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Design of a Self-Optimizing Control Syste

By R. E. KALMAN,! NEW YORE, N. Y.

This paper examines the problem of building a machine
which adjusts itself automatically to control an arbitrary
dynamic process. The design of a small computer which
acts as such a machine is presented in detail. A complete
set of equations describing the machine is derived and
listed; engineering features of the computer are discussed
briefly. This machine represents a new concept in the
development of automatic control systems. It should find
widespread application in the automation of complex sys-
tems such as aircraft or chemical processes, where present
methods would be too expensive or time:consuming to

apply.

INTRODUCTION

= HE art of the design of systems for the automatic control

of dynamic processes of many different kinds (such as air-

planes, chemical plants, military-weapon systems, and so on)
has been reduced gradually to standard engineering practice
during the years following World War II. In thesimplest possible
setting, the problem that the engineer faces in designing such
automatic control systems is shown in Fig. 1. It is desired that
the output of the process c(¢), which may be position, speed,
temperature, pressure, flow rate, or the like, be as close as
possible at all times to an arbitrarily given input r(¢) to the sys-
tem. In other words, at all instants of time it is desired to keep
the error e(t) = r(t) — c(t) as small as possible. Control is ac-
complished by varying some physical quantity m(é) , called the
control effort, which affects the output of the process.

o(t}

m(1) "DYNAMIC elt)
CONTROLLER H '—————
ERROR _J PROCESS OUTPUT

CONTROL EFFORT

r(t)

Fig. 1 Brock DIsGRAM OF SIMPLEST ConTROL PROBLEM

As long as the deviations from an equilibrium value of r(t),
«(t), and therefore of e(t) and m(t), are small, the system can be
regarded as approximately linear and there is a wealth of theoreti-
cal as well as practical information on which engineering design
may bebased. (When the system is not linear, present-day knowl-
edge supplies only fragmentary suggestions for design; however,
nonlinear effects are frequently of secondary importance.) It is
generally agreed that the design of high-performance control sys-
tems is essentially o problem of matching the dynamic character-
istics of a process by those of the controller. Practically speak-
ing, this means that if the dynamic characteristics of the process
are known with sufficient accuracy, then the characteristics of a
controller necessary to give a certain desired type of performance
can be specified. Usually, this amounts to writing down in quan-
titative terms the differential equations of the controller. Thus
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the design procedure can be divided roughly i

o the following , |
distinet stages: N5 % Qf vab w—h o
I Measure the dynamic charactcristic?o the process. wﬁ'ﬂ:ﬁ’
II Specify the desired characteristics of the controller. D f
III Put together a controller using standard elements (ampli- L ':
fiers, integrators, summers, electric networks, and so on) which M

has the required dynamic characteristics. u_w_.

This subdivision of effort in designing a control system is over- i W '
simplified, but it will be a convenient starting point for the follow- FL
ing discussion.

It has been pointed out by Bergen and Ragazzini (1)? that if a
high degree of flexibility is desired in design stage (III), it is ad-
vantageous to use a sampled-data system. In principle, a
sampled-data system is one where the controller is a digital com-
puter. It is probably no exaggeration to say that, because of the
great inherent flexibility of a digital computer, any desired con-
troller characteristic is practically realizable. The use of a digital
computer for the controller reduces stage (III) to a straight-
forward operation, like that of transcribing a handwritten manu-
seript by means of a typewriter.

Since the theory of linear coutrol systems is well developed,
stages (I-1I) also can be made to consist of more-or-less standard
procedures. Quick and convenient dlesign even in stage (IIT) de- |
mands or at least suggests a digital computer; so the question |
arises whether or not stages (I-II) also can be reduced to com-
pletely mechanical operations which can be performed by a digital
computer. Accordingly, the problem considered in this paper can
be stated as follows:

To design a machine which, when inserled in the place of the con-
troller in Fig. 1, will automatically perform steps (I-III), and set
itself up as a controller which is optimum in some sense. The de-
sign of this machine is to be based on broad principles only. Its
operation should require no direct human intervention but
merely the measurements of 7(¢) and c(t).

In other words, such a machine, if it can be built, eliminates the
lengthy, tedious, and costly procedure of engineering design—it is
only necessary to connect the machine to any process. Thus the ‘
machine would seemingly eliminate the need for the control-sys-
tems engineer, but the latter can be reassured by the fact that the
design of the machine itself is a far more ambitious and challeng-
ing undertaking than that of conventional control systems.

An even more decisive advantage of the machine over present-
day design procedures is the following: In carrying out steps
(I-III) it is generally taken for granted that the dynamic charac-
teristics of the process will change only slightly under any operat-
ing conditions encountered during the lifetime of the control sys-
tem. Such slight changes are foreseen and are usually counter-
acted by using feedback. Should the changes become large, the
control equipment as originally designed may fail to meet per-
formance specifications. Instances where difficulties of this type
are encountered are:

(a) Changes of aircraft characteristics with speed.

(b) Chemical processes.

(¢) Any large-scale control operation, where the nature of the
system can be affected by uncontrolled and unforeseen factors.

By contrast, the machine can repeal steps (I-I11) continually
and thereby detect and make corrections in accordance with any

2 Numbers in parentheses refer to the References at the end of
the paper.
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changes in the dynamic characteristics of a process which it con-
trols. Such a control system operates always at or near some
“optimum,”’ provided only that changes in the dynamic charac-
teristice of the controlled process do not occur very abruptly.
It may be said that the machine adapts itself to changes in its
surroundings—this may be regarded as an extension of the princi-
ple of feedback. The author prefers to call this property of the
machine tgelf-optimization.””  The word “ultrastability” has
been suggested also in a similar context by Ashby (2).

In the stated degree of generality, the problem is certainly not
at u stage at present where any clear-cut (“unique’) solution can
he expected. Therefore this paper does not treat the general
problem but presents a specific approach which leads to a prac-
tically satisfactory solution. This point isof considerable interest,
since some earlier speculations relating to the problem were mostly
of theoretical nature, without an attempt to appraise the difficul-
ties (cost, complexity, and so on) of practical implementation
(2-5). A machine based on the principles discussed in what fol-
lows actuully has been built and will be described briefly in a later
section.

