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The separation of mixtures by rectification [fractionation] is extensively
used in the chemical, petroleum, and gas industries, and also 1n processes of
isotope separation. As a rule, adiabatic rectification columns with constant re-
flux and vapor [boil-up] rates are employed here. However, the thermodynamic ef-
ficiency of an adiabatic process is often very low. Thus, in the case of energy-
wasting separation processes such as, for example, low-temperature gas separation,
attempts to improve their thermodynamic efficiency (by decreasing the irrever-
sibility) have been made by means of certaln design and construction modifications,
having as their aim the rejection of the adiabatic principle.

In other cases, where the work of separation comprises only a small portion
of the total expenditure (isotope separation), the rejection of the adisabatic
principle results chiefly from a tendency to reduce the volume of equipment re-

ired, and also to decrease extraneous power consumption (for pumping of liquids
and so forth).

So-called "multistage cascading" [1, 2] is employed in isotope separation;
columns with intermediste reflux feed, columns with interjacent reboilers and
partial condensers, sectionalized columns, condensation-eveporation units and
others [3-6] have been suggested for low-temperature gas separation also. In all
of these cases, energy -1s supplied either at certain intermediate points of the
columns, or else along the whole mass-transfer surface.

However, all of these attempts to improve the rectification process have an
empirical nature; in other cases, approximate optimal solutions, valid only for
specific conditions [7], have been proposed. At the present time the need for
methods of computing the thermodynamically optimal separation process in a real
column (that is, in a column with a finite number of stages) has developed. The
formulation of such a separation process would meke it possible to indicate the
direction of the desired thermodynamic improvement and also its upper limit.

A thermodynamically optimal separation in a cclumn with a given number of
stages would serve as a standard for industrial units, on which their efficiency
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could be based. However, the practical usage of a reversible separation process
(in an infinite column) [8] for these objectives would not be feasible and would
not permit even an approximate estimation of the possibility of thermodynamic im-
provement of a process in a real column, if only because of the fact that the
work of a reversible separation [9] does not depend on the physical properties

of the mixture being separated (including here the volatility).

Thus, the thermodynemic improvement of processes for the separation of
various mixtures must be based on an analysis of the thermodynamically optimal
process in a real column, in which the physical properties of the mixture being
separated must be accurately taken into consideration insofar as possible.

Together with the task of computing such a process, the problem of design-
ing a cascade that 1s optimal from the economic standpoint (that is, with a con-
sideration of capital and other expenses for the separation), is of considerable
practical significance, especially in the case of isotope separation.

A thermodynamiceally optimal process, carried out in both finite and infinite
columns, and also methods for computing optimel cascades for binary and multi-
component rectification on the basis of various criteria, are presented below.

Separation in columns with an infinite number of stages (completely rever-
sible process). Such a process has been described for both binary 19, 10] and
multi-component [11, 12] rectification. However, a number of important assump-
tions regarding these processes were not clearly formulated. An optimal recti-
fication process is characterized at each point of the column by minimum reflux
and vapor [boil-up] rates and by zero driving forces for the process, that is,
by equilibrium between the liquid and the vapor.

Thus, considering these features, a process of optimal rectification may be
described by the following system of equations (material balance and phase-

equilibria equations):
xi(V + W) = v,V + Xy W
y, = K (T)x, (1)
(1 =1,2,..., n)

(this system is written for the stripping section; an analogous system results
for the rectifying [enrichment] section).

Applying system (1) to the feed point, we obtain:

! xF:l.(V + W) = yF:I.V + xWi.w (2)

(1 =1, 2,..., n)

System (2) contains n equations with n + 2 unknowns (xwi, W, and V). Speci-
fication of any two parameters, for example, the concentrations of the key com-
Ponents in the bottoms product, uniquely defines the solution to
consequently, the complete process of reversible rectification.
mined ¥y, and W from system (2), one may, by using system
Nitudes of the liquid and vapor rates and the concentrat
Ponents for any given temperature level in the column.

system (2) and,
Having deter-
(1), compute the mag-

ions of all of the com-




However, system (2) guarentees a non-negative solution only for a certain
specification of the parameters. The maximum vapor-to-liquid ratio in the strip-
ping section during reversible rectification corresponds to a zero concentration
of the lightest [lst] component in the bottoms product.

