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Chapter 1

Introduction

The progressive deterioration of water resources and the large amount of
polluted water generated in industrialized societies gives Wastewater Treat-
ment (WWT) processes a fundamental importance in the water prevention.
New guidelines and regulations (the Directive 91/271/CEE referring to the
European countries) enforce the adoption of specific qualility indexes for the
treated wastewater. Taking into account current environmental problems,
it is not unrealistic to believe that this trend will continue. At the same
time loads on existing plants are expected to increase due to growth of ur-
ban areas. This situation demands more efficient treatment procedures for
wastewater.

Inside a biological wastewater treatment plant, the Activated Sludge Process
(ASP) is the most commonly used technology to remove organic pollutant
from wastewater, even if the process was developed in the early 20th cen-
tury. This is because it is the most cost-effective, it is very flexible (it can
be adapted to any kind of wastewater), it is reliable and has the capacity
of producing high quality effluent. For all these reasons, our interest dur-
ing this work will focus on demonstrating that a better understanding and
management of the process can lead to benefits for the overall wastewater
treatment plant.

1.1 Motivations

Several motivations may be found to explain why we are interested in acti-
vated sludge processes. We can classify them in two main categories:

• Environmental motivation. Because water is something special and
we want to preserve it!
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• Economic motivations. Because a wastewater treatment plant can be
considered as the largest industry in terms of raw material treated.
Therefore, we want such an industry to work always near to its max-
imum efficiency. Mostly because, in some countries recent evolution
of the legislation concerning surface or groundwater use is such that
total recycling of process water has become an issue.

In such a context, the wastewater treatment becomes part of a production
process where the quality control of the effluent is very important since poor
operation of the treatment process can lead to important production losses
and environemental problems.

1.2 Objectives

In order to explain the objectives of this work, we consider the building
blocks idea exposed by Vanrolleghem in [112]. The objective is to introduce
benefits to the ASP improving each block in the general control loop struc-
ture in Figure 1.1.

The first block represents the process. The knowledge about the physical
and biochemical behavior of the activated sludge process can be summa-
rized in a proper process model. In order to better understand the process
itself and also to obtain a good platform to explore future developments on
the process, as an improve we should develop an accurate process model.

The second block regards sensors. Until very recently this was one of the
main bottlenecks in improving wastewater treatment automation. We can
think to improve this block introducing soft-sensors, that use the available
(few) measures to reconstruct the time evolution of the unmeasured vari-
ables.

The third block is the control system. This block can be improved by defin-
ing an adequate control structure before designing the controller itself. With
simple considerations on the control structure design, we might obtain the
controlled variables that lead to an optimal plant operation.

The last block represents the actuators which implement the controller out-
puts on the plant. A limited choice of control actuators is available: most
of them are valves, pumps and so on. As a matter of fact, we can improve
this block only improving the controller itself.



1.3 Thesis Overview 5

Figure 1.1: General control loop structure

1.3 Thesis Overview

This thesis deals with modelling and control of activated sludge processes
and the associated issues. The thesis contains two main parts: the first part
deals with the controlled variables selection on the activated sludge process,
and the second part deals with model order reduction and software sensor
design. Referring to Section 1.2, the third block is considered in the first
part, and the second block in the second part. The first block is analyzed
in the introductory Chapter 2.

A brief overview of each Chapter is given below.
In Chapter 2 the ASP model is illustrated. Since the process is essen-
tially composed of two main units (a bioreactor and a settler linked to-
gether with a recycle line), a model for each unit is defined. An overall
process model is developed by using the commercial software GPS-XTM,
and MatlabTM/SimulinkTM.

In Chapter 3 the idea of self-optimizing control and controlled variable
selection is illustrated.

In Chapter 4, the controller structure design is applied to an ASP. On this
chapter is also based a paper presented at the ICheaP-7 Conference in May
2005 ([80], [81]).

In Chapter 5, the model reduction techniques are exposed focusing on
those that are applied to obtain a reduced order model of the ASP.

In Chapter 6 some applications with existing models found in literature
are exposed. Furthermore, reduced models based on modal and balanced
reduction techniques are proposed.
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In Chapter 7 the reduced models are used in the design of different software
sensor: a Luenbergher-like observer, an extend Kalman filter and a nonlinear
geometric observer. Several papers were based on this subject [71], [110],
[82], [79].



Chapter 2

ASP Models and Simulations

In this Chapter we describe the mathematical modelling approach used to
represent an Activated Sludge Process (ASP) by means of computer simula-
tions. The ASP is the most widely used biological treatment of liquid waste,
essentially because it is a cheap technology which can be adapted to any
kind of wastewater. In the activated sludge process, a bacterial biomass sus-
pension (the activated sludge) is responsible for the removal of pollutants.
Depending on the design and the specific application, an activated sludge
wastewater treatment plant can achieve biological nitrogen removal and bi-
ological phosphorus removal, plus the removal of organic carbon substances.
Many different activated sludge process configurations have evolved during
the years: Jeppsson [52] provides an exhaustive review on the historical evo-
lution of the activated sludge process. In this Chapter and also in our entire
work the traditional ASP configuration, involving a bioreactor followed by
a settler with recycle, is considered.

This Chapter is organized as follows. In Section 2.1 a brief description of
the activated sludge process is given, and because we consider only nitrogen
removal phenomena an explanation of that process is also given (Section
2.1.1). This provides the basis to understand the process model formu-
lation for the bioreactor part, and the secondary setter part. Since, the
biological reactor (Section 2.2.1) and the settler tank (Section 2.2.2) are
interacting, because of the recycle flow, Section 2.2.3 shows how to inte-
grate the two units in the activated sludge process. The overall goal of this
Chapter is to implement a computer simulation of this biological process.
To achieve this two different approache are taken: the first one employs a
commercial software, the GPS-XTM(Section 2.3.1), and the second one uses
MatlabTM/SimulinkTM(Section 2.3.2).
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2.1 The Activated Sludge Process

In Figure 2.1 the basic layout for the considered activated sludge process
is shown: from the secondary settler, the sludge is partially recirculated to
the bioreactor (Returned Activated Sludge, RAS) and partially wasted as
excess sludge (Waste Activated Sludge, WAS). The ASP is a biological pro-
cess in which microorganisms oxidize and mineralize organic matter. The
microorganisms in the activated sludge are mainly bacteria, which can be
found also in the raw wastewater incoming into the plant. The composition
and the species depend not only on the influent wastewater but also on the
design and operation of the wastewater treatment plant.

Figure 2.1: Simple configuration for the activated sludge process

Bacteria constantly need energy in order to grow and to support essential
life activities. Growing cells utilize substrate and nutrients located outside
the cell membrane for growth and energy in a process. Oxygen is used by
microorganisms to oxidize organic matter. Some bacteria can use oxygen
either as dissolved oxygen or not: these bacteria are called heterotrophs.
They represent the major part of bacteria in activated sludge and use or-
ganic carbon in the form of small organic molecules as substrate. Other
essential bacteria for the activated sludge process are autotrophs. They can
growth only with dissolved oxygen and use inorganic carbon as substrate.
To maintain the microbiological population, sludge from the settler is re-
circulated to the aerated tank. The bacteria growth and particulate inert
matter is removed from the process as waste sludge.

In order to schematically show the biological process renewal, we refer to
Figure 2.2 [68]. Organic matter enters the plant in several different forms
and is converted to other forms by biological processes. Firstly, the hy-
drolysis process transforms larger organic matter into more easily accessible
molecules (readily biodegradable matter). The biomass growth rate depends
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on many variables, such as the amount of biomass, substrate, temperature,
pH, etc. During the microorganisms decay, biologically inert (nonbiodegrad-
able matter) is produced: this is also present in the incoming wastewater
and such matter remains unaffected through the process to be collected and
removed in the settler.

Figure 2.2: Biological process renewal scheme

2.1.1 Biological Nitrogen Removal

Nitrogen appears in wastewater in several forms e.g., as free and ionized
ammonia (NH3 and NH+

4 ), nitrate (NO−

3 ), nitrite (NO−

2 ) and as organic
compounds. The different forms constitute the total nitrogen content. Al-
though nitrogen is an essential nutrient for biological growth and is one
of the main constituents in all living organism, an excessive presence of it
in the effluent wastewater should be avoided for several reasons. Both be-
cause ammonia is toxic for aquatic organisms such as fishes and because as
nitrate, it can produce an excessive oxygen consumption in the receiving
water. Being nitrogen a nutrient, aquatic plants can also growth ”without”
limit when its level is so high to cause eutotrophic phenomena.

When untreated wastewater arrives to the plant, most nitrogen is present in
the ammonia form, which can be removed in a two-step procedure. In the
first step ammonia is oxidized to nitrate in aerobic conditions, this process is
called nitrification and can be described by the following simplified chemical
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reacting scheme:

NH+
4 + 1.5O2 → NO−

2 +H2O + 2H+ (2.1)

NO−

2 + 0.5O2 → NO−

3 (2.2)

That is, the ammonia is firstly oxidized by nitrite and then to nitrate. The
bacteria involved in these reactions require oxygen to perform the process.

The nitrates are then converted to nitrogen by denitrification. This process
occurs in anoxic environment: i.e., oxygen is mainly present as nitrate, and
the bacteria responsible for it ”respire” oxygen as nitrate instead of dissolved
oxygen. The following simplified reaction scheme shows the basic process:

2NO−

3 + 2H+ → N2 +H2O + 2.5O2

By nitrification and denitrification, nitrogen is removed from wastewater
biologically. This means that anoxic zones are necessary for denitrification,
whereas aerobic zones are necessary for nitrification. Anoxic zones can be
placed either at the beginning of the tank (pre-denitrification) or at the
end of the process (post-denitrification). During this work, an anoxic zone
followed by an aerobic zone is considered (Figure 2.1).

2.2 Modelling ASP

As reported in the previous section, the activated sludge process is composed
of two main units: a biological reactor and a settler. In this section the
models employed for the simulation are illustrated.

2.2.1 Bioreactor Model

There are several models describing the biological process in the activated
sludge plant, the developments in the family proposed by the International
Water Association (IWA) represent a major contribute:

• ASM1, the Activated Sludge Process Model No.1 [43] can be con-
sidered as the reference model since this model triggered the general
acceptance of the biological process modelling. ASM1 was primarily
developed to describe the removal of organic compounds and nitro-
gen with simultaneous consumption of oxygen and nitrate as electron
acceptor. The model, furthermore, aims at yielding a good descrip-
tion of the sludge production. COD (Chemical Oxygen Demand) was
adopted as the measure of the concentration of organic matter.
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• ASM2, the Activated Sludge Process Model No.2 [41] extends the
capabilities of the ASM1 to the description of bio-phosphorus.

• ASM2d, the Activated Sludge Process Model No.2d [42] is built on
the ASM2 model adding the denitrifying activity of PAOs1 to allow a
better description of the dynamics of phosphate and nitrate.

• ASM3, the Activated Sludge Process Model No.3 [36] was also devel-
oped for biological nitrogen removal, with basically the same goal as
the ASM1. The major difference between the ASM1 and the ASM3
models is that the latter recognizes the importance of storage polymers
in the heterotrophic activated sludge conversion.

In this work the adopted model is the ASM1, which will be briefly explained
in this section. In Appendix A a complete Petersen Matrix for the ASM1
model is reported. For a full description of the model, the orginal IWA
report [43] should be consulted. Generally speaking, the model consists of
13 components or state variables (Table 2.1) involved in 8 reactions (Table
2.2).

State Variables

as mentioned, the ASM1 model allows us to describe phenomena of organic
matter and nitrogen removal. In fact, the main classification in the model
state variables is in organic matter, expressed in terms of COD, and nitro-
gen compounds (Table 2.1).

The organic matter is further divided into biodegradable COD (SS and XS),
nonbiodegradable COD (SI and XI) and active biomass (XBH and XBA).
The readily biodegradable substrate is assumed to be made up of simple
soluble molecules that can be easily absorbed by the organisms and metab-
olized for energy and synthesis. In contrast, slowly biodegradable substrate
consists of relatively complex molecules that require enzymatic breakdown
prior to absorption and utilization. Nonbiodegradable organic matter is bi-
ologically inert and passes through the system without change in form. It
can be soluble (SI) which leaves the process at the same concentration as it
enters and particulate (XI), becoming enmeshed in the activated sludge and
leaving the system mainly as the wastage flowrate. Moreover, the biomass is
divided into heterotrophic (XBH ), and autotrophic biomass (XBA). As an
extra component XP is included to take into account the inert particulate
arising from cell decay.

1Polyphosphate Accumulating Organisms
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State Variable ASM1 Notation

Soluble inert organic matter SI gCOD/m3

Readily biodegradable substrate SS gCOD/m3

Particulate inert organic matter XI gCOD/m3

Slowly biodegradable substrate XS gCOD/m3

Active heterotrophic biomass XBH gCOD/m3

Active autotrophic biomass XBA gCOD/m3

Part. prod. from biomass decay XP gCOD/m3

Dissolved Oxygen SO gO2/m
3

Nitrite and Nitrate Nitrogen SNO gN/m3

Free and Ionized Ammonia SNH gN/m3

Soluble biodegr. organic N SND gN/m3

Part. biodegr. organic N XND gN/m3

Alkalinity SALK Molar units

Table 2.1: ASM1 State Variables

As for the organic part, nitrogenous matter can be divided into two cate-
gories: nonbiodegradable and biodegradable. With respect to the biodegrad-
able part, the particulate portion is associated to the nonbiodegradable
particulate COD. The soluble portion is usually negligible and is not incor-
porated into the model. The biodegradable matter is divided into free and
ionized ammonia (SNH), soluble organic nitrogen (SND), and particulate
organic nitrogen (XND). The last is hydrolyzed to soluble organic nitro-
gen in parallel with the hydrolysis of slowly biodegradable organic matter,
whereas, the soluble organic nitrogen is acted by heterotrophic material and
converted into ammonia. For the sake of simplicity, the autotrophic conver-
sion of ammonia to nitrate is considered to be a single step process which
requires oxygen. This means that a unique state variable (SNO) represents
nitrate/nitrogen compounds in the activated sludge system.

Furthermore, one variable is included to represent the dissolved oxygen con-
sumption in the activated sludge system, SO. Even if inclusion of alkalinity,
SALK , in the conversion process is not essential, its inclusion in the model
is also desiderable because it provides information whereby undue changes
in pH can be predicted.

The state variables included in the ASM1 are the fundamental components
that act upon the process, but they are not always measurable or inter-
pretable in many practical applications. Therefore, some composite vari-
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ables can be calculated from the state variables in order to combine them
into forms that are typically measured in reality, such as COD (Chemical
Oxygen Demand), TSS (Total Suspended Solids) and TN (Total Nitrogen),
as reported below:

COD =SI + SS +XI +XS +XBH +XBA +XP [gCOD/m3]

TSS =0.75(XS +XP +XI) + 0.9(XBH +XBA) [gSS/m3]

TN =SNO + SNH + SND +XND + iXB(XBH +XBA)

+ iXP (XP +XI) [gN/m3]

(2.3)

The conversion coefficients 0.75 [gSS/gCOD] for the inert and particu-
late material and 0.9 [gSS/gCOD] for the heterotrophic and autotrophic
biomass, have been proposed in [43] and also reported in [54]. The param-
eters iXB and iXP [gN/gCOD] are reported in Table 2.3.

ASM1 Processes

Two types of microorganisms carry out the reactions: heterotrophs and
autotrophs. Here, we briefly describe the different mechanisms (Table 2.2)
incorporated in the ASM1.

• The aerobic growth of heterotrophs occurs at expense of soluble sub-
strate utilizing oxygen and results in a production of heterotrophic
biomass. The growth is modelled using Monod kinetics, which are as-
sumed to be subject to double nutrient limitation their rate depending
on the concentration of both SS and SO. This process is, generally,
the main contributor to the production of new biomass and removal
of COD. Ammonia is used as nitrogen source for synthesis and is in-
corporated into the cell mass.

• The anoxic growth of heterotrophs occurs in absence of dissolved oxy-
gen with nitrate as the terminal electron acceptor, with SS the sub-
strate and resulting in heterotrophs biomass. The same Monod kinet-
ics used in the aerobic growth are applied, except that the maximum
rate of substrate is less under anoxic conditions. For this reason, the
kinetic rate expression is multiplied by a factor ηg < 1. Ammonia
serves as nitrogen source for cell synthesis.

• In aerobic growth of autotrophs, SNH serves as the energy source for
growth of the nitrifiers, resulting in autotrophic cell mass and nitrate
nitrogen as products. This process is associated to the oxygen demand
and once again the growth rate is modelled using Monod kinetics.
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• The decay of heterotrophs is modelled on the death-regeneration ap-
proach proposed by Dold et al. [25]. The organisms die at a certain
rate and a portion of the material is considered to be nonbiodegrad-
able adding up to the XP fraction. The remainder adds up to XS .
Organic nitrogen associated with XS becomes available as particulate
organic nitrogen.

• The decay of autotrophs takes exactly the same modelling approach
as the decay of the heterotrophs.

• The ammonification of soluble organic nitrogen regards the conver-
sion of SND into SNH by a first order process mediated by active
heterotrophs.

• In the hydrolysis of entrapped organics, slowly biodegradable substrate
trapped in the sludge mass is broken down, producing SS for the
organisms to growth. The process is modelled on the basis of reaction
kinetics and occurs in aerobic and anoxic environments. The rate
of hydrolysis is reduced under anoxic conditions compared to aerobic
conditions by a factor ηh < 1.

• In the hydrolysis of entrapped organic nitrogen, XND is broken down
to soluble organic nitrogen at a rate defined by the hydrolysis reaction
for entrapped organics.

Process Basic Reaction

Aerobic growth of heterotrophs SS + SO + SNH → XBH

Anoxic growth of heterotrophs SS + SNO + SNH → XBH

Aerobic growth of autotrophs SO + SNH → XBA + SO

Decay of heterotrophs XBH → XP +XS +XND

Decay of autotrophs XBA → XP +XS +XND

Ammonification of soluble organic N SND → SNH

Hydrolysis of entrapped organics XS → SS

Hydrolysis of entrapped organic N XND → SND

Table 2.2: ASM1 Basic Processes

It should be noted that SI andXI are not included in any conversion process.
Nevertheless they must be considered because important to the performance
of the process, being included in the COD computation.
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As useful feature in the ASM1 model, we refer to the introduction of the
switching functions concept that allows to turn process rate equations on
and off as environmental conditions are changed. This was particularly nec-
essary for processes that depend upon the type of electron acceptor present.
For example, the bacteria that are responsible for nitrification are capa-
ble to grow only under aerobic conditions and their rate of growth falls
to zero as the dissolved oxygen concentration approaches zero (regardless
to the concentration of their energy yielding substrate). This is modelled
in the ASM1 by including an oxygen switch in the process rate equations.
Whenever the aerobic conditions need to be modelled, the oxygen switching
function adopted is:

SO

KOH + SO

where small value of KOH (explained in the Table 2.3) implies that the value
of the switching function is near unity for moderate dissolved oxygen con-
centrations and decreases to zero as the oxygen approaches zero. Similarly,
processes which occur only when dissolved oxygen is absent may be turned
on by a switching function in the form:

KOH

KOH + SO

The coefficient KOH has the same value as in the expression for aerobic
growth so that as the aerobic growth declines, the anoxic growth increases.

Parameters

In Table 2.3 the kinetic and stoichiometric parameters are reported. The pa-
rameters selection of a mathematical model is known as model calibration,
and as consequence of high interdependence of the state variables, trou-
blesome nonlinearities, lacking identifiably and verifiability, the calibration
of the model can be difficult and laborious. The calibration task becomes
very hard especially because the data collectable from wastewater treatment
plants are generally very sparse and not always reliable.

2.2.2 Secondary Settler Model

Activated sludge plants transform organic matter into biomass. The effec-
tive operation of the process requires the biomass to be removed from the
liquid stream (in the secondary settler) prior to being discharged in the re-
ceiving waters. The sedimentation of the particles in the liquor is achieved
by gravity along with the density differences between the particles and the
liquid. Part of the biomass is purged, while a large fraction is returned
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ASM1 parameter Symbol 20 0C 10 0C Literature Unit

Heterotrophic Yield YH 0.67 0.67 0.38-0.75 g(cellCOD formed)/g(COD oxidized)

Autotrophic Yield YA 0.24 0.24 0.07-0.28 g(cellCOD formed)/g(N oxidized)

Fraction of biomass yielding part. prod. fP 0.08 0.08 − dimensionless

(Mass N)/(Mass COD) in biomass iXB 0.086 0.086 − gN/gCOD

(Mass N)/(Mass COD) prod. from biomass iXP 0.06 0.06 − gN/gCOD

Heterotrophic max. specific growth rate µH 6.0 3.0 0.6-13.2 1/d

Half Saturation Coeff. (hsc) for heterotrophs KSH 20.0 20.0 5-225 gCOD/m3

Oxygen hsc for heterotrophs KOH 0.20 0.20 0.01-0.20 gO2/m3

Nitrate hsc for heterotrophs KNO 0.50 0.50 0.10-0.50 gNO3 − N/m3

Heterotrophic decay rate bH 0.62 0.20 0.05-1.60 1/d

Correction factor for growth for het. ηg 0.80 0.80 0.60-1.0 dimensionless

Autotrophic max. specific growth rate µA 0.80 0.30 0.20-1.0 1/d

Ammonia hsc for autotrophs KNH 1.0 1.0 − gNH3 − N/m3

Oxygen hsc for autotrophs KOA 0.40 0.40 0.40-2.0 gO2/m3

Autotrophic decay rate bA 0.20 0.10 0.05-0.20 1/d

Ammonification rate ka 0.08 0.04 − m3/gCOD/d

Max. specific hydrolisys rate kh 3.0 1.0 − g(slowly biodegr.COD)/g(cellCOD)/d

Hsc for hydrolysis of slowly biodegr. sub. KX 0.03 0.01 − g(slowly biodegr.COD)/g(cellCOD)/d

Correction factor for anoxic hydrolysis ηh 0.40 0.40 − dimensionless
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to the biological reactor to maintain the appropriate substrate-to-biomass
ratio. This means that the settler combines functions of clarification and
thickening into one unit, as shown in Figure 2.3. In some cases the settler
model can perform more important tasks, such as sludge storage2 or reac-
tions3. However, those task have not been considered in this study.

Figure 2.3: Secondary settler processes

The complex behavior of the secondary settler and its importance for the
successful operation of the ASP have made the settling process a great chal-
lenge for researchers working in the field of mathematical modelling. For
that reason, different models are present in literature and a good review
on the different modelling approaches is given in [52]. To investigate the
functioning of the settler, the IWA report [26] should also be consulted.

For the secondary settler a one-dimensional model approach has been con-
sidered in this study. It is assumed that in the settler the profiles of hori-
zontal velocities are uniform and that horizontal gradients in concentration
are negligible. Consequently, only the processes in the vertical dimension
are modelled. The model considers only one state variable for the all partic-
ulate components (the solids concentration) and all the soluble state vari-
ables, leaving the settler without settling. In Figure 2.4, the simplified flow
scheme is reported. As we can note, at the inlet section the inflow and
the solids concentration are homogeneously spread over the horizontal cross
section, and the incoming solids are distribuited uniformly and instanta-
neously across the entire cross-sectional area. The flow is divided into a
downward flow towards the underflow outlet at the bottom, and an upward

2In the bottom part of the settler, sludge is stored for subsequent use under high waste
load conditions.

3Where additional aerobic conversion can occur or where denitrification may take place
[95].
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flow towards the effluent exit at the top.

Figure 2.4: Flow-scheme of 1D continuous-flow settling tank approach [26]

The used model is based on the Vitasovic’s approach [114] where the settler
is divided into a number of layers of constant thickness (as shown in Figure
2.5) and a solids balance is performed on each layers. The model is based on
the solid flux concept, which states that the solids entering the secondary
settler are carried to the bottom via the gravity settling flux (Js) and the
bulk flux (Jb). The first result from the sludge settling downward through
the water, whereas the second results from the water moving downward in
the settler owing to the underflow sludge recycle pump. The total flux is
given by:

J = Js + Jb (2.4)

Five different groups of layers are represented in the Vitasovic’s model de-
pending on their position relative to the feed point: the top layer, the
layers above the feed point, the feed layer, the layers below feed point and
the bottom layer. The solid flux due to bulk movement of the liquid is a
straightforward calculation based on the solids’ concentration times the liq-
uid bulk velocity, which may be either upward or downward depending on
its relative position to the feed layer. The solids flux is due to a specified
exponential settling function applicable to both hindered sedimentation and
flocculant sedimentation conditions. This means that several things need to
be considered for the settler. Of course, we write the mass balances for each
layer, but we also consider the solid fluxes between them and the general
upward and downward flows.
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The solids flux due to the bulk movement of the liquid is also straightforward
to asses, being equal to the product of the solids concentration, X, and the
bulk velocity of the liquid. The velocity can be downward (vdn) or upward
(vup) depending on the position of the layer with respect to the feed point:

vdn =
Qu

A
=
Qr +Qw

A

vup =
Qe

A

(2.5)

where A is the settler cross-sectional area, Qu is the under flowrate (with
Qr and Qw as recycled and wasted flowrates, respectively) and Qe is the
effluent flowrate.

