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Abstract

Controllability analysis is concerned with determining the limitations on achievable
dynamic performance. The information provided by this analysis can be used to screen
initial designs and to make structural decisions while avoiding the expense of designing
a control scheme. The objective of this work has been to develop such techniques
for both linear and nonlinear process models, the results of which should be both
unambiguous and easily interpreted giving a direct indicator of achievable performance.

This thesis proposes the use of optimisation techniques to determine the best achiev-
able control performance for a system over a set of controllers for a specified set of
disturbances.

Methods for solving such problems using both linear and nonlinear models have
been developed and implemented using linear and nonlinear dynamic optimisation
techniques. For the linear case an optimal control problem is formulated to assess
the best achievable performance for the set of linear time invariant (LTI) controllers
providing an upper bound on the controllability. This can be solved as a linear program
(LP). While for the nonlinear case an optimal idealised control problem is formulated
which provides a lower bound on the controllability. This is solved using nonlinear
programming (NLP) and therefore provides a computationally expensive technique.
Both of these bounds are developed to be as tight as possible. The nonlinear technique
can be specialised to linear models and solved as an LP. This provides a quick and
efficient result which can be used to provide a lower bound on the linear controllability.

These techniques provide a highly flexible framework for addressing typical process
performance requirements through appropriate selections of the objective ,constraints
and disturbance description. This framework is used to develop the OLDE and ONDE
(Optimal Linear/Nonlinear Dynamic Economic) problems which provide controllability

measures in terms of economic performance.
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Nomenclature

1

Agh

g3

AZET’O) bzero

a0

hiisrosk

Bi(A)

Ck

i) (p)

matrix of 1’s and 0’s such that (A, ¢); = Y27 352, ¢i;(1)
the matrix and vector used to define the discrete elements of ® in terms

of the discrete elements of () for the Q-approximation, i.e., ¢ + A,g = h
the matrix and vector defining the zero interpolation conditions, i.e.,
Azero® = bzero

elements of A..,,, the values of Aqg,1, 7, k define which row the element is

on, the values of p, ¢, define which column

ith row of L' () for i = 1,2,....n,

elements of b,.,., the values of Ag, 1, 7,k define which row the element is
on

jth column of Ry'(A) for § =1,2,....n,,

the constraints

the kth constraint in ¢

elements of A, the values of ¢, 7, k define which row the element is on,the
values of n, m, p define which column

number of constraints provided by the zero interpolation conditions
open unit disc for A

closed unit disc for A

maximum deviation of the ith constraint due to disturbances

the deviation of u from wug used in Chapter 4

the deviation of w from wy used in Chapter 4

the deviation of z from z,.; used in Chapter 4
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f(x)
Gss,cl
Gss,ol
9(x)
gp

oo

the expected value of the objective o

the expected value of the disturbance w, i.e., w

space of all /; norm bounded operators, i.e., @ € 77" if ||R||; < oo

the space of all infinity norm bounded signals, i.e., ||z|[oc < 00

the function expressing the differential algebraic equations

the objective function of a NLP

closed-loop steady-state gains

open-loop steady-state gains

the inequality constraints of a NLP

the inequality constraints associated with the feasibilty subproblem for
wPl, p=1,...,ngist

the equality constraints of a NLP

the equality constraints associated with the feasibilty subproblem for
wPl, p=1,...,ngist

the equality constraints enforcing a common operating point wug

the objective function

optimal steady-state

the optimal dynamic objective

the objective function for selecting w°

the objective function for ensuring infeasibilty for @ with intial control

schedule ub’o

the controller

the length of the FIR of @) in the Q-approximation

Smith-McMillan decomposition of U

Smith-McMillan decomposition of V'

the discrete time at which the jth component w? of disturbance w? steps,
teo 10 =17 Ty

the time of the maximum violation in constraint ¢

set of zeros of U and V in D
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o+, o
191

s1gn;

s1gn;

complex variable representing the unit delay =z~! for discrete z-operator,
such that the A-transform of the operator R is given by R(A) =
Yito R(k)A".

lagrange multiplier of constraints on z;

order of the delay used for the Delay Augmentation algorithm

finite horizon over which the linear specialisation of the nonlinear con-

trollability technique is optimised

right-coprime factors of Py

left-coprime factors of Psg

finite horizon of ¢;; for linear controllability technique

the number of step disturbances in W

optimal solution

the deviation in z; due to w;

the deviation in z; due to all disturbances

the maximum absolute deviation in z to each w?

the maximum absolute deviation in z; due to w?

the absolute maximum and minimum deviations in z; due to w?
objective funtion for OLDE and ONDE techniques

objective for expected disturbance

reference point of o corresponding to weense and wug

transfer function matrix from (w u)? to (2 y)T for admissible systems
the actual plant

H —UQV = H — R, the objective function, a closed-loop map from w

to z representing the performance objectives

sequences of maps with non-negative entries such that ® = &+ 4 &~
£i-norm of @, i.e., |[®1 = maxi<icn. Y1 Yoo [¢i;(F)]

the stable parameter used to parametrise all stabilising L'TT controllers
the value to which the jth component w? of disturbance w” steps

the value to which the jth component w? of disturbance w? steps
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signh?

O'Ui

ov;

Tsamp

the value to which the Ath component ﬁ)fj of disturbance W% steps
sequence of  structural indices corresponding to U, ie,

ov,(Ao)=multiplicity of the zero Ag as a root of the numerator of the

1th diagonal term of My

sequence  of  structural indices corresponding to V), e,
ov,(Ao)=multiplicity of the zero Ay as a root of the numerator of the

jth diagonal term of My,

the sampling period for the linear specialisation of the nonlinear control-
lability technique

time delay from disturbance component w; to measurement y;
minimum time delay from disturbance component w; to any measurment
Yi

the time at which the jth component w?’ of disturbance w? steps

the time at which the jth component w; of disturbance w? steps

the time at which the Ath component ﬁjgj of disturbance W% steps

the discrete times associated with w?(k), i.e., the disturbance has con-

stant value w?(k) for the time period tP(k) <t < tP(k + 1)

the set of acceptable control schedules |, i.e., u' < u? < u”

finite set of control schedules given by 4} = u;’o and @f = u2° for p =
1y, Ry

control inputs, a vector of length n,, in Chapter 3 this refers to the

deviation from steady-state, in Chapter 4 this refers to the nominal value

the finite set of selected control schedules u”, p =1, .., ng;s
the operating point

the optimal operating point

the control schedule u(t) for ¢t > t?

the control schedule u(t) for t < t?

the upper magnitude bound on u

the lower magnitude bound on u
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Ulin
uP € U
u? (k)

up7

ar € v

Wo
Wy
Wy

Weentre

wh

wl

steady-state of u about which linear model is linearised

the control schedule selected for w?

the discrete elements of u?

the optimal control schedule for disturbance w?

the pth control schedule in the set /%

the control schedule selected for "’

the filter to limit the rate of change of the disturbance

the finite set of specified step disturbances

the set of step disturbances for limiting the acausal behaviour with re-

spect to disturbance w? € W

the set of all possible @, i.e., W% (t), t > t?
disturbances, a vector of length n,,, in Chapter 3 this refers to the devi-

ation from steady-state, in Chapter 4 this refers to the nominal value

the operating point of the disturbance w in Chapter 4
the disturbance w(t) for ¢t > t?

the disturbance w(t) for ¢ < t?

reference point central to w' and w”"

the upper magnitude bound on w

the lower magnitude bound on w

steady-state of w about which linear model is linearised
the pth step disturbance in the set W

a particular disturbance in W

the jth component of disturbance w?, 7 = 1,...n,,

the discrete elements of w?

the disturbance for limiting acausal behaviour with respect to the jth

component w? of a particular disturbance w”

the hth component of "
candidate disturbance for %

the expected disturbance
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XY stable part of the Bezout identity XM — Y N = I for the right-coprime
factorization

XY stable part of the Bezout identity MX — NY = I for the left-coprime
factorization

X the optimisation parameters of a NLP

X[,Xy the lower and upper bounds on the optimisation parameters of a NLP

! element of the extended set of right null chains of V, ie, 2/ = (;L']l?:ﬁ,j)

Yy measured outputs, a vector of length n,

y' element of the extended set of left null chains of U, ie, y' = (yiysz)

yref reference point of y corresponding to weeptre and ug

z regulated outputs, a vector of length n,, in Chapter 3 this refers to the
deviation from steady-state, in Chapter 4 this refers to the nominal value

1E2 (P infinity norm of z, i.e., ||z]|oc = sup, max; |z; (k)|

2t the upper magnitude bound on z

2! the lower magnitude bound on z

zref reference point of z corresponding to weepntre and ug

zf? the steady-state value of z; due to w;

Abbreviations

DA Delay augmentation

DAE Differential algebraic equations

FIR Finite impulse response

ISE Integral square error

LFT Linear fractional transformation

LMI Linear matrix inequality

LP Linear program

LTI Linear time invariant

MIMO Multiple-input multiple-output

NLP Nonlinear Program

NMP Non-minimum phase
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OLDE Optimal linear dynamic economics

ONDE Optimal nonlinear dynamic economics
PFR Plug flow reactor

RHP Right-half plane

SISO Single-input single-output

s.t. such that

SQP Successive quadratic programming
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Chapter 1

Introduction

Ziegler and Nichols (1943) first introduced the concept of controllability as a measure
of “achievable control performance”, taking into account the effect on this of the design
of the process system itself, when they stated that :

“A poor controller is often able to perform acceptably on a process which is easily
controlled. The finest controller made, when applied to a miserably designed process,
may not deliver the desired performance. True, on badly designed processes, advanced
controllers are able to eke out better results than older models, but on these processes
there is a definite end point which can be approached by instrumentation and it falls
short of perfection.”

The aim of this work has been to develop means for quantifying this “end point”,
the best achievable control, unambiguously. Such quantitative measures of achievable
performance are needed to screen out process designs and control structures for which
performance requirements cannot be met.

Controllability analysis techniques should give unambiguous measures of the best
achievable control performance prior to the design of a specific controller. If specific
choices of the controller design, disturbance values and setpoint changes are made for
a simulation then the resulting measure of performance will be biased by these choices.
In this case it is difficult to discern whether the result is due to fundamental properties

of the process that cannot be changed or simply due to the specific choices made for
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simulation.
In general a range of techniques is available with the useful ones forming a hierarchy
of increasingly demanding (ie, better models, more computationally expensive), but

increasingly discriminating tests. This hierarchy is represented pictorially in Figure

1.1.

No. of designsto be considered

linear steady state

nonlinear steady state
linear dynamic
nonlinear dynamic

Increasing linear optimization
computational techniques

expense of test
and
discrimination
between
designs

nonlinear optimization
techniques

Figure 1.1: The control design “funnel”

It is the concept of controllability as “achievable control performance”that this
thesis is interested in. However the term controllability has been given a range of
definitions, such as, state controllability and functional controllability, therefore a brief
discussion of these other concepts of controllability will be presented in section 1.1.

Techniques for assessing controllability (achievable performance) already exist for
both linear and nonlinear models of the plant. The need for both linear and nonlinear
analysis is discussed in section 1.2. Existing linear and nonlinear controllability tech-
niques are discussed in Chapter 2. Section 1.3 presents a brief discussion of optimal

control which we propose as a useful basis for new controllability analysis methods for
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both linear and nonlinear models. The methods developed for this thesis are presented
in a general manner in section 1.4 and in detail in Chapters 3 and 4. This chapter

concludes with a discussion of the structure of the thesis.

1.1 What is Controllability?

The definition of controllability is discussed in Skogestad (1994b). A brief summary is
given here. In the 60’s Kalman introduced the concept of state controllability which
can tell us whether the state vector can be taken from any initial state to any final
state within a finite time. However once all unstable modes have been shown to be
controllable and observable this concept has limited practical significance. For example,
although both initial and final states are defined, it is not possible to impose any
conditions on the trajectory between these points or after the final time. Also it is
not on the whole necessary to control and observe every state variable in the system.
At this time the term “controllability” became widely associated with the narrower
meaning of Kalman’s “state controllability”.

A further step in the development of a controllability concept which measured
“achievable control performance” came when Rosenbrock (1970) showed that the in-
vertibility of a system is a necessary and sufficient condition for functional controlla-
bility, where functional controllability is based on output reproducibility. Functional
controllability tells us whether there exists, for a system, a set of input trajectories
which can (with initial state zero) generate any output trajectory (which satisfies cer-
tain smoothness conditions). Therefore functional controllability of a system suggests
that perfect control performance is possible. However functional controllability only
provides a yes/no type answer and gives no measure of the achievable performance in
the case when the system is not functionally controllable. Rosenbrock also introduced
the notion of (RHP) right-half plane transmission zeros for multivariable systems which
is now a fundamental part of controllability analysis.

Morari (1983) suggested that achievable control performance might be assessed in-

dependent of the controller. Such an assessment allows the consideration of questions
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about the ease with which a process might be controlled, the most suitable strategy for
controlling it and changes that might be made to the process itself to improve control
effectiveness. This method of controllability analysis allows the achievable performance
of the plant to be assessed prior to the design of the controller. The choices of specific
controller designs and specific values of disturbances and set point changes, made for
simulations, bias the controllability assessment, such that it is unclear if results are
fundamental properties of the plant or if they depend on the specific choices made.
Morari suggested assessing how far a system is from achieving “perfect control” as a
quantitative analysis of achievable performance. To avoid confusion with Kalman’s
“state controllability” he introduced the term dynamic resilience for describing con-
trollability as a measure of the best achievable performance. However this term gives
no suggestion of the concepts relation to control. In this thesis the term “controlla-
bility” will be taken as meaning “input-output (or output) controllability” for which
Skogestad uses the following definition (Skogestad, 1994a):

Definition of (input-output) controllability: The ability to achieve acceptable con-
trol performance, that is, to keep the outpuls (y) within specified bounds from their
setpoints (r), in spite of unknown variations in the plant (e.g., disturbances (d) and
model perturbations) using available inputs (u) and available measurements (e.g.,y,, or
dm).

From Wolff (1992) it can be taken that controllability and dynamic resilience imply
the same thing, that is, a plants ability to achieve its specified control objectives.

A range of existing (input-output) controllability techniques are discussed in the
next chapter. It is found that typically there is some ambiguity associated with these
indictors and it is often unclear what the result indicates about the achievability of spe-
cific performance requirements. Therefore this thesis presents controllability analysis
techniques, for both linear and nonlinear models, based on optimal control problems
which provide unambiguous measures directly in terms of typical performance require-

ments.
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1.2 Linear and Nonlinear Controllability

The measure of achievable performance provided by any controllability analysis is only
as good as the model it uses. If the model is a poor representation of the actual pro-
cess, then any conclusions made about the plants ability to meet certain performance
requirements, which are estimated from it, will be erroneous. This tends to suggest
that nonlinear models should be used, since they are more likely to capture the true
behaviour of the plant than linear models. However linear analysis is greatly simplified
by properties such as superposition. This means that the controllability analysis of the
linear model of a plant is generally much simpler than that of its nonlinear model. If the
plant is quite linear over the region of operation being investigated then linear control-
lability analysis can provide very useful results without too much effort (computational
expense). Otherwise nonlinear controllability analysis will be necessary to ensure that
any nonlinear behaviour of the plant is captured in the measure of achievable perfor-
mance. Nonlinear controllability analysis is, as a rule, computationally expensive and

therefore should be used after the linear analysis to validate the results.

1.3 Optimal Control

Although optimal control has been applied to the problem of controllability, it was
originally set up, as a branch of modern control theory, for control design where the
emphasis was on the controller selected rather than the performance achieved. The
resulting system of any optimal control analysis is the system which gives the best
achievable performance, as specified by an objective (cost) function and some con-
straints. Thus, with the objective and constraints chosen appropriately, optimal con-
trol gives a measure of the best achievable control performance which lends itself well
to controllability analysis.

In Perkins and Walsh (1996) the attractions of such optimisation based techniques
are given as:

“First, it has been shown that it is possible to devise absolute controllability tests by
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this means, that is tests which if failed imply no real plant based on the tested partial
design can meet the performance requirements. Second, it is possible to include the
actual performance requirements (if known!) into the test itself”

This suggests that strong results, which directly relate to the performance require-
ments, might be produced by applying optimal control methods to the controllability
problem, for linear as well as nonlinear models.

Many books exist which are purely dedicated to optimal control, for example (Whit-
tle, 1996; Lewis, 1986; Bryson and Ho, 1975; Athans and Falb, 1966).

1.4 Thesis Work

The aim of this work has been to develop techniques which assess the best achievable
control performance of a given plant. It is desirable to avoid biasing this measure
by the specific choices of controller design or values of disturbances and set point
changes made for simulations. The information provided by this analysis can be used
to screen initial designs and to make structural decisions whilst avoiding the expense of
designing a control scheme. The objective is to develop such techniques for both linear
and nonlinear models, the results of which should be both unambiguous and easily
interpreted giving a direct indicator of achievable performance. Therefore optimal
control, which directly assesses the best achievable control performance of a system, can
be used to provide an unambiguous result which directly indicates whether the system
can achieve the performance requirements. The more general the set of controllers over
which the optimisation takes place the closer the resulting measure will be to the true
optimal control performance.

The controllability analysis developed in this thesis concentrates on the ability of
a system to maintain performance requirements when subjected to a set of distur-
bances. If a controller cannot be found, in the set of possible controllers described for
the problem, which makes the performance acceptable for all the disturbances in the
disturbance set, then this suggests that the process is not sufficiently controllable for

these performance requirements. In this case either the process must be redesigned or
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the requirements themselves be reconsidered. It follows that it is important to try to
make the set of controllers, from which the optimal controller is selected, as broad and
realistic as possible.

Techniques for the analysis of both linear and nonlinear controllability by solving
optimal control problems have been developed and presented in this thesis (Chapters 3
and 4 respectively). The optimal control problem can be formulated with different ob-
jectives and constraints to give a range of performance measures. The problems can be
set up to simply indicate feasibility, i.e., can the performance requirements be achieved
with this plant, or to evaluate the optimal economic performance. The OLDE and
ONDE (Optimal Linear/Nonlinear Dynamic Economic) problems provide a measure
of the best achievable economic performance where the economics are represented, as
in Narraway et al (1991), as the amount that the operating point must be backed off
from the optimal operating point to ensure that none of the process disturbances cause
violation of the process constraints.

The linear controllability analysis optimises the performance over the set of all sta-
bilising linear time invariant (LTT) controllers, which is both a general and realistic set
of controllers. This technique provides a pessimistic bound on the controllability. The
disturbances can be selected from a combination of the set of all magnitude bounded
persistent disturbances, step disturbances or steady state disturbances. The problem
can be formulated and solved as a linear program (LP).

The optimal controller selected for the nonlinear controllability problem is idealised,
providing an optimistic bound on the controllability. A technique for tightening this
lower bound is presented. Since this bound is optimistic, if the process fails to be
feasible for this test then it suggests it will be unable to achieve it with any real,
implementable controller. The feasibility is tested over a set of user specified step
disturbances. The linear controllability analysis can be used to provide good estimates
of the worst step disturbance. The nonlinear controllability problem is formulated as a
nonlinear programming (NLP) problem. This technique has been specialised to linear

models, providing a computationally efficient lower bound on the linear controllability.
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These two controllability techniques are designed to complement each other, with
the linear controllability analysis being used initially to provide estimates of the achiev-
able performance and the worst disturbance, and the nonlinear controllability analysis,
which is much more computationally expensive, being used to validate the linear re-
sults.

If the process fails for the nonlinear controllability technique then this means that
either, the nominal process is unable to meet the performance requirements with any
controller, or the NLP has failed to find a global optimum. This gives a strong result,
indicating that the process itself should be changed, before going to the expense of de-
signing a controller that can never make the system achieve the specified performance.
These techniques are useful as screening devices giving very direct and intuitive mea-
sures of achievable performance. Precisely where they should lie in the control design
“funnel” depends on their computational cost. Since they provide both highly discrim-
inatory results and are both computationally expensive, in that they require dynamic
models and optimisation techniques, they should be placed towards the bottom of the
funnel where most designs have been eliminated. The nonlinear controllability analysis
is placed beneath the linear, since nonlinear optimisation techniques and the develop-
ment of nonlinear models are much more computationally expensive than their linear

counterparts.

1.5 Structure of Thesis

This thesis can be read at two levels. Chapters 1,2,5 and 6 provide a functional
description of the motivation and results of the work. Chapters 3 and 4 complement
this with detailed presentations of the linear and nonlinear controllability analysis
techniques developed in this thesis.

Chapter 2 presents a critical review of the literature on controllability techniques.
Controllability measures for linear models and nonlinear models are discussed and
criticisms of their shortcomings presented. This chapter provides a motivation for

developing unambiguous measures of controllability, for linear and nonlinear models,
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using optimal control. The aims of the work pursued in this thesis are discussed further.

Chapter 3 describes the proposed linear controllability methodology. The parametri-
sation of the controller, which allows the optimisation problem to be furnished with
the set of all stabilising LTI controllers, and the feasibility constraints, which allow
the problem to be formulated as a linear program (LP), are presented. The possible
combinations of disturbance descriptions are explained and the range of performance
requirements discussed. Finally some properties of the LP formulation and a brief
overview of the implementation are presented.

The nonlinear controllability technique which has been developed is presented in
Chapter 4. The nature of the idealised controller, its parametrisation and a technique
for limiting the acausal nature of this controller are explained. The constraints im-
posing feasibility for each specified step disturbance are described and the application
of a similar range of performance requirements as those for the linear controllability
technique are discussed. Some details of the formulation and solution of the nonlinear
program are given. A specialisation of this nonlinear technique to linear models, which
is solved as an LP, is described. Finally a brief overview of the implementation is
presented.

Chapter 5 contains a published linear example with which the linear software is
validated, a couple of industrial case studies and a well published nonlinear problem
on which the techniques developed in this thesis are demonstrated. Some practical
shortcomings are discussed.

Finally the conclusion, Chapter 6, summarises how far the techniques developed
in this thesis go towards answering the aims of the work, set out in Chapter 2. The
contributions of this thesis are stated and some further work that might be undertaken

in this area is suggested.
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Chapter 2

Review of Controllability

This chapter describes a range of existing linear and nonlinear controllability tech-
niques. The aim is to give a representation of the available techniques rather than
an exhaustive review and the interest is primarily in controllability for full MIMO
controllers rather than decentralised controllers. Further discussion of controllability
analysis can be found in a book by Skogestad and Postlethwaite (1996).

Initially four fundamental limitations that prevent perfect control are described
in section 2.1. The discussion of various linear controllability indicators is broken
down according to these limitations on perfect control: RHP zeros, time delays, input
constraints and model uncertainty. Both RHP zeros and time delays are non-minimum
phase (NMP) characteristics. The nonlinear controllability measures are presented
as analytical techniques and then optimisation based techniques. Linear optimisation
based controllability techniques are included within the four categories of the linear
controllability section with a discussion of general linear optimal control problems
given in the next chapter. The short comings of the linear and nonlinear measures are
discussed at the end of each respective section. Finally the motivation for the work in

this thesis is presented.



2.1 Fundamental Limitations on Controllability

At present controllability analysis focuses on input-output controllability. The main
objectives of a control system are to track the setpoint and to reject disturbances. The
ideal controller accomplishes this by inverting the process.

In general for linear controllability analysis the process is modelled as a linear

transfer function of the form
y(s) = Gls)uls) + Ga(s)d(s). 2.1)

where y are the measured outputs, u are the manipulated inputs, d are the disturbances,
(7 are the plant model, (G are the disturbance model, r will describe the reference inputs
and C will describe the controller. The control error is given as e = y—r. Therefore the
ideal controller would give a control error of zero by setting the manipulated input to
the inverse of the process u = G7'r — G7'Gyd. In practise a feedback controller setting

u = C(s)(r —y) can accomplish something similar to this. The measured output and

the manipulated input become,
y = Hr+ SGyd (2.2)

v =G 'YHr -G 'HG,d (2.3)

where S = (I + GC’)_I is the sensitivity function and H = GC(I + GC)_I is the

Figure 2.1: Block diagram of linear process model
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complimentary sensitivity function. Perfect tracking and disturbance rejection require
S~ 0, H ~ I, which would give a controller output (2.3) corresponding to the inverse
of the process. For this the magnitude of the loop gain, L(jw) = GC(jw), must be
much greater than one. Therefore control is generally only effective for frequencies less
than a bandwidth frequency, wg, which is defined as the frequency up to which the
magnitude of the loop gain is greater than one, ||L(jw)| > 1. Once ||[L(jw)| < 1
then S ~ I, H ~ 0. This suggests that ideal control requires high bandwidth, i.e., fast
feedback.

There are four fundamental limitations that prevent fast control. These are:

e RHP zeros (a NMP characteristic),

time delays (a NMP characteristic),

constraints on the input variables,

model uncertainty,

All these characteristics impose limitations on achievable bandwidth which conflict
with the requirements for good control. This can be interpreted mathematically by the
fact that each of these characteristics prevent the inversion of the process, since a right-
half plane (RHP) zero is closely related to inverse response and implies an unstable
inverse, time delays give rise to acausal elements in the inverse, input constraints
and model uncertainty prevent the accurate inversion of the process. Therefore these
prevent the implementation of the ideal controller. In practice measurement noise
can also prevent the implementation of perfect control by inducing large variations in

manipulated variables.

2.2 Linear Controllability

Controllability analysis for linear plants has been extensively explored and many con-
trollability indicators have been developed. On the whole these only capture the lim-

itation on the control performance for one of the fundamental limitations, mentioned
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previously, at a time. A range of such linear indicators for assessing the effect on con-
trollability of NMP characteristics (RHP zeros and time delays), input constraints and

uncertainty are presented in the following.

2.2.1 Non-Minimum Phase (NMP) Characteristics

The non-minimum phase (NMP) characteristics of a linear model are defined as the
right-half plane (RHP) zeros and time delays of the plant (G. There are a range of
controllability indicators available that assess the controllability, independent of the
controller, for RHP zeros and time delays separately. A technique that attempts to
assess the best achievable performance for a linear SISO plant with both these NMP
characteristics is the ideal integral square error (ISE) optimal control problem, de-

scribed in Skogestad and Postlethwaite (1996). This involves the minimisation of

ISE = /OOO ly(t) — r(t)|dt (2.4)

by the selection of the ideal controller u(¢). This controller is ideal in that there are
no constraints on u included in the problem and the resulting optimal choice may not

be implementable. The ideal response y = T'r for a unit step in r(¢) has been shown

(Morari and Zafiriou, 1989) to be

_S_I_Z s
T(S) = H ngje o (2«5)

where z; is a RHP zero,f is a time delay and z; is the complex conjugate of z;. Skogestad

and Postlethwaite list the optimal ISE for a stable plant with a:
1. time delay 6 as ISE=4.
2. RHP zero z as ISE=2/z.
3. complex RHP zero z = z & jy as ISE=4z/(2? + y?).

Techniques for assessing the limitation on controllability due to RHP zeros and

time delays, separately, are presented in the following.
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Right-Half Plane (RHP) Zeros

It has been well established that RHP zeros limit the achievable closed loop perfor-
mance of both SISO and MIMO systems independent of the control system design.
For example the presence of a RHP zero in a SISO system may give rise to inverse
response behaviour and high-gain instability (Skogestad and Postlethwaite, 1996). Ac-
cording to Skogestad (1994b), which reviews fundamental results for controllability
analysis of scalar systems, the upper bound on the bandwidth for a SISO system is

given approximately by,
wp < z/2 ,where 7 is a real RHP zero.

The loop gain |L| = |GC| drops below 1 at frequency z/2 and since |L| > 1 is needed
for S = 0 and H = 1, which gives “perfect control”, then plants with RHP transmission
zeros within the desired bandwidth should be avoided.

Qiu and Davison (1993) extend the SISO ideal ISE optimal control problem to
linear MIMO plants with RHP zeros at z;. They show that the ideal ISE value for a
step disturbance or reference relates directly to 25", z%" where the contribution for a
conjugate pair of complex RHP zeros is the same as shown for the SISO case.

In Morari et al (1987) the concept of “zero-directions” is used to characterise the
achievable transfer matrices. The paper uses the same block diagram as in Figure 2.1
to represent the feedback control system. It is assumed that the transfer matrix G(s)
is square, has RHP zeros (z;) of degree only one and has no RHP poles located at
the RHP zeros (z;). However it is suggested that these restrictions can be relaxed,
although this would require a more involved notation.

Since z; is a zero of G(s) then if G(s) has rank n, G(z;) has rank n — 1, i.e., the
RHP zero z; causes G(s) to loose rank. A; is the zero direction associated with this

zero as long as,

MG(z)=0, X\ #0. (2.6)
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The following transfer functions are useful for showing the effect of the zero direc-

tion.Let Gy = I for,

T, = C(I+GC)™! (2.7)

Twi = =T (2.8)

T,, = GC(I+GC)™' = GT,, (2.9)

Ty = (I+GCY" = 1-T,, = I-GT,,. (2.10)

(2.6) taken together with (2.10) imply that

i.e., the magnitude of any disturbance d entering along the zero direction \; and passing
through to the output y is unaffected by feedback. Thus RHP zeros (for MIMO) affect
both the achievable T}, and T4, where these are the transfer functions between the
disturbance and the output and the reference signal and the output. Therefore plant
RHP zeros will limit the achievable disturbance response despite the controller. The
RHP zero z; is “pinned” to the outputs corresponding to non-zero entries in A; and
cannot affect those with zero entries. In fact if the jth entry of A; is the largest entry
then z; is said to be predominantly aligned with the jth output and to attempt to push
it to another output would cause severe interactions. Hence any RHP zeros in the
plant would ideally occur at high frequencies and have zero directions that are aligned

with outputs which do not, for example, need good disturbance rejection.

Time Delays

A time delay has essentially the same effect as a RHP zero, in that it limits the
achievable speed of the response by providing an upper bound on the bandwidth which
for SISO systems is given in Skogestad (1994b) as,

wp < 1/0 ,where 0 is a time delay.

The analysis follows that of the RHP zero case with the low frequency asymptote of
the loop gain |L| = |GC| dropping below 1 at the frequency 1/8.
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In Holt and Morari (1985) simple procedures for assessing the best achievable re-
sponse for MIMO systems independent of the controller are discussed in terms of the
effect on controllability. Holt and Morari transform the structure in Figure 2.1 to give
the equivalent basic internal model control (IMC) structure in Figure 2.2 to represent
the linear model of the system. No generality is lost and it is more useful for the
analysis of controllability.