It should be emphasized that the machine has been designed
from a practical engineering point of view, rather than deduced
from some law of physics or mathematics. The various single
elements in the design of the machine are based on known princi-
ples. The choice between slternate possibilities in each stage
of the design has been guided by efficiency and cost con-
siderations. It is claimed that the over-all design uniting these
principles in one machine is new and represents a mujor advance
in regard to practicality over suggestions contained in the cur-
rent literature.

GENERAL DusigN CONSIDERATIONS

From the technological point of view, it is clear that the machine
discussed in the preceding section must be a computer. There
are two possible choices, analog or digital computer. The latter
choice is preferable. The reason is this. An analog computer
is basically a method of simulating simple dynamic processes as
they occur in the physical universe. The machine in question is
required to simulate the actions of man, not of nature. This re-
quires much greater flexibility and at the present state of com-
puter technology such flexibility is provided only by digital
computers.

The words “‘digital’” and “analog”’ used here refer to the ez-
ternal characteristics of computers. Mathematically speaking, an
analog computer performs the operations of analysis, such as
differentiation, integration, computing logarithms, and so on,
while a digital computer performs only arithmetic operations;
namely, addition and multiplication. An analog computer oper-
ates on continuous functions (of time), the digital computer deals
with discrete numbers. As far as the internal construction of these
machines is concerned, it may happen that a computer which is
called analog by its user contains discrete components (such as
very fast counting circuits); and a computer which is called digi-
tal by its user may contain continuous components (such as
potentiometers). Following these remarks, the computer that
is described later may be called externally digital, internally
analog.

In o digital computer, mathematical operations must be ex-
pressed (using approximations of various types) in numerical
form. For instance, a function such as e* must be computed by
means of a series, which involves only repeated addition and
multiplication. Another example is measuring the dynamic
characteristics (transfer function or impulse response) of a proc-
ess. Mathematically, this leads to the problem of solving an in-
tegral equation for which no satisfactory analog computing tech-
nique exists at present. On a digital computer the problem re-
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duces to solving a set of simultaneous algebraic equations which is
much simpler than solving an integral equation.

These consiclerations suggest the first fundamental design re-
quirement:

() The machine must be a digital computer.

Recall now that the machine has a twofold job; namely, de-
sign and control. (i) It must measure the dynamic characteris-
tics of the process and then determine the best form of the con-
troller. (ii) It must control the process by providing the required
control action m(¢). It is naturally desirable to keep these dis-
tinct functions independent. Therefore:

(B) The operalions necessary for designing a suitable controller
must not be allowed to interact with the control action itself.

Tt will be seen later that this requirement cannot be satis-
fied completely; the degree to which it must be relaxed to pro-
vide satisfactory operation is one of the unanswered questions at
present.

SpecrAL DEsIGN CONSIDERATIONS

There are several practical requirements, all quite self-evident,
which must be satisfied if the machine is to fulfill the expectations
presented in the Introduction. All of these are related to design
problem (I).

The functioning of the machine must not be critically depend-
ent on obtaining measurements with high accuracy. Deter-
mination of the dynamic characteristics of the process is based on
knowledge of m(t) and ¢(¢). Since the first of these is actually
produced by the machine itself, it may be assumed to be known
with arbitrary accuracy; c(?), however, corresponds to some
physical quantity such as temperature, flow, and so on, whose
determination is always accompanied by errors due to the im-
perfect operation of measuring equipment. These errors are
called measurement noise. The standard method of reducing
measurement noise is to take a large number of measurements.
This leads to the requirement:

(C) The determination of the dynamic characleristics of the
process must be based on large number of measurements so as to
minimize the effects of measurement noise.

As pointed out in the Introduction, one of the potential ad-
vantages of such a machine is that it can constantly repeat the
entire design procedure and thereby adjust itself in a manner
corresponding to any changes in process characteristics. But be-
cause of requirement (C), the determination of process character-
istics requires a large number of measurements, taking a (possibly)
long period of time. Since the system characteristics at the end of
a series of measurements may be appreciably different from what
they were at the beginning of the series of measurements, it is
clear that older measurements (‘‘obsolete data’’) should not be re-
garded as being as good as more recent measurements. This may
be stated as:

(D) Among any two measurements of c(t), the more recent one
should be given the higher weight: Measurements of c(t) made in-
finitely long ago should be given zero weighl.

The cost, size, probability of breakdown, and so on of the
machine is roughly proportional to the number of computations it
has to perform per unit time. Therefore other things being
equal, the number of computations should be as small as possible:

(E) The methods of numerical compulation to be used in the
machine should be highly efficient.

This last requirement will make it possible also to choose be-
tween alternative methods of computation.

CoMPUTATION OF TRANSFER FUNCTION TFroM MEASUREMENTS

Sampling. We now examine in detail the problem of measuri’
the dynamic characteristics of the process to be controlled.
do this, the functions m(t) and ¢(¢) must be known. Since
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cording to requirement (4), the machine is to be a digital com-
puter, it is necessary to replace m(¢) and c(¢), which are con-
tinuously varying functions of time, by sequences of numbers
which are discretely varying functions of time. This process is
known as sampling. The most common way of doing this is to
perform measurcments periodically. Let the sampling instants
bet=kT, k=012, ... where T is called the sampling period.
Then sampling replaces m(¢) and ¢(t) by the sequences of numbers

m(0), m(1"), , m(kT), ...
E=0,1,.....]1]
c(0), 1), e(kT), . ..

In order to simplify the notation, we frequently will write m, =
m(k1') and ¢, = ¢(kT) from now on. As a result of the sampling
process, all experimental information about the functions m(¢)
and ¢(t) is contained in the numbers [1]. The sampling process
isillustrated in Fig. 2.

The theory of linear control systems in which some of the
controlled quantities are subject to sampling (the so-called
sampled-data systems) is well developed. For further informa-
tion, see Ragazzini and Zadeh (6) and Truxal (7).

m(2T), . . .
c(27), ...,

m(t}

Fic. 2 Sameprinc Process

ol T 2T 3T

Step Response of the Process. 1If the process is linear, time-
invariant, and stable, it is well known that ¢(t) is related to m(¢) by
the convolution integral

e(t) = f_tm Rt — w)ydm(u)............. [2]

where h(t) is the step-function response of the process; A(¢) = 0
when ¢ < 0. Once h(t) (or one of its equivalent forms, for in-
stance, its Laplace transform) is known, the dynamic behavior of
the process in question is completely characterized. But to find
A(¢) given m(t) and ¢(t) by means of Equation (2] requires solving
an integral equation which is a very difficult task.

