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In this paper the authors report on a practical applica-
tion of the quantitative methods which they have described 
previously (2, 6)3 in connection with process and control 
analysis. First, the properties of surge vessels are con-
sidered from a functional point of view. The influence on 
these properties of externally applied controls is next 
discussed. Proceeding from the simpler to the more 
involved, control systems of various types are introduced 
and applied to a vessel. The performance of each of these 
applied systems is separately examined and illustrated 
under significant assumed conditions. Considerable at-
tention is given to a definite method of control which in-
volves, as the master instrument, one having a propor-
tional-plus-floating characteristic, and which, it is felt, 
may justifiably be referred to as "automatic averaging 
control." 

I N T R O D U C T I O N 

A N ACCOUNT of the use of "automatic averaging control" 
/—\ as an operating technique in modern continuous processing 

was given recently in a paper (1) by J. B. McMahon. The 
present paper is devoted to a quantitative presentation of the 
mathematics underlying this interesting branch of automatic 
control. 

Dynamically, a surge vessel can be compared both to a shock 
absorber and to a flywheel. Fluid systems possessing such 
properties are supposed to absorb or release fluid at such times 
and in such a manner that violent changes in one or more of a 
group of related flows need not be accompanied by violent 
changes in another. 

In the case of a surge vessel to which fluid is continuously sup-
plied and from which fluid is continuously withdrawn, all flows 
pertaining to the vessel may be grouped into two sets—a summed 
"inflow" and a summed "outflow." When these two flows are 
exactly equal, the quantity of fluid stored in the vessel remains 
constant. In general, one of the flows will fluctuate and it will 
be desired to minimize the effect of such fluctuation on the other 
flow. For convenience it may be assumed that the inflow is the 
independently fluctuating quantity and that the outflow varies 
in some fashion as a result. The reverse circumstance is equally 
significant, but the two problems are basically analogous and the 
treatment of one will suffice. 

In the case of a tank holding liquid, which for the sake of 
conereteness will be considered as typical of all possibilities,4 the 
level at which the liquid stands is an indication of the quantity 
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stored up in the tank. Thus the three variables, i.e., inflow, level, 
and outflow, may be taken as completely descriptive of the 
dynamic state of the system. The behavior of any two of these 
variables definitely determines the behavior of the third. In un-
controlled surge vessels, the dynamic relationships between 
inflow and level, level and outflow, and inflow and outflow may 
have all variety of forms. When a definite relationship of the 
proper type is enforced between the level and the outflow by 
the application of automatic control, it will be shown that the ef-
ficienc}' of the surge vessel as a "shock absorber" can be increased 
to a remarkable extent. In such an application, it should not be 
considered that the level is being "controlled" in the conventional 
sense that a predetermined value of level is to be held to within 
close tolerances, nor indeed that the outflow is to be so controlled. 
In reality, the true objective of this type of automatic control is 
to maintain continuously an advantageous relationship between 
these two variables. 

Beginning with an uncontrolled vessel, having only "self-
regulation," the application of control is presented in stages lead-
ing up to the full automatic-averaging-control installation. 
Each stage is accompanied by an illustration showing results ob-
tainable in practical cases. Included in each figure is a diagram-
matic sketch of the particular physical system considered. In 
every case the system shown comprises a vessel with a flow line 
leading to the vessel and a flow line leading from the vessel. In-
dicating instruments are shown symbolically and are applied to 
the inflow, level, and outflow. The instrument applied to the 
inflow serves merely, in each instance, to give a continuous in-
dication of that variable, whereas in some of the cases the level 
or the outflow or both are controlled as well as measured; this is 
shown by replacement of the indicator by a controller. 

The nature of the relationships among inflow, level, outflow, 
and time, under cyclic disturbances, makes it appear necessary 
to resort to the somewhat intricate involvements of classical 
differential equations in order to develop explicit quantitative 
expressions for these relationships. However, an investigation 
into the possibilities offered by the symbolic forms of Heaviside's 
operational calculus discloses an uncanny applicability to these 
purposes. Thus, even though the details of the operational meth-
ods themselves are beyond the scope of the present paper, such 
methods have been employed in the analytical development. For 
the benefit of those interested in the formal mathematics, a con-
densed description of the operational procedure is given (in 
italics) in the text under its respective section. The final ex-
pressions which give the over-all relationships under cyclic 
conditions are included in the main body of the text, which is so 
arranged that complete continuity is not lost by the reader who 
omits the mathematical development. 