For this case we obtain from system (2):

1st
\'A _y_=xF _ 1 (3)
V+W L 1st = _1st
Ip

Anslogously, the maximum liquid-to-vapor ratio in the rectifying [enrichment]
section corresponds to a zero concentration of the heaviest [hst] component in the

st
‘ distillate and 1is equal to K; . For higher values of the vapor-to-liquid ratio

in the stripping section and the liquid-to-vapor ratio in the rectifying (enrich-
ment] section, the solution to system (2) loses physical meaning (the concentra-

i tions of the lightest components in the bottoms product and of the heaviest com-

H ponents in the distillate will be found to be negative). Thus, reversible recti-
fication is possible only for:

1

m——

strip K%St

< K;st

This corresponds to the so-called first class of fractionation (13].

i<
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A sharper separation by means of reversible rectification is impossible in
a single column.

For binary rectification, the limiting case corresponds to complete separa-
tion of the initial mixture into its pure components.

A thermodynemically reversible rectification process has been described, pro-
ceeding from purely physical considerations. However, it may be shown in rigorous
mathematical fashion that the entropy change during such a process is equal to the
entropy change that occurs during separation of the mixture into the corresponding
products, computed on the basis of the concept of semipermeable membranes [14].

A short exposition of this derivation for the case of binary rectification
of ideal closely boiling solutions is given below.

The entropy of separation (the entropy change in external energy sources
during separation) is equel to:

————————
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dQ
== | T (4)
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If the heat content of the feed and of the separated products are selected
such that:

‘I



J/F dqQ = 0

J&J

(that is, for example, all of the entering and exiting streams are saturated 1i-
quids), then, integrating by parts, we obtain:

"D *D
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From the Clapeyron-Clausius equation:

T =T (5)
’ aT T(Vg - vliqj
assuming that Vliq = 0 and Vg = RT/P, and after some simple transformations, we
obtain for closely boiling ideml solutions: e;
'(A ' A= po
=31+ (a-1)x]+ ) H (7)
T A
1/ _R o -1
a (T) X Tt (@-Nx & (8)
X X = Xy
Qstrip = AW ¥y — x (9)
- x
X *D
Qrect -}\Dy—x (10)

Assuming the existence of phase equilibrium at each point, we finally have:

A TN R Q-1
Sgep = AW Oix AT F (a=-Dx & F
X, 1+ (a=1)x X
D
+ / MD o x - x R o= ) o)

_ . - dx =
(o T T
‘ = R[W(1 - xw) 1n (1 - xw) + Wexoeln X +

+ D(1 — xD) 1n (1 - xD) + Dxp-ln x - F(1 - xF) 1n (1 - xF) = Fx; 1n xF]

While the thermodynamically optimal separation process in infinite columns
Day be computed via elementary means, the celculation of such a process in the
case of real rectification columns (which represent the greatest practical inter-
est) is possible only by recourse to the apparatus of dynamic and nonlinear program-
Ming and with the application of digital computers.



In conjunction with the emergence of the need for isotope separation, a
theory of ideal cascades was developed [15], which is applicable to various
methods of separation, including rectification. This theory was recently extended
to the separation of multi-component mixtures [16]. This theory is adaptable to
processes with a finite number of separation stages.

However, it describes separation processes which are characterized by a mini-
n
mum totael interstage flow (the functional [ Vdn is a minimum), and not by a
o}
minimum work of separation, as will be shown below.

The ideal cascade guarantees a minimum expenditure of energy on separation
only for processes with an irreversible elementary act (gaseous diffusion, atmoly-
sis, etc.), for which the energy expenditure on separation is proportional to the
cotal interstage flow. For an ideal cascade, n = 2npypy and if @ =1 << 1 at
each stage V = 2V ;. The theory of ideal cascades yields a simple analytical

n
solution to the problem of minimizing the functional J( Vdn under the condition
o

a@—1 << 1. A number of papers by Soviet and foreign authors [1, 2, 7] have been
devoted to the application of the theory of ideal cascades to the design of rec-
tification plants. However, several authors [4] have also made unsuccessful at-
tempts to:

first, consider the ideal cascade as guaranteeing the minimum work of separa-
tion and use such concepts of the theory of ideal cascades as the separation poten-
tial to estimate the efficiency of rectification plants;

second, extend the theory of ldeal cascades to widely boiling mixtures.