Figure 2.5: Layered settler model

The solids flux, due to gravity settling of the solids particles, is given as
the product of the concentration, X and the settling velocity of the solids
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particles, vs. The determination of an appropriate settling velocity is indis-
pensable to model the secondary settler. Several models have been proposed
relating vs to the solids concentration either by a power function or more of-
ten by an exponential function of X. In the Vesilind expression vs = v0e

−cX

the constants v0 (the maximum settling velocity) and c (a model parame-
ter) need to be calibrated individually for each layer. Moreover, Cho et al.
[18] derived their settling function from the analytical description of flow in
porous media; they also give an exstensive review and comparison between
different models in their paper.

In this work, the considered settling velocity is the double exponential ve-
locity expression proposed by Takács et al. [107], that can be computed for
each layer j as follows:

vsj = v0e
−rh(Xj−Xmin) − v0e

−rp(Xj−Xmin) [m/d]

0 ≤ vsj ≤ v
′

0

(2.6)

where:

• v0 is the maximum theoretical settling velocity in [m/d];

• v
′

0 is the maximum practical settling velocity in [m/d];

• rh is the settling parameter characteristic of the hindered settling zone,
in [m3/d];

• rp is the settling parameter characteristic of low solids concentrations,
expressed in [m3/d];

• Xmin = fnsXin is the minimum attainable suspended solids concen-
tration, in [gSS/m3], with Xin is the mixed liquor solids entering the
settler and fns is the non settleable fraction of Xin.

The expression allows to represent both thickening and clarification phe-
nomena, since the term v0e

−rh(xj−Xmin) reflects the settling velocity of the
large flocculating particles and the term v0e

−rp(xj−Xmin) takes into account
the smaller settling particles velocity. Once, the velocities have been defined
the solids mass balances around each layers come straightforward.

In this approach also the number of layers becomes an important parameter,
especially when diffusion phenomena are considered: for instance, Jepps-
son and Diehl [53] recommended a model with 30-50 layers for diffusion.
However, the introduction of a diffusion term changes the ordinary differen-
tial equations to partial differential equations, increasing the computational
complexity. In fact, we found that for our purpose a 10 layers Tackas model
gives a good representation of the settler behavior.
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2.2.3 Coupling Bioreactor and Secondary Settler

A significant problem in the evaluation of the activated sludge process is
the difficulty to separating the dynamics of the biological reactor from the
settler, because of the recycle flow [23]. From a modelling point of view,
the components of the wastewater are described differently for the biolog-
ical reactor and the secondary settler. The ASM1 is based on 13 types of
components: the settler model only considers the total concentrations of the
particulate and soluble material (which leaves the settler without settling).
Therefore, all particulate components of the ASM1 are lumped into a single
variable X, when entering the settler and the reversed process is performed
at the outlets. A problem with this amalgamation arises from the differ-
ent units used in the ASM1 and the settler model. In the settler, the unit
for describing the material is g(SS)/m3. In the ASM1, the density unit
of all organic material is g(COD)/m3 and the overall fraction of nitrogen
is gN/m3. The particulate material is affected by gravity and the true
mass for all components must be known. The conversion coefficients for
the inert particulate and the slowly biodegradable material and also for the
heterotrophic and autotrophic biomass are reported in the TSS expression
2.3.

It should be noted that the particulate biodegradable organic nitrogen,
XND [gN/m3], should not be included in the transformation into X even if
it is modelled as a particulate material in the ASM1 model. This is because
it is a subset of the other particulate components and is already included
in their concentration [43].

No conversion factors are needed for the soluble components, since they only
follow the water flows and no biological reactions are assumed to occur in
the settler.

2.3 Simulating ASP

The acquired knowledge about the activated sludge process can now be used
to implement an appropriate dynamical simulations of it. By using simu-
lations, we can study the effect of different environmental conditions, test
the system sensitivity to different parameters and apply different control
configurations and so on. Information about specific ASP simulators are
given by Olsson and Newell in [86] and also by Copp in [20].

From a practical stand point, a simulation can be obtained in different
ways either using commercial software or implementing the ASP model in
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programming environment like Matlab/Simulink. In the following of this
section a description of the two approaches used in this work is given.

2.3.1 Commercial Software

Specific commercial environments usually contain extended libraries of pre-
defined process models offering the representation of the whole wastewater
treatment plant. The process configuration to be simulated can be easily-
constructed by connecting process units blocks and pop-up windows allow
modifying the model parameters. Many examples of commercial simulators
exist. Among them we can list, for instance:

• WEST (Wastewater treatment plant Engines for Simulation and Train-
ing): an interactive dynamic simulator. It is developed mainly at the
University of Gent, Belgium and current information about the soft-
ware can be found on http://www.hemmis.com/.

• SIMBA (SIMulation programms für die Biologische Abwasserreini-
gung): developed at the Institut für Automation und Kommonika-
tion (IFAK) in Germany. It can be considered a custom made version
of Simulink for wastewater treatment applications. A more exten-
sively compend about the simulator can be found on http://simba.

ifak-md.de/simba/.

• EFOR is a stand-alone software package for the simulation of complete
wastewater treatment plant. It is developed mainly at the Danish
Technical University. The present progress can be found on http:

//www.dhisoftware.com/efor/.

GPS-XTM

We mainly want to focus on the GPS-X, since Version 4 has been exsten-
sively used in this work. GPS-X is a modular multi-purpose modelling en-
vironment for the simulation of municipal and industrial wastewater treat-
ment plant. It uses an advanced graphical user interface to facilitate dy-
namic modelling and simulation. It can virtually cover all of the unit pro-
cesses found in a wastewater treatment plant, including advanced nutrient
removal models, fixed-film operations, anaerobic reactors, secondary settler
and so on. More information about the current development in the software
can be found on the website: http://www.hydromantis.com/.

With regard to the bioreactor in the activated sludge process, the whole
ASM family is included in the GPS-X library. Furthermore, some advanced
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models are also available. For example, the mantis model reproduces the
ASM1 model with the following modifications:

• two additional growth process are introduced (one for the autotrophic
and one for the heterotrophic organisms) in order to represent the
growth of organisms during conditions of low ammonia and high ni-
trate;

• the kinetic parameters are temperature dependent;

• aerobic denitrification is introduced, according to the Munch et al.
modifications4 [83].

Moreover, the twostepmantis model allows to describe nitrification phe-
nomena by a two-step process, as represented in the reaction scheme in 2.1.
As a consequence, some modifications in the ASM1 model follow:

• The anoxic reactions are duplicated in order to consider also nitrite
as electron acceptor;

• Two more state variables are included: xbai as nitrite-producers and
xbaa, nitrate-producers;

• Hydrolysis of rapidly biodegradable substrate is also introduced.

As for the mantis model, the kinetic parameters are considered temperature
dependent.

With regard to the secondary settler model in the GPS-X library, several
models can be found both for the zero and the monodimensional, and for
the reactive and the nonreactive cases.

The GPS-X owns two important modules that have been very useful during
this work: the analyzer and the optimizer module. The former has been
used to conduct sensitivity analyses on our process layout. The objective
of a sensitivity analysis (in the context of simulation) is to determine the
sensitivity of the simulation model’s output variables to change in the input
parameters. The results of this analysis have been very helpful to setting up
the model parameters. Moreover, the optimization module has been used
to fit the model to experimental data and calibrate the model kinetic and
stoichiometric parameters. This allows us to achieve the best possible fit
between the model responses and measured data.

4The authors demonstrated that simultaneous nitrification (upon the sludge floc sur-
face) and denitrification (in the sludge floc bulk) can take place in the same reactor vessel
under identical overall operating conditions.
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2.3.2 MatlabTM/SimulinkTM

Matlab is a general high-level language for technical computing. It includes
a large library of predefined mathematical functions. Furthermore, it fea-
tures a family of specific toolboxes that extent the Matlab environment to
solve particular classes of problem (there are approximately 40 toolboxes
available).

Simulink is an add-on software product to Matlab for modelling, simulat-
ing and analyzing any type of dynamic system. Matlab and Simulink are
fully integrated, meaning that all functionalities of the Matlab toolboxes
are available in the Simulink environment as well. Simulink provides a
graphical user interface for building models as block diagrams and manip-
ulating these blocks dynamically. A large number of predefined building
blocks are included and it is easy to extend the functionality by customizing
blocks or creating new ones. The capabilities of Simulink may be further ex-
tended by using the S-functions (system functions), which can be written in
Matlab language, C++ or Fortran using predefined syntax. Consequently,
S-functions can be easily incorporated and a dynamical system can be de-
scribed as a mathematical set of equations instead of using predefined block
diagrams.

2.4 Case Study

In this entire work, we have considered an activated sludge process operated
at the TecnoCasic wastewater treatment plant located near Cagliari (Italy).

In the simulated case the wastewater treatment includes a mechanical treat-
ment to remove floating and settleable solids, then a biological treatment
with activated sludge for removal of nitrogen and organic pollutants, and
after that other operations such as sludge treatment and water chemical
treatment. The liquid waste collected derives from municipalities (30%)
and industries (70%).

The removal of nitrogen and organic matter is obtained with an ASP, where
a pre-nitrification (supplying a low air flow needed just for mixing purposes)
is obtained in the first half basin followed by a nitrification (with higher air
flow) in the last half. The aeration is obtained with fine pore air diffusers,
located at the bioreactor bottom. Two oxygen sensors located in the anoxic
and aerobic zone give the controller values to maintain the desired oxygen
set point by manipulating of the aeration supply. The TecnoCasic activated
sludge configuration is the same showed in Figure 2.1. In Figure 2.6a the
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aeration basis in showed, whereas the secondary settler is depicted in Figure
2.6b. The global process is considered isothermal (around 20 ◦C).

(a)

(b)

Figure 2.6: TecnoCasic ASP

The process layout has the following characteristic features:

• total biological volume (2000 m3), with an anoxic zone followed by an
aerobic zone. The aeration is obtained with fine pores diffuser on the
bottom of the basin;

• non-reactive secondary settler with a surface of 707 m2 and a depth
of 4 m;

• RAS recycle from the underflow of the secondary settler to the front
end of the plant at the constant flow rate of 7000 m3/d;

• WAS is pumped intermittently from the secondary settler underflow;

• DO saturation of 8.88 gO2/m3.

The simulation procedure involves simulations to steady state followed by
dynamic simulations using the data available from the TecnoCasic plant.
Data provided by the plant were the following:
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• Influent flow rates;

• Dissolved oxygen concentration in the basin;

• Daily COD and nitrogen (nitrite, nitrate, TKN, ammonia) concen-
trations in inflow and outflow streams available every two or three
days;

• Daily SVI (Sludge Volume Index ) data from the settler and suspended
solids (in inflow and outflow).

COD and nitrogen measurements were obtained off-line in the TecnoCasic
laboratory.

The starting point for any model development project is the description of
unit process objects that make up the plant as well as the flow path between
unit processes. This information is usually contained in the plant flowsheet.
The aim is to create a plant flowsheet in our software environment using
the above information about the process. Firstly, this is built choosing the
process units to be represented. In our case we have: a bioreactor and a
settler, but we also need an influent unit. The later one becomes necessary
in order to collect and transformate the data from the plant into state
variables for the bioreactor model.

2.4.1 ASP using the GPS-X

The model building with GPS-X implies the selection of the treatment units
from the system library. For each process units many different attributes
and characteristics that uniquely describe the object must be specified. For
this reason, physical parameters like the real dimension of the unit and
kinetic and stoichimetric parameters for the biological reactor have been
provided to the simulator. It should be also noted that the aeration basin
model can be represented with different configurations, and we have chosen
to represent it as a plug-flow tank, that consist (in the simulation environ-
ment) of 6 continuous stirred tank reactors in series. Other attributes like
the model type associated to each unit and the dissolved oxygen controller
in the aeration basin have been specified.

As a first attempt, the simulation procedure have been implemented using
the GPS-X software with the twostepmantis model for the biological reac-
tor. However, our final aim in using the commercial software was to have
a good reference to built ASM1 model in Matlab/Simulink. For this rea-
son also a simulation using the ASM1 model have been performed with the
GPS-X and the calibration procedure gave the model parameter values. The
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(a)

(b)

Figure 2.7: Activated sludge process in Simulink environment

analizer module has been used to make sensitivity analysis on the resulting
model in order to define the parameters (kinetic and stoichiometric) which
have a greater influence on the process. In conclusion, the optimization
procedure has been performed to obtain a calibrated model.

2.4.2 ASP using the Simulink

The required models describing the process in the biological reactor, in the
settler and also in the influent units have been implemented in the following
way. Firstly, the graphical user interface of Simulink has been used to build
the blocks and also the connection between them. Secondly, since there is
not model representing the activated sludge process, the Matlab language
has been used to build the models using a mathematical notation. They
were then incorporated into the Simulink environment by the S-functions.
There resulting final model is shown in Figure 2.7a and in Figure 2.7b. In
the former the activated sludge layout with influent, biological reactor and
settler models is shown, whereas the final masked system is reported in the
latter.

Some considerations were given before proceeding. Using the GPS-X envi-
ronment it was noted that data provided have to be related to the ASM1
state variables before implementing the model in Simulink environment.
This has been done considering the fractions reported in Appendix B, to



28 ASP Models and Simulations

design the influent model. Furthermore, the biological reactor has been
represented with different zones, in order to represent in some way the com-
ponents diffusion through the system. If has been tested with two zones
(one anoxic parts and one aerated part), with six parts (3+3) and eventu-
ally with ten (5+5) parts. It has been found that a good comprise between
CPU time consumtion and real improvement in the system representation is
obtained giving the aeration basin 3 zones for denitrification reactions and
3 zones for nitrification. Furthermore, since in the real plant the bioreactor
is only virtually divided between anoxic and aerobic part, we have assumed
that the last represents 2/3 of the total volume.

(a)

(b)

Figure 2.8: Dissolved oxygen controllers in Simulink environment

The dissolved oxygen controller have also been represented in Simulink en-
vironment and the resulting screenshot is reported in Figure 2.8a for the
anoxic part, and in Figure 2.8b for the aerobic one. It has been assumed
that only the central part is controlled in each bioreactor section. The PI
controller receives the error between the dissolved oxygen setpoint (given as
input data) and returns the corresponding airflow. The air flowrate value
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is then used, by each zone, to compute the oxygen mass transfer coefficient
according to the following relationship [45]:

KLa =
1333.3α η fO2

V SOst
Qair

where, 1333.3 is the unit conversion factor [gO2/m
3], α is the (wastewater

KLa to clean water KLa) ratio, η is the standard oxygen transfer coefficient,
fO2 is the fraction of oxygen in air (i.e., 0.21), V is the aeration volume
[m3], SOst is the saturated oxygen concentration [gO2/m

3] and Qair is the
air flowrate.

In Appendix B the used stoichiometric and kinetic parameter values for the
ASM1 are reported. Appenix B also reports the settler model parameter
values for the steady state simulation, whereas in the dynamic simulation
they are calculated as function of the SVI data collected from the real plant.

2.4.3 Simulation Results

In Figure 2.9, the comparison between simulation results and experimen-
tal data is shown. As we can note the agreement between the simulators
is rather good, whereas the agreement with the experimental data is not
always so high.

This is not surprising, in fact the data furnished from the plant are sampled
every two or three days with respect to the nitrogen compounds and these
demonstates not to be enough to calibrate the model especially the ammo-
nia concentration.

In Figure 2.9a, the effluent COD concentration is shown, as we can note
the agreement is good, even if some outliers are present. The off-line COD
experimental data are sampled once per day, this means that we assumed
that the influent COD concentration stays constant during the whole day.

The total suspended solids behavior is shown in Figure 2.9b, as we can note
the agreement is also in this case acceptable.

The nitrate/nitrite concentration (Figure 2.9c) shows a good tendency mo-
tions, even if it presents offset with the (few) experimental data. Figure
2.9d shows the ammonia behavior, we notice that a good agreement exists
between the two simulations. However, both of them suffer from the low
data accurancy.
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(a) (b)

(c) (d)

Figure 2.9: Main concentrations in the effluent flowrate [Experimental data
(triangle); GPS-X (dashed); Simulink (solid)]

.

In order to improve the simulation results a experimental campaign to col-
lect on-line data should be planed. However this is not the aim of this work
and for this reason the obtained behaviors are considered representative of
the real plant.
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In the following Chapters, the best operating conditions for the activated
sludge process will be defined. The aim is to demonstrate how, with sim-
ple considerations on the control structure design, the overall efficiency of
a wastewater treatment plant can be improved. Of course, one way to
improve efficiency could be to construct new and larger basins, but this is
expensive and often impossible since the land required may not be available.
A sustainable approach is the introduction of more advanced control and
operating systems. This is expected to reduce the need for larger volumes,
improve the effluent water quality, decrease the use of chemicals and save
energy and operational costs.

A suitable solution to the wastewater treatment plant is the development of
adequate information systems to control and supervise the process. How-
ever, a closer look at the current operation of wastewater treatment plant
reveals that automation is still minimal even if in the scientific community
and in process industries the importance of automation and control in these
processes has been recognized by almost 30 years [87].

Several reasons for this lack in wastewater treatment plant can be found: i)
the insight in the process is still marginal, ii) reliable technologies are still
unsatisfactory or not existing, iii) the possibilities to act on the process are
still inapt or insufficient and, most importantly, iv) wastewater treatment
plant is considered as a non-profit industry. Automation has been consid-
ered costly and has not been part of the process design. For this reason, the
following Chapters deal with the definition of an adequate control structure
design focusing on minimizing operational costs in the plant, while keep-
ing it running optimally and satisfying the effluent requirement. This is
achieved according to the control structure design proposed by Skogestad
[98].

This part of the thesis is organized as follows. In Chapter 3, the basic theory
of the Skogestad’s procedure is described and some considerations are given
for the decentralized control structure approach. Chapter 4 illustrate the
proposed applications of such a technique to the WWT process.
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Chapter 3

Issues on Control Structure
Design

Generally speaking, the objective of a control system is to make the pro-
cess output behave in a desired way by manipulating the plant’s inputs.
Considering a full scale plant where different control possibilities exist, the
first question that must arise is: which variables should be measured, which
inputs should be manipulated and which link should be made between them?
(Foss, 1973, in [98]). An answer to this question is to select those variables
that ”optimize the process”. There may be many issues involved, and to
trade them off against each other in a systematic manner we will follow the
control structure design proposed by Skogestad [98]. The decision problem
is turned into an optimization problem, according to the original ideas pro-
posed by Morari et al. [78].

This concept is to mathematically define the quality of operation in terms
of a scalar cost function, J , to be minimized. The resuting dynamic opti-
mization problem is to be solved on-line. Of course, this is unrealistic but
we might try to achieve a satisfactory operation even with an acceptable
loss. In order to obtain this, we could select controlled variables in such a
way that acceptable operation with constant setpoints is obatined. Thus,
effectively turning the complex optimization problems into a single feedback
problem enforcing self-optimizing control (Section 3.1).

This procedure is divided in two main parts:

1. Top-Down Analysis: including the definition of the operational ob-
jectives, the identification of manipulates variables and degrees of free-
dom and controlled variables and considerations on degrees of freedom
available to meet them;
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2. Bottom-Up Design: of the controlled system, starting with the
stabilizing control layers.

Hereafter, we will refer to the first part as the Controlled Variables Selection
task as explained in Section 3.2 and Section 3.3 outlines the concept of
controllability. The second one will be the Controlled Design part. This
part refers to the practical applicability of an optimum policy by means of a
control system: obviously, this involves several tasks depending on the choice
made upon the controller. In Section 3.4 the possibility to decentralize the
controller is considered. Of course, for an exhaustive compend on self-
optimizing control, the Skogestad and Postlethwaite book [101] and also
the many articles of Skogestand and coworkers should be consulted. For
example, applications for controlled variables selection for reactor, separator
and recycle processes are reported in [65]; as well as for optimization and
selection of controlled variables for heat-integrated distillation columns [27],
and for the Tennessee-Eastman process [66].

3.1 Self-Optimizing Control

A typical control system is organized in a hierarchical structure (Figure 3.1)
with several layers each operating on a different time scale. In fact, it is
known that weeks are usually needed for scheduling, days are needed for site-
wide optimization, hours for local optimization, minutes and seconds for the
control layer (often further divided into two levels, with primary controlled
variables, supervisory control, and secondary controlled variables).
The layers are interconnected through the controlled variables: the setpoints
of the controlled variables are the (internal) variables that link two layers
in the control hierarchy. The upper layer computes the setpoint values to
be implemented by the lower layer. Thus, the selection of the controlled
outputs, for the control layer is usually related to the hierarchical structure
of the control system. The importance of selecting the right set of output
controlled outpus is clear: we want to find those variables that when kept
at constant setpoint, indirectly lead to the near optimal operation with ac-
ceptable loss. In this Section, a brief explanation on self-optimizing control
is given.

The term Self-Optimizing Control was proposed by Skogestad in 2000 [98]
because of its close relation to self-regulatory control which is when ac-
ceptable dynamic performances can be achieved with no control (i.e., with
constant manipulates variables). Correspondingly, self-optimizing control is
when acceptable economic performance can be achieved without continuous
optimization (i.e., with constant setpoints) when disturbances occur. In
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Figure 3.1: Typical control hierarchy in a chemical plant [101]

self-optimizing control, the structure resulting from an optimization prob-
lem is utilized to making structural decisions on the controlled variables.

Self-Optimizing Control is when acceptable operation (small loss) can be
achieved using constant setpoints for the controlled variables (without the
need to reoptimize when disturbances occur).

In [99] a simple and systematic procedure for control structure design is
proposed. The procedure starts from the definition of a cost function J to
be minimized and a loss expressed as the difference between the value of
the objective function using constant setpoints and the true optimal value of
the objective function. The procedure is twofold: firstly, we must define the
controlled variables (through top-down considerations) and then the control
design has to be defined. In the following of this Chapter is followed step
by step.
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3.2 Controlled Variables Selection

What should we control? As mentioned, the goal is to find the controlled
variables with good self-optimizing properties. To answer the question we
need to evaluate the loss imposed by keeping the selected controlled vari-
ables at constant setpoints. In order to determine the loss and the optimal
operation for the process, the operational objectives, the process constraints,
the degrees of freedom and the manipulated variables must be defined.

3.2.1 Operational objectives and constraints

The operational objectives must be clearly defined before attempting to de-
sign the control system; e.g., J may be selected as the operational cost.
Other objectives, such constraints, should be formulated distinguishing be-
tween transient and steady state constraints. The first ones can be violated
(during transient but not at steady-state or in average) and transient con-
straints must be violated neither in transient nor in steady state.

3.2.2 Degrees of freedom analysis and manipulated variables

The number of dynamic degrees of freedom Nm, is equal to the number of
manipulated variables. Nm is usually easily obtained by process insight as
the number of independent variables that can be manipulated by external
means. Typically, the number of adjustable valves plus other adjustable
electrical and mechanical variables is considered.
The optimization degrees of freedom Nopt, represents the degrees of freedom
that affect the operational cost J . In most cases, the cost depends on
steady-state only, and Nopt equals the number of steady-state degrees of
freedom Nss. It can be found by counting the manipulated variables and
subtracting the number of variables that need to be controlled except those
with no steady-state effect (N0y) plus the number of manipulated variables
with no steady-state effect (N0m):

Nss = Nopt = Nm − (N0m +N0y)

The number of unconstrained steady-state degrees of freedom Nopt,free, is
equal the number of steady-state degrees of freedom minus the number of
active constraints at the optimum:

Nopt,free = Nopt −Nactive (3.1)

The manipulated variables are given by the process design and the degrees
of freedom analysis should be used to check that there are enough degrees
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of freedom to meet the operational objectives both at steady-state and dy-
namically.

3.2.3 Optimal operation

The definition of the optimal operation for the process is a critical and
important task. In fact, the output resulting from the optimization problem
also represents the setpoints for the selected controlled variables. In general,
optimal operation for given disturbances d can be found by solving the
following problem:

min
x,u

∫ T

t=0
J(t,x,u,d)dt (3.2)

subject to:

ẋ = f(x0,u0,d)

g(x,u,d) ≤ 0

x|t=0 = x0, u|t=0 = u0,

y = fy(x,u,d)

(3.3)

where x ∈ R
nx is the vector of internal dependent variables (states), u ∈ R

nu

is the vector of manipulates variables, d ∈ R
nd is the vector of external dis-

turbances, y ∈ R
ny is the vector of the measurements and J is the scalar

objective function. The equality constraints vector f corresponds to the
model equations, while the inequality constraint vector g corresponds to
the process constraints. We also distinguish between active constraints and
inactive constraints. For a given operating point i, an active constraint j
satisfies gij = 0, whereas active constraints j satisfie gij < 0.