If the validity of the final expressions can be established either 
by inspection or by actual usage, it is by no means necessary that 
the actual user even be concerned with their origin or the manner 
of their development, except for the personal satisfaction he might 
derive from a familiarity with the details of the mathematical 
machinery. Oliver Heaviside himself expressed this attitude in 
his famous query: 

"Shall I refuse my dinner because I do not fully understand 
the process of digestion?" 
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A major purpose of this paper is that of demonstrating to the 
practical industrial engineer, such as those who are actually con-
fronted with averaging control problems, the extreme practicabil-
ity of some of these simplified formulas. The practical, economic 
value of the formulas cannot, perhaps, be fully appreciated except 
by numerical substitution. The astonishing character of soundly 
derived mathematical results was expressed by Heinrich Hertz: 

"One cannot escape the feeling that these mathematical 
formulas have an independent existence and an intelligence of 
their own; that they are wiser than we are; wiser even than their 
discoverers; that we get more out of them than was originally 
put into them." 

The formulas which describe the results under cyclic conditions, 
as presented in the text, contain only those factors which are 
necessary to a practical determination of the over-all response. 
They have been simplified by logical assumptions. Much of the 
complexity and unimportant detail has been eliminated and 
emphasis given to those factors which are or maj' be influential 
in actual industrial applications. 

Consideration of sine-wave disturbances leads to the appear-
ance of trigonometric functions in some of the mathematics. It 
is normal practice in much applied mathematics to express trigo-
nometric angles in radians. Conventional trigonometric tables, 
however, are compiled in terms of angular degrees. For this 
reason a departure is taken from normal practice, in that the 
final forms are made to appear as dimensionless ratios of an "angle 
whose tangent is something" to an angle of 90°, or as (tan - 1X) 
/90°. 

From the simplified general formulas, some exemplary nu-
merical results have been included in the figures. These results 
pertain only to the particular dimensions assumed for the surge 
vessel and to the particular nature and magnitude of the assumed 
disturbances. It is hoped, however, that these tabulations will 
serve to rationalize the complexities of the general problem. 

The following special nomenclature applies for the simplified 
text as well as for the formal mathematics. 

N O T A T I O N , D E F I N I T I O N S , A N D U N I T S 

V = level above an assumed base; feet above bottom of vessel 
V„ = normal or "desired" value of V 

b = proportional or throttling band of V, ft 
r = reset constant, units per min 

Q, = inflow to vessel (total), gpm 
Q = outflow from vessel (total), gpm 

Qm = 'AtQmin + Qmax) = lllid-Value of Q 
k = (Qmax — Qrain) = band in which <3 may be varied by 

controls, gpm 
d = diameter of vessel, assumed upright and cylindrical, ft 

A = capacity of vessel, gal per ft ( = 5.88 d-) 
R = resistance to outflow (linear), ft per gpm 

Re = b/k — equivalent "resistance" under control, ft per gpm 
I = time, min 
h = half-period of oscillation, min 

(X) ' = first derivative of X 
( X ) " = second derivative of X 

p = d/dt = differential operator 

N U M E R I C A L V A L U E S A S S U M E D C O N S T A N T I N A L L E X A M P L E S 

Vn = 5 ft (mid-value of allowable range of level variation) 
QmiD = 100 gpm 
Qmax = 300 gpm 

Qm = VMm.n + Qmax) = 200 gpm 
k = (Qmax — Qmin) = 200 gpm 
d = two values considered = 4.125 and 8.25 ft 
A = two values considered = 100 and 400 gal per ft 
h = two values considered = 10 and 20 min 

T E S T D I S T U R B A N C E S ( I N I N F L O W ) A P P L I E D F O R A L L M O D E S O F 

C O N T R O L 

To represent a wide variety of disturbances, the inflow is as-
sumed to undergo three different sorts of variation, as follows: 
So-Called Condition (a) 

In a state of perfect balance, the inflow is assumed to change 
suddenly from a constant value of 200 gpm to a new constant 
value of 250 gpm 

This condition can be expressed mathematically as follows: 

Q, = 200' for (I < 0), Q, = 250 for (< > 0) 

So-Called Condition (6i) 

The inflow is assumed to be engaged in a permanent sine-
wave oscillation about a value of 200 gpm at an amplitude of 50 
gpm and with a half-period of 10 min. 

This condition can be expressed mathematically as follows: 

Q, = 200 + 50 sin 180 in t_ 
10 

for (—«> < t < a>) 

So-Called Condition (62) 

Same as condition (6i) but with a half period of 20 min. 
This condition can be expressed mathematically as follows 

Q. = 200 + 50 sin 180' 
t_ 

20 
for (— <» < t < co) 

S I N G L E R E S I S T A N C E - C A P A C I T Y U N I T A S S U R G E V E S S E L ; S E L F -

R E G U L A T I O N 

An elemental'}' resistance-capacity system of the sort described 

CExrttTioN fal COJIOITIOM (B,) Codonityl Cb,i 

MOMCRICAL Soiuriofjs Ho EXPLICIT CONTROL R = O OZS" -feet /(gal/mm) 
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TIME- fcOoHOAKltS 6 — 

F I G . 1 S I N G L E R E S I S T A N C E - C A P A C I T Y U N I T AS S U R G E V E S S E L ; 
S E L F - R E G U L A T I O N 

in an earlier paper (2) bj' one of the authors can be considered in 
the role of a surge vessel. Fig. I6 shows such a system with indi-
cating instruments on inflow, level, and outflow. 