An ideal cascade as applied to a rectification plant is not thermodynamically
optimal. The problem of minimizing the work of separation or the entropy of sepa-
ration, which is proportional to the latter, as expressed by the functional

n
— J dQ/T is a considerably more difficult veriational ("non-classical") problem
[o]

n

then the problem of minimizing the functional J Vdn.
o

The study carried out by the present authors showed that the method of dynamic
programming [16] may be effectively used to solve this problem for the case of
binary rectification.

Separation of a binary mixture in a plate column with an energy supply at
gach stage. The optimality criterion [function] is

g
y=1 4

Using the material and heat [enthalpy] balance equations, we obtain (for the
8tripping section):

v = xﬁ + 1 xW oW (12)



(13)

QJ=VJHJ—(VJ+W)hJ+1—VJ_1HJ_1+(VJ_1+W)h

J

where Yys HJ and hJ for the binary rectification are functions of Xy.
Analogous equations result for the rectifying [enrichment] section.

Thus, the problem reduces to a minimization of the functional:

n
. 1
- Z QJ<XJ-1”‘J’ "J+1) REN)
1=1 : -

Using the method of dynamic programming, we construct a system of Bellman
recursion equations [17]:

) Q.,(x s X, X )
] A R L
Ty = 2lxp %y o) mmelfy gl g0 x)) T(x,) ]

=3, 4, ..., n

Q%) Qy(x,, x)
Fo(xz’ x3) =T T(x1) - £ T(x2)3 (14)

This system was solved numerically on a "Ural" digital computer, using the l
so-called "tube' method.*

Although the method developed is applicable to any arbitrary mixture, an
ideal mixture, subject to equalities (7), (9), and (10), was chosen as the object
of this study; thus, there was the possibility of comparing the results with
the data from the theory of ildeal cascades.

The process of searching for the optimum (the results of successive iterations)
1s shown in Fig. 1 in V — n coordinates (n = 23, Ngtrip = 11, @ = 1.44, A = 5810,
F =100, xp = 0.5, xy = 0.11865, xp = 0.91452, liquid feed, total condenser).

The parameters of the process (separation, number of plates, and relative
volatility) were selected in accordance with the theory of ideal cascades. For
purposes of demonstration, the stepwise variation of the vapor flow up the column
is shown as continuous. An ideal cascade was selected as the initial trajectory.
As the result of successive iterations, the trajectory approaches the form for a
thermodynamically optimal cascade and acquires a monotonic nature for each section,
Ccorresponding to the supply of heat to all of the plates of the stripping section
and to the removal of heat from all of the plates of the rectifying section.

The relationships n vs. x and n vs. V for a thermodynamically optimal cascade
for various values of Q are constructed in Figs. 2 and 3, respectively. For & =
1.44 the corresponding relationships for an adiabatic column and an ideal cascede
are shown, while in Fig. 3 the curve for Vpyin is also given. It is seen from
these Figures that the thermodynamicselly optimal cascade occupies an intermediate
Position between an adiabatic column (where V = const) and an ideal cascade (where
V= zvmin for each tray) with respect to both the distribution of the vapor flow
e ————

*
The "tube" method is a technique for solving systems of functional equations of
the type (14) for rectification problems — has been described in detail earlier

(18],
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V, moles thermodynamically optimal cascade
Fig. 1. Results of successive iterations for various values of @: 1) thermo-

in the process of approaching the thermo-
dynamically optimal cascade: 1) initial
trajectory (ideal cascade), AS = 147.0 kcal
per deg per 100 moles of initlial mixture;
2) results of the 1st iteration, &S =
141.0; 3) results of the 2nd iteration,

S = 140.2; 4) results of the 3rd itera-
tion, AS = 139.5; 5) results of the 6th

dynamicelly optimal cascade, Q =
1.44; 2) the same, @ = 2.0; 3)
the same, @ = 5.0; 4) adisbatic
column, @ = 1.44; 5) ideal cascade,
a = 1.44,

iteration, &S = 139.2.

and the variation of the concentration with the height of the column.