In IMC “perfect control” can be achieved directly by setting G. = G=!. In the
case when we want to concentrate on the analysis of delay times we assume a perfect
model with unlimited controller power and a stable inverse (no RHP transmission
zeros) therefore an inability to implement the inverse would indicate that G contains
predictive elements due to time delays, ie , G~! is not causal. In this case G is factored,
G = G.G_, where GGZ! is stable and causal and Gy is noninvertible. The controller
is then chosen as G. = GZ', G,(0) = I and G4 is the closed loop transfer function of
the system.

Since (G4 cannot be uniquely defined the goal of the paper is to find the optimal G,
i.e., that which will minimise the integral square error (ISE) and the integral absolute
error (IAE) as defined in the paper (Holt and Morari, 1985).

Holt and Morari (1985) provide an upper bound on the controllability (dynamic
resilience) without dynamic decoupling by giving a lower bound for the settling time
of each output i.

T, = minp;; (2.12)
J
pi; = minimum time delay in numerator of element ij of G.

The results are given in a matrix factor GG, which might require the addition of

off-diagonal elements or an increase in the delay of the diagonal elements to make it a
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valid choice for G 4.

[ e" 8 * * ]
* e 28
G, = G, = . . (2.13)
* e~ ™8
d
Gq
y
r e u L
G, G
+
G

Figure 2.2: Block diagram of IMC structure

They then give a lower bound on the controllability (dynamic resilience) by giving

the minimum time delay for each output when the system is dynamically decoupled.
Gfll_ = diag(r11y ooy Tjjy eeneen. s ) (2.14)

with

ri; = exp(—s(mfnx(max((),(@j — i)
p;; = minimum delay in numerator of element ij of G™*,

4;; = minimum delay in denominator of element ij of G~*.
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The matrix G‘i is realizable and any controller (with or without decoupling) which has
any outputs with greater delay times is not optimal in the sense mentioned earlier.

By consideration of the diagonals of both G4 and (. we have a measure of the
controllability (dynamic resilience), since the smaller the minimum response time (ie
the time delays in the diagonals) the better the controllability. However it is not
obvious how to judge what is a reasonable diagonal for good controllability.

Perkins and Wong (1985) suggest that these measures for assessing controllability
are awkward to use and that a scalar measure of the impact of delays on controlla-
bility would be preferable. The paper discusses the assessment of achievable plant
performance, specifically the effect of time delays, using the concept of functional con-
trollability which was mentioned in the introduction. Their results are presented for
the discrete case, although they state that similar results hold for the continuous case.
Functional controllability and the notion of “perfect control” are related by the in-
vertibility of the plant. In fact the invertibility of G(z) is a necessary and sufficient
condition for functional controllability.

Theorem(Rosenbrock, 1970): Given a transfer function matriz G(z) with McMillan
degree p and a sequence of outpuls 0,0,..,0,Y,,Ypt1,..., then there exists a sequence
of inpuls ug,uy,... which generates the output sequence given xo=0 if and only if
det[G(z)]#0.

The period of time p (the McMillan degree) during which the output does not
change is Rosenbrock’s attempt at defining the time delay for the MIMO system.
However this measure of the minimum necessary time delay is given by the degree of
the monic least common denominator of all minors of all orders of the matrix and is
generally a gross overestimate.

They present a theorem which calculates a scalar measure of the minimum time
delay, allowing the independent specification of all outputs, and from this they state
that it is possible to devise a generic algorithm to compute the minimum delay which
can be used to establish some simple bounds on its value. Psarris and Floudas (1990)

point out that this minimum time delay is also given by the largest element, r;;, from
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the diagonal of Holt and Morari’s minimum time delay matrix Gi. The problem of
what is a reasonable value of the minimum necessary delay, i.e., “what is too large?”,
still remains.

Russell and Perkins (1987) broach the problem of giving controllability analysis a
physical interpretation in the time domain, specifically relating their approach to time
delays. They suggest the use of structural controllability for state-space systems as an
approach which does not rely on an input-output model and which is based in the time
domain. A system represented by (Ay,b,) is structurally (state) controllable if and
only if there exists a completely state controllable system that can be represented by
(A,b), which are structurally equivalent to (Ag, by). A structural matrix has only two
types of entries, fixed zeros (these can never take non zero value) and arbitrary entries
(these may take any value including zero). This representation is proposed to avoid the
difficulties of deriving a numerical model of the plant and the biasing of controllability
analysis by the choice of parameters describing the system.

They then go on to outline an approach to controllability based on the analysis
of the structural matrices of differential-algebraic equation (DAE) systems extended
to time delays. They rank control schemes for a system by their generic minimum
necessary delay:

Definition: The minimum necessary delay T,,i,, of a system with time delay malriz
D is the lowest minimum necessary delay T,,;, which can be achieved by any system
with the same delay matriz D.

The delay matrix D is incorporated into the DAE system so that there is a non-
negative delay associated with each occurrence of a variable in an equation. The
structural matrix for this system is augmented with columns and rows for potential
control structures. This matrix must be structurally nonsingular for 7,,,,, to be finite.
Cause and effect paths are identified for different control schemes and the minimum
necessary delay evaluated. The control schemes can be ranked by their respective
generic minimum necessary delays. This mean that this analysis of controllability is

control structure dependent, ie, the evaluation of 7,,,, 1s used to compare control
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schemes rather than evaluate limitations on achievable performance inherent to the

process itself.

2.2.2 Input constraints (actuator limits)

If disturbances or reference inputs cause the manipulated input to violate input con-
straints then the plant is no longer invertible, i.e., the manipulated input u = G='r —
G~'Gyd cannot take its required value, therefore the ideal controller cannot implement
the inversion of the process and “perfect” control is not possible. Therefore bounds
that prevent such constraint violations and measures of the effect of disturbances or
reference signals on the input are of interest as controllability indicators.

Many controllability measures consider the magnitude of acceptable deviations in
which case it is convenient to scale the variables. On the whole the variables are scaled
so that they should lie within the interval -1 and 1, i.e., their desired or expected
magnitudes should be normalised to be less than 1 for all frequencies. A discussion of
scaling can be found for the SISO case in Skogestad (1994b) and for the MIMO case
in Wolff et al (1992).

For a SISO system we have the input constraint |u(jw)| <1 (Vw), so to fulfill this
requirement and track reference signals (|r(w)| = 1 for w < w,), Skogestad (1994b)

gives a lower bound on the transfer function G |
|G(jw)| > 1 Vw < w,. (2.15)
For MIMO systems the input required for tracking a sinusoidally varying reference

signal r(jw) is given by (Wolff et al., 1992) as,

[ 1P
(@) = Il a(@)

(2.16)

where 7(() and ¢(() are the maximum and minimum singular values of ¢ respectively.
Since r may have any direction, a small o(() implies that large input magnitudes might
be needed. Therefore a small o((7) is undesirable since it might require the violation of

input constraints to maintain tracking. However judging a good value for g(() relies
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heavily on correct scaling, i.e., regarding a value of () of less than 1 as too small
could be misleading if u and r are imprecisely scaled.

When it comes to disturbance rejection, Skogestad (1994b) gives a lower bound on
the transfer function G for a SISO system which must perfectly reject a disturbance

(for w < wy) whilst maintaining |u(jw)| <1 (Vw),
|G(jw)| > |Gi(jw)| Yw < wy. (2.17)

where |G| > 1 Vw < wy. Note that if the system is unstable with a real RHP pole at
p then we need

|G(jw)| > |Ga(yw)| Yw < p. (2.18)

where p may be larger than wy. For MIMO systems the input magnitude needed for
perfect rejection of the worst disturbance (||d||- < 1) is given by (Wolff et al., 1992)

as,

[ullee = N1G™ Galloo (2.19)

which is the largest row sum of the absolute values of the elements of G='G,. Therefore
a frequency dependent plot of the elements of G='G, will provide insight into the
possibility of violating input constraints and which disturbances are most likely to
cause such problems. The above gives constraints involving G and G4 which must be
satisfied for perfect control with input constraints, similar constraints for acceptable
control can be described (Skogestad and Postlethwaite, 1996) but are not discussed
here.

Another indicator of the effect of input constraints on controllability, based on
assessing the magnitude of the control input required to reject disturbances, is the
disturbance condition number which was introduced by Skogestad and Morari (1987b).

sa(@) = 1670k 5 (220)

gall2
where gy is used instead of (G; to indicate that only one disturbance is considered
at a time. The disturbance condition gives the ratio of the magnitude of u required

to perfectly reject a disturbance in the direction of g; to that required to reject a
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disturbance of the same magnitude, but in the “best” direction. The “best” direction
is the direction that requires the least control action. If v4(G) is large it suggests a
large increase in the input magnitude which might again require the violation of input
constraints to maintain disturbance rejection. ~4((G) is scale dependent and it is not
obvious what is meant by too large.

Other such controllability techniques, i.e., the relative disturbance gain (RDG),
the closed-loop disturbance gain (CLDG), etc, for assessing the achievable disturbance
rejection performance with input constraints are discussed in Skogestad and Wolff

(1996).

2.2.3 Model Uncertainty

Model uncertainty prevents the accurate inversion of the plant. It requires the con-
troller be detuned and performance be sacrificed.

Measures of the effect of model uncertainty on controllability (dynamic resilience)
are discussed at length in a paper by Skogestad and Morari (1987a). The structured

singular value u(M) was considered the best measure:
robust stability iff u(M) < 1V w,

where M is the interconnection matrix describing the nominal transfer functions from
the output of the perturbations to their inputs for the M A-structure used for robust
stability analysis. However at the time it was concluded that since it required a control
system to have already been designed it was unsuitable for “screening purposes at the
design stage”. However p-synthesis is not dependent on the selection of a controller
design since it searches for the optimal controller that minimises this y-condition. This
p-optimal control problem cannot be directly solved, however a popular technique for
tackling this problemis D K-iteration which is described in Skogestad and Postlethwaite
(1996).

For independent uncertainty in the elements of the plants transfer function matrix

the interconnection matrix M can be rewritten as LC(1 + CN?C)_IE = LG_IﬁE, where
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G and H are used to denote the nominal plant and complementary sensitivity functions
respectively (note that y = Hr), and L. and E are weighting functions. In this case
upper bounds for H can be devised for uncorrelated element uncertainty (Skogestad

and Morari, 1987a)
G— G = EAL, A=diag(A;;), 7(Ay) <1,

with the nominal response decoupled with identical responses such that H = Al i.e.,

1

robust stability iff [|A|| < — =
VI <

(2.21)

Since H =~ [ implies perfect control this provides a limit on the achievable control for
uncorrelated element uncertainty based only on plant information and the weights L
and K.

In Wolff et al (1992) the condition number v(() and the relative gain array (RGA)
are presented as useful measures with respect to element uncertainty, but only if the
relative errors of the transfer matrix elements are independent. Skogestad and Morari
(1987a) go further to show that the usefulness of the RGA and the condition number in
assessing the impact of uncertainties is limited not only to element uncertainties that
are independent, but also to those with similar relative magnitude bounds.

The RGA is scale independent and useful as a measure of the effect of uncertainty
on controllability, because its entries, i.e.,the relative gains A;;, provide an indication

of how sensitive the plant is to uncertainty in an element.
Nij = gij(s)[G7(s));i (2.22)

If the element g;; (jw) were to vary by —1/X;;(jw), i.e., §i;(Jw) = gi;(Jw)(1—1/X;;(jw)),
then G(jw) would become singular, therefore large RGA-elements imply that the G/(jw)
may become singular for small relative perturbations in certain elements of the transfer

function matrix.

The condition number is described by Perkins and Wong (1985) as,

K@) = GG (2.23)
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where ||(7]| is any matrix norm. k() gives an upper bound on the ratio between the

relative error in u and the relative error in G.

ol lsci
<E(G).~—r+ 2.24
TR (2:24)

To remove the effect of scaling, from the comparison of k for different designs, they

suggest optimally scaling k
Do,D;

,where Do and Dj are diagonal matrices with real, positive entries. This scaling
problem has been solved by Bauer (1963) for both the induced 1-norm (“max column
sum”) and the induced oco-norm (“max column sum?”).

For the induced 2-norm the condition number becomes the ratio between the largest

singular value () and the smallest singular value o(G),

(@) = ggg). (2.26)

Ql

)
For this case the minimised condition number v(G)* is given by
7 (G) = min 4(DoGDr) (2.27)
Do,D;

and the minimised absolute condition number is described in Skogestad and Morari
(1987a) as:

v:(G) = min 7(|DoGDil) (2.28)

¢ Do,Dy Q(DoGD[)
A large condition number implies an ill-conditioned plant.
The minimised absolute condition number can be used to give an upper bound on

the diagonal elements of [ (:diag(ﬁi)), assuming the nominal response is decoupled,

(Skogestad and Morari, 1987a).
9ij = Gi (1 + 1 Aij), [[Aill <1, rmar = maxij rij.

Robust stability if

~ 1
Tmaz Yy
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It can be shown that (2.29) is conservative when the relative uncertainties on the
elements r;; are different. Skogestad and Morari state that this bound is tightest for
a 2x2 plant with equal ry; (ZL = Iy Vi). They then go on to say that the RGA gives
an upper bound on the absolute minimised condition number and, in fact, that for
real matrices and high condition numbers the value of || RGA||; approaches ~*. This
suggests that, for guaranteed robust stability, ill-conditioned plants with large RGA
should be avoided since even when the relative model uncertainty 7,4, 1s small the
performance in terms of |h| would be very limited.

Skogestad and Morari (1987a) conclude that the minimised and absolute minimised
condition numbers are only reliable indicators of the sensitivity to element uncertainty
if the uncertainty is independent and norm-bounded, with similar relative error bounds.

Skogestad and Havre (1996) draw conclusions on what the input minimised con-
dition number, condition number and RGA imply about robust performance in the

presence of input uncertainty. Input uncertainty is described by

G =G+ Ey) (2.30)

where if E; = diag{e;,€q,....} we have diagonal input uncertainty, while if all the
elements of F; are nonzero then we have full block input uncertainty. Skogestad and
Havre (1996) make the point that ¢ diagonal input uncertainty is always present in

real systems”. In this case the minimised condition number is given by
3(G) = miny(GDy) 231)
I

They summarise that if the condition number () is small it suggests robust perfor-
mance to both diagonal and full input uncertainty. A small minimised condition num-
ber 47(() only indicates robust performance to diagonal input uncertainty. Finally a

plant which gives large RGA elements will be fundamentally difficult to control.

2.2.4 Criticism of Linear Controllability Analysis Techniques

All the papers discussed so far rely heavily on linear models. Although this proba-

bly will not matter for systems operating within one operating region, if the system
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moves from one region to another then the linearised model may no longer be suitable.
Also many of the techniques, such as the minimum time delay techniques, the input
magnitude ||u]|s required for perfect disturbance rejection, the condition number k(G)
and the RGA, assume square plants G(s), however it is not realistic to believe that all
control systems have the same number of inputs as outputs.

The analysis presented by these papers takes place in the frequency domain, but all
the performance requirements and the set of disturbances are typically defined in the
time domain and, on the whole, are impossible to represent precisely in the frequency
domain. Therefore the analysis of controllability in the frequency domain presents
some problems.

There is also the problem of relating these theories to the physical system, so
that conclusions might be drawn about suitable design changes to overcome problems
revealed by the analysis. This has been broached in Russell and Perkins (1987) in
which it is blamed on the use of the input-output model and the frequency domain
representation.

The applicability of measures of the effect of uncertainty in the model on control-
lability are limited to specific uncertainty descriptions and therefore their usefulness
is restricted. For example, the usefulness of both the RGA and condition number are
limited to uncorrelated element uncertainties with similar relative magnitude bounds.

Another problem associated with the constraints is the definition of the disturbances
experienced by the system. On the whole the system is scaled, so that d is bounded
with a norm less than or equal to one. For a SISO system Skogestad (1994) describes
the disturbances as sinusoidal with magnitude |d| < 1. For MIMO systems the d is
simply described in Wolff et al (Wolff et al., 1992) as “several” disturbances all with
||d||oc < 1. The general problem is that the effect of d is only measured as its worst norm
effect and although frequency weighting can be applied to ||d||o < 1 the disturbance
description cannot be restricted arbitrarily.

Further to these problems is the ambiguity in interpreting the results of all these

controllability analysis techniques. What is a reasonable time delay and time delay
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diagonal G‘i? What is too large a condition number? What is too large an RGA-
element? etc. Using these tools of controllability analysis would require both the use
of heuristics to simplify the task and experience. Morari (1992), notes that “we often do
not quite understand yet when and how these indicators should be used”, but even so
“they are applied widely and indiscriminately and lead to erroneous conclusions about
controllability”. The ambiguity involved in the interpretation of these measures is a
major problem for controllability analysis. One reason for the ambiguity is that each
indicator typically only considers one of the control performance limitations, i.e., RHP
zeros, time delays, input constraints or uncertainty, in isolation. Another is that they
do not relate directly to performance specifications since, as mentioned earlier, these
are generally time domain, whilst most of the linear indicators are frequency domain.

Therefore there is a need for an easily interpreted linear controllability analysis
technique that handles non-square control systems, deals directly with time domain
performance requirements, allows disturbances to be defined in the time domain and

quantifies the combined effect of as many fundamental limitations as possible.

2.3 Nonlinear Controllability

Linear controllability is a well established field with a broad range of indicators for
assessing how close to perfect control a plant lies. However these techniques require
models that have been linearised about a steady state. Hence if the plant is highly
nonlinear or the analysis is required for a new steady state then these linear results
can no longer be relied on.

Therefore controllability analysis techniques that can be applied to the nonlinear
model of the plant directly are required. The existing nonlinear controllability anal-
ysis techniques can be divided into those which are analytical and those which are

optimisation based.
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2.3.1 Analytical Techniques

A selection of nonlinear controllability analysis techniques are based on the concept of
functional controllability, which relates to whether a set of input trajectories u exist
that will generate any output trajectory y. The terms (right) invertibility, functional
controllability and functional reproducibility are all used to express the same concept.
Perfect control is achievable only if a system is functionally controllable. A series of
papers have undertaken to establish conditions for the functional controllability of a
nonlinear system. Sufficient conditions for the functional controllability of nonlinear
systems were introduced in Hirschorn (1979) the theory of which was improved on by
Singh (1982). Tsinias and Kalouptsidis (1983) then presented necessary and sufficient
conditions for the functional controllability of single input systems. Finally neces-
sary and sufficient conditions for the functional controllability of general multivariable

systems described by

& = flz,u) 2(to) =20, v € R", u€ R" (2.32)

y = h(z,u) ye R

were derived in Li and Feng (1987). The main criticism of any technique based on
functional controllability is that it only indicates a yes/no type answer. In the case
when the system is not functionally controllable no measure is given of just how far
from perfect control the achievable performance is.

A fundamental limitation on perfect control for linear systems is the presence of
right half plane transmission zeros which give rise to an unstable inverse. However for
nonlinear systems we do not have zeros and poles as such. The analogous problem for a
nonlinear system is unstable zero dynamics. Zero dynamics and inversion for nonlinear
systems are discussed in Daoutidis and Kravaris (1991) where a nonlinear system is
described as minimum phase if its (unforced) zero dynamics is asymptotically stable
and non-minimum phase if its (unforced) zero dynamics is unstable. The (unforced)
zero dynamics of a nonlinear system is given by the dynamics of its reduced inverse,

which is a minimal-order realisation of the systems inverse. Therefore an investigation
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of the zero dynamics of a nonlinear system will reveal whether a nonlinear system has
a stable inverse or not. However once we have assessed that a system has an unstable
inverse this will not identify the actual best achievable performance for this nonlinear
system.

The relative order of a system has been introduced (Daoutidis and Kravaris, 1992;
Soroush, 1994) as an analysis tool for the structural evaluation of alternative control
configurations. Daoutidis and Kravaris (1992) interpret the relative order of a nonlinear

system, described by

&t = flz)+ zm:gj(a;)uj + Z wi(z)dy, © € R" (2.33)
=1 k=1

yi = hi(z) i=1,...,m

as the “structural analog of dead time”. It quantifies such notions as “initial sluggish-
ness”, “direct effect” and “physical closeness”. The relative order r;; of output y; with

respect to input u; is given by the smallest integer for which
Ly, L' hi(z) # 0 (2.34)

or oo if no such integer exists. The relative order p;. of output y; with respect to

disturbance dj is given by the smallest integer for which
L L5 hi(z) # 0 (2.35)

or oo if no such integer exists. Lh;(z) is the Lie derivative given by Zle(ﬂgﬁl)ﬁ(z),
higher order Lie derivatives are given as Lih(z) = Lfoflhi(;r:) and mixed Lie deriva-
tives are given as Lg]L]}hi(:C). Daoutidis and Kravaris show that the relative order ry;
captures the aspects mentioned above for the response of output y; to input u; and
similarly p;. captures these aspects for the response of output y; to disturbance input

d. The smaller this relative order the more direct the effect, the less sluggish the

initial response and the smaller the deadtime. Therefore the smaller the relative order
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ri; the better. In Daoutidis and Kravaris (1992)the relative order matrix is introduced

'm0 Tim
M, = : : (2.36)
P S,
to capture the structural coupling between manipulated inputs and measured outputs.
When possible the matrix is rearranged so that the minimum relative order for each row
lies on the diagonal, thus suggesting the pairing of input w; with output y;, and allows
the interaction of these input/output pairings with the other inputs and outputs to be
investigated through the off-diagonal elements. The technique is extended to nonlinear
discrete systems in (Soroush, 1994). This method allows the coupling and interaction
for specific control structures to be assessed, however it does not indicate whether
specific performance requirements might be achievable or not.

In a similar manner the relative gain array (RGA) is used for linear systems to as-
sess the interaction of input/output pairings. It is also used as a measure of the effect
of uncertainty on controllability. Mijares et al (1985) show how the steady state RGA
can be calculated for general nonlinear systems. It is shown that the formulas used for
computing the nonlinear RGA are of the same form as those used for the linear case.
The block relative gain (BRG) is extended to nonlinear systems in Manousiouthakis
and Nikolaou (1989), giving the steady state NBRG and dynamic DNBRG. The linear
BRG provides information on the limitations on achievable decentralised closed-loop
performance, as well as the restrictions on the robustness characteristics of this closed
loop. The DNBRG is developed to provide a measure of the interaction between de-
centralised feedback loops for dynamic nonlinear systems. It is controller independent,

assessing the closed-loop performance using only plant information, i.e.,
DNBRG[ — Nll(N_l)ll (237)
DNBRG, = (N"YH,Ny

where the plant is given as

Y1
= N(Ul, Ug)

Y2

46



so that yy = Ny(uq,uy = 0) = Nyy(uy), where uy and y; are the inputs and outputs
which we are considering interconnecting using feedback control, and N~! is the in-
verse of the plant such that u; = (N7')i(y1,y2 = 0) = (N7')11(y1). If the resulting
DNBRG= T then it suggests that the feedback controller connecting these inputs and
outputs can be designed independently of the controller that will be implemented on
the rest of the inputs and outputs, us and ys, since there is no interaction. Therefore
the distance of the DNBRG from the identity operator [ is suggested as a measure of
the effect of the second loop on the first loop. The DNBRG is scale dependent which
complicates the issue of how to interpret the values of the results. The steady state
NBRG is shown to be a lower bound for the condition number of a nonlinear system.
It is not clear for either the nonlinear steady state RGA or the NBRG/DNBRG what
the results they provide indicate about the best achievable control performance and

whether it can satisfy certain performance specifications.

2.3.2 Optimisation Based Techniques

Approaches for nonlinear optimisation problems are reviewed in (Perkins and Walsh,
1996; Walsh and Perkins, 1996). Some approaches which are specifically interested in
assessing nonlinear controllability are summarised in the following.

Much work has been done on developing optimisation problems to assess perfor-
mance under plant uncertainty. Grossman et al (1983) set up a feasibility problem
in which the optimiser attempts to meet all the process constraints with an idealised
controller over the set of uncertain parameters as follows

x(d) = r&%xg%i?r?e%x fild, z,0) (2.38)
feT = {0 <0 <6}
€7 = {z]z2F <2< 2%}
where the process constraints are described as f(d, z,0) < 0, d are the design variables,

z are the operating variables and 6 are the uncertain parameters. This work was

extended by Swaney and Grossman (1985) to assess the flexibility of a process by
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maximising a scalar, called the flexibility index F'.

F = maxé (2.39)
1. 1 : <
s.1 6renjg(>§) min max fild,z,0) <0
d>0

T(8) = {0]6N — A0~ <0 <OV 4 5A0}

This index gives a measure of the greatest deviation in the uncertain parameters for
which the design can maintain feasibility. However both these techniques only assess
the feasibility and flexibility of a process operating at steady state. Thus Dimitriadis
and Pistikopoulas (1995) extended these ideas to present a systematic framework for
assessing both the flexibility and feasibility of dynamic systems.

Mohideen et al (1996) go on to present an optimal control problem based on the
dynamic feasibility problem presented in (Dimitriadis and Pistikopoulos, 1995), but
with an economic objective, as well as the feasibility condition f(d,z,60) < 0, which
accounts for the capital costs. The objective is to select the design variables and
control scheme to minimise the cost (of process units, controllers and operating) while
remaining feasible over the finite time horizon under both parametric uncertainty and
process disturbances. In this paper the control scheme is defined as multiloop PI-
controllers which means that the result is a pessimistic bound on the optimal control
performance in that the set of controllers, from which the optimal controller can be
selected, has been restricted.

A steady state measure for quantifying the ability of a heat exchanger network to
cope with inlet and target temperature changes was presented in (Saboo et al., 1985).
This measure, the resilience index (RI), is a similar concept to the flexibility index
which gives a measure of the maximum range of uncertainty that a plant can handle
while remaining feasible. The RI is defined as the maximum total disturbance load

that a network can allow without becoming infeasible.

RI = Hi%XZi: || (2.40)
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subject to a set of system constraints on the system variables z and the disturbance
load vector [. This problem can be generalised to any nonlinear system with distur-
bances [ and system variables z. Unlike the flexibility index the RI cannot describe an
asymmetric range, however finding the RI is much less computationally expensive.

Walsh and Perkins (1992) provide an optimistic bound on the disturbance rejection
performance of a plant when limited by both time delays and uncertainty. This tech-
nique assesses the performance for an idealised controller under worst case conditions.
The controller is ideal in so far as it is allowed to act perfectly once the minimum time
delay has passed. The minimum time delay for each constrained output is made up of
the time delay between the disturbance and the measured variable tddyy] and the time
delay between the manipulated variable and the measured variable ldu, ,, and is given
by

g, = %52{”% + min {tdu,yy]}} (2.41)

iersnre s M
where y;|j € Jg is the subset of measured variables that can usefully detect the dis-
turbance, u;|i € I? is the subset of manipulated variables which have a strong enough
effect on y; and w;|i € I5 is the subset of manipulated variables which are permitted to
be connected to y; in the restricted control structure. The optimiser is used to select
the worst possible combination of process disturbances and uncertain parameters. The
optimisation problem solved is based on an open loop dynamic version of the feasibility

problem (2.38)

1. < .
dd  s.t r&e&xr&@gt;ﬁ)ﬁi]f;ﬂ(d,e,ﬂ <0 (2.42)

T ={0" <6 <0}

where 14, 1s the minimum time delay for the kth constraint. Similarly a dynamic open
loop version of the flexibility problem in (2.38) can be solved to quantify the degree of
infeasibility.

The effect of fundamental plant characteristics on its ability to cope efficiently when
moving between different operating point, its switchability, was assessed by White

(1994) as an optimal control problem. In this problem the optimiser selects the best
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switching trajectory for the plant, as well as time-invariant design parameters which
allow for modifications of the plant design to improve switchability. Path constraints
are incorporated to enforce magnitude bounds on the constrained variables and end-
point constraints are used to ensure the plant reaches its new steady state by the end
of the problems finite time horizon. Vu, Bahri and Romagnoli (1997) solve an optimal

control problem which incorporates operability into the switchability problem.

2.3.3 Criticism of Nonlinear Controllability Analysis

Techniques

There are notably fewer analytical techniques for nonlinear controllability than for
linear controllability. Those that have been discussed give either a yes/no type result
or a result which is difficult to interpret.

The yes/no type result is given in response to the questions of functional control-
lability and stable zero dynamics. When the answer is no we are left with no idea of
just what the achievable performance might be and whether it might satisfy the perfor-
mance requirements. Even when the answer is yes the measures have not incorporated
all the possible limitations on control performance, particularly input constraints and
uncertainty, and therefore it is still not clear that perfect control would be achievable
in the presence of these also.

For the results which are difficult to interpret, i.e. the relative order matrix, the
nonlinear RGA and nonlinear BRG, a general guide-line, whether an element should
be big or small, for the desirable result is known. However it is not obvious what is
considered too big or too small a value of an element of any of these arrays. On the
whole, as for the linear controllability analysis indicators, this requires experience to
decide. Also, whether we decide a result indicates good controllability or not, it does
not give a specific estimate of the achievable performance which makes it impossible to
assess whether the performance requirements for the plant might be achievable or not.

None of these analytical techniques incorporate all the fundamental limitations on

controllability and the majority only incorporate one at a time.
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The optimisation based techniques give results which are easily interpreted and
relate directly to the performance constraints specified for the plant, since on the whole
they are set up to optimise the achievable performance in terms of these constraints.

The majority of fundamental limitations, i.e., uncertainty, input constraints, un-
stable zero dynamics, dead bands, can be captured by these optimisation techniques,
particularly if a feedback controller, such as a PI controller, is implemented. However
if an idealised controller is used then generally these techniques do not incorporate any
of the limitations on achievable performance associated with the measured variables
available or the causal nature of a feedback controller.