If we consider slowly varying disturbances, we can make a pseudo-steady
state assumption such that the dynamic optimization problem is reduced
to:

min
x,u

J(x,u,d) (3.4)

subject to:

f(x,u,d) = 0

g(x,u,d) ≤ 0 (3.5)

such that Jopt(d) = J(xopt(d),uopt(d),d). For the nominal case when d =
d0, the corresponding optimal setpoints are expressed as:

copt(d0) = c(xopt(d0),uopt(d0),d0)
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If we try to implement these setpoints and if there are implementation er-
rors in the optimally active constraints infeasibility arises. The truly optimal
constant setpoints are obtained by including all expected uncertainties (all
expected disturbances and implementation errors) and evaluating the ap-
propriate cost.

A first optimization is typically performed in order to find the value for the
variables u that when manipulated minimize the objective function J fulfill-
ing the set of constraints (f , g). The optimization problem can be regarded
as a stochastic optimization problem with disturbances that are effected by
random terms ∆d. In such a situation, the problem in expressions 3.4 and
3.5 becomes:

min
x,u

J(x,u,d)

f(x,u,d) = 0

g(x,u,d) ≤ 0

d = d0 + ∆d

(3.6)

with ∆d the random vector varying over the set Dd ⊂ R
nd . Conceptually,

this is the same approach proposed by Glemmestad et al. [32], with the
disturbances d partitioned into two contributors:

d = d0 + du

with d0 the nominal disturbance and du the deviation from d0 and the real
disturbance until the new optimization is carried out.
Furthermore, in order to avoid an excessive computational time, some as-
sumptions such as the magnitude of disturbances should be made. This
leads to the definition of a pre-specified (discrete) set of unknown distur-
bances and target satisfaction is demanded for such discrete set of distur-
bances.

The solution to optimization problem results in the definition of an opti-
mum value for the manipulated inputs u. At this point, we must define the
constant setpoint values. This can be done including the uncertainty related
to implement the optimal solution. Following Glemmestad et al. [32] and
also Govatsmark [35], we try to find setpoints cs that when implemented,
minimize an objective function J fulfilling a set of constraints (f , g, c) af-
fected by random parameters (∆d and ∆dc). Also in such a case, only a
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discrete set of disturbances is required:

min
x,u

J(x,u,d)

f(x,u,d) = 0

g(x,u,d) ≤ 0

c(x,u, d) = cs + dc

d = d0 + ∆d

dc = dc,0 + ∆dc

with cs ∈ R
nu and ∆d and ∆dc random vectors varying over the set

Dd ⊂ R
nd and Dc ⊂ R

nu , respectively.

In order to consider all the different situations and possibilities we can ex-
amine a similar deterministic problem. Instead of minimizing the expected
cost, we could minimize some mean weighted cost function:

Jw =

m
∑

i=0

ωiJ(xi,ui,di) (3.7)

where, the weights ωi correspond to a reasonable probability distribution for
all expected disturbances d ∈ D, with the set D representing the possible
values of the unknown disturbances. The problem might be infinite dimen-
sional, but we can simply consider a discrete number of operating points
(i = 0, . . . ,m, where 0 denotes the nominal point and m is the number of
”disturbed” operating points). The resulting robust optimization problem
has an optimal value found as solution to the following problem:

(xrobust,urobust, cs,robust) = arg[ min
xi,ui,cs

m
∑

i=0

wiJ(xi,ui, di)] (3.8)

subject to:

f(xi,ui, di) = 0

g(xi,ui, di) ≤ 0

c(xi,ui, di = cs + dc,i)

di = d0 + ∆di

dc,i = dc,0 + ∆dc,i

(3.9)

Since the solution of the optimization problem for each set of candidate
variables is needed, the robustly optimal setpoints (cs, robust) are found from
solving such a problem. Eventually, the loss for a given disturbance d and
implementation error dc with constant robust setpoints is expressed as:

L(d,dc, cs, robust) = Jc(cs, robust + dc,d) − Jopt(d) (3.10)
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3.2.4 Optimal Controlled Variables

In literature, a consistent number of methods and applications (exact local
method, [40], optimal linear combination of variables, [39], gradient function,
[13], null space method [1]) to select the optimal controlled variables can be
found; in this section only the methods applied to the activated sludge
process are reported and discussed.

Qualitative Rules

To approach the problem in a systematic manner, it is useful to consider
the reasons why a constant setpoint policy may not be optimal. Generally,
there are two reasons: namely, the presence of disturbances (d) and im-
plementation errors (ξ). This has some implications on the choice of the
controlled variables c. Following the self-optimizing philosophy, in order
to minimize the effect of disturbances, we want the optimal value of c to
remain constant. That is, the sensitivity of copt(J) to changes in d should
be as small as possible. In addition, the sensitivity of c to changes in the
independent variable u should be as large as possible to minimize the effect
of implementation errors. For these reasons, it follows that the controlled
variable c should have the following properties:

1. the optimal value of c should be insensitive to disturbances;

2. the controlled variable should be easy to measure and control;

3. the controlled variable should be sensitive to changes in the (steady-
state) degrees of freedom;

4. for cases with more than one unconstrained degree of freedom, the
selected controlled varables should be independent.

The first rule tends to minimize the effect of disturbances d. The second
rule reduces the magnitude of ξ. The last two minimize the effect of imple-
mentation error ξ.

Minimum singular value rule

The minimum singular value rule ([101], [40]) bases the selection of the
controlled variables on a scaled steady-state gain from the inputs to the
candidate outputs. It follows in a quite straightforward manner the quali-
tative rules reported in the previous section. In fact, for small disturbances
the above condition may be combined into a single rule: the minimum sin-
gular value rule. The rule can be summarized into the following statement:
select as candidates those sets of controlled outputs which correspond to
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the large minimum singular value of the appropriately scaled steady state
gain matrix G from u to c.
The use of the minimum singular value rule is summarized in the Skogestad
and Postlethwaite book [101]. For the sake of completeness it is reported in
the following:

1. From a (nonlinear) model compute the optimal parameters (inputs
and outputs) for various conditions (disturbances, operating points).

2. Obtain for each candidate output the variation in its optimal value,
vi = (yopt,max − yopt,min)/2.

3. Scale the candidate outputs such that for each output of the sum of
the magnitudes of vi and the control error ei is comparable.

4. Scale the inputs such that a unit deviation in each input its optimal
value has the same effect on the cost function J .

5. Select as candidate those sets of controlled outputs corresponding to
the large minimum singular value.

Brute Force Approach

This is not an optimal method to select the controlled variables, but it
provides a useful heuristic. It requires to evaluate the loss for alternative
sets of controlled variables. This is done by solving the nonlinear equations,
and evaluating the cost function J for various disturbances d and control
error e, assuming y = cs + e where the reference value cs is kept constant
[101]. Here, cs is usually selected as the optimal value for the nominal
disturbance, but this may not be the best choice and its value may also
be found by optimization (see Section 3.2.3). The set of controlled outputs
with smallest worst-case or average value is then preferred.

3.3 Controllability

The selected controlled variables can be analyzed to see if they are adequate
with respect to other criteria that may be relevant. The feasibility region
and the input-output controllability are such criteria. In fact, before start-
ing any controller design one should first determine how “easy” is the plant
to control.

Input-output controllability is the ability to achieve acceptable con-
trol performance. That is, to keep the output within specific bounds or
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displacements from their references, in spite of unknown but bounded vari-
ations (such as disturbances and plant changes) using available inputs and
variable measurements.

A plant is controllable if the existing controller yields to acceptable per-
formances for all expected plant variations. Input-output controllability
analysis is applied to a plant to find out what control performance can be
expected. The methods available for controllability analysis are largely qual-
itative. In most cases the simulation approach is used: i.e., performances
are assessed through exhaustive simulations.

3.4 Controller Design

Having established the optimal controlled variables, the next step is to find
a suitable control structure: that is, to find the actual implementation of
the optimum policy in the plant using such control scheme. If we need more
than one controlled variable, the problem becomes a multivariable problem
with several possible inputs and several possible outputs. One of the main
challenges when defining a controller for a multivariable plant is the choice
of a suitable control structure. A typical starting point is to use multi-
ple independent single-loop controllers with each controller using one input
variable to control a preassigned output variable. The selection requires to
quantify the significance of the interactions in the plant model. Primarily
because of the interactions among the process variables, multivariable sys-
tems cannot, in general, be treated like multiple independent single-loop
systems.

In this section the basic theory for a decentralized control structure is re-
ported.

3.4.1 Decentralized Control

Variables interaction is a common feature that generates difficulties to con-
trol a process variable without perturbing other variables of interest (one
input signal affecting several outputs signals). An important question arises
from the so called pairing problem of selecting which input signal to control
and which output signal to get the most efficient control with a low degree
of interaction. If interactions in the open loop are severe, a multivariable
control structure may be preferable. Nevertheless, if a sparse control struc-
ture can be used instead of a full multivariable one, much could be gained
in terms of reducing the controller complexity.
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A key issue is the way inputs and outputs should be paired. The most
significant result is the seminal work of Bristol [12], who developed the idea
of the Relative Gain Array , RGA. The RGA is a measure used in order to
decide a suitable input-output pairing when applying a decentralized con-
trol structure. After Bristol’s work was published, several researchers have
studied the properties and usage of the RGA: for instance, Skogestad and
Morari [100], have shown that plants with large RGA elements are very
sensitive to modelling errors. Other authors have proposed new measures
of interaction and criteria to choose a sensible input-output pairing. Among
them, the Nierderlinski Index [84], the Relative Interaction Array [120], the
Relative Dynamic Array [116] are examples of later refinements (see also
[75] and [94]).

The RGA often provides a limited knowledge about when to use multivari-
able controllers and gives no indication of how to choose the multivariable
structure. A different approach for investigating interactions using so called
participation matrices was introduced by Conley and Salgado [19]. In this
approach, the controllability and observability gramians of a system are
used in order to quantify the degree of interaction. This work was followed
by the paper of Wittenmark and Salgado [117] where the Hanken-norm of
the system is used to develop the so called Hankel Interaction Index Array .

3.4.1.1 Relative Gain Array

The RGA for a quadratic plant is given by:

RGA ≡ Λ(G(s)) = G(s) × (G(s)−1)T (3.11)

where G(s) is the transfer functions matrix and the operator × denotes
the Schur product (i.e., elementwise multiplication). Each element in the
RGA is defined as the open-loop gain divided by the gain between the same
variables when the other loops are controlled.

λij =
(∂yi/∂ui)uk 6=j

(∂yi/∂uj)yk 6=i

=

=
gain with all other loops open

gain with all other loops closed

(3.12)

For a 2 × 2 plant, a symmetric RGA matrix is obtained:

RGA =

(

λ11 λ12

λ21 λ22

)

=

(

λ11 1 − λ11

1 − λ11 λ11

)

Although, definition 3.12 is limited to steady-state (s = 0), expression 3.11
may be used to compute RGA as a function of frequency (s = jω) to
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obtain the dynamic RGA. In this work only the static steady-state RGA is
used. This is motivated by the slow time constants in the activated sludge
processes [91].
Depending on the value of λ, a number of different cases occur [85]:

• λij = 1, indicates that the open-loop gain between yi and uj is identi-
cal to the closed-loop gain. This is the ideal case when no interaction
between the loops is present. The pairing should be along the diagonal
(ui with yi and uj with yj).

• λij = 0, indicates that the open-loop gain between yi and uj is zero.
This is the same situation as above, except that now the suggested
pairing is along the anti-diagonal (pairing ui with yj and uj with yi

should be a good solution).

• 0 < λij < 1, indicates that the gain between yi and ui is smaller than
the closed-loop gain. This situation indicates that the gain increases
when the loops are closed: i.e., there is interaction and if possible
avoid pairing yi with uj, whenever λij = 0.5.

• λij > 1, indicates that the open-loop gain between yi and uj is larger
than the closed loop gain. This situation is also undesiderable. The
higher the value of λij , the greater the opposition uj experiences from
the other control loops in trying to control yi. Therefore, if possible,
do not pair mj with yi if λij takes a very large value.

• λij < 0, indicates that the open-loop and closed-loop gains between
yi and uj have opposite signs. This situation corresponds to the worst
case scenario because the sign of the gain changes when the loops are
closed (this is highly indesiderable).

To summarize we report the following rule: pair input and output variables
with positive RGA elements that are the closest to 1.0.

As previously said, the RGA may reveal information regarding possible
control difficulties and, thus, about the plant robustness. This kind of in-
formation is linked to the condition number of the system.

Letting G(s) the linear transfer function matrix of the plant, the condi-
tion number of the plant is the ratio between the maximum and minimum
singular values of G at any given frequency:

γ(G) =
σmax(G)

σmin(G)
(3.13)
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For MIMO linear systems, the gain at any frequencies is bounded by the
smallest and the largest singular values for the process transfer function
matrix G. Thus, if the condition number is large, this span will be large
and the process model will show high directionality: i.e., the actual gain
is highly dependent on the direction of the input vectors. The condition
number is scaling dependent and, thus, first a proper scaling of the model
is to be selected.

Niederlinski Index

Even through pairing rules are usually sufficient in most cases, it is often
recommended (especially with 3 × 3 and higher dimensional systems) to
use this rule in conjunction with the stability considerations provided by
the following theorem originally due to Niederlinski [84]: under closed-loop
conditions in all n loops, the multiloop system will be unstable for all pos-
sible values of controller parameter (i.e. it will be structurally monotonic
unstable), if the Niederlinski index N is negative. Formally:

N ,
|G(0)|

∏n
i=1 gij(0)

< 0 (3.14)

This result is both necessary and sufficient only for 2×2 systems. For higher
dimensional systems, it provides only sufficient conditions: i.e., if equation
3.14 holds then the system is definitely unstable. However, if equation 3.14
does not hold, the system may or may not be unstable: the stability will, in
this case, depend on the value taken by the controller parameters. Another
rule follows: any loop pairing is unacceptable if it leads to a control system
configuration whose Niederlinski index is negative.

3.4.1.2 Hankel Interaction Index Array

A measure based on gramians is able to handle the disadvantages of the
RGA matrix [19]. This measure is based upon the sum of the squared Han-
kel singular values for the elementary subsystems of the process. In 2002, a
modified version of the interaction measure was suggested by Wittenmark
and Salgado [117]. It only uses the Hankel norm of the subsystems and is
called the Hankel Interaction Index Array, HIIA.

In order to illustrate the gramians-based interaction measure, we start this
section the bare definition of gramians.
Consider a linear system expressed in a state space form:

ẋ = Ax + Bu

y = Cx + Du
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where A ∈ R
n × R

n, B ∈ R
n × R

m, C ∈ R
q × R

n and D ∈ R
q × R

n. The
controllability gramian Wc, and the observability gramian Wo associated
to the system satisfy the Lyapunov equations:

Wc − AWcA
T − BBT = 0

Wo − ATWoA− CTC = 0
(3.15)

The controllability and observability gramians of a system quantify the dif-
ficulty to control and observe the system state. For instance, the ranks of
the matrices are the dimensions of the controllable and the observable sub-
space, respectively.
As shown in [19] and in [117], it is possible to split the system given by
(A, B, C, D) into fundamentals subsystems (A, Bj, Ci, Dij), where Bj

denotes the j-th column in B, Ci is the i-th row in C and Dij is the (i, j)-
th element of D. For each subsystem the controllability and observability
gramians can be evaluated and the controllability and observability grami-
ans for the whole system are represented by the sum for the all subsystems.
Both gramians depend on the choice of the state-space realization.

Denoting λ1, λ2, . . . , λn (i = 1, 2, . . . , n) the eigenvalues of WcWo the
system Hankel singular values σH

i are expressed as:

σH
i (G) =

√

λi (3.16)

where the conventional inequality σH
i ≥ σH

i+1 ≥ 0 holds. In [117], it is also
shown that the Hankel norm of G given in 3.16 can also be interpreted as
a gain between the past inputs and the future outputs. The Hankel norm
of a system with transfer function matrix, G, is defined as:

‖G‖H =
√

λmax(WcWo) = σH
1 (3.17)

showing that the Hankel norm is thus the maximum Hankel singular value.
The measure is invariant with respect to the state-space realization is, there-
fore, a well suited combination of the controllability and observability mea-
sures. If the Hankel norm is calculated for each fundamental subsystem and
arranged in a matrix Σ̄H given by:

[Σ̄H ]ij = ‖Gij‖H (3.18)

the matrix can be used as an interaction measure. In [117] a normalized
version of equation 3.18 is proposed:

[ΣH ]ij =
‖Gij‖H

∑

kl‖Gkl‖H
(3.19)
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In the HIIA the larger is the ij-th element the larger is the impact on the
corresponding input-output pairing. If the intention is to use a decentralized
controller, the HIIA can be used and interpreted in the same way as the
RGA.
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Chapter 4

Controlled Variables
Selection for an ASP

From a control engineering point of view, the activated sludge process is a
complex topic for several reasons. First of all, the process is time varying
in terms of steady state behavior: i.e., it is a biological process where tem-
perature, composition of the influent wastewater and amount of biomass on
flow vary with time. Furthermore, the WWT has different dynamics with
constants ranging from seconds to days [5]. For example, the response to
changes in air flowrate or chemical dosage is nearly instantaneous (seconds),
while dissolved oxygen or pumping control affects the process in minutes.
The distribution of sludge is effective in hours. The sludge age control to
support adequate organisms has to be considered in terms of days.

In such a context, the main objectives of a global wastewater treatment
plant control are:

• maintaining liquid and sludge inventory controller;

• maintaining required effluent quality;

• disturbances rejection;

• efficient operation and reduction costs.

The task for the plant operator and global plant strategy is to reduce oper-
ational costs maintain sludge and liquid inventory and reject disturbances.
That is, in order to run a plant economically operation costs such as pump-
ing energy and aeration energy should be minimized. At the same time,
the discharge concentrations to recipients should be kept at low level. Min-
imizing the operational costs and at the same time treating the wastewater
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properly may lead to conflicting goals. In other words, a proper operation
in a wastewater treatment plant can be translated in a constrained opti-
mization problem.

In literature several works about the optimization problem of an activated
sludge processes can be found. For instance, Chachuat in his PhD thesis
[16] and in [17] have investigated the optimal sequence of aeration and non-
aeration times in a sequencing activated sludge bioreactor. Samuelsson et
al. [92] showed how with an appropriate nitrate cost function, the optimum
cost can be reached with respect to the effluent legislation requirements. In
Gillot et al. [31] an objective cost function is defined in order to standardize
a cost calculation procedure integrating both investment, fixed and variable
operating costs. In addition, Vanrolleghem et al. [113] proposed a economic
index including weighted investment and operating costs that in junction
to a robustness index can be used to evaluate the transferability of control
strategies to different situations. The economic index has also been used in
[118] where the authors applied it to a Japanese study case using genetic
algorithm optimization.

In this Chapter it is shown how an answer to the optimization problem
can be given only by designing the control structure in such a way that the
operational costs are minimized. In Chapter 3 we have showed how the con-
trolled variables can be important to link the layers in the hierarchic control
structure. For that reason, the aim here is to find the optimal controlled
variables for the activated sludge process in a wastewater treatment plant.
We follow the procedure illustrated in the previous Chapter:

• Step 1: Identify operational constraints, and preferably identify a
scalar cost function J to be minimized;

• Step 2: Identify degrees of freedom and manipulated variables;

• Step 3: Optimization;

• Step 4: Identify primary controlled variables;

• Step 5: Design the controller.

4.1 Operational objective

In order to define the operational objective for the activated sludge process,
we must firstly define the cost function to be minimized and the constraints
to which it will be subjected to.
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4.1.1 Cost Function

The overall cost in a wastewater treatment plant is highly dependent on the
wastewater treatment system itself and it can be divided into manpower,
energy, maintenance, chemicals, sludge treatment and disposal evaluated
on a time basis. Therefore, an inventory has to be made of the different
costs so that the individual importance of each different term is determined.
The importance varies as a function of the wastewater treatment plant, the
origin of the wastewater, the legislatory and other place-and-time-depending
circumstances [15]. The aim is to analyze the steady state (stationary)
operational cost of the ASP shown in Chapter 2. To express the cost for
such a process, the following partial costs are considered:

• Pumping costs due to the required pumping energy;

• Aeration costs due to the required aeration energy;

• Sludge disposal costs.

For the sake of completeness, chemical dosage costs should be taken into
account, even if this is not a charge truly relevant in the considered wastew-
ater treatment plant. For this reason, the chemical dosage cost was not
considered in defining the following overall costs.

To express the partial costs, we adopt the expressions suggested in the
COST Benchmark [20]. The total average energy over a certain range of
time T , depends directly on the recycled sludge flowrate (Qr) and on the
waste sludge flowrate (Qw):

EP =
0.04

T

∫ t0+T

t0

(Qr(t) +Qw(t))dt (4.1)

with EP expressed in kWh/day.
The aeration energy (expressed in kWh/day) can be, in turn, expressed as:

EA =
24

T

∫ t0+T

t0

n
∑

i=1

(0.4032(Kla,i)
2 + 7.8408Kla,i)dt (4.2)

where Kla,i(t) is the oxygen transfer function in the aeration tank i (i =
1, . . . , n with n equal to the number of the reactors, see Chapter 2). Con-
sidering that we give oxygen to both anoxic and aerobic zones, EA,tot =
Ep

A + En
A.
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Assuming a price kD equals to 80 e/tonn on the sludge disposal and
TSSw [gSS/m3] the total suspended solids concentration wasted with Qw,
the disposal cost per day (e/day) is expressed:

CD =
1

T

∫ t0+T

t0

(kETSSwQw)dt (4.3)

Assuming a constant energy price (kE = 0.09 e/kWh), the total energy cost
(in e/day) can be calculated during a representing time interval T from 4.1
to 4.3 as:

Ctot = kE(EP + EA,tot) + CD (4.4)

The cost function J = Ctot to be minimized depends on the influent char-
acteristics, the reactor volume (especially for the aeration energy part), the
hydraulic retention time, and the general process behavior.

4.1.2 Constraints

As for the constraints, those related to effluent discharge and, of course,
those related to the operability of the process are considered.

Operational Constraints

As for the operational constraints, we identify those related to the flow in
the tank, to the aeration compressor, to the valve in the plant, and so on.
But most importantly, we identify the dissolved oxygen concentration in
the aeration tank (in the denitrification and nitrification zone), the nitrate
concentration in the denitrification zone and the constraints for good oper-
ational conditions of the secondary settler. In such a way, the cost function
optimization can ensure a proper operation for the activated process.

The Dissolved Oxygen (DO) concentration is one of the principal param-
eters in an ASP. The amount of oxygen transferred to the aeration tanks
should be equal to the amount of oxygen required by the microorganisms in
the activated sludge process to oxidize the organic material and to maintain
residual DO operating levels. When oxygen limits the growth of microor-
ganisms, filamentous microorganisms may predominate, and the settleabil-
ity and quality of activated sludge may be poor. On the other hand, an
excessively high DO, meaning also a high flow rate, leads to high energy
consumption and may also deteriorate the sludge quality. In practice, the
DO concentration in the aeration tank should be maintained at about 1.5 to
4 gO2/m

3 in the aerobic aeration tanks: 2 gO2/m
3 is a commonly used value.

In fact, 4 gO2/m
3 does not improve operation significantly, but increases the
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aeration cost considerably [46]. In the anoxic zone a lower aeration is needed
in order to satisfy only the mixing requirements in the denitrification zone.
Summarizing, the following DO constraints are defined:

• DO concentration in the aerobic zone: 1.5 ≤ DOn ≤ 4 gO2/m
3;

• DO concentration in the anoxic zone: 0.05 ≤ DOp ≤ 0.5 gO2/m
3.

Furthermore, if we assure that the nitrate consumption in the last preden-
itrification zone is not exceeding a certain level, we can guarantee a not
excessive air consumption in the aeration zones. According to some works
in literature ([47], [87], [92]), for most reasonable operating points the ni-
trate concentration in the anoxic compartment should be maintained in the
interval 1−3 gN/m3 when an internal recirculation is present. In the consid-
ered treatment plant there is not an internal recirculation, and we verified
that for the nitrate/nitrite in the last anoxic zone (Sp3

NO) a lower constraint
of 0.75 gN/m3 can assure a good behavior in the predenitrification zone.