It is of interest to note that the variation of the concentration with
height during the separation of ideal solutions in thermodynamically optimal
cascades has an approximately linear nature (here, the optimal distribution of
the plates with respect to the sections of the column i1s proportional to the
differences (xp — xp) and (xp — xy)).

As is seen from Fig. 4, this corresponds to approximate equality of the
driving forces at each level of the cascade. For an ideal mixture, having the
properties (7) and (9), the entropy of separation (the function

n
Q
- )
y=119
is obviously independent of the latent heat of vaporization.
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Fig. 4. Dependence of y on x for an
adigbatic column, an ideal cascade, and
a thermodynamically optimal cascade
(a=1.44): 1) adiasbatic column; 2)
thermodynamically optimal cascade; 3)
ideal cascade; 4) equilibrium curve.
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Fig. 3. Dependence of n on V for a
thermodynamically optimal cascade
for various values of @: 1) thermo-
dynamically optimal cascade, @ =
1.44; 2) the same, @ = 2.0; 3)

he same, @ = 5.0; 4) ideal cascade
Q= 1.44; 5) adiabatic column,

@ = 1.44; 6) minimum vapor flow
Vmin, a=1.44.
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of initial mixture

The entropy of separation for
a thermodynamically optimal cascade
as a function of the relative vola-
tility @ for a given number of trays
(n = 23) is shown in Fig. 5. The
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Fig. 5. Dependence of ASgep On @: 1)
thermodynamically optimal cascade (n = 23);

48, kcal/deg per 100 moles

corresponding relationshlp for adi-
abatic columns is also presented in
this Figure for comparative purposes.
It is seen that the entropy of sepa-

2) adisbatic column (n = 23); 3) infinite
adiabatic column; 4) reversible rectifi-
cation.

Tation for a thermodynamically optimal cascade as Q@ — o asymptotically approaches
the entropy for reversible separation (the same thing is observed for @ = const

and n -)oo),

For 0 = const and n -+ =, and also for n = const and @ —» =, the deviation from
€quilibrium of the liquid and vapor streams mixing on each stage is diminished and,
8ccordingly, the work of separation converges to the reversible work.
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A comparison of the thermﬁaynamically optimal cascade with an adiabatic
column and with an ideal cascade for the above-indicated values of the process
parameters (o = 1.44, n = 23) shows that the entropy of separation for the thermo-~
dynamically optimal cascade is 139.15, for the ideal cascade it is 146.97, and
for the adiabatic column it is 158 kcal/deg per 100 moles of initial mixture
(compare: the entropy of reversible separation is equal to 72.24 and the entropy
of separation in an infinite adiasbatic column is 127.92). This corresponds to an
efficiency for the ideal cascade of 0.945 and an efficiency for the adiabatic
column of 0.88. It should be appreciated that these efficiencies mey vary over
a wide range depending on the separation conditions; thus, the efficiency of an
adiebatic column falls sharply with an increase in the degree of enrichment in the
column.

n
The total interstage flow, 2: VJ, is, as one would expect the least for
3=
.n ideal cascade (5268 moles rer 100 moles of initial mixture); for the thermo-
dynaemicelly optimal cascade it is equal to 5413 and for an adiabatic column it is
6030.

If the mixture is close-boiling, the losses due to irreversibility in such
& column emount to only a small portion of the totel irreversible losses, which
occur primarily in reboilers and condensers.

The method developed here may be easily used to find the minimum energy ex-
penditure with an allowance for losses due to incomplete recovery in the heat
exchangers. It is only necessary in system (14) to substitute T + AT for T in
the stripping section and T — AT for T in the rectifying section (AT is the
temperature difference in the heat exchangers).