As mentioned above these techniques tend to involve the optimisation of the per-
formance by the selection of an optimal control. The nature of this controller affects
the type of bound that this measure gives on the best achievable control performance.
For these optimal control techniques to give a realistic measure of the best achievable
control performance then the optimisation should be furnished with the complete set
of implementable controllers. When the optimisation set of controllers is a restricted,
but realistic set, i.e., the set of PI controllers (Mohideen et al., 1996), then the result
gives a pessimistic bound. When the optimisation set of controllers is an idealised set,
i.e., as in Walsh and Perkins (1992), then the result gives an optimistic bound. There-
fore, although these results are easy to interpret and relate directly to performance
constraints, there is a degree of ambiguity in assessing just how realistic these bounds
are.

A final criticism of these approaches to optimisation based nonlinear controllability
must be the computational expense involved in the solution of such nonlinear dynamic
optimisation problems.

In spite of the computational expense of these optimisation based techniques and
the nature of the bounds they produce, they offer a very attractive solution to the con-
trollability analysis technique. They provide unambiguous results which relate directly
to performance requirements, allow constraints and disturbances to be defined in the

time domain and can be formulated to incorporate more than one of the fundamental
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limitations on controllability within the framework of one analysis technique.

2.4 Motivation for thesis

From the reviews of linear and nonlinear controllability analysis it can be seen that

controllability analysis techniques can be split into:
e analytical techniques
e optimisation techniques.

Although the linear controllability indicators have been categorised by the fundamental
limitation that they measure, they can also be split into those based on optimal control,
i.e., the ideal ISE optimal control problem (time delays and RHP zeros for SISO or
just RHP zeros for MIMO), p-synthesis (uncertainty), and those not.

The discussion of these linear controllability indicators led to the conclusion that
there is a need for a linear controllability analysis technique which provides an unam-
biguous measure of the best achievable performance, handles time domain constraints
and disturbances and incorporates the majority of fundamental limitations on control-
lability.

A look at the existing nonlinear controllability techniques revealed nonlinear opti-
misation techniques which give controllability results that relate directly to the perfor-
mance specifications, allow the analysis to take place in the time domain and can be
formulated to handle more than one of the fundamental limitations on controllability
at a time. However these techniques are computationally expensive and provide op-
timistic and pessimistic bounds on the best achievable performance depending on the
description of the optimisation control set. To make these bounds tight ideally this set
should be as broad and realistic as possible.

Therefore the analytical indicators have been dismissed for the purpose of this
thesis. However the optimisation based techniques seem promising and it is this branch

of controllability analysis that is pursued in this thesis.
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2.4.1 The Aim

The aim of the work in this thesis has been to find controllability analysis methods for
linear and nonlinear models, based on optimal control problems, which satisfy as many

of the following as possible:

e capture typical time domain performance requirements and disturbance descrip-

tions directly;

e find the best performance with as broad and realistic a set of controllers as

possible;

e take account of as many of the fundamental limitations on controllability as

possible simultaneously;

e are computationally tractable.

2.4.2 Optimal Realisable Control vs. Optimal Idealised

Control

Any controllability analysis technique based on optimal control can take one of two

forms:
e optimal realisable control
e optimal idealised control

The first form of optimal control means that the controller could actually be im-
plemented between a set of measured variables y and manipulated variables u, e.g., a
stabilisable PI or LTI controller. This includes feedforward, as well as feedback, con-
trollers since these simply involve adding the disturbances to the measured variables.
Examples of this type of optimal control for the linear case are H., optimal control
which is used in p-synthesis, Hy optimal control which includes LQG control and ¢,
optimal control. Unless the optimisation is furnished with the complete set of realisable

controllers, this type of technique will give a pessimistic (upper) bound on the optimal
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achievable control performance, since the set of controllers is restricted and may not
include the optimal controller. This type of optimal control problem has been used
in this thesis to provide a measure of linear controllability analysis by selecting the
optimal linear time invariant (LTI) controller. This technique is based on ¢; optimal
control theory, which is a well researched and existing area and is presented in detail
in a book by Dahleh and Diaz-Bobillo (1995). ¢; optimal control is used as a basis for
this controllability technique, since it goes a long way towards answering the aims set
out in section 2.4.1. This motivation is discussed in more detail in 3.1. However to
provide the corresponding measure for nonlinear models involves tackling a nonlinear
optimisation over the set of LTI controllers. To attempt to parametrise this set will
produce a high dimensional nonlinear optimisation problem. Also the problem will no
longer have the convexity properties of the linear case and hence global optimality of
solutions cannot be guaranteed. Therefore optimal realisable control was only used to
develop a linear optimisation based technique which is presented in detail in Chapter
3.

The second form of optimal control, optimal idealised control, means that the con-
troller is idealised in the sense that it is optimal for the problem and may not be
implementable. Examples of this type of optimal control are the ideal ISE optimal
control problem or the minimum time delay optimisation problem given by Walsh and
Perkins (1992). This type of technique provides an optimistic (lower) bound on the
optimal achievable control performance, since the optimal controller may not be in the
set of realisable controllers. Such an optimal control method has been used to develop
a nonlinear controllability analysis technique and a specialisation of this technique to
linear models. For the nonlinear optimisation there is still no guarantee of a global
optimum, but there is better experience with the solution of such optimal idealised
control problems, than with the nonlinear version of the optimal LTI control problem.
Both the nonlinear controllability analysis technique and its linear specialisation are
described in Chapter 4. The majority of the chapter is dedicated to the nonlinear

method, whilst section 4.8 is used to clarify some differences in the formulation of the
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linear specialisation which allow it to be solved efficiently as an LP.

Therefore three controllability analysis methods have been developed in this thesis,
a linear controllability analysis method based on optimal LTI control, a nonlinear
controllability analysis method based on an optimal idealised control problem and its
linear equivalent. All these techniques use discretised controllers, with both the linear
methods requiring discretised linear models. This means that the discretisation method
and sampling period are important to the techniques. Also they have been developed to
meet as many of the desired characteristics for a controllability analysis method, stated
in 2.4.1, as possible. However one area which is not tackled here is the incorporation
of the fundamental limitation on achievable control performance due to uncertainty in
the model. This area is avoided since these problems are computationally expensive as
it stands and the addition of uncertainty would add further computational difficulty,
making it even harder to tackle realistic problems. Also in reality it is hard to give an
accurate definition of the uncertainty set, therefore to incorporate uncertainty would
introduce conservatism and ambiguity to the measures. However this is an area that

is open to further research as is suggested in Chapter 6.
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Chapter 3

Linear Controllability Using

Optimisation

The following chapter presents a technique, which provides a measure of the best
achievable control performance of a linear model for a linear time invariant (LTT)
controller, by solving a linear optimal realisable control problem. This measure provides
a pessimistic bound on the actual best achievable performance since it does not include
all the possible realisable controllers. For example a PI with output limiting is not
included in this description. However since the set of all LTI controllers is a very
general set this measure is not too biased by the choice of a specific controller design. It
takes account of the majority of the fundamental limitations on controller performance
mentioned in Chapter 2 , excluding model uncertainty. It also captures a wide range
of typical performance requirements, depending on its formulation, and allows the
direct inclusion of time domain constraints. The results are easily interpreted and the
technique lends itself to use as a feasibility test, i.e., can performance requirements be
met for this process design.

This controllability technique uses linear programming techniques to address the

linear optimal control problem:

minJ(K,ug) s.t. ¢(K,up,w) <0Vwe W (3.1)

K,ug

where K is a linear time invariant (LTT) controller and the objective function .JJ and
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the constraints ¢ are expressed as linear functions so that the problem can be solved
by linear programming. ug is the operating point and w € W are the disturbances.
This formulation encompasses a wide range of optimal control problems ranging from
minimising the maximum deviation in objective variables subject to disturbances of
magnitude less than one (the ¢; optimal control problem) to optimising the expected
value of a linear economic objective (the Optimal Linear Dynamic Economics — OLDE
— problem).

The general development of the field of linear optimal control is presented and
the use of the theory of £; optimal control as a basis for this controllability analysis
technique is motivated.

Using the appropriate controller parametrisation means that the achievable closed
loop transfer functions for a generalised plant are expressed as an affine function of
a stable parameter (). This allows the achievable discrete time closed loop impulse
responses to be defined by an infinite set of linear constraints and approximated by a
finite set of linear constraints.. The methods for doing this are well established (Boyd
et al., 1988; Boyd and Barratt, 1991; Dahleh and Diaz-Bobillo, 1995) and are discussed
in section 3.3.

The disturbance set W can be expressed in a flexible manner and can include a mix-
ture of magnitude bounded signals, step signals and steady-state signals. The allowable
combinations of disturbances can be restricted if desired. This flexibility is important
to allow specific process requirements to be captured with adequate precision. We show
how the effect of this general set W can be captured in a linear program.

Possible objective functions are then discussed and it is shown that many objectives
of interest can be captured in a linear program.

Having defined the LP problems of interest we then discuss the properties of alter-

native formulations.
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3.1 Linear Optimal Control

Linear optimal control involves the solution of an optimal control problem where both
the plant and the controller are linear. Over the past decade there have been con-
siderable advances in linear optimal control strategies, relative to the linear quadratic
gaussian (LQG) methodology which was dominant in the 60’s and 70’s. This method,
discussed in more detail in Anderson and Moore (1989), involves the optimisation of
LQG models where these models have linear dynamics, the measurement noise and
disturbances (process noise) are gaussian stochastic processes and the objective (cost)
function is quadratic. However, as stated in Skogestad and Postlethwaite (1996), due
to its reliance on accurate models and its assumption of white noise disturbances it was
found that “LQG designs were sometimes not robust enough to be used in practise”.

These short comings of LQG control led to the development of H,, robust control.
It was found that, in spite of the lack of robustness in the LQG being attributed to the
form of the H; norm in the objective, both H, and H,, control had many similarities.
H, and H., optimal control involve the optimisation of the respective, H, and H..,
norms of a closed loop transfer function matrix, given by the lower linear fractional
transformation described in section 3.2. The LQG problem is a special case of H,
optimal control. The H., approach can be combined with uncertainty representations
to provide robust performance problems, i.e., y-synthesis.

Another development in this field was the discovery that linear matrix inequalities
(LMIs) could be used to reduce a wide range of problems that arise in system and
control theory to standard convex optimisation problems (Boyd and Barratt, 1991;
Boyd et al., 1994). Such problems include H,; and H., optimal control problems.
However solving LMIs requires convex optimisation algorithms and the size of problems
which can be handled with current algorithms is quite limited.

H., and LQG optimal control both suffer from the deficiency that the mapping
from the weights used to tune them to a particular performance specification involving
time-domain constraints is obscure. This means that an additional optimisation search

over the weights would be needed to evaluate controllability.

a8



A more promising methodology is /; optimal control. Using the minimisation of the
¢y norm to optimise disturbance rejection was first introduced by Vidyasagar (1986).
The extension of the #; problem to discrete MIMO systems was given in Dahleh and
Pearson (1987b). This method which is presented, in depth, in Dahleh and Diaz-Bobillo
(1995) has a number of particular characteristics which recommend it for consideration

for controllability analysis.

o [t deals directly with time-domain constraints and disturbances with time-domain
bounds and, hence, has a natural fit with the typical performance requirements

which might be specified.

e It optimises the achievable performance over the set of linear time invariant (LTT)

controllers (square or non-square), which is a broad and realisable set.

e It incorporates most of the fundamental limitations on controllability, discussed

in section 2.1, directly in the optimisation problem.

o [t requires the solution of a linear program, rather than a general convex program,

and is therefore potentially applicable on realistically sized problems.

Therefore the framework of this problem satisfies many of the requirements, mentioned
in 2.4.1, for a new linear controllability technique. This #; technique provides a very
strong unambiguous result. It answers the question: Is there any linear time invariant
controller which can keep the constrained variables within their bounds for the worst
time-bounded disturbance? This method and the techniques used to solve it have been

used as a basis for the linear controllability analysis technique presented in this chapter.

3.2 Achievable Closed Loop Transfer Functions

The closed-loop system is defined by the relationships below, where P is the generalised
plant, K is the controller, w are the disturbances, u are the control inputs, z are the

regulated outputs and y are the measured outputs.
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z = P11’UJ+P12U
y = Pyw+ Puu

u = Ky

We take P and K to be linear time invariant transfer functions. z may contain any
process variable including elements of v and y. y may include any of the disturbances,
w, to incorporate feedforward. w may include measurement noise. The number of
elements in each signal vector (n., n.,, n,, n,)are not required to satisfy any particular
relationship. The generalised regulator problem is to choose K so as to optimise some
property of the closed loop transfer function (mapping) from w to z while maintaining
internal stability.

The mapping from w to z is given by
q) — P11 —|— Plgl(([ - PQQ[()_IPQL (32)

The above is a special case of a more general description of feedback interconnections
known as a lower Linear Fractional Transformation (LFT), ie, the mapping from w to

z for the block diagram shown in Figure 3.1.

Figure 3.1: Block diagram of lower linear fractional transformation (LFT)

Ideally, the parametrisation of the set of stabilising controllers K would furnish the

optimisation problem with the set of all stabilising controllers, so that all achievable
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closed-loop maps were provided. The parametrisation presented is often referred to as
the Youla parametrisation (Youla et al., 1976) and is linear fractional in a free stable
parameter (). If this parameter is chosen to belong to the ¢; vector-space, ie, has a
bounded /;-norm, then all LTI stabilising controllers are parametrised and all closed-
loop maps are affine in (). This enables the problem to be formulated as a linear

program.

3.2.1 Parametrisation of LTI Stabilising Controllers

The controller is parametrised using the Youla parametrisation (Youla et al., 1976),
which parametrises all stabilising controllers in the stable parameter (). This feedback
controller will mean that the closed-loop system is internally stabilised. For this ap-
proach, which is based on double coprime factorisation, all stabilising controllers for

the plant Py, are given by
K=(Y=MQ)X—-NQ)™" =(X-QN)'(Y-QM) (3.3)
where () is stable and N, M, N, M are given by the right and left coprime factorisations
Py=NM~'=M"'N (3.4)

and stable XY . X.Y satisfy

X -y MY
-N M N X
If @ is chosen as @) € /4, i.e., has a finite £; norm given by
QI = max > > lai;(1)] < oo,
SIS o1 4=0
then all stabilising LTI controllers, in the /., sense, are parametrised by (3.3). If a
controller is stabilising in the /., sense it means that the /; norm of the closed loop
system is finite.

When this controller parametrisation(3.3) is substituted into (3.2) the closed-loop

map becomes affine in the free parameter Q.
b=H-UQV (3.6)
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where

- P11 + P12YMP21, (37)
- Plg M,
— MPQl.

This controller parametrisation allows feedforward control to be incorporated in the

problem, as well as feedback. This is done in a very straight forward manner. Simply

augment the measured variables with the disturbance variables so that

. y - -
y= = Pyiw + Pyu (3.8)
w
where
. P . P
P21 = a and P22 = - (39)
1 0

and calculate your H, U and V, using (3.7), for these new Py and P,.

3.3 Feasibility Constraints

There are two kinds of constraints for a given closed-loop map ®, feasibility constraints
and performance constraints. The former ensure that any selected ® does indeed satisfy
(3.6)

b=H-UQV

for some stable (). The latter represent the performance objectives and are discussed
later in the chapter.

If P and K are expressed as discrete time LTI systems and ® is a discrete time
impulse response matrix, then it is possible to express these feasibility constraints as
linear equality constraints. This chapter presents two such techniques, interpolation
conditions and Q-approximation. The first method involves the use of a set of con-

straints on @, called the interpolation conditions, that ensure that the closed-loop map
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® can be written in the form of (3.6) for some @ € ¢;. The second involves approxi-
mating () as a finite length discrete impulse response. Both techniques provide linear

constraints defining the achievable ®.

3.3.1 Interpolation Conditions

Interpolation conditions provide necessary and sufficient conditions on the R in the
closed-loop map

®=H-R

such that it can be written as UQV for some stable (). These conditions represent
limitations in achieving the performance objectives. For example, if () is chosen to
give some desired value of @, ie, H — UQ;V =: &4, then for any arbitrarily chosen
&, to be achievable () must invert both U and V. This might not be possible due
to either or both of U/ and V having RHP zeros, ie, not having stable inverses, or )
not having sufficient degrees of freedom, ie, a bad rank or nonsquare problem, thus
limiting the achievable ®. These limitations are captured by what are known as the
zero and rank interpolation conditions respectively. The first set of conditions capture
fundamental process limitations, such as RHP zeros or time delays. The second set
depend on the objective function, since the selection of the exogenous disturbance w
and the regulated output z will define whether the problem is one-block (good rank)
or multi-block (bad rank).

These conditions can be expressed in two ways as presented in Dahleh and Diaz-
Bobillo (1995), either as algebraic conditions on R(A) (Theorem 3.3.1) or conditions
on the left and right null-spaces of the operator R (Theorem 3.3.2). Note that these
theorems are given in terms of the discrete operator A = z7!, in which case the RHP

zeros are given by the zeros Ag in the unit disc Ag € D.
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Theorem 3.3.1 Assume that Ayy C D. Given R € (7™ there exists a Q € £7**™
such that R = UQV if and only if VAo € Ayy C D the following conditions are satisfied:

i) (aRB)P(N) =0 for { j=1,..n, (3.10)
kE=0,..,00,(X)+ov,(X) =1
i (;R)YA) =0 for i=n,+1,...,n, (3.11)
(RB))(A) =0 for j=mn,+1,....,n

where a;(A) = (L' )i(A) 1 = 1,2,....n,, B;(A) = (RV)Y(N) j = 1,2,....n,, for
the Smith-McMillan decompositions U = LyMyRy and V- = Ly My Ry, D =open
unit disc,D =closed unit disc, Ayy =sel of zeros of U and V in D, oy, =sequence of
structural indices corresponding to U, ie,oy,(Ao)=multiplicity of the zero Ay as a rool
of the numerator of the ith diagonal term of My, ov, =sequence of structural indices

corresponding to V.

The conditions in i) are the zero interpolation conditions, whilst the conditions in ii)
are the rank interpolation conditions. Note however that there are an infinite number

of constraints involved in implementing ii), since

(@R)(N) = SR (DN =0= (aR)(t) =0 ¥Vt >=0

M8 L1

(BB;))(A) = D (RB)()A =0= (RB;)(1) =0 VI >=0 (3.12)

t=0
Therefore for the constraints to be implementable the problem must have no rank
conditions. This is so for one-block (good rank or square) problems where n,, = n,
and n, = n,, but not for multiblock (bad rank or nonsquare) problems where n,, > n,
and n, > n,. Therefore, if the problem is multi-block, it is embedded in a one-
block problem which has only zero interpolation conditions. In this work the delay
augmentation (DA) algorithm is used, which involves U and V' being augmented by N
pure delays, so that the problem is one-block. As NN increases the zero interpolation
conditions of the DA problem approximate the original problem increasingly closely.

This is discussed in more detail in Appendix A.1.
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The Smith-McMillan decomposition is used in theorem (3.3.1), since it provides a
characterisation of the zero and pole structure of a rational matrix, however ,in order
to avoid the computational difficulties of this decomposition (numerically sensitive),
an alternative expression of the zero interpolation conditions can be given using null

chains. Hence, equivalently, the conditions, for a one-block problem (good rank), can

be stated as follows:

Theorem 3.3.2 Given a one-block problem, the zero interpolation conditions become:

Yo € Apyv C D the following condiltions must be satisfied:

7 7nu
(yh, Bl )P (o) =0 for { j=1,...n, (3.13)
k=0, (A0) + ov;(Ao) — 1
) O'Ui()\O)_l ' ) Cfvj()\o)—l 4
where g3, (A) = D3 (A =20) (i) and 23,(N) = D (A= Xo)wiy,
k=0 k=0

for yi =elements of the extended set of left null chains of U, x/ =elements of the
extended set of right null chains of V.

Therefore the interpolation conditions can be given by a finite number of zero inter-
polation conditions of the kind shown in theorem (3.3.2) for a one-block problem. If
the problem is multiblock then it will be solved, using the DA algorithm, as a series of
one-block problems converging to the original problem.

Substituting R = H — ® into equation (3.13) gives

(Wi (H — )2l )P(00) =0 for  j=1,...n,
k= 0, ....,O'Ui()\o) + O'VJ()\()) —1

which allow the elements of any feasible ® to be expressed as follows

Ny Ny OO

SIS T al AR (D p(1) = b0k (3.14)

p=1¢9=11[=0
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where

Ny Ny 0O

bk = Zzzhm([)- (3.15)

p=1¢=11=0

and

(D) = |35 3 (i, (L~ L= 5)(h () (V) (3.16)

t=0 s=0 A=MAg
where (”E&O)q(k) and (y} )?(k) are the kth discrete elements of the gth component and
pth component of the column vector z,; and the row vector yio respectively.
0
These elements of a;{]”\o’k(l), biirok and ¢,,(1) can be stacked and arranged into a
constant real matrix A..,,, a constant real vector b..,, and a variable vector ¢ respec-
tively so that the zero interpolation conditions expressed by equation (3.14) can be

stated as

A’élzeroq6 = bzero (317)

This provides a finite number, ¢, of constraints,
= 3 S 0w (M) + ov, (M), (3.13)
XoEAyy =1 j=1
however ¢ is infinite dimensional therefore this introduces an infinite number of vari-
ables. The method used to get a finite dimensional problem is to truncate ¢ for each
z; and w; to a finite length N;;. The elements of A,.,, associated with ¢ beyond this
horizon are removed from the problem. This implies that any ¢ satisfying the trun-
cated constraints also satisfies the infinite constraints for ¢;;(k) = 0 Yk > N;;. This
technique (Dahleh and Diaz-Bobillo, 1995) is given in more detail in Appendix A.2.
The effect of the choice of N and N;; will be discussed later when the problem

definition is complete.

3.3.2 Q-Approximation

There is another technique, which avoids calculating these interpolation conditions at

all. For this technique the discrete impulse response of () is approximated as
-1
Q=> q(p)=z" (3.19)
p=0
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(Boyd et al., 1988) with finite length L. The assumption that @ is a finite impulse
response of length L, means that this technique is an approximation and it is necessary
to select L large enough to include the optimal ). Using this approximation means

that the discrete elements of ® can be expressed as follows

® = H-UQV
S ok) = h(k)— (3 Y ulr — pa(p)olk — 1)

- @0 > utr—r) z 7= 1)

= EZZ k _T)qnm(p))

r=0p=0n=1m=1

which can be rearranged to give the elements ¢;;(k) of ¢ as follows

min(k,L—=1) n, ny 1=1,....,ny
ZIORS D IIDY E P)Gum(p)| = hij(k) for § j=1,..,n,  (3.20)
p=1 n=1m=1
k=0,...,00
where
e (p Z Uin(r = P)Omj(k = 1) (3.21)

Much as in the zero interpolation case these elements of ¢(*)(p), h;i(k), ¢i;(k) and
dnm(p) can be stacked and arranged into a real constant matrix A,, a real constant
vector h and variable vectors ¢ and ¢ respectively . In this way expression (3.20) can

be stated as

991 = h (3.22)

Note that each SISO impulse response gy, (k) could be assigned a distinct length
Ly, but this would normally introduce an unhelpful increase in complexity.
As with the zero interpolation constraints ¢ is truncated and the elements of ¢;;

beyond N;; ignored. In this case this implies nothing about the values of ¢;;(k) k > N;;.
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3.4 Disturbance Description

In typical process applications the disturbances will not be precisely characterised.
However the following questions can usually be answered for the key disturbances.
What range of values does the disturbance take? How quickly can the value change?
Do changes occur frequently? Based on answers to these questions, an adequately
precise disturbance description can be developed.

Very slowly changing disturbances should be treated as steady-state. Disturbances
which change significantly over the process transient response time can be modelled as
instantaneous changes filtered through a transfer function Wi. If the maximum rate of
change is 10% of maximum variation per sample, a finite impulse response (FIR) filter
Wi, ;

Wy =01> 2"

=0

would convert a step change between the limits to a ramp at the maximum rate, thereby
excluding the unrealistic disturbances. Such filters can be included in the process model

as shown in figure 3.2.

w ---------- >ﬂ‘ Wl “““““‘1 d
gL L
Gd
€l ¢ u G g’ Y
- +

Figure 3.2: Block diagram for the disturbance filter augmented system

If changes occur infrequently, compared to the process response time, then a step

disturbance description is more appropriate than a persistently varying signal which is
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only constrained to be magnitude bounded.

Typical time-domain disturbance descriptions can therefore be represented in terms
of three types of disturbance signals: persistently varying (persistent) disturbances,
step disturbances and steady-state disturbances.

Given a finite impulse response description of ¢ we can compute the worst-case
response for each of these signal types. For convenience (and without loss of generality)
we consider all disturbances relative to a reference point corresponding to weeptre =
(wh + w')/2 and scaled so that a unit variation corresponds to (w" — w')/2. This
causes no loss in generality, since for linearised systems with asymmetric bounds on
the disturbance the system can simply be rescaled about the reference point we.cnse
as for the case study in 5.2. The disturbance deviations about this point will be
symmetric with a maximum deviation of unity (upper bound = -lower bound = 1) and
the corresponding output deviations will also be symmetric.

If the problem involves measurement noise, then the noise should be represented
as a disturbance in the disturbance vector w and this noise-disturbance added to the
relevant measurement y in the system description. A suitable description of the noise
should be selected from the possible disturbance descriptions of persistently varying,

step or steady-state.

3.4.1 Steady-State Disturbances

The maximum output deviation on z; in response to w; will be given by

—vij < kE ¢ij(k) < vij (3.23)

=0
However we will only have access to ¢;; up to a finite horizon N;;. With the
interpolation constraints the later values of ¢;; have been set to zero and therefore
the finite horizon sum equals the infinite horizon sum. With the Q)-approximation the
finite sum is not equal to the infinite sum. However, the steady-state gain of () can be

evaluated as a finite sum and the corresponding steady-state gain of ¢ computed given

ss,cl
zw

the steady-state values of H, U, and V. Hence the closed loop steady-state gains, GG
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and v;;, can be computed using finite dimensional linear constraints in both cases.

3.4.2 Step Disturbances

We consider steps between any two levels within the lower and upper bounds on the
disturbance value. The worst-case will be given by a step between the upper and lower
bound or vice versa. The effect on output z; of a step in disturbance w; from the lower
bound (-1) to the upper bound (1) would be,
t o0 t
) = =242 (0000 ) = = o) +2 (L i)

The maximum deviation is therefore given by

. t>0
vy < -3 k) +2 (Z qzj(k)) <vy for izl n. (3.24)
k=0 k=0
1=1,....,ny

The steady-state component can be computed as above. With the interpolation
constraints the maximum deviation for ¢ < V;; will be the maximum deviation for the
infinite horizon. With the Q)-approximation the peak step response calculated in this
way will be a lower bound on the infinite horizon step response deviation as the later

values of ¢ are unconstrained.

3.4.3 Persistent Disturbances

For persistently varying disturbances we have

vij = 3 1¢i; (k)|
k=0
The absolute value in the above expression requires a change of variable to give a
suitable form for a LP. We define ® = ®*—®~, where ®* and ®~ have only nonnegative
elements. We can then write
s = Y 67(0) + 6 ) (3.5
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Replacing the sum to infinity with the sum to N;; has the same implications as for

the step disturbances.

3.4.4 Combining Disturbances

For each disturbance type we can calculate v;;. For a purely worst-case analysis we get

the worst deviation on z; as

vi=Su, (3.26)
j=1
If such an analysis is felt to be excessively conservative then we may define v;
based on the maximum deviation over specified subsets of disturbances, e.g. any n
step disturbances combined with all the steady-state and persistent disturbances. The
constraints for each allowable combination could be appended to the LP.
The values of v; couple the disturbance description with the overall performance

requirements.

3.5 Performance Requirements

For the linear controllability problem in (3.1)

min J(K, ug) s.t. ¢(K,up,w) <0VweW

K ug
conditions which ensure that the controller, K, is selected from the set of all stabilising
LTT controllers have been discussed in section 3.3. These conditions can be represented
by a set of finite linear constraints on the discrete impulse response of ® (the closed
loop map from the disturbances w to the regulated outputs z). Therefore this problem

could be restated as

. (P, up,w) <OVweW
min J(®, ug) s.t.
&0 O(K) where K=LTT stabilising controller

To solve this as an LLP both the objective, .J, and the performance constraints, ¢, should

be given as linear functions on ® and wy.
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The constraints and objective should be formulated to capture the performance
requirements for a specific problem and plant. Typical process constraints such as
magnitude bounds on process variables, ie, a certain temperature must be kept between
an upper and lower bound, can be captured in a straightforward manner. This chapter
will discuss formulation of the LP to satisfy a range of objectives and performance
constraints.

We assume that the model used has been linearised about a steady-state given by
Zlins Ylin, Wiin, Uy, and that all constraint limits have been expressed relative to this
steady-state. As mentioned in section 3.4 all disturbances are considered relative to a
reference point weenr and scaled so that disturbance deviations about this point will be
symmetric with a maximum deviation of 1. Also the corresponding output deviations
will be symmetric about a value of z, corresponding to wee,se and the operating point

ug, which is given by
Zref = szOl(wcentre - wlin) + GszOl(uO o ulm) + Ziin (327)

where GG**°! denotes the open-loop steady-state gains and G** would denote the closed
loop steady-state gains. Similarly the value of y corresponding to w.epre and ug is given
by

y = Gf,fj,oz(wcemre — Wiin) + G;Z’Ol(uo — Uin) + Yiin (3.28)

where the controller is given by u = ug + K(s)(y — y").

The most basic performance requirement is to ensure that none of the variables
violate their bounds. This can be enforced by including the constrained variable in z
and enforcing

Z,f»gzing YVweWi=1,n, (3.29)

Hence, to enforce input constraints, simply include the inputs of interest from u into z.

For example, to include the pth control input u,, alter the original system description

z = P11’UJ+P12U

y = Puw+ Pyuu

72



to the following

y = Pnw+ Pyu

where e, = pth column of I, ..

