A and observing re-
sponse to small setpoint changes, yields the optimum
value. With no digital filtering, if disturbances have
large amplitude at high frequency, the controller output
amplitude typically defines the limit for A. The opera-
tor can observe the controller output and increase A
until the peak to peak amplitude is near allowable
limits. The system then has its best tuning. If ampli-
tudes are too large, A can be reduced in proportion to
desired change.

In systems with cascaded loops, inner loops are first
tuned to maximum A values and then outer loops are
set.
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