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MODERN MATHEMATICAL TOOLS FOR OPTIMIZATION

Part 1

What Optimization Is All About

Thereis a wide gap between the mathemati-
cal know-how of many practicing chemical
engineers and the mathematical tools
needed to cope with modern concepts of opti-
mization. This new series will attempt to
bridge this gap by introducing the mathe-
matics of these important concepts, empha-
sizing the practical approach.

ARNOLD H. BOAS, Socony Mobil Oil Co., Inc.

Most problems in chemical engineering design or plant
operation have at least several, and possibly an infinite,
number of solutions.

Selecting the “best” answer to a problem out of the
multiplicity of potential solutions is certainly not a
new concept to chemical engineers. However, optimum
answers are based very often on intuition or past
experience.

Now, some sophisticated mathematical tools and
techniques are available for the calculation of optimum
conditions. These methods, together with the use of
modern computers, can minimize much of the guess-
work and conjecture that usually surround the prob-
lem of choosing the best set of variables in multivari-
able problems. These techniques, of course, still re-
quire skillful use of past experience and even some
intuition before they can produce practical infor-
mation.

There are a number of reasons why engineers are
becoming greatly interested in optimization. An im-
portant one is that intensive competition in the chem-
ical process industries makes it more necessary than
ever that equipment and systems operate at peak per-

Watch for Part 2—Lagrange Maultipliers, in Jan. 7,
1963, issue. Other parts in future issues will discuss the
Fibonacci scan, steepest ascent method, direct search,
and a summary of advanced techniques.

Cuemicar EnGINEERING—December 10, 1962

formance. Even marginal savings can be extremely
vital in this competitive environment.

Recent interest in this subject is shown by the nu-
merous papers that have appeared in the literature.
Some of the latest publications include those of Box,’
Butcher," Taborek,” Wilde,” N. Y. U. Symposium,*
and the AIChE Lecture Series.

However, mathematical techniques required to cope
with the problems of optimization may not be too
familiar to many practicing chemical engineers. The
objective of this series is to present some of these
mathematical tools in a comprehensible fashion to
engineers who may not feel at home in the area of
sophisticated mathematical jargon. Theoretical devel-
opment will be subservient to practical solutions of
problems. References will be noted, so that those
readers who are more inclined to the theoretical ap-
proach will have ample source material upon which
to draw.

It is hoped that at the conclusion of the series suffi-
cient interest will have been instilled in the reader so
that he will pursue further reading on the subject.

What to Optimize?

As Box" points out, the subject of what to optimize
is the first major question that must be answered.
Then, an “objective function” is selected, usually re-
lated to cost, yield, purity or some other criterion for
optimization. This function may be expressed in the
form of an equation such as:

Y=a+4+bP+cT +dP*+eT? + fPT
where

Y = yield of a certain product in a chemical reaction.
P = pressure in the reactor.
T = temperature in the reactor.

a,b,c,d.e,f = coeflicients in the equation.

Coefficients are usually determined from a series of
laboratory or pilot-plant experiments to represent de-
pendence of yield on pressure and temperature. These
parameters may vary due to catalyst activity, ambient
conditions, feed conditions, ete.

Now the problem is to select P and T so that Y will
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Important terms and functions used in optimization techniques—Fig. 1
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P and T may take the form shown in Fig. 2. The vari-
ables shown are ‘“free” in that no limits have been
placed on them. In reality, for reasons dictated by
process or safety, constraints may be imposed on some
of the variables. Suppose that P may not exceed P,
for reasons of safety, and that T has a lower limit of
T, determined from reaction kinetics, These limits are
shown in Fig. 3 where the white area represents the
region of interest. Surfaces generated by second-
degree equations in two and three variables are dis-
cussed by Box.°

Care and effort should be taken in defining the ob-
jective function as accurately as possible. All the op-
timization techniques that will be discussed use this
funetion (it need not be in a mathematical form) as
a starting point.

Assuming the function has been defined, we can now
discuss how to optimize. The various methods of
optimization may be classified as follows:

e Analytical.
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(see Ref. 2, 11a).

¢ Case study.
® Search.

Analytical Method Uses Calculus

The classical method of caleulus is used in the an-
alytical method when the first derivative of a differ-
entiable function is set equal to zero.

In the case of a multivariable funetion, partial
derivatives are taken with respect to each of the =
variables, and a set of » simultaneous equations is
obtained. Where constraints are imposed, Lagrange
Multipliers are introduced, one for each constraint, so
the number of independent equations and the number
of unknowns are identical.

To use the analytical method, a function must be in
a mathematical form and must be differentiable. This
is usually a serious limitation since many design calcu-
lations are of the iterative type, solved by trial-and-
error or some numerical method. Another drawback
to the analytical method is that only one solution is
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obtained. There is no indication of the direction or
path required to reach this solution.

Case Study Method: Step by Step

Sometimes called ‘“the method of last resort,” case
studies may be the only method applicable. As the
name implies, this technique consists of evaluating
various solutions to the problem.

Case after case is tried and results are presented
graphically or in tabular form. A study of these
graphs or tables yields the “best” combination of
variables.

Although the case-study method is well suited for
computer use, there are some difficulties in presenting
the results for the multidimensional or multivariable
problem. However, it is a simple technique and pro-
vides many solutions to the problem in contrast to the
analytical method that gives one set of values as the
solution.

Search Methods: “Homing In”

The following table lists some of the more recent
search methods that have been described.

Steepest ascent (Box & Wilson)™............... 1951
Gradient search (Zelnik et al)®............... 1962
Direct search (Hooke and Jeeves)™............. 1961
Gradient-free search (Wilde)™................. 1962
(a) Lattice methods (b) Contour tangent
Gradient method (Roberts and Lyvers)®........ 1961
(a) Hemstitching (b) Riding the constraint
Ridge analysis (Lester)®............... ... ..., 1961
(Hoerl)* .........coveeinann. 1959

Parallel tangents (PARTAN) (Shah et al.)®....1961
(Buehler et al.)*.1961
Nonlinear digital optimizing program (Mugele)*.1962

v Tpmperoture v Temperature sk
Yleld—eo%) Allowdble ',Yneld-BO%l

region.

(@'

Pressure —= Pressure — P2

A Plots of yield vs. temperature and
pressure show maximum yield—Fig. 2

Constraints (minimum temperature,
maximum pressure) limit results—Fig. 3

Conjugate gradient (Hestenes and Stiefel)*..... 1952
Gradient projection (Rosen)™........... 1960, 1961

Search methods have certain characteristics in com-
mon. A base point is assumed known (one set of con-
ditions that is a solution to the problem, but not neces-
sarily the optimum solution). Then, the method must
gelect the next set of values for the variables and
evaluate the objective function once again, hoping that
this time, and each successive time, the solution will
be closer to the optimum solution.

Each search method has this objective in common
but each selects the next set of values in a different
manner. A judicious choice can eliminate many waste-
ful caleulations in “homing in” on the optimum.

One requirement in all of these methods is that the
dependent variable be unimodal (one peak). However,
various techniques are available for scanning for alter-
native optima.

Basic Concepts of Optimization

There are some basic concepts of maxima, minima,
tangents and normals that are important for an under-
standing of optimization. See Fig. 1 for terminology.

A basic knowledge of the differential calculus is
assumed. If the reader is not confident in handling
readily differentiable functions, a number of refer-
ences are included.” * *

Maxima and Minima

The slope of a curve is given by a first derivative.
Thus,
y=2z+1
is an equation of a straight line whose slope may be

found by taking the first derivative of ¥ with respect
to z (see Fig. 4),

dy/dz = 2

CuemicAL ENcGINEERING—December 10, 1962

Now, consider the following equation of a parabola

(see Fig. 5),
y=12+2
The slope at any point on this curve is
dy/dz = 2z

This slope is continually changing since it is a
function of x. For a straight line, the slope remains
constant regardless of the value of =z.

Change in slope may be represented by the second
derivative of y with respect to z.
For the straight line,

d?y/dz? = 0 (slope is constant)
For the parabola,

d?y/dz?* = 2 (slope is changing by 2 units per unit change in z)

These are all differentiable functions. With a dis-
continuity or kink, the funection is not differentiable
(see Figs. 6 and 7). In these figures, z, represents the
value of z at the point where the derivatives are non-
existent.

A distinction should be made between local and
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Slope of a curve given by Slope of a parabola is con- Derivative is not defined for
the first derivative—Fig. 4 tinually changing — Fig. 5 discontinuousfunction—Fig.6

global extreme conditions. A function may have an
extreme value—a maximum at one value of xz—and
yvet this may not be the true maximum value of the
function of z. Fig. 8 indicates such a situation wherd
a local maximum exists at * = x, but the true max-
imum (global) in the range of z, to z, occurs at z =
%,. One method sometimes used in searching for a
global extreme is to assume a new starting point and
search for a peak once again. If the same peak is
reached time and time again, the investigator can have
confidence that this is the true peak, although he has
no assurance that his objective has been achieved.

Thus, a local maximum (or minimum) will be de-
fined as a point having lower (or higher) adjacent
values on either side. A global maximum (or min-
imum) will be defined as the highest (or lowest) point
in the area under consideration.

Our discussion to follow will be limited to local
extremes.

Functions of One Variable

Rules about extremes of a function of one variable
may be summarized as follows:

Rule 1—Extremes of f(z) can occur oniy where
dy/dx = 0 or where dy/dx is nonexistent. This rule
is a necessary but not sufficient condition, since other
conditions must be met.

Rule 2—If, at the point determined from Rule 1,
certain derivatives vanish, then the next derivative,
which does not vanish, is examined for sign. Say that
all the derivatives up to the nth derivative vanish

dy/dz = dy/dx® = By/da®...dy/dz" = 0
then the next derivative d"'y/dz™* is either positive
or negative. If » is an even value, there is a point of
inflectlion. If » is odd, the next derivative (the n + 1st)
is examined; if it is negative, a maximum exists; if
it is positive, a minimum exists.

Rule 3—This rule must be used where dy/dxz does
not exist (e.g., at a discontinuity). The neighborhood
of the critical point (point determined from Rule 1)
must be explored. The first derivative, dy/dz, is in-
vestigated in this area as z increases in value through
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the critical point. Sign of dy/dx must be noted:

If the sign goes from plus to minus, a maximum
exists; if sign goes from minus to plus, a minimum
exists; if sign does not change, there is no extreme.