If we consider now the closed-loop system shown in Fig. 1, it is
clear that the input m(¢) to the process is the output of the self-
optimizing controller. Therefore m(t) must depend on the output
of a digital computer; in other words, m(¢) must be a function of
time which is completely determined by its values m, at the
sampling instants. To construct a function m(¢) from the series
of numbers m;, which has a definite value at every instant of time
calls for some method of interpolation. The simplest and prac-
tically most frequently used method (6, 7) is to hold the value of
m(t) constant after each sampling instant until the next sampling
instant. In mathematical notation

ET St<b+1)T.......... (3]

Assuming that m(t) is given by Equation [3), it is easy to show

that the convolution integral Equation [2] reduces to the sum
IT<t

c(t) = Z Mt = ITYomy — myy). oo [4]

l= —o

m(t) = My,

Noting that 2(kT) = O forall k < 0, and considering only sampled
values of ¢(t) and A(t), Equation [4] can be rewritten in the
simpler form

=k l=k

Cp = (hlc—l — h;,,_,)m, = Z Fe-tmy. . ... [5]

l=—

~

I=—w

TRANSACTIONS OF THE ASME

where the g,'s are recognized as the samples of the response of the
system to a unit pulse. According to Equation (5], the dynamic
behavior of the process is now represented by the sequence of
numbers

g = h(0), g = KT) — h0), ...

g = h(kT) — ik — 1)T], . . .

Morcover, if the input-output sequences [L] are known after
some sampling instant, say, & = 0, then the numbers Jr can
be determined by solving an infinite set of simultaneous linear
algebraic equations given by Equation [5]. Since h, ~> const
with & — « (otherwise the process would not be stable and there-
fore Equation [5] would not be valid at all) it can be assumed in
practice that A, = Ay for all 5 > N if NV is sufficiently large.
This assumption means that g, = 0 for all k > ¥ so that only a
Jinite set of linear algebraic equations has to be solved to get the
[

But even with this simplification it would be quite inefficient
to represent the process by means of the g, because this would
require a large amount of storage in the digital computer. For
instance, if the step response of the process is

A(t) =1 — exp (—t/7)
lexp (T/7) — 1) exp (—=kT/7),

Jo = Oy (3 k 2 1
then approximately N = 57/7 numbers are necessary if the error
due to neglecting the terms g;, k > N is to be less than 1 per cent,.
If fast control is required, the time constant of the closed-loop
system must be much less than 7; on the other hand, the re-
sponse of the closed-loop system on the average cannot take place
in less than T seconds. Thus 7/7T must be large, which means
that a large number of values of g, must be stored. This and other
practical considerations to be discussed later indicate that the
numbers g, do not represent the dynamic charncteristics of a
process efficiently.

Pulse Transfer Function. A different way to represent a dy-
namic process is to assume that there is a linear differential equa-
tion relating m(t) to ¢(¢). Consequently, m, and ¢, may be as-
sumed to be related by means of a linear difference equation

Ce Tt btk + .o Ducken = aomy, + aymp—, + . ..

where the a; and b; are real constants and b, has been set arbi-
trarily equal to unity. If the differential equation relating m(t)
and c(¢) is known, the Difference Equation [6] can be derived
readily using the theory of sampled-data systems. Such a deriva-
tion shows that in general ¢ = n. By rearranging Equation [6],
1t follows that ¢, can be expressed in terms of previous inputs and
outputs

Cp = oMy + M=t + . . . + @ Mp—n — biCr—
— v — buChn. ... [6a]

Usually a = 0, since most physical systems do not respond in-
stantaneously. The theoretical difference between Equations
[6a] and [4] is that in the latter case in principle all past inputs
are needed to detcrmine the present output while in the former
case only a finite number of past inputs and outputs is needed.
The practical difference is that when the system is known to be
governed by a difference equation, much fewer a; and b; than Tr
are needed to represent the system.

Using the notation zic, = cuy; (where 7 is any integer), it is
possible to write down the following basic relationship between
the g, defined by Equation [5] and the a; and b; defined by
Equation [6]
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G(z) = LEbzt+ . b
=gls_‘-i-g:z_"-i—...+g‘_:"‘+... R )

where the right-hand term is obtained by the formal expansion of
the rational fraction G(z) by long division according to ascending
powers of 2=t The first term, go, is missing because it was as-
gumed that ¢ = 0 which implies that ko = go = 0. The function
G(z) is called the pulse transfer Function of the process (G, 7). It
has the same rolein the analysis of linear sampled-data systems as
the transfer function (Laplace transform of a differential equa-
tion) in the analysis of lincar continuous systems.

The number of the a; and b; used to represent the process is
pased also on an assumption as to what the value of n should be.
This is a matter of approximation; in other words, n should be
chosen sufficiently large so that the a; and b; represent the process
.w'xt,h some desired aceuracy. But the characteristics of the proc-
ess are not known in advance so that some initial guess must be
made about 7 in setting up the machine. It is, of course, possible
in principle to let the machine check the adequacy of this initial
guess once experimental data about the process are available.
For simplicity, however, the machine discussed in this paper was
designed to operate with a fixed choice of n (n = 2).

Tinally, it should be recalled that use of the numbers g, is
feasible only if the process is stable. No such restriction is in-
herent in the representation by Equation [6].

To summarize, the first step in the design of the machine is:

(i) The dynamic characteristics of the process are to be repre-
sented n the form of Equation (6], the cocfficients of which are to be
computed from measurements. The number n = ¢ is assumed arbi-
trarily. In general, the igher n, the more accurate the representation
of the process by the Difference Equation [6].