The maximum deviation in z; due to the disturbances is given by v,
V; = E Vi (330)
=1

where v;;, the effect due to the jth disturbance w;, is calculated in the LP according
to the set of linear constraints appropriate to the description of w;, i.e., whether it
is steady-state (see 3.4.1), a step (see 3.4.2) or persistent (see 3.4.3). As mentioned

previously this maximum deviation is applied symmetrically about the reference point

Zres in (3.27) therefore (3.29) can be rewritten as
z,f-—l—z/ingef §Z£L—1/¢ 1=1,n, (3.31)
Therefore the constraints ¢( K, ug, w) < 0 would be given by

z,f—l—z/i—zfef < 0 Vi
zfef—zf—l—z/i < 0
Rather than imposing the performance requirements directly we may wish to deter-
mine the fraction of the disturbance deviations for which the performance is achievable.
This can only be expressed as a linear program if z"¢/ is independent of K and wuy, i.e.,
for a fixed operating point ug. In this case we can scale the deviations z; by the mini-
h_ _ref _ref

z; z

mum distance to a constraint (min(z; 2] z})) so that a deviation less than

1 corresponds to constraint feasibility. We can then make the objective of the LP.

v, =min max v; (J(K)= max v;) (3.32)

K i=1n, i=1,n,
If the disturbances are scaled down relative to wgepnse by a factor yi then the perfor-

mance constraints will be unviolated. Therefore = gives the fraction of the disturbance
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set which can be tolerated. The use of the “disturbance fraction” as a controllability
measure is discussed more generally in Walsh and Perkins (1996).

If we have a reasonable basis for penalising the maximum deviation on each ob-
jective z;, then it could be appropriate to minimise a weighted sum of the deviations
v;, rather than the maximum deviation. The weighted deviations could be minimised
subject to feasibility constraints. This type of objective is highly flexible. Its key
limitation is the difficulty of defining appropriate weights for the deviations.

In sections 3.5.1 and 3.5.2 two specific problems, that can be solved using the
formulation of (3.1), are discussed. The first is the ¢; optimal control problem, which
is an existing technique first introduced in Vidyasagar (1986) and on which much work,
by a variety of people, has been carried out. The second is the OLDE problem, which
has been developed as part of the work for this thesis and which can be used to assess

the economic performance of a linear dynamic system.

3.5.1 The ¢; Performance Problem

If all the disturbances are persistent, then vy, described in (3.32), is the ¢; norm
of the mapping from w to z and the problem being solved is an ¢; optimal control
problem. The ¢; optimal control problem involves the minimisation of the ¢; norm
of an objective function over the set of all stabilising LTI controllers. This problem
has been well researched and the work discussed in the following is based mostly on
work presented in papers by Vidyasagar (1986) and Dahleh and Pearson (1986; 1987b;
1987a) and a book by Dahleh and Diaz-Bobillo (1995).

The /1 optimal control problem selects a stabilising LTT controller, to minimise the
maximum deviation in the regulated outputs z, over all time, due to unity magnitude
bounded disturbances. This allows us to address the following controllability question:
Given a nominal linear model of a process and a set of disturbances, which are bounded
over time, is there any stabilising LTI controller for which the maximum deviation of
the process variables over time is acceptable? Using ¢; optimal control to solve an ¢,

performance optimisation problem as a process controllability analysis tool is discussed
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in Chenery and Walsh (1996).
The problem to be solved is

inf  sup  ||z||ec = inf  sup ||[Pw| (3.33)

K stab. [l0]| oo <=1 K stab. [l0]| oo <=1

where the infinity norm of z is the maximum deviation in z over all (discrete) time,
|2]|cc = sup max |z;(k)|. (3.34)
k k3

and similarly for w. The set of disturbances is very general in that they are unknown,
but magnitude bounded by 1, i.e., |[w|ec <1 = w € l,. The induced norm for

operators on /., is the {;-norm

][y = sup |[Pw]|o. (3.35)
w||eo <1
which is computed using,
1@l = max > |¢i;(t)| (3.36)
="="7 i=11=0

Substituting (3.35) into (3.33) gives

inf (sup[[@wll) = inf o] (3.57)

Kstab. ||| <1
the £; optimal control problem.

The description of all disturbances as unknown, but magnitude bounded, ie, w €
l., allows the inclusion of persistent disturbances which could not be described as
finite energy signals, ie, w € /3. However this is a worst-case design method, since the
disturbance can take any form as long as its magnitude is bounded, which means that
the measure it provides might be conservative.

The ¢y performance problem should be set up as follows,

v, = inf ||®|;. (3.38)

K stab.

The objective function ||®]||; is nonlinear due to the absolute norm in (3.36), to avoid

this nonlinearity a variable change is made. Put ® = ®* — &~ where &t and &~
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are sequences of maps with non-negative entries. Using this it can be shown that the

{1-norm of ® is equivalent to,

Nw OO

maxzz )+ o5;(t)) = v. (3.39)

7=11t=0

Therefore the ¢; minimisation problem (3.38) can be stated as follows,

v,= 1inf v
v, &t , o~
subject to
Ay (0t +07) < 1v (3.40)

® = dT — d~ is feasible.

where the operator A, is defined such that

(An®)i =D dij(t) (3.41)
7j=11t=0
fori=1,...... ,n, and 1 is a vector all of ones € R">.

3.5.2 The Optimal Linear Dynamic Economic (OLDE)
Problem

In general, process design involves a steady state optimisation, which minimises the
appropriate objective function by selecting a set of steady state operating values subject
to a set of equality and inequality constraints. Often this optimisation will result
in plant operation on these operational inequality constraints. However, since some
process disturbances will cause these constraints to be violated, it will not be possible
to operate the plant on them. To avoid this violation during operation, the steady
state operating point will have to be moved sufficiently far away from the optimum
and into the feasible region. This backing off from the optimal steady-state operating
point reduces economic performance.

Ideally controllability analysis should consider, not only feasibility of a design, but
also this economic performance. Therefore it would be desirable to incorporate oper-
ating economics into any controllability analysis technique as a measure of achievable

performance.
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If we linearise around the steady-state optimum for @ = weepsre (W is the expected
disturbance level) and the active set of constraints is assumed to remain constant over
the disturbance set, then the economic penalty can be estimated as (Narraway et al.,
1991)

J=J,— Zn: A:0;.

=1

J is the objective function at the optimal operating point, .J, is the steady state op-
timum, JA; is the Lagrange multiplier of the constraint on z; and §; is the back off
required to compensate for the maximum deviation of the ¢th constraint due to distur-
bances. Therefore let |§;| = v;, where the v;’s satisfy the appropriate linear constraints
presented in section 3.4. Hence the objective of the LP becomes

Vo=, min_ ; Aiv;

Alternatively the linearised steady-state constraints and objective function can be
added to the LP formulation. This allows changes in the active set of constraints to be
accommodated, subject to the limitations of the linear steady-state model used. If we
have reasonable information about the economics of the process then we can determine
the optimal expected value of this objective over the disturbance set. By virtue of
closed-loop linearity, the expected value of the objective is simply the objective for the
expected value of the disturbance, w, i.e.,E(o(w)) = o( E(w)) = o(w).

Therefore if the objective function, o(w, u), for the expected value of the disturbance

is expressed as

o(w) | u=wuo+ K(s)(y— yref) (3.42)
o(w) = o4+ G (© = Weeptre) (3.43)

where
OTEf = Gzzd(wcentre - U)lin) + GZZOI(UO - ulin) + 0(71)[2'7“ ulm) (344)

then our optimisation becomes

min o™ + Gf)ffl(ﬁ) — Weentre) (3.45)

K,up
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Note that if o is included in z then G#%¢ can be constructed as discussed previously.

ss,cl

s5:¢t can obtained as

Alternatively, if o is not in z and all inputs appear in z, then G
GGt + G

Hence the optimisation problem (3.1) becomes

. - . el
%ﬁlJ([x, ug) = %15)1 o+ G5 (W — Weentre )

where g is chosen to satisfy the constraints ¢( K, ug,w) < 0 described in (3.31)

IN

ZZI + v = (Gzi}d(wcentre - wlin) + szjd(uo - ulin) + Zlin)i

(szjd(wcentre - wlin) + szjoz(uo - ulin) + Zlin)i - ZZh + v; S 0

A

and K is chosen to minimise v;. This ensures that the operating point backs off
sufficiently to avoid violation of the constraints by deviations in z;’s Vw € W, ¢ = 1, n,.

Young et al. (1996) present a conceptually similar approach to evaluating operating
economics based on the @-approximation. Their approach diverges significantly in
detail. They do not consider the use of interpolation constraints and consider only

step disturbances and nominal economics. Their disturbance set is defined by
I'={(dp, Ad)|d = dp + Ad;d~ < d < d*}

for which the base value dj, the magnitude and direction of the step Ad are uncertain.
They reduce the set of disturbances to be considered when testing for feasibility to just
the critical (vertex) points (d~,d* —d~) and (d*,—(d* — d™)). For a large number of
disturbances this set would still become large, 2"*. By choosing the reference distur-
bance as d.cpre, we avoid the need to consider the above critical points individually.
They allow convex objective functions, which means that their problem size is limited
by the capacity of convex programming algorithms, rather than linear programming
algorithms which can handle larger problems. They apply their method successfully to
a simple problem. Despite the differences noted, their work is very much in the same

spirit as the OLDE work.
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3.6 Properties of the LP Formulations

We have shown that many performance requirements of practical interest can be for-
mulated in terms of a LP, which can be solved to determine the optimal controller
K and, if appropriate, the optimal operating point u,. The LPs involve a number of
approximations, so it is important to consider how the results of the LLPs relate to the
solution of the original infinite horizon discrete time problem.

In the interpolation constraint method, the finite horizon response is an upper
bound on the infinite horizon response, due to the additional requirement that the zero
impulse response beyond the horizon is achievable. If delay augmentation is used with
finite N then the resulting solution is a lower bound on the finite horizon problem.
For a single block ¢; problem, it is possible to calculate the values for N;; such that
the constraints ¢;;(k) = 0 Yk > N;; are inactive (Dahleh and Diaz-Bobillo, 1995)
and the finite horizon optimum becomes equal to the infinite horizon optimum. For a
multi-block £; problem this calculation can be carried out for each value of N and the
finite horizons N;; can be chosen accordingly. The solutions as N increases will then
provide a sequence of lower bounds which converge to the infinite horizon optimum.
For problems other than the ¢; problem, the minimum value of V;; needed to make
the finite horizon optimum equal to the infinite horizon optimum is not known. The
solutions generated are therefore lower bounds on an upper bound and hence simply
approximations to the infinite horizon problem.

In the Q-approximation method, the optimal finite horizon response is a lower
bound on the optimal infinite horizon response (with the same parameterisation of Q)
since the finite horizon problem disregards potential deviations beyond the horizon.
If L, the length of the finite impulse response of (), is less than any horizon N;; 4 1
the resulting solution is an upper bound on the finite horizon problem, with arbitrary
Q), as elements of QQ affecting the finite horizon response are restricted to a value of
zero. For L > N;; +1 Vi,  the solution for the Q-parameterisation is a lower bound
on the infinite horizon problem if the finite horizon objective and constraints are not

affected by ¢m.(k) being zero for k > L — 1. This condition is not guaranteed for step
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or steady-state disturbances and the -approximation gives just an approximate result
for these types of disturbances.

With both methods, if the solution for varying L or N takes an almost constant
value as L or N vary over most of the horizon, then the behaviour beyond the end
of the horizon can be presumed not to be significant and the result can be taken as
a true estimate of the achievable performance. This convergence can be tested by
reconstructing the controller K" and calculating the infinite horizon response to within
a desired precision (Dahleh and Diaz-Bobillo, 1995) to give an upper bound on the
infinite horizon solution.

In Ajbar et al. (1995) the interpolation constraint approach is criticised for giving
only an approximate solution to the £; problem, in contrast to the Q)-approximation.
However, both methods can be used to construct a sequence of lower bounds to the
infinite horizon optimum or to construct upper bounds based on a specific solution.
Also, both methods exhibit the qualitative property that consistent results as N or L
increase indicates convergence to the true optimum. At least for the ¢; problem both
methods seem to be equally well founded. If the problem is one-block then it is more
efficient and exact to solve the zero interpolation condition problem.

There are also differences in the structure of the associated linear programs. The

zero interpolation conditions generate

Nz Nuw

Z ZZ ov,(Xo)+0ov; (o) (ov,(Ao), ov,(Ao) = structural indices of U, V)

Ao€Apy =1 j=1
constraints and

Z E Nij + 1 (N” = FIR length of qb”)

=1 j5=1
variables within the LP.

The Q-approximation method generates

Nz Nuw

YD Ny +1
=1 j5=1
constraints and
[Ei Ny +1| + [Z S L + 1] (Lo = FIR length of g,,)
i=1j5=1 n=1m=1
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variables. On the whole, the number of constraints in the zero interpolation conditions
will be less than the number of variables, in which case the interpolation condition
will produce a smaller LP problem. However the Q-approximation problem, on the
whole, will be more sparse, which produces an LP which is faster to solve. Also if
the DA algorithm must be used to produce the one-block problem, then the number
of constraints produced by the zero interpolation conditions will grow as the number
of delays augmenting the problem are increased in the algorithm. Therefore which
method is preferable, in terms of LP complexity, is highly problem specific.

The @Q-approximation is by far the simpler and more straight forward of the two
techniques to implement. There are examples of various problems solved by each tech-
nique in the literature, e.g., (Ajbar et al., 1995; Young et al., 1996; Swartz, 1994) for
the @Q-approximation and (Dahleh and Diaz-Bobillo, 1995) for the zero interpolation
method. We solved the very simple SISO problem presented in example 1 of (Ajbar et
al., 1995) using both techniques. Several iterations of the @-approximation technique
were required to check if a good choice of . had been made. The interpolation con-
straint technique solved immediately and exactly since the problem is one-block. In
other examples, including the case study in 5.2 we have successfully used interpolation
constraints while the Q-approximation LLP has not solved successfully.

It should be noted, that both approaches have a variant in which finite step re-
sponses replace the finite impulse response (see section 3.7). For step and steady-state
disturbances this will give a sparser LP and may have better solution characteristics.

It is clear from the above discussion that there is an element of approximation in
the LP formulation. We believe that provided convergence of estimates is obtained
for varying L or N this approximation is of little consequence. The approximation
of a nonlinear process by a linear model is of primary importance, followed by the
approximation of the continuous time linear model by a discrete time model. Variable
transformations should be used where appropriate to improve the quality of the linear
model and sampling should be faster than both open-loop transients in response to

disturbances and the fastest expected closed loop response time (for examples of this
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see Chapter 5). Some iteration might be necessary to achieve this.

3.7 Extensions to this Work by Others

Two main extensions to the analysis presented in this chapter have been made by
others. One is the specialisation of the OLDE problem to steady state systems for
improved efficiency, this gave rise to the optimal linear steady state economic (OLSE)
problem, and the other is the use of the OLDE framework with extra constraints and
objective to give an economic evaluation of quality.

The first technique was set up by P. Owen and is applied to the case study in Walsh
et al (1997). This involves solving the same type of problem as for the OLDE method,

but with the system described as
@SS — HSS _ USSQSSVSS7 QSS < NQ

where ®*°, H**, U**, ()** and V** are all steady state gains and Ng is a large finite
number. This is solved efficiently as an LP using a simplified steady-state version of
the Q-parametrisation technique. The technique reveals whether, for the worst steady
state disturbance, the system can fulfill the performance requirements at steady state.
If the problem fails this analysis there is no point analysing its dynamic behaviour.
This problem is computationally inexpensive in comparison to the OLDE problem and
therefore is a useful steady state screening test.

The second technique was developed by an ERASMUS student O. Frank (1997) for
his Diploma Thesis and attempts to assess the achievable economic cost with respect to
quality. The technique is based on the framework of the OLDE problem and is briefly
summarised in the following.

This technique attempts to assess the achievable economic cost with respect to
quality. The quality cost function, .J!, is represented by a discontinuous function on a

k3

variable, x, which is the deviation in the product from specification.
0 |z| < v
Jz) =
Ci x| > vy
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where v, is the value above which a deviation in the product means it is off-specification
and C' is chosen to represent the cost of reprocessing the off-specification product. For
a maximum deviation in output z; of v; from the operating point zfef the output is

assumed to have a normal distribution described by

Clearly there can be a different quality cost function .J! for each output. The estimated

cost of quality for the ith output is then given by

re
z; f+l/¢

B,y = [
z; ' —

i (@) fi(z)dx

which is convex for typical distributions, cost functions and percentages of acceptable
off-specification production. Due to the convexity of this function E(v;, zfef) can be

estimated as E; through a set of linear constraints as follows

Vk=1,..
E; > E(vF, 2 + <8E> + (8E) "
81/2' 1/5:1/5€ a]/i z.ref:z.ref’l \V/l = 1,..,m

£l

where vF and 2/ are a finite set of values for which E and its partial derivatives

1

are calculated. At each point defined by v and zfeﬂ a linear plane tangential to

E(Vf,zfef’l) is found and we know that E(v;, zfef) must lie on and above this linear

plane for all other values of v; and 2. 1If Ay; = vF —F=" and Azl = o0t prehidl

are chosen too large, then F; will underestimate E(Vz-,zfef) too much, whilst if they
are too small, the problem will grow in size to the point of becoming computationally
intractable.

The objective minimised is given by
i=1
which attempts to evaluate the economics due to quality by minimising the cost of
reprocessing all the off-specification product.
This technique seems promising although it would require a detailed understanding

of the probability distribution of the output and of the nature of the quality cost

function to give a meaningful and realistic result.
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O. Frank also presents a technique for reducing the solution time of the LP for step
disturbances. He lets the discrete step response of the ith output of ® to a positive

unit step in the jth disturbance be represented as

Z Z_kSij(k)
k=1

where the kth element of this discrete step response s;; is given by

sij(k) = Y (1)

¢i;(0), k=0

giving

, sij(k) —sij(k—=1), k=1,..,00

dij(k) =1 " '

si;(0), k=0
Thus any constraint written as
e A 3503 Ak
i=1j=1 k=0

can be rewritten, for a step disturbance in j = j, as

Nz Nt] st

b < A:l? + E Z Z A”Q% ‘|‘ Z Z A” e \Sijs t Sijst(k - 1)) < b,
=1 j=1 k=0 i=1 k=0
JF#Jst
Therefore ‘
bl<A$—|—EZEA ZZ ”tszjtk)gbu
J#Jltk ’ e
where
P AL =AY k=1, Ny
t]st AZO] ) k — O_

This allows the parts of the LP associated with the step disturbance w;,, i.e., with

*9

all ¢;;.,, to be rewritten in terms of s;;,. This is useful, because it means that the
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condition 3.24 given in section 3.4.2 for the maximum deviation

gy Ny t=0,..., Nij,
—Vijy <= D biju (k) + 2D i (k) ) < vy, for
k=0 k=0 1=1,.....,n,
can be restated as
t = 07 ey Nijst
~Vij, < —s(Nij,,) + 2s(t) < vy, for 1
i=1,... T

This does not reduce the number of constraints, but it does greatly reduce the number

of nonzero entries in the constraint matrix ,thus speeding up the solution time of the

LP considerably.

3.8 Implementation

The software was implemented as a series of modules programmed in MATLAB and
FORTRAN. MATLAB was used to profit from the matrix and control orientated tools
and FORTRAN was used to build arrays quickly. The LLP was solved using CPLEX .

The problem requires a discrete state-space system described by

_ o -
Tpy1 = A ryp + [B; B,
Ug
= 3 (3.46)
2k 4 Di1 Dy Wi
= rp +
Yk C Dy Dy, | Uk |

plus details on the performance related objective function J and constraints ¢ and a

disturbance description for each w; in the disturbance vector w, i.e.,

W, a persistent disturbance ||w||o < 1
wj € ¢ Wy, a step disturbance (3.47)

Ws, a steady state disturbance

Layouts of the software, set up for both the interpolation conditions and Q-parametrisation

techniques, is shown in Figures 3.3 and 3.4 respectively. More details are provided in

the appendices indicated.
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*1: ref appendix B.1
*2 . ref appendix A.1
*3: ref appendix B.2
*4: ref section 3.3.1

(equations 3.14-3.17)

*5 . ref appendix B.3
*6 : ref appendix A.2

MATLAB

Initialise: load problem description

find Y oula parametrisation
d =H-UQV *1

Y

No
- Yes iend < i
STOP ?
i
i=i+1

MATLAB
Find: U,V  for DA delay=N,
*2
nullchain elements *3
Y
FORTRAN

Setup: Azem(p:bZero *4

Y

MATLAB

Reconditi onAZero  byy  *5

Truncate Azero *6

Y

FORTRAN

A bl,bu,xl,xu

AddJand c
LP:bl < AX <bu

CPLEX
Cal LP solver

xI £x<xu

Y

MATLAB

Store optimal results \° , ¢
for DA delay:N

X, WP
(W° = optimal objective)

Figure 3.3: Software for the interpolation conditions technique

86



*1: ref appendix B.1

*2: ref section 3.3.2
(equations 3.20-3.22)

*3: ref appendix B.3

MATLAB

Initialise: load problem description

find Y oula parametrisation
d =H-UQV *1

Y

No
< Yes iend < i
STOP ?
izi+1

MATLAB
Find impul se responses, H,U,V

for FIRQof length L,

Y

FORTRAN

Setup: [ | Aq][g] =h *2

Y

MATLAB

Recondition[ | Aq] ,h *3

FORTRAN

AddJandc
LP:bl < AXx <hu

A ,bl,bu,xl,xu .
CPLEX
Call LP solver

Xl <X <xu

Y

MATLAB
Store optimal results \°, ¢, o°

for FIRQof length L,

N

(v° = optimal objective)

Figure 3.4: Software for the -parametrisation technique
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The success of these techniques are highly sensitive to the details of the imple-
mentation. Therefore how the specific details of the techniques are implemented will
directly effect the final computational cost of these methods. The complexity of the

implementation itself adds to this cost.

3.9 Review

A linear controllability analysis technique has been developed in the chapter, which is

based on the optimal realisable control problem

min J(K,ug) s.t. ¢(K,up,w) <0Vwe W (3.48)

K,ug

This technique provides an upper (pessimistic) bound on controllability and has the

following properties:

o It allows constraints and disturbances to be defined in the time domain. A wide
range of typical process performance requirements can be captured, with the
restriction that they be expressed as linear functions. Also a range of typical
and realistic process disturbance descriptions can be used, i.e., persistent, step

or steady state disturbances.

e It optimises the achievable performance over the set of linear time invariant (LTT)
controllers, which is a broad and realisable set. There is no added complexity due
to using a non-square controller rather than a square controller, thereby allowing
a more realistic selection of measured and manipulated variables. Also there is

no added complexity due to using both feedforward and feedback control.

e It incorporates most of the fundamental limitations on controllability. The lim-
itation due to NMP characteristics is captured directly by the feasibility con-
straints. The input constraints can be incorporated by including them in the
regulated outputs and enforcing performance constraints on them directly. Any

limitation due to measurement noise can be captured by including the noise in
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the disturbance vector and altering the state space system so that these (noise)
disturbances are added directly on to the appropriate measurements. The only

fundamental limitation completely ignored in this technique is uncertainty.

e It can be formulated and solved as an LP, therefore it can be used to tackle
realistic problems with less computational expense than a convex or nonlinear

programming technique.

There are some shortcomings such as the objective and constraints must be linear,
the controller set is incomplete, uncertainty is ignored, some problems will give rise
to large unwieldy LPs, etc. However, on the whole, this method answers many of
the requirements, set out in 2.4.1, for a useful new linear controllability analysis tech-
nique. This estimate of controllability is easily interpreted and is most probably more
realistic than the optimistic and pessimistic bounds produced by the existing optimal
control techniques discussed in 2.3.2. The last point is due to the broad set of realis-
able controllers used and the fact that the majority of the fundamental limitations on
achievable control can be included in the problem.

Conclusions on both this technique and the nonlinear controllability analysis tech-

nique developed in the next chapter are drawn in the final chapter of this thesis.
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Chapter 4

Nonlinear Controllability Using

Optimisation

In the following chapter we present a nonlinear controllability analysis technique, which
is complementary to the linear technique presented in Chapter 3. This method assesses
the best achievable performance of a nonlinear model for an idealised controller by solv-
ing an optimal idealised control problem. The result provides an optimistic bound on
the actual best achievable performance. Many fundamental limitations on controller
performance are captured by this problem, although not as many as for the linear tech-
nique presented in the previous chapter. The performance requirements are no longer
limited to linear functions and time domain constraints can be directly incorporated.
As for the linear controllability analysis the results are easily interpreted.
This complementary nonlinear technique addresses a similar problem to (3.1)

minJ (K, ug) s.t. ¢(K,up,w) <0Vwe W

K,ug

but for an idealised controller and a nonlinear model. As discussed in 2.4.2 such an
optimal idealised control problem gives a lower bound on the controllability. This

optimistic bound is given conceptually by

in.J . i <0 41
minJ(uo) st max min e(u, uo,w) < (4.1)
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where W is the set of time varying disturbances, within the accepted bounds, and the
idealised control set, U, allows any time varying trajectory, u(t), which satisfies the
control input constraints. The control schedule u(t) is not included in the objective
minimisation since this might suggest that there is one unique control schedule u(t)
selected to cope for the complete disturbance set W. In fact a different u(t) is selected
for each w(t) € W. On the whole this problem is used to solve for a variable operating
point. But for the case when the operating point is constant the constraints become
the objective. This is discussed in more detail in section 4.6.
The implemented problem which is solved is given by
mu(i)n J(ug) s.t. wrilé":l%(/ glei%c(up, g, w?) < 0 (4.2)

where w? € W is given by a specified set of finite step disturbances

W = {w', w?, ..., w’, ..., w"} (4.3)
and the control schedule u? is selected to satisfy the constraints
e(u? ug, w?) <0

for the pth disturbance, w?, in W. How we arrive at this problem is explained in section
4.1. In contrast to the linear case, the constraints, ¢, and objective, .JJ, need not be
linear functions.

The nonlinear controllability analysis method set up in this chapter is a nonlinear
optimal control problem. Therefore this requires both a nonlinear dynamic process
model and the use of nonlinear dynamic optimisation techniques to solve the optimi-
sation problem posed in (4.2).

The control is discretised to allow the problem to be solved using nonlinear pro-
gramming (NLP) techniques. The nature of the idealised controller, including the fact
that it is acausal, is discussed. The acausal behaviour of the controller contributes
to how optimistic this lower bound on achievable performance is. A technique is pre-
sented to try to tighten this lower bound by limiting this acausal element of the control

schedules, u?, selected by the optimiser.
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The disturbances w? € W are described as discretised steps and the subproblem
set up for each of these disturbances is presented.

The objectives and constraints, described in the previous chapter, can be transferred
to this nonlinear problem with no difficulty. Both linear and nonlinear objectives and
constraints can be used.

Finally, how the problem is formulated and solved as a NLP is presented. The
nonlinear dynamic optimisation techniques required to solve the NLP are typically
computationally very expensive

The specialisation of the nonlinear controllability technique to linear models has
been developed. This linear version can be solved efficiently using linear programming
and avoids the computational expense of the nonlinear method. Some details, specific
to this linear method, are discussed and a simple linear example is used to demonstrate

the technique for limiting the acausal behaviour of the idealised controller.

4.1 The Implemented Problem

The conceptual problem that we wish to solve is given by

muinj(uo) s.t. wr(%%)évur(%iglUc(u’uo’w) <0

where W and U are the sets of time varying disturbances and control inputs, respec-
tively, within their accepted bounds.

For this problem to be implementable, both u and w must be parametrised, as
discussed in 4.3 and 4.4. The parametrisation of w is simple when restricted to steps, as
in the technique presented in this chapter, otherwise it introduces a potential optimism
to the measure, since the parametrised set will be restricted compared to the original
signal. However, since this result is already a lower bound, this added optimism would
be acceptable, simply making it a lower bound on a lower bound. For this technique,
u is parametrised, such that it is discrete and piecewise linear, and therefore is limited
only by the sampling rate chosen. There are good heuristics for the selection of this

rate and it can be adjusted to check the sensitivity of the result to the sampling.
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This limitation on the description of u is both realistic and consistent with the linear
technique presented in the last chapter.

However this problem is still difficult to solve, therefore to simplify it the set of
disturbances, W, is restricted to a specified finite set, W, of steps

W = {w', w?, ..., wP, ..., w"es}

This adds further optimism to the result, meaning that it is still a lower bound on the
controllability. Thus the problem becomes

) ) » v
mu(l)nJ(uo) s.t. igg%glé%c(u ,ug,w?’) <0

where w? and u? are discretised over time. Therefore a set of control schedules, u”,p =

1, .., ngis, are selected such that u? satisfies the constraints
c(u? ug, w?) <0

for the pth disturbance, w?, in W. Let this finite set of control schedules, u?,p =

1, .., ngist, be described by U = {u', u?, ..., uP, ..., u"dst}.

4.2 The Nonlinear Dynamic Process Model

The nonlinear controllability analysis method, set up in this chapter, is a nonlinear
optimal control problem described by (4.2). This requires a nonlinear dynamic pro-
cess model, relating u and w to the output variables y(¢) and z(¢) involved in the
performance constraints and the performance objective.
In general dynamic process models are described by sets of differential algebraic
equations (DAE’s)
F(i,z,y,0,t)=0 (4.4)

with initial conditions z (o), where z(t) are the state variables, y(¢) are the algebraic
variables and 6 are parameters such as control variables, u(t), or time invariant param-

eters, v. In the case of nonlinear dynamic process models F' is a nonlinear function.
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For the optimal control problem, tackled in this chapter, we require both the control
function u(¢) and the disturbance w(t) to be parametrised as explicit functions of time,
using a finite number of parameters, as discussed in 4.3 and 4.4. This controllability
analysis technique is based on the optimisation of the performance in the face of a set of
disturbances, w? € W, by the selection of a set of control functions, u? € U. Therefore
we must include both the control input v and the disturbance w in the description
(4.4)

F(i,z,y,u,w,t) =0 (4.5)

This controllability analysis always starts from steady state, giving the initial conditions
&(to) = 0. (4.6)

Therefore for a given disturbance, w?(t) € W, and a corresponding optimal control
input, u?(t) € U, we have the equality constraints in (4.7) which give the variables
yP(t) and zP(t).

F(zP, 2P yP, uP, wP 1) = 0 for wP e U, w? e W (47
.I’p(to):() .

4.3 Control Parameterisation

As it stands, the nonlinear optimal control problem given in (4.2), for the model de-
scribed in (4.7), could not be tackled using nonlinear programming, since, for every
value of ¢, the control variable u”(t) can take a different value. Since there are an
infinite number of values of ¢ within this time interval this gives an infinite dimensional
optimisation problem. To solve this using nonlinear programming, we must transform
the problem to a finite dimensional problem.