6 In the curves of Figs. 1 to S, full lines are for one capacity and 
dotted lines are for one quarter of the capacity (or one half of the 
diam). 
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Following the development in the earlier reference we may 
write 

0 0 ' = (Q, - Q)/A [l] 

V = RQ [2] 

The two following basic equations are obtainable by familiar 
methods from Equations [1] and [2] 

+ V = RQ, [3] 

AR(Q)' + Q = Q [4] 

Solutions, similar to those in the earlier paper (2), for the 
response of the level and the outflow, when the inflow is changed 
suddenly from a constant value of 200 gpm to a new constant 
value of 250 gpm, are shown by the curves under condition (a) 
of Fig. 1. The numerical equations given in the same figure, for 
the same assumed conditions, express the deviation of the level V 
from the normal value of V„ = 5 ft and the deviation of the out-
flow Q from Qm = 200 gpm. 

Operational methods can also be used for solutions of this sort 
and are especially useful when oscillatory disturbances are to be 
dealt with. Operational or symbolic calculus has been placed on 
a rigorous foundation and a number of excellent texts (3, 4, 5) are 

available which describe its application. From Equations [S ] and 
[4], the following equivalent operational expressions are directly 
deiived 

V = -— Q, [5] 

Q -

1 + ARp 

1 
1 + ARp 

.[6] 

R 

where 

V = V„ + 

Q = Qm + A. sin I 180 

„ s i n ^ 
l - T . 

h 

t —-T„ 

[7] 

[8] 

Ampl. of V 
Ampl. of Q, " \/T + G2 

G = nAR/h 

Lag of V versus Q. = (h/w) tan"1 (G) 

Ampl. of Q 1 
Ampl. of Q, ~~ V l + G2 

Lag of Q versus Q, = same as for V 

The equations expressing the values of V and Q under cyclic 
disturbances of the inflow must contain harmonic functions of 
time. These can be brought into the equations as sine functions 
of angular degrees. General forms for the equations of V and Q 
under the cyclic conditions (b,) and (62) may be written 

6 Time lag, as such, should not be given significance except in the 
case of sinusoidal oscillations, as here, or in the case of a pure time 
delay or distance-velocity lag (2). 

The expressions for use under cyclic conditions, which were 
developed as previously shown by operational methods, may be 
used to supply the following formulas for the new constants ap-
pearing in Equations [7] and [8]. 

Av = Ampl. of V = R X (Ampl. of Q.) 

- \ / T T G 2 

= level variation in feet 

. . . f n (Ampl. of Q.) .4 = Ampl. of Q = , 
V I + G2 

= outflow variation in gpm 

T„ = 7' = - — - = time in minutes by which cycles of 2 90 V and of Q lag behind the cycles of 
Q. 

The constant G depends upon the characteristics of the process 
and upon the half-period of the inflow oscillations. Its numerical 
value is given by 

G = 3.14 
AR 

h 

For a single sudden change in Q„ simple exponential solutions 
can be obtained directly from Equations [5] and [6] as well as from 
Equations [3] and [4). 

For steady sine-wave oscillations in the inflow, the amplitude 
and phase of the resxdling oscillations of level and outflow are obtain-
able by replacing p in the operators with the imaginary angular 
velocity (iv/h). Briefly, if the operator then becomes (u + iv), 
the relative amplitude is given by \/u2 + v- and the phase angle 
by tan~l(v/u), while the true6 lag in time units is •—(h/ir) tan-1 

(v/u). Thus for steady oscillations• in the infloiu the amplitude 
and lag response of the level and outflow can be obtained from Equa-
tions 15] and [S] and are summarized as follows: 

The quantities "Ampl. of V," "Ampl. of Q," and "Ampl. of Q," 
are the magnitudes of the maximum variation of these variables 
011 either side of their mean values, i.e., one half of their total 
variation. 

The results of numerical substitution in the general formulas, 
for the assumed conditions (61) and (62), are included in Fig. 1, 
together with the curves of their solutions plotted against time. 
These curves show that the level and the outflow oscillate exactly 
in phase with one another, but that they are out of phase with the 
inflow. 

The principal merit of this arrangement as a surge-absorbing 
system lies in its simplicity. Smoothing of the outflow versus the 
inflow is not impressive. The level can reach an eventual balance 
anywhere in the vessel, depending upon the average value of the 
inflow. 