Method of Determining Coefficients. According to design re-
quirement (C), the coefficients in Equation [6] must be deter-
mined from a large number of measurements. This can be done
as follows: Suppose we make a particular guess for the a; and
b; at the Nth sampling instant. Let us denote these assumed
values by a;(V) and b,(NV), and compute all the past values of ¢;
using this particular set of coefficients and Equation [6a]. De-
noting by ¢, *(N) the values of the output computed in this way,
we have

" (N) = —=b(N)er—r — bo(N)cp—z — .+ -« — ba(N)Ctn
+ a(N )t + as(N)m—s + ... + a (N )My oo .o [81]

k=01...,N

A convenient measure of how good this choice of coefficients, in
the light of past measured data, is the mean squared error

k=N
1

1 k=N
v 2 @i(N) = + AZ,O o — cx* (V) 9]

where ¢2(V) represents the squared error between measured
values ¢, in the past and the predicted values ¢,*(V) based on a
certain choice of coefficients made at the Nth sampling instant;
choosing the coefficients a,(N) and by(V) in such a fashion that
the mean squared error Equation [9] is a minimum called least-
squares fillering. 1In general, any method for determining the
a(N) and b,(N) differs from least-squares filtering only in the
form of the appropriate expression to be minimized. The ad-
vantage of least-squares filtering is that the computations can be
carried out fairly simply (see Appendix), which is usually not the
case if other types of error expression are used.

In view of design requirement (D), the more recent measure-
ments should receive greater weight than very old ones, since the
process dynamies may change with time. To meet this require-
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ment, we proceed as follows: Let 1 (t) be a continuous, monotoni-
cally decreasing function of time such that

W) =1
O<W(z)<1,0</<cnL
(o) = 0 PR S 10

jo Wt < o

A function satisfying such conditions is called a weighting func-
tion. Writing TV, for W(kT), the final criterion of determining
the coefficients may be stated as follows: Choose a;(V), b;(:V) in
such a wuy that the expression

k=N

E(N) = D X)Wy oo (1]
k=0

is & minimum. In other words the crrors which would have been
committed with the present choice of the coefficients N — k
sampling periods ago are to be weighted by a number 0 < I y—; <1.
Practically speaking, this means that the coefficients are caleu-
lated by disregarding errors which would have been committed in
predicting the output a very long time ago (when the process may
have been different) but trying to keep errors in predicting recent
outputs small. None of these considerations, however, deter-
mines the precise form of the function W(¢); this question will
be settled later so that an efficient computation procedure is ob-
tained. We now state the second step in the design of the machine:

(ii) The coefficients a; and b; should be determined anew al each
sampling instant so as to mininiize the weighled mean-square error
E(N). R

Numerical Solution of Weighted Least-Squares Fillering Prob-
lem. The explicit process necessary to determine the a;(V) and
b;(V) requires, even after numerous simplifications, lengthy and
somewhat involved calculations. These are discussed and re-
corded in detail in the Appendix. Only a few remarks are given
here:

1 It s necessary to compute a number of so-called pseudo-
correlation functions in order to write the error expression E(N)
in a simple form. These pseudo-correlation functions embody
all measurement data up to the Nth sampling instant which is
necessary to compute E(N). To compute E(N + 1), it is neces-
sary to modify the pseudo-correlation functions so as to include
the data received at the (N 4 1)st sampling instant. It turns
out that this process can be carried out in a simple way only if
W, is the unit pulse response (cf. Lquations [3] and [7]) of a
linear system governed by a difference equation. Then computa-~
tion of the pseucdo-correlation functions is carried out by passing
products of measured values of my and ¢, through 2 linear low-
pass filter.

2 In order to apply Equation [6] to characterize a process, it
is necessary that my and ¢, be measured with respect to two ref-
erence values m, and ¢, such that, if m, is a constant input to the
system, ¢, is the output in the steady state. Since the correct
choice of such reference levels is not known in general, they must
not enter into the computations of the type of Equation [6a].
In practice, the rcference levels are usually determined by ex-
trancous considerations such as calibration and range of measur-
ing instruments. One way of avoiding the effect of incorrect
reference levels (so-called bias errors) is to pass m, and ¢, through
identical high-pass flters. After a sufficiently long period of time
the bias errors, which are equivalent to a constant input to the
filter, will be attenuated by an arbitrarily large factor at the out-
put of an appropriately designed high-pass filter.

After the pseudo-correlation functions have been obtained, t
determination of the coefficients reduces to solving a s
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simultaneous linear algebraic equations. To do this eficiently, an
iteration procedure is used; it turns out that high-pass filtering
my, and ¢, (which is equivalent approximately to subtracting the
instantaneous mean value of these seriesof numbers) is a necessary
requirement to insure the convergence of the iteration procedure.

The third step in the design is as follows:

(iii) The calculations necessary for determining the coefficients
consist of modifications of the classical least-squares filtering pro-
cedure and are given in the Appendiz.

OpTisAL ApJUsTMENT 0F CONTROLLER

Once the pulse-transfer function of the process to be con-
trolled has been obtained, the synthesis of an “optimal’’ controller
as a set of difference equations becomes a routine task (1, 8, 9).

It is not easy to agree, however, on what constitutes optimal
control. The design of an optimal controller depends in general
on two considerations:

(a) The nature of the input and disturbance signals to the

system.
(b) The performance criterion used.

TFor instance, the inputs to the system may consist of step
functions of various magnitudes; the performance criterion may
be the length of time after the application of the step required
by the control system to bring the error within prescribed limits.
Or the input may consist of signals which are defined only in the
statistical sense, in which case a reasonable performance criterion
is the mean squared value of the error signal.

To include in the design of the machine means by which the
machine can decide what class of input signals it is subjected to
and what type of optimal controller should be used appears to be
too ambitious a task at the present time. For this reason, in the
practical realization of the machine (sec the section Description
of Computer), a prearranged method of optimizing the controller
was used.

TRANSACTIONS OF THE ASME

This method was described in a recent note by the author (8).
The input signals are to consist of steps. The controller is to be
designed in such 2 fashion that the error resulting from a step
input becomes zero in minimum time and remains zero at all
values of time thereafter, As a result of these assumptions the
optimal controller is described by a difference equation whose
coefficients are simple multiples of the coefficients of the pulse
transfer function (see Equation [25] in the Appendix.)

We note the last step in the design:

(iv) The choice of an optimal controller is largely arbitrary, de-
pending on what aspect of system response is to be optimized. The
determination of the coefficients in the describing equations of the
controller is a routine matter if the coefficients of the pulse-transfer
Sfunction are known.

SUMMARY OF MACHINE ORGANIZATION

Since the describing equations of the self-optimizing controller
are somewhat involved, it is helpful to visualize the various com-
putation processes as shown in Fig. 3.

Numbers in brackets indicate equations which characterize
the particular operations performed. It should be remembered, of
course, that there are many pseudo-correlation functions, co-
efficients, and so on, to be computed, some of which are indicated
only in a schematic fashion.