We know that the purpose of the recycled flowrate Qr is to maintain a
sufficient concentration of the activated sludge in the aeration tank so the
required degree of treatment can be obtained. It is also important to prevent
the loss of sludge solids in the effluent. For this reason, it is important to
define some indexes to represent the sludge behavior both in the bioreactor
and in the settler. For example, we know that the excess activated sludge
produced each day must be discharged to maintain a given Food to Microor-
ganisms Ratio (F/M) or a given Sludge Retention Time (SRT , also known
as sludge age or mean cell residence time). So, we consider the F/M and
the SRT as operational constraints for the secondary settler performance.

The common definition of the SRT is a steady-state definition that assumes
all flowrates and concentration constant. The calculation is based on the
total biomass present in the system (i.e., the bioreactor and the settler):

SRT =
TXa + TXs

φe + φw
(4.5)

In equation 4.5, TXa is the total biomass in the reactor and TXs is the
total biomass in the settler:

TXa =
n

∑

i=1

(XBH,i +XBA,i)Vi

TXs =

m
∑

j=1

(XBH,j +XBA,j)zjA
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where i = 1, . . . , n are zones in the bioreactor of volume Vi and j = 1, . . . ,m
are layers of thickness zj in the secondary settler model with a cross sectional
area A (see Chapter 2 for more details on the secondary settler model). In
expression 4.5, the term φe is the loss rate in the effluent, and φw is the loss
rate of biomass in the wastage:

φe = (XBH,1 +XBA,1)Qe

φw = (XBH,w +XBA,w)Qw

On the basis of laboratory tests and actual operating data, it has been found
that a SRT of about 3 to 15 days results in the production of a stable, high
quality effluent sludge with excellent settling characteristics [46]. Indeed,
the lower limit of the SRT is apparently imposed by nitrifiers kinetics and
can be determined by multiplying a safety factor (1.5−2.5) to the minimum
SRT required by nitrifiers (determined from the maximum specific growth
rate of nitrifiers and their decay rate) [87]. This secures a reasonable amount
of nitrifiers in the system so that satisfactory nitrification is achieved during
periods of high nitrogen loading.

The next considered parameter is the F/M ratio. This is a process control
variables that helps to determine the load of the incoming food (the COD
mass in the influent flow rate) divided by the amount of microorganisms in
the system (the volatile suspended solids in the aeration tank, the Mixed
Liquor Suspended Solids, MLSS):

F/M =
QinCODin

V MLSS
(4.6)

where

MLSS =

∑n
i=1 TSSiVi

V
ivt

ivt is a stoichiometric coefficient that represent the VSS/TSS ratio and in
this case is equal to 0.6 [gV SS/gTSS]. Typical values for the Food to Mi-
croorganisms ratio reported in literature vary from 0.05 to 11 gCOD/gSS/d.

A summary of operational constraints for our activated sludge process is
reported in Table 4.1.

Effluent Constraints

Assuming that the equipments and the process are well functioning is im-
portant, but the main aim of a wastewater treatment plant is to satisfy the

1In literature, [46] reported values of F/M expressed in terms of BOD concentration
in the influent instead of COD. Since, in our model the organic matter is always expressed
in terms of COD, units have been change considering a COD/BOD5 ratio of 0.66.
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Operational

Constraints

Anoxic DO 0.05 ≤ DOp ≤ 0.5 [gO2/m
3]

Aerobic DO 1.5 ≤ DOn ≤ 4 [gO2/m
3]

Sludge Age 9.3 ≤ SRT ≤ 15 [d]
F/M ratio 0.05 ≤ F/M ≤ 1 [gCOD/gSS/d]

Anoxic SNO 0.75 ≤ Sp,3
NO ≤ 1 [gN/m3]

Table 4.1: Operational constraints

effluent requirements. For that reason, we identify as effluent constraints
the concentrations of organics, nitrogen, and other pollutants in the output
flow. The final constraint of the ASP is defined by the legislation require-
ments for effluents deriving from a wastewater treatment plant. In order to
avoid both infeasibility and failure in the ASP, the effluent constraints have
been reduced with respect to the values imposed by law.

Summarizing, the cost function J is also subjected to the constraints re-
ported in Table 4.2.

Effluent

Constraints

COD CODeff ≤ 125 [gCOD/m3]
Total SS TSSeff ≤ 35 [gSS/m3]
Total N TN eff ≤ 18 [gSS/m3]

Ammonia Seff
NH ≤ 0.6 [gN/m3]

Nitrate Seff
NO ≤ 10 [gN/m3]

Table 4.2: Effluent constraints

4.1.3 Disturbances

Disturbances are a major reason why control is required. Compared to
most other process industries, a wastewater treatment plant is subjected
to extremely large disturbances [87]. As a result, the plant is rarely in a
steady state, being subjected to transient behavior all the time. Consistent
performance must be maintained in the presence of these disturbances. It is
not uncommon that a treatment suffers from sludge settleability problems
due to an outbreak of filamentous bacteria induced by disturbances. Also
operations imposed by on-line control systems may themselves induce a bac-
terial population shift. Further internal disturbances may be generated by
inadequate or inappropriate operations including human errors, unsuitable
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or malfunctioning actuators and/or sensor failures. Most importantly, dis-
crete events such as rainstorms and peak of loads may occur from time to
time.

In order to give a better representation of the true behavior of a wastewater
treatment plant, typical variations, in dry weather conditions, are simulated
using the weighting function depicted in Figure 4.1. Both inlet flow rate and
load [49] are considered starting from the nominal conditions reported in
Table 4.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W
ei

gh
tin

g 
F

un
ct

io
ns

Time [d]

Load
Flow

Figure 4.1: Typical weighting functions for dry weather conditions [49]

Influent

Flowrate Qin = 6152 [m3/d]
COD CODin = 221 [gCOD/m3]
Total Suspended Solids TSSin = 46 [gSS/m3]
Nitrate SNO,in = 0.22 [gN/m3]
TKN TKNin = 22 [gN/m3]
Ammonia/TKN fnhin = 0.36 dimensionless

Table 4.3: Nominal conditions for the compositions and flowrate

The nominal average conditions are augmneted by 20% in order to have the
following disturbances:

• d1 = (Qin and CODin) + 20%;

• d2 = (Qin and TKNin) + 20%;

• d3 = (Qin and CODin and TKNin) + 20%.
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As explained in the following section, we consider the influent flow rate
constant or not depending on the presence of an equalization tank in the
wastewater treatment plant. Of course, when the Qin flow rate is constant,
the disturbances considered are the only increment on COD and TKN
concentrations.

4.2 Degrees of freedom and manipulated variables

As for the degrees of freedom for optimization, we must identify the number
of degrees of freedom for control, Nm. If we look at the schematic repre-
sentation of that plant in Figure 4.2, we note that there are few variables
that we can manipulate (this is quite common in a biological wastewater
treatment plant, [86]). However, there is potential to make a better use of
the existing manipulated variables.

Figure 4.2: Schematic representation of an activated sludge plant, with
spotlight on manipulated variables

From Figure 4.2, the number of manipulated variables Nm is equal to 7,
including the influent flow rate. Namely, the output flow from the aeration
tank should be not taken into account since it is actually self-regulating.
The same can be said for the effluent flow from the secondary settler. It
follows that Nm = 5.

The optimization is generally subjected to several constraints and, Nopt de-
grees of freedom should be used to satisfy the constraints and optimize the
operation. In our case, we have Nopt = 4, because we are not consider-
ing the influent flow rate as manipulable variable. If we consider that the
DO concentration in both anoxic and aerated zone is always fixed at the
setpoint value by the airflow controller on the bioreactor, the number of
active constrains is Nactive = 2. Recalling equation 3.1, the number of free
unconstrained degrees of freedom that are left to optimize the cost function
J in our process is:

Nopt,free = 2 (4.7)
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In the following, the recirculated sludge flowrate (Qr) and the wastage
flowrate (Qw) are considered as the needed manipulated variables to satu-
rate the Nopt,free degrees of freedom.

Some further considerations can be made. In fact, we are considering a
wastewater treatment plant where an equalization tank is present at the
top of the activated sludge process. This means that the flow rate can be
assumed constant. However, the Qr flow rate is proportional to the influent
flow rate (with a proportionality of approximatively 1.3 in the our case
plant). For that reason, if we consider Qr at a constant value leads to:

Nopt,free = 1 (4.8)

Generally speaking, the problem is that very few wastewater treatment
plants have the luxury of an influent at a constant flow rate (because an
equalization tank is not present): for that reason, we consider to restrict the
previous degree of freedom in 4.8 and we consider both cases in expression
4.7 and 4.8. The manipulated variables considered are again the Qw and
Qr. Summarizing, two different situations are investigated:

1. The influent flow rate is constant and we optimize the system with
respect to the waste flow rate: Nopt,free = 1.

2. The influent flow rate in not constant and we optimize the system
with respect to both the waste flowrate and the returned flowrate:
Nopt,free = 2.

4.2.1 Waste Activated Sludge Flowrate

Manipulation of the waste sludge flowrate is used to control the total in-
ventory of sludge mass (a slow process). This, in turn, influences the SRT ,
giving a significant impact on the formation of certain organisms such as fil-
aments and autotrophs, and it is belived also to influence the sludge bulking
[86].

4.2.2 Return Activated Sludge Flowrate

The return sludge is used to keep the sludge within the system. Basically
there are two common practices for return sludge flowrate manipulation:

• constant flowrate;

• ratio control.
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The second one, that is a fixed ratio between the return sludge flowrate and
the influent flowrate, is a common practice. It aims at assuring an adequate
sludge within the system at different influent flowrate. As showed in Section
4.2.1, the waste sludge is used to balance the growth of organisms so that
the average sludge mass is constant. Actually this means that the recycle
ratio has to be kept constant within quite narrow limits in order to keep the
overall sludge mass balance. The lower limit of the instantaneous value of
the sludge flowrate is determined by the sludge retention time in the settler.
The upper limit is determined by the hydraulic load to the clarifier and the
maximum dry flow rate in the return sludge. The upper and lower limits are
calculated by the expression reported in [86]. For the considered activated
sludge process, the ratio Qr/Qin should be comprises between 0.75 and 1.5
[46].

4.3 Optimization and Controlled Variables Selec-

tion

In this section the results and considerations on the optimization procedure
along with the adopted methodology are given. First of all, we define the
candidate controlled variables (Section 4.3.1), whose setpoints have to be
estimated throughout the optimization approach (Section 4.3.2). In Section
4.3.3 and in Section 4.3.4, the results for the one degree of freedom and for
two degrees of freedom cases are discussed.

4.3.1 Candidate controlled variables

The candidate controlled variables are defined, since we are only manipu-
lating the recirculated sludge flowrate, Qr, and the wastage flowrate, Qw.

The measurement of the Sludge Blanket Height (SBH) is a potential candi-
date controlled variable. The solids form a sludge blanket at the bottom of
the secondary settler. The SBH varies in thickness from time to time and
might fill the entire depth of the settling tank, if the Qr pumping capacity is
inadequate. For that reason, an optimal blanket level should be maintained
in the secondary settler. As suggested by Olsson et al. [87], a certain SBH
should be maintained in the settler and the optimal level depends on the
hydraulic and substrate loading to the plant as well as the sludge settleabil-
ity and the design of the settler. Unfortunately, it is not straightforward to
establish the dependency of the optimal SBH level on these factors. Usu-
ally it can be determined by experience and from a balance between efficient
settling depth and sludge storage. Generally, 0.3 ≤ SBH ≤ 0.9 m [46] is
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a typically accepted range for the sludge blanket height. One particular
difficulty is the lack of a suitable model to quantify the dependency of ef-
fluent suspended solids concentration on the SBH and the solids loading
rate. In this work the Takács settling model [107] is used (see Chapter 2)
to represent the secondary clarifier modelled with ten layers. The SBH
is calculated on the basis of concentration of the TSS in the different lay-
ers. The difference in all adjacent layers is calculated and the higher of the
two layers with the biggest difference is chosen as the present layer. The
secondary clarifier has 4 m water depth and leading to very small TSS dif-
ference between the layers. More complex multi-dimensional hydrodynamic
models produce more accurate prediction, but they were demonstrated to
be not suitrable for on-line use due to their high complexity and high com-
putational demand. Therefore, we do not consider the SBH parameter for
the secondary settler performance check. Instead we consider the following
candidates:

• Sludge retention time, SRT;

• Food to microorganisms ratio, F/M;

• Mixed liquid suspended solids, MLSS;

• Nitrate/nitrite concentration at the exit of the anoxic zones, Sp3
NO;

• Effluent ammonia, Seff
NH .

4.3.2 Optimization Procedure

As a starting point the nominal operation conditions used the TecnoCasic
were considered and Table 4.4 energy consumptions in these conditions are
reported. The Table shows that it is more beneficial to find savings by low-
ering the energy consumption for aeration than for anything else. Reducing
pumping energy and sludge recirculation will hardly lead to significant sav-
ings.

Total Energy Percentage
Consumption on total ASP

Aeration 2178.00 e 99%
Pumping 21.75 e 0.99%
Sludge Disposal 0.25 e 0.01%

Total ASP 2200.00 e 100%

Table 4.4: Relative energy consumption at nominal conditions
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Therefore, the attention firstly focuses on aeration and some interesting
considerations can be drawn on the DO control which is actually present
in the considered wastewater treatment plant. The average of two oxygen
sensor signals located in the anoxic and aerobic zones is compared with a
constant averaged DO setpoint of 2.5 gO2/m

3. The controller maintains the
desired oxygen setpoint by manipulating the ratio between the two zones.
This leads to a very high oxygen supply in the aerobic zone (4− 5 gO2/m

3)
and a very low oxygen supply in the anoxic zone (0.005 − 0.09 gO2/m

3).
During the degree of freedom analysis the airflow rate has not been con-
sidered even though, a first optimization needs to be performed in order to
find the oxygen optimal setpoint. The aim of this optimization is to reduce
the oxygen consumption in the bioreactor without influencing the overall
system behavior.

In the Sections 4.1 and 4.2, we have defined the objective functions and the
degrees of freedom of our optimization problem. This means that we must
find the constrained minimum of a scalar function of several variables start-
ing from an initial estimate. This is generally referred to as constrained
nonlinear optimization. The nonlinear problem is approached splitting it
into smaller subproblems that can then be solved and used as the basis of
an iterative process. The problem was solved using a Sequential Quadratic
Programming, SQP, techniques which represents state-of-the art in non-
linear programming methods. The Kuhn-Tucker equations are necessary
conditions for optimality in this problem and the solution of these equa-
tions forms the basis to SQP algorithms [11].

Tracking the activated sludge model with Simulink, we solved the optimiza-
tion problem for the considered wastewater treatment plant, satisfying the
constraints reported in Table 4.1 and in Table 4.2. Generally speaking, the
optimization procedure is conceptually the same both in the one degree and
two degrees of freedom case. In order to define the optimal setpoints for the
candidate controlled variables, the optimum is found for the nominal condi-
tions simulating different disturbances with weight drawn form a probability
distribution function assumed normal.

As mentioned, a first optimization is performed in order to reduce the oxy-
gen consumption in the bioreactor (which leads to an overall cost reduction)
and then optimal values for the dissolved oxygen concentration in both con-
trolled anoxic and aerated zone have been found. During, this first opti-
mization also the considered manipulated variables for the self-optimizing
approach were considered in order to reduce the computational load dur-
ing the second optimization procedure. This is performed in order to find
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robusts setpoints for our candidate controlled variables (Section 4.3.1). Re-
sults regarding the first optimization at nominal conditions are reported in
Table 4.5. A remarkable cost reduction is obtained.

Initial One DOF Two DOF
Condition Optimization Optimization

DOp in [gO2/m
3] 0.09 0.21 0.25

DOn in [gO2/m
3] 4 2.5 2.5

Aeration Cost in e 2200 1470 1464

Table 4.5: Optimization of oxygen setpoints

The Simulink model has been run for 100 days simulation using weighting
functions for both load and flow. Only the last 15 days corresponding for
stable regimes were considered when evaluating the cost function and the
constraints.

4.3.3 One degree of freedom

The one degree of freedom situation corresponds to the case where the influ-
ent flow rate is constant. This means that we optimize only with respect to
one manipulated variable: Qw. As previously stated, in order to define the
DO concentrations (able to reduce the oxygen consumption in the reactor)
a first optimization is performed. As an interesting note, we highlight that
the cost function in our activated sludge process is monotonically increas-
ing with disturbances: that is, a minimum cost will be always obtained at
minimum disturbance. For this reason, we perform the first optimization
procedure reducing the influent load of 10%, obtaing in this way an opti-
mal reference cost Jopt = 1022 e. Furthermore, the values found for the
dissolved oxygen concentration are reported:

• DOp = 0.21 gO2/m
3;

• DOn = 2.5 gO2/m
3.

Using oxygen concentration values as constant setpoints for the aeration
control allows us to investigate the steady state process behavior at nomi-
nal conditions and different Qw.

In Figure 4.3, the effluent concentrations (related to the effluent constraints)
are plotted against the Qw flowrate. We note that the effluent COD con-
centration (Figure 4.3a) stabilizes at a constant value, even if care should
be taken if disturbances such as d1 or d3 occur (that is influent COD varia-
tions). The total suspended solids concentration (Figure 4.3b) in the effluent
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Figure 4.3: One degree of freedom: process composition at different Qw

[Nominal condition (solid); d1 (dot); d2 (dot-dashed); d3 (dashed)].

seems not to be so sensitive to disturbances. The effluent TN concentration
(Figure 4.3c) is not very sensitive to wastage flowrate variations, whereas
it is very sensitive to disturbaces such as d2 (that is, influent TKN varia-
tions). The same can be noted for Sp3

NO (Figure 4.3d), whereas the effluent
ammonia (Figure 4.3e) is not very sensitive to disturbances but increases
with the wastage flowrate. For all the effluent concentration in Figure 4.3,
the constraints are respected within the same range as SRT and F/M .

In Figure 4.4, the air consumption for both denitrification (a) and nitrifica-
tion (b) zones and also the total air consumption (c) are plotted against the
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Figure 4.4: One degree of freedom: Costs at differentQw [Nominal condition
(solid); d1 (dot); d2 (dot-dashed); d3 (dashed)].

Qw flowrate. As expected, the air consumption decreases with the increase
of the wastage flowrate. This is obvious, since increasing Qw we are also in-
creasing the total sludge mass inside the bioreactor. This is reflected also in
the total cost, which decreases with the increase in Qw: but, looking at the
optimization contraints we can observe that an optimal cost of 1500− 2000
e for a wastage flowrate within the range 60 − 100m3/d is expected.

The analysis is also useful to make some assumptions to select the controlled
variables. From Figure 4.5, we notice that with a sludge flow rate between
60 − 80m3/d, the SRT and F/M constraints are respected. We also note
that SRT and F/M are insensitive to disturbances, whereas Sp3

NO is not,
and variations in TKN lead to variations in the nitrate and nitrite con-
centrations with different Qw values. In the region of interest, the effluent
ammonia concentration is insensitive to disturbances, whereas it becomes
sensitive as the wastage flowrate increases. Moreover, the MLSS is only
weakly sensitive to disturbances (of course, when d1 and d3 occur the sus-
pended solids in the mixed liquor increase). Recalling the qualitative rules
exposed in Chapter 3, a first screening in the candidate variable selection
can be made. In fact, we note that Sp3

NO is not responding to any of those
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Figure 4.5: One degree of freedom: operating variables at different Qw

[Nominal condition (solid); d1 (dot); d2 (dot-dashed); d3 (dashed)].

suggestions: it presents sensible variations to disturbance but negligible
variations to the manipulated variable Qw. For this reason, the system be-
havior when SRT (c1), F/M (c2), MLSS (c3) and ammonia in the effluent
(c4) are the candidate controlled variables is investigated. In Table 4.6 the
setpoints for the candidate controlled variables are given, and in Table 4.7
the investigation results are reported.

csp1 =SRT csp2 =F/M csp3 = MLSS csp4 = Seff
NH

9.5 [d] 0.74[gCOD/gSS/d] 1194[gSS/m3] 0.17[gN/m3 ]

Table 4.6: Setpoints for the candidate controlled variables at 1DOF

Recalling the loss definition given in Chapter 3, the process loss at differ-
ent disturbances and different control configurations can be computed. We
analyze also the open loop strategy. This is a poor policy to adopt, but is a
good reference to understanding how the system could operate if there were
no control applied. The results are reported in Table 4.7, where we note
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Loss [e]

Nominal d1 d2 d3

c1 459 772 765 1037
c2 463 788 768 1053
c3 337 502 662 701

c4 469 816 745 1040
Open Loop 455 779 762 1045

Table 4.7: Loss Investigation in the one degree of freedom case

that c3 (the suspended solids in the mixed liquor) gives the minimum loss
and SRT, F/M and also the nominal conditions give almost the same losses.
This is not surprising if we think that the first optimization have been al-
ready performed and that the open loop results implements the (constant)
manipulated variables value found with that optimization.

Once the MLSS setpoint is determined the realization of the feedback strat-
egy is straightforward, assuming that the time scale of the dynamics is
understood. In Figure 4.6 the main effluent concentrations and the air
consumption cost for the controlled system for different disturbances are
showed. Subsequently, we note that the system satisfies the effluent concen-
tration constraints and, as expected, the air consumption increases as the
disturbances occurs, but with minimum loss for the process.

In Figure 4.7a the controlled variable SRT is showed, and in Figure 4.7b
Qw is drawn as manipulated variable. Since we can not keep the controlled
variable at a constant setpoint, large variations in the manipulated variable
arise when disturbances appear. This behavior demonstrates that it is not a
good idea to keep SRT at constant value. In fact, as previously mentioned,
the sludge age represents in some sense the nitrification capacity of the
sludge which, on the other hand should be allowed to vary. This is expecially
true with nitrogen load variations.

4.3.4 Two degrees of freedom

In the two degrees of freedom case, we assume that there are some failures
in the equalization tank (if this unit is actually present in the wastewater
treatment plant), or that the equalization tank is not present at all. This
is equivalent to assume that the influent flowrate can not be considered
constant. Therefore, we must optimize with respect to two manipulated
variables: the Qw and the Qr. In Section 4.2.2, we observed that usually the
recycled flow rate is proportional to the influent flowrate. Here, instead of
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Figure 4.6: Efflent composition and Cost with c3 controlled [Nominal con-
dition (solid); d2 (dot-dashed); d3 (dashed)].
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Figure 4.7: Controlled c1 and Manipulate Qw variables [Nominal condition
(solid); d1 (dot); d2 (dot-dashed); d3 (dashed)].

optimizing with respect toQr, we optimize with respect to the ratio Qr/Qin.
As in the one degree of freedom case, a first optimization has been performed
decreasing the influent flowrate and also the load concentration (leading
to an the optimum reference cost value for the cost function and optimal
oxygen setpoints for the anoxic and aerobic zones). The corresponding
results are:

• DOp = 0.22 gO2/m
3;

• DOn = 2.5 gO2/m
3.



70 Controlled Variables Selection for an ASP

In such a case, we graphically investigate the process behavior using the
operating space diagrams. An operational space diagram is a contour plot
of an output variable against the manipulated variables. It is constructed
by calculating the steady state of the process over a range of values for
the manipulated variables. In the wastewater treatment field, they were
introduced by Hopkins et. al [44] in order to define an efficient tool to de-
sign a plant and to compare a large number of operational strategies. In
our study, it helped us to identify the behavior for the function J . The
diagrams provide information of the optima and their relation to the con-
straint, therefore showing how close they are to the constraints. In addition
also information about the sensitivities of the output to the manipulated
variables are provided.

In Figures 4.8 and 4.9 the operational maps of the nominal conditions are
reported. It was verified that the system behaves in the same way it does
in the one degree of freedom case when disturbances occurs. As we can
note, in the two degrees of freedom case the operating region is between
60−90m3/d with respect to the wastage flowrate Qw, whereas, Qr is limited
to vary within 7000 and 9000 m3/d (corresponding to 1.14 < Qr/Qin < 1.5
at the average influent flowrate).

Figure 4.8 reports the operational constraints maps: from there, we note
that the sludge age constraint (Figure 4.8a) is satisfied only for 40m3/d <
Qw < 80m3/d. The diagram shows that SRT increases too much as the
wastage flowrate goes to zero, whereas the dependency with Qr is not so
high. The same can be said for the F/M ratio constraints (Figure 4.8b),
which is respected throughout the operation region. The nitrate/nitrite
concentration in the anoxic zone (Figure 4.8c) shows weak dependency with
the two manipulated variables. However, its constraints are respected in
the region of interest. In the same Figure, the main effluent concentrations
are also reported. The effluent organic matter expressed in terms of COD
is respected in the region of interest (Figure 4.8d). The same consideration
applies to the ammonia (Figure 4.8d), and nitrate/nitrite concentrations
(Figure 4.8e), in the effluent constraints.