To illustrate, find the extremes of :

y =2° — 02 + 24z

The first derivative is set equal to zero

dy/dx = 322 — 18z 4+ 24 =0
Solving the quadratic equation for z,

- -2)=0
from which

4
2
t these values of z.

» 88

therefore, extremes may exist
From Rule 2,

dry/dzr = 0
so that » = 1 in this problem
dn+ly/dzn+1 = d'z?//dx'z
The second derivative must now be investigated for
sign:
d*y/dz* = 6z — 18
Atz = 4
dy/da? = 6(4) — 18 = 6
Atz =2
d%y/ds?* = 6(2) — 18 =—6
Following Rule 2, » = 1 and is, therefore, odd. The
second derivative is positive for x = 4, thus a min-
imum exists at this point; the second derivative is
negative for x = 2, so 2 maximum exists at this point.
Fig. 9 illustrates these results graphically. Note that
maximum and minimum points are local extremes and
not global. .
As another example, find the extreme of:
y=2>5+a"
Here, the first derivative is
dy/dz = (2/3)z~1#
This derivative does not exist at * = 0. Using Rule
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Derivative does not
exist at a kink—Fig. 7

3, as x increases through z = 0, dy/dx goes from
minus to plus. There is a minimum at ¢ = 0, y = 5.
y

_x=0
o7 y=5

X
Functions of Two Variables

Suppose that z is a function of two variables, x and
Y, and we want to search for a maximum or minimum.
The first question to be answered is: Does an extreme
exist at all? Without delving into a mathematical
proof, the steps will be stated below. Proofs are avail-
able in many references.® ® ™ *: * %

Step 1—Evaluate the partial derivatives 9z/9x and
0z/9y.

Step 2—If 02/0xz = 0 and 9z/90y = 0, then an ex-
treme may exist* and Steps 3 through 5 are to be
followed. If either 9z/0x or 9z/9y is not zero, then
there is neither a maximum nor a4 minimum.

Step 8—Evaluate 9°2/9«%, 0°2/0y® and 9°z/(9x 2v).

Step 4—Evaluate the term M where

M = (3%/0x%)(0%/0y?) — (0%/0x By)t
Step 5—See the table (right) to determine whether

* This is a necessary condition for an extreme condition.

fix)
v
40..
: : - f(x)3x3—9xz+24x
' ' 200 3
| | 1\ <
| | g IMax. | Min.
| | | 0 ] (
I l l = H i 1 1 I 1 1
g 3 ; 0 2 ; 4 6
lﬂ l| lb r_
-20..

Local and global maxima Maximum and minimum
exist for functions—Fig. 8 arelocal extremes—Fig. 9

an extreme condition exists. This constitutes the suffi-
cient condition for an extreme.

For the case of more than two independent vari-
ables, the problem becomes much more complex and
will not be discussed at this point. This case has been
covered by many authors»™* =

M Optimum
Positive  8%2/0y* and 8%/0z® are positive.... Minimum
0%/3y* and 0%/0a2? are negative... Maximum
Negative ...ttt Saddle point
ZETO e Undecided
Given the equation
z=22 4y + 4z + 4y (1)

Determine: (a) whether an extreme exists (b) if so,
the extreme value of this function and the values of
z and y at the extreme condition.

Following the steps in the recommended procedure:

02/0x = 2z + 4 @
0z/0y =2y + 4 3)

For an extreme condition to exist, Eqs. (2) and (38)
are set equal to zero

2r +4=0,z= —2

Optimum point shows upin Tangent calculations are impor- Normal-line calculations
plot of equation—Fig. 10 tant in optimization—Fig. 11 can be graphed—Fig. 12
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and 2y +4 =0,y= —2, Now Step 2:
y
s[ -Equation
——-Equation of normal
of tongent : 4 y 4x
=~ -3—3-4--2—- =.-3_
y 4 >
(L]l 1 fi]
-6 4] 6x
—~—Equation ~-—Equation
of circle= of circle
x%+y%=25 P +y2=25
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At z = —2 and ¥ = —2, an extreme may exist.
Steps 3-5 are now followed:
3. z/01r = 2
#z/0zx oy =0
4 M= (2)(2) —0=4
Since M is positive, Step 5 and the table show that
where 9°2/0y" and 0%/0z" are positive, a minimum
condition exists. It has been shown that this point is at

T =-—2 and y=—2
Substituting these values in Eq. (1), the extreme value
of the funection is found to be
z=x4 9+ 4z +
= (- 2)’+( 2)’+4( 2) +4(-2) =-8
Fig. 10 depicts Eq. (1) graphically for various values
of z from 6 to —8.

Tangents and Normals to Curves

Tangent lines may be used to approximate a curve
over a given interval. This is known as “linearization”
and can be applied to reduce nonlinear problems to
linear.

The equation of a tangent line to a curve at a point
(x,, ¥,) has the following characteristics:

¢ Slope of the tangent line is identical to that of
the curve at the common point (z, ¥.).

¢ The point (z,, ) must lie on the line as well as
on the curve.

As an example, find the equation of the tangent line
to the circle #* + y° = 25 at the point z = 3, ¥ = 4.
Differentiating the equation produces

dy/dz =—z/y
This is the slope at any point on the circle. Now, at
the point, x = 8 and y = 4
dy/dz =—3/4
Therefore, the slope, m, of the tangent line at the
point is —38/4. Since the slope and one point on the
line are known, the equation of the line may be calcu-
lated from
sl- —1/()3:::/47)"'{{3i 25/4 See Fig. 11.

Equation of a line normal (perpendicular) to a
curve at a point (z, %,) has the following character-
istics:

e Slope of the line is equal to the negative recip-
rocal of the slope of the curve at the common point.

¢ Point (x;, %) must lie on the line as well as on
the curve, See Fig. 12 for normal line for above
example.
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Part 2

MODERN
MATHEMATICAL TOOLS |
FOR OPTIMIZATION |

How to Use Lagrange Multipliers

A very powerful and popular technique—
use of Lagrange Multipliers—permits solv-
ing for optimum conditions when these con-
ditions are subject to design, operation, cost,
or other restrictions.

ARNOLD H. BOAS, Socony Mobil Oil Co., Inc.*

We pointed out in Part 1 of this series that the an-
alytical method of optimization involves setting the
derivatives of functions equal to zero. One extremely
powerful analytical technique—use of Lagrange Mul-
tipliers—is applied when there are equality constraints
or restrictions on the variables (e.g., purity must equal
a certain value, flow rate must equal a design value).

The object of optimization studies is to determine
values of the independent variables that will maximize
(or minimize) some objective function (e.g., yield as
a function of temperature and pressure). A Lagrange
Expression is developed first. Then, values of the inde-
pendent variables that optimize this expression are
determined, subject to the given constraints of the
problem. The objective function will also be optimized
by these same values of the independent variables.
Very often, it is easier to optimize the Lagrange Ex-
pression than the objective function itself, considering
the constraints involved.

There are two important rules in applying this tech-
nique: (1) the number of Lagrange Multipliers to be
introduced must be equal to the number of constraining
equations, (2) the Lagrange Expression must be equal
to the objective function plust the product of the
Lagrange Multiplier and constraint. This constraint
must be in the form of an equation set equal to zero.
The discussion that follows applies only to equality
constraints, not situations where variables have to be
less than (or greater than) a certain value.

Let’s now express these concepts in mathematical
nomenclature and then proceed ‘to develop some
Lagrange Expressions:

u(z,y, . . .) = objective function.

un(z,y,...) =0 and va(z,y,...) =0, etc. are the constrain-
ing equatxons

MyAz, . . . ete. are the ange Multipliers.

w(z,y, .. .) = Lagrange resgion.

T,%, - . . are independent variables.

¢ To meet your author, see Chem. Eng, Dec. 10, 1962, p. 152,
+ Some authors use a minus sign here.
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Then, according to the definition of the Lagrange Ex-
pression

w(z,y, .. -) = u(zyy) .- ') + M (z:y: .. ') + )‘3”2(9:,”, ..) (1)

Problem 1
Form the Lagrange Expression for the problem of
finding values of x and ¥ that lie on a circle of radius 5
and that maximize the function zy.
Solution—The objective function is zy, so

u(z,y) = zy
The constraining equation is the equation of a circle
whose radius is 5, or
22 4 ¢y = 25
v(zy) =22 4 y* — 25

The Lagrange Multiplier is . There is only one
multiplier because there is only one constraining equa-
tion.

The Lagrange Expression becomes, according to
Eq. (1):

w(z,y) = zy + A(=? + y* — 25)
Problem 2

Form the Lagrange Expression for finding values of
%, ¥ and z that minimize the function z + 2y* + 2,
subject to the constraint that z + y + z = 1.
Solution—This problem involves three independent
variables x, ¥ and z. The objective function is z +
2y + 27,
u(z,y,2) =z + 2° + 22
Constraining equation is x + y + 2 = 1, s0
vieye) =z+y+z—1
Lagrange Multiplier is A and the Lagrange Expres-
sion is
wEyz) =z 422 +2 4Nz +y+2z2—1)
Now that we have seen how to form the Lagrange
Expression, we shall proceed to the next step. It ean

Part 1—"What Optimization Is All About,” appeared in the
Dec. 10, 1962 issue, pp. 147-152. It contained an introduc-
gon to optimization and defined important terms and func-

Watch for Part 3—Univariable search methods, including
the important Fibonaccl scan, is scheduled for the Feb. 4
1963 issue. Search methods for optimization involve select~
ing a set of variables and testing to see whether they give
an answer nearer the optimum. Based on this answer, an-
other set of variables is chosen and so on.
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be shown that the partial derivatives of the Lagrange
Expression with respect to each independent variable
(including the Lagrange Multipliers) must be equal
to zero for an extreme to exist. Thus N simultaneous
equations are obtained, one for each of the N inde-
pendent variables, and it is possible to solve for max-
imum or minimum conditions. Since each constraining

Y
,'bo / / 5 \ \ \ A+
fk ’\‘) 4 \ N\ /. eo
AR, MARNNA
/ ’ , 0‘\ N
[ N \|
-5 -4 -3 -2 -] 2 is 4 5 .
-1 i
\;4’):‘ - *,,") L~
NS T 7
AN

Ny VAN
A \ -4 %4
5

/

Points A, B, C, D are answers to
problem involving objective function
(hyperbolas) and constraining
equation (circle)—Fig. 1

N}

> aVAVA
LAVANAYA
VAV aAVAVA

equation introduces one additional equation, one
Lagrange Multiplier for each equation is introduced
to compensate for this. Some examples will now be
considered.