To do this we can parameterise the control function as described in (Edgar and

Himmelblau, 1988)
uP(t) = a;0:(1) (4.8)
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where ©; is a specified function of time, such as ¢*, which would make u? a pth order
polynomial,

uP(t) = ag + art + agt® + ... + a,t* (4.9)

and it is the finite number of coefficients, a;, that are selected as the optimisation
variables. The time horizon [tg, %] can be broken into n time intervals and different
a;’s selected for each interval, i.e., the a;’s are discretised into @;(0), a;(1),.... a;(n—1).
If p =0 and ©g = 1, then this is simply the discretisation of the control function
into piecewise constant values of u?, i.e., u?(0), u”(1),.... u?(n — 1). This gives a finite
dimensional problem, which can be solve using NLP techniques.

For the nonlinear controllability analysis method developed here, we would discre-
tise the control function with the same sampling period as used for the linear control-
lability analysis technique, discussed in Chapter 3, so to maintain consistency. This
gives

u? = [uf(0),u?(1),...uf(n —1)]. (4.10)
where the control trajectory is piecewise linear between the discrete values u”(k) and
uP(k+1).

Each control schedule u? must start from the same steady state
up = u'(0) = w?(0) = ... = u"%(0) (4.11)

to ensure that the performance over all the disturbances in W is assessed for a common

operating point ug.

4.4 The Disturbance Description

This controllability analysis assesses the best achievable performance for a set of step

disturbances, W, as described in (4.2)

: : » »
mu(l)nJ(uo) s.t. ur}ilgv%gégc(u ,ug,w?) <0

This set W is user specified. If the process is well understood, then the typical process

disturbances may have been identified, in which case these can be put into the set W.
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Otherwise, the linear controllability analysis in Chapter 3 can be used to give estimates
of the worst step disturbances for this problem.

The work in this chapter concentrates on step disturbances, since these are common
in process systems and can be described exactly by a finite number of parameters.
However this analysis could be extended to other types of disturbances.

As mentioned in section 4.2, the disturbance, w?, must be parametrised as an
explicit function of time using a finite number of parameters. Unlike the control input,
u?, which is selected by the optimisation, the disturbance, w?, is user supplied. Since
the disturbances are being chosen from the set of step disturbances, it is simple to
describe them exactly using such a parametrisation.

A step disturbance, w”, can be described as

wy
wh its steady state value, if ¢ < ¢¥
wh =1 7|, wi(t)= Phi=1,n, (4.12)
: a new value sign if t >t
wy,

where sign’ is the value that w} steps to at time ¢§. So w? can be discretised as
piecewise constant

w? = [wP(0), wP(1),....w°(n —1)] (4.13)

with a corresponding set of discrete times, t?(k) k& = 1,...,n — 1, chosen so that the
disturbance has constant value w?(k) for the time period t*(k) <t < t?(k + 1). If the
jth component w? of the disturbance w? steps to sign’ at time 7 then the discrete

elements describing w?
wh = [w?(0),wi(1),...w(n —1)]

are given by

its steady state value, if t?(k) < ¢
w (k) =
sign’; if t(k) >t

where £(k) should be chosen so that for every j, 3k;, such that ¢(k;) = 7 and min; t]

should be set to 0.
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All the step disturbances in W should start from the same steady state wy, i.e.,
wy = w' (0) = w?(0) = ... = W=t (0) (4.14)

so that, together with ug, this defines a common operating point at which the per-
formance is evaluated. On the whole, this disturbance level wy should be chosen to
be the expected disturbance level w, as for the ONDE (Optimal Nonlinear Dynamic
Economic) problem. Note that, unlike the OLDE technique, choosing wo = w does not
mean that the expected value of the objective is given, since neither the model nor the
idealised controller are linear (see 4.6.1).

Putting (4.7), (4.11) and (4.16) together with the constraint, ¢(u?, ug, w?) < 0, from

(4.2), we get a feasibility subproblem for each disturbance w? € W,

|
C(;L’p7 yp7 upv uo) < 0

F (&P, x? y? uP wP ) =0
2P(tg) = 0 (4.15)
u?(0) = ug

u < uP < ol

If this subproblem is not satisfied for u”, then this means that u? is not a feasible

control input for disturbance w?.

4.5 The Idealised Controller

The optimal controller, selected for the nonlinear controllability problem, is the control
schedule given in (4.10). This control schedule is selected to optimise the objective and

to satisfy the constraints for each disturbance w? € W, including constraints on itself.
ul <uP <ut forp=1,.. .04 (4.16)

Since it is not an implementable feedback or feedforward controller and might not be
achievable in reality, it describes an idealised controller. Specifically, this is due to three

reasons. The first being that limitations, due to the measured variables available, are
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not imposed on the control performance. The second being that the control schedule
is selected to optimise the performance, as captured by the objective, over the finite
horizon [tg, ], without having to assure any kind of performance beyond this horizon.
The last being that the optimisation has full information of the disturbance, even before
it occurs, which means that the controller is acausal ,i.e, uses knowledge of the future
behaviour of the disturbance.

The idealised nature of the optimal control, means that the result, provided by the
solution of problem 4.2, provides an optimistic bound on the best achievable perfor-
mance of the process. It is unlikely that this bound will be achievable in reality, since
the set of controllers supplied to the optimal control problem is much larger than the
set of implementable controllers available in reality. It is important to make this bound
as realistic as possible by limiting these idealised elements of the control as much as
possible, so that the set of controllers, for the optimisation, more closely represents the
set of implementable controllers.

Therefore a technique for limiting the acausal nature of the optimal controller for
the nonlinear controllability analysis is proposed in section 4.5.1. Details specific to
the implementation of this for the linear specialisation of the nonlinear controllability
technique are presented in section 4.8.2.

The optimistic nature of the result of this controllability analysis, means that if the
process fails to be feasible for this test, then it suggests it will be unable to achieve
it with any real, implementable controller. The conclusion of such a test, can only be
used as a suggestion, rather than a proof of infeasibility, due to implementation issues,
such as the accuracy of the nonlinear model, the discretisation of the controller and

whether the global optimum has been found.

4.5.1 Limiting Acausal Behaviour

One way to limit the acausal element of the controller is to ensure that the control
schedule does not move until a disturbance has appeared. However, if the disturbance

w, for which the performance must be evaluated, includes more than one component
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w = [wy,wy,....w,,]T and all these components do not step simultaneously, then al-
though we can hold wu still until the first occurrence of a step, it must then be freed to
respond before the steps in all the other components have appeared. This means, that
the optimiser can select the optimal control schedule to best prepare for the future
appearance of steps, which it should not know about, making it acausal.

Another aspect of this optimistic bound is that time delays, which exist between
the occurrence of a disturbance and the measurement of it, are not imposed on the
idealised controller. If feedforward control can be used for the problem, then this aspect

is not an issue.

hold u ' uis predictive'
sill | |
tl t2

Figure 4.1: An example disturbance that allows acausal control

Therefore, a technique for limiting the controllers ability to take advantage of its
knowledge of future disturbances, when selecting a control schedule, would be useful
in providing a tighter optimistic bound on the achievable performance.

For the problem in (4.2)

) ) » »
mu(l)nJ(uo) s.t. iggv%gégc(u ,ug,w?) <0

the constraints must be satisfied over the user specified set of ng;s step disturbances
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W. Each disturbance, w? € W, has n,, components, i.e.,
P
wy
P
wy

wP = . . (4.17)

P
wp |

For a particular disturbance, w” € W, the jth component can be described as

wﬁ(k) _ its steady state value, if 7(k) < t? (4.18)

sign” if t(k) > ¢

where sign? is the value that w? steps to at time t?. In the following an assumption is
made that the performance is worst for either the greatest positive or greatest negative
step change, so Sign? will either be the upper bound, w;“, or the lower bound, wé, on
the jth component of the disturbance.

If the following technique is used to limit the acausal behaviour of the controller,
then a further ny;s sets of step disturbances, given by W?.p = 1...,ngs, are added
to the problem along with the set, W, of ng. user specified step disturbances. Each
set W? correlates to the disturbance w? € W. Therefore, for a particular disturbance
w? € W, the set W7 would be selected to limit the acausal behaviour of the idealised
controller for this specific disturbance.

If all the steps w? occur at the same time, they should be described so that t? =0Vy,
in which case the set W7 will be empty, i.e., W? = (). Otherwise, for each component
w? , we check if

> mlintif, (4.19)

in which case, the controller will have been acausal over the interval

[mlin i, t?].

with regards to the disturbance component w?. This means, that using the following

technique, we will search for a disturbance @7, which will limit this acausal behaviour.

?
77

This is done for each jth component, w”, individually and the set W7 is made up of

all the successfully found @w%’s for j = 1,...ng.
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The procedure for finding w?’, for each component w? , is described in the following

and is based on the principle that

if (1) = w(t) for t < ¢

then causality implies that @ (¢) = u?(t) for ¢t < t?

where @7/ and u” are the control schedules corresponding to the disturbances @w" and
w? respectively.
Let the optimal solution to the original problem

) ) » v
mu(l)nJ(uo) s.t. wrglgp}j(/glérl}c(u L ug,w?’) <0

be described by J°, uf and uP°,p =1, ..., ngis.

Splitting the control schedules into uj and wu,, so that

u(ty = 4 1< 5 (4.20)
ua(t), t>17
it is u;’o which has made use of the its future knowledge of w? to improve J°. The
idea proposed to limit the acausal behaviour of uf with respect to the disturbance
component w?, is to find a disturbance, @, which differs from w? in its behaviour
beyond t?,

v -

W) = w(t) <t (4.21)

such that it causes a violation of the constraints with any control schedule beginning
with u;’o. This forces the controller @” to select a different control schedule for ¢ < t?

to fulfill the constraints, i.e.,
(| tig, ") < 0 = @l # ub’ (4.22)

It may well be that @y # ug.

The choice of this disturbance is limited by the constraint in (4.21). This means
that the two disturbances must not differ until the step in w? occurs. However, after
this point, the behaviour of @ should be selected so that its optimal acausal control

behaviour, for the period ¢ < t?, would be different to that chosen for w? for this same
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period. The controller is then presented with these two possible future disturbance
scenarios for which it must select an initial control schedule that will cope equally well
for either. This, therefore, reduces its ability to use its future knowledge of w? to select
an optimal acausal control schedule for this scenario alone.

The possible choices of the hth component of the disturbance w? are given by

wi (1) t< 1y
=i 5 o B B
() =4 whi(t) if i < i y (4.23)
Tob >

signy’ if 1) >t}

where Signij can be chosen to be w} or w! and tz,):j > t?, thus defining the step. Note
that if the step in wf: occurs before t?, then the Ath component of &%, LTJsz, will be left
the same as wf for all time.

Let us split the disturbances in the same manner as the controls, i.e.,

wy(t), t <t
w(t) = ®) ! (4.24)
wy(t), t>1%
The set of possible choices for @ is described by W,, where WP is given by 4.23 for
t> t? and all the possible choices of signij = w! or w! and tz,?:j > t?.
Find the disturbance which forces the maximum change in .J(ug). To force such a

change there must be a w, € W, such that A 1, € U which satisfies
mgxck(&,ﬂo,tb) <0, uy= uf’o and Wy = wf.

To find such a disturbance,w?’, the following optimisation could be solved which

would force a change in J(u,).

j(?]}a,&a) = max min max cg(, tg, W) S.t. Up = uf’o, Wy = w? (4.25)
Wa EWe Uq €U k

where ¢ is the kth constraint in ¢. If the optimal J° > 0, then this means that with
optimal disturbance @° the constraints c¢(, tig,w°) < 0 cannot be satisfied for any
control schedule @ with u; = uf’o. Therefore since w° satisfies the condition (4.22), we
let @7 = w°.
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However this is a max-min problem and cannot be solved efficiently for general
cases. To convert this problem to a conventional maximisation problem, we simplify
it by defining a finite set of possible control schedules, U?, over which the constraints

are minimised.

ud(t), t<t?

e UP = aP(t) = L p =1, g (4.26)
ub?(t), t>1;
The problem solved instead of (4.25) is
jl(ﬁ)a) = max min max ¢ (u”, ug, W) s.t. Wy = wf (4.27)

W €Wo uP eUPI
If jf > 0, then a disturbance w° has been found that makes the constraints ¢x(@?, ug, 0°)
infeasible Va? € UP7. Therefore w° is a candidate disturbance for @ . To check if it

satisfies the condition given in (4.22) solve

jg(&a) = %é%mgxck(&,uo,tbo) s.t. Up = uf’o. (4.28)

If the optimal .J§ > 0, then @ satisfies (4.22), i.e.,

(U7 lig, 0°) < 0 = b # ub’

and WP = 0°.
In a similar way, for every step disturbance w? € W check the step time, t%, of each
w? and if
5> mlintf )
then find the corresponding @w?’. Let these w? for w? € W make a finite set WP, If
for some w? all the components step simultaneously % = 0 Vj, then we = 0.

To find the optimal objective, .J, with the acausal element of the controller limited,

solve the original problem with some added constraints.

min J(ug) s.t. Yw? € W (4.29)

uo

] P Y4
min clu", Ug, W < 0
uPelU ( ’ ’ ) -

max min ¢(a?, ug, ") < 0
wPI eWr uPI el

~pj _ P

Uy = Uy
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We may not always be able to find a suitable w?’ with this technique. This is
highly problem specific. Also this technique cannot guarantee causality, simply that
the optimistic bound it produces will be tighter than that produced by the original
acausal problem.

When the problem has a constant operating point, ug, e.g., the maximum deviation
is being minimised, then there are no constraints, as such, since the constraints have
become the objective. In this case, if the optimal objective of the original acausal

problem is J°, then the constraints in (4.22) can be given as
J (@ Py — J° <0 = ul # ul’

A simple example of this technique for a linear model is presented in section 4.8.3.
This technique can be slightly altered to try to restrict the idealised controller to
causal feedback control, i.e., to limit the controllers ability to use feedforward. A

similar approach as that described above could be used, but based on the principle

if y(@?)(t) = y(w?)(t) for t < t? + ldy
then causal feedback implies that @ () = uf(¢) for ¢ < t? + tdwj,y

where @7 and u? are the control schedules corresponding to the measurements y(w?)
and y(w”) of the disturbances @ and w? respectively. It is assumed that the jth
component of the disturbance is not measured until the minimum time delay Ldy, s

which is given by

tdw] , = min tdw] "

where Ldy, is the estimated time delay from w; to the measurement y;.
In this case, the possible choices of the Ath component of the disturbance @w?, would

be given by the selections of sign}’ = w} or w}, and #;’ > 1% + ta, = ldy,, in

wi () t< b
wy (1) = wi(t) 0 Ay, , <15+, L (4.30)
Z Uy

signy’ it + by, o = t? + tdwj,y
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and the initial control profile would be forced to be

W(t) = u(t) for t <1 +1g, . (4.31)
Further work would be needed to implement and demonstrate this addition to the

acausality limiting technique.

4.6 Performance Requirements

To assess the controllability of a nonlinear process model, using the method described
in (4.2),

min.J(ug) s.t. max min e(u?, ug, w?) <0
ug wPeW uPelU

we need to define the objective function, .J, and the constraints, ¢, which capture the
specific performance requirements for a problem. These can be linear or nonlinear
functions of the problem variables, i.e., ?, y? and u? for p = 1, ..n4s and ug.

The constraints can be used to enforce performance constraints, such as variable
magnitude bounds, directly on the problem variables. If there are n. constrained
variables in x and y let these be denoted by z, in which case the variable bounds for

the pth disturbance (p = 1, ngisis) are
<M<t fori=1,..n,, (4.32)

Therefore the constraints c(u?, ug, w?) < 0 for each p = 1, ngiss would be given by

! P
Z; — %

< 0],
Vi
-2 <0

The control input bounds in (4.16) are implemented as bounds on the optimisation
variables, since u” are the optimisation variables.

If we wish to assess the maximum deviation in the constrained variables z, to see
whether the constrained variables would violate their bounds for the disturbance set
W, then the operating point, ug, becomes a constant and is no longer an optimisa-

tion variable. In this case, the constraints themselves become the objective and are
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minimised. The maximum deviation for each disturbance can be evaluated as

v’ = maxmax(|z](t) — z(0)]) (4.33)

2 t

So the objective of the nonlinear optimisation problem to be solved is given by

min max v* (4.34)
Uop
where the finite set of control schedules U = {u',u?, ..., u”, ..., u™%*} is chosen, so that

each u? satisfies its subproblem (4.15). If we have a reasonable basis for penalising the
maximum deviation on each z;, then a weighted sum of the deviations, v;, given by

v; = maxmax( |z} () — 2;(0)]) (4.35)

P t

can be minimised. Clearly the objective can be as flexible as for the linear problem,

whilst also allowing the use of nonlinear objectives if so desired.

4.6.1 The Optimal Nonlinear Dynamic Economic (ONDE)
Problem

If, as for the linear problem, we wish to assess the economic performance of the system,
then we set up a similar problem to the OLDE problem for the nonlinear model. As
discussed in 3.5.2, most process design involves a steady state minimisation of some
objective function o, which is chosen to provide a measure of economic performance, i.e.,
the cost of operation, the loss in profit. The optimal economic operating point, given by
this, will generally require several of the process variables to operate on their inequality
constraints. To avoid violation of these constraint,s due to the appearance of process
disturbances, the process must operate at a point backed off from this optimal. The aim
of the ONDE technique, as for the OLDE technique, is to estimate the minimum back
off required, with optimal idealised control, to accommodate the process disturbances
without violating constraints.

A difference to the OLDE technique is that the optimal expected value of the

objective, over the disturbance set, cannot be assessed, since for a nonlinear objective
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function o, E(o(w)) = o(E(w)), E(w) = w no longer holds. Although it still makes
sense to select the disturbance operating point, wg, about which the step disturbances
are applied, to be the same as the expected disturbance level.

The objective for the ONDE analysis is the value of the objective function o at the
operating point described by the steady state of the disturbance variables before the
steps are applied, wy, and the operating point for the control variables ,ug. Therefore
problem (4.2) becomes

n;lqi)n o(wg, ug) s.t. 1101;12551/ g}é% e(u? ug, w?) <0 (4.36)

where ug gives the new backed off operating point, which ensures that the variables z
don’t violate their constraints (4.32), whilst at the same time minimising the economic

objective o.

4.7 Solving as a Nonlinear Program (NLP)

Nonlinear optimal control problems can be solved using nonlinear programming (NLP)
techniques, which optimise an objective function subject to a set of constraints, where

any of these constraints or objective may be nonlinear functions, i.e.,

min /(x) (4.37)
subject to h;(x) = 0 j=1,2,...,meq (4.38)
gi(x) > 0 j=meq+1,...,m (4.39)

(4.40)

x1 < x <Xy

where x is the vector of the optimisation variables.

For a nonlinear optimal control the objective function is minimised, subject to con-
straints, over the time interval [to, {f] and the optimisation variables are the parametrised
or discretised control variables u. Such a problem can be set up to tackle a wide range
of optimisation problems, depending on specific choices of the optimisation variables,

constraints and objective function.
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The controllability analysis proposed in this chapter, for nonlinear models, requires
the solution of the problem in (4.2). The control variables have been discretised to give
(4.10)

u? = [uP(0),uP(1),...uP(n — 1)]
Therefore the optimisation variable x consists of U = {u?!,...u™ést} (the common oper-
ating point ug is given by u?(0)).
The feasibility subproblem for disturbance w?, given in (4.15), gives a set of equality

constraints
xP(tg) =0
hP(x) =0 = (to) (4.41)
F (&P, 2P y? uP wP 1) = 0
and a set of inequality constraints
9P (x) > 0= —c(zP,y?,u?) >0 (4.42)

where u?(0) = ug has been substituted to drop wo.
These constraints are stacked together for all the disturbances in W, to give the

equality constraints

h(z) = : =0 (4.43)

and the inequality constraints

g(z) = >0 (4.44)

where h"0(x) = 0 are an extra n,(ngs — 1) equality constraints given by

= 2, s
B (x) = 0 = u2(0) — 27" (0) = 0, for { | ot (4.45)

7=1,...n,



which enforce a common operating point as described in (4.11).

Finally the objective function is simply given by
7(x) = T (0)) (1.46)

where u?(0) has been substituted for ug again and the optimisation variables constraints

are given by (4.16), i.e.,
X <x<xy=u <uP <u' forp=1,.. .04 (4.47)

There are several ways to solve NLP problems with constraints such as this: la-
grange multiplier methods, iterative linearisation methods, penalty function methods
and iterative quadratic programming. However we only discuss the last method, since
this is what we have used to implement the nonlinear controllability analysis. The pre-
sentation of the successive quadratic programming (SQP) method for solving NLP’s, in
section 4.7.1, is brief, since it is only intended to provide an overview of the method. An

existing SQP software package was used in the implementation (Chen and Macchietto,

1989).

4.7.1 Successive Quadratic Programming (SQP)

Successive quadratic programming (SQP) is a widely discussed technique (see e.g.
(Edgar and Himmelblau, 1988)) and is used here to solve the NLP problem. Basi-
cally this technique takes a local linear approximation to the constraints and a local
quadratic approximation to the objective to form a quadratic program, which it solves
to give a search direction s, which improves the objective. More precisely, the quadratic

programming problem can be described as
min sTVf(X) + %STBS (4.48)
subject to  h;(x) +sTVh;(x) =0 j=1,2,...,meq
g;(x)+sTVg;(x) >0 j=meq+1,...m

where B is a positive definite approximation of the Hessian matrix of the Lagrangian

function.
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The SQP algorithm can be generally described as:

1. Let k=0. Initialise with guesses for the approximate Hessian matrix B, the vari-
ables (x°), the objective (f(x%)), the constraints (h(x°), g(x°)) and the gradients
(VS(x%), VA(x?), Vg(x7)).

2. Form the quadratic programming subproblem (4.48) and solve for a new search

direction s*.

3. Move a step in the search direction s* (step length given by suitable minimisa-

tion). Let k=k+1.
4. Check for convergence. If converged stop, else continue.

5. Update the values of the approximate Hessian matrix B, the variables (x*),
the objective (f(x*)), the constraints (h(x*), g(x*)) and the gradients (V f(x*),
Vh(x*), Vg(x¥)). Go to 2.

A more detailed discussion of this algorithm, the quadratic subproblem (4.48) and how
(4.48) can be solved, is presented in (Edgar and Himmelblau, 1988), together with
references to further reading on this subject.
The values of the objective function, the constraints and their gradients for any x,
can be given by a differential-algebraic equation solver, which integrates the DAF’s,
bz

described in (4.4), along with the sensitivity equations (g% and g—;’()

4.8 Specialisation to Linear Models

The nonlinear controllability analysis presented in this chapter is highly computation-
ally expensive, in that it uses nonlinear dynamic optimisation techniques. The tech-
nique has been specialised to linear models, to give a linear method, which is directly
analogous to the nonlinear method. This linear optimal idealised control problem can
be solved very efficiently using linear programming and, therefore, allows the tech-
niques discussed in this chapter to be validated with reduced computational expense.

It also provides a lower bound on the linear controllability.
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The formulation of the linear problem is based on the linear relationship,
52 = P115’U) + P125u (449)

where Py; and Py are given by the generalised plant P. dz, dw and du denote the
deviations from the steady state of the constrained outputs, the disturbances and the

control inputs respectively. The discrete elements of dz are given by
k
§z(k) =Y Pu(k — D)dw(l) 4+ Pia(k — 1)Su(l) (4.50)
1=0

We assume that the model used has been linearised about a steady-state given by
Zlins Ylins, Wiin, Uun. As mentioned in section 4.4, all disturbances are considered to
start from a common steady state wy.

The nonlinear controllability problem in (4.2)

) ) » v
mu(l)nJ(uo) s.t. igg%glégc(u L ug,w?’) <0

can be stated for the linear problem as follows

r%inj(uo) s.t. Yw? € W (4.51)

] P P
min clu", Ug, 2 < 0
uPelU ( ’ ’ ) -

k

2P(k) = ZPH(]C —DéwP(l) + Pra(k — D)6uP(l) + zpef, k=1, Ny
(=0

dwP(l) = wP(l) — wo, duP(l) = uP(l) — uo

2" = G (wg — wiin ) + G259 (ug — Utin) + Zlin

! <uP(l) < uP, [=0,Ny,

where Ny, gives the length of the finite horizon over which the problem is optimised.
The problem starts from a common steady state, described by wqg, which is set, and ug,
which can be an optimisation variable depending on the specific problem being solved.
The disturbances, w?, and control inputs, u?, are discretised with the same sampling

period Ty, as the plant elements Pyy and Pj.
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4.8.1 Performance Requirements

For (4.51) to be solved as an LP, both .J and ¢ must be linear functions. The constrained

variable bounds in (4.32) can be included easily, since they are linear.
2 <APk)y <z i=1,..,n, fork=0,..,Ny,

The objective for the problem of minimising the maximum deviation, as in (4.34),

requires the maximum deviation for each disturbance v? to be defined linearly
VP >l V.

To optimise a weighted sum of the maximum deviation in each constrained output z;,

as in (4.35), we need a linear expression describing this deviation

In both these last inequalities v describes the maximum deviation in each constrained

output, 2!, for each disturbance, w?, i.e.,
vro> z/f’+
vio > uPT
—PT < (k) <P, fork=0,1,....Ny,
vt >0

K3 Y K3

The only restriction, relative to the ONDE problem, is that the economic function
on the operating point o(wg, u,) should be linear. Note that, although the model is
now linear, F(o(w)) = o(E(w)), F(w) = w still does not hold, since the controller is

nonlinear.

4.8.2 Limiting Acausal Behaviour

The technique for limiting the acausal behaviour of the idealised controller follows the
same concept as for the nonlinear problem, described in section 4.5.1. Construct a set

of disturbances W? for each w? € W, such that
(P g, wP) < 0 = @b’ # ul’, Yar € WP (4.52)
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and solve the optimisation problem given in (4.29).

However one element of this technique has to be altered to formulate the linear
problem as an LP. The method for finding a disturbance @/, which limits the acausal
behaviour of the controller with respect to the disturbance component w? and which
would go into the set W7, involves solving the following problem

(4.27): jl(ﬁ)a) = ~m§/%< 71)161%7%] max g (U, ug, W) s.t. Wy = w‘f
Wa o U

which, if jf > 0, provides a candidate disturbance @w°. The problem given below

(428) JQ(ﬂQ) = qgné%m]?xck(ﬂ’um’[z;o) s.1. ’lNLb = ufvo.

is then solved for @° and, if .JJ, > 0, then we set @ = @°. The second problem, given
in (4.28), can be set up as an LP, but the first, given in (4.27), cannot. We cannot max-
imise the maximum constraint violation for 4?° using linear programming. Therefore
this problem for finding a candidate disturbance for @?’ has to be reformulated.

We want to tackle a similar problem to (4.27), but formulate it to give a problem,
which is small enough to be solved by directly searching for a suitable w,, rather than
by using optimisation techniques. One way to do this is to shorten the finite horizon
of the problem drastically, l? < Ngi, < Ny where (l? = t?/Tsamp), so that the set of
possible step disturbances, W, is small. @ € W is equivalent to @ described by by, = wf

and w, € W,, i.e.,

W (1T amp), 1=0,1,...0,—1
WweW = (1) =48 wl(iTsmy), if 17 <7 4.53
0 W) SO S A M A T (4.53)
Stgny, if t), >t

where sign;, = w} or w!, since the disturbance can step either to its upper bound,

wk, or its lower bound, w!, and I, is a discrete sample time, between l? <, < Ny,
when wj, steps to signj. The different choices of sign; and tj create the finite set W

of (2(Ng, — l? + 1))™ step disturbances, where m is the number of components wzz,

1 < h < ny,, for which ti > t?.
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Note that l? = t?/Tsamp where t? is the time at which a step occurs in w?, given in
(4.18), and the sampling time, Tsum,, is selected to be a factor of t?. tf: is the time at
which a step occurs in the Ath component wZZ of the disturbance w?.

As long as Ny is chosen small enough then for every @ € W and every @ € %

(p=1,..,n4ist), the constraints at the [th sample time
c(aP (1), up, w(l)) 1=0,1,...,Ng,

can be calculated without excessive computational expense. If for some @ € W it is
found that

mgxmftxck(ﬂp(l),u(),v])(l)) >0 Va?r e UP

then this disturbance is a candidate disturbance @w°. There might be more than one
such disturbance found in W, in which case this gives a set of candidate disturbances
w° € We. On the other hand, no such disturbance might be found in W. In this case
the shortened finite horizon Ny, should be increased and the process repeated until
either at least one @w° has been found or Ny, = Nyy,.

This technique, therefore, can be used to provide a set W¢ of feasible candidate
disturbances, rather than the optimal candidate disturbance %w° produced by the op-
timisation problem (4.27). To select one optimal candidate disturbance from W* find

the @w° € W, which optimises,

max; Ck(&p(l), Uo, UN)C(Z))

max
lk

max min max
weeWe arelvi  k

is the time of the maximum violation in constraint ¢, i.e.,

where [7'**

i e (07 (1), o, (1)) = ex (@ (17°7), wo, (7))

This selects a candidate disturbance, which provides a violation which is both large
and fast. These two attributes should make it hard for problem (4.28) to find any u,
which ensures feasible behaviour.

Now that an optimal candidate disturbance, ©w°, has been found this can be passed

to the optimisation problem (4.28), exactly as for the nonlinear version, and, if Jy >0,
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then we set w" = @° and ¥% € W¥. This procedure is repeated for every component

w?, 1 < j < n,, in the disturbance w” € W for which
£} > mint],

In this way the sets W? for each w? € W can be constructed and the optimisation
problem in (4.29) solved as an LP.

However as mentioned in section 4.5.1 this technique may not find any appropriate
WP’s to go into the set W? and, even when it can, it does not guarantee causality.

This linear problem allows us to solve many of the same problems that might be
applied to the nonlinear model with this computationally cheaper linear alternative.
Due to the linear nature of this problem it can be implemented in an extremely efficient
manner. An example is presented illustrating the application of this linear problem

with the technique for limiting acausal behaviour.