As an interesting investigate, we look at Figure 4.9: here the air flowrate in
both bioreactor zones and the total air consumption are reported. We note
that the total cost is not actually dependent on variations in the recycled
flowrate, whereas it varies with Qw and it decreases as the wastage flowrate
increases (as in the one degree of freedom case).
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Figure 4.8: Operative maps for constraints
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Figure 4.9: Costs operative maps

Having defined an appropriate operating region from the maps, the proce-
dure goes further to defining the control structure for the two degrees of
freedom case. As exposed in Chapter 3, we apply the minimum singular
value rule. The controlled variables set corresponding to the larger value of
σ (the minimum singular value) are selected. The procedure is summarized
as follows:

1. Linearize the model and find the scaled gain matrix.

2. Compute the minimum singular value for the whole system (it will be
the reference value).

3. Define the possible control configuration.

4. Choose the controlled variable configuration with larger minimum sin-
gular value.

Using the Simulink model and Matlab, the linearization task has been per-
formed, around linearization points found from simulations. The obtained
linear model has the usual state-space form:

ẋ = Ax + Bu

y = Cx
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where x is the state vector of 158 state variables2. The input vector is given
as:

u =

[

Qr

Qw

]

(4.9)

and the output state vector is given by:

y =
[

SRT, F/M, Seff
NH , MLSS, Sp3

NO

]T
(4.10)

It follows that A is a 158× 158 square matrix, whereas the dimension of B

is 158 × 2 and dim(C) = 5 × 158.

To obtain a model that is well conditioned and numerically easier to solve,
scaling procedure is performed. Scaling the inputs and the candidate mea-
surements is also a very important task before comparisons are made. This
has been done by introducing scaled variables: u = D−1

u u0 and y = D0
yy

0.
The original model can be written as: y0 = G0u. The superscript ”0”
denotes the nominal state, G0 is the original transfer matrix between y0

and u0, Du and Du are diagonal scaling matrices estimated using some
heuristics reported in [101]:

Dy =













1.72 0 0 0 0
0 0.44 0 0 0
0 0 0.08 0 0
0 0 0 0.60 0
0 0 0 0 25.9













Du =

[

12966 0
0 110

]

Thus, the scaled model is given as:

G = D−1
y G0Du

allowing to reduce the condition number by one order of magnitude.

After the scaling, the model gain matrix and the RGA-matrix are expressed
as:

G =













6.35 −12.24
−0.92 1.4
−0.27 2.55
1326 2035
0.04 −0.015













Λ(G) =













−2.25 2.82
1.6 × 10−6 1.1 × 10−6

−0.08 0.51
3.33 −2.33

3.2 × 10−4 9.5 × 10−4













2It must be recalled that we are considering a model composed by 3 anoxic zones (3 ×

13 state variables), 3 aerobic zones (3 × 13 states variables) and a settler with 70 soluble
+ 10 particulate state variables.
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The singular value decomposition of G gives two non-zeros singular values,
the minimum being σref = 1.79.

The RGA-matrix of G, the overall non-square matrix, is a useful screening
tool when there are numerous candidates [101]. The five row-sums of the
RGA-matrix are:

ΛΣ = [0.57, 5 × 10−7, 0.43, 1, 4.2 × 10−4]T (4.11)

indicating that one should select MLSS and SRT (corresponding to the two
largest elements), to maximize the projection of the selected outputs onto
the space corresponding to the two non zero singular values. We verify in
the following that is assumption is not the right one. In fact, using the min-
imum singular value rule we have a more reasonable criterion for selecting
the controlled outputs.

Recalling the rule exposed in Chapter 3, we select a set of outputs such that
the elements in G−1(0) are small, or alternativately such that σ(G(0)) is as
large as possible. In Table 4.8, the possible configurations are reported with
the associated minimum singular value and condition number. From there
we note that the configuration giving the larger minimum singular value is
the forth, c4. The sludge retention time and the nitrate/nitrite composition
in the anoxic zone are indicated as controlled variables. However, also the
configuration c7 and c10 present a minimum singular value very close to the
reference value, so we should take into account also those configurations.
On the other hand, c9 presents a too high condition number to justify its
inclusion.

Next step is to determine whether and how those variables can be coupled
with the manipulated variables: that is u1 = Qr and u2 = Qw, in order
to define the decentralized control configuration. For this case the RGA of
the selected square transfer function matrices G4, with the two inputs is
considered:

Λ(G4) = G × G−T (4.12)

Specifically, inputs and outputs variables should be paired so that the diag-
onal element of the RGA are as close as possible to unity:

Λ(G4) =

[

0.1897 0.8103
0.8103 0.1897

]

Λ(G7) =

[

0.227 0.773
0.773 0.227

]

Λ(G10) =

[

0.227 0.773
0.773 0.227

]
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Configuration σ Con.Number

c1 SRT-F/M 0.164 85.00

c2 SRT-Seff
NH 0.925 15.14

c3 SRT-MLSS 1.315 43.27

c4 SRT-Sp3
NO 1.632 8.45

c5 F/M-Seff
NH 0.654 4.58

c6 F/M-MLSS 0.000 5.4 × 10+15

c7 F/M-Sp3
NO 1.522 1.17

c8 Seff
NH-MLSS 0.063 133.62

c9 Seff
NH-Sp3

NO 3.970 973.54
c10 MLSS-Sp

NO 1.615 34.18

Table 4.8: Minimum singular value for the proposed configurations

Furthermore, the Niederlinski Index is always greater then zero, as we can
note from Table 4.9. Hence, the loop pairing is acceptable and leads to a
stable control configuration.

c4 c7 c10
N 5.47 3.61 3.61

Table 4.9: Niederlinski Index for the candidate controller sets

From the RGA analysis, follows the pairing:

• control the sludge age (or the FM ratio or the MLSS) by manipulating
the wastage flowrate;

• control the nitrate/nitrite concentration by manipulating the recycled
flowrate.

Before approaching the controller design step, the setpoints for the con-
trolled variables must be defined. As we have done for the one degree of
freedom case, the setpoints are calculated by optimization and they are re-
ported in Table 4.10.

Once the optimal value is found (in this case, the optimization procedure
returnes Jopt = 1015 e) we define the loss at steady-state conditions. In
Table 4.11, the loss values for each control configuration are reported. We
note that even if c4 is the best configuration, in terms of loss c10 gives
more apropriate results. Controlling the SRT implies keeping the nitrifi-
cation capacity of the sludge (measure of the maximum nitrification rate)
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SRTsp F/Msp MLSSsp Sp3 sp
NO

10.8 [d] 0.72 [gCOD/gSS/d] 1268 [gSS/m3] 0.78 [gN/m2]

Table 4.10: Setpoints for the controlled variables in the 2DOF

Loss [e]

Nominal d1 d2 d3

c4 482 1499 1473 1822
c7 431 1479 1462 1805
c10 410 1374 1400 1741

Open Loop 450 1420 1444 1870

Table 4.11: Loss Investigation in the two degree of freedom case

at a constant level, and especially when the flow rate and load are not
constant this should be allowed to develop in the system as a result of an
increase influent. The results is analogous in the one degree of freedom case.

To verify the system behavior, dynamic simulations with periodic influent
flow and load are performed. The effluent conditions are investigated with
this configuration and in Figures 4.10 the main effluent concentrations and
also the corresponding cost results are reported. From there we can note
that the effluent concentrations are kept at the constraint levels and that
the cost function increases when disturbances occur (Figure 4.10d). This is
not surprising because, as stated previously, the cost function for our system
is a monotonically increasing function, and this is more evident especially
when periodic disturbances take place.
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Figure 4.10: Two degrees of freedom: effluent concentrations and cost for the
proposed controller [Nominal condition (solid); d1 (dot); d2 (dot-dashed);
d3 (dashed)].
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81

So far, in the controlled variables selection we assumed that every measure
would be available at every time. However, in the wastewater treatment,
variables such as concentrations, SRT or F/M , are determined by off-line
laboratory analysis, limiting the on-line monitoring and control purposes.
In a successful manner, concentration can be estimated on-line using a soft-
sensor, which represents a combination of robust hard-sensors and a math-
ematical model defined to reconstruct the time evolution of the unmeasured
states. An important advantage is that soft sensors can be constructed on
the basis of a simple model with uncertain inputs and parameters.

With regard to the activated sludge process the state of the art model has
been considered. This is a rigorous model that represents in a fairly com-
plete sense the biological reactions. It is useful for several reasons: for
instance in system design to check the system behavior under extreme dy-
namic loading conditions. However, there are many practical applications
where a simplified model of reduced order is sufficient from an engineering
point of view: e.g., for a soft-sensor design. In fact, we have seen that the
full model suffers the following disadvantages: first of all, the calibration
of all the kinetic and stoichimetric parameters is a cumbersome task and
secondly, the model is nonlinear due to the presence of Monod like kinetics
in the mass balance equations. Moreover in the wastewater treatment, vari-
ables such as concentrations are determined by off-line laboratory analysis,
limitating for on-line monitoring and control purposes.

The goal in the following is to select a suitable reduced order model for such
purposes. The following properties should be satisfied:

• The stiffness of activated sludge process argues to develop models that
are suited for different timescales. Therefore, model reductions based
on timescale separation are the natural approach.

• It is desired that the reduction method is systematic and straight-
forward to avoid the time consuming trial-and-error and iteration
methodology.

• The states of the model must retain their physical interpretation after
reduction, so that the interpretability is preserved.

Therefore, the following Chapters give first of all an overview on model
order reduction techniques (Chapter 5). This overview is then useful as
background to introduce the reduced models already present in literature
and to deduct a new reduced model based on numerical techniques and
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physical considerations (Chapter 6). Eventually, in Chapter 7 applications
on an activated sludge process using soft sensors, using reduced models are
shown.



Chapter 5

Overview on model
reduction techniques

This Chapter describes methods for reducing the order of the process model.
Keeping in mind that the final aim is to find a simpler model for the acti-
vated sludge process, the goal here is to describe these methods that rep-
resent the starting point for the reduction procedure. Generally speaking,
there are two principlal model reduction techniques:

• intuitive model reduction;

• mathematical techniques.

The first one implies that the modeller uses his/her knowledge and experi-
ence of the true process dynamics, in combination with the defined purpose
of the new model, to define a simplified model. Assumptions can be made
with respect to:

• components, e.g., aggregation of variables, such as COD as a measure
of pollutant concentrations;

• processes, such as aggregation of reaction: e.g., modelling nitrification
as one-step process whilst it is a two-step process;

• kinetics.

Even if these simplifications may affect both the model structure and its
functional relationships in the model, this is the most common approach
used to simplify models [52]. However, a more rigorous mathematical ap-
proach is preferred here, this is also the reduction approach used to develop
our reduced model in Chapter 6. Indeed, a wide range of mathematical
methods for model reduction are available in literature. We place particular
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emphasis on reducing model techniques that preserve stability, controllabil-
ity and observability of the full model.

The Chapter is organized as follows: after a problem statement, the basic
distinction between linear and nonlinear model reduction approach is made.
Even if the ASM1 is a nonlinear model, we focus on linear models (assuming
that the ASM1 has to be linearized) and for the sake of completeness the
nonlinear model approaches are also reported.

5.1 Problem Statement

Model reduction has a long history in system and control literature. In fact,
the general topic of dimension reduction in dynamical systems is pervasive
in applied mathematics literature. The system is modelled by means of a set
of first order differential equations coupled with a set of algebraic equations:

ẋ = f(x(t),u(t))

y = h(x(t),u(t))
(5.1)

In this setting, u ∈ R
m are the inputs, x ∈ R

n are the state variables and
the function f describes the system dynamics. The outputs are denoted as
y ∈ R

q are the outputs or set of observations and h describes the way that
the observations are deduced from the states and the inputs. The system
complexity is defined by the number of states n.
The first requirement is that the number of states (i.e., the number of first
order differential equations) of the approximant model is less than that of
the original system: k < r. Obviously, in absence of additional require-
ments, this condition is easy to satisfy by means of mere elimination of
equations and state variables. The difficulty arises when imposing addi-
tional limitations, such as:

• small approximation errors;

• preservation of stability;

• computationally efficient procedure.

The majority of the model reduction techniques have been developed for
linear models. Despite this, most model reduction methods are inappropri-
ate because they are invariably loosing the physical meaning. For example,
reduction techniques such as principal component analysis frequently make
use of linear transformations to reduce the model dimensions. These trans-
formations invariably lead to an alternative coordinate system where state
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variables have little physical significance. A different approach is the use of
structural dominance concepts. Measures indicative of the strength if the
coupling between model components are developed. By neglecting weak
couplings, a reduced order model can be formed.

5.2 Linear systems

Model reduction techniques for linear models are based on first principle
criteria, empirical criteria or a combination of both. In practice, we consider
a special case of the model (5.1):

ẋ = Ax + Bu

y = Cx + Du
(5.2)

In equation 5.2 a continuous-time, time-invariant, linear, dynamical system
is presented: A ∈ R

n × R
n, B ∈ R

n × R
m, C ∈ R

q × R
n and D ∈ R

q × R
m.

Together with the initial conditions x(t0) = x0, the realization in equation
5.2 is uniquely described by the matrix 4-tuple (A,B,C,D). The equivalent
notation:

G =

(

A B

C D

)

∈ R
(n+q) × R

(n+m) (5.3)

is more common in control theory.
Assuming that we are given a realization (A, B, C, D) of order n. The
purpose of model reduction is to find a reduced realization (Â, B̂, Ĉ, D̂)
with Â ∈ R

k ×R
k, B̂ ∈ R

k ×R
m, Ĉ ∈ R

q ×R
k, such that the input-output

behaviour of the reduced system approximates the original system in some
sense. In a different way but with the same scope, the aim is to show how
the state vector x can be partitioned into more important states x1 and less
important states to be eliminated.

Modal truncation [21], singular perturbation [29], balanced truncation [77],
[108], optimal Hankel norm approximation [33], frequency weighted balanced
truncation [28] are well known model reduction methods for stable systems
(see [4] for an overview of the different model reduction approaches). In
the following sections, we describe only the methods that we applied to the
activated sludge model, making a fundamental distinction between modal
reduction (Section 5.2.1) and balanced reduction (Section 5.2.2) approaches.

5.2.1 Modal Reduction

Reduction methods such as truncation or singular perturbation require the
solution of eigenvalues problem of order n. This makes their standard imple-
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mentation computationally expensive for large systems (n > 1000). How-
ever, they are very useful for system of moderate size (n ∈ [5, . . . , 1000])
like the ASM1 case. Moreover, they provide the mathematical basis for re-
duction by time scale separation, and represent systematic techniques. The
reduction methods rely on two mathematical techniques that exhibit, the
eigenvalues to states association and the reduction method itself. The re-
duction techniques depend on the successful application of an eigenvalue to
state association algorithm. In the following Sections 5.2.1.1 we see how the
eigenvalue can be linked to the corresponding state. In Sections 5.2.1.2 and
5.2.1.3 the information given by the eigenvalues are used in model reduction.

5.2.1.1 Eigenvalues to states association

Eigenvalues are mathematical properties of a model that provide valuable
information on the transient response of the whole system. If they can be
linked to the various model states, then the dynamics of each state can be
classified and the states dynamics at either extremes (fast or slow) can be
removed from the reduced model.
To determine the eigenvalues, the corresponding algebraic equation (A −
λI)X = 0 is solved, where I is an identity matrix of the same dimension of
A and X is a matrix of vectors called eigenvectors. For this equality to be
true the determinant of the term in brackets must be zero. This represents
a simple technique for calculating the eigenvalues by hand. Other numerical
methods, not discussed here, are used in practice.
Several important properties related also to the process stability can be
deduced from the eigenvalues analysis. Remember that the process is stable
if after a period of time, the variable return to the initial steady-state value.
Numerically, this can be translated into:

• positive real component imply instability;

• large imaginary components indicate oscillatory dynamics;

• large negative components imply a fast decay to steady-state.

Now, the question that may arise is how do the eigeinvalues relate to the
state variables? For this system an unknown correspondence exists between
states and eigenvalues.

The mathematical homotopy method is used to aswer this question. It was
proposed by DeCarlo and Saeks [22], and later defined by Robertson [89].
Furthermore, in literature several examples of its applications can be found:
for example, Monge and Georgakins [76] applied it to catalytic cracking
processes, Robertson and Cameron [90] studied the startup and shutdown
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modeling of an evaporator system, Steffens et al. [105] and Chachuat [16]
utilized it for the ASM1.
The homotopy method involves starting with a system with an obvious rela-
tionship between eigenvalues and states: a diagonalized A matrix. In such a
situation the correspondence between states and eigenvalues is known: each
diagonal element corresponds to an eigenvalue which is, in turn, directly
related to the states. This system is then transformed using homotopy
into the actual system while tracing the eigenvalues. A suitable homotopy
function is:

H(r) = (1 − r)AD + rA (5.4)

where H is the homotopy matrix, A is the linearized model matrix, AD is
the diagonal matrix of A and r ∈ [0, 1] is a parameter to achieve the linear
progression. In the homotopy procedure, all transformed systems must ex-
hibit a strong degree of association between states and system modes, i.e.
the eigenvalues. If an intermediate system is encountered (where this direct
association does not exist), then no definitive association can be concluded
for the final system A. If the eigenvalue does not change with r, then the
eigenvalue to state association is relative obvious.

When the eigenvalue to state association is defined it is possible to start
reducing the model.

5.2.1.2 Truncation

Truncation is a common form of model reduction. In fact, it is the most
common form since every finite dimensional linear model is a truncated
model in the sense that there is always some dynamic aspect of the physical
system that is neglected. We say that truncation deletes some of the modes
(modal truncation) or states (states truncation) from the full order model. If
the equivalence between modes and states is established with the homotopy
analysis, the two methods are equivalent.
Considering the truncated variables at their steady-state values, the k−
order truncation of the system in (5.3) is given as:

Gtrunc =

(

A11 B1

C1 D

)

(5.5)

The truncated model Gtrunc is equal to G at infinite frequency: G(∞) = D.
For simplicity, a matrix A in Jordan form is considered for easy ordering of
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states so that the eigenvalues are also ordered as |λ1| < |λ2| < · · · < |λn|

A =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn











(5.6)

The fastest modes are removed from the model after truncation. The dif-
ference between G and Gtrunc following the k−order model truncation is
given by [101]:

G− Gtrunc =
n

∑

i=k+1

cib
T
i

s− λi
(5.7)

where ci and bi are the elments of C and B matrices, respectively. Further-
more, it is interesting to note that the error (5.7) depends on the residues
cib

T
i as well as on λi. The distance of λi from the imaginary axis is therefore

not a reliable indicator of whether the associate mode should be included
in the reduced order model or not.

5.2.1.3 Singular Perturbation

Singular perturbation is an established tool for the reduction of models, that
displays multiple time-scale behaviors. The aim in applying this technique
is to separate distinct type of responses: in fact, a system may have some
dynamics that are faster than the dynamics of interest [61]. However fast
dynamics can interact with slower dynamics so that truncation of the fast
dynamics might not be appropriate. Singular perturbation allows us to take
into account the interactions without including only the dynamic effects of
the fast dynamics.

The terminology singular perturbation comes from the fact that a small
parameter ǫ (the so called perturbation parameter) scales the derivatives of
fast dymanics:

ẋ1 = f1(x1, x2, u)

ǫ ẋ2 = f2(x1, x2, u, ǫ)
(5.8)

It is then possible to generate a reduced order model applicable to the time-
scale of interest. To apply the method, the model must satisfy the following
criteria [90]:

1. Sufficiently differentiable over the range of considered model states.
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2. Existance of small physical parameters comparable in magnitude to
of ǫ.

3. The time-scale of interest approximatively of 1/ǫ (corresponding to
the time-horizont of the simulation).

In a linear first-order system, the negative inverse of the eigenvalue λ rep-
resents the system time constant, τ = 1/λ. Even though the system of
interest possess neither of these characteristics, the eigenvalue still provide
a good indication of the ”time constant” of the process.

Singular perturbation approximation is equivalent to model reduction by
residualization where the derivatives of the fastest states are residualized :
that is, we simply set ẋ2 = 0 (or equivalently ǫ = 0). This allows to
transform the set of n = k + ka differential equations in 5.2, into a set
of k differential equations plus a set of ka algebraic equations. This way,
we obtain the partition of the state equations into two sets of dynamical
equations characterized by the variables x1 and x2 of dimension k−ka, and
ka respectively, formally:

ẋ1 = f1(x1, x2, u)

0 = f2(x1, x2, u, ǫ)
(5.9)

An important property of residualization is that it preserves the steady-
state gain of the system Ga(0) = G(0). This is not surprising if we think
that residualization sets some derivatives to zero, which are zero anyway
at steady-state. But this is in contrast with truncation which retains the
system behavior at infinite frequency. Truncation is therefore to be pre-
ferred when accuracy is required at high frequency, whereas residualization
(or generally speaking, singular perturbation) is better for low frequency
modelling.

While the validity of performing model simplification via truncation or sin-
gular perturbation can be evaluated by the degree to which the decoupling
conditions are satisfied and the degree of frequency separation between the
deleted dynamics and the desired dynamics, there is no guarantee on the
accuracy the resulting simplified model. An advantage of these approaches
is that the form of the model (resulting from simplification) is the same as
the corresponding portion of the original. Therefore, if the model had a
special structure before simplification then that structure is retained in the
simplified form. This can be important in allowing the modeller to use his
knowledge to interpreter the accuracy of the resulting simplified model as
well as the effect of various physical parameters on the system response.
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5.2.2 Balanced Reduction

Balanced model reduction for linear system was first introduced by Moore
[77] in order to eliminate states that contribute little to the input-output
behavior of a system. Whereas modal reduction techniques are based on
eigenvalues analysis (and in some sense on stability considerations), bal-
anced reduction methods take into account some other important system
properties such as controllability and observability. In other words, modal
reduction keeps most of the system behavior intact (i.e., modal trunca-
tion preserves the poles and zeros of a system), the reduction methods
based upon balancing retain most of the input-output behavior of the sys-
tem. Balanced reduction methods are explicitly based on asymptotically
stable minimal realization at which the controllability (Wc) and observ-
ability (Wo) gramians are diagonal and equal. The computation of the
gramians matrices (Chapter 3) involves the solutions of a pair of algebraic
Lyapunov equations1:

Wc − AWcA
T − BBT = 0

Wo − ATWoA− CTC = 0
(5.10)

If the solution of the above equations is:

Wc = Wo = diag(σH
1 , σ

H
2 , . . . , σ

H
n ) , Σ (5.11)

where σi are the ordered Hankel singular values of G(s), defined as σH
i ,

√

λi(WcWo), for i = 1, . . . , n, then the system is called balanced.
If the system is stable and controllable then the controllability gramian
(5.12) will also have full rank:

Wc ,

∫

∞

0
eAtBBT eA

T tdt (5.12)

For stable and observable systems the observability gramian (5.13) will have
full rank:

Wo ,

∫

∞

0
eA

T tCTCeAtdt (5.13)

If the open loop system is unstable or marginally stable then gramians can
not be computed because Wc → ∞ and Wo → ∞ [101]. Gramians play
an important role in input-output energy considerations and they provide
a motivation for some of the aforementioned model reduction methods. In
a balanced realization the value of each σH

i is a relative measure of the

1In Chapter 3 we used those equations in order to define the Hankel Interaction Index
Array (HIIA) matrix; of course, they have the same meaning changing only the utilization
scope.
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contribution that xi takes into the input-output behavior of the system.
Therefore if σH

1 ≫ σH
2 , then the state x1 affects the input-output behavior

much more than x2, or any other state because of the ordering of the σi.
The main idea is that the singular values of the controllability gramian
correspond to the amount of energy that has to be put into the system in
order to move the corresponding states. For the observability gramian, its
singular values refer to the energy that is generated by the corresponding
states.
Now, if a nonsingular transformation matrix T ∈ R

n ×R
n exists, such that

we can transform the gramians according to:

W̄c = TWcT

W̄o = T−1WoT
−1

it can be shown that also a state-space transformation exists:

x̄ = Tx (5.14)

The transformed system is given by [37]:

˙̄x = TAT−1 + TBu = Āx̄ + B̄u

y = CT−1x̄ = C̄x̄
(5.15)

and can be expressed in balanced form using the equivalent notation:

(

T−1AT T−1B

CT D

)

(5.16)

The new system given in equations 5.15, or in 5.16, is then called balanced
realization. We can say that if the system is in balanced form, the Hankel
singular values provide a measure for the importance of the states, because
the state with the large singular value is one which is affected the most by
control moves and the output is mostly affected by a change of this state.
Once the system is in balanced form the state vector can be partitioned
into the more important state (x̄1) and the less important component x̄2,
(x =

[

x̄1
x̄2

]

), in order to eliminate (truncate or residulize) the less important
states. The reduced system retains the best possible approximation to the
full order system [77] according to such criteria.