Problem 3
Solve Problem 1 for maximum conditions.
Solution—The Lagrange Expression is:
w(zy) = zy + A (3 + 12 — 25)
Taking partial derivatives with respect to each inde-
pendent variable and setting the resulting equations
equal to zero,

dw/dx =7y +2xz =0 (2)
wfdy =z +2xy =0 3
wAN=23 492 —-25=0 4)
Solving these three equations simultaneously,
A = 0.50 A =-0.50
z ==3.54 z ==3.54
y = +38.54 y = =3.54

Let’s designate these four solutions by the following
points:

JAVA
VAV

D7

Triangular plot is used
to find values that
optimize a three-variable

VAVA/AVAVAVAVA
AV AV AVAVYA
JAVAVAV AN VAVAVAVA
JAVAVAY/AN

\VAVAVAVAV.

function—Fig. 2

0.625

ININANIN
NANN/

AWA

Value of function

x+2y 2422
where x+y+z=1.0

vavVAVAV, \/
LN NN NN NN NNNLTN NN NN NN,
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Point A z =+43.54 y =+43.54
Point B z =—3.64 z =-3.54
Point C r =-—3.54 y =-+3.54
Point D T =-+43.54 y =—3.54

Points A and B are maximum points, C and D are
minimum points. The value of the function at the
extreme conditions is =12.50. Fig. 1 depicts a plot of
the circle (constraining condition), the hyperbolas
(objective function) and solutions to the problem,
points A, B, C and D.

Problem 4
Solve Problem 2 for minimum conditions.
Solution—The Lagrange Expression has been found
to be

wlgyz) =z+22 +22+ Nz +y+2z-1)
Taking partial derivatives with respect to each inde-
pendent variable and setting the resulting equations
equal to zero,

wRr=1+NA=0 (5)
owfoy =4y +r=0 (6)
Qwfoz =224+ N=0 (7
WwoN=z+y+2—-1=0 (8)
Solving these four equations simultaneously,

A= —1

z = 0.25

y =025

z = 0.50

These are the values of z, ¥ and z whose sum is 1.0
and that minimize the function z + 2y* + 2. Value
of the function at the extreme condition is

z + 2y% + 22 = (0.25) + 2(0.25)2 + (0.50)2 = 0.625

A triangular plot has been used to represent values
of the objective function. Values of 0.65, 0.70, 0.80
and 1.0 are shown in Fig. 2. A point on the plot neces-
sarily satisfies the constraint condition that z + ¥ +
z = 1. And the minimum point at z = 0.25, ¥ = 0.25
and z = 0.50 is indicated.

Problem 5
Let us assume that the yield, Y, of a chemical reaction
is related to temperature, T, and pressure, P, by the
following second-order response equation:

Y=01 +b1T+61P+d1Tz+¢1P2 +f1TP (9)
where a,, b, ¢, etc., are constants that have been pre-
viously determined. Let us, also, assume that the
purity, @, is related to T and P by a similar equation:

Q = a3 + bT + 2P + d,T? + e2P? + f,TP (10)
If we imagine that Q is fixed at some value, then Eq.
(10) represents a constraint. The problem is to find
the values of T and P that maximize the yield, Y, sub-
ject to the constraining equation.

Solution—The objective function is
u(T,P) =Y = a) + b]T + t?xT2 + d1T2 + 61P2 +f1TP (11)
Constraining equation is
v(T,P) = az + b2T + coP + d2T? + eaP? + [, TP — @ (12)
Lagrange Multiplier is » and the Lagrange Expression
becomes

CuemicaL ENGINEERING—]anuary 7. 1963
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Optimum yield is subject to product-
purity restrictions—Fig. 3
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Temperature and pressure are a function
of optimum yield—Fig. 4

w(T,P) = a1 + 0T + ¢\P + d\T? + e,P? + [, TP
+ Maz + b2T + caP + daT? + esP? + faTP — Q) (18)
P4

Taking partial derivatives with respect to T, P and
A, and setting the resulting equations equal to zero,

2w/AT = by + 2diT + f1P + N(ba2 + 2d:T + faP) =0 (14)
owfOP = ¢1 + 2e1P + /1T + Nca + 2e2P + f2T) =0 (15)
bw/b)\ = Q2 + sz + CzP + dsz + eaP’ +f2TP - Q =0 (16)

Eqgs. (14), (15) and (16) are nonlinear simultane-
ous equations. Standard numerical techniques can be
used to solve these equations.>*

The numerical example of Umland and Smith® will
now be used to illustrate the method.

Eqs. (9) and (10) are given as:

Y =55.844-26.65T+7.31P —6.96T2 —3.03P2+4-2.69TP (9A)

Q=85.7248.59T +21.85P —5.18T2 —9.20P2 —6.26 TP (10A)

Values of the constants are thus:

a; = 55.84 az = 85.72
b = 26.65 bz = 8.59

= 7.31 3 = 21.85
di =—6.96 dz =—5.18
er =—3.03 ez = —9.20
Ji = 2.69 Ja =—6.26
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Eqgs. (14), (15) and (16) become:

26.65—13.92T4-2.69P+4-1(8.59 —10.36T —6.26P) =0 (14A)
7.31—-6.06P+4-2.69T 1\ (21.85—18.40P—6.26T) =0  (15A)
85.724-8.59T+21.85P —5.18T2 —9.20P2 —6.26 TP=Q (16A)

Eqs. (14A), (15A), and (16A) have been solved for
T, P and A for a given Q. Here Q values of 85, 90, 92.5
and 95 were used. The values of T and P obtained
were then substituted in Eq. (9A) to solve for max-
imum yield, Y.

Fig. 3 shows the optimum yield vs. specified purity,
Q. For example, with a constraint of @ = 92.5, the
optimum yield is 86.7. And Fig. 4 indicates that for
this case P = 1.00, T = 1.82. The variables of temper-
ature and pressure have been transformed or coded
for ease of calculation. For example, if the levels of
temperature are 200, 300, 400, 500, 600, 700 and 800
F., then we may code these variables as:

Temp. °F. Coded Variable
200 -3
300 -2
400 -1
500 0
600 +1
700 +2
800 +3

Then any temperature between 200 and 800F. may
be expressed as a coded variable. Thus:
coded variable = (Temp. — 500) /100

Problem 6

Find the dimensions of an open rectangular tank of
1,000-cu. ft. capacity to give the minimum area.

! /// /W

Solution—Consider the general solution to the prob-

lem. Call the volume, V
V =LWH
The objective function is the area to be minimized and
it is equal to
u(L,W,H) = 2HW + LW + 2HL
And the constraining equation is
o(LW,H)y =LWH —V
The Lagrange Multiplier is A and the Lagrange Ex-
pression is
w(L,W,H) = 2HW + LW + 2HL 4+ \(LWH - V)
Taking partial derivatives with respect to L, W, H

and A, and setting the resulting equations equal to
zero,

QwfoL = W + 2H + AWH =0 a7)

QR

dw/oW =2H + L +A\LH =0 (18)
Qw/OH = 2W + 2L + ALW =0 (19)
dw/oON =LWH — V=0 (20)
From Eq. (17),
_ —(W +2H)
A= —wH (21)
Substituting in Eq. (18), and solving for W,
W =1L (22)
From Eq. (19), it is found that
A=—4/W (23)
From Eq. (17),
W =2H (24)

therefore,
Volume = V = LWH = (W) (W)(W/2) = W3/2 = 1,000 cu. ft
from which

W = 12.6 ft.
L = 12.6 ft.
H = 6.3 ft.

The only constraints considered in this discussion were
equality constraints. Very often, inequality constraints
are presented where the independent variables must
be less than (or greater than) a certain value. This
problem is much more complex and will not be dis-
cussed in an introductory paper such as this.

The reader is referred to Dorn?®, who considers the
required conditions for extrema of nonlinear func-
tions, subject to linear constraints (equalities and
inequalities), and Kuhn and Tucker® who have gen-
eralized the concept of Lagrange Multipliers to include
inequality constraints.
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How Search Methods Locate Optimum
In Univariable Problems

Search or “hill-climbing” techniques for
locating an optimum are useful when ne
mathematical model is available and data
must be collected from experiments. These
techniques can eliminate wasteful experi-
mentation and calculations.

ARNOLD H. BOAS, Socony Mobil Oil Co., Inc.*

In Part 2 of this series, we discussed an optimization
technique that is useful when the relationships be-
tween variables can be expressed in some mathematical
form. But in many cases such mathematical expres-
sions are not available. To obtain a value of the objec-
tive function (i.e., the expression to be optimized), a
“run” has to be made. This might involve an experi-
mental determination, a computer calculation, an itera-
tive procedure using graphs and tables, etc. Search
methods are very useful for handling this type of
problem.

There are numerous search techniques reported in
the literature (see Part 1, p. 149). All, however, are
based on the same principle: a base point is known
(one solution to the problem but not necessarily the
optimum solution). Then, each search technique selects
the next set of values for the variables and tests to see
whether the set gives an answer nearer the optimum.
Based on this answer, another group of variables are
chosen. Judicious choice of these variables can elimi-
nate many wasteful experiments or calculations.

Basically, at the start of a search procedure we know
there is a maximum or minimum but we do not know
the value of, say, z at the optimum. Suppose on'y a
limited number of experiments can be run to narrow

Part 1—“What Optimization Is All About,” appeared in the
Dec. 10, 1962, issue, pp. 147-152. It contained an introduc-
tion to optimization and defined terms and functions.

Part 2—"“How to Use Lagrange Multipliers,” appeared in the
Jan. 7, 1963, issue, pp. 95-98. It described a useful tech-
nique for optimization of mathematical expressions.

Watch for Part 4—Search methods for handling the more
complicated problem—multivariable situations—will be
described in the next installment.

* To meet your author, see Chem. Eng., Dec. 10, 1962, p. 152.
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the range in which we know the optimum lies. How
should we go about selecting variables for these experi-
ments so that we “home-in” on the optimum most
efficiently ?

Many practical problems of this type involve more
than one independent variable. But to simplify descrip-
tions of some of the important search methods, we are
going to assume only one independent variable and
negligible random experimental error. This will lead
into Part 4 of this series, in which the multivariable
problem will be discussed.

Also, the reasonable assumption of unimodality (one
peak) will be made: the value of the dependent vari-
able decreases (increases) as the value of the inde-
pendent variable changes in either direction from the
maximum (minimum).

Some of the more common search procedures have
been described by Wilde® and will be reviewed here.