4.8.3 An Example of Limited Acausal Behaviour

The linear method and the technique for limiting acausal behaviour is demonstrated

by applying it to a simple linear model given by

wq
0.5 1 0.5(s — 1)e** 1.5e74s
N IGh D (s = e ‘ 0, (4.54)
(s2+s+1) (s2+08s+1) (Lhs+1)
u

which is then discretised using the Tustin method for a sample period of 0.5 seconds.
All the tests are run for a finite horizon of 70 samples.

In the following, it is assumed that feedforward control can be used and, therefore, a
realisable controller would be able to respond as soon as the disturbance had occurred.
This means that time delays between the disturbances and the measurements need not

be considered.
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Test 1

The open-loop step responses, for positive unit steps, are shown in Figure 4.2 for the

first disturbance and the second disturbance. The greatest peak for w; is 0.6480 at

Input 1 Output 1

o
(=2
T

L

Amplitude
o
~
T
Il

I
N
T

Il

Il Il
0 5 10 15 20 25 30 35 40 45 50
No. of Samples

Input 2 Output 1

Amplitude

_0.8 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

No. of Samples
Figure 4.2: The step responses of disturbances w; and w,

sample 4 and for w, it is -0.6696 at sample 16. This suggest that the worst open-loop
disturbance might be given by the disturbance w®” in Figure 4.3. which gives a peak
at sample 16 of 1.3176 as shown in Figure 4.4.
So making the objective to minimise the maximum deviation in z, we optimise the
problem
Hhinmkax|z(k)| st.—1<u<l VYweW (4.55)

where the set of worst step disturbances is given as W = w?”

s0 ngist = 1. The optimal
result for this problem is 0.1129. The controller selected for this optimum will utilise
the first 12 samples to not only handle the step in wy, but to prepare for the future

step in wy. As can be seen in Figure 4.5, the controller selects to be on the lower bound

for much of the time. How much of this behaviour will be due to it coping with the
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existing step in wy and how much can be attributed to its future knowledge of w; is

unclear.

1

Wy |

0

0l

", W

-1
k=0 k=12

Figure 4.3: The worst open-loop step disturbance w®”

14

Amplitude

_0.2 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

No. of Samples
Figure 4.4: The worst open-loop response

If we held the control until both steps have occurred then there is no chance for the

controller to be acausal. This involves solving

) —1<u<l1 ol
minmax |z(k)| s.t. for w (4.56)
vk u(k)=0, k=0,1,..11



which gives an optimal value of 1.3176. This result is much worse than that for the
acausal controller, since the controller is not allowed to do anything about the step
in wy until after the occurrence of the step in w;. In fact, this optimal result means,
that the controller has not been able to reduce the open-loop peak due to the worst
disturbance at all. Therefore this performance is probably much worse than it could
be for a real controller. The performance of an optimal causal controller would be
expected to be somewhere in between these two values.

1

0.8

0.6

0.4

control schedule, u(k)

A‘I 6_ 8 10 12
sample times, k

Figure 4.5: The acausal control schedule for k£ < 12

Therefore using the technique presented earlier for limiting the acausal nature of u

we find a disturbance w°% for which

: . z = P 4 P
( min max |Z(k)|) > 0.1129 where (4.57)

—1<a<l & u(k) =u(k), k=0,1,...,11
and

WO (k) = wo(k), k=0,1,..,11 (4.58)

where u° is the optimal controller from the first optimisation, i.e., the acausal controller.

The disturbance selected is shown in Figure 4.6.
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k=0 k=12

Figure 4.6: The disturbance selected to limit acausal behaviour @

The optimal result of the problem

min max(max|e (k)] max|2(k)) st (4.59)
-1 <u<l
-1 <u<l1
a(k) = u(k), k=0,1,...,11

for 2 = P11U~)OL + Plgu

and z = Pjw®" + Plyu

is 0.6480 which as expected sits between the acausal optimal result, 0.1129, and the
optimal result for the controller held still for the initial 12 samples, 1.3176. The
control schedule selected for the first 12 samples is shown in Figure 4.7. As might be
expected less of the controllers time is spent on its lower bound preparing for the future
appearance of wy. This optimal result, 0.6480, means that the optimal controller has
removed the peak due to wy using feedforward control, but cannot reduce the peak due
to wy. This suggests that the behaviour is most limited by the input constraints and the
non-minimum phase characteristics between u and z. This technique cannot guarantee
to always remove all of the acausal element of the controller, but the result certainly

provides a tighter bound than that given by the original optimisation problem.
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Figure 4.7: The control schedule with limited acausality for & < 12

Test 2

An interesting test, to show that this technique can limit the acausal nature of the
controller, is to use it on a problem where the disturbances are all delayed by the
same, kg.;, samples. In this case the result for a causal controller can be found by
just holding the controller still for these first k4 samples or simply by applying the
disturbance with no delay.

Therefore select a disturbance, such as w? in Figure 4.8, and solve problem (4.55)

for it. The optimal result this provides for the acausal controller is 0.1224.  The

1
Wl
0
0
W2
-1
k=0 k=7

Figure 4.8: Disturbance w?', both w; and w, delayed by k = 7
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disturbance found to satisfy

. Z = Ppa + Py
( min max |Z(k)|) > 0.1224 where (4.60)
“lsust ok a(k) =u(k), k=0,1,...,6

is shown in Figure 4.9. The technique does not change w, to limit the acausal behaviour
of the controller, since the controller uses feedforward to handle this disturbance, not

acausal knowledge.

0
Wl
-1
0
W2
-1
k=0 k=7

Figure 4.9: The disturbance selected to limit acausal behaviour w?

The optimal result with limited acausal behaviour, given by problem (4.61), is

0.64%0.
mipmax(m};’mx |Z(k)|,mkax|§(k)|) s.t. (4.61)
—1<u<l1
-1 <ua<1

(k) = u(k), k=0,1,..,7
for z = Pllﬁ)dez + Plg’a

and z = Pyw™ + Pu

del is applied with no delay as

The optimal result for a causal controller, i.e., when w
in Figure 4.10, was found to also be 0.6480, showing that in this particular case the
technique removes all acausal elements from the controller. As for the previous test,

the results of this test suggest, that the achievable behaviour for this problem is most

121



limited by the input constraints and the non-minimum phase characteristics between

u and z.

1
W,
0|
0
W,
-1
k=0

Figure 4.10: Disturbance w?! with no delay

4.9 Implementation

The software was programmed in FORTRAN and used two subroutines, DASOLV
(Jarvis and Pantelides, 1992) and SRQPD (Chen and Macchietto, 1989), which are
existing software packages. Its general layout is shown in Figure 4.11.

A differential-algebraic equation solver, DASOLV, was used to solve the system

DAE’s

F(aP, 2P, yP,uP wP, t) = 0 for u? € U, w? € W
. (4.62)
LCp(to) =0

as well as the to provide the sensitivities

o0 oy ow o
ox’ ox’ 0Ox  0Ox’

(4.63)

The residuals describing the function F'; as well as the systems jacobian matrix de-

or - o - I and 2L must be supplied to DASOLV through FORTRAN

scribing 5077 Byp? B e

subroutines.

These last two FORTRAN subroutines can be automatically generated, if the non-
linear model is programmed in gPROMS and coded as if to go on to solve a gOPT
problem. Otherwise these could be entered by hand into FORTRAN subroutines to be
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Figure 4.11: Software for the nonlinear controllability analysis
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called by DASOLV, although this might be rather time consuming depending on the

size of the problem.
The values evaluated by DASOLV are used to set up the NLP, as described in

section 4.7

H%énf(x

subject to h;(x) = 0 j=1,2,....,meq

>

— e’ N

g;( > 0 g=meq+1,....m

x1 < x <Xy

This is passed to a package (SRQPD) which implements a SQP method, to solve 4.64
to find a local minimum. SRQPD follows the type of SQP algorithm described in
section 4.7.1. It requires initial guesses of the optimisation variables x°, the functions
f(x%), h(x°) and g(x°), and the gradients Vf(x°), VA(x") and Vg(x?). There is no
need to provide a guess of the Hessian matrix B, since SRQPD will automatically
generate this. The routine will automatically request further function and/or gradient

evaluation for new values of z, until it has converged.

4.10 Review

A nonlinear controllability analysis technique, complementary to the linear technique
presented in the previous chapter, has been developed. It is based on the optimal
idealised control problem

H&in J(ug) s.t. wf];lé":l%(/ E}élﬁ c(u?, ug, w?) <0 (4.64)

This technique provides a lower (optimistic) bound on the controllability and has the

following properties:

e It allows constraints and disturbances to be defined in the time domain. A wide
range of typical process performance requirements can be captured, including

any expressed as nonlinear functions, unlike the linear technique. However the
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disturbance description is more restricted than for the linear case, i.e., a finite

set of step disturbances.

It optimises the achievable performance for an idealised controller, providing an
optimistic bound on the controllability. A technique for tightening this opti-
mistic bound, by limiting the acausal nature of the idealised controller, has been

developed.

It incorporates many of the fundamental limitations on controllability. The limi-
tation due to NMP characteristics, appearing between the control inputs and the
regulated outputs, is captured directly by the DAE’s of the system. Limitation
due to such characteristics appearing between the disturbances and the measured
variables is not included. However, a suggestion for incorporating the limitation
due to time delays between w and y is described in section 4.5.1. The input con-
straints can be incorporated as magnitude bounds on the optimisation variables.
Any limitation due to measurement noise can be captured by including the noise
in the disturbance vector and altering the DAE’s describing the system, so that
these (noise) disturbances are added on to the appropriate measurements. The

only fundamental limitation completely ignored in this technique is uncertainty.

It is formulated and solved as an NLP and, therefore, is computationally ex-
pensive. However a linear alternative which can be solved as an LLP has been

developed.

Some particular shortcomings of this technique is the degree of idealisation of the

controller which makes the tightness of this lower bound unclear, the disturbance set is

finite and user specified, and the technique is computationally expensive. However we

have attempted to tackle most of these criticisms. A technique for limiting the acausal

nature of the controller has been developed, to tighten the lower bound. The linear

technique discussed, in the previous chapter, can be used to give good estimates of

the worst process step disturbances, if the process disturbances for the plant have not

been identified. Finally, we have developed a specialisation of this nonlinear technique
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for linear models, which can be solved efficiently as an LP. This allows the nonlinear
techniques to be tested for a much reduced computational cost and provides a lower
bound on the linear controllability. It also allows the correlation of the linear and
nonlinear models, for these controllability tests, to be checked.

This method answers many of the requirements set out in section 2.4.1 and provides
a strong result. If the process fails this test, then it means, either the nominal process
will not be able to meet the performance specifications with any controller, or the NLP
solver has failed to find a global optimum.

Conclusions on both the linear and nonlinear techniques are discussed in the final

chapter of this thesis.
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Chapter 5

Case Studies

In this chapter several case studies are presented to illustrate the application of the
controllability techniques developed. The first was for a X29 aircraft and was based
on a problem described in “Control of Uncertain Systems: A Linear Programming
Approach” (Dahleh and Diaz-Bobillo, 1995). The results on this example are checked
against this published example. This example is not an illustration of controllability
analysis per se, but is used to validate the software and explore some formulation issues.
The second example is an exothermic plug flow reactor and is based on an industrial
process system example presented in “Controllability analysis and modelling require-
ments: an industrial example” (Walsh and Malik, 1995). This tests the analysis for a
system with time delays and input constraints. The results of the linear performance
optimisation problem, for both persistent disturbances and step disturbances, are dis-
cussed. The third case study is an industrial problem reactor control problem that was
presented in “A case study in control structure selection for a chemical reactor” (Walsh
et al., 1997). The OLDE analysis is applied to the linearised model of this problem and
the results compared to some nonlinear controllability analysis. Finally a model of an
evaporator, presented in detail in “Applied Process Control: A Case Study” (Newell
and Lee, 1989), is subjected to the OLDE analysis, the ONDE analysis and its linear

specialisation, and the results for the linear and nonlinear analysis compared.
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5.1 Case Study 1: Pitch Axis Control of the X29
Aircraft

A design example was selected from “Control of Uncertain Systems: A Linear Program-
ming Approach” (Dahleh and Diaz-Bobillo, 1995) to set up the solution technique. The
X29 aircraft is statically unstable due to its forward swept wing design, which places
the centre of gravity behind the aerodynamic centre of pressure. Therefore this design
example is to design a digital pitch axis controller for the X29 aircraft. The three con-
trol surfaces, canard wings, flaperons on the main wings and strakes on the tail, were
lumped together, for simplicity, giving one actuator with first order dynamics. Also
the gyroscopes and accelerometers were modelled by a sensor with negligible dynamics.

This gives the continuous-time SISO plant given below,

]5(5) B (s +3) 20 (s — 26) (5.1)
~ (s+10)(s—6) (s+20) (s+26) '
——— N ——
air frame equiv.actuator overhead

which has one NMP zero and one unstable pole
Dahleh and Diaz-Bobillo setup the #; performance objectives to minimise the effect
of the disturbance, w, on both the weighted control sequence, z1, (the controller effort)

and the weighted output, z9, (Figure 5.1). Therefore the ¢; problem is posed as follows

| wiks
v, = inf (5.2)
K stab. WQS

where S = (I — PK)™'=sensitivity function.

The weights were chosen in the book, not only to accommodate the trade-offs
between low frequency disturbance rejection and controller effort, but also to emphasise
the frequency regions which corresponded to the spectral content of the exogenous

disturbance.
(s+1)

Wi(s) =0.01  Wa(s) = G 1 0.000)

(5.3)

where W, emphasises disturbance rejection at low frequencies
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W, Zq
W

W, Z;
u P y

Figure 5.1: The X29 problem in standard form

The continuous system is represented as

1 0 W1 0 wlwgdd
w 1 w

22 = W, WyP = Wy, d  wa,n (5-4)
U waad U

y I P waqd  nwyy

This was discretised using a zero order hold with sampling period T = 1/30, as used
in the book.

Since the system has been represented by an equivalent SISO plant, then the number
of measured outputs n,, control inputs n, and exogenous inputs (disturbances) n,, are
all 1, whilst the number of regulated outputs n, is 2. Therefore n,, = n, and n, > n,,
giving a two-block column problem. This is a multiblock problem, also called bad rank
or nonsquare, therefore both zero and rank interpolation conditions are required, which
suggests the use the Delay Augmentation method to avoid the infinite constraints given
by the rank interpolation conditions.

This problem is solved in Dahleh and Diaz-Bobillo (1995) for values of the DA
delay ,N, up to 80. They give the lower bound at N = 80 as 4.054. The software
developed in this thesis gives the convergence shown in Figure 5.2 with a value of the
lower bound at N = 80 of n,, = 4.054 (the lower bound, 1, and the upper bound, 7y,
are discussed in Appendix A.1). The LP was solved with several different LP solvers
(based on MINOS, CPLEX and OSL subroutines) which all gave the same results.

Also an upper bound is calculated, as discussed in Appendix A.1, by extracting the

optimal Q% at N = 80 from the closed loop response ®% and using the upper n, x n,,
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Figure 5.2: Convergence of DA methods for X29 for zero order hold

i.e., 1 x 1, matrix which is @9, to find
@)y = 1 H — UQ5, V]l = > _ |¢(k)]
k=0

This is done by summing the absolute values of the elements of the discrete impulse

response over a long, but finite, horizon, i.e.,

nw ko

Ty = max Y 3 [y (k)

7=1k=0
where kg is a finite number, which is chosen to be large enough that the elements of
o(k) are close to 0. It was found, that for &’s greater than 500 max; |&;(k)| < 1072, (in
this example n,, = 1 and n, = 2 so let ¢;; = ¢; for i = 1,2) . We allowed ky = 3000

and found that

3000 4.054
> lo(k)| =
i=0 4.084

This gives an upper bound of 775 = 4.084, therefore
4.054 < v, < 4.084.

Thus we have converged the lower bound to within 1% of the optimal value v,, since

100% x (ﬁNn_ﬁN) = 0.74%. These results compare well with the published results.

N
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It is interesting to note that, if a bilinear transform, ie, the Tustin’s transform

2(z—1)
T(z+1)°

s = were used to discretise the system, rather than zero order hold, as in
this problem, a better solution, ie, a lower v,, might be expected. This is because
by using zero order hold we have restricted the group of digital controllers that the
objective can be minimised over. Similarly an improvement in the norm could be found
if the sampling period for the zero order hold were decreased. To use this technique for
controllability analysis we want the value of v, to be as unbiased by the discretisation as

possible, therefore we would want to use as good an approximation for the discretisation

as possible, such as the Tustin transform.

3.45 T +\ T T T
an
+
+
5 34 B
5
©
2]
©
e}
c
>
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o
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g
23.35F b
+
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Figure 5.3: Convergence of DA methods for X29 for Tustin

The results using the Tustin transform are shown in Figure 5.3. The v, has been

reduced as expected.

5.1.1 Conclusions

The software developed in this project has been validated against a published example

in Dahleh and Diaz-Bobillo (1995) and the calculation of an upper bound demonstrated.
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Also the importance of the discretisation method adopted has been highlighted. Tt is
well known that zero order hold sampling degrades the achievable performance by an
amount comparable to a delay of half the sampling interval. The use of this approxima-
tion will, therefore, require quite small sampling intervals to approach the continuous
case closely. The zero order hold approximation would be appropriate only if the sam-
pling interval and zero order hold interpolation was specified as part of the problem
definition, e.g. due to the use of a particular computer control system. The Tustin
approximation is designed to give a closer match between the discrete time model and

the original continuous time model.

5.2 Case Study 2: An Industrial Exothermic Plug
Flow Reactor Example

The simple model used in “Controllability analysis and modelling requirements: an

industrial example” (Walsh and Malik, 1995) was obtained by constructing a transfer

ke—tds
1+7s ?

function matrix of gain-delay-lag elements, ie, using step response tests. This
exothermic plug flow reactor is shown in Figure 5.4.
The performance requirements are given as a set of target steady-state values and

constraints for the variables T}, and 7T,,::

variable | steady-state value | upper limit | lower limit
T; 400 °C none 300 °C
Tout 600 °C 650 °C' none

Note that the desired closed loop response is otherwise unspecified. There are no
steady-state degrees of freedom, so wug is fixed. In a previous control study serious

difficulties had been encountered in meeting the constraints above, even assuming rate
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limits on the disturbances. The controllability analysis below, therefore, focuses on

feasibility and is also presented in Chenery and Walsh (1997).

Recycle
Fin |
Product
1 S1
Feaj ‘ K 777777 (\ Tln /,} ,
(disturbance, d) Exchanger l ”””””””””” . Ain
bypass
Plug
flow
reactor
I e

Figure 5.4: The exothermic plug flow reactor (PFR)

There are only two possible manipulated variables, Sy, the split between the prod-
uct and the recycle and, S, the split between the heat exchanger and the bypass
(51 =1 means 100% recycled and Sy = 1 means 100% bypassed). Fj, is determined by
the requirements of another plant. There are four measured variables, A;,, a delayed
composition measurement of the key reactant, Fy..ycte, 15 and T,,;. The disturbance,
d, is a well defined change between two operating regimes,A and B, which involves
three feed component flowrates. Since the disturbance only occurs in a single direction
with respect to these flowrates, it is represented as a single disturbance. The tempera-

ture measurements, disturbance and manipulated variables are all normalised by their
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maximum acceptable deviation. The transfer function matrix obtained is shown below

(with time in hours):

. 2.4¢—008s  _1,—008s
Ain 1+.02s 1+.02s 0 g
Frecycle o 13 35 0 S (5 5)
T 16.66_'255 —7.46_'355 —4.86_'455 1 . .
out 1+4.6s 14.6s 14.6s
25s 35s 4s SQ
T 43¢72%0  _19e=9%  _j g be=
! 1+4.6s 14 .6s . 1+.65
T

Note: There was a pronounced oscillatory response to step changes, which made
finding the gain-delay-lag elements by step response testing difficult. The model was
fitted to the mean value of the oscillation and the delay chosen to encompass the initial
“Inverse response”.

The measured outputs, y, and regulated outputs, z, are given by

Ain
Frec cle Tou
y = e la= | (5.6)
Tout Tzn
T;

whilst the exogenous input, w, and the control inputs, u, are given by

S
w=d,u = . (5.7)
52

The disturbance, w, is asymmetric, ie, 0 < w < 1, therefore the system should
be rescaled so that the description of all disturbances as ||w|[co < 1 is tight. This
gives the smallest /; set encompassing the actual disturbance and, therefore, minimises
conservatism in the analysis. This requires defining the new reference disturbance as
the mean 0.5, ie, let @ = 2(w — 0.5) so that —1 <@ < 1. P becomes P = PS where

the rescaling matrix S is given by,

Sy O
0 S,
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Sy =10.5and S, = min(up — Ures, Ures — W) for Upey = —K75' K11/2, (K11 and Ky are
the steady state gain matrices of Pjjand Pyy respectively), up = —u; = (3 1)T. This
means that the problem is being scaled such that —3 < 5} <3 and —1 < 5; <1. 5
is scaled to lie between -3 and 3, as discussed in Walsh and Malik (1995), to account
for observed mismatch between linear and nonlinear steady-state behaviour associated
with the actuators.

The rescaled transfer function matrix relating the scaled variables (J gl SN'Q)T to

(A'm Frecycle Tout Tzn)T is giVeH by

1.26_'0083 —1.896_'0085 0
14.02s 14.02s
.065 6.61 0

T =

8.3e”25c  —13.98¢-%5¢ —4.71e=15¢
1+4.6s 1+.6s 1+.6s

2.15¢— 255 —3.59e—-35¢ 49e—-4s
14.6s 1+.6s —1.77 - 14.6s

A state space realisation of the transfer function was found and discretised using the
bilinear Tustin method.

To discretise this model the sampling period is chosen to be the smallest time delay,
ie, Ts = 0.008. The fact that some time delays in the model are as much as % = 56.25
times larger than T means that the discretised transfer function matrix will have some
very high order terms. This, in turn, means that the state space representation of the
system will have many states, which will make the solution method slow. Therefore

each gain-delay-lag element, for which ceil(t;/T,) > 1, was approximated as follows

k
T;i(s) = ki + Tdn(s) < +2m (5.9)

where T'd,(s) is the n'® order Pade approximation of the time delay e~'4* (n = 4 was
used).

Note: The n'* order Pade approximation of a time delay #, is given by

14y, )
* Zizo oy (5.10)
1 + Z?:O S

z!

el oy
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since

ad . ] 4 e a8 . (tas)
—tgs __ —tgs tgs\t __ tgs __
€ d—(1‘|‘€ d);)(—ed)—m and e —; l' S
The problem was initially set as follows.

Ain Tout

Frecycle Tzn ~ Sl

y = ~ ,Z = B yw=d,u=| _ (5.11)

Tout Sl SQ
T S,

The scaled manipulated inputs Sy and S; have been included in the regulated outputs
to incorporate the input constraints on the splits. Zero steady-state offsets for T3, and
T,u: must be enforced. This involves adding two linear time domain constraints onto
the resulting #; LP. The objective of this problem is the same as that given in equation
(3.32). The optimal objective v, should be less than 1 for both the performance spec-
ifications and input constraints to be met. The problem is a two-block problem, with
more regulated outputs than control inputs, ie, n, > n,,, which requires the use of the
DA algorithm. This was solved using several different LP solvers (based on MINOS,
CPLEX and OSL subroutines), which all gave the same results as would be expected.
Overall we have found CPLEX to be the most robust of these routines.

The convergence of the solution is shown in Figure 5.5. This gives n for N = 200
as 2.0551 which means that the performance specifications can only be met, using an
LTT controller, for about half the disturbance range.

To investigate how restrictive the input constraints on the control inputs, u, are
on the achievable performance, the ¢; analysis can be repeated excluding the control
inputs from the regulated output z. Now the problem is one block n, = n, and
ny > n,, which means that the problem is good rank, ie, there are no rank interpolation
conditions. This means that only zero interpolation conditions will be produced and
the DA algorithm is not required. Constraints are still added to the LP to enforce zero
steady-state offset. When the resulting LLP was solved the solution was vy = 1.8287.

The performance is improved only slightly by ignoring input constraints.
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Figure 5.5: Convergence of DA algorithm for PFR for persistent disturbances

As stated previously, the disturbance can be rate limited through modifications of
the upstream operation. Introducing a limit on the rate of change of the disturbance
we found that the constraints could be satisfied (with no input constraints), if the
disturbance varied only by 14.3% of its maximum variation per minute. With input
constraints a variation of just 10% per minute could be tolerated.

The disturbance value was expected to change only infrequently, so a step descrip-
tion is arguably more appropriate. The problem in this case is still multi-block, since
input constraints are still included, as are zero steady state conditions, and will require
the DA algorithm.

The convergence of the DA for this problem is shown in Figure 5.6, giving n, for
N = 200 of 1.1428. Although this is a considerable reduction on the value for the ¢,
problem, it still does not quite satisfy the performance requirements and would need
a further restriction of the disturbance set to do so. This could be done, as for the
{y analysis, by rate limiting the disturbance. This highlights the importance of the

appropriate selection of the class of disturbances considered.
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Figure 5.6: Convergence of DA algorithm for PFR for step disturbances

5.2.1 Conclusions

Overall this linear controllability analysis provides strong and unambiguous confirma-
tion of the difficulty of meeting the performance requirements, particularly with rapidly
varying disturbances.

The analysis carried out in Walsh and Malik (1995) indicated that a pessimistic
bound on the achievable step disturbance rejection was violation of the required speci-
fication on T,,; by a factor of 3. The actual nonlinear performance with a cascaded PI
control scheme was noted to violate this limit by a factor of 1.5 for a smoothed step.
The results from this linear optimisation based analysis are comparable. Both analyses

highlight clearly that it is difficult to satisfy the specification.

5.3 Case Study 3: An Industrial Reactor System

This industrial reactor system consists of two adiabatic Plug Flow Reactors (PFRs) in
series and is shown in Figure 5.7. A detailed study, involving analysis techniques not

discussed here, is presented in Walsh et al (1997).
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Figure 5.7: The industrial reactor system

The manipulable variables are Tinl and Tin2, which are tightly regulated by sec-
ondary control loops. Measurement of the exit compositions on-line is expensive and
will exhibit a significant delay of about 0.1 hours. Feed flow (/') and bed exit temper-
atures (Toutl, Tout2) can be measured reliably and rapidly.

The economic objective used was the minimisation of the production rate of a
byproduct, fB, at the average (nominal) feed conditions. Therefore J(ug) in equation
(4.2) is given by fB. This approximates to the expected value of fB over the distur-
bance set. For linear models and controllers this approximation is exact (see section
3.5.2). Process constraints apply to the reactor inlet and outlet temperatures and the
product concentration of one component, ¢; 4. The values are scaled, such that the
allowable temperatures lie between 0 and 50 degrees. The natural log of the concentra-
tion ¢y put (I¢1,0ue) has an upper limit of 2.2988 (the natural log is used to improve the
accuracy of the linear models). The objective function, fB, is scaled so that a value
of zero indicates the steady state economic optimum for the process with nominal feed
properties.

The initial disturbance set to be considered was step variations in the feed flow and
four inlet concentrations in the range of £ 10% of the nominal feed properties. This
is obviously a crude estimate of the actual disturbances. However, it is sufficiently

realistic to evaluate the effectiveness of controllability analysis techniques. Some of
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the analysis techniques used can only handle a restricted disturbance set, in which
all changes are assumed to start from midway between the limits (the nominal feed
properties in this case), so that steps from the lower to the upper limit are excluded.
We therefore distinguish between a restricted step and a full step disturbance set in
the results presented in the following.

A non-linear SPEEDUP model of the process was developed by ICI. The SPEEDUP
model was converted to a gPROMS model to facilitate the use of dynamic optimisation.

A linearised model with 280 states was generated from the gPROMS model at the
nominal steady-state optimum. For some of the techniques used it is important to use
as simple a model as possible. A mixture of balanced truncation and residualisation was
used to develop a 24 state approximation, given in Appendix D.1, of the original 280
state model. This model accurately matched the frequency response characteristics up
to frequencies somewhat beyond the maximum anticipated bandwidth. The maximum
bandwidth was estimated based on the frequencies at which the combined disturbance
effect exceeded the combined control effect.

The initial linear model was found to give inaccurate predictions for ¢; 4y¢. This was
due to this concentration exhibiting a markedly asymmetric response to positive and
negative variations in inputs and disturbances. The natural log of this concentration
lc1,0ut was predicted much more accurately by a linear approximation, so this variable
was used to replace ¢; 4, in the following analyses.

Initially qualitative analysis was carried out by studying the open-loop gain matrix

of the linearised model:

B ] [ —102: 3.596 1.233 2.145 | [ Tin1
lerou | _5.715 —3.1539 0.391 —0.115 Tin2
Toutl | 0.939  7.356 x 10° —7.173 x 10=°  5.916 x 102 F

| Tout2 | | —122x 107 1025 —4811 x 107 —7.742 x 10 | | ey

Increasing either Tinl or Tin2 reduces ¢y 4. Increasing Tinl reduces fB, while in-

creasing Tin2 increases fB. Qualitatively, the optimum strategy is, therefore, likely
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to be to adjust Tinl to keep Toutl on its limit and to keep Tin2 as low as its lower
limit and the constraint on ¢ 4, will permit.

Two disturbances show a dominant effect; feed flow (F') and one reactant concen-
tration in the feed (c¢q,,). This suggests that the other three disturbances could be
neglected, giving a simpler analysis problem.

Before we apply the OLDE technique to the linear model it must be discretised.
A sampling period of 0.0025 was chosen to avoid introducing significant additional
bandwidth limits (.0025 << 75, corresponding to a bandwidth limit of 120 rads/hour
(Walsh et al., 1997)). A horizon of 0.1 hours was used to include the full open loop
effect of the disturbances. In this analysis, only the two dominant disturbances, feed
flow and ¢y ;,,, have been considered, so as to reduce the computational expense of the
method. The full step disturbances are considered. The open-loop optimum for fB
with the full step disturbance set is 1.207.

Applying this technique to the linear model with measured variables T'outl and
Tout2 and manipulated variables Tinl and Tin2 the optimal value for fB was 0.100.
Feed forward was added to the control structure by including the feed flow in the
measured variables (feed flow has been identified as one of the dominant disturbances).
The optimal value for fB was 0.076. Measuring only T'outl and F' gave an increase in
fB to 0.108, indicating that Tout2 is providing useful information for control.