To summarize, the balanced model reduction can be achieved following the
steps in Figure 5.1 and, depending on the model need, we can define a
truncated balanced model (see section 5.2.2.1) or a residualized balanced
model (see 5.2.2.2).
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Figure 5.1: Balanced Reduction Scheme

5.2.2.1 Balanced Truncation

As for the modal reduction methods we truncate the states with small eigen-
values, in balanced truncation we eliminate the states that corresponds to
small singular values. This reduction method results in a good approxima-
tion to the original system over the whole frequency range. The disadvan-
tage of this approach is that it does not preserve the steady-state behavior
of the original system and therefore will result in offset [101].
Reduction by truncation leads to the balanced reduced system given as:

˙̄x1 = Ā11x̄1 + B̄1u

x2 = xss
2

y = C̄1x̄1

(5.17)

The result is a system of ordinary differential equations that contains fewer
states than the original one. The number of states that can be truncated
depends on the system itself and on the accuracy that is required to system
behavior.
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5.2.2.2 Balanced Residualization

If it is important to maintain the same steady state behavior for the reduced
system as for the full order system, residualization can provide better re-
sults than truncation. As for the modal form, residualization is based on
the idea that the derivatives of the states corresponding to the small Hankel
singular values can be approximated to zero while the rest of the system
is retained. That is, if in the modal form we discard the fastest states, we
discard the less controllable and observable states.

Both balanced truncation and residualization methods are related to the cor-
responding modal methods, but whereas modal reduction keeps most of the
system behavior intact, the reduction methods based upon balancing retain
most of the input-output behavior of the system. Therefore, modal reduc-
tion is optimal for uncontrolled systems because it is based upon dynamic
behavior that the states of the system exhibit. On the other hand modal
reduction does not consider the influence of the input-to-state (controlla-
bility) or the state-to-output (observability) behavior. Balanced reduction
methods are more suitable than modal reduction for system that will be
used for controller design because they preserve the input-output behavior.

5.3 Nonlinear Models

So far we have shown how a linear model can be reduced and we have also
seen that balancing for linear systems is a powerful technique that is simple
to implement. But, especially when model-based control methods such non-
linear model predictive control are needed, a nonlinear model can provide
a more accurate description of the process dynamics. However, nonlinear
controllers have some drawbacks when compared to linear controllers due
to the increased complexity introduced by the nonlinearity of the model.
For that reason it is interesting to report in this section some systematic
techniques to achieve a nonlinear model reduction. Anyway, the implemen-
tation of nonlinear controller is not part of this thesis.

To extend the model reduction approaches discussed in the previous sec-
tion to nonlinear systems several new challenges arise, such as numerical
problems and a lack of a suitable theory [37].

5.3.1 Balancing for nonlinear systems

In the nonlinear case a general balancing scheme is not available. One possi-
bility is to linearize the system and apply the methods described in Section
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5.2. However nonlinear behavior will be lost and some results for a specific
class of nonlinear systems do not exist. Lall et al. [64], and also Hahn et
al. ([37], [38]) proposed a systematic procedure for the nonlinear model
reduction: the proposed approach led to an efficient algorithm based on
the covariance matrices for the input-to-state (controllability) and state-to
output (observability) behavior of the nonlinear system. In order to go into
more details a few terms need to be defined.

First of all, it should be noted that, since no theory for general nonlinear
balancing exists, control-affine systems are the only type of systems that
can be balanced2. For such a system, the controllability energy function:

Lc = min
(u∈L2(∞,0), x(−∞)=0, x(0)=x0)

1

2

∫ 0

−∞

‖u(t)‖2dt

and also the observability energy function:

LO =
1

2

∫

∞

0
‖y(t)‖2dt

where x(0) = xo, u(t) ≡ 0, 0 ≤ t < ∞, are defined. The observability
and controllability energy functions are related to the gramians and their
relation is given by the following equations:

Lc(x0) =
1

2
xT

0 W−1
c x0

Lo(x0) =
1

2
xT

0 Wox0

Unfortunately, it is not easy to calculate the energy functions in the nonlin-
ear case. Whether in the linear case the Gramians can be defined by solving
the Lyapunov equations in (5.10), for the non linear case the resolution is
more complicated [93]. For this reason we report the method presented
in [37] where empirical gramians are calculated from process data. The
gramians are then balanced by the same procedure used for linear systems.
The balancing transformation is used within a Galerkin projection in order
to transform the nonlinear system into the balanced form. The resulting
nonlinear equations can be reduced using different truncation or residual-
ization methods.

2A system that is not control affine, i.e., which is linear in the actions but nonlinear
with respect to the states, must be linearized with regard to the control input, in order
to balance it.
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5.3.2 Empirical Gramians and Model Reduction

Empirical Gramians were proposed by Lall et al. [63]. They are restricted
to stable (in the sense of Lyapunov) nonlinear control-affine systems. For
the nonlinear system defined in (5.1) the following sets need to be defined:

Tm = {T1, . . . , Tr; Ti ∈ R
m × R

m, T T
i Ti = I, i = 1, . . . , r}

M = {c1, . . . , cs; ci ∈ R, ci > 0, i = 1, . . . , s}

Em = {e1, . . . , em; standard unit vectors in R
m}

where:

• r, is the number of matrices for excitation directions

• s, is the number of different excitation sizes for each direction, and

• m, is the number of inputs to the system

The controllability covariance matrix is defined as:

Wc,emp =
m

∑

i=1

r
∑

j=1

s
∑

k=1

1

rsc2k

∫

∞

0
Φijk(t)dt (5.18)

where Φijk(t) ∈ R
m×R

m is given by Φijk(t) = [xijk(t)−xijk
0 ][xijk(t)−xijk

0 ]T

and xijk(t) is the state of the nonlinear system corresponding to the impulse
input u(t) = ckTjeivt+u0 (ck describes the inputs size, Tjei determines the
input direction, v(t) denotes the nature of the input and u0 refers to the

input at the original steady state). The quantities xijk
0 refer to the steady

state of the system. If v(t) is piecewise constant as in the case of impulse

and step inputs then xijk
0 (t) will also be piecewise constant. The nature

of the input should be chosen in such a way that it is consistent with the
typical input behaviour of the plant.

The empirical observability gramian is defined as:

Wo,emp =

r
∑

j=1

s
∑

k=1

1

rsc2k

∫

∞

0
TjΨ

jk(t)T T
j dt (5.19)

where Ψjk(t) ∈ R
m × R

m is given by Ψjk
pq = [yijk(t) − yijk

0 ][yijk(t) − yijk
0 ]T ,

and yijk(t) is the output of the nonlinear system corresponding to the initial

condition x(0) = ckTjei + x0. The yijk
o refers to the output measurement

corresponding to the steady state of the system.
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In [63], it is shown that both of these gramians reduce to linear gramians for
linear models. Furthermore, the empirical gramians will reduce to gramians
of the linearized system for small perturbations around operating point. The
empirical gramians have to be determined from experimental or simulation
data, collected within the region where the process is to be controlled. The
empirical gramians matrices capture part of the nonlinear behaviour within
the region of operation.
At this point the empirical gramians can be balanced by the methods for
linear model reduction, and from the balanced gramians it can be concluded
which states contribute the most to the input-output behavior of the system.
States that are either unobservable or uncontrollable do not influence the
input-output behavior and can be eliminated. Once the reduced number of
states has been decided a Galerkin projection is performed to produce the
reduced-order nonlinear system of the form:

˙̄x1 = PTf(T−1x̄(t),u(t)) = Pf̄(x̄(t),u(t))

x̄2 = x̄ss
2

y = h(T−1, x̄) = h̄(x̄(t))

(5.20)

where P = [I 0] is a square matrix of full rank and its dimension is equal
to the number of states of the system.



Chapter 6

ASP Reduced Order Models

Dynamic simulations based on rigorous and detailed modelling have become
a standard tool in many engineering fields. Rigorous models are applied for
a variety of tasks: they allow the exploration of the impact of changing
some design configurations, can be used to provide tool to actively explore
new ideas and improve the learning process as well as allowing the operators
training facilities and thereby increasing their ability to handle unforeseen
situations. In other words, they are useful in understanding the system be-
havior.

As seen earlier, the ASM1 is a widely used model for simulation of the acti-
vated sludge process. The model includes 13 different components and the
dynamic behavior of each component is described by a non linear differential
equation (see the model description in Chapter 2 and [43]). Although the
ASM1 model comprises much of the knowledge of the biological reactions
(when nitrogen and carbonaceous pollutants are considered) a number of
drawbacks exist [52]: lack of identifiability, awkward nonlinearities, difficult
estimation and updating of time varying parameters. So, despite the use-
fulness of a rigorous model, there are some situations where simpler models
are better suited. In process control, for example, the high dimensional-
ity of large models results in enormous computational requirements and
ill-conditioned problems due to interaction of slow and fast dynamics. In
model identification, rigorous models typically require high investments in
model tuning and validation, that can exhibit lack of parameter identifiabil-
ity. In addition, detailed models can contain internal states whose behavior
is difficult to verify so, much understanding can be acquired from a reduced
model describing only the relevant phenomena. A simpler model can be
useful to construct a soft-sensor which is a powerful tool to on-line estimate
of unmeasured states.
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The goal of this Chapter is to construct a simple reduced model for the acti-
vated sludge process, utilizing the systematic procedures exposed in Chapter
5. In Section 6.1, a brief overview of available reduced models is given and
simulation results of two of them are developed and discussed along with
our proposed model. The models represent the basis upon which we design
the soft-sensors (Chapter 7).

6.1 Brief Overview of ASP Reduced Models

Different applications involves different requirement in the reduced model.
For this reason many reduced models for the activated sludge process are
present in literature. In this section a brief overview of some of the avail-
able models is presented, and for each case we discuss the treatment goal for
model reduction. The motivation for the selected approach, together with
the reduced models is also indicated. In most of the cases presented, the
purpose of model reduction is an application to identification and control.

As showed in Chapter 5, two main approaches to reduce complex models
exist: one is based on the modeller physical knowledge about the process
and the other one is based on using systematic procedures. In Section 6.1.1
some reduced model are reported and in Section 6.1.2 some models deduced
by means of systematic techniques are also presented.

6.1.1 Physical Knowledge Reduction Approach

The model reported in this section is essentially a simplification of the bio-
logical process either having as a starting point the ASM1 model or generally
deduced from the authors knowledge about the process. The main aim of
the brief review is to show that different models for the biological reaction
can be achieved and the simplification level depends basically on how the
model will be used.

For example, Isaacs [48] tested three model-based control strategies on a
BioDeniPho1 system. All controllers employ a relational model and a predic-
tive model and different models were applied for different control strategies.
They are based on mass balances over ammonia and nitrite, and volumetric
rate for nitrification are adaptively estimated directly from process mea-
surements of ammonia and nitrate concentration and linked to the control

1The BioDeniPho is an alternating sequential semi-batch system with nitrogen and
phosphorus removal which is obtained by switching the flow and aeration pattern accord-
ing to a cycling strategy.
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variables through experimentally determined empirical correlations, whose
parameters values are also adaptively estimated.

In 1989, Marsili-Libelli [73] developed a low order model for conventional ac-
tivated sludge systems with BOD removal and nitrification. His motivation
was that literature models are not suited for control, due to their complexity
and poor identifiability. The model was developed to describe biodegrada-
tion of carbonaceous COD, nitrification, DO utilization, and sludge sedi-
mentation. As for the bacterial growth, a predator/prey modified Volterra
approach was used instead of the usually applied Modod model.

For Cartersen et al. [14] the problem to be solved was an identification
problem. They formulated simplified models capable to give on-line infor-
mation on the present state of the wastewater treatment plant. This was
obtained by a built-in adaptivity of the models such that the model is up-
dated for each new time step (when new information of the available on-line
measurements are available). The resulting model is a grey box model,
where the Monod-kinetic parameters of the nitrification and denitrification
process can actually be identified and estimated by means of prediction er-
ror decomposition and maximum likelihood estimation. They showed for
the BioDeniPho system that it is possible to find a unique solution for each
of the unknown parameters of the model, starting from data collected in a
real process.

The most straightforward model complexity reduction is obtained by assum-
ing only oxic conditions and thus neglecting the denitrification processes.
Kabouris and Georgakakos [58] investigated the application of an optimal
control method to a reduced form of the ASM1 model obtained in such a way.
The dissolved oxygen concentration is assumed to be fairly high enabling
the decoupling of the oxygen dynamics from the rest of the process dynam-
ics. Only five ASM1 state variables are retained: XS , SS , XP , XI andXBH

(see Chapter 2 for notation). Furthermore, only aerobic growth, decay and
hydrolisis of particulate to soluble substrate are taken into account.

In 1995, Zhao et al. [119] introduced a simplified ASM1 model to describe
the nitrogen dynamics in an alternating activated sludge process. The pro-
posed model is represented by a set of dynamics equations in terms of am-
monia and nitrate concentrations (on-line measurable).

Along the same line Julien et al. (in [57] and in [56]) developed a reduced-
order model for identification and control of a single activated-sludge reactor
operating nitrification and denitrification. The reduced model is split into
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two submodels, one three-dimensional state submodel in aerobic conditions
(considering as state variables nitrate, ammonia and dissolved oxygen) and
one two-dimensional submodel in anoxic conditions, where only nitrate and
ammonia state variables are considered. The identifiability is based on on-
line oxygen and nitrate concentrations data, showing that the reduced model
is structurally identifiable.

Starting from the assumption made in [57], Gomez-Quintero et al. [34]
developed further modifications to the ASM1 model, hereafter referred as
to the GQ et al. model. Jeppsson and Olsson (JOM) [55] reduced the
complexity of the ASM1 on physical grounds. Since we use both models in
soft-sensors design, the former reduced model has been modified in order
to asses the observability. Anyway, we will discuss in finer detail these two
models in the following Sections 6.2 and 6.3, respectively.

6.1.2 Systematic Reduction Approach

In Chapter 5, a different approach to achieve model order reduction has
been analyzed. A frequently encountered strategy in the ASM1 model re-
duction is the singular perturbation theory (Section 5.2.1.3).

We start this overview from a general biological models with Bastin and
Dochain. In 1990, they proposed a general rule for order reduction in their
book on estimation and control of bioreactors [9]. Given the balance for a
generic component ξi:

ξ̇i =
∑

j∼i

(±)kijψj −Dξi −Qi + Fi(
2)

the simplification is then achieved by setting ξi and ξ̇i to zero:

∑

j∼i

(±)kijψj = Qi − Fi

However, the rule is not general for several reasons [115]. Actually, it is not
indicated in a general sense in which cases the dynamics of a component
can be neglected. The general rule is only motivated in two specific situa-
tions: neglegible product dynamics for volatile products with low solubility
and neglegible substrate dynamics in a model with biomass and substrate.

2The notation i ∼ j means that the summation is taken on the reactions with index
j involving the component with index i. The terms kij are stoichiometric coefficients, ψi

the reaction rates, D the dilution rate, Fi is the mass feed rate of the component ξi in
the reactor and Qi is the rate of mass outflow of such component.
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Indeed, these example are not sufficient to explain all the possible situations
with multiple time-scales.

A more general approach is taken in [111], where Van Breusegem and Bastin
obtained the reduction of a reaction network with the assumption that some
reactions are much faster that others. The reaction network of a reaction
system describes the relations between components and reactions:

n
∑

i=1

γijXi →

n
∑

i=1

δijXi

where the nonnegative real numbers γij and δij are the stoichiometric co-
efficients. They express the nominal quantity of the component Xi (i =
1, . . . , n), which is consumed (δij) or produced (γij) by the jth (j = 1, . . . ,m)
reaction.

A systematic approach for reducing complex biological processes was pro-
posed by Steffens et al. [105]. They applied the eigenvalue to state associ-
ation proposed by Kokotovic et al. [61] to a carbon removal and nitrifying
ASP model. As explained in Chapter 5, it is possible this way to quantify
the ”speed” of a state. This information is then used to reduce the model
via singular perturbation analysis.

Keesman et al. [60] analyzed the endogenous phase in an aerobic biodegra-
dation process with no external substate addition. The ASM1 is then re-
duced to the mass balance equations for SS , XS , XBH , XP where the former
two are classified as fast states and the latter two as slow states via singular
perturbation analysis. The separation improves the efficiency in computer
simulations. Furthermore, it is shown that exclusion of SS from the state
vector significately increases practical observability.

Smeths et al. [103] proposed to reduce the complexity of the ASM1 (through
linearization) in order to reduce the computational time. Their aim was also
to provide a valuable tool in a risk assessment environment as well as in on-
line MPC control strategies. The complexity reduction consisted of four
steps:

1. Construction of representative input/output datasets generated by
simulating the full ASM1 model;

2. The ASM1 model is rewritten in a state-space format with linear ap-
proximations of the (nonlinear) kinetic terms;
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3. Identification of the unknown parameters in the linear terms on the
basis of the generated input/output data;

4. Introduction of a multi-model identification procedure.

Linearizing the model around a time-varying reference trajectory (to reflect
variations in load) results in a linear but time-varying model. The Authors
applied the above reduction procedure to an activated sludge process model
consisting of a denitrification tank followed by a nitrification tank and a
settler.

In Lee et al. [67] it is noted that although design of controllers for biological
processes is one of the main objectives in model-order reduction, the pro-
posed models have not always addressed the closed-loop robustness issue.
For that reason, they proposed a reduced-order linear state-space model for
the nonlinear differential equation model of an activated sludge process.The
method relies on an investigation of five different reduction techniques (di-
rect truncating, frequency-weighted balanced realization, Schur balanced
truncation, singular perturbation approximation and optimal Hankel norm
approximation). They concluded that, on the analysis of the resulting fre-
quency errors plots, the reduced model generated from singular perturba-
tion approach gives the lowest errors in low frequency ranges and hence is
deemed most suitable for controller design.

6.2 GQ et al. Model

This model was presented in 2000 by Gomez-Quintero et al. [34]: the
strategy for reducing this model involves biochemical considerations. The
model is based on some of the assumptions made by Julien et al. in [57]:
the alkalinity concentration is omitted, the Xs state variable is included
in the definition of XI and a new parameter KNH4H is introduced to take
into account the possible ammonia limitation for the aerobic and anoxic
growth of heterotrophic biomass. Furthermore, some other assumptions
and considerations were made:

• the term Ss
Ss+Ks

is replaced by a linear expression γSs (where γ is
scalar). This assumes that Ss ≪ Ks is low with respect to Ks.

• both variables Xs and XBH evolve widely when operating conditions
vary over a long time period so the rate value may change significantly
and be fairly far from unity. This means that the term Xs/XBH

Xs/XBH+KX

is substituted by a new parameter k1 specific to the reduced-order
model.
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• the term SNH
SNH+KNH4H

varies between 0.95 and 0.99, when SNH evolves

from 0.95 g/m3 to 10 g/m3, with KNH4H = 0.05 g/m3. Hence, it is
replaced by a constant K2 that preserves he physical meaning of the
heterotrophs growth rate µH as in the ASM1 model.

• the inflow nitrate concentration Sin
NO is neglected.

• during one nitrification-denitrification cycle, XBH , XBA, SND do not
vary so much. They are assumed to be constant terms corresponding
to their mean values.

The final reduced model is described by 4 state variables:

x = [x1, . . . , x4]
T = [SNO, SO, SNH , SS ]T (6.1)

where SNO, SO, SNH , SS have the same meaning as in the ASM1 model.
Also the number of parameter is reduced with respect to the ASM1 model.
The following supplementary approximations were done before grouping the
parameters:

• ηg has been approximated to the constant value 1;

• the sum iBH + 1
YA

has been approximate to 1
YA

because iBH ≪ 1
YA

;

• the term 4.57−YA
YA

has been replaced by 4.57
YA

since 4.57
YA

≫ 1.

Furthermore, the reduced model involves 12 parameters:

p = [p1, . . . , p12]
T

= [YH , iXB , KOH , KOA, KNH , ηg, ηh, α1, α2, α3, α4]
T

(6.2)

where α1, α2, α3, α4 are some ”new” model parameters, which do not have
a real physical meaning but are obtained grouping the ASM1 parameters
according to the assumptions made above.
Considering the following switching functions, the reaction rates of the re-
duced model were given by equations in 6.3:

s1 =
SNO

SNO +KNO
, s2 =

KOH

SO +KOH
,

s3 =
SNH

SNH +KNH
, s4 =

SO

SO +KOA
,

s5 =
SO

SO +KNO
,
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r1 = −Ax4s1s2 + α2s3s4

r2 = KLa(SOST − x2) − Ex4s3

r3 = −Bx4(s3 + s1s2) − α2s3s4 + α3

r4 = (α4 −Dx4)s5 + (C −Dx4)s1s2

(6.3)

where,

A =
α1(1 − YH)

2.86YH
, B = α1iXB ,

C = α4ηh D =
α1

YH
,

E =
α1(1 − YH)

YH
, F = 4.57α2

6.2.1 Test Motion

Since we want to represent the whole bioreactor, with denitrification and
nitrification processes, the GQ et al. model has been used for both of
them. Furthermore, since the state variables in the reduced model are only
the soluble ones, there is no need to represent the secondary settler for this
system. The model has been tested upon the data provided from the consid-
ered wastewater treatment plant: flow rate, dissolved oxygen concentration
in the basis, daily COD and nitrate and ammonia concentration every two
or three days. Those data correspond to the exogenous inputs to the model:

d = [Sin
NO, S

in
NH , S

in
S , Qin/V, Qr/V, Qw/V ]T (6.4)

Furthermore, from the full complex model simulations3 the reduced model
parameters were obtained. In Table 6.1 and in Table 6.2 the parameters for
both anoxic and aerated zone are reported.

Anoxic α Aerobic α

αp
1 = 4.845 d−1 αn

1 = 163.9 d−1

αp
2 = 152.098 gm−3d−1 αn

2 = 224.630 gm−3d−1

αp
3 = 42.909 gm−3d−1 αn

3 = 92.120 gm−3d−1

αp
4 = 340.241 gm−3d−1 αn

4 = 739.740 gm−3d−1

Table 6.1: Composite parameters in the GQ et al. reduced model

In Figure 6.1, the test motion for the reduced model (dashed line) is com-
pared with the full model (solid line). As we can note, the reduced model

3The reference model in this case is the twostepmantis model in the GPS-X environ-
ment that is exposed in Chapter 2.
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ηh = 0.4 ηg = 0.5
KOA = 0.23 gO2m

−3 KOH = 0.2 gO2m
−3

KNH = 0.2 gNm−3 KNO = 0.1 gNm−3

iXB = 0.086 gNgCOD−1 YH = 0.7

Table 6.2: Kinetic and stoichiometric parameters in the GQ et al. reduced
model

gives the motion tendency but with significant offsets due to the errors in
the reduced model assumption and parameter identification. From these
results follows that, using the reduced model, the soft-sensor gives a bet-
ter inference of the modelling errors and reaches the actual concentration
motion.

(a) (b)

(c)

Figure 6.1: Test motion of the Gomez-Quintero et al. reduced model [Full
model (solid); GQ et al. (dashed)]
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6.3 JOM Model

One of the major limit encountered using the GQ et al. model was that the
organic matter is represented only in terms of SS (the readily biodegradable
substrate) which is actually not directly measurable on-line. So, there was
the need to find a model to represent the organic matter with some ”real”
measurements. We chose the reduced model proposed by Jeppsson and
Olsson ([51], [55]), which includes the COD concentration as state variable.
This model represents one of the first attempt to reduce the ASM1 on the
basis of qualitative assumptions about the biological processes.

The four fraction of organic matter (soluble inert organic matter SI , readily
biodegradable substrate SS, particulate and inert organic matter XP and
XI , and slowly biodegradable substrate XS) are replaced by a single vari-
ableXCOD which is considered directly measurable and comparable with the
experimental data. The two types of heterotrophic and autotrophic microor-
ganisms (XBH ,XBA) described in the ASM1 are maintained. Heterotrophs
are considered to growth in both anoxic and aerobic environments, whereas
autotrophs grow only in an aerobic environment. The only two nitrogen
fractions included in the reduced order model are the nitrate nitrogen and
the ammonia nitrogen (SNH , SNO). Summarizing, the JOM model includes
5 state variables:

x = [XCOD, XBH , XBA, SNO, SNH ]T

consisting of 8 parameters:

p = [rH , rA, YH , YA, bH , bA, iXB ]T

where rH [m3 (gd)−1] and rA [m3 (gd)−1] are the reaction rate factors for
heterotrophs and autotrophs, respectively. The other parameters have the
same meaning than in the ASM1 model.