Principle of Minimax

A useful criterion for an efficient search procedure
is the width of the interval within which the optimum
point must lie, based on the assumptions of the prob-
lem. The conservative approach is to assume that
“whatever can go wrong will go wrong in the search
procedure.” With this disadvantage, we are still in a
position to make some conclusive statement about the
optimum. We shall consider each search procedure in
light of this and obtain the maximum value for the
width of the interval. Then, the “best procedure” will
be taken to mean that procedure which gives the min-
imum value of this maximum width; hence, the name
minimax.

Optimization Problem: Uniform Search

Let’s assume that we want to optimize yield, ¥, in a
reactor and that only four experiments are allowed
due to certain plant conditions. Also, the unimodal
function can be represented as shown in Fig. 1a,
where the peak is at 4.5. This maximum is what we
are trying to find.

The most obvious way to start is to place the four
experiments equidistant over the interval, i.e,, at 2, 4,
6 and 8. From Fig. 1b, we see that the value of ¥ at
2 = 4 is higher than the value of ¥ at x = 2, Since,
we are dealing with a unimodal function, the optimum
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value of ¥ cannot possibly lie between 2 = 0 and 2 = 2.
By similar reasoning, the area between x = 8 and
£ = 10 can be eliminated as well as 2 = 6 to 8. The
area remaining, as seen in Fig. 1b, is the area between
r = 2and z = 6.

Can anything further be said about the location of
the optimum point? Because this is a simple problem,
we could draw a curve through the three remaining
points and predict the optimum. However, based on
the minimax principle, we can state that the optimum
point lies between = 2 and # = 6. The fact that
y at * = 4 is higher than y at = 6 presents two
possibilities. Figs. 1¢ and 1d indicate cases where the
peak can lie either in the range of 2 = 2to 4 or z =
4 to 6 even though y is higher at x = 4 than at z = 6.

The procedure just outlined can be described mathe-
matically for the general case of the uniform search.
Let:

L = length of the original interval.

F = fraction of original interval within which the
optimum lies after performing N experiments.

N = number of experiments performed.

The N experiments divide the entire region into
(N + 1) intervals, Width of each interval is L/ (N +
1). The optimum can then be specified over the width

Fibonacci number is sum of
two previous numbers

No. of  Fibonacei No. of Fibonacti

Experiments, No. Experiments, No.

N N N Fy
0.. 1 11.... 144
1.. 1 12.... 233
2.. 2 13.... 377
3.. 3 14.... 610
4.. 5 15.... 987
5. 8 16.... 1,597
6.. 13 17.... 2,584
7.. 21 18.... 4,181
8.. 34 19.... 6,765
9.. 55 20.... 10,946

10.. 89
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previous experiments—Fig. 4 p» ¢
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uses information from

of two of these intervals, or 2L/(N + 1). Therefore,

Fa_2L (1Y __ 2
T (N+D\L) &+1)
See Fig. 2.
For the specific example illustrated, N = 4 and

F=2/5 =040
Uniform Dichotomous Search

In the uniform dichotomous search procedure, ex-
periments are performed in pairs. The pairs of experi-
ments are spaced evenly over the entire interval. For
the problem under consideration, two experiments* are
performed around x = 6.67 and two around 2 = 38.33.
From Fig. 3, we see that point A is higher than point
B and, therefore, the region from z = 6.67 to z = 10
is eliminated. Point D is higher than point C and the
region from z = 0 to 2 = 3.33 is also eliminated.
Therefore, the optimum lies in the area under the
curve bounded by z = 3.33 to x = 6.67.

Mathematically, this technique can be described as
follows: The N experiments divide the region into
(N/2) + 1 intervals of width L/[(N/2) + 1]. The
optimum is located over the width of one interval, i.e.,
L/[(N/2) + 1]. Therefore,

- (#)(i) LSon 2
(N/2) +1 L N+2

In the specific example considered, N = 4 and
F =2/6 =0.333

Sequential Dichotomous Search

Thus far, search methods were considered where all
the experiments had to be planned in advance.

A sequential search is one where the investigator
takes advantage of the information available from the

* The difference in values of z In the palred experiments has
been assumed small enough so as not to influence the final angwer,
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previous experiments before performing the next one.

A sequential dichotomous search involves running
two experiments near the middle of the region so half
the area can be eliminated in one fell swoop. In our
example, two experiments would be performed around
2 = 5. These would be done on either side of z = 5
so that the measurement of y would determine on
which side of =5 the optimum value of ¥ was located.
Once half the region has been eliminated (in this ex-
ample, the region between x = 5 and 2 = 10), another
pair of experiments is performed near the middle of
the remaining region, i.e., # = 2.5, so that half of this
region can be eliminated. The area remaining will lie
between z = 2.5 and z = 5.0. See Fig. 4.

Thus each pair of experiments bisects the previous
interval. At the end of the first pair of experiments,
the remaining interval is one-half of the original in-
terval; after the next pair, it is one-quarter and after
the (N/2) pair of experiments the remaining interval
is 1/(2)* of the original interval.

F is equal to

F =1/(2)¥n
For the case where N = 4,
F =1/4 = 0.250

Fihonacci Search Technique

A more efficient sequential technique is the Fibo-
nacci search. It has been shown that this is the op-
timal search routine to follow for the case of one
variable and where the assumption of unimodality
prevails.?

Although the name Fibonacci may not be too famil-
iar to some, Fibonacci numbers are far from new. The
theory of these numbers goes back to the days of
Leonardo of Pisa, also known as Fibonacci.t The
original derivation of Fibonacci numbers is presented
in “Liber Abacci” (a book about the abacus), written

1 An abbreviation of filius Bonaccl.
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in 1202 (a second edition of this appeared in 1228).
Corsider the following numerical sequence:

Tn =Tn1+ Tz ®B22) 1)

Note that the term =z, is the sum of the two previous
terms in the sequence. When the first two terms are
each set equal to 1, the sequence is known as a Fibo-
nacci sequence and the terms in the sequence are
known as Fibonacci numbers. The table lists the
first 21 Fibonacei numbers.

It might be of interest to develop the expression for
the general term in the Fibonaceci sequence.

Derivation of General Term

Let us assume that a solution of Eq. (1) has the
following form:

Tn =k @)
Substituting this value for z, in Eq. (1),

k= kvt o g2 @)
Dividing through by &,

B=k+1 Y]

Eq. (4) is a quadratic equation in %. Solving for the
two values of k,

- 1 + (5)1[2 K i 1 — (5)1/2
ks 2 2
The general solution of Eq. (1) has the following
form:

Zn = Ak + Bk ®

where A and B are arbitrary constants that must be
determined from two given values of z,. These values
are o, = 1 and 2, = 1. Substituting 2z, = 1 atn = 0
in Eq. (5), the following is obtained:

A+B=1 (6)
Substituting 2, = 1 at n = 1 gives
1 = Ak + Bk,
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but, %k, and k, have been solved previously; therefore,

1= A1 +2(5)”’] + B[1 —2(5)”2] )
Solving Eqs. (6) and (7) simultaneously,
1+ (52 1 — (52
A = ‘2(5—51?2 and B =— W

Substituting these values for A and B in Eq. (5)
together with the values for k, and k., the following
is obtained:

1 1 5”2 nt+l 1— 5”2 nt+l
I"=(5)1/2[( +2() ) —( 2() ) ](8)

This is the general expression for the nth term in the
Fibonacci sequence.
Since 1/(5)1/2 = 0.4472

_L'*_'__(M = 1.6180
2
1-" =—0.6180
2
z, = 0.4472 [(1.6180)"* — (—0.6180)*1] 9)

As n increases in value, the last term becomes neg-
ligible and the series is approximated by

zn = 0.4472(1.6180)"* (10)

How to Use Fibonacci Search

Now that we have discussed Fibonacci numbers and
some of their properties, we are in a position to inves-
tigate the Fibonacci search.

A pair of experiments are run equidistant from each
end of the interval. This distance, d, is determined
from the following expression:

dy = (%“’;-’)L an)

where Fy_3 is the N —2 Fibonacci number
Fy is the Nth Fibonacci number
N is the number of experiments
L is the length of the interval

For the problem that we have been considering,

N =14
L =10
FN_1=F2=2
Fy =Fy=5

dy = (2/5)(10) = 4
Therefore, the first two experiments are run 4 units
from each end, ie., at + = 4 and z = 6.

From these two results, we see that point A is higher
than point B and hence we eliminate the area from
z = 6 tox = 10. (See Fig. 5a.) The area remaining
is from 2 = 0 to = 6 and this becomes the new value
of L in Eq. (11). The next value of d (i.e, d,) is ob-
tained by substituting N — 1 for N in Eq. (11):

dy = (Py_a/Fy_1)L
= (F1/F3)L = (1/3)(6) = 2

Therefore, the next pair should be run 2 units from
each end or at z = 2 and z = 4; but one of these ex-
periments has already been run at # = 4. Hence, only
one additional experiment at x = 2 is required.

It will always turn out that one of the previous
experiments is a Fibonacci experiment for the next
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run. We see from Fig. 5b that point A is higher than
point C and we can, therefore, eliminate the area be-
tween 2 = 0 and 2 = 2. The remaining area is between
2z = 2 and z = 6. One more experiment is run around
2 = 4 to determine whether the optimum lies between
x =2to4 or x = 4 to 6. This is a dichotomous ex-
periment in conjunction with the experiment that has
already been run at z = 4.

At the conclusion of the Fibonacci search, we have
narrowed down the optimum to between x = 4 and
2 = 6 which is better than we have done by any of
the other methods.

For the general case, using the Fibonacci search,
the fraction of the original interval remaining is
equivalent to 1/F,. In the specific example considered
here,

F=1/Fy=1/F,=1/5 = 0.200

Comparison of Methods

Let us present graphically the methods discussed
and the expression for the term F', as shown in Fig. 6.
The advantage of the Fibonacci search is obyious.

This chart provides a way of determining the num-
ber of experiments to perform to obtain a certain F
value. For example, if it is desired to narrow down
the interval to 1% of the original interval, so that
F = 0.01, it is seen from the graph that 11 Fibonaceci
experiments would have to be made, compared with 14
for the sequential dichotomous search. It should be
pointed out that all the curves were plotted as if the
functions were continuous; the dichotomous search
procedures are done in pairs and, therefore, the odd
numbers do not have any meaning here,

If the approximate form of the Fibonacci equation
is used, i.e. Eq. (10), and the ratio of F factors for
the sequential dichotomous to the Fibonacci search is
defined by R, then:

R = [(0.4472)(1.6180)N+1] /212

R = (0.4472)(1.6180)(1.6180/20:5)~
= (0.7236)(1.144)¥

R is plotted vs. N in Fig. 7.