Another approach should be possible for the solution of the problem of de-
termining the minimum work of separstion. The minimum work of separation in a
real column must correspond to the minimum total of the entropies of mixing of the
vapor and liquid streams on all of the stages of separation. In reversible rec-
“ification this sum is equal to zero, and the entropy change in external energy
oOurces is equal to the entropy change in the separation products. In a real
column the entropy change in external energy sources is greater than the entropy
change in the separation products by an amount equal to the sum of the entropies
of mixing on all of the separation stages:

n-—1
N J
Asreal Asrevers - §: Csmix
J=2

n -1

The minimization of the quantity, zi: Asiix’ may be done using the "tube"

J=2
Method. Here, we obtain the following system of Bellman equations:
- J
FJ a 2(xJ, X5, 1) = mj.n[F.j _ S(XJ 1 XJ) + Asmix(xJ -1 Xy 1)]
Xy (1 = 3, 4, , n)
F (x,) = 65° (x,) (15)
o3 mix' 3
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The systems of functional equations (14) and (15) are equivalent.

This method of dynamic programming may be used extensively for solving other
optimality problems of binary rectification.

n
The optimality criterion [function] is E: VJ‘ The problem of minimizing

J=1
the total interstage flow is solved in the same fashion as in the theory of ideal
cascades. However, a mixture with any arbitrary properties, including widely boil-
ing ones, may be studied via this method.

The system of Bellman equations in this case assumes the following:form:

F X

J)=min[FJ_3(xJ_1)+VJ_1(xJ_], x) ] (16)

x (1 =3, 4, ..., n)

-1
FO(XZ) = Vl(xz)

Systems (14) and (16) have an identical structure, but system (14) 1is doubly
connected while (16) is simply connected. This merely leads to a corresponding
decrease in the computation time.

J - 2!

The computations that were carried out showed that, for an ideal mixture end
G = 1.44, the optimal parameters were close to the results from the theory of
ideal cascades.

It should be pointed out that this method guarantees that a minimum inter-
stage flow will be found for a fixed number of separation stages. A series of
computations with various values of n must be carried out 1n order to find the
overall minimum,

Economic optimality criterion. The problems treated above are primarily of
& theoretical nature. Of greater practical interest, particularly as applied to
the separation of isotopes, 1s the case wherein heat or cold is fed not to each
ray, but rather only at certain intermediate points (that is, by sections), and
wherein the functional to be minimized includes dissimilsr expenditures for the
separation (energy and capital expenditures).

If we take the expenditures [in reduced form] for the separation E (the
sum of the energy and capital expenditures with pay-out time teken into account),
88 such a functional, we then have for each section:

N
= a T,) +aV, +aV.n +a + a 17
Here the function ¢(T) may, first, have a step-like form in conformity with
the discrete set of isotherms for the heating or cooling agents at hand, and,
Second, take into consideration incomplete recovery in the reboilers and con-

densers (in the separation of isotopes T =~ const).

The first term of expression (17) Includes direct expenditures'of energy for
the supply of heat or cold to the given section.

The second term includes expenditures for piping, fittings, storage tanks,
Compressors, and pumps.




The third term includes expenditures on the rectifying section itself (shell,
trays or packing), and also energy expenditures to overcome hydraulic resistance.

The fourth term includes expenditures on reboilers and condensers.

Finally, the fifth term includes expenditures for instrumentation and cer-
tain other fixed expenditures.

The problem consists in the optimal selection of the points for intermediste
supply of heat and cold and of the quantities Qj, corresponding to a minimum
k .

value of 2: Ej, where k is the number of sections.
j=1

The semianalytical solution of such a problem for the particular case of
-sotope separation, with a number of simplifying assumptions (xF << 1), was at-
tempted by Dipak [7]. A method of rigorous solution of such a problem for the
general case is presented below.

In solving this problem by the "tube" method, it is convenient to select as
the independent variables VJ (the veapor flow in the J-th section) and x4 (the con-
centration of the light component at the exit from the j-th section; Xo and xp
are fixed by the separation conditions*).