In the absence of measurement noise and uncertainty, clear potential for effective
control performance with a linear multivariable feedback controller has been shown.
Including feedforward information gives a moderate further improvement, suggesting
that this possibility is worth considering. Tin2 is not manipulated by the controller in
either case suggesting that this variable is redundant.

In the above analysis, the optimal controller is selected without any consideration
of the effects of noise or uncertainty and without any requirement for a well-damped
response. The controller generated is, therefore, not itself suitable for implementation
and simply gives an estimate of the achievable performance with linear multivariable

control.
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Figure 5.8: The critical disturbance for the industrial reactor

To give some nonlinear validation, this problem is solved using the ONDE tech-
nique for one critical disturbance scenario. The critical disturbance scenario for Toutl
from the OLDE analysis was used to estimate the worst disturbance to be applied to
the nonlinear dynamic model and is shown in Figure 5.8. In this figure 0 indicates the
steady state and +1 indicates + the maximum expected disturbance deviation. The
disturbance starts from steady state, since for the ONDE method the restricted step
disturbance set is used. This is necessary to introduce the nominal steady-state oper-
ating point, (ug, F(d)), into the optimisation at t=0. There is no explicit controller
to allow the closed loop steady-state behaviour to be defined more generally. The eco-
nomic objective was minimised by optimising discrete values of Tinl and Tin2, with
the same sampling period and horizon as in the OLDE analysis. The optimal value of
fB was 0.056 and the response of T'outl is shown in Figure 5.9.

This result is better than the OLDE optimum of 0.076. Some sufficient reasons for
this are given below. The nonlinear model is only subjected to one critical disturbance
scenario, while in the OLDE analysis all disturbance scenarios are considered simul-
taneously. The disturbance scenario was selected from the restricted step disturbance
set, rather than from the full step disturbance set used in the OLDE analysis. The
optimal control is not required to be a function of an invariant control law. The con-

strained variables are not required to take a constant value at the end of the horizon.
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Figure 5.9: Initial response of T'outl for the optimal control schedule

If the nonlinear optimal control problem gave an optimal value of fB greater than the
OLDE value, then this would imply that, either the nonlinear global optimum had not
been found, or the linear approximation used in the OLDE analysis was not sufficiently
accurate.

The above nonlinear dynamic optimisation result provides a lower bound on the
performance of any controller for which the steady-state operating cost for the average
disturbance is representative of the overall operating economics.

The results show that advanced control has the potential to substantially improve
performance compared to open-loop operation. The fact that the ONDE result does
not substantially improve on the OLDE result suggests that LTI multivariable control

can deliver most of the achievable benefits from advanced control.

5.3.1 Conclusions

The conclusions made, due to the results of the analyses carried out on this problem,
depend on the significance of fB in real money. If one unit of fB was worth about
£20,000 per year, then a further control study would be justified. The analysis so
far would suggest that a LTI multivariable controller, adjusting just Tinl using all

available continuous measurements, should provide almost all the potential benefit from

143



advanced control. However the disturbance characteristics should be reviewed carefully,
as conclusions are very sensitive to the maximum rate of change of the disturbances.
On the other hand, if one unit of fB was worth less than £2,000 per year, then this
study should have stopped as soon as the open-loop dynamic economic analysis was
completed.

The techniques used were successful in providing solid quantitative estimates of
achievable performance. This allows an informed decision as to future action to be
made. Also the linear analysis results provided excellent starting points for the non-

linear analysis.

5.4 Case Study 4: An Evaporator System

The following case study is based on an evaporator model which is investigated in
great detail in Newell and Lee (1989). The nonlinear model of this evaporator, shown
in Figure 5.10, was programmed in gPROMS and has 20 variables, 12 equations and
3 states. The equations of the model are given in Appendix D.2. The level 1.2 is not
self regulating, so for convenience a PI controller, designed in Newell and Lee (1989),
is implemented as part of the model. This makes the optimisation easier with no loss

of generality.
1
AF2 = K.(1 + —)AL2
-

k3

where AL2=1.2-1.2,; and AF2=F2-F2,,, for 1.2,,=1 m and F2,,=2 kg/min, and the
constants are given as K.=5.6 kg/min/m and 7,=8.84 min.

There are two performance objectives for the controls in this case study. One is to
maintain the deviations of the operating pressure, P2, and the product composition

, X2, within a certain range about their steady states, i.e.,

Jrellye, < axe < TRy,

0 0

_rangelB)py o Apy < F9H)py (5.12)
100% 100%

These path constraints are implemented as shown in Appendix D.3. This range is not

given in Newell and Lee (1989), but if range(%) were 0% then this implies perfect
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control, whilst if it were 100% this might imply poor control. Therefore the size of this
range is a performance objective for this problem. Another performance objective is

the optimal economics.

Cooling
water
T201 - (R
F200,T200
Vapor
F4,T3
Condenser
- Condensate
P2
Separator
Steam

F100 P100
T100
Evaporator

—

Condensate
F3

Feed 2 Product
F1,X1,T1 F2,X2,T2

Figure 5.10: The evaporator system

The economics are given by the operating cost of the plant, which is assumed to be
dominated by the steam and electricity consumption. Therefore Newell and Lee (1989)
note that the economic performance is improved by minimising the recirculation and

pressure. Insufficient information is provided to precisely weight these two variables,
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therefore as they are of similar magnitude we have chosen the objective function to be
F3,s + P2 (5.13)

subject to certain constraints. We want to maintain product quality at its operating
point

X2,, = 25% (5.14)

which provides one operating point constraint. Also there are bounds on the steam
pressure, P100, and the cooling water flowrate, F200, (the manipulated variables) which

are used to control X2 and P2 (the measured variables) respectively.

P100 < 400kPa

F200 < 400kg/min (5.15)

The operating point of the circulating flowrate, F3,;, is selected to both minimise the
objective and to satisfy the condition (5.14).
Using nonlinear steady state optimisation we get the optimal economic operating

point to be

P100°, = 400kPa
F200%, = 400kg/min

F32, = 18.89kg/min

which give

P2°, = 18.89kPa

and an objective, given by (5.13), of 59.38.

This means that P100 and F200 are sitting on their upper constraints. So, when a
process disturbance occurs causing deviations in either X2 or P2, which require P100
or F200 to take positive control action to maintain (5.12), then these upper bounds
will be violated. Therefore the operating point will have to be backed off its economic
optimum sufficiently to allow the performance bounds in (5.12) to be satisfied, but still

give the minimum possible operating costs.
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Therefore the problem solved in this case study is the minimisation of the operating
costs in (5.13), via the selection of P100, F200 and the operating point F3,,, subject
to the constraints in (5.12), (5.14) and (5.15) for the process disturbances:

Flgs £+ 10%F1g,

Xlgs £+ 10%X1

for different values of range(%), i.e., 10%, 20% and 30%. This will provide a picture
of the trade-off between the two performance objectives.

The problem was first solved using the OLDE technique and then using the linear
specialisation of the ONDE technique (see 4.8) to provide an upper and lower bound
on the linear performance. These both require a linearised discrete model. The model
was linearised about the optimal economic operating point and is given in Appendix
D 4.

This linear continuous model was discretised using the Tustin method for a sampling
period of 3 minutes. This sampling period T was based on the guidance, given in Newell
and Lee (1989), that

Ts < 0.38%,in

where t,,;, is the smallest time constant of interest. Using the linear continuous model
described in Appendix D.4 t,,;, was identified as approximately 9.2 minutes (the iden-
tification was based on the Smith techniques described in Newell and Lee (1989)).
Therefore Ty < 3.5 minutes. The problems in this case study are solved over a finite
horizon of 300 minutes.

The results of the OLDE technique and the linear specialisation of the ONDE
technique were found to correspond to within 0.01% of each other, therefore the linear
results shall be discussed as one. It was found that for a value of range(%) of 10%
both P100,, and F200,, were required to back off. However for values of 20% and 30%
the open-loop deviations in P2 were well within the bounds, so no control via F200
was needed. This meant that only P100,, backed off. The results are shown in the

following table.
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performance | back off in P100,, | back off in F200,, | objective

bound (%= P1002,) (% x F2002,) F3,+P2,
10% -10.5% -54.4% 67.709
20% -9.9% 0% 61.808
30% -3.1% 0% 60.146

It was found, that for a value of range(%) of 40%, no back off from the optimal
economic operating point was required so the objective was 59.382. These two sets of
linear results correspond so well, since investigation of the linearised model shows that
the system has no NMP characteristics, this means that avoiding limitations due to
the measured variables cannot help the idealised controller improve the performance.
The main limitation on the achievable performance for this system is due to the input
constraints on P100 and F200.

These results are plotted in Figure 5.11 where the objective is scaled as,

AF3,, AP2,,
( 3 ) x 10

5.16
F37, + P27, ( )

where AF3,; and AP2,; are the back offs in the operating points F3,, and P2, respec-
tively.

Before carrying out the ONDE analysis with the nonlinear model, the linear spe-
cialisation of this technique was rerun with only 50 control intervals rather than 100.
It was found that the results were within 0.01% of each other so the number of con-
trol intervals considered was reduced to 50 for the nonlinear analysis. Since nonlinear
optimisation is computationally expensive, it is better to use the minimum required
number of control intervals. Also the worst disturbances, for each constraint and for
each range, were identified from the linear analysis by aligning the peaks of the result-
ing closed-loop step responses to give the worst deviations. It was found that for all the
ranges, i.e., 10%, 20% and 30%, and all the constraints the worst disturbance was given
by the disturbance shown in Figure 5.12. There is no delay between the occurrence of
F1 and X1, so that means that the acausal nature of the idealised controller can be

avoided.
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Figure 5.11: Objective vs. performance bounds for the linear model
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Figure 5.12: The Worst Disturbance for the evaporator system

The gPROMS model was run for this disturbance and the responses of P2 and X2
are shown in Figure 5.13. It can be see that open-loop P2 increases by about 8.3%
and X2 decreases by about 27.5%. Clearly a value of range(%) of 30% will require no
control and therefore no back off.

In a similar manner to the linear analysis for a value of range(%) of 10% both P100s;,
and F200,, were required to back off, while for 20% the control F200 was unused so

only P100,s was backed off. The results are shown in the following table.
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performance | back off in P100,, | back off in F200,, | objective
bound (%= P1002,) (% x F2002,) F3,+P2,
10% -10.3% -33.1% 69.228
20% -7.8% 0% 61.418
30% 0% 0% 59.382
a4
a3l
2l
a4
“% 50 100 150 200 250 300

26

5‘0 100 . lSQ 200 250 300
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Figure 5.13: The responses of X2 and P2 to the worst disturbance

These results are scaled in the same manner as that described in (5.16) for the
linear case and are shown in Figure 5.14.

To run the analysis (range(%)=20%) for more than one disturbance the step in X1
was delayed by one control interval and added to the disturbance set. Unsurprisingly
the performance was found to be the same since the best achievable objective for this

delayed disturbance alone is marginally better, as shown in the following table.

delay in X1 | objective
(minutes)

0 61.41812

6 61.41788

12 61.41681
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Figure 5.14: Objective vs. performance bounds for the nonlinear model

The technique for limiting the acausal nature of the idealised controller was applied
to this delayed disturbance. However, a candidate disturbance for w®°, which gives a
constraint violation when u; = u7, as described in 4.5.1, could not be found. Therefore
this is an example of when the technique for limiting acausal behaviour cannot find an

appropriate disturbance.

5.4.1 Conclusions

The linear and nonlinear objectives correspond well for a value of range(%) of 20%, with
the nonlinear results giving a slightly better performance for lower values of range(%)
and a slightly worse performance for higher values of range(%). All the analysis tech-
niques show that the achievable economic performance improves as the performance
bounds on the deviations in X2 and P2 are reduced. In fact, if we allow these bounds
to be greater than 30% of their steady states, then the nonlinear analysis shows that
the plant can operate at the optimal economic operating point.

In Newell and Lee (1989) both P100 and F200 are backed off to 350 to allow for
control action, giving a F3,, of 22.8 kg/min and P2, of 42 kPa. For the disturbance

description used here, if the bounds on the deviations in X2 and P2 were 20%, then
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this back off would be excessive and the nonlinear analysis in this section suggests that
an economically better operating point of F3,,=20.9 and P2,,=40.5 might be achieved.
However, if the performance bounds were tighter, i.e., 10%, then the analysis suggests
there might be constraint violations for these operating points of 350 and that, in fact,
there might have to be a further back off to maintain feasibility.

The specifications of the process disturbances and the required performance bounds
on the deviations in X2 and P2 would have to be clarified before this analysis could be

used to draw any specific conclusions about the achievable performance.

5.5 Conclusions

The software has been validated against published results and applied to a couple of
industrial process control problems and a well published process control problem. The
results confirm the utility of the method, but highlight some limitations and some
general questions for further consideration.

Perhaps the major limitation of all the technique presented here, is their compu-
tational expense. The linear method was solved using the interpolation conditions,
which required a lot of computation simply to set up the LP. The series of LPs in
the first example solved to give the DA convergence quite quickly, whilst the second
example took a couple of hours to give the full convergence curve shown. The number
of variables (1., 1., ny, ny ), the length of the finite horizon and the number of different
values of the DA delay, N, affect how long this technique takes. The third example has
a large number of variables and states, so that, even for a fairly short finite horizon,
this example took several hours to solve using the DA algorithm. The solution time
could be reduced by solving for only a few values of N and for a reduced finite horizon.

On the other hand, the linear specialisation of the nonlinear controllability tech-
nique solved quickly and, on the whole, gave a solution within several minutes.

The nonlinear method is computationally expensive due to the need for nonlinear
dynamic optimisation. The solution time varied widely depending on the size of the

nonlinear model, i.e., the number of states, variables and equations, and the number
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of control intervals used. The third example had in the order of a few hundred states
and a few thousand variables and equations, making the nonlinear model large and
unwieldy. This was solved for 40 control intervals (using the same sampling as the
linearised problem) and took several days to solve. However the last example had 20
variables, 12 equations and 3 states and only took an hour or so to solve for 50 control
intervals. (All the solution times discussed here are based on a SPARC 10 workstation).

Other issues include, the discretisation of the model for the linear techniques and
the resulting number of control intervals used for the nonlinear method, and the use of
different step disturbance descriptions, i.e., full or restricted.

The sampling level of the discretisation should be selected to be high enough that
the achievable performance as closely resembles that of the continuous time system as
possible. If the system is bandwidth limited, then selecting the sampling frequency to
be greater than twice the bandwidth limit frequency means that the continuous system
is completely represented by the discrete system (the sampling theorem see (Oppenheim
et al., 1983)). If the system is not bandwidth limited, then some maximum frequency
of interest must be estimated and the discrete system will be an approximation of the
continuous system. This sampling frequency will also limit the achievable controller,
since it will not be able to have any higher frequency dynamics, than those stipulated by
the sampling frequency. As this sampling frequency is increased, then the closer the set
of available discrete controllers represents the set of continuous controllers. However,
as the sampling frequency increases, so does the size of the optimisation problem to be
solved, for the same finite horizon. If the same sampling period is used as the control
interval for the nonlinear problem, then it is particularly important to keep this as
small as possible.

The linear method uses a full step description (stepping from one bound to the
other), whilst the nonlinear method and its linear specialisation use a restricted step
description (stepping from its steady state to one or the other bound). This means,
that the performance for the full step may be worse than that for the restricted step, de-

pending on the specific system. For a system which only displays first order behaviour
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this will make no difference. Since the techniques using the restricted step description
are already lower bounds on the achievable performance, it is not too serious a matter
that this disturbance description may make them yet more optimistic. These idealised
controller techniques have to initiate from their expected operating point for the per-
formance to be estimated at this point, therefore not much can be done to alter these
methods. However the LTI controller technique can easily be adapted to restricted
step disturbances, so that the correspondence between this result and the idealised
controller results could be checked if the achievable performances differed greatly. This
would allow the effect of the use of a full or restricted step disturbance description to

be assessed for a particular problem.
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Chapter 6

Conclusion

The aim was to develop controllability analysis techniques, for both linear and nonlinear
models, which give unambiguous measures of achievable control performance prior to

the design of the controller. Desirable objectives for any such method are that it should:

e capture typical performance requirements directly;

e find the best performance with a class of controllers, which is as broad and

realistic as possible;

e take account of as many of the fundamental limitations on controllability as

possible;

e be computationally tractable.

A method for the linear controllability analysis has been developed that meets many of
the above objectives. The complementary nonlinear controllability analysis technique
falls short on some of these characteristics, but, as far as possible, attempts to provide
a similar controllability measure for the nonlinear problem, as the linear technique
provides for the linear problem.

Both methods can be formulated to capture many typical primary performance re-
quirements in a very flexible manner without need for approximation. Specifically the
OLDE/ONDE problems capture the best achievable economic performance, by evalu-

ating the minimum back off from the economically optimal operating point required
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to ensure that none of the process constraints are violated for any of the process dis-
turbances. The closer this new feasible operating point is to the optimal operating
point, the better the economic performance. If we don’t have information about the
economics of the process, then the methods might be used to evaluate the feasibility
of the problem directly or to assess the “disturbance fraction” which the process can
tolerate and for which it can still maintain feasibility. Little attention has been paid
to classical control criteria, such as damping and integral squared error. This reflects
their secondary importance, the difficulty of weighing such issues objectively against
economic objectives, and, for the linear method, the difficulty of including them within
an LP framework. The controllers obtained from the optimisations may, therefore,
be lightly damped or otherwise “poor” controllers. We prefer to let a control engi-
neer make the trade-off between “nice” responses and economics/ feasibility, with the
knowledge of the best that can be achieved ignoring such issues.

Both techniques are based on optimal control problems and, therefore, the more
general and realistic the set of controllers provided to the optimisation, the more re-
alistic is the measure of best achievable performance. If the set is a realistic, but
restricted set, i.e., the set of PI controllers, then the result can be achieved using an
implementable controller, however the truly optimal controller may not be included in
this set. Therefore the result, in this case, is a pessimistic bound on the best achievable
performance. On the other hand, if the set of possible controllers is an idealised set,
i.e., perfect control, then the optimal controller is not realisable and any implementable
controller would not be able to achieve this level of performance. In this case the result
is an optimistic bound on the best achievable performance. It must be an objective of
any controllability technique to try to provide a result which is as tight a bound on the
best achievable performance as possible. Therefore the selection of the controller set is
of great importance to any controllability analysis technique based on optimal control.
For the linear controllability technique the set of controllers is the set of all stabilising
LTT controllers, which is both a broad and meaningful one, but it is not complete. The

most common, conventional and advanced controllers in the process industry, PI with

156



output limiting and constrained model predictive control, lie outside the set of L'TT con-
trollers as their characteristics change when constraints become active. Therefore the
result produced by the linear controllability analysis is a pessimistic bound, since the
optimal controller may not be included in this set. Both the nonlinear controllability
method and its linear specialisation optimise the performance by solving an optimal
idealised control problem. The controller is idealised, since no limitations associated
with measurement availability and characteristics are captured and the controller is
acausal. The last point is due to the optimiser having full information on the distur-
bance before it selects the optimal control schedule. However a technique has been
implemented to limit the acausal nature of these optimal controllers in an attempt to
make the optimistic bound, that this result produces, tighter. If the pessimistic bound,
produced by the linear controllability method, and the optimistic bound, produced by
the linear specialisation of the nonlinear controllability method, are close, then this
suggests that these bounds are tight. The nonlinear controllability analysis technique
can then be applied to the nonlinear model and the results compared, to ensure a good
correlation between the two models and to validate the linear results.

Limitations on the achievable performance due to input constraints and noise can
be included in both the linear and nonlinear methods with no problem. The effect
of time delays and unstable zero dynamics in the system are incorporated directly in
the linear technique through the feasibility constraints. However, although the effect of
these occurring between the control inputs and the regulated outputs are automatically
captured in the nonlinear technique, any limitations due to these occurring between
the disturbances and the measured variables are excluded due to the nature of the
idealised controller used. In fact, this controller will actually have information of the
disturbance before it has occurred, therefore the nonlinear method has been adapted
to at least attempt to ensure a degree of causality. The one fundamental limitation on
controllability, which is excluded from both techniques completely, is uncertainty. As
discussed in Dahleh and Diaz-Bobillo (1995) it is straightforward to add unstructured

robust stability conditions to the linear controllability problem at the expense of in-
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creasing problem size. Such descriptions are however notoriously conservative. Dealing
with robust performance or structured uncertainty, in a non-conservative manner, for
the linear method requires further research. One possibility would be to use the lin-
ear method as a guide to developing a controller and subsequently address robustness
directly on the nonlinear model. There already exist several nonlinear optimal control
problems that assess performance for uncertain models, as discussed in section 2.3,
therefore further work might be undertaken to augment the nonlinear controllability
method to incorporate uncertainty. However this would lead to a more complex and
therefore more computationally expensive problem.

The computational tractability has been verified to some extent by successful per-
formance on industrial problems. Nonetheless there are limitations on the size of
problem which can be analysed at present. For the linear method, a problem with
n, = Ny, = Ny =n, =n = > and a finite horizon of 100 would give several thousand
constraints and variables, close on a million non-zero elements and take several hours
to solve on a SPARC 10 workstation. Simple linear programming algorithms will fail
on a problem of this size. In the short-term careful formulation and the use of high
quality LP software is necessary to allow realistic problems to be tackled. The nonlin-
ear controllability method is computationally more expensive than the linear method.
A problem with around 50 control intervals, a few thousand variables and equations
and a few hundred states took several days to solve on a SPARC 10 workstation, whilst
a problem with less than 50 variables and equations and less than 10 states would take
around a couple of hours. The number of control intervals used must be selected with
the size of the problem in mind, since the solution time will increase with this num-
ber. Also the solution time is greatly improved by the selection of a good initial guess
of the optimal point. As both nonlinear and linear optimisation techniques improve,
and computer power is increased, then larger and more complex problems will become
solvable.

These two techniques are most useful when used in conjunction. The linear control-

lability technique provides useful estimates for the worst disturbance for the nonlinear
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controllability analysis. The nonlinear technique provides validation for the linear con-
trollability analysis results.

The result provided by the linear controllability analysis is an upper bound on
the best achievable control performance for the linearised nominal process. The non-
linear controllability analysis provides a lower bound on the best achievable control
performance for the nominal process. The linear specialisation of the nonlinear con-
trollability technique can be used to provide a lower bound on the linear performance.

If the nominal process:

e passes all these tests, then it implies that the nominal process is controllable and

that fixed linear feedback may be adequate to achieve the required performance.

e fails the linear controllability analysis, but passes the optimal idealised control
based techniques, then this implies that the process is potentially controllable,

but probably will require a nonlinear controller or a modified measurement set.

e fails both the linear controllability analysis and the linear specialisation of the
nonlinear controllability analysis, but passes the nonlinear test, then this implies
that the nonlinearities assist the control and therefore all control design should

be based on the nonlinear model.

o fails all the tests, then this implies that either the nominal process is not control-

lable or that the NLP has failed to find the global optimum.

Other methods could be used to complement these techniques. For example, nonlinear
optimisation of simple implementable controllers might be used to give an upper bound
on the nonlinear performance, or controllability indicators could be used to highlight
characteristics contributing to poor performance and to aid a search for better process
and control structure options.

The contributions of this thesis are the formulation and implementation of optimal
control problems to give controllability measures and their application to realistic in-

dustrial problems. The linear controllability analysis has required the development of
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formulations which allow the problem to incorporate a range of realistic disturbance
descriptions (section 3.4) and typical performance requirements (section 3.5). The ¢,
performance problem is an existing optimal control method (Dahleh and Diaz-Bobillo,
1995) and the techniques used for solving it are used as a basis for the linear controllabil-
ity analysis developed here. A specific application of the linear controllability analysis
technique has been formulated which assesses the economic performance of a linear
dynamic system based on back offs, the OLDE technique (section 3.5.2). Working in
parallel, Young et al (1996) have presented a similar approach which differs signifi-
cantly in the details. For the nonlinear controllability analysis, formulations have been
developed to allow the evaluation of the performance over a set of multiple step distur-
bances (section 4.4) and the incorporation of typical performance requirements (section
4.6). The ONDE technique has been formulated (section 4.6.1) to give a measure of the
economic performance in a similar manner to the OLDE technique, but for nonlinear
dynamic systems. A technique is proposed to tighten the lower bound provided by this
nonlinear method by limiting the acausal nature of the idealised controller (section
4.5.1). The nonlinear controllability technique has been reformulated for the special
case when it is applied to a linear model (section 4.8). In this case it can be solved
extremely efficiently as an LP. A simple linear example is presented demonstrating
this linear specialisation and the technique for limiting acausal behaviour. All these
controllability analysis techniques have been implemented and applied to industrial
problems (see Chapter 5) of realistic size.

Some suggested areas for further work, relating to this thesis, are as follows:

o the development of an upper bound on the nonlinear performance, e.g., using an

optimal realisable (PI or LTT) control problem.

o further tightening of the lower bound provided by the optimal idealised control

problem.

e the incorporation of uncertainty into the controllability techniques.
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o further application of the technique for limiting acausal behaviour to nonlinear

problems.

o further investigation into the effect of different discretisation techniques and sam-

pling periods on the measure of performance.

Finally there is always a need for computational improvements with such techniques,

to shorten the solution time and to diminish the computational expense.
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Appendix A

Finite Interpolation Conditions

The interpolation conditions consist of rank interpolation conditions and zero interpo-
lation conditions. The former produce an infinite number of constraints and variables,
so an algorithm for avoiding the use of these constraints is described in A.1.The latter
produce an infinite number of variables and a technique for truncating the variable

vector to a finite length is described in A.2.

A.1 The DA Algorithm

As mentioned earlier one-block problems have no rank interpolation conditions, there-
fore this fact can be exploited to avoid solving the infinite constraint and variable
linear programs produced by multiblock problems. There are several methods of trun-
cating the original problem to give a one-block problem with only zero interpolation
conditions. In this work the Delay Augmentation (DA) has been used. This embeds
the problem in a one-block problem through augmenting the operators Uand V with
delays. The optimal solution of this augmented one-block problem gives a lower bound
on the optimal solution of the original problem. The optimal Q% for the augmented
problem allows us to form an upper bound. The delay is increased until these two

bounds have converged sufficiently.
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If we partition the original problem as follows,

(i) (i) H, H U
11 12 ) _ 11 12 ] 1 O V) (A1)
Oy Dy, Hy  Hy U,

where Uy € £7+*™ and V; € £;**"™, then the DA problem would be given by

e

Gy v DPoon Hy  Hy Uy Sy Q21 Qo2 0 Sy
T

where Sy are Nth order forward shifts. The statement given for the ¢/; case in Dahleh

and Diaz-Bobillo (1995) on using the DA algorithm to bound v, can be made more

generally.

For the performance problem

min J(K,ug) s.t. e¢(K,up,w) <0V weW (A.3)

K,ug
let J(Q,uo) = J(K,up) and &Q,ug, w) = ¢(K,ug,w) so that A.3 can be stated as
min j(Q,uo) st &(Q,up,w) <OVweW (A.4)
Qe ™™ g
In this case the optimal solution for the delay augmented problem is given by

Ny = min J(Qn,uo) s.t. & Qn,ug,w) <0OVweW (A.5)
—_ QNEZILZ X1 Ao
whilst the optimal solution for the original problem is given by (A.4) and can rewritten

as

v, = min j(QN,uo) st ¢(Quo,w) <0VweW (A.6)
QuGZTuxny,

Q12=0Q21=Q22=0,uq

therefore the extra degree of freedom provided by @)y allows the construction of super
optimal solutions, ie,

Ny < Vo (A.7)

This gives a lower bound n,; to the optimal solution of the original problem v;,.

When N has been increased to a point at which a ()7, is found which satisfies

HQ2, G, w) < eVwe W (A.8)
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where ()7, is the value of )11 that gives the optimal value n; of the augmented problem

(A.5), ug is chosen to satisfy (A.8) and ¢ is positive and small. An upper bound is

given by
v, = min j(Q,uo) st e(Q up,w) K0OVweW (A.9)
QeLT™ ™™ g
< J(Q%,10) = Ty (A.10)

In which case we have both upper and lower bounds on v,.

Ny < Vo < Ty (A.11)

A.2 Truncation of the Infinite Variable Vector

The zero interpolation conditions produce an infinite number of constraints due to
length of ¢. We can rearrange the columns of the matrix A..,, to give a set of matrices

M;; fori=1,..,n,and y =1,..,n,, where
(MZ])k = (Azero)nznwk-}'Nw(i_l)‘}‘j

Je , the column of A,.,, that multiplies ¢;;(k). Therefore A, ,¢ = b, can be rewrit-

ten as

Nz

Z Z szqbu = bzero-

=1 7=1

Clearly if we truncate the discrete impulse response of ¢;; to a length of N;; so that

Ny TN Ni

D020 (M) ij(k) = beer,

then
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where qNOZ] is the truncated ¢;;.

There is a trick that can be used for the £;-optimisation problem specifically that
allows the truncation of ¢;; without causing any further restriction on the set of ¢
from which the optimisation can choose. It makes use of a variable change that is
made to enforce the absolute norm involved in the objective function, ® = ®* — &~
for @+, ®~ >= 0. The setting up of the f;-optimisation problem is described in more
detail in 3.5.1.

The primal problem is given by

v, = inf(z, c) (A.12)

xr

subject to

ZEERXRnZXgl ><€1

where z := (v &7 (¢6T)T (¢7))T, Ay (¢t + ¢7) + € = 1v, € = slack variables, ¢ :=
(100....)7,

—1 I A, A, 0
A — ’b = . (Al?))
0 0 Azero _Azero bZSTO

The problem has an infinite number of variables = := (v £ ¢+ ¢7)T due to ¢ and ¢~
just as discussed previously. However by considering the dual problem it can be shown
that the underlying problem is finite dimensional.

The dual problem has a finite number of variables, but an infinite number of con-

straints.
v, = max(b, )
¥
subject to
ATy <o, (A.14)
v €l



If we put v =: (=70 y1)7 then the problem becomes

v, = max(b
o Yo < Zero s 71>

subject to

Y0 >0, Y (i) <1, (A.15)
=1

_AZ’-YO § Azerofyl S AZ’VO

Yo € R™, 11 € R™.