It is perhaps worth while to emphasize that the closed-loop
system consisting of the self-optimizing machine and the process
is highly nonlinear. The principal nonlinear operations are:

(a) The multiplications before the input to low-pass filters
whose outputs are the pseudo-correlation functions.
(0) The determination of controller coefficients.

These nonlinear operations have made it necessary to design
the self-optimizing machine step by step. There exists at present
no general theory for the design of nonlinear control systems of
this type.
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UNSOLVED QUESTIONS

According to the preceding discussion, the operation of the
self-optimizing system depends mainly on the accuracy of the
computation of the pulse-transfer function from measurement
data. Now suppose that the system is under very good control
and that the input and disturbances to the system are nearly
constant. In that case m, and ¢, will vary only very slightly
about their equilibrium values. As a result, the numbers i, and
¢ (approximately the deviations of m, and ¢, from equilibrium)
which are the inputs to the computation process determining the
transfer function will be small and of roughly the same order of
magnitude as the measurement noise. Under such circumstances,
the transfer function cannot be computed very accurately. If the
transfer function is not known accurately, then the controller
cannot be set up accurately either and the system will not be
operating optimally. But then the control will be less good and
the deviations from the equilibrium values will increase. This, in
turn, will improve the signal-to-noise ratio of the quantities 7,
and ¢, the computation of the transfer function will be more
accurate, control action more nearly optimal, and so on. This
shows that the operation of the system is limited basically by
measurement noise. The fluctuations around the equilibrium
condition must always be large enough to measure the transfer
function with reasonable accuracy even in face of measurement

‘noise. Thus the operation of the system depends on not being

entirely at rest; if it were, it is impossible to say anything about
the dynamic churacteristics of the controlled process. A more
precise answer to the problem involved here calls for further
study.

Let us now examine qualitatively the effect of the choice @ and
8 (cf. Fig. 3 and Appendix, Equations [19, 23, 24]) on this aspect
of system performance. If & is very close to unity, the computa-
tion of the pulse-transfer function involves a large number of
samples of 7, and &, so that even if the system is at rest, i.e.,
my and & are practically zero, the computation of the pulse-trans-
fer function is not affected for a long time, because the system
“remembers’’ results of old measurements. On the other hand, if
the process dynamics change rapidly in time, then « should be
chosen fairly small because otherwise the computed transfer func-
tion will not be the actual transfer function. Thus « is a design
parameter whose choice depends somewhat on the nature of a
particular situation encountered. There is no reason, of course,
why the system cannot adjust e also, but this is a problem beyond
the scope of this paper.

The choice of 3 is guided by similar considerations. If the
inputs to the system change slowly then 8 should be very close
to unity for then the low-frequency components in m; and ¢,
(slow “drift” about equilibrium point) will be very heavily at-
tenuated. If the system is a more lively one, i.e., m, and ¢,
fluctuate appreciably in time due to the effect of inputs or dis-
turbances acting on the system, the 8 should be chosen smaller
to improve the transient response of the high-pass filter. Thus 8
is another design parameter for the self-optimizing system.

Additional possibilities for improving these aspects of system
operation should be considered in future work. More compli-
cated weighting-functions and high-pass filters, suspending the
operation of transfer-function computation when signal-to-noise
levels become too low, putting in periodic test signals to check
the operation of various parts of the computer, and the like, are
some topics for future research.

Descrrerion oF CoMPUTER

As soon as the operations discussed in the foregoing sections
have been reduced to a set of numerical calculations (see Appen-
dix) the machine has been synthesized in principle. This means
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that any general-purpose digital computer can be programmed
to act as the sclf-optimizing machine.

In practical applications, however, a general-purpose digital
computer is an expensive, bulky, extremely complex, and some-
what awkward piece of equipment. Moreover, the computa-
tional capabilities (speed, storage capacity, accuracy) of even the
smaller commercially available general-purpose digital compu-
ters ure considerably in excess of what is demanded in performing
the computations listed in the Appendix.

For these reasons, & small special-purpose computer was con-
structed which could be called externally digital and internally
analog according to the terminology in the section General De-
sign Considerations. Briefly, this computer is organized as
follows:

The computer operates on numbers whose absolute values do
not exceed unity. Each number is represented by a 60-cycle-per-
sec (cps) voltage. Numbers are stored on multiturn potentiome-
ters, by positioning a given potentiometer by means of a servo
arrangement in such a fashion that its output voltage (with unit
excitation) is a 60-cps signal of the required magnitude and sign.
Numbers are added by feeding corresponding voltages into elec-
tronic summing circuits. Two numbers a and b are multiplied by
the following well-known method: If output of the potentiome-~
ter with unit excitation is b, then the output of the potentiometer
with excitation a will be ab. The storage locations and summers
can be interconnected in such a fashion that, in any one step of
computation, the computer is capable of performing any one of
the following types of operations

aby F+ abs+ ... Fahr =z

or

|
S
=
(8]

abiedy + asbacs + asbics =
or
alb161d1€1f191h1 =z
and so on

where each quantity appearing on the left-hand side of Equa-
tions [12] is an arbitrary number; z is the desired result of the
computation. The fact that several additions and multiplica-
tions can be performed simultaneously is very convenient from
the standpoint of programming the computer. Usually, each of
Equations [12] must be broken up into several parts in pro-
gramming them on a general-purpose computer.

The front view of the computer, which is roughly of the size of
an average filing cabinet, is shown in Fig. 4. Only connections
for input-output signals appear on the front panel. The pro-
gramming of the computer is achieved by inserting wires into a
“patch panel” on top of the computer which is shown in Fig. 5.
Almost every signal voltage inside the computer is brought out to
some contact on the patch panel. This arrangement malkes, it
possible to interconnect the basic components of the computer
in any manner desired and also facilitates troubleshooting and
maintenance. The disadvantage of a patch-panel type of pro-
gramming is that the change of program is a time-consuming
operation; however, this is of minor significance since the machine
isintended to operate with a fixed program in any typical applica-
tion. The control panel shown in Fig. 5 also contains means for
changing the sampling rate and reading numbers into any one of
the storage locations in the computer.