For N = 10 experiments, the Fibonacci search is 2.8
times as effective as the sequential dichotomous search;
this means that the final interval in the latter search
will be 2.8 times that in the former.
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Optimizing Multivariable Functions

Many search methods are available for op-
timizing multivariable situations. Here is a
review of some of the most useful techniques.

ARNOLD H. BOAS, Socony Mobil Oil Co., Inc.*

In Part 3 of this series, we examined optimization
methods that are useful where there is only one inde-
pendent variable. However, the real problems of the
engineering world are rarely so simple. Much more
common—and much more complex—is the multivari-
able optimization problem.

The object here is to acquaint the reader with several
multivariable search methods, along with their unique
features and applications. These methods are useful
either when the function to be optimized is known
mathematically or when you are planning laboratory
runs in order to optimize a function experimentally.

For most multivariable optimization problems, there
is no single “right” approach. But, by getting ac-
quainted with the various search methods and having
a feel for the problem, individuals may develop a pref-
erence for one method over another for a particular
type of problem.

Changing One Variable at a Time

The first method that might occur to one is the one-
at-a-time technique. Friedman and Savage* described
this method, which involves keeping all variables con-
stant except one, and varying this to obtain an im-
provement in the objective function (the expression to
be optimized), e.g., a higher value in the case of a
maximization problem, This technique works effi-
ciently when searches are conducted along axes par-
alllel to the axes of the contour surfaces. If this is not
the case, the search proceeds toward the optimum less

¢ To meet the author, see Chem. Eng., Dec. 10, 1962, p. 152.

Earlier articles in this series were: “What Optimization Is
All About,” Dec. 10, 1962; “How to Use Lagrange Multipliers,”
Jan. 7, 1963; “How Search Methods Locate Optimum in Uni-
variable Problems,” Feb. 4, 1963. Other important optimiza-
tion techniques will be described in the next (and final) in-
stallment.
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efficiently. An example of this is indicated in Fig. 1.

To demonstrate the method mathematically, consider
the problem of finding the minimum value of the func-
tion z = #* 4+ 2y® + xy. By taking partial derivatives,
we see that: 92/9z2z = 22 + y and 9z/9y = 4y + =.
By keeping ¥ constant and varying x, we see that z is
related to the constant value of y; similarly, by keep-
ing x constant and varying ¥, the value of z depends
on the constant value of x. This indicates interaction
between the variables. When there is no interaction,
this method works most efficiently,

Referring to Fig. 1, an initial search is started with
a constant value of # = 2. Note that along any one
line of search, the problem reduces to a univariable
search problem and we may use one of the methods
described in Part 3 (Feb. 4). A search along the line
ACB takes us to point C, which is the lowest value of
the objective function along this line. The value of ¥
at this point is —0.50. A new search is started along
the line of constant ¥ until point D is reached, which
gives the lowest value of the objective function along
the line CD. At this point, # = 0.25. The search con-
tinues to points E, F, ete. The minimum value of the
function is zero at point 0, at which z = y = 0. The

1‘<

Z=x2+2y2 +yxy —

-3

One-at-a-time method locates
minimum point—Fig. 1
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One-at-a-time method can fail
to locate the optimum—Fig. 2

following table summarizes the results of the search:

z ¥y
2.000 —0.500
0.250 —0.067
0.031 —0.008
0.004 —0.001

etc. ete.

This search can take place via mathematical analysis
or by means of manipulation of experimental variables
in a pilot plant. It should be mentioned that there are
cases where this method will not locate the optimum
condition. Consider the rising ridge contours shown
in Fig. 2. Once point C has been located along the line
ACB, the method assumes the ¥ coordinate at this
point and then searches along the line DCE and ar-
rives back at the same point C. However, this is not
the optimum point. The search method has failed to
explore areas of higher response that lie along the
slope of the ridge. Therefore, when the contours come
to a sharp point, this method will not work.

Method of Steepest Ascent

The basic idea behind this method is the fitting of
a plane to approximate a curved surface over a re-
stricted area. Based on this linear approximation, the
gradient is determined. The direction of the gradient
is the one that gives the greatest response of the
objective function per unit length of independent vari-
able. The incremental change in each variable is taken
to be proportional to its partial derivative, which
determines the gradient direction. Box and Wilson'
investigated this method and elaborated upon its appli-
cations. (Frequently, the method is called the Box-
Wilson Method.) When dealing with a minimum, it
is called the method of steepest descent. Let us work
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out an example to see how this method is utilized:

Ezample—Using the same objective function as
Fig. 1, ie, 2z = 2* + 2y° + zy, let us start arbitrarily
at the point x = 2 and ¥ = 2 (point M in Fig.-3). The
gradient direction is calculated from the partial de-
rivatives: 0z/0x = 2x + y and 9z/%y = 4y + z. At
the starting point, these become 9z/9z = 2(2) +
2 = 6; and 9z/0y = 4(2) + 2 = 10.

Since both partial derivatives are positive, the
objective function varies in the same direction as
2 and y. Therefore, in a minimization problem, we
should decrease both x and ¥ to get a lower value of
the objective function. The ratio of this decrease is
taken to be the ratio of the partial derivatives, i.e.,
decrease in z divided by the decrease in ¥y = 6/10 =
0.60. If the objective function is not known analytic-
ally, it is possible to estimate experimentally the par-
tial derivative of z with respect to £ by making small
incremental changes in x (holding ¥ constant) and
noting the corresponding change in z.

The decrease in y is arbitrarily assumed to be 0.50
for the first step. The corresponding decrease in z is
0.60(0.50) = 0.30. Therefore, at the start:

zo = 2.00 Yo = 2.00 2o = 16.00
T = Ty — 030 =200 — 0.30 = 170
=y — 0.50 = 2.00 — 0.50 = 1.50
2, = (1.70)% + 2(1.50)2 + (1.70)(1.50) = 9.94

As long as the objective function is decreasing, we
shall continue along this gradient line. (We could, of
course, calculate a new gradient direction each time,
if we chose.) Continuing the calculations:

x5 = 140 ¥ = 1.00 z = 5.36
T = 1.10 y: = 0.50 zd = 2,26
z, = 0.80 ¥ = 0.00 2y = 0.64
x5 = 0.50 Y = — 0.50 2z = 0.50
x5 = 0.20 v = — 1.00 2 = 1.84
y
~

Z=x% +2y2 +xy

~-3L

Path of steepest descent leads
to minimum point—Fig. 3
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If wrong scales are picked, steepest
descent can miss optimum—Fig. 4a

Line MN on Fig. 3 represents the line of steepest
descent from the starting point, M. Point N corre-
sponds to x,, .. We note from the figures above that
we have obviously gone too far since the objective
function is no longer decreasing. We go back to the
last successful point, i.e., point z,, ¥s (point P in Fig.
3), and calculate a new gradient direction as follows:
Since 2 = 0.50 and ¥y = —0.50 at point P,

0z i

i 2z +y = 1.00 — 0.50 = 0.50

oz

—5;=4y+z= —200+0.50=—1.50

We notice that 9z/9x is positive as before, which
calls for a decrease in x; however, 9z/20y is negative
and, therefore, z changes in the opposite direction
from y. In order to obtain a decrease in the objective
function, y must be increased. We are now closer to
the optimum and shall arbitrarily reduce the step size
in ¥ from 0.50 to 0.30. Since the ratio of step changes
in z to y is 1:3 (as seen from the partial derivatives),
the change in = will be 0.10. Therefore, a new step 6
will be calculated:

ze = x; — 0.10 = 0.50 — 0.10 = 0.40
ye = ¥ + 0.30 = — 0.50 4 0.30 = — 0.20
zs = (0.40)% + 2(— 0.20)* 4+ (0.40)(—0.20) = 0.16

Continuing along this new gradient line:
z; = 0.30 Y = 0.10 z = 0.14
x5 = 0.20 ys = 0.40 2 = 0.44

At this point, we see that we have gone too far
again since z, is greater than z. The direction is
changed once more as indicated in Fig. 3 (point Q).
This process is continued until we finally approach the
optimum condition.

This step-by-step mathematical operation can be
duplicated in the laboratory by first determining the
partial derivatives experimentally as noted above, then
using this relation to determine the changes that
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By changing scales, steepest descent
now leads to minimum point—Fig. 4b

should be made in z and y. Moves are made along
gradient lines until the best experimental value of 2z
is found.

Limitations of Steepest Ascent

A few comments about the method of steepest ascent
are now in order. The efficiency of the method is re-
lated to the choice of scales used. Surfaces with spher-
ical contours give the fastest convergent rates; the
closer the contours are to being spherical, the better
the convergence. There are many directions of steepest
ascent, each depending upon the choice of scales of
the independent variables. We want a good response
of the objective function relative to a given change in
distance of the independent variables, This change in
distance, however, is related to the choice of scales,
e.g., one inch on a plot may represent 10° F. or 500
psi. or 1 million Btu./hr.

In Fig. 4a there is a plot of the function z = z* +
25y°, with z = 25.

At point A, x = 4, y = 0.6, the direction of steepest
descent is indicated by line AB. But this does not point
to the origin, which is the optimum. However, by a
change in scale (i.e., let # = 5y so that z = z* + «*)
we note the line of steepest descent now does point to
the optimum, as indicated in Fig. 4b.

Another shortcoming of the method is the extrap-
olation. By moving along the gradient line, we have
assumed an extrapolation of the partial derivatives.
But the shape of the response surface is usually chang-
ing as the search continues along a given path; in
other words, the assumption that a plane represents
the surface may no longer hold.

Still another shortcoming of this method (and most
others to be discussed) is the failure to locate the
global peak. The method only searches for local ex-
tremes. One alternative is to start over again at some
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other point and explore the surface once more to check
for unimodality (one peak).

Attempts have been made to speed the convergence
rate of the method of steepest ascent. One of these is
the acceleration technique of Forsythe and Motzkin®.
This method is shown in Fig. 5. Point B is found to
give the best value for the objective function along any
line ABC. By the method of steepest ascent, the direc-
tion BDE is located and point D is found to give the
best value along this line. The method of steepest
ascent once more locates direction FDG, and point H
is found to give the best response along this path.