I N D E P E N D E N T C O N T R O L O P T H E O U T F L O W 

In this case a flow controller is installed directly on the outflow, 
as illustrated in Fig. 2, and is assumed to be completely successful 
in maintaining this flow at a constant value. 

From the universally valid Equation [1] 

(vy = (Q.-QJ/A. .[9] 

Where the mean flow Qm is the constant value at which the out-
flow happens to be controlled. Equation [9] may be written as 
the indefinite integral 

V -I /™- QJdt 

which is equivalent to the statement that the level "integrates" 
the excess of the inflow over the controlled outflow, and does so in 
inverse proportion to the capacity of the vessel. 
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coMomof i (a ) cotfcxnort Cb, ) a y J o m o d ( b j ) 
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Q 
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IOO - CbfOSTAHT AT IOO COrtSTAfVr COrtSTAUT Outflow 
Q 

lals/min Hoo - _ -

TIME-axwiOAGltS 0 ) c— <•{<-> 

F I G . 2 L I M I T I N G C A S E ; I N D E P E N D E N T C O N T R O L O F O U T F L O W 

For a sudden sustained increase in the inflow Q, above QM, 
that is for condition (a), it is evident that the level assumes a 
constant rate of increase which depends upon the capacity A, as 
shown in Fig. 2. 

Operationally 

V = - . ( Q , - Q J . . [10] 

V = Vn +A, sin 

Q = Q, 

180' 
t-

•[7] 

in which 

together with curves of their time solutions. The behavior in 
this case under cyclic conditions (bi) and (62) represents the limit-
ing case of "perfect" averaging operation, based on oscillation of 
the inflow about a constant mean value. It is interesting to note, 
from the formulas for A, and T„ that the level variations are 
directly proportional to the period of the inflow variations 
and inversely proportional to the capacity or area of the vessel, 
and that the cycles of the level are exactly one-fourth period out 
of phase with the cycles of the inflow. This is evident also from 
the curves. 

With this type of control, perfect smoothing of the outflow 
with respect to the inflow is made inevitable by the application of 
the flow controller on the outflow, but no recognition is taken 
of the level, which will gradually rise or fall, even to limits, de-
pending upon the difference between the accumulated average 
of the inflow and the value at which the outflow is controlled. 

In practical application of this method, periodic manual re-
adjustment of the controlled outflow may in some cases be a 
satisfactory mode of operation, especially when the magnitude 
or the period of the oscillations encountered compares favorably 
with the size of the vessel. Such readjustment amounts to match-
ing the controlled outflow to the average of the inflow taken over 
considerable periods of time. The aim of automatic averaging 
control is to make such readjustment continuous and automatic, 
to approach as nearly as possible to perfect smoothing of the out-
flow versus the inflow, consistent with keeping the level con-
tinuously within the vessel. Returning the level to a predeter-
mined central value is also desirable as well, since this will per-
mit optimum absorption both of sustained changes and of sudden 
surges, irrespective of the direction in which these occur. 

I N D E P E N D E N T C O N T R O L O P T H E L E V E L 

Automatic control of a system involving only a single capacity 
unit can be carried out to any desired degree of effectiveness, 
even with types of control which in an operating sense may be 

In the case of continuous oscillation of the inflow Q„ under condi-
tions (61) and (bi), the level response may be found by direct integra-
tion or by the formal p = iir/h substitution already employed. Thus 
for sine-wave oscillations, we obtain the following response 

Ampl. of V h 
Ampl. of Q, ttA 

Lag of V versus Q, = (h/ir) tan - 1 (00) = h/2 

Q (Constant) 

* * * 

The general form of the equations for the cyclic conditions (61) 
and (62) are 

CONDITION ( a ) CG^OITIOM ( b , ) CONDITIO^ 

T\ \ w \/ 

TIME IM MINS TIME tM MlMS TIME Id MtNS 

A, = Ampl. of V = 0.318 - (Ampl. of Q.) 
A 

— level variation in feet 
h 

T„ = - = time in minutes by which the cycles of V lag behind 
cycles of Q, 

The results of numerical substitution in the general Equation 
[7], for the assumed conditions (61) and (63), are given in Fig. 2 

}>|uMEZlCAL. >SOLUTlOf>)S IfJOEPEhlOE/VT Co^TEOC OF LEVEL 

A-ftMd1 CONOlTIOfi ( a > CONDITION ( b , ) CONDITION ( b ^ - ) 