The wiring necessary to connect computer components with the
patch panel, together with associated relays, timing and checking
circuits takes up approximately one third of the volume of the
computer. Another one third of the volume is required for the
electronic circuits performing summation and multiplication and
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the storage potentiometers. The remaining one third of space is
taken up by power supplies. The interr.ml arrangement of the
computer is shown in the rear view of Fig. 6.

The computer described shows that the practical realization of
a self-optimizing machine is well within the technological means
available at the present time. Actually, the computer described
was constructed in 1954/1955. The computer also represents sav-
ings in cost and complexity over currently available general pur-
pose digital computers. On the other hand, when self-optimizing
control of a large-scale installation is desired, in other words, when
there are several dynamic processes to be controlled simul-
tuncously and possibly in an interdependent fashion, then the
general-purpose digital computer is much better matched to the
problem both in terms of cost and computational capability.

CoNCLUSTONS

This paper shows the feasibility of mechanizing much of the
process by which automatic control systems for standard appli-
citions are being designed today. The amount of numerical com-
putations necessary for accomplishing this is relatively modest
(after the numerous simplifications discussed) and can be readily
implemented in practice at moderate cost.

More importantly, however, the machine cescribed here is an
ideal controller since it needs merely to be interconnected with
the process to be controlled to achieve optimum control after a
short transitory period and hold it thereafter even if the process
characteristics change with time. The task of the control engi-
neer of the future will be not to design a specific system, but to
improve the principles on which machines of the type described
here will operate. Unlike his predecessor, the stock in trade of
the new control-systems engineer will not be the graph paper, the
slide rule, or even the analog computer but a firm and deep-seated
understanding of the fundamental principles, physical and
mathematical, on which automatic control is based. The
drudgery of computing will be taken over by machines but the
challenge of thinking remains.
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Appendix

The following is the detailed derivation of the complete set of
equations characterizing the self-optimizing controller in the
special case when n = 2 in the Difference Equation [6]. Using
these equations, any digital computer may be programmed to
act as a self-optimizing controller. When n > 2, the required
equations can be obtained similarly.

First of all, instead of performing the computations required to
minimize Equation [11] at every sampling instant, they may be
performed at every qth (where ¢ is a positive integer) sampling
instant. This does not affect the reasoning in the section Method
of Determining Coefficients, and results in considerable simplifi-
cation in the required computations. With this change, the error
expression Equation [11] becomes

j=N/q

BN) = Y e N Wymgjeeooo [13]
=0 .

where & = gj and N is a number divisible by ¢.
Now assume that n = 2 in Equation [6]. Using the re-
currence relation Equation [8], €,,*(.V) can be written as

€,5(N) = leg; — " (NP
= cyi* + (N )egj=1? + b2 (N )eg—*

+ 20N )y ot 4 e Ve jeayee
+ 26N )b( N )egimcqj2

= 204NV )egimgi-1 — 2a2(N )eg Mg -2
. [L14]
— 2by(N)ar( N )egj—1mgi—

- 2b1(1V)a9(1V)L‘q,'—1mq,'—z

—_ Qb:(N)al(z\’)c,,j_gm,“-_l
—_ zbg(lv)ﬂg(N)Cq,'—ﬂnqj_:

+ a}(N)mgj-1® 4 a22(N)my;s?
+ 2ay(NV)as(N)mgjmgj—2

The measured values of ¢ and m occur in Equation [14] always
in terms of the type

Cqi—rCqj—s Cyj—rMgis MgimgMgimg v ve e [15]

wherer, s = 0,1, 2. If we now let

g=n+1=3

then it is clear that factors of the same type will be multiplied by
the same coefficients in Equation [14], regardless of the value of
Jj. This property does not arise when ¢ < 3. Using the symmetry
introduced by the particular choice of ¢, E(N') can be put in a
simpler form by defining the pseudo-correlation functions

i=N/3

Gy = 8) = ) csimtaalV s
i=1
i=N/3

¢-\'—r°m(r — §h = C3 ,-_,.nl;,-.-,IV_v-;,‘

... (6]
ij=1
j=N/3

Gy—""(r — 5) = M3 jmrMajmy 1 Nvf

.:=l
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With these definitions, E(N) can be written as follows, ar-
ranging the terms in the same fashion as in Equation [14)
E(N) = ¢x(0) 4 b2 (N)py-(0) + ba2(V Jdr—2"(0) ]

+ 20(N)py(—1) + 2ba(N)pys(~2)
+ 26NV )ba( NV )pyoyee(— 1) |

= 2a(N)Pym(—1) — 2as(N)py(—2)
— 20(N)ay(NV)dy-£m(0)
= 20(Nax( V)py-om(—~1
= 2b:(N)ar(N)px-m(1) — 2ba( N ) N )py—se(0)
@ (N)px1mm(0) + as(V)py-2"m(0)
+ 2a(Nay( N)pymm(—1)
Remark. The conventional definition of correlation functions is
1 k=Y
Dy(r) = A kZ=0 Crlrir

To evaluate this function iteratively, as is done in Equation [19]
for pseudo-correlation functions, it would be necessary to com-
pute

17

-

Ox(r) = cyeyir/N + (N = Dpy—i=(r)/N

Since the factor (¥ — 1)/N cannot be calculated aceurately
enough as ¥ — =, such an iterative caleulation would be im-
practical.

The pseudo-correlation functions can be evaluated iteratively
as follows: Suppose that, in addition to meeting Conditions
(10], the weighting function W} is a sequence of numbers such as
the g, given by Equation [7]. Then it follows that the pseudo-
correlation functions can be regarded as the output of a linear
system governed by a difference equation, whose input consists of
products such as Equation [18]. In particular, if we let

Wi = o O<a<) .. [18]

then every pseudo-correlation function satisfies a first-order dif-
ference equation of the type

1= (r — 3) — ADy(j)~™(r — 3) = CajmrMyjmy. .. [19]

According to Equation [17] the determination of the coeficients

—0(N = 3)py-""(—1) + by(V — 3)bx—1(0) + ba(N — 3)pyoem(1) + Py m(—1)
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receive new data. Thus the use of the pseudo-correlation func-
tions and the choice of a suitable weighting functidn greatly
simplifies the implementation of mean-square filtering,

In order that B(N) be a minimum with respect to the a; and
by, it is necessary that the partial derivatives

QE(N) OE(N) 1 , 5
20, =0 o, =0 ({=1,2..,n).... [20]

vanish. The proof that these conditions are also sufficient to in-
sure the existence of a minimum of E(N)is quite difficult. Refer
to Milne (11) for discussion of a closely related problem.