Now, by the acceleration technique, a line through
points B and H will pass through the optimum value
(at the origin in this case). For a quadratic function,
this is exact. Further iterations are required for the
nonquadratic surfaces. The theorem holds for two
independent dimensions, although Finkel® reports it is
fairly successful for more than two independent vari-
ables.

Direct Search

The “direct search” method of Hooke and Jeeves' is
a sequential type of search where each solution is
compared with the optimum up to that time. A stra-
tegy, based on previous results, is established to deter-
mine the values of the independent variables for the
next trial. This method is devoid of any classical tech-
niques.

No satisfactory rules for the success of direct search
have been set forth, and the method can fail. However,
different starting points can be used as a check.

A particular strategy must be established for each
problem. One type of strategy is known as the “pat-
tern search.” This type first makes an exploratory
move to study the behavior of the objective funection.

,~Optimum
! lieson

2
A I this li
\1 i' is line

Acceleration technique locates line
on which optimum lies—Fig. 5
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This behavior is of a qualitative nature and merely
serves as a guide to the direction of the search. We
are only interested in the success or failure of a move
at this point. A simple exploratory move would be to
change one independent variable at a time.

The second move in the pattern search is the “pat-
tern move.” This move uses the information obtained
in the exploratory move and actually optimizes the
function by moving in the indicated direction. Each
pattern move is then followed by a sequence of explora-
tory moves from the last base point. The entire direct
search procedure may be considered as a search from
base point to base point. This technique combines
some of the features of the univariable and steepest
ascent methods.

Approximate solutions are obtained at every trial,
improving the function each time. At any given stage
of the search, the “best” solution is available up to
that point, unlike other methods that tend to overshoot
and then retrace their steps. This technique is suit-
able for electronic computers and circumvents some
of the shortcomings of the method of steepest ascent.
The authors’ have used it in curve-fitting problems,
solving integral equations, maximizing or minimizing
functions with or without restrictions on the inde-
pendent variables, and solving systems of equations.

Handling of Constraints

Two novel methods for handling constraints on func-
tions have been introduced by Roberts and Lyvers.”
These are known as “hemstitching” and “riding the
constraint.” They can be used in conjunction with the
optimizing methods mentioned previously.

In hemstitching, a base point is chosen that lies
within the constraints, and the search is started ac-
cording to the method of steepest ascent. After the
next point is calculated, it is checked to see whether
any of the constraints have been violated. If not, the
search continues. When a constraint is violated, the
gradient is calculated with respect to the constraint
rather than with respect to the objective function.
Let us work out an example to illustrate this tech-
nique:

Ezample—Find the minimum value of the function
z" + y, subject to the inequality constraint that =z 4 ¥
= 4. Use the method of hemstitching to handle the
constraint. Start at the point z = 8 and y = 1.

Solution—The objective function to be minimized is
2 = 2* + y. Let us first find the partial derivatives
of z with respect to # and y: 92/9z = 2z and 2z/0y =
1. Therefore, the ratio of the change in ¥ to the change
in # is 1/2z. At the starting point, this becomes,
1/(2) (8) = 1/6. Arbitrarily, the change in z will be
taken as 0.50, so that the change in ¥ will be 0.08.

The initial points will be denoted by z, = 38.00, y, =
1.00. Then:

Now, z + ¥y = 250 +
the constraint that z + ¥
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Feasible
region

Consiraint,
xty=4 )

Hemstitching method aids optimization where a constraint exists—Fig. 6

straint expression by ¢ so that: g = z + y. Taking
partial derivatives of g (the constraint expression)
with respect to  and y: 99/92 = 1, and 9g/9y = 1.
The ratio of the partial derivatives is equal, so that
equal increments are taken in z and y. Arbitrarily,
this will be taken as 0.85. Since the sum of z and y was
too low, it is obvious that their values must be in-
creased in order to satisfy the inequality constraint.
Therefore:
3 = 23 + 0.35 = 2.50 + 0.35 = 2.85
n=1y+035 =092+ 035 = 1.27

Fig. 6 illustrates this method. The parabolas repre-
sent the contours of the objective function. The line
MN represents the inequality constraint. Only values
of z and y that lie either on or to the right of this
line are possible solutions to the problem. The starting
point is point 1 and the next point is point 2. This
is seen to violate the constraint and point 8 puts us
back into the feasible region. The solution to the
problem is 2 = 0.50 and ¥ = 3.5 (z = 3.75 denoted
by point P), The crossing of the constraint boundary
represents a form of mathematical “hemstitching.”
The reasoning behind this concept is that the fastest
way to move out of the ineligible region is to move
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orthogonal to the constraint on the objective function.

Another method for handling this type of problem
is “riding the constraint.” Once a constraint is vio-
lated, the point is put back on the constraint line, and
values of the independent variables are taken so that
the points lie on the constraint. When more than one
constraint exists, each time a new constraint is vio-
lated the method requires that the points be switched
over to the new constraint. The new variables are
picked so that they lie on the new constraint; i.e., the
one that has been recently violated. The assumption
made in this method is that the optimum solution lies
on a constraint; the hemstitching technique does not
make this assumption.

Still another method for handling constraints was
introduced by Rosenbrock®™ The objective function is
modified by means of multiplying factors. Whenever
one of the variables violates a constraint, the multi-
plying factor is zero (i.e., the objective function is
multiplied by zero and, hence, is equal to zero). When
the variable is within the feasible region, the factor
is 1.0 and the objective function assumes its full value,
However, when the value of the variable falls within
a prescribed “boundary zone,” the multiplying factor
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Boundary zone
s

b=

Multiplying factor

Boundary zone
Range of variable 0-1 1
v

30 70 80 .90 9510
x, mole fraction

Use of multiplying factors is another
way to handle constraints—Fig. 7

is assumed to behave parabolically from 0 to 1; the
objective function, therefore, varies from 0 to its full
value.

Let us look at Fig. 7. The variable z denotes mole
fraction and will have the limits of 0 and 1. The width
of the boundary zone is arbitrarily defined as 0.05 so
that the lower boundary zone is from 0 to 0.05 and the
upper boundary zone is from 0.95 to 1.0. Note the way
the multiplying factor varies parabolically in the
boundary zone at each end of the figure.

Gradient Search Method

The “gradient search” method of Zellnik et al” in-
cludes a random saddle-point check as well as a random
scan for alternate optimums, The advantage of this
method over others is claimed to be its efficient scan
for saddle points and alternate optimum values.

In all search procedures, the problem of local versus
global extremes exists. This method considers a ran-
dom scan more efficient than a systematic search for
alternate optimums. Where N is the number of dimen-
sions, 8N evaluations are made of the objective func-
tion. When N is large, a more efficient way to search
for alternate optimums would be to start the search
over again from a different point.

The Lattice Method

Wilde* introduced “gradient free” search methods
to circumvent some of the shortcomings of the method
of steepest ascent. He notes that the major failing of
the method is that the gradient direction is related to
the choice of scales. Two other shortcomings are (1)
the need for extrapolating along the line of steepest
ascent (i.e.,, assuming that the gradient does not
change along the original path) and (2) failure to
indicate the step size (i.e., the location of the next
block of experiments). Two types of search techniques
developed by Wilde to circumvent some of these short-
comings are the “lattice method” and the “contour
tangent method.”

Lattice method uses the mazimum allowable changes
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in the independent variables. In an experimental de-
termination of the objective function, we may not wish
to change any one variable too drastically. For ex-
ample, suppose that the variable 2 should not change
by more than 0.50 units nor the variable ¥ by more
than 0.25 units. A grid is constructed where the allow-
able points are points on the grid. In Fig. 8, such a
grid has been constructed; the contour lines are values
of the objective function.

Assume that the search starts at point A. There are
then eight possible values for the next point, using
the maximum allowable changes in the variables, points
B, through B.. The direction is determined by noting
the sign of the partial derivative, At point B,, the
objective function is found to give a favorable re-
sponse, with a decrease in both z and y. Therefore,
point B, becomes the second point in the search. This
one point of the eight gives the most favorable re-
sponse in the function. Partial derivatives are eval-
uated at B,, and point C is arrived at by the same pro-
cedure. The search continues to point F where it is
found that x should be increased and y decreased; this
takes us to point G. Points H and I (the optimum)
are obtained similarly. This technique is called the
“lattice search method” because successive experiments
are made on the lattice-like grid of consecutively ap-
plied constraints.

Tangent Methods

Let us illustrate the “contour tangent method” by
examining Fig. 9. Point A is the initial point of the
search. A tangent to the objective function contour is
drawn at this point. This line divides the entire area
into two sections, By assuming strong unimodality,
Wilde shows that area I (DEGF) can be eliminated.

Ax=0.50
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AN
\\ /
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Lattice method allows largest
possible changes in variables—Fig. 8
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(The decision as to which area to eliminate is deter-
mined by the partial derivatives.)

The solution must now lie in the remaining area
EJLG. A point is selected inside this region. Four
points are considered by the author,” the midpoint,
minimax, center of volume and centroid. One of these
is selected as the next point. The easiest to calculate
is the midpoint, which is merely all the variables taken
at the midpoints between their extreme values. Point

D E I J
"
Area 1T
Area I A K
B
M
Area I
F G H L

4 Contour tangents narrow
down thesearch area—Fig.9

B is the next one chosen on Fig. 9. A contour tangent
is drawn through B, and area GEIH (Area II) is now
eliminated. Similarly, point C is located, a contour
tangent drawn, and area III (IJKM) is eliminated.
The final area has been narrowed down to KMHL,

One fundamental requirement in this method is that
the dependent variable be strongly unimodal (this re-
quirement, however, applies to the method of steepest
ascent as well).

Shah, Buehler and Kempthorne* introduced the
method of parallel tangents (partan) as a means of
locating the extreme value of a function. This method
is applicable when the funection is known analytically,
as well as when it is not but is measurable (e.g., yield
of a particular product in a chemical reaction).