Some other assumptions have been made about the reaction rates. In fact,
in the ASM1 model the hydrolysis of entrapped organic nitrogen is de-
scribed. This reaction continues via the ammonification process to form
ammonia nitrogen. In the reduced model, ammonia nitrogen is assumed
measured and its formation mechanism is not considered. The hydrolysis
of entrapped organics in the ASM1 is simplified. Therefore, the decay ma-
terial (heterotrophs and autotrophs) is formed into organic substrate and
ammonia directly. Another reason for this simplification is that the true na-
ture of the hydrolysis mechanism is not well known. Hence, from the eight
processes represented in the ASM1 model only four remain in the reduced
model.
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6.3.1 The modified JOM

In the JOM, the oxygen concentration is excluded from the state variables
set since it is assumed that the dissolved oxygen (DO) is controlled and the
corresponding growth expressions become independent of DO variation.
Bearing in mind that our goal is to design a soft-sensor based on this re-
duced model with on-line measurements of dissolved oxygen, in order not to
loose the system observability we can not assume a constant DO. For that
reason, we modified the JOM including the oxygen mass balance (hereafter
referred as to the JOMO2 model). This means that we re-include also the
ASM1 switching functions (in order to discriminate between the anoxic and
aerobic environments) and we also consider the same model for both reactor
zones instead of the two different models in the JOM. Including the ASM1
switching function we include also some nonlinearities in the JOM model.
The modified JOM model now consists of six state variables:

x = [XCOD, XBH , XBA, SO, SNO, SNH ]T (6.5)

Furthermore, in order to calculate the oxygen mass transfer coefficient, KLa,
another equation was introduced in each of the models of the bioreactor.
Adopting a Petersen matrix notation, the JOMO2 model is summarized in
Table 6.3.

For the sake of completness, we report that the JOM model was also modi-
fied in another work by Ayesa et al. [6] to evaluate its observability for two
separate WWT plant configurations. Incorporating to the JOM model the
particulate inert organic matter XI allowed to model the suspended solids in
the plant. Their objective was again to develop and apply advanced control
strategies to the plants.

6.3.2 Test Motion

The reduced JOMO2 model simulations was validated with respect to the
full complex model4. The simulations were carried out reproducing a real
situation for a horizon time of fifteen days, as for the Gomez-Quintero et
al. in Section 6.2.1. Also in this case, the reduced model parameters were
obtained on the basis of the full complex model simulation. In Table 6.4 the
model parameters are reported. It should be noted that since they have,
in some way, lost the original ASM1 meaning they are abeled with the ”∗”
superscript.
In Figure 6.2 the bioreactor effluent concentrations for the reduced model
are compared with the complex model. We note that a relatively good fitting

4As for the GO et al. the reference model is the twostepmantis model
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µ∗H = 0.005 d−1 µ∗A = 0.177 d−1

b∗H = 2 d−1 b∗A = 0.06 d−1

K∗

OA = 0.05 gO2m
−3 K∗

OH = 0.4 gO2m
−3

iXB = 0.086 gNgCOD−1 α = 0.8 m3gN−1

Y ∗

H = 0.2 Y ∗

A = 0.1

Table 6.4: Kinetic and stoichiometric parameters in the JOMO2 reduced
model
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Figure 6.2: JOM2 model test motion [Full model (solid); JOMO2 (dashed)]

exists for nitrate concentration (Figure 6.2b), whereas the ammonia gives a
good motion tendency (Figure 6.2c) but with a significant offset. Both SNO

and SNH are soluble components: their behavior is not influenced by the
presence of the secondary settler. It should be noted that the aim of the
JOM2 model reduction focuses on the bioreactor, whereas the secondary
settler was actually not considered. In fact, the settling process was taken
into account only by introducing a percentage of solids removal equal to
80%. This explains the COD behavior for the reduced model in Figure 6.2a
that does not fit the effluent concentration of the full complex model (i.e.
bioreactor + settler).
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6.4 Proposed Low Order Model

Up to now, we have investigated the system behavior with low order models
obtained with physical knowledge reduction. The GQ et al. model showed
that the process identifiability might be difficult if the parameters lose their
physical meaning: that is, the reduced model needs a recalibration proce-
dure. Also, we noted that a model based upon ”measurable” states for the
organic pollutants (instead of SS) can gain importance in practical appli-
cations. Mainly for this reason, we developed the JOMO2 focusing only in
the bioreactor model. Now we need a model which is able to represent the
whole activated sludge process, i.e., a bioreactor and a secondary settling
tank. This model has to be compared directly with the ASM1 model and
has to be based upon measurable variables. For all these reasons, the pur-
pose of this section is to develop simple dynamical models for the activated
sludge system suitable for operation and control: they have to be easy to
handle and/or take into consideration important properties of observability
and controllability. The resulting model can be sufficient to describe ma-
jor phenomena but still limited to be handled in a quite simple way. The
systematic techniques exposed in Chapter 5 represent the theoretical frame-
work for our reduction method.

We saw that the majority of model reduction techniques have been de-
veloped for linear models but, we know also that the ASM1 model is a
nonlinear one. For that reason, the first step consists of linearizing the full
model. Considering the ASM1 model implemented in Simulink (Chapter
2), the linearization task has been performed using Matlab. The station-
ary operating points were found firstly with a trim analysis and then from
simulations. The obtained linear model is represented in the standard state
space format as reported in 5.2. It is completely described by the 4-tuple
(A, B, C, D).

6.4.1 Modal Model

The modal reduction approaches rely on the eigenvalue to state association.
From the linearized model, the eigenvalue to state association was performed
(Section 6.4.1.1) in order to truncate or residualize the model. Figure 6.3
and in Section 6.4.1.2 illustrate the adopted methodology.

6.4.1.1 Eigenvalue to State Association

The eigeinvalue to state association is defined with the homotopy method:
this means that a system with a known correspondance between state and
eigenvalues must be constructed. We start considering the diagonalized Ap
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Figure 6.3: Systematic approach for modal reduction

and An matrices for the anoxic and aerated zone, respectively. In such a way
each diagonal element (i.e., each eigenvalue) is directly related to the state.
Then the system is transformed using the homotopy parameter r ∈ [0, 1]
into the actual system while tracing the eigenvalues. We considered different
steady state points and we observed similar system behaviors for all of
them. The results for one of them are reported; in particular, in Figure
6.4 the homotopy function for the anoxic zone components is shown and in
Figure 6.5 the results for the aerated zone ones are illustrated (for a easier
visualization the eigenvalues are reported in log scale). Although only the
real part of the eigenvalue is plotted, in these figures every variable has a
zero imaginary component. This aspect denotes a smooth (non-oscillatory)
response to transient. In both situations, the state variables are classified
on a time basis in three groups:

• fast states, with time constants of seconds;

• medium states, with time constants of minutes;

• slow states, with time constants of hours.
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Figure 6.4: Eigenvalue traces for the ASM1 model variables in anoxic zone

From Figure 6.4 and 6.5, we notice that the system does not behave the
same way in both zones. In order to decide which states are fast, medium
or slow, a critical region in the eigenvalue space is used to define the region of
”reducible” or ”irreducible” states. Any state whose associated eigenvalues
is outside the critical region is considered reducible. The region of interest
is chosen as the one with eigenvalues comprised between 250 and 90 d−1

corresponding to the medium state variables. The remaining reduced states
are the following:

xp = [XND, SND, XS ]T

xn = [XND, XS , SO, SNH , SND]T
(6.6)

6.4.1.2 Proposed Modal Model

If we had strictly considered the homotopy method, we would have obtained
different models for the biological reactor zones for the state variables re-
ported in 6.6. The problem is that in such a situation the system would
have lost a lot of information:

• All the organic compound are represented only with XS , the slowly
biodegradable matter (representing only a small portion of the effluent
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Figure 6.5: Eigenvalue traces for the ASM1 model variables in aerobic zone

COD). Being a particulate component, most of it will be recirculated
back with the recycle flow.

• The nitrogen compounds are represented in the anoxic zone only as sol-
uble and particulate biodegradable organic nitrogen, (SND and XND).
They are essentially representative of the hydrolysis reaction: i.e., the
nitrogen removal is not completely represented.

• In the aerobic zone only the ammonia concentration is considered and
there is no information about the nitrate behavior.

As for the organic compound, we included the soluble inert organic matter
SI as representative for the COD concentration in the system. We know that
inert compounds are not involved in any conversion process, this means that
their mass balance contains no stoichiometric and kinetic coefficient. Since
it is a soluble component, it leaves the system at the same concentration
as it enters (almost 90% of the effluent COD, according to [96]). As a first
attempt, we tried to implement the model with the state variables in 6.6
plus the SI compound. The results were not so good since the nitrogen
component is not taken into considerations (its value was constant). For
that reason, we choose to represent both zones in the bioreactor with the
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same model and also consider the nitrate/nitrite SNO. The state variables
for the proposed reduced model are the following:

x = [SI , XS , SO, SNO, SNH , SND, XND]T (6.7)

In order to preserve the steady state behavior of the original system and
not to destroy the physical interaction between the state variables, we con-
sidered the truncation approach with the truncated states as very fast (i.e.,
ẋTrunc → ∞). The other adopted approach is the singular perturbation
method that is a residualization method. In this case, the derivatives of
the not discarded state variables are approximated to zero (i.e., ẋRes → 0),
leading to a system consisting of differential equations and algebraic equa-
tions. Inevitably, longer computational times are required. From the 13
state variables in the ASM1 model we obtain a reduced model with 7 state
variables and we refer to this model as Model1.

Recalling some of the considerations made by Jeppsson [51] about the hy-
drolysis processes (not included in the JOM model) a further improvement
is introduced. Jeppsson assumptions were motivated essentially because the
hydrolysis is a process not well understood due to the uncertainty and to
the complex description of the mechanisms involved. Not including the hy-
drolysis to describe the transformation of organic matter, the hydrolysis of
the entrapped nitrogen should not been included as well (in fact, accord-
ing to the ASM1 model they are the same process). This means that we
can not consider also SND and XND as state variables. We noted that not
considering the hydrolysis process, we should not consider also the slowly
biodegradable organic matter, Xs. Neverthenless, this further assumption
leads to a system with incomplete information about particulate compound.
Therefore, a reduced model involving only 5 variables:

x = [SI , XS , SO, SNO, SNH ]T (6.8)

is developed and we refer to this as Model2.
In both approaches, the nonlinearities are maintained, meaning that the sys-
tem keeps its properties not only in the region around the equilibrium value.

The models are tested considering the experimental data and in Figures 6.6
some results are reported. On the left column the test motions with the
truncation approach are depicted, whereas on the right column presents the
residualization approach results.

We can note that the effluent COD behaves the same way with the trun-
cation Figure 6.6a approach and with the residualize one Figure 6.6b. Of
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Figure 6.6: Effluent concentrations for the porposed modal models with
experimental input data [ASM1 (solid); Model1 (dashed); Model2 (dot-
dashed)]

course, the COD concentration is independent from the SND and XND pres-
ence, so its behavior is the same for both Model1 and Model2.

In Figure 6.6c and 6.6d, the test motion for the effluent nitrate compound
is shown. As we can note, the SNO gives a good motion tendency when the
residualizated approach is taken, but its behavior it is not so good when
the model is expressed in the truncated form. Finally, the effluent ammonia
concentration is shown in Figures 6.6e and 6.6f: in this case, we can note
that the reduced models give better result with the residualization approach
even if there is a significant offset (evident in the truncation case). This is
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Figure 6.7: Proposed model test motion - Effluent concentrations with pe-
riodic input data [ASM1 (solid); Model1 (dashed); Model2 (dot-dashed)]

probably due to the fact that the residualization method is more suitable
for low frequency modelling: this is not the case for the ammonia concen-
tration. For this reason, since we are aware of the limits in the TecnoCasic
data we have alternatively considered the typical variations of dry weather
conditions using the weighting functions depicted in Figure 4.1, for both
inlet flow rate and load [49]. In Figure 6.7, the output concentrations with
the periodic input flow and concentrations are reported. From Figure 6.7a
and 6.7b, we can note that effluent COD behaves the same way with both
Model1 and Model2.
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From Figure 6.6 and 6.7, we also note that the residulialized model is more
suitable than the truncated one, even if with truncated model the integra-
tion time is significatively less than the residualization time. In Table 6.5
the time elapsed, using a Pentium4 2.4 GHz with 1 Gb RAM machine, is
reported for each model simulated for 15 days with periodic inputs. As we
can note, the residualized model takes longer CPU time than the trucated
one (this is obvious, if we think that by letting some derivatives approxi-
mately to zero in the residualization model we are introducing additional
stiffness to the system). Even if we have a longer simulation period for the
truncated model, the residualized is always faster than the full one.

Elapsed
Time

Full ASM1 105 s
Model1 Truncated 24 s
Model2 Truncated 25 s
Model1 Residualized 47 s
Model2 Residualized 45 s

Table 6.5: Elapsed time comparison

As for the Model2 in residualization form, it is our proposed reduced model.
It consists of 5 state variables (6.8) and 10 stoichiometric and kinetic pa-
rameters:

p = [YH , YA, iXB , KOH , KOA, KNO, KNH , KX , ηg, ηh]T (6.9)

along with the five theta coefficients:

θ1 = µHX
r
BH

Sr
S

Sr
S +KOH

θ2 = µAX
r
BA

θ3 = (1 − fP )(bHX
r
BH + bAX

r
BA)

θ4 = kaS
r
NDX

r
BH

θ5 = khX
r
BH

(6.10)

The superscript ”r” is to highlight that we are considering the residualized
state variables. In order to validate the model the assumptions are verified:
that is, we essentially confirmed that the coefficients 6.10 can be considered
constant without loosing in feasibility. In fact, we noticed that except θ1,
all of them are dependent only on slow dynamics, such as Xr

BH and Xr
BA,

meaning that actually they vary very slowly. The term θ1 also depends
on Sr

S (which has shown a very fast dynamic either in anoxic or in aerobic
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zone), however, it has been verified that Sr
S keeps a mean value relatively

constant during the time of interest. Therefore, we consider θ1 constant
with time. Finally, the proposed model is summarized in a kind of Petersen
matrix form as shown in Table 6.6.

1 2 3 4 5 Reaction
SI XS SO SNO SNH

−1−YH
YH

−iXB θ1
SO

SO+KOH

− 1−YH
2.86YH

−iXB ηgθ1
KOH

SO+KOH

SNO
SNO+KNO

−4.57−YA
YA

1
YA

−iXB − 1
YA

θ2
SNH

SNH+KNH

SO
SO+KOA

1 θ3

1 θ4

θ5
XS/Xr

BH
KX+XS/Xr

BH
( SO

SO+KOH

−1

+ηh
KOH

SO+KOH

SNO
SNO+KNO

)

Table 6.6: Proposed Model

6.4.2 Balanced Model

As stated at the beginning of this Chapter, different reduced model aims
at different model reduction approaches in order to obtain the better model
for each situation. In this Section, a model that preserves the controllability
and observability of the system is developed. We start considering that a
balanced realization is an asimptotically stable minimal realization where
the controllability and observability gramians are equal and diagonal. Any
minimal realization of a stable transfer function can be balanced by a simple
state similarity transformation. Following the procedure summarized in
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Figure 6.8, we can obtain the reduced balanced model.

Figure 6.8: Systematic approach for balanced reduction

In our case, we first linearized the model for the whole activated sludge
system (108 state variables: 13+1 for the controlled anoxic zone and 13+1
for the controlled aerated one in the bioreactor, 10 particulate variables and
70 soluble in the secondary settler). From the linearized system, the corre-
sponding balanced formulation is derived using the balreal function5. The
entries of the joint gramian (forming the vector of the Hankel singular values
σH) are then used to reduce the model order. Because σH reflects the com-
bined controllability and observability of individual states of the balanced
model, we deleted those states associated to a small Hankel singular value
(in our case σH < 1e−5) while retaining the most important input-output
characteristics of the original system. This is done using balred function,
which computes the reduced-order approximation for the balanced system.
This way, we reduced the model order from 108 to 28. Taking this approach
it seems that the system becomes a kind of ”black-box” system, where the
real meaning of the internal state variable is lost, whereas the input-output

5
balreal gives an equivalent realization with controllability and observability gramians

equal and diagonal
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relationship is still very well represented. It is clear now why this approach
is very useful when the final goal for model reduction is to preserve the con-
trollability and observability properties of the system to design for example
a model based controller.
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Figure 6.9: Balanced model test motion [ASM1 (solid); linearized (dot);
balanced (dashed); residualized (dot-dashed)].

It should be noted that the state variables in the Matlab balanced models
are in terms of perturbative variables. That means that an adequate trans-
formation must be done. We investigate the reduced system behavior only
with respect to the inputs (i.e., the manipulated variables) and the output
(i.e., the controlled variables). In Figure 6.9 some results are reported. In
such a case, the input to the system defined a periodic variation on the waste
flowrate (as a manipulated variable), whereas the reported outputs are rela-
tive to the candidate controlled variables in Chapter 4: the sludge retention
time (Figure 6.9a), the mixed liquor suspended solids (Figure 6.9b), the
food-to-microorganisms ratio (Figure 6.9c), and of effluent ammonia (Fig-
ure 6.9d). As we can note all the models give a good motion tendency when
compared to the full model (even if, in some case there is a significative
offset). This is quite normal if we think that the model states are reduced
to only 28. The constructed variables do not have a real physical meaning,
a coordinate transformation must be realized to come back to their original
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meaning.

In addition, also the empirical gramians could have been used for non-
linear model reduction. Instead, we have tested the approach to check the
controllability and observability of the system [97] and to compare to the
results obtained with linear gramians and nonlinear observability matrices.
The obtained results are omitted because they were not so different that
in the linear case, showing that nonlinearities are not so important in the
considered region of interest.
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Chapter 7

ASP Software Sensors

In Chapter 4 we assumed that all required measurements to build up an
optimal control structure were available. Unfortunately, one of the major
complications to control and automate a wastewater treatment plant is the
lack of sensor for on-line measures. Until very recently, measurements in
a treatment system were typically limited to flows, pH and dissolved oxy-
gen. However in a successful manner we can use the simply models reduced
(Chapter 6) for monitoring the process, i.e., to predict the time evolution
of the process variables on-line. In this way, we can build very powerful
monitoring tools which can be used to follow the time evolution of variables
that are not accessible on-line. Such tools can also be used for diagnosis
about the operation of the plant and help the operator or a supervision
system to take the appropriate actions to maintain the process in a good
operating conditions, diagnose possible process failure or prevent accidents.
In the following, we call these monitoring tools soft-sensors.

This Chapter is organized as follows: firstly we briefly explain the soft-
sensor meaning and how it might be constructed (Section 7.1). Then we
concentrate on the activated sludge process, developing software sensors for
the reduced models implemented in Chapter 6: in Section 7.2.1 the GQ
et al. are used for an extended Kalman filter and a nonlinear geometric
observer, the same observer is used also for the JOMO2 model in Section
7.2.2 whereas a simple Luenberger-like observer is implemented with the
proposed model Model2 in section 7.2.3.

7.1 Software Sensors

A software sensor can be defined as an algorithm built from a dynamical
model of a process to estimate on-line unmeasured variables and/or un-
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known (or poorly known) parameters (e.g., specific reaction rates, or some
other kinetic or yield coefficients) from few measurements available on-line
(typically, flow rate, nutrient concentrations, turbidity, pH, etc.). In that
sense, these tools can be viewed as ”sensors” based on an algorithm (soft-
ware): for this reason they are called ”software sensors” or ”soft-sensors”.
They essentially refer to the state estimation problem of determining the
values of the states variables.

In order to describe the basic concepts of a state estimator, we consider the
simple case of a process model (without any measurement errors or process
noise) as expressed in the state space time invariant form:

ẋ = Ax + Bu

y = Cx
(7.1)

with x ∈ R
n and y ∈ R

m. The matrices A, B, C contain the characteristics
parameters of the system, u is the vector of the inputs or forcing functions,
x are the state variables and y are the output observations.

If the system in 7.1 is observable, on-line estimates of the states x̂ are
obtained from the following observer equation 7.2 in which a driving term is
included to minimizing the observation error (e = y− ŷ) between measured
values y and model prediction ŷ = Cx̂:

ˆ̇x = Ax̂ + Bu + K(y − ŷ) (7.2)

Estimates of the states are therefore obtained by simply integrating equation
7.2 and the design of the observer reduces to the adequate choice of the
matrix K, the gain matrix. The standard approach starts from the desire
to minimize the observation error. The dynamics of the observation error
are obtained by subtracting the observer equation (7.2) from the process
model (7.1):

ė = A(x − x̂) − KC(x − x̂)

ė = [A − KC]e
(7.3)

The aim is reduced to the problem of designing the gain matrix in such a
way that the observation error decreases in a desirable way.

These concepts bear the same meaning when a more general case is consid-
ered: that is, when a nonlinear process is corrupted (as showed in Figure
7.1) by process noise (ξ(t), due to either unknown disturbances or model
errors). In addition, a corrupted estimate of the initial conditions and out-
put data (which are some combination of the state variable h(t)), can be
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considered. The magnitude of the estimate correction depends also in this
case on the gain matrix K which in turns depends on the error statistics of
the model and the output data.

Figure 7.1: Sequential estimator structure

From this model generalization, a sort of classification has been made be-
tween observers and estimators; being the former estimators for state vari-
ables of a deterministic system [88], i.e., a system without any significant
process noise or measurement error. Bastin and Dochain [9] introduced an-
other distinction: they refer to state observers for reconstructing on-line
the time evolution of unmeasured process component concentrations, and
to on-line state estimators for unknown or badly known parameters.

In any case, the state estimation sense remains the same: the problem of
determining the values of the state variables from only the knowledge of
the outputs and the inputs. Depending on the way to choose the gain
matrix K, several examples of software sensors can be found in literature.
In particular, there exist four fundamental approaches to observer design
[2] for nonlinear system:

• The extended Kalman filter [50]: the most widely used state estima-
tion technique in chemical engineering. Its design is simple but lacks
in both stability criteria and systematic tuning procedures.

• Geometric observer [62]: which guarantees robust stability with linear
input-output errors dynamics.

• High-gain approach [30]: which guarantees stability, but has a complex
tuning procedure.
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• Sliding mode [102]: which guarantees robust stability, but has an
elaborate design.

In the following we overview only the applied approaches considering an
activated sludge process, and even if the estimation technique adopted will
be different, the basic procedure in the soft-sensor design is essentially the
same. It consists the two following main steps:

• First Stage: observability or detectatibility assessment. The evalu-
ation of some measures to determine the degree of observability, the
definition of observability indices and unobservable states.

• Second Stage: estimator construction and tuning. A systematically
with physical interpretation must be performed.

7.1.1 Software sensor design

We said that the first step in software sensor design is the definition of
the observability and detectability of the system. So far in the previous
Chapter, we have discussed the observability properties assuming that the
concept was known, in this section we give a observability definition in order
to better understand the first stage in the software sensor design.

Simply speaking, the notion of observability can be defined as the possibil-
ity to connect the state variables of a dynamical system to the measured
variables via the dynamical model of the system. Essentially, a system is
observable if every state variable of the system affects some of the process
variables [24]. An important consequence of the observability of a system
is the ability to reconstruct the time evolution of the state variables from
measured variables in a arbitrary finite time evolution from any initial con-
ditions. To be more precise:

If every initial system state x(to) can be determined through knowledge of
the system inputs u(t) and the system output y(t) over some finite time
interval to ≤ t ≤ t1, then the system is completely observable [88].

Conditions for observability have been derived for a wide number of classes
of systems. For simplicity, we consider a linear system in the state space
form in 7.1. It can be shown [88] that the system is completely observable



7.1 Software Sensors 127

if and only if the following matrix O has full rank.

O =















C

CA

CA2

...
CAn−1















(7.4)

A weaker property than observabilty is detectability. Detectability is the
property that all unstable modes of the process are observable:

• m ≤ rank(O) ≤ n;

• eigenvalues of the matrix A must be strictly negative.

Clearly, any observable system is also detectable. The property of de-
tectability is important because in such a way we can partition the state
vector x in observable xI and unobservable state xII . Moreover, we may
successfully design an observer/estimator for an unobservable but detectable
system so as to estimate the unstable modes.