INFLOW 

qils/m.. , 

•ZOO 0 ) 
250 a->o) ZOO 4 fO Sin zoo4 s-osin[iso 

Level 
V 

- f eet 

_ SUBSTAMTIALLY CD ŜTAMT AT 5" j COt*STANT CONSTANT Level 
V 

- f eet koo - -
OUTFLOW 

Q 
<J.U/m,n 

100 - SIMILAR TO Q s SAME AS Q s SAME AS Qs 
OUTFLOW 

Q 
<J.U/m,n koo -

TIME- BoodOAElES 

F I G . 3 L I M I T I N G C A B E ; I N D E P E N D E N T C O N T R O L O F L E V E L 

called elementary. The problem is one exclusively of rapid 
measurement and manipulation. In Fig. 3 such a control system 
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is assumed to be applied to maintain a constant level in the vessel. 
The level controller itself might have, for example, a proportional 
characteristic with an extremely narrow proportional or throttling 
band. In this sense the equations which are given later for pro-
portional control may be considered to apply here, but with an 
extremely small value of proportional band b. Whatever means 
seem most proper actually to achieve a substantially constant 
level, we are for the moment concerned only with the effect on the 
outflow. As shown graphically in Fig. 3, this degree of level 
control is acquired at the cost of full variation of the outflow. 
The latter flow essentially duplicates the inflow, even to the point 
of being in phase with it. 

From the point of view of automatic averaging control this 
example represents a limiting case, opposite to that of Fig. 2, 
and is brought in only as a logical step in the development. 

Theoretically, the magnitude of the outflow variations is in-
dependent of the area of the vessel. Only the practical impossi-
bility of reducing the proportional band precisely to zero, or 
some imperfection in the operation of the controls, could cause 
any reduction in the amplitude of the outflow cycles. 

C A S C A D E D C O N T R O L 

The term "cascaded control" appears appropriate to describe 
in general a system of control whereby the operating means of 
one controller automatically adjusts the control-point setting of 
one or more succeeding controllers, intermediate between the 
initial or master controller and the final controlling means or 
manipulated variable. In averaging level control, this would cor-
respond to allowing the operating means of the level controller 
to "set the control point of" a special flow controller on the out-
flow. 

Such inclusion of an auxiliary flow controller for the outflow 
has the advantage that it eliminates any direct dependence of 
the outflow upon the behavior of the level, or on external-pressure 
relationships such as changes in the drop across the outlet valve. 
It also eliminates similar dependence of the outflow upon what-
ever pressure may be impressed on the liquid surface, as shown 
symbolically in the last two figures of the paper. This method is 
a recognized procedure in control technique. 

In the remaining examples it will be assumed, as in the earlier 
paper (6), that the cascaded method of control is employed. 
Thus, it is assumed that the "control point" of the flow controller 
on the outflow is set throughout its operating range by the 
operating means of the level controller, and that the relationship 
thus formed is uniform within that range. 

P R O P O R T I O N A L C O N T R O L O P T H E L E V E L , C A S C A D E D 

If the level instrument is assumed to be a proportional con-
troller, as described in paper (6), we may write the controller 
equation as a relationship between the level V and the outflow 
Q, or as 

Q~Qm = (k/b){V ~ y „ ) [11] 

where (Qmin < Q < Qmax), and in which it is assumed that the 
proportional band b is so located that V„ is in the middle of that 
band. 

Combining Equation [1] for the "process" with Equation [11] 
for the controller and making the substitution 

R, = b/k [12] 

gives for the level and the outflow, respectively 

AR,(V-Vny + ( F - F „ ) =Re(Qa-QJ [13] 

AR,(Q — QJ' + (Q — QJ = (Q,-QJ [14] 

Equations [13] and [14] are similar to Equations [3] and [4] for 

the resistance-capacity unit. This fact is no coincidence as the 
systems are directly analogous. The ratio (b/k) for automatic 
control is analogous to the resistance R under self-regulation and 
may be thought of as an equivalent "resistance" R„ so desig-
nated in the nomenclature in order to emphasize the analogy. 

The response of the level and the outflow to the sudden sus-
tained change in the inflow is obtained precisely as in the analo-
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gous case under self-regulation. The results are shown under 
condition (a) in Fig. 4. 

In operational form, Equations [iS] and [H\ become 

R. 
V - V n = 

Q — Qm = 

1 + AR„p 

1 

1 + ARep 

0Q.-QJ• 

(<Q.-QJ• 

[15] 

[16] 

Equations [15] and [16] are similar to Equations [5] and [0] 
for the resistance-capacity unit, The attenuation, or amplitude 
ratio, and the lag involved in the response of the level and outflow to 
continuous oscillation of the inflow are also given by analogous ex-
pressions and may be written 

R. 

where 

Ampl. of V 
Ampl. of Q, s/\ 4- (?2 

(G = t ARJh) 

Lag of V versus Q3 = (h/ir) tan - 1 (GO 

Ampl. of Q _ 1 

Ampl. of Q, -\/ l + G2 

Lag of Q versus Q, = same as for V 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/fluidsengineering/article-pdf/63/7/589/6968856/589_1.pdf by N

TN
U

 U
niversitets Biblioteket user on 06 January 2025



594 TRANSACTIONS OF THE A.S.M.E. OCTOBER, 1941 

General equations for V and Q under cyclic conditions (61) and 
(62) may again be written 

V - Vn + A, sin 

Q =Qm +A, sin 180 i n [ l 8 0 » ^ ] . 