The Conditions [20] lead to four linear equations in the co-
efficients a,(V), as(V), bi(N), by(N) as follows

ai(N)gpy-mm(0) + a(N)py—™(—1) — bu(V ) x—"(0)
= bo(N)py—sem(1) = pyom(—1)

@(N)py—™"(—1) + ax(NV)py-mm(0)
= BNyt —1) — ba(N)py—sm(0) = pyem(—~2)

—a(N)px—1m(0) — as(N)py—m(—1)
+ 0(N)pya1%(0) 4 be( V) (—1) = — yee(—1)

—a(N)py—2(1) = ax(NV)py—m(0)
T b(N)Pyar(—=1) + bo(N)Py—s(0) = —gpee(—2)

.[21]

Any method for solving linear simultaneous equations can be
used for finding the a; and b, from Equation [21]. However, the
standard elimination methods (which, incidentally, are much
more efficient than solving Equation [21) by Cramer's rule) re-
quire a rather large amount of storage and somewhat lengthy
computations. These disadvantages become increasingly worse
as n increases. However, an exact computation of a solution of
Equation [21] is very wasteful in that, if a solution of Equation
(21] at the (¥ — 3)th sampling instant is available, then that
solution is also an excellent guess for the solution of Equation
(21] at the Nth sampling instant since the correlation function
can have changed only slightly, unless a very small value of « ig
used. This suggests an ileration procedure for solving Equation
[21], of which the simplest is the so-called Gauss-Seidel method
(10).

Applying the Gauss-Seidel method to Equation [21] leads to the
equations

a(N) = $vam(0) ... [22q]
ax(N) = —a(N)py—"(—1) + by(N — 3)by—™(—=1) + bo(N — oxe™(0) + bym(=2) [225]
Px—-2mm(0)

B(N) = a(N)dy-o™(0) + a:(N)(ﬁ.v\'—l""(—'l) — b(V — 3)py(—1) — Gl VN [22¢]

Dx—124(0) :
b(N) = a(N)Py-1"(1) + as( V)py-rm(0) — AN)eva(21) —gue(=2) (224]

of the pulse-transfer function requires first that all input-output
data (the measured values of ¢ and m) be consolidated into the
pseudo-correlation functions, Because of the recurrence relation
Equation [19], the computation of the latter is quite simple, since
to get the pseudo-correlation functions at the N'th samplinginstant
requires only the knowledge of the same functions at the end of
the (¥ — 3)th sampling instant, plus the values of CN=2, CN -1, Cy,
My-g, Mmy—. Once the new pseudo-correlation functions have
been computed, the data measured during the preceding three
sampling periods can be discarded and the system is rcady to

Pa-2c4(0)

If desired, the cycle of iterations just written down can be re-
peated to obtain better aceuracy.

A necessary and sufficient condition for the convergence of the
iteration Equations [22] is that the diagonal coefficients in Equa-
tions [21], i.e., ¢yymm(0), Gy-2"(0), By-1%(0), by-2>(0) should
be larger in absolute value than any of the other coefficients in the
same equation. To insure rapid convergence, it is highly de-
sirable that the diagonal coefficients be as large as possible com-
pared to the off-diagonal coefficients.

A glance at Equation [19] shows that the pseudo-correlation
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functions just mentioned are always the sum of positive numbers
because the right-hand side of Equation [19] is always positive,
being a square. To make the pseudo-correlation functions cor-
responding to the off-diagonal elements in Equations [21] smaller
in absolute value than the diagonal elements, the right-hand side
of Equation [19] for these functions must be alternatively positive
and negative. This can be achieved by subtracting from each ¢,
and m, the average (mean) values of these quantities over a
long period of time. Unless this is done, ¢, and m, might vary
only slightly about a large average value in which case all the
correlation functions will be approximately equal and the itera-
tion Equation [22] will not converge fast enough, if at all. -

To estimate the mean of a time series in a very reliable way is
not an easy problem. In the present case, however, sophisticated
statistical methods are not required because the precise knowledge
of the mean is not important. The simplest procedure then is to
put both ¢, and m; through identical high-pass filters which re-
move the slowly varying components (i.e., the mean) of these
quantities. When the mean is constant in time, it is equal to the
zero frequency component of the signal. The simplest high-pass
filter on numerical data is represented by the difference equation

O<B<1). ..., [23]

Cp = Chkm = & — ﬁc;;—x

where ¢ is approximately equal to ¢, — mean (c,). The closer 8
is to 1, the better the removal of the mean if the latter is constant.
On the other hand, if the mean varies 8 should be somewhat
smaller for best results. A similar equation holds for m;

0<pB<1).....

A simple substitution in Equation [6] shows that &, and m, are
related by the same difference equation as ¢, and m,. This is
because if two quantities are linearly related, the relationship re-
mains undisturbed if both quantities are put through identical
linear filters. Thus the removal of the mean represented by
Equations [23] and [24] does not affect the computation of the
pulse-transfer function of the process to be controlled, except for
greatly improving the convergence of the iteration process
Equations {22]. Hence all pseudo-correlation functions should
be computed asing the &, and 7,

It remains to show how the equations of the controller can be
obtained from the knowledge of the coefficients of the pulse-trans-
fer function. As mentioned earlier, the controller is to be digital.
Using a method of synthesis due to the author (8), which yields
the optimum design if the closed-loop system is to respond to a
unit step input in minimal time without overshoot (for a given
fixed sampling period T'), the numbers necessary to specify the
controller are very simply related to the coefficients of the pulse-
transfer function of the process which is to be controlled. In fact,
the difference equation specifying the controller is

My — Mp—y = My, — Pgey [24]

[a(N) + ax(N)Imy, — a N)mp— — ao( N )mp—s
= e, + bi(N)ery + bo(N)eg—a. .. ... [25]

where &, = T — Cp

Equation [25]is valid for ¥ + 1 < k < N + 3, after which a new
set of coefficients must be used from the next determination of the
pulse-transfer function. It should be noted that Equation [25]
holds only if the (continuous) transfer function of the process is
approximately H(s) = K/(s + a)(s + b) with a, b, K > 0. If,
for instance, ¢ = 0, the form of Equation [25] is different. For
methods of synthesizing digital controllers which are optimal in
some other sense, see references (1, 9).