7.1.2 Luenberger Observer

The Luenberger Observer is the simplest approach to observer design. The
objective is to select K such that the error dynamics in 7.3 are asymptoti-
cally stable (i.e., the error converges to zero). This is achieved by choosing
K such that [9]:

• the matrix [A − KC] and its derivative are bounded, so that conver-
gence is guaranteed:

‖A− KC‖ ≤ C1

‖
d

dt
[A − KC]‖ ≤ C2

• the eigenvalues of [A− KC] have strictly negative parts, so that sta-
bility is assured

The importance of the state observabilty becomes clearer: if the system is
not observable, it is then not possible to freely assign the dynamics of the
observation errors (we can not freely choose the elements of K).
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7.1.3 Extended Kalman Filter

In 1960, Kalman published his famous paper describing a recursive solution
to the discrete data linear filtering problem [59]. Since that time, due in
large part to advances in digital computing, the Kalman filter has been the
subject of extensive research and application. In this section, we give only
a brief explanation of the Kalman filter and of the extended Kalman filter,
which is applied to the activated sludge process.
For a more detailed and theoretical derivation of the Kalman filter and its
variant some extensive references should be consulted. For example a very
”friendly” introduction to the general idea of the Kalman filter can be found
in the first chapter of [74], while a more complete discussion can be found
in [69].

Simply speaking, the Kalman filter estimates a process by using a form of
feedback control: the filter estimates the process rate at some time and then
obtains feedback in the form of noisy measurements. As such the equations
involved in the Kalman filter fall into two groups:

1. Time update equations, which are responsible for projecting forward
(in time) the current state and error covariance estimates to obtain a
priori estimates for the next time step.

2. Time measurements equations, which are responsible for the feedback,
i.e. for incorporating a new measurements into the a priori estimate
to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations,
while the measurement update are the corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector algorithm. The
basic operation of the EKF is showed in Figure 7.2.

The Kalman filter addresses the general problem of trying to estimate the
states x ∈ R

n of a discrete-time controlled process that is governed by a
linear stochastic difference equation. However, some of the most interesting
and successful applications of Kalman filter have been with the estima-
tion of nonlinear processes (see for example [7] and [8]). A Kalman filter
that linearizes around the current mean and covariance is called Extended
Kalman Filter (EKF). The process is assumed to be governed by the non-
linear stochastic differential equation:

ẋk = f(xk, uk, wk) (7.5)

with a measurement z ∈ R
m, such that:

zk = h(xk, vk) (7.6)
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Figure 7.2: Scheme of the Extended Kalman Filter operation

The random variables wk and vk represent the process and measurement
noise. The nonlinear function f relates the state at the previous time step
k − 1 to the state at the current time step k and it includes as parameters
any driving function uk. The nonlinear function h relates the state xk to
the measurements zk.

We define x̂−

k ∈ R
n to be the a priori1 state estimate at step k given

knowledge of the process prior to step k, and x̂k ∈ R
n to be the a posteriori

state estimate k given the measurement zk. In mathematical notation, the
EKF calibration procedure is:

• For the time update equations (i.e., the prediction equations):

1. Projection of the state from tk to tk+1: ẋk = f(xk + uk, 0)

2. Projection of the error covariance from tk to tk+1:
Ṗ = f(xk, uk, wk)P + PfT (xk, uk, wk) + Q.
This represents the Riccati equation, where Q is the model error
covariance, P is the estimate error covariance.

• Fo the measurement update equations (i.e., the correction part):

1. Compute the Kalman gain matrix:
Kk = P−

k HT
k (HkP

−

k HT
k + Rk)

−1

where R represents the measurement error variance

2. Update estimate with the measurements:
zk: x̂k = x̂−

k + Kk(zk − hk)

3. Update the error covariance: Pk = (I − KkHk)P
−

k

1Note that with the ”minus sign” we will indicate the a priori variables
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In the actual implementation of the filter, the measurement noise covariance
R is usually measured prior to operating the filter. Measuring R is gener-
ally practical (possible) because we need to be able to measure the process
anyway (while operating the filter) so we should generally be able to take
some off-line sample measurements in order to determine the variance of the
measurement noise. In other words, R depends on the measure precision.
The determination of Q is generally more difficult as we typically do not
have the ability to directly observe the process we are estimated; so, Q can
be considered as a tuning parameter.

7.1.4 Nonlinear Geometric Observer

The nonlinear geometric observer (NGO) has been recently proposed by
Alvarez and Lopez [3]. The NGO is a nonlinear estimator based on the
differential geometry theory which is a method principally characterized by
its applicability to either observable or detectable systems, encompassing a
broad class of plants in process system engineering. The proposed estimator
design includes a robust local convergence and a systematic construction-
tuning procedure. It was successfully applied to solve the local nonlinear
estimation problem of a free-radical homopolymer reactor [3], [2], to infer
the concentration in a catalytic reactor [72], and to estimate the product
composition profiles for a distillation column [109]. A detailed discussion
on the construction of the estimator can be found in [3] and in [70]. Only a
brief summary of the procedure is given here.

Let us consider a nonlinear dynamical system in the general form:

ẋ = f(x, u, p)

y = h(x,p)

where p are the model parameters, and x, u, y have the usual meaning
with x ∈ R

n, x(t0) = x0 and y ∈ R
m.

According to Alvarez and Lopez [3], the motion x(t) is robustly exponentially
estimable if there are m integers (observability indexes) κ1, κ2, . . . , κm (κ1+
κ2+· · ·+κm ≤ n, κi > 0) and a map ΦII(x, u, r) = [Φk+1, . . . ,Φn] such that,
in some neighborhood about [x, u, r] the following conditions are verified:

1. the map Φ(x, u, p) = [ΦT
I , ΦT

I ]T is robustly invertible with respect to
x;

2. the map ψ = [Lκ1
f h1, . . . , L

κm
f hm]T is Lipschitz continuous;
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3. the motion of the unobservable state xII is robustly exponentially
stable.

The map ΦI is defined as:

ΦI(x, u, p) = [h1, Lfh1, . . . , L
κ1−1
f , . . . , hm, Lfhm, . . . , L

κm−1
f hm]T (7.7)

where, the expression Li
fhj indicates the recursive directional derivative of

the time varying scalar field hj(x, t), with j = 1, . . . ,m, along the time-
varying vector-field f(x, t). When k = n (i.e., when there are not unobserv-
able dynamics and condition (3) is trivially met) the motion x(t) is said to
be robustly exponentially (RE) observable. Otherwise, if κ < n the motion
is said to be robustly exponentially (RE) detectable.

When the above conditions are verified the following observer can be con-
structed:

ˆ̇xI = fI(x̂, u, p) + Φ−1
x K0[y − ŷ]

ˆ̇xII = fII(x̂, u, p)

ŷ = h(x̂I , p)

(7.8)

where x = [xI , xII ], xI andxII being respectively the observable and unob-
servable states with xI ∈ R

k and xII ∈ R
n−k.

In the particular case k = n, there are not unobservable dynamics and the
proper form of the observer is:

ˆ̇x = fI(x̂, u, p) + Φ−1
x K0[y − ŷ]

ŷ = h(x̂, p)
(7.9)

In the equations (7.8) and (7.9), K0 represents a constant matrix whose
entries are the gains of the observer. The value of the gains are tuning
parameters of the observer, and they should be set such that the reference
linear, non interactive and pole-assignable error dynamics is stable [3].

7.2 ASP Soft-Sensor Applications

Many soft-sensor applications in wastewater treatment can be found in liter-
ature. For example Lindberg [68] proposed on-line methods for estimating
the time-varying respiration rate and the nonlinear oxygen transfer func-
tion from measurements of the dissolved oxygen concentration. Also a work
presented by Sotomayor et al. [104] deals with oxygen estimation: they
considered the design of a soft-sensor for on-line estimation of the biological
activity of microorganisms in an ASP, which are intimately related to the
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dissolved oxygen concentration. Benazzi et al. [10] proposed a soft-sensor
implementation based on an EKF for the on-line tracking of the total sus-
pended solids.

In our study, the on-line monitoring problem consists on designing a soft-
sensor for estimating mainly the effluent ammonia and organic compound,
from the available measures of dissolved oxygen in both bioreactor zones
and the nitrate/nitrite in the aerobic zone:

y = [y1, y2, y3]
T = [Sp

O, S
n
O, S

n
NO]T (7.10)

The software sensors is based on the reduced models presented in Chapter
6 and the three measurements in equation 7.10.

7.2.1 Case 1: Application with GQ et al. Model

In this particular case, the soft-sensors (EKF and NGO) are based on
the Gomez-Quintero et al. model [34] to infer the unmeasured readily
biodegradable substrate and ammonia concentrations before the settler in
an ASP.

Nonlinear Geometric Observer

We saw in Section (7.1.4) that the soft-sensor methodology is based on the
methodology developed in [3] and [70], with a systematic construction, ro-
bust convergence rate, and with a simple tuning procedure.

According to Alvarez and Lopez [3], the bioreactor motion x(t) must be
robustly-exponentially detectable with the observability vector:

k = (κ1, κ2, κ3)
T = (2, 2, 2)T (7.11)

Recalling the model equations in Section 6.2, the state partition can be
written as:

xI = [x2, x3, x5, x6, x7, x8]
T = [Sp

O, S
p
NH , S

n
NO, S

n
O, S

n
NH , S

n
S ]

xII = [x1, x4]
T = [Sp

NO, S
p
S ]

(7.12)

and recalling also the exogenous inputs d in (6.4), the map Φ is given by
the measured outputs and some of their time-derivatives:

Φ(x, d, p) = [y1, ẏ1, y2, ẏ2, y3, ẏ3] (7.13)
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The conditions (1) and (2) in Section 7.1.4 are met along the biological re-
actor, and, therefore, the system is robustly-exponentially detectable. Fur-
thermore, the observability and stability conditions have been verified.

The construction of the geometric estimator as in equations 7.8, follows
from a straightforward consequence of the detectability properties. In [3]
and [70] some strategies for the estimator tuning are given. According to
this, the gains can be calculated as follows:

K0 =

















k11 0 0
k12 0 0
0 k21 0
0 k22 0
0 0 k31

0 0 k32

















(7.14)

where ki1 = 2ζωi and ki2 = (ωi)
2. The parameter ζ is the dumping fac-

tor, which iset according to literature [106] as ζ = 0.71 in order to have a
response with moderate oscillations. The characteristic frequency ωi is se-
lected such that the estimator response is faster than the reactor response.
In this case, we selected the estimator parameters ω1 = ω2 = ω3 = 150d−1.

Extended Kalman Filter

Two different EKFs are implemented: one to infer the state vector xp in the
anoxic zone using the measured dissolved oxygen concentration in that zone
and the second to infer xn in the aerobic state using the measured dissolved
oxygen and the nitrate/nitrite concentration in that zone. Follows the state
vector partition:

xp = [x1, x2, x3, x4, x9]
T = [Sp

NO, S
p
O, S

p
NH , S

p
S , K

p
La]

xn = [x5, x6, x7, x8, x10]
T = [Sn

NO, S
n
O, S

n
NH , S

n
S , K

n
La]

The state variables x9, x10 correspond to the oxygen mass transfer in the
anoxic and aerated zone, respectively. They were added to the estimator
states because they are complex and not well known function of the system
states.

The general form of the EKF is reported in 7.1.3, the tuning parameters
in the Riccati equation are conveniently chosen in order to obtain good
performance in this particular situation.
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(a) (b)

(c)

Figure 7.3: Estimator performances with the GQ et al. [Full model (solid);
EKF (dot-dashed); NGO (dashed)]

Comparison between NGO and EKF

In Figure 7.3 some results for both NGO and EKF are reported for com-
parison to the full complex model. In Figure 7.3a the estimators outputs
for the concentration of the readily biodegradable sustrate is shown. As we
can note, there is not a good agreement with the full complex model, even
if the EKF infers better than the NGO. This is probably due to an exces-
sive mismatch between the reduced model and the detailed one. In Figure
7.3b the nitrate/nitrite concentration is reported, the good convergence is
quite obvious, being the state incorporated as measured variable. In Figure
7.3c the ammonia concentration behavior at the bioreactor exit is shown.
As we can note, in this case good results are obtained with respect to the
full complex model and this is especially true when the ammonia is inferred
with the EFK. However, it should be noted that even if an offset is present
the resulting error remains inside the measure’s precision region.
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7.2.2 Case 2: Application with the JOMO2 Model

The NGO is applied to infer the effluent organic compound and ammonia
concentrations predicted by the JOMO2 (see Section 6.3.1). Recalling the
model equations in Table 6.3, the state partition is expressed as:

xI = [Xp
COD, S

p
O, X

n
COD, S

n
O, S

n
NO, S

n
NH ]T

xII = [Xp
BH , X

p
BA, S

p
NO, S

p
NH , X

n
BH , X

n
BA]T

(7.15)

According to Alvarez and Lopez [3], the motion of x(t) of the reactors in
robustly exponentially detectable, since the following conditions are met:

1. The map Φ(x, d, p) is invertible for xI :

Φ = [Sp
O,

dSp
O

dt
, Sn

O,
dSn

O

dt
, Sn

NO,
dSn

NO

dt
].

2. The motion of the unobservable dynamics xII is stable.

Also in this case, the construction of the geometric observer follows from a
straightforward consequence of the detectability property and also the gain
matrix present the same form as in equation 7.14.

In Figure 7.4, some results are reported. The NGO outputs are compared
with the JOMO2 and with the full complex model. We note that, even if
the agreement is not very good, the observer tries to better infer the effluent
COD (Figure 7.4a) and ammonia (Figure 7.4c) concentrations. This is inter-
preted as due to the excessive mismatch existing between reduced and full
complex model. Also in this case, the nitrate/nitrite (Figure 7.4b) concen-
tration shows an obvious good fitting, in fact this variables is incorporated
as measured variable.

7.2.3 Case 3: Application with Model2

For the low-order model proposed in Chapter 4 also a simple Luenberger-like
observer with constant gains is implemented. This was motivated by the fact
that the model showed a good convergence with respect to the full ASM1
model. Also in this case, the observer estimates the organic compound and
ammonia predicted by the reduced model, using equation 7.10 as measured
states. Recalling the state variables for the reduced system Model2, firstly
the system observability has been tested. Then, the observability matrix has
been computed showing that rank(O) = 3. This means that the system is
only detectable and that the state partition can be represented as following:

xI = [Sp
O, S

n
O, S

n
NO, S

n
NH ]T

xII = [Sp
I , X

p
S , S

p
NO, S

p
NH , S

n
I , X

n
S ]T

(7.16)
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Figure 7.4: Estimator performance with the JOMO2 [Full model (solid);
Reduced Model (dot-dashed); NGO (dashed)]

This is obvious, if we think that neither dissolved oxygen nor nitrate/nitrite
state variable depend on inert soluble substrate and on slowly biodegradable
substrate (which in turn are not observable with states in 7.10).

The soft-sensor is tested with the experimental data (Figure 7.5) and with
the periodic data (Figure 7.6) inputs.

The system shows the same good tendency for the effluent COD concentra-
tion for both experimental (Figures 7.5a) and periodic data (Figure 7.5a and
Figure 7.6a). The same holds for the nitrate/nitrogen effluent concentration
(Figure 7.5b and 7.6b), but also in this case it has been used as measured
variable. The effluent ammonia concentration (Figure 7.6c) showed a not
so good agreement, even if in both cases (Figure 7.5c and 7.6c) the observer
tries to correct the output estimates. However, considering that the mea-
surement errors in a common potentiometric ammonia sensor are around
10% the error in soft sensor estimates is not too large.
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Figure 7.5: Estimator performance with Model2 and experimental input
data [ASM1 model (solid); Reduce Model (dot-dashed); Observer (dashed)]
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Figure 7.6: Estimator performance with Model2 and periodic input data
[ASM1 model (solid); Reduced Model (dot-dashed); Observer (dashed)]
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Chapter 8

Conclusions

In this thesis several aspects and problematics associated with modelling
and control of activated sludge process have been outlined and investigated.

To represent the process, the state of the art model has been adopted with
regard to the bioreactor to characterize the removal of organic and nitrogen
pollutants, and the double exponential velocity has been used to character-
ize the settling process. Using Matlab/Simulink and a commercial software,
the activated sludge process has been simulated and calibrated with respect
to experimental data collected from a real wastewater treatment plant.
The calibration has been performed by means of sensitivity analysis and
optimization procedures. This task appeared very difficult because data
from the real plant were essentially off-line data and too sparse to have a
perfectly calibrated model. If the goal of this work were to obtain a perfect
representation of the real plant situation, then a experimental campaign to
collect data should have been planned. Otherwise soft-sensors to estimate
the model parameters should have been designed. However, the final and
main goal of this work was apply advanced control structures and design
soft-sensors to the estimate the unmeasured variables.

In order to find the optimal operation for the activated sludge process an
economical cost function was initially defined. The estimated costs for run-
ning pumps and blowing air were optimized for both the specific operating
conditions and disturbances. A self-optimization control procedure was then
applied in order to find the minumum of the cost function and the corre-
sponding optimal operating conditions of the process according to the given
constraints.

A first optimization procedure has been performed in order to find the opti-
mal setpoints for the dissolved oxygen concentration when a DO controller
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is present. The resulting operating costs have been considerably reduced.
Furthermore, the optimization procedure was applied in two other different
situations: i) in the presence of equalization tank (this means constant in-
fluent flowrate at the ASP and in turn the system has a single degree of
freedom ) and ii) in the absence of an equalization tank, which means that
the influent flowrate can not be considered constant and that the system
has two degrees of freedom for optimization.
The two situations resulted in different control strategies characterized by
controlled variables that give rise to the optimal configuration. When only
one degree of freedom is available, the resulting optimum consists of control-
ling the mixed liquor suspended solids by manipulating the waste activated
sludge flowrate. On the other hand, for the two degrees of freedom case,
the resulting configuration consists of manipulating both the wasted sludge
and the recycled sludge flowrate. For this case, a decentralized structure has
been chosen and several configurations have been considered by applying the
minimum singular value rule and a number of analysis on the total cost and
the process. Controlling the mixed liquor suspended solids by manipulating
the wasted sludge flowrate and controlling the nitrate/nitrite concentration
in the last anoxic zone demonstrated to be the configuration with the best
self-optimizing properties for our system.

Since the lack in sensors has been recognized as one of the main problems
in improving automation and control in wastewater treatment plants, in
this thesis a number of different soft-sensors have been designed in order to
estimate the unknown concentrations. Being based on robust hard-sensors
and a mathematichal modelling, the soft sensor can be developed using a
reduced but still representative ASM1 model. In such a way the main draw-
backs of the full ASM1 model (i.e. lack of identifiably, nonlinearities, many
parameters to be estimated) can be exceeded.
Several models of reduced order have been found in literature. Two of those
have been studied more extensively and applied to our ASP configuration.
In particular, the model proposed by Jeppsson have been modified in order
to take into consideration the dissolved oxygen as state variable. Further-
more, several systematic techniques for model order reduction have been
studied and applied to the activated sludge model. Modal residualization
was found to provide a simple reduced model very representative of ASP.

This model and also the two models from literature have been used to
design and test different soft-sensosing approaches (extended Kalman filter,
nonlinear geometric observer and Luenbergher-like observer). The obtained
positive results showed it is not necessary true that the use of a full model
is the best way to obtain good process representation for monitoring and
control purposes.
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ASM1 Petersen Matrix

Most biological process models follow the standard matrix notation, in Ta-
ble A.1. The notation makes clear the processes incorporated in the model
and the state variables involved. The matrix is usually referred to Petersen
Matrix and is well known by the modellers of biological wastewater treat-
ment system. Here, the state variables are denoted with the subscript ”i”
(i = 1, . . . , 13) and are numered and listed across the top. The important
processes, designed by ρj (j = 1, . . . , 8) are shown in separated rows. The
actual process rate is shown in the rightmost column:

• ρ1 is the aerobic growth of heterotrophs;

• ρ2 is the anoxic growth of heterotrophs;

• ρ3 is the aerobic growth of autotrophs;

• ρ4 is the decay of heterotrophs;

• ρ5 is the decay of autotrophs;

• ρ6 is the ammonification of soluble organic nitrogen;

• ρ7 is the hydrolysis of entrapped organics;

• ρ8 is the hydrolysis of entrapped organic nitrogen.

The entries within the table are the stoichiometric parameters, denoted
by νij, as used in defining the net process rate for a component. The
parameters define the mass relationship between components: if a process
does not directly affects a component rate then the corresponding table cell
is empty. The net reaction rate of a component, denoted by ”ri” is the sum
of all the process rates which cause a change in the mass of that component:

ri =
∑

j

νijρj
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Appendix B

ASP Model Simulation
Parameters

The parameters in the activated sludge model in Chapter 2 are repoted.
Table B.1 shows the influent fraction used to transform the measured vari-
ables into state variable. Table B.2 gives details about the settler parameters
used at steady-state condition. In Table B.3 the kinetic and stoichiometric
parametrs in the ASM1 model are shown.

Inert frac. of soluble COD fSI
0.35 −

Substrate frac. of particulate COD fXS
0.75 −

Heter. frac. of particulate COD fXS
0.2 −

Ammonia/TKN ratio fXS
0.36 −

Part. Org. N/ Total Org. N ratio fxn 0.9 −
Particulate COD/Volatile SS icv 1.4 gCOD/gV SS
Volatile SS/ Total SS fxn 0.6 gV SS/gTSS

Table B.1: Influent Fractions

v
′

0 274 m/d
v0 210 m/d
rh 0.000401 m3/gSS
rp 0.0025 m3/gSS
fXP 0.001 −

Table B.2: Settler model parameters
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YH 0.67 g(cellCOD formed)/g(cellCOD oxidized)
YA 0.24 g(cellCOD formed)/g(cellN oxidized)
fP 0.08
iXB 0.086 gN/gCOD
iXP 0.06 gN/gCOD

µH 6 1/d
KSH 20 gCOD/m3

KOH 0.2 gO2/m
3

KNO 0.5 gN/m3

bH 0.62 1/d
ηg 0.8

µA 0.8 1/d
KNH 1.0 gN/m3

KOA 0.4 gO2/m
3

bA 0.2 1/d

ka 0.08 m3/gCOD/d
kh 3.0 g slowly biodegr.COD/(gcellCOD)/d
KX 0.03 g slowly biodegr.COD/(gcellCOD)/d
ηh 0.4

Table B.3: Stoichiometric and kinetic parameters for the TecnoCasic ASM1
model
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Nomenclature

Symbols

bA Autotrophic decay rate

bH Heterotrophic decay rate

d Disturbances vector

fP Fraction of biomass yielding particulate products

iXB (Mass N)/(Mass COD) in biomass

iXP (Mass N)/(Mass COD) prod. from biomass

ivt VSS/TSS ratio

ka Ammonification rate

kh Max. specific hydrolisys rate

v0 Maximum theoretical settling velocity

v
′

0 Maximum practical settling velocity

rh Parameter for hindered settling zone

rp Parameter for flocculant settling zone

u Inputs vector

x State variables vector

y Measurements vector
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A Settler cross-sectional area

J Cost function

KNH Ammonia half saturation coefficient for autotrophs

KNO Nitrate half saturation coefficient for heterotrophs

KOA Oxygen half saturation coefficient for autotrophs

KOH Oxygen half saturation coefficient for heterotrophs

KSH Half saturation coefficient for heterotrophs

KX Half saturation coeffic. for hydrolysis of slowly biod. substr.

Nm Dynamic degrees of freedom

Nopt Optimization degrees of freedom

SALK Alkalinity

SI Soluble inert organic matter

SO Dissolved oxygen in ASM1 notation

SND Soluble biodegradable organic N

SNH Free and Ionized Ammonia

SNO Nitrite and nitrate Nitrogen

V Bioreactor Volume

Wc Controllability gramian

Wo Observability gramian

Xmin Minimum attainable suspended solids concentration

XBA Active autotrophic biomass

XBH Active heterotrophic biomass

XI Particulate inert organic matter

XND Particulate biodegrabable organic N

XP Particulate products from biomass decay

XS Slowly biodegradable substrate

YA Autotrophic Yield

YH Heterotrophic Yield
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Greek Letters

γ Condition number

ηg Correction factor for growth for heterotrops

ηh Correction factor for anoxic hydrolysis

µA Autotrophic maximum specific growth rate

µH Heterotrophic maximum specific growth rate

λ Eigenvalue

σ Singular value

σH Hankel Singular value

Superscripts

eff effluent

n nitrification

r residualized

ref reference

p pre-denitrification

sp setpoint

ss steady-state

Subscripts

in influent

r recycle

w wasted
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Acronyms

ASM1 Activated Sludge Model No. 1

ASP Activated Sludge Process

BOD Biochemical Oxygen Demand

COD Chemical Oxygen Demand

DO Dissolved Oxygen

DOF Degree Of Freedom

F/M Food to Microorganisms ratio

MLSS Mixed Liquor Suspended Solids

SBH Sludge Blanket Height

SRT Sludge Retention Time

TKN Total Kjeldahl Nitrogen

TN Total Nitrogen

TSS Total Suspended Solids

VSS Volatile Suspended Solids

WWT Wastewater treatment
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