• [7] 

• [8] 

The numerical values of the constants in these equations may be 
determined from the following formulas 

AV = Ampl. of V = 
R. X (Ampl. of Q.) 

V l + G2 

= level variation in feet 

A . - A m p L o f Q - ^ f c ^ 
V I + G 2 

= outflow variation in gpm 

h tan -1 (G) 
TV = TT = - — — = time in minutes by which cycles of 2 90° 

in which 
V and of Q lag behind cycles of Q, 

O - 8 . 1 4 ^ 

For the numerical examples considered 

RE = 0.005 6 and 

G = 0.0157 
h 

Results of numerical substitution in the general equations, for 
the assumed conditions (61) and (&2), are included in Fig. 4, to-
gether with curves of the time solutions. 

It is evident that the remarks already made on the performance 
of the simple resistance-capacity system, Fig. 1, apply almost 
equally well here. The use of the proportional type of level 
controller in this application merely imparts to the vessel a 
definite, mechanical, self-regulating property similar to that of the 
resistance-capacity system shown in Fig. 1, while the use of 
"cascaded control," as described, prevents alteration, by pressure 
changes in any form, of the already limited averaging character-
istics of the system. In the case illustrated in Fig. 4, the propor-
tional or throttling band is made equal to the full allowable 
range of the level. For proportional bands narrower than this 
value, the smoothing of the outflow is even less effective. Wider 
proportional bands, on the other hand, would not permit balance 
of the level within the allowable range, or within the confines of 
the vessel, for all values of inflow, even under steady conditions. 

When the range of the instrument is so selected that it fits the 
allowable range of level variation, a proportional band having a 
width equal to this range, such as that chosen in Fig. 4, is gener-
ally referred to as a "100 per cent throttling range." From the 
viewpoint of averaging control this so-called 100 per cent 
throttling controller has a very limited ability toward smoothing 
of the outflow. Some of the limitations are shown by the follow-
ing observations: (a) If the outlet resistance R of Fig. 1 had been 
located 5 ft below the bottom of the vessel, the value of R to 
give the same level in balance would have been equal to that of 
R, in Fig. 4, and the results of self-regulation and of the 100 per 
cent throttling control would have been identical. (&) If, in such 
a system as is illustrated in Fig. 1, a constant static pressure of 
approximately 2 psi had been exerted on the liquid surface, the 

results of self-regulation and those of 100 per cent throttling 
control would have been identical, (c) The square-root char-
acteristics of an ordinary valve, which could replace the re-
sistance R in the system of Fig. 1, and which could be adjusted 
to give a level of 5 ft for a flow of 200 gpm, would provide the 
same averaging effect at the center of the level range as does the 
100 per cent throttling control, although it would give less 
averaging at levels below the center and more above it. 

Methods (o) and (6) of the preceding paragraph could be ex-
tended to increase the averaging effect throughout the allow-
able level range. This would be accomplished, however, at the 
cost of limitation of the range of inflow variations which would 
permit the level to remain within the allowable range. Adjust-
ment of the outflow resistance in connection with any of methods 
(a) to (c) permits establishment of the value of the level for a 
given outflow and a given pressure drop across the resistance but 
does not permit adjustment of the range of level variation for a 
given variation of the inflow. The really practical advantages 
in using an automatic control instrument with adjustable pro-
portional or throttling band lie in the fact that the level variation 
may be retained within a definite range for any specified varia-
tion in the outflow, and regardless of the pressure drops existing 
across the valve. The maximum capacity of the valve is the only 
factor limiting the range of outflow variation. 

P E O P O R T I O N A I / - P L T J 8 - F L O A T I N G C O N T R O L O F T H E L E V E L , 

C A S C A D E D 

For automatic averaging control, it is evident that there is a 
real advantage in the use of a level controller which controls to a 
single ultimate value rather than to within a band of values, 
i.e., in the use of a controller which has point-stability rather than 
band-stability alone. The severity of the corrective measures set 
up by such a controller may be moderated without simultane-
ously spreading out the band in which the level can ultimately 
balance, as is the case with the proportional form of instrument. 
The proportional-plus-floating type of controller, known to be a 
versatile form in other applications, fits this requirement and will 
be considered in an installation similar to that of the preceding 
section. The level controller, this time with a proportional-plus-
floating characteristic, is again assumed to operate by setting the 
"control point" of a controller on the outflow. 