With this selection of the independent variasbles, we then obtain:

QJ=f1(xJ_1,VJ__1,VJ) (18)
(in the particular case of ideal solutions with A = const, Qy = f1(VJ -1 VJ)),
and:
o(Ty) = £,(x, _ ) (19)
n.j = f3(x.j — 1} x'jl VJ) (20)
ary = 2,(x, ) (21)
Thus :
= \
EJ WJ(XJ -1 xJ, VJ -1’ J) (22)
Finally the problem 1s set up to find:
k :
min 2: \Vj(xJ — 1 Xy VJ 1 VJ)
- J =‘l

with the conditions x5 = Xy, Xx = yp/K and the restrictions:

3 > vjmin; x.j > xJ -1

The system of Bellman equations for this problem has the following form:

v

X » Vo _
J =1 . 1 (J =2, 3 ..., k)

*
The more general problem of optimal design with variable degrees of recovery and
purity of the products is not considered here.
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The process of solving this system may be considered as two-dimensional and
slmply connected.

The computation for each section (determination of ni) is carried out via the
"tray-to-tray" method using the equations of phase equilibrium, material balance
and, 1f necessary, enthalpy balance.

A fractional number of theoretical trays in each section may be obtained
here.

The coefficients aj-ag, the functions Q(TJ), and the ATs are derived from a
consideration of the actual engineering, economic, thermodynamic, and physical
parameters of the process.

It should be noted that, in expression (17), several of the component ex-
penditures are estimated approximately. For example, the capital expenditures
on the rectifying section itself have been assumed to be proportional to Vs and
ny, no precise relationship between the dismeter of the column, the tray spacing
end the V; has been incorporated, no proportionality between the cost of the
column ang the weight of the material has been included, the tray efficiencies
have been assumed to be constant, and so forth.

The problems of a more accurate consideration of these factors have been
treated in the literature [19, 20]. However, the method presented here retains
its merit completely even if all of these complicating factors are considered.
The structure of expression (22) and of the system of equations (23) is com-
pletely preserved here.

The dynamic programming method described herein has been found to be uni-
versal and very effective in its application to various optimality problems of
binary rectification.

Depending on the formulation of the problem and the selection of the opti-
aality criterion (the functional to be minimized), simply connected or doubly
connected one-dimensional or two-dimensional processes for solving the system
of Bellman functional equations have been encountered.

In this connection, the problem of minimizing a function of many variables
1s replaced with a set of sequentially solved problems of minimization of functions
of one or two variables.

The advantage of the dynamic programming method in comparison with other
methods (for example, a gradient method) is demonstrated rather forcefully if
there is a large number of independent varisbles, which may occur, for example,
in the computation of optimal cascades for isotope separation.

The "tube" method is less sensitive than the gradient method with respect to
local optimas and is not endangered by limits; moreover, considerably more in-
formation about the system is obtained (instead of a single optimal trajectory
there is an envelope of trajectories, which correspond to partial optime with re-
spect to segments of the system).

However, the dynamic programming method is particularly effective in its
application to the problem of optimizing a chain of elements (the elements may
be the trays of a rectification column, the rectangular sections of a rectifica-
tion cascade, rectification columns in complex separation installations, and even
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different industrial units in a single industrial sequence), if the process in
each element depends on no more than one or two input parsmeters and a small
number of control parameters.

In the binary rectification problems described above, the process in each
element did indeed depend on one (simply connected process) or two (doubly con-
nected process) input parsmeters and on one (one-dimensional process) or two
(two-dimensional process) control parameters.

Separation of a multi-component mixture. 1In the case of multi-component
rectification the process in each element depends on many input parameters (that
is, it is multiply connected); the concentrations of all of the components of
the mixture entering the element or the control parameters of all of the preceding
elements may be teken as such input parameters.

Thus, the dynamic programming method for the problem of multi-component rec-
tification 14 not very effective. Nonlinear programming methods, in particular
gradient methods, would be more efficient.

Let us consider the problem of determining the minimum work of separation of
& multi-component mixture in a real column with a given number of theoretical stages
of separation.

The following are given: the composition and thermodynamic state of the
feed, the total number of theoretical stages of separation, and the separation
with respect to the key components.