Based on the acceleration technique of Forsythe and
Motzkin® already described, partan has been developed
using the method of steepest ascent. Referring to Fig.
5, the steps are as follows:

1. Starting at point B, determine the line of steepest
ascent (line BDE).

2. Find the highest point on this line (point D).

3. Determine the line of steepest ascent from point
D (line FG).

4. Find the high point on this line (point H).

5. Draw a line through points B and H, and search
for the high point on this line (point at the origin is
the optimum).

Another variation of partan does not use steepest
ascents at all. By referring to Fig. 5 once again, we
see that line AC is parallel to line FG. This fact is
now used to develop the variation of partan that does

Minimum { Maximum
ridge ridge
line line

\\\ " Constraint
PN,
z /")\‘\& S
2 ! ‘\\

4 Parallel tangent method
avoids use of steepest ascent
—Fig. 10

Ridge analysis finds optimum
on complex surfaces—
Fig. 11> A
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not use steepest ascent (Fig. 10). The steps are as
follows:

1. Start at any point, C.

2. Draw a line through point C arbitrarily (line
AD).

3. Find the high point on this line (point B).

4. Draw another line parallel to line AD (line EG).

5. Find the high point on this line (point F).

6. Join the two high points to determine a new line
of search (line FI).

7. Search along this line until the peak is found
(point H).

The contours have intentionally been omitted from
the diagram to show that these need not be known for
this particular application.

Thus, without the use of gradients, we have a
method of locating the peak for elliptical contours.
Ordinary steepest ascent methods do not necessarily
give finite convergence, whereas partan, which does
use steepest ascent, gives convergence regardless of
the choice of scales. However, scales should be chosen
so as to obtain as nearly circular contours on the
function as possible.

The partan method has been extended to the multi-
variable case where one is dealing with tangent planes
rather than tangent lines. With more than three in-
dependent variables, we enter the realm of hyperplanes
and hyperspace, which makes the solution more
complex.

Ridge Analysis

With ridge analysis,*® it is possible to characterize
multivariable optimization problems in two dimen-
sions. It is apparent that in multivariable problems,
response surfaces become increasingly complex as the
number of variables increases. Ridge analysis is a
method of exploring complex surfaces in an attempt
to find optimum conditions.

As an illustration of the technique, we shall consider
the following problem: What is the maximum value of
the function 2y, subject to the constraint that z + ¥ =
57 This is a very simple problem but it will suffice
to illustrate the method.

Consider Fig. 11. The hyperbolas represent values
of the objective function that is to be maximized.
R, R, R, ... are defihed as the radii from the origin
to points on the contour plot. The radius sweeps out
a circle and the peak values of the objective function
are noted.

In this particular problem, these peaks take on the
same numerical values (except for sign). As each new
value of R is chosen and new circles are swept out,
different peaks will be obtained. These peaks lie on
ridge lines and are shown in Fig. 11 by the lines AB
and CD. AB is a maximum ridge line and CD is a
minimum ridge line.

For the two-dimensional problem, B = /z* + ¥,
which generalizes to:

R=~Nu+vr +uwr+a2t+92...
for the multivariable problem where 4, v, w, =, ¥ . . .
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are the independent variables., The geometrical inter-
pretation is quite complex for the multivariable case.
But a two-dimensional plot of z vs. R can thus be
used even for the multidimensional optimization
problem.

For the particular problem above, there is a con-
straint of £ + ¥y = 5. This is plotted on Fig. 11, and
the intersection of this line with the maximum ridge
line AB gives the peak conditions subject to the con-
straint of the problem. The solution is indicated at
point Q, where = ¥ = 2.5 and z = 6.25.

In Summary

There are other methods of optimization too numer-
ous to mention. The exclusion of any does not imply
a lack of confidence or merit but merely indicates that
a review article like this could not possibly include all
the worthwhile techniques. Emphasis has been placed
on some of the novel features of the various methods
in order to give the reader a broader concept of the
field.

Some of the more recent methods that the interested
reader might find instructive are the “Gradient Pro-
jection” method of Rosen™ ™, the “Conjugate Gradi-
ent” method of Hestenes and Stiefel®, nonlinear digital
optimizing program for process control by Mugele’,
and a review article by Spang.”

The final article in the series will attempt to review
some important techniques that have not been covered
thus far.
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MATHEMATICAL TOOLS

Part 5
Optimization Via

MODERN |(°
FOR OPTIMIZATION

Linear and Dynamic Programming

Here are two basic optimization tools that
are useful for solving many common types
of engineering problems.

ARNOLD H. BOAS, Socony Mobil Oil Co., Inc.

The first four articles in this series have covered

some of the major mathematical tools for optimiza--

tion. However, ihere are two important methods—
linear programming and dynamic programming—that
have not been discussed thus far.

Each of these techniques has been extensively de-
scribed in the literature and no attempt will be made
here to delve into the theory. Rather, we will solve
some elementary problems via these methods and thus
give the reader a feel for the types of problems that
can be handled and the form that the solution takes.
Mention will be made of many literature references
upon which the reader can draw to get a deeper under-
standing of any particular aspect of these methods.

Let us first look at the concept of linear program-
ming.

Linear Programming

In the context of this article, the word “program-
ming” will indicate the planning of activities with the
goal of optimization in mind, e.g., determination of
optimum product mix. When the objective function
(the function to be optimized) and its constraints are
linear, we speak of the optimization process as “linear
programming.”

The mechanics of linear programming can best be
illustrated by a simple problem.

Problem—A chemical plant is planning to produce
three products: A units of product 1, B units of prod-
uct 2, and C units of product 3, having net profits of
10, 4 and 1 per unit, respectively. Due to process con-
ditions, the following constraints must be met:

A+ B=5and 2A + B + C = 20.

The problem is to find the values of A, B, and C so
that profit will be at a maximum.

Solution—The total profit, P, is the objective func-
tion to be maximized and can be written: P = 10A +
4B + C.

Cremicar ENGINEERING—APpril 1, 1963

Two new non-negative variables, S, and S, (called
slack or dummy variables), are introduced into the
problem. These convert the inequality constraints to
equality constraints. Thus:

A+B+8 =5 (1
24 +B+C+ 8. =20 @)

The method for proceeding now depends on the basic
theorem of linear programming, which may be stated
as follows: in the optimal solution of any linear pro-
gramming problem, the total number of non-zero
variables (ordinary and slack) is exactly equal to the
number of constraints. A solution that satisfies this
requirement is known as a basic solution to the optimi-
zation problem.

In our problem, there are two inequality constraints
and hence the optimum solution will contain two non-
zero variables. In other words, of the five variables
(A, B, C, S, S)), only two of these will not be equal
to zero. An additional physical limitation on the prob-
lem is that none of the production quantities can be
negative; ie, A =0,B=0,C = 0.

The first basic solution that we might look at is:
A=B=C=0;8,=5; 8, = 20. This solution satis-
fies the constraints of the problem but is not the op-
timum solution since profit is zero in this case. But
this is only one of many possible basic solutions. The
procedure now is to examine other basic solutions until
the optimum is found.

For example, suppose that A and B are assumed to
be the non-zero variables; then C = S, = S, = 0. From
Eq.1, A + B = 5, and from Eq. 2, 24 + B = 20.
Solving these equations simultaneously, 4 = 15, B =
—10. This is not a feasible solution sinece B violates
the constraint that B = 0.

The following table lists the solutions found by tak-
ing the variables two at a time and keeping the others
equal to zero.

Earlier articles in this series were: “What Op-
timization Is All About,” Dec. 10, 1962; “How to
Use Lagrange Multipliers,” Jan. 7, 1963; “How
Search Methods Locate Optimum in Univariable
Problems,” Feb. 4, 1963; “Optimizing Multi-
variable Functions,” Mar. 4, 1963.
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* Not feasible due to violation of non-negativity constraint.

This table shows that the optimum solution is:
A=5, B=0, C=10, Sl=Sz=0, P = 60.

In this simple problem, it was possible to investi-
gate all basic solutions and select the optimum. How-
ever, when the number of combinations becomes very
large, this is not a practical procedure, and more effi-
cient and systematic procedures must be used. The
most widely employed technique is the simplex method
of Dantzig,” which has been described by Charnes et al.?

Dynamic Programming

Dynamic programming is an optimization technique
that is useful for multistage problems. Bellman’ intro-
duced this concept and expressed the principle of opti-
mality as follows: “An optimal policy has the property
that whatever the initial state and initial decision
are, the remaining decisions must constitute an opti-
mal policy with regard to the state resulting from the
first decision.”

This technique relies upon decision-making at each
stage rather than trying to solve the entire N-stage
optimization problem simultaneously. Bellman goes

Dynamic programming can find minimum
exchanger area required—Fig. 1

into the mathematics quite deeply but, in line with the
theme of this series, the method will be described here
mainly in terms of its application to a specific problem.

Multistage problems are quite common in the field
of chemical engineering, and thus dynamic program-
ming finds many applications. Some of the more com-
mon types of application are in: catalyst regeneration
and replacement, feed allocation, multistage unit oper-
ations.

Let us illustrate the method by solving a simple
problem.

Problem—Consider the heat-exchanger train shown
in Fig. 1. The following nomenclature will be used
in setting up the problem:

W = rate of fluid flow, Ib./hr.
C, = specific heat, Btu./(Ib.)(°F)

In addition, the following terms apply to the heat-
exchanger train:

Over-all
Heat Transfer Area
Exchanger Coeflicient, Required, Duty,
Btu./(Hr.)(8q.Ft.)(°F.) S8q.Ft. Btu./Hr.
E-1 U, =120 Ay o
E-2 U: =80 A (4
E-3 Us = 40 A, Qs

For this example, all W(C,) values will be assumed
to equal 100,000.

The problem is to select the temperatures T, and T.
so that the total area (4, + A. + A4,) is a minimum.

Solution—Let us start at exchanger E-8, The tem-
peratures of the two streams in and out of this ex-
changer are:

T, — 500
T3 < 600

Since the W(C,) terms are the same for each stream,
by heat balance: 600 — T, = 500 — T,, or Ts — T, =
100, which is the mean temperature difference (MTD)
for heat transfer,

Now: Qs U.-,A;(M TD) = (40)(4,)(100)
But @ = WC,(500 — T2) = 100,000(500 — 7%).

Equating the two expressions and solving for A,:

100%F T . | 500°F Ay = 12,500 — 25T, ®)
ooy 300°F‘ ___l400°F >~ Let us now consider exchanger E-2. The tempera-
= = = 600°F
T E-1 T, E-2 T E-3
Dynamic programming, via a sequence of six steps,
v T,,°F Vv A, sq.ft V. A, sq.ft.

360 6,000 — 1,800 2]
350 5800 1,600 F—F>
340 5,600 1,400 i

. ™. \\
330 1+ 5,400 < 1,200 ~J
320 Z v 5200 S 1,000
310 5,000 800 ™

: , ' AU N

300 4800 s 600 =
290 : 4600 400 |

S ; \\
280 | . 4,400 200
270

100 140 180 220 260 300
T oF

0 = 0
100 140 |80°220 260 300 100 140 180 220 260 300

I'F Tl'

1. Selection of arbitrary T, values en- 2. Fixing of T; also determines a cor- 3. Area required for exchanger E-2

ables calculation of best corresponding responding area,
values for the temperature T.. changer E-3.