As described in the authors' previous paper (6) and for the 
present installation, the proportional-plus-floating controller 
may be identified by the following equation 

( Q ) ' = Wb)KV— Vn)' + r ( 7 - F „ ) ] . • [17] 

in which k and b have already occurred, and in which r is the so-
called reset constant. 

It should be pointed out that the proportional or throttling 
band 6, as defined in paper (6), need not exist in an entirely tangi-
ble form. The expressed value of this band may be considerably 
greater than the full available range of the level, in which case 
the controls act as though the full extent of such a band were 
really effective. This places no permanent restriction on the 
performance of the proportional-plus-floating controller since in 
operation this band is automatically moved in such a way that 
the level returns to the normal value for balanced conditions. 

To determine the properties of the system under this form of 
control, we may combine Equation [17] for the controller with 
the "process" Equation [1]. By methods described in detail in 
the earlier paper (6), one obtains for the level V 

AR,(V - v„y + (V - vny + r(v - 7„) 

= fl.(Q,-Qm)'....[ 181 

and for the outflow Q 
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AR.(Q - QJ" + (Q — QJ' + R(Q - QJ 

= HQ. - QJ + (Q. — QM)'— [19] 

From the integration of these differential equations, we may 
determine the response of the level V and of the outflow Q when 
sudden changes occur in the inflow Q,. The curves under condi-
tion (a) in Figs. 5, 6, 7, and 8 represent the response of the 
level and the outflow following the usual sudden disturbance, 
when various magnitudes of proportional band b and reset 
constant r are assumed for the proportional-plus-floating level 

F I G . 8 P R O P O R T I O N A L - P L U S - F L O A T I N G L E V E L C O N T R O L L E R ; C A S E I V 

controller. The numerical equations from which these curves 
were computed are included in the figures. 

In operational form, Equations [18] and [19] become 

R.V •V. = 

Q-QM = 

r + p + AR,p2 

r + p 
r + v + AR.pi 

(Q.-QJ-

(Q.-QJ-

[20] 
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When a sudden change occurs in the inflow Q„ Che response of 
the level V and of the outflow Q may be found by classical methods 
from Equations [^S] and [79] or by standard operational methods 
from Equations [SO] and [81], Under equilibrium conditions, 
after all transients have faded out and all derivatives have become 
zero, it is evident that V = Vn and that Q = Q,. Thus the level 
will ultimately balance out at the desired value for all of the values 
of flow. 

As before, the response under permanently oscillatory conditions 
may be found by setting p = iir/h in the operators of Equations 
[SO] and [SI]. For level and outflow, respectively, the operators 
yield the following oomplex expressions, where G = irARt/h and 
H = rh/w 

[1 — i(G — H)]R, 
1 + (G — Hy 

1 — H(G — H) — iG 
1 + (G — HY 

From these complex expressions, the amplitude ratios and the 
relative time lags may be found by methods already described. This 
information is completely descriptive of the behavior of level and 
outflow when the inflow is assumed to follow a given permanent 
harmonic oscillation about a constant mean value. Thus we find 
the following 

Arapl. of V R. 
Ampl. of Q, V l + ((? — HY 

Lag of V versus Qs = (/t/V) tan"1 (<? — II) 
- u 

Ampl. of Q + H2 

Ampl. of Q, T l + (G—HY 

Lag of Q versus Q. = (Ii/t) tan"1 [<?/( 1 — GH + W)j 
* * * 

As in the previous cases, the general equations for V and Q 
under the cyclic conditions (&i) and (b2) may be written 

V = Vn +A, sin 

Q = Qm + A, sin 

[71 

.[8] 

Av = Ampl. of V = 
V l + (G — H)2 

= level variation in feet 

A , = Ampl. of Q = (Ampl. of Q„) X 
+ H2 

(G — HY 

T. = 

h tan"1 [ g / ( l — GIi + #2)] 
2 90° 

AR. 

Compared to those for the case of proportional control, these 
equations have become more complex, due to the inclusion of the 
reset constant r, but it is interesting to note the nature of the 
changes and the fact that the equations will reduce to those for 
proportional control on substituting r = 0. An important differ-
ence is that the cycles of the level and those of the outflow are no 
longer in phase with one another. 