In this case 1t is convenient to select as the independent variables (control
parameters) the amount of vapor leaving each tray VJ, and the number of trays in
one of the sectlions of the column m. Here V, = D, while V, _ | for fixed vy
(3=1,2, ..., n—2) 1s uniquely determined by the given separation.

The process of multi-component rectification under the given conditions is
rompletely determined by the distribution of the vapor stream up the column,
Vis V3, ..y Vg _ 2, and may be computed by one of the "tray-to-tray" methods.

Thus, the problem reduces to the minimization of some undefined function of
the n = 1 variable:

. Q
*
- X T1=F(V1’Vz’ s Vs e Vo, ) (25)
y=1 9
The functional restrictions are placed on the independent variables:
min
v, >V
J J

(J=1,2, ..., n—=1)

From a physical sense of the problem, the optimal trajectory (the optimal
set of the VJ) must completely lie strictly inside the restrictions [limits].

This makes it possible to use the method of steepest descent for solving
this problem, without any serious complications of the algorithm associated with
searching for the optimum on a boundary. The method consists in determining

*
Translator's Note: paper contains no equation number 24,




particular increments of the function — z: Ti with respect to each of the in-
J=17J

dependent variables (that is, the direction of the gradient) and in moving in a
direction opposite to the gradient,

The solution of this problem is of interest for the proper design of low-
temperature gas-separation Plants. The individual units of these plants are
characterized by a low temperature of the refrigeration being supplied (nigh
power cost) and a large temperature drop between the top and bottom of the
columns. This results in a high bercentage of the total energy expenditures go-
ing directly to the separation, the totsl expenditures being associated with,
for example, irreversibility in the reboilers and condensers.

The method of steepest descent also makes it possible to solve the important
vractical problem of the optimal, in an economic sense, supply of heat and cold
O the sectiens of a column. The problem formulation does not differ from that
described above in the section on binary rectification.

However, it 1s more convenient in this case to consider the reduced expen-
ditures being minimized as a function of the number of trays nj and the vapor
flows VJ in each section:

E=F(n, Vi, 0y, Voy oeo, ns V) (26)

One of the variables, for example, n,, 1s not independent. It is uniquely
defined by the selection of the remaining varisbles and the given separation.
Thus, the problem consists in minimizing the function of the (2k — 1)th veri-
able (if the number of the feed tray m is also considered to be a varisble, then

there are 2k varisbles) with the restrictions, vJ > V?in (3 =1,2, ..., k).

The method of steepest descent for this problem does not differ from that
described sbove.
SUMMARY

1. An expression for the entropy change during completely reversible separa-
tion of a binary mixture has been obtained without using any concepts of hypo-
thetical semipermeable membranes.

2. Methods for computing thermodynesmically or economically optimal recti-
fication cascades have been developed.

3. It has been shown that a dynamic programming method is the most effi-
cient for the computation of optimal cascades for binary rectification, while
the method of steepest descent is best for multi-component rectification.

4. The results of a computer study of the thermodynamically optimal cascade
for binary rectification have been presented.

5. It has been shown that an ideal cascade does not necessarily guarantee
the minimum work of separation.

SYMBOLS

V = vapor flow up the column
L — liquid flow down the column




(1]

(2]
(3]
(4]

(5]
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— feed to the column
— distillate product
— bottoms product

— temperature

F
D
W
T
P — pressure
H — heat content of the vapor

h — heat content of the liquid

S — entropy

K — phase equilibrium constant

Q@ — relative volatility

A — latent heat of vaporization

X — concentration of a component in the liquid
Y — concentration of a component in the vapor
Q — amount of heat

QStri — amount of heat supplied to the portion of the stripping sec-
L tion located from the bottom of the column up to the point
with the concentration x
Q:ect — amount of heat removed from the portion of the rectifying [en-

richment] section located from the top [Translator's Note:
text says "from the bottom"] down to the point with the con-
tration x

— universal gas constant

— number of sections

total number of trays

— number of trays in a single section

— integration constant

QF 3 =S
!

SUBSCRIPTS AND SUPERSCRIPTS

— tray number

- component number

feed

- bottoms product

— distillate product

lst — lightest component

hst — heaviest component
g — gas

lig - liquid

U=
!
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