(]
N

A, for heat ex- can also be calculated for each as-
sumed value of the temperature T..
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determines optimum heat exchanger area—Fig. 2

Locating best T: and areas For each T, there is a best Each T, also determines
for a given T.—Table Il T., A. and A.—Table lii an A—Table IV
T1 = 100°F i
T, °F As, Sq.Ft. Ag, Sq.Ft. Ast-A,, Sq.Ft. T, °F Ts, °F Ag, Sq.Ft. A;, Sq.FI. A;+A,, Sq.F1. Ay, Sq.Ft. A1-+Az1A; Sq.Ft.

100 0 10,000 10,000 100 | 277 1,799 5,575 7,374 0 7,374
150 250 8,750 9,000 150 | 288 1,540 5,300 6,840 278 7,118
200 625 7.500 8,125 160 | 290 1,477 5,250 6,727 357 7,084
250 1,250 6,250 7,500 170 | 293 t,437 5,175 6,612 449 7,061
270 1,635 5,750 7,385 180 | 295 1,369 5,125 6,494 556 7,050
275 1,750 5,625 7,375 190 | 298 1,324 5,050 6,374 682 7,056
277 1,799 5,575 7,374 200 | 300 1,250 5,000 6,250 833 7,083
280 1,875 5,500 7,375 210 | 302 1,173 4,950 6,123 1,019 7,142
285 2,0n 5,375 7,386 220 | 305 1,118 4,875 5,993 1,250 7,243
300 2,500 5,000 7,500 230 | 308 1,060 4,800 5,860 1,548 7,408
350 6,250 3,750 10,000 240 | 3N 997 4,725 5,722 1,944 7,666
400 © 2,500 ® 250 | 313 905 4,675 5,580 2,500 8,080

260 | 316 833 4,600 5,433 3,333 8,766

270 | 319 756 4,525 5,281 4,722 10,003

280 | 322 673 4,450 5,123 7,500 12,623

290 | 326 608 4,350 4,958 15,833 20,791

300 | 329 5N 4,275 4,786 g &

tures in and out of this second heat exchanger are:

Iy—T,
Ty <400
Since 72 — T, =400 — T,
T¢—Th=400 — T, = MTD
Qs = U:A:(MTD) = (80)(A41)(400 — T)
But Q’ = W(C (Tg = Tx) 100 Ty — Tl)
Therefore: A4; = 1250(T3 — Ty)/(400 — Ty) 4)
At exchanger E-2, a decision must be made. Either

T, or T, must be set for a fixed T, in order to deter-
mine the area, A,, Let us arbitrarily fix 7, at 100 F.
and find the best T, to use. Table II shows the results.
This is a one-dimensional optimization problem.
We are only looking for the best T, to go with 7, =
100. For any T,, A, is calculated from Eq. 4 and A4,
from Eq. 8. The best T, is seen to be T, = 277 F.
This type of one-dimensional optimization is re-
peated for various values of 7, and the results are
shown in Table III. This table, a summary of a two-

stage optimization, shows the best way to design E-2
and E-3 for any T.. It is not concerned with E-1 or
any upstream conditions other than T,

Let us now consider exchanger E-1. The tempera-

tures in and out are:
100 — T,
T+ 300
Since: Ty — 100 = 300 — T
300 —T,=Ts— 100 =MTD
o = U, A (MTD) (120)(A4,)(300 — T4)
But QO = WC,(T: — 100) = 100,000(T, — 100)
Therefore: A4, = 833( — 100)/(300 — Tv)

Once T, is fixed, A1 can be calculated from Eq. 5.
By referring to Table III, we know the best way to
design E-2 and E-3 for this T,. Therefore, we know
the best way to design all three stages of the heat-
exchanger train for any given T..

We now calculate A, for each chosen 7,. Table IV

summarizes these results and enables us to select the

7800 11 000 plattha 13000 ate i :
7,200 8,000 f—t—t— 12,0001 LT el
6800 |- 7,000 (= 11,000 [ I{,‘;f:,,:::?:,, i
6400 F 6,000 [~ 10000 (——FT"T T 7111t
6,000 |- 5000 |— 9,000 |-+
5600 — | 4,000 — 8,000 [=——
5200 -+ 3,000 |— 7,000 B=E=
4,800 1 2,000 = 6,000 =
4,400 F——+ 1,000 - 5000 |- q

4000 L 1I°

b ;. : | =] 0 = [t H «-!
100 140 180 [2__20 260 300 100 140 |80 FZZO 260 300
| ’

0 leiifehi 4B shey {, £ s ! :
100 140 180 220 260 300
T,,°F

4. Result of two-stage optimization 5. For each T, it is now possible to 6. Result of three-stage optimization
shows sum of areas A, and A; for salculate the area required for the shows which T: gives minimum total

each T, (final optimum shown).
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heat exchanger E-1.

exchanger area, solving the problem.
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best T, and T, for the over-all optimum. This is found
to be: T, = 180 F., T, = 295 F., which gives a total
area (A4, + A, + A,) of 7,050 sq. ft.

If we assume 12 values of T, for each T, (as in Table
II), then we have considered 12 values of T, for each
of 17 values of T, (Table III), and have therefore
selected the best case from among 204 (i.e., 12 X 17)
possibilities.

Although it was possible to work out this problem
entirely with tables, the corresponding graphical solu-
tion is shown in Fig. 2. The reader will note that the
tabular solution gives the optimum temperature only
within ten degrees. -

Pros and Cons of Dynamiec Programming

A few comments about dynamic programming seem
appropriate at this point. Note that dynamic program-
ming does not indicate which particular optimization
technique to use at any one stage. This is left up to
the investigator.

The problem of constraints usually hinders most
optimization techniques. In dynamic programming,
however, the constraints are actually helpful because
they limit the range to be investigated. In the heat
exchanger problem just considered, for example, T, is
limited to 100-300 F., and hence the values to be stud-
ied must be restricted to this range. Discontinuities
in the objective function can be handled by dynamic
programming because no analytical function need be
used; tables and curves are quite adequate.

In general, where there are N stages and % decisions
to be made at each stage, the over-all optimization
problem involves k" possible answers. For a five-stage
problem with three decisions at each stage, this means
3° (243) possible combinations. By dynamic program-
ming, only 5 X 3 (15) one-stage optimization prob-
lems have to be solved.

One disadvantage of the method is the problem of
dimensionality (many variables), which arises in the
optimization at each step. For example, when -many
decisions are to be made at one time, the single-step
optimization itself may become quite complex.

Over-all, however, the method of dynamic program-
ming has found many applications. Aris® has applied
this technique to chemical reactor design as well as to
extraction, while Rudd and Blum® extended this work
to extraction with product recycle. Dranoff et al® used
dynamic programming to solve a problem in optimal
design of a complex chemical plant. Westbrook™ con-
sidered problems in heat transfer, while Mitten and
Nemhauser® have illustrated the use of dynamic pro-
gramming in processes containing branches and loops.
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In Conclusion

Several optimization methods that have not been 1n-
cluded in this series include random methods, the criti-
cal path method, analog methods, and applications of
the calculus of variations.

The state of the art in optimization was summed
up quite well by C. Storey™ in his comments regarding
the symposium on process optimization held in London
in 1962, He noted that we are in a transition state in
the field of optimization and that theory is outpacing
application. We must wait, he said, for more applica-
tions before we can determine which method applies
to which problem.

If interest in optimization has been stimulated in
the neophyte—if some techniques have been made
clearer or some new methods supplied to the reader
acquainted with the field—then this series has achieved
its objective.
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best T, and T, for the over-all optimum. This is found
to be: T, = 180 F., T, = 295 F., which gives a total
area (A, + A, + A,) of 7,050 sq. ft.

If we assume 12 values of T, for each T, (as in Table
II), then we have considered 12 values of T, for each
of 17 values of T, (Table III), and have therefore
selected the best case from among 204 (i.e., 12 x 17)
possibilities.

Although it was possible to work out this problem
entirely with tables, the corresponding graphical solu-
tion is shown in Fig. 2. The reader will note that the
tabular solution gives the optimum temperature only
within ten degrees.

Pros and Cons of Dynamic Programming

A few comments about dynamic programming seem
appropriate at this point. Note that dynamic program-
ming does not indicate which particular optimization
technique to use at any one stage. This is left up to
the investigator.

The problem of constraints usually hinders most
optimization techniques. In dynamic programming,
however, the constraints are actually helpful because
they limit the range to be investigated. In the heat
exchanger problem just considered, for example, T, is
limited to 100-300 F., and hence the values to be stud-
ied must be restricted to this range. Discontinuities
in the objective function can be handled by dynamic
programming because no analytical function need be
used; tables and curves are quite adequate.

In general, where there are N stages and % decisions
to be made at each stage, the over-all optimization
problem involves k¥ possible answers. Tor a five-stage
problem with three decisions at each stage, this means
3° (243) possible combinations. By dynamic program-
ming, only 5 X 3 (15) one-stage optimization prob-
lems have to be solved.

One disadvantage of the method is the problem of
dimensionality (many variables), which arises in the
optimization at each step. For example, when-many
decisions are to be made at one time, the single-step
optimization itself may become quite complex.

Over-all, however, the method of dynamic program-
ming has found many applications. Aris® has applied
this technique to chemical reactor design as well as to
extraction, while Rudd and Blum® extended this work
to extraction with product recycle. Dranoff et al®* used
dynamic programming to solve a problem in optimal
design of a complex chemical plant. Westbrook® con-
sidered problems in heat transfer, while Mitten and
Nemhauser® have illustrated the use of dynamic pro-
gramming in processes containing branches and loops.
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In Conclusion

Several optimization methods that have not been 1n-
cluded in this series include random methods, the criti-
cal path method, analog methods, and applications of
the calculus of variations.

The state of the art in optimization was summed
up quite well by C. Storey™ in his comments regarding
the symposium on process optimization held in London
in 1962, He noted that we are in a transition state in
the field of optimization and that theory is outpacing
application. We must wait, he said, for more applica-
tions before we can determine which method applies
to which problem.

If interest in optimization has been stimulated in
the neophyte—if some techniques have been made
clearer or some new methods supplied to the reader
acquainted with the field—then this series has achieved
its objective.
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