For convenience, the time sequence of computations to be per-
formed during a cycle of ¢ = 3 sampling periods is listed as fol-
lows.
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Ek=N-2
(1) Compute my-2 using [25]
(2) Compute éy-s using [23]
(3) Compute ﬁx_:_u_sing [24] B
(4) Compute ¢y-2mm(0), Gy-e(0), dy—am(0) using Equation
[19]
k=N-1
(1) Compute my-; using [25]
(2) Compute &y-; using [23]
(3) Compute My— using (24] N B
(4) Compute ¢y—1mm(0), py-mm(—1), dx—1*(0), Px—c(—1)
O v-1"(0), px-1m(—1), Py—2m(1) using Equation [19]
k=N
(1) Compute my using [25]
(2) Compute &y using [23]
(3) Compute My using (24] B N
(4) Compute yee( —1), pye(—2), py=(—1), @y —2) using
Equation [19]
(5) Compute ay(N), ax(N), b(N), bo(N) using [22]

Discussion

Rane L. Curn.® The author has presented with skill his pro-
posal for a self-optimizing control system. He has also covered
most of the limitations in both the theory and design of his ma-
chine. I will only mention perhaps one or two points that come
to mind.

On the first stage of the author’s procedure, measure the dy-
namic characteristics of the process, a difficulty would be met in
most real processes of the regulatory type. The proposed method
of determining the system characteristics is subject to error when
the existence of an error signal is due to load disturbances entering
between the control effort and the output. This error may be of
two types. The first is from poor “response’’ information in the
presence of noise, and is inherent in any method which does not
use process response information over a very long time. The
desire to malke the self-optimizing machine respond to changes in
process dynamics is anathema to obtaining a good measure of the
transfer function in the presence of noise. The second type of error
is inherent in all methods which determine process dynamics
while the process is on closed loop control. The noise circulates
in the loop and there exists a correlation between the noise com-
ponent of the output ¢(t), and the control effort m(¢).

The importance of the regulatory type of controller and the
difficulty of obtaining good process dynamics when it is in use sug-
gests a reason additional to that of the author as to why techno-
logical unemployment of control engineers will not result from this
machine.

The author’s use of n = 2, while a strict limitation, was, as the
author correctly stated, a matter of convenience and not an in-
herent limitation. It would be of interest if the author would
comment on the behavior of the machine described in his paper
when used with systems having incompatible transfer functions,
i.e., for processes for which Equation [25] does not represent the
optimum controller.

The well known “optimizing” controller for adjusting a set
point in order to maximize yield, profit, etc., introduces its own
disturbance as a ‘“tracer’” on system performance. This is
another possibility, in some cases, to computation suspension at’
low signal to noise ratios as in the author’s machine.

I agree with the author that this machine does ‘‘represent. . .
an advance. . . .in practicality over suggestions. . . .in the current
literature.” But I ask last the primary unanswered question:
Does it work?

3 Shell Development Company, Emeryville, Calif.




AuTHOR's CLOSURE

Before taking up in detail the questions raised in Dr. Curl’s
discussion, the author wishes to answer his last and most impor-
tant point, “Does it work?” The answer is, “Yes.”’

Dr. Curl’s remarks on difficulties of determining the process
transfer function amplify some of the matters discussed in the
section, Unsolved Questions. As in any method of measurement
based on statistical principles, the determination of the process
dynamics depends on obtaining a large number of data with
stationary statistical properties so that the effect of unwanted
influences acting on the system can be averaged out. If the
load disturbances have a nonzero mean value, then their effect on
the plant appears as a shift in the operating point. The compu-
tation procedure determines the linear system dynamics for
small deviations about this “phantom’’ operating point. Since
the computation of the transfer function ean take aceount of slow
changes, shifts in the mean value of the load disturbances do not
affect the operation of the system, provided that these shifts
oceur slowly relative to the sampling period. The accuracy of
computation of the transfer function depends on the effective
signal-to-noise ratio, that is, on the ratio of the mean-square value
of the control effort m(¢) required under normal operating con-
ditions to the mean-square value of the combined effect of load
disturbances and measurement noise. When this ratio is too
small, it may be improved by introdueing special “test signals’’
into the plant, or the operation of the transfer-function compu-
tation may be temporarily suspended until the signal-to-noise
ratio is improved.

The effect of circulating noise determines the maximum
aceuracy achievable by a self-optimizing system and can, in
general, only be determined experimentally. If the effect is too
large, more accurate instrumentation must be used. It should
be borne in mind also that since the controller of g self-optimizing
system is closely matched to the dynamics of the plant, any
errors due to circulating noise can be rapidly corrected. In
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other words, measurement noise is not amplified by the system.
By way of illustration, it may be pointed out that measure-
ments performed by the author using high-accuracy measuring
equipment support the foregoing remarks. The computation of
the transfer function of a crude third-order electrical analog (3
capacitors in cheap electronic circuity without voltage regula-
tion) yielded the following experimental results, over about 500
sampling points:
Largest time constant 7, 22 constant == 0.1 per cent
Next time constant 7,/3 22 constant = 1.0 per cent
Smallest time constant 7,/10 2 constant = 10 per cent

The high aceuracy with which the dominant time constant
71 can be determined is quite remarkable. The variation is only
slightly worse than the errors introduced by the measuring
process. On the other hand, the large error in the determination
of the smallest time constant is due to the combined effect of
amplifier noise, temperature transients, and so forth. From this
measurement, it may be concluded that the system may be
regarded as effectively second-order. Indeed, the system could
be controlled quite satisfactorily with a sampled-data controller
with a fixed, second-order program. Conclusive results con-
cerning the performance of the self-optimizing controller in an
actual plant installation cannot be given here.

In conclusion, the author does not share Dr. Curl’s pessimism
that the presence of noise problems makes 2 self-optimizing sys-
tem impractical. Probably the most serious practical difficulty
barring better process control at the present time is the unavaila-
bility of accurate data on process dynamics. This difficulty can
be circumvented in many cases by use of a self-optimizing con-
troller. The author may not be unduly optimistic in expressing
his feeling that (disregarding economic considerations) sufficient
theoretical and technological know-how exists already to bring
practical process control close to the best performance achievable
in the light of the limitations imposed by physical measuring
equipment.