In Figs. 5 through 8 are shown numerical and graphical ex-
amples of the application of the general formulas obtained. Four 
different cases are taken, covering four different sets of adjust-
ments incorporated in the proportional-plus-floating level con-
troller. Otherwise the conditions assumed are the same as were 
those for the previously considered system. The values of 
(effective) proportional band 6 and of reset constant r assigned in 
the various cases are given in tabular form as follows: 

Proportional band 
<i>) 

Case I (Fig. 5) 30 Ft (300 per cent) 
Case II (Fig. 6) 30 Ft (300 per cent) 
Case III (Fig. 7) 60 Ft (600 per cent) 
Case IV (Fig. 8) 60 Ft (600 per cent) 

Reset constant 
<0 

0.15 Inverse min 
0.05 Inverse min 
0.15 Inverse min 
0.025 Inverse min 

The equations for the constants in these equations are again 
taken from the operational development, as outlined, and can be 
given as 

R. X (Ampl. of Qs) 

= outflow variation in gpm 

htan - 1 (G — H) . . . , , 
T. time in minutes by which cycles of V v o on° 

* JU lag behind cycles of Q, 

= time in minutes by which 
cycles of Q lag behind 
C3'des of Q, 

in which G = 3.14 and II = 0.318r/i 
h 

With proportional bands wider than 100 per cent, it is neces-
sary to consider the effect of sustained changes in the inflow. 
Figs. 5 through 8, under condition (a), show the response of the 
level and the outflow following a sudden sustained change in the 
inflow. After such a change, the duty of the installation is to 
bring the outflow as smoothly as possible into equality with the 
new inflow, and also to return the level to the normal value. 
The more time allowed for these operations, the better the duties 
of smoothing may be performed. Shown in the figures are the 
initial portions of the level and outflow transients following the 
instantaneous disturbance of condition (a). 

In case III, Fig. 7, and in case IV, Fig. 8, the size of the sud-
den change in the inflow is such that (for the low-capacity vessel) 
the level reaches its high limit in about I6V2 and I2V2 min, re-
spectively. The practical design of proportional-plus-floating 
control instruments, capable of utilizing such excessive magni-
tudes of proportional band, must include mechanical means for 
decreasing the effective "throttling range" in the immediate re-
gion of the high and low limits. Details of such mechanism 
and of its operation are discussed in the paper (1) by J. B. Mc-
Mahon. 

It is readily evident that the general equations for the cyclic 
conditions can be put to practical use in determining many of the 
important relationships in actual averaging-control installations. 
The substitution of known factors permits concrete determination 
of other factors or relationships between them, as in connection 
with (a) vessel areas to give desired smoothing of the outflow for 
various types of instruments; (6) periods and magnitudes of os-
cillation which could be tolerated in existing installations; (c) 
economic considerations of instrument investment against in-
creased equipment costs, etc. 

The particular process and conditions selected for considera-
tion in this paper illustrate many of the common circumstances 
met with in commercial installations. Much general information 
can be gained by exploring the hidden "intelligence" of these 
equations. Space will only permit us a brief discussion of one 
series of observations which appears to shed light on the nature of 
desirable instrument adjustments. 

Under case I, Fig. 5, the response for the smaller vessel and 
the longer period of oscillation shows that both the level and 
the outflow variations have been increased over those for the 100 
per cent throttling control, Fig. 4, although the proportional 
band has been trebled. Furthermore, the level variation has been 
increased beyond that of Fig. 2, where the outflow was perfectly 
constant. This circumstance is a result of the fact that the reset 
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constant is too great for the existing conditions of vessel area and 
period of oscillation. 

In case II, Fig. 6, the reset constant is made one third of its 
value in case I, Fig. 5, but the proportional band is kept at the 
same value. For the same vessel area and period of oscillation, 
a marked improvement is discernible in the variation of the out­
flow. Some reduction is also made in the level variation, al­
though this variation is still in excess of that for the ideal case of 
Fig. 2. 

In case III, Fig. 7, the proportional band is increased to 6 
times that used in the 100 per cent throttling control, Fig. 4, 
or to twice that used in cases I and II, Figs. 5 and 6, but the 
same reset constant is applied as in case I. A still further reduc­
tion in outflow variation is obtained, but the variation of the 
level is greater than that of case II, Fig. 6. This means that the 
reset constant could still be reduced. 

In case IV, Fig. 8, the same proportional band is used as in 
case III, Fig. 7, but the reset constant is reduced to one sixth 
that of case III, Fig. 7, or to one half that of case II, Fig. 6. 
Another marked improvement is evident in the smoothing of the 
outflow variations, as well as a further reduction in those of 
the level. It is interesting to observe, in this case, for both of the 
vessel areas and for both periods of inflow oscillation, how 
closely the magnitude and lag of the level variations have ap­
proached those seen under the ideal case of constant outflow, 
Fig. 2. 

Even this brief introductory treatment and these few observa­
tions seem to have established certain of the characteristic proper­
ties of the proportional band and reset adjustments in connec­
tion with automatic averaging control. The authors feel that a 
considerable amount of investigation remains to be done in this 
direction and that such work could be of tremendous practical 
value to those in industry who are faced with averaging-control 
problems. We have only endeavored to point out a possible ap­
proach. Even from the quantitative material presented here, 
tables could be compiled or charts prepared which would facili­
tate the engineering of installations. 
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