The last line of constraints can be restated using the M;;’s presented earlier.

1=1,....,n,
—0(i) < (Mgm)(k) (i) for { j=1,..n, (A.16)
k=01,

It can be shown that for some N,

(1 = Pr, )ME2||oo < || Pr, ME 2|

(for proof see (Dahleh and Diaz-Bobillo, 1995) p.272). Therefore, for @ = ~q, if
|(M£’yl)(k)| < () for k =0,1,...N;; then

(7 = P )M mllee < 1P, Mg lloo < y0(0). (A.17)

This means that so long as the constraint is satisfied for £ = 0, .... N;; then the constraint

is inactive (ie, already satisfied) for k > N;;. Therefore using an algorithm to find
N V1 <1<n,, 1<j<n, these constraints become

—0(i) < (Mgm)(k) < (i) for { j=1,..,n, (A.18)

k=01, NZ] < Q.

So the dual linear program now has a finite number of variables (ie, n, + ¢,) and a

finite number of constraints (ie, n, + 1 + &.).
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Note: Py=truncation operator, ie, Pyz(k) = (2(0), z(1),...,2(N),0,0....) for z(k) =
(z(0),z(1),...), and

Ny Nuw

& =>_ > Nj+1 (A.19)

=1 7=1

The finite primal linear program can now be given by,

v, = min{Z, ¢) (A.20)
subject to
Ai = b, (A.21)
>0

where 7 = (v £ (<5+)T; (qg_)T)T, c:=(100..)7 for qgij =finite vector consisting of
the first N;; + 1 elements of ¢;;,
6= ((310)" o (D10,)T (621) "o (B20) T (Ba)T s (D) )T

. -1 I I, I, . 0
A = 7b = . (A22)
0 0 Mzero _Mzero bZSTO

define the matrix I, such that,

Nw Ni] _
(In @) =D bij(k) (A.23)
7=1k=0
and M..,, such that
Mzemﬁg = Miquij (A.24)
=1 j=1

for Mij = finite matrix consisting of the first N;; + 1 columns of M;;. This can now
be solved as a standard linear program to give the optimal value of ||®y]|; as NV is

increased.
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Appendix B

Linear Implementation

Layouts for the linear software implemented for the interpolation technique and the
()-parametrisation technique are shown in Figures 3.3 and 3.4 respectively. Details
for the computation of the Youla parametrisation and the null chains, as well as a

technique for reconditioning part of the LP, are given in the following appendices.

B.1 The Youla parametrisation

The Youla parametrisation of the controller allows the lower LFT, &, for a stabilising

controller, to be stated as an affine function of the stable parameter Q).

d=H-UQV (B.1)
where
— P11 —|— P12YMP21 (BQ)
U — P12M
— MPQl.

Rather than have to directly calculate the right and left coprime factorisations N, M, N, M
and the related X,Y, X, Y we can use the following theory ( see (Green and Limebeer,
1995) p.458) to develop H, U and V.
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Theorem B.1.1 Suppose G = D + C (sl — A)' B is a stabilisable and detectable reali-
sation of a transfer function matriz G. Let F be a state-feedback gain matriz such that
A— BF is asymptotically stable and let L be an observer gain matriz such that A— LC
1s asymptotically stable. Define

A—BF‘BL

MY
= —F I 0 (B.3)
N X
C—DF | D I
i i A—M?‘B—LD L
X -v
N —F I 0 (B.4)
-N M
—C -D I

Then the general Bezout equation holds

- =1 (B.5)
-N M N X

and G = NM~' = M~'N are right and left coprime factorisations of G

This is equally applicable to a discrete system G = D + C(z] — A)'B.

So to apply the above to the discrete system Py = Doy + Co(2] — A)' B, MATLAB
was used to calculate a suitable F' and L by performing a linear quadratic regulator
design

H}Xm Z 'z +u'u
for a discrete system
Tpy1 = A”l?k + Buk
where up = —Kxj. To produce the state feedback matrix F' = K let A= A, B = By
and to produce the observer gain matrix L = K7 let A= AT, B= Ccr.
This allows the discrete state-space representations of H, U and V' to be computed

as follows:

A—BF LGy LDl
H = 0 A—LCy | Bi+LDy |, (B.6)
01 —|— DlgF 01 Dll
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A— By F ‘ By
- , (B.7)
Cy— DuF | Dy
A—LC ‘ By — LD
v 2 1 21 (B.8)

B.2 Null Chains

The interpolation conditions in theorem 3.3.2 are expressed in terms of null chains as

shown below

(yh, B3 )P () =0 for ¢ j=1,...n,
k= 0, ....,O'Ug(/\o) + O'VJ(/\()) —1

where yio are calculated from elements of the extended set of left null chains of U
and $§0 are calculated from elements of the extended set of right null chains of V.
As mentioned in section 3.3.1 this theorem is given in terms of the discrete operator
A = 27! in which case the RHP zeros are given by the zeros \g in the unit disc Ay € D.
This expression for the interpolation conditions allow us to represent them as the linear

constraints in (3.14)

S it (e (D) = b,

p=1g=11[=0
where
Nz T o0
BIAE =3 TN (1)
p=14¢9=1[=0
and

a1 =[SOS (g P — 1 — s)(ad )a(s) (A

t=0 s=0 A=X\g

To construct these constraints we need to compute the discrete elements of the row
vector yio and the column vector xio which are given by the left and right extended
null chains respectively.

Several definitions and notations must be introduced. Right and left null chains are

defined in Dahleh and Diaz-Bobillo (1995) as follows
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Definition B.2.1 Given any m xn (real) rational matriz M (X) analytic at X, a right
null chain of order o at Ao is an ordered set of column vectors in R", {x1,29,...., 25},

such that x; # 0 and

Z
K
)| 7 [ =0 (B.9)
Lo
Sitmilarly, a left null chain of order o at A\g is an ordered set of column vectors in R™,

{y1,Y2, -y Yo }, such thal y; # 0 and

Y
T Y2
Tryo(M") _ =0 (B.10)
Yo
where T, (M) is a block-lower-triangular Toeplitz matrix:
My 0 0 0
M, My 0 e 0
Ty o(M) = (B.11)
: vdots
Mo’—l Mo’—? MO’—3 T MO

the M,’s are given by the Taylor expansion of M(\) at Ao, M; = Z.—ll(M)(i)()\O).
Since (M)W()\) is given by

OM)\O([ — )\OAM)_lBM + Dy forz=0

(M) (Xo) = Lo
ML — XoAnr) DAY By fori = 1,2, ...

where (A, Bar, Cawr, Dar) is the state-space representation of M, it is a straight forward
matter to calculate M; for the discrete state-space system M.

A canonical set of right null chains is defined as,

Definition B.2.2 A canonical set of right null chains of M(X) at Mg is an ordered set

of right null chains,ie, ' = (zi,...,a})) for i =1,.....,1, such that
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1. {z} 2% ... 2} are linearly independent,
2. span{zl, 22, ...z} = N[M(\o)], and

3. 0'120'22...>0'1.

and similarly for a canonical set of left null chains. An extended set of right null
chains is a canonical set of right null chains augmented with n — [ vectors in R”,
{21 2172 . 27} each with order 0, such that [z} 2 ... 7] is full rank.

From definition B.2.1 as long as z; # 0, z; € R”, then any vector in the null space
of Thy.o(M) is a candidate for the extended set of right null chains (simply transpose
M for the left null chains). Therefore find the lowest o for which the top n rows of
a basis for the null space of T\, ,(M) are all 0 and let this be o¢. At this point we
know that o;, the order of the highest order null chain in the extended set, is given by

o; = og — 1.

Let
B,, = basis of the null space of T\, »,(M) (B.12)
and z = a column of B,,. If the first j entries of x are 0, ie, 2y = 23 = ... = z; = 0,
then
0
0
Tj+1
Lj+2
TAngl(M) 0 = TAOJZ—J'(M) . =0 (Blg)
Ti+1 .
. 'ral
Tq,

with z;41 # 0, in which case  with the top jn entries, 0’s, removed is a right null
chain of M(X) at g of order o; — j.

Therefore if we take the columns of B,, (which is oyn x ¢) and truncate them
as described above, sort them in descending order or dimensions, ie, with o; first,

then we have ¢ ordered right null chains of M(X) at Ag with maximum order oy, ie,
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{z', 2%, ..., z%}. If we select the first [ null chains for which the associated z! are linearly
independent, then we fulfill the conditions in definition B.2.2 for a canonical set of right
null chains.

Now to create an extended set of right null chains the set must be extended with
n — [ linearly independent vectors such that [z] 7 ... 7] is full rank. This can be done
using an orthogonal-triangular decomposition X = QR, where X = [z} 2? ... 2!], Q
is unitary and R is an upper triangular matrix of the same dimensions of X. Since
X is n x [ where [ < n and has [ linearly independent columns then R has [ linearly
independent columns with the bottom n — [ rows all zero. This means that Ry, the

matrix formed by the top [ rows of R is full rank. Therefore if we put X = (X Q'

then X is n x n and

Q/[X Ql—l—l:n] — [R [H—l:n] — Rl:l 0 (B14)
0 [l-l—l:n
X —[X Q"' =0 Rig 0 ] (B.15)
0 [H—l:n

2

in which case X is full rank. So {z',2?,...,2™} is a suitable choice for an extended set

2 ...,z'} are the [ vectors chosen for the canonical set

of right null chains where {z', z
of right chains and {2'*', 22, .. 2"} are the last n — [ columns of Q.

So in this manner find the extended set of left nullchains of U {y', y?,...y"} where
y. € R"= and the extended set of right nullchains of V {z!, 2%, ...z"} where 27 €; R">.
Note that U or V may need to be extended by N delays as part of the DA algorithm.

Then add the vectors of the nullchain z’ as shown below to give f??g\o()\)

ig\o()‘) = Z ()‘ - )\O)ll’{_}.l (B16)
(=0
UV] ()\0)—1 l l '
= > (—Xo) T Nrai,, (B.17)
(=0 k=0 k
Uvj (/\0)—1 .
= c, (k)X* (B.18)
k=0
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ay. (/\0)—1
. J [ .
with ¢ (k) = ( )(/\O)lk:r;f+1 (B.19)

1=k k
(B.20)
and similarly for y* to give g} (A).
) an (Ao)—l )
9, (A) = di, (k)AF (B.21)
k=0
, ou;(Ro)=t [, .
with dy (k) = ) . (M) F(yis)" (B.22)
r=k

If oy, (o) or o, (Ao) = 0 then the null chain is an extension chain and :%io(A) — 2! or
7, (M) = (5)"-
Therefore the discrete elements of the row vector y} and the column vector ;r:io are
given by
#i (k) = & (k) for k=0,1,.0v,(X) — 1 (B.23)
yi, (k) = di (k) for k=0,1,.00,(X) —1 (B.24)

A MATLAB routine was implemented to compute these which takes advantage of a
range of in-built and specialist MATLAB commands.

B.3 Reconditioning

For both the interpolation conditions technique and the Q-parametrisation technique

a set of equality constraints are calculated on ¢ that will force it to take a suitable

form such that ® = H — UQV. These are given as

Azero QD — bzero

and
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respectively. These might both be expressed as a set of equality constraints
A= (B.25)

There is no one unique form in which these constraints must be expressed, however for
linear programming purposes it is better if the matrix [zzl ZN)] is expressed such that it is
both well conditioned and full row rank. Firstly this means that we attempt to ensure
that all the significant elements of matrix are within a similar order of magnitude. It
is best not to have one row expressing a constraint with coefficients in the order of
107® and another expressing a constraint with coefficients in the order of 10%. This
makes it hard for the LP solver to produce an accurate result, since the first constraint
is close to 0 in comparison to the second. Secondly we do not want to repeatedly
state the same constraint, just in different forms, since this increases the LP size and
computational time unnecessarily. Therefore it is a good idea to recondition these
equality constraints and, at the same time, remove all the inactive constraints, before
proceeding any further with the building and solving of the LP. The following is based
on a technique used in f;-optimal control software by I. J. Diaz-Bobillo and made
available from MIT.

The method suggested to do this involves the use of the singular value decompo-
sition, which can be computed using an in-built function of MATLAB, and is fairly
simple. Find the singular decomposition of A, = [A ] so that

Ay =USVT. (B.26)

where U and V are unitary matrices, i.e., UTU = UUT = I and the same for V.
Then check the singular values o; (the diagonal elements of S ), which decrease with
increasing ¢, and if these values drop below the zero tolerance toly of the computation

then choose r so that

o; > toly, Yi>r. (B.27)

Note that, if A has n rows then, if r < n, A, is not full rank and some of the equality

constraints in (B.25) are inactive.
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Therefore to both remove these constraints and to recondition them premultiply A

and b by the first r rows of the transposed matrix U7, so that
(UT)I:TA;% = (UT)I:TZN) = Ari' - [N)r- (B28)

Premultiply again by the diagonal matrix D***** made up from the inverses of the

singular values o; i = 1,..,r, i.e., Die = o1,

DscaleAri, — Dscale[}r &S AT = [N)Ts (B29)

or simply let D,ff“le = (man(Ar)ij)_l's
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Appendix C

Nonlinear Implementation

A layout for the nonlinear software implemented is shown in Figures 4.11. Implemen-
tation details for the optimisation parameters x, the constraints (h?(x),¢”(x)) for the
feasibility subproblem (4.15) and the operating points constraints 2% (x), are given in

the following appendices.

C.1 The optimisation parameters
The optimisation parameters x should be constructed, so that
x(ind(p, j, k)) = scale(u’(k)) (C.1)

where ind(p, j, k) is a function giving the indices in x of the scaled discrete control
input elements u’ (k). scale is a function which scales all your u’ (k) so that they have

the same range, i.e., we use

(w2 (k) — )

scale(u?(k)) = W 4+ 0.5 (C.2)
so that all x(7)’s range as follows
0.5 <x<1.5
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C.2 The feasibility subproblem constraints

The feasibility subproblem (4.15) for w? € W provides both equality and inequality

constraints, i.e.,

F(zP 2P yP, uP,wP 1) =0
and
¢ (x) >0 & —c(zP, y?,uP) > 0
where u”(0) = ug has been substituted to drop ug. The equality constraints h?(x)
describe the system and are, in fact, evaluated by the DAE solver DASOLV to give
P (t), xP(t) and y*(t), for a series of discrete times, for given u? and w?. These values

are used to evaluate the performance constraints in ¢”(x)
—c(zf, y?, uf) >0 (C.3)

and their gradients Vg*(x)

de(a?, y?, uP)
B S (C-4)

The user must provide not only the function C' = ¢(z, y*, u”) in terms of the variables

P, y? and u?, but also the gradient, i.e.,

aC  9C 9zP  0C dy?  9C JuP

— =t — 4+ —— C.5

Jx  OxP Ox i dyr Ox + duP 0x (C.5)
where the %,% and % are user supplied functions of z?, y? and u”, but the sensi-
tivities % and % are provided by DASOLV. The sensitivity of the control inputs to
the optimisation parameters are given by

8up uh - ula 1= lnd(pajak) (C 6)

9x(1) 0, otherwise .

where ind(p, j, k) is described in section C.1.

C.3 The operating points constraints

To ensure a common operating point for each feasibility subproblem given by w? € W,

a set of n,(nqs — 1) extra equality constraints, 2“0 (x) are added to the problem. These
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constraints enforce the following conditions.

Therefore the gradients VA" (x) must be given by the user as shown below

= —(u;?—u;), i =1nd(p—1,j,k)

Oh™ (x)
ax(1)

0, otherwise

Also the objective function’s gradient

af(x)
Ox

Vi) =

(C.8)

should be user supplied in a similar manner to (C.5) and will be problem specific.
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Appendix D

Details of Case Studies

D.1 The Linearised Reduced Reactor Model

The linearised reduced continuous state space model of the adiabatic PFR’s in 5.3 is

described by

) w
t = A z 4+ [B B
u
S (D.1)
w
y = C X —|— [Dl DQ]
u
where A is 24 x 24 and is given by
Columns 1 through 6
—9.1026e4 —3.7991e - 8 —-5.0529¢ -9 2.1778e — 10 —1.7125¢ -9 5.7078¢ -9
7.7201e — 9 —7.9508e4 7.9814e — 10 —1.4387e — 10 1.4608¢ — 9 —2.1827e -9
1.5352e - 9 —3.8298e — 11 —2.2422€3 5.8813e3 —1.6594e — 9  7.2745e — 10
7.1723e -9 1.2394e — 8 —5.8813e3 —2.2422e3 1.5780e — 9 —5.4971e — 11

—1.8497¢ — 8 —-3.2556e -8 —4.3311e—9 5.3441e - 10 —2.2832e3 3.6156e3
3.0815e -8  4.9772e -8 3.5998e — 9 —4.2909¢ — 9 —3.6156€3 —2.2832e3
1.2036e—9  5.4978e -9 4.2775e — 10 —3.7559¢ — 10 —3.7369e — 10 —-1.0114e -9
—1.7698¢ — 9 —-3.3735e—-9 —2.0997e - 10 1.2211e— 10 —7.7008e — 10 —6.8110e — 10
8.2543e — 8 1.3267e — 7 9.3404e - 9 —2.0299¢ -8 —-3.7115e—-9 —8.5131e—-9
—1.7188e — 8 —3.4521e—8 —1.1983e—-9 8.2559e¢ -9 1.1509e — 8 3.4062e — 9
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Columns 1 through 6 (continued)
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—1.7188¢ — 8 —3.4521e—8 —1.1983e—9 8.2559¢ -9 1.1509¢ — 8  3.4062e — 9
1.3044e — 7 2.1559¢ — 7  1.7251le—8 —4.5290e —8 —2.5807e —8 —3.0373e —8
1.0184e — 7 1.5979¢ — 7  1.5232¢ — 8 —3.2115e -8 —1.2238¢ — 8 —2.2515e — 8
—4.4193e — 10 6.0887e — 10 —7.7236e — 12 —6.8623e — 10 2.8266e — 10 2.1502e — 10
2.6626e — 9 4.1150e =9  3.2934e — 10  5.405le— 10  6.6206e — 10 7.1412e — 10
—8.6101e—9 —1.6994e — 8 —1.2614e—9 5.2624e — 10 —1.6288e—9 1.0418¢—9
—9.5584e — 10 —3.9241e—9 —1.2158¢ -9 —2.3648e—9 1.7386e—9  1.8536e—9
2.9470e — 9 7.1547e —9  4.3607¢— 10  2.0602¢ — 9 —-1.3110e — 9 —1.1704e — 9
—6.4833e —9 —3.1868e —8 —8.5780e—9 —1.3925e—9 —1.1412e—9 6.9431e—9
2.1283e — 8 4.1078¢ — 8  2.1216e—9 5.9768¢ — 10  1.1154e—9  —4.8177e -9
—2.5067e —8 —4.8252e — 8 2.6325e— 10  5.9789e -9 —3.7073e — 9 3.6685e -9
—-6.2931e — 9  —3.3226e — 8 —-9.6135e—9 —3.0497e—-9 1.5672e -9  8.2480e—9
9.7301e — 9 8.6760e — 8  2.8205e — 8 6.0291e — 9 4.1413¢ — 10 —2.4165e — 8
—-2.5011e—8 —5.0105e — 8 —8.8515e — 10 3.9354e —9 —2.0017e —9 5.4381e—9
—-9.5571e—9 —7.5511le — 8 —2.3410e —8 —5.3474e—9 1.9316e — 10 2.0747e— 8
Columns 7 through 12
—9.9080€9 —2.1709e — 10 —2.2234e -9 1.0006e —8  9.1346e—9  —9.5475e —9
5.4979¢e -9  2.6174e—9 1.1737e -9 —3.8059e —9 —3.5418¢ -9 3.5663e — 9
—5.7476e — 9 —2.6402e —9 —6.7542e — 10 6.6304e — 10 8.3066e — 10 —6.7256e — 10
1.4070e — 9  2.6912e—9 7.0967¢e — 10  2.1436e—9  1.4488e—-9  —1.7569e -9
—1.8509e — 8 —1.2360e —8 —3.3627e—9 —3.9717e -9 —2.2497e—-9 3.5119¢ -9
—8.0906e — 9 1.3785e—9 6.3880e — 10 1.1040e—8  9.2131e—9  —1.0138e -8
—9.3614e2 3.8932e3 5.2684e — 10  —1.6266e —9 —1.1674e—9 9.9634e — 10
—3.8932¢€3 —9.3614e2 1.7067e — 10  —2.1419e -9 —1.5780e —9 1.5780e — 9
1.0626e — 8  1.5359e¢ — 8 —2.3600e3 1.9208e3 1.8584e — 8  —2.3014e — 8
2.6246e — 8  7.8485e¢—9 —1.9208e3 —2.3600e3 9.1776e — 10 —8.6829e — 10
4.2819¢—9  2.1332e — 8 1.9162e — 8 7.9388¢ —9  —2.5408e3 5.3850e2
2.6276e — 8  2.3840e — 8 1.6231e — 8 1.4636e —8  —5.3850e2 —2.5408e3
1.2233¢ — 9  —3.2456e — 10 —1.4025e — 10 1.1224e—9  8.7724e — 10 —8.2168e — 10
—4.9670e — 9 —2.0545e—9 —2.0986e — 10 9.9807e — 10 5.5933e — 10 —4.6684e — 10



Columns 7 through 12 (continued)

—9.3891e— 1.8967e —9  —4.2106e — 10 1.0835e -9  1.4580e—9  —1.703%¢ -9
—3.5185e -9 —7.9554e -9 —1.0248¢—-9 5.7802¢ -9  4.4627e—9  —4.1649¢ -9
2.6692e — 9  8.8205e—9  7.8312¢ — 10 —-3.910le—9 —-2.8731le—9 2.5141e—9
—9.4453e — 9 2.4993e—9  —2.5798¢ -9 1.1493¢ -8  1.0532¢—8 —1.1010e—8
7.7890e— 9  8.1611le—9  2.8715e—9 —9.5588¢ — 9 —8.285le—9 7.8869¢ —9
—4.1036e — 9 4.2082¢ —9  —2.5426e—9 2.1231e—9  2.1808¢—9  —1.6619¢—9
—1.1144e — 8 —6.5483e—9 —3.7249¢ -9 1.5505e -8  1.3110e—8  —1.2810e—8
3.3179e — 8  —3.8398e — 9 9.3847¢—9 —4.1689¢ — 8 —3.6776e — 8 3.7543e — 8
—7.6117e—9 —2.8610e—9 —3.4854e—9 7.4038¢e—-9 6.2233e—9  —5.4239¢—-9
—2.9153e — 8 4.5743e — 10 —8.2317e—9 3.6543e -8  3.1952¢ -8  —3.2415e—8
Columns 13 through 18
1.5109¢ -8  —=9.1736e -9  6.4946e — 9 —7.5048e -9 2.3081e—9 —2.4081e -9
—1.0332e — 8 2.8303e—9 —2.4538¢ -9  5.0036e — 9 —6.1814e — 10 1.2678e—9
8.0117e—9  —9.0631e — 10 2.1066e — 9 —4.9329¢e — 9 —2.5887¢—-9 —9.7441e - 10
—4.3980e — 9 —4.0899e — 10 3.8460e— 9 1.6089e — 9 —4.5677e — 9  —2.3428e — 9
3.9692e — 8  —6.677le—9 —1.4318e—-8 —1.6912¢—8 1.1083e — 8 8.3161e — 9
3.0828¢ —9  —3.7527e—9 1.4113e—8 —-7.9527e —9 —2.4207¢e -8 —1.0198¢ — 8
—1.6055e — 8 3.1034e—9 1.3059e¢ — 9 7.9660e — 9 1.9212e — 9 1.5922e¢ — 9
—1.8305e —9 1.4794e—9 —5.0802¢ — 10 —3.408%9¢ — 10 9.3392¢e — 10  1.7865e — 9
—5.2938¢ — 8 1.5698e — 8 5.5716e — 8 —2.2174e — 8 —7.4815e -8 —1.3067e — 8
—4.3608e — 8 4.1207e¢—9 —4.7274e — 10  4.0309e — 8 2.7953e — 8 —1.6407e — 8
—5.4493e — 8 3.7575e — 8 1.0026e — 7 —1.0578e — 7 —1.5492¢e — 7  2.6240e — 8
—8.5293e — 8 3.6608e — 8 8.6767e — 8 —5.5622¢ — 8 —1.1432¢ — 7 4.4882¢—9
—1.0602e3 1.1749e3 3.9318¢ — 10 1.1848e—9 6.4987e — 10  —1.2815e -9
—1.1749€3 —1.0602e3 —1.0629¢ — 9 —3.4875¢ -9 —1.6560e—9 —1.5913e—9
1.7750e -9  —-1.0712e -9 —8.7677el 1.5650e2 2.1316e — 9 1.7661e — 9
8.5099¢e —9  —1.8405e—9 —1.5650e2 —8.7677el —3.9414e — 10 —5.7731e—9
—8.5964e —9 —2.3315e— 10 2.8675e—9 3.2456e — 9 —9.1484el 1.5968€2
8.1044e -9  —1.0885e¢ -8 4.0902¢ -9 —5.1303e —9  —1.5968¢2 —9.1484el
—1.9958¢ — 8 5.0556e — 9 —4.9868¢ —9 1.1275e — 8 —2.7988¢ — 9 5.9401e—9
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Columns 13 through 18 (continued)

1.2283¢ — 8  —4.5878¢—9 7.3943e—9 —1.3116e—9 2.5398¢ —9 —9.1303e — 10
1.7208e — 8  —1.1133e—8 1.1343e— 10 —6.3258¢e—9 —2.9577e¢ — 10 —6.6258¢ —9
—2.9073e — 8 3.9520e -8  —6.8963e -9 9.3263e—9  —5.1268e -9 9.4120e -9
2.0392¢ — 8  —6.4283¢—9 5.5711e—9  —4.9931e—9 1.5102¢ — 9 —6.0651e — 9
2.8117e — 8  —3.3947e — 8 5.0406e—9  —7.8233¢—9 4.9359¢ —9 —1.0437¢ — 8
Columns 19 through 24
1.1045e — 8 —1.4897¢ — 8 6.0338¢ — 9 —5.3692¢ — 9  1.5880e — 8 —4.7889¢ — 9
—4.2078¢—9  5.0090e — 9 —3.2916e — 9  3.8252¢ —9 —5.0226e — 9  3.4494e -9
1.9907e — 9 —3.0553e —9 1.8774e—10  —4.6283e—9 2.6605e — 9 —5.1544e — 9
1.1170e — 9 —9.2585¢ — 10 —1.5204e —9 —6.2190e —9 1.7492¢ — 9 —7.4312¢ — 9
—1.4725¢ —9  2.3056e — 9 6.4473e — 9 1.5019e — 8 —6.0935e —9 1.7517e — 8
4.3435¢ — 9 —4.9370e — 9  —5.1390e — 9 —3.1151e—8 5.707%9¢ — 9 —3.6837¢ — 8
—7.6585e — 10 —1.1693e¢ — 10 —7.3008¢ — 10 4.9212¢ — 9 9.4637e — 10 4.9575e — 9
—2.9785¢ — 10 —1.5026e — 9 1.1354e — 11  2.5274e—9 1.1750e — 9 2.7832¢ — 9
1.5253e — 8 —5.3805e — 8 —1.3860e —8 —9.1386e —8  5.7903e — 8 —1.1203e — 7
—5.7603¢ — 9  2.1148¢ — 8 —1.9602¢ — 10 2.5263e — 8 —1.7940e — 8  3.4851e — 8
3.9400e — 8 —1.6062¢ — 7 —1.9214e—8 —1.7082¢ -7 1.6421e—7 —2.2096e — 7
2.7742¢ — 8 —1.1538¢ — 7 —1.7011e— 8 —1.3236e—7 1.2055e — 7 —1.6768¢ — 7
—2.0984e — 10 4.6221e — 10  9.0738¢ — 10  —8.4872¢ — 10 —6.3594e — 13 —9.0616¢ — 10
—8.2423¢ — 13 1.7992¢ — 9 —7.4624e — 10 —2.6809¢ —9 —2.2221e—9 —2.7382¢—9
4.2428e — 9 —9.0810e — 9  3.2747¢ -9 4.0241e — 10 9.7747e¢ -9 4.8031e — 10
—1.1959¢ — 9  3.9843e — 9 2.7854e — 9 —7.8863¢ —9 —4.2238¢ —9 —8.3414e—9
2.0471e — 9 —6.0660e — 9  —3.6109¢ — 9  8.0502¢ — 9 6.6241e — 9 8.3202¢ — 9
1.0382¢ — 8 —1.6486e — 8  2.7724e — 9 —3.4220e —9 1.6758e — 8 —3.5070e — 9
—7.2161el 6.8310el —1.0484e — 8 1.1343e — 8 —1.0071e — 8 1.0776e — 8
—6.8310el —7.2161el 6.2197¢ — 9 —1.5788e —9 1.0647e — 8 1.8628e — 9
7.5201e — 9 —5.7417e — 9 —7.6985¢1 6.9110el 5.8257e — 9 —1.0662¢ — 8
—3.0480e — 8  3.8834e — 8 —6.9110el —7.6985¢el —3.9848¢ — 8 1.3794e — 8
9.3759¢ — 9 —4.5090e — 9  8.1337¢ — 9 —8.8186e —9  —6.7752¢l —5.7825¢ — 9
2.5343e — 8 —2.9816e — 8 6.7777e — 9 —1.3871e — 8 3.0781le — 8 —7.3262¢el
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By and By are both 24 x 2 and [B; Bs] is given by

—6.6969¢e2 —5.4179¢€2 4.4311el 1.1900
3.1984€2 4.6564 —3.9364el —1.4925
—2.8428 8.0554e — 1 2.1869 5.4068
—4.8254e— 17.9315e — 2 —2.7225 —1.8381
—5.4129 7.1837e — 1 —7.6219¢ —1 1.8988el
2.6885 —2.7035e — 1 —9.5522 —1.5505e1
8.7455e — 1 —9.5707e — 2 —-3.4516e—1 —-1.3710
3.3820e — 1 —4.055%9¢ — 1 2.2015 4.4571e -1
4.1806 8.8613e — 1 1.6915el —6.3643€l
—6.0760 1.8070 1.8976el 1.6809e1
—5.1905 3.5129 4.1284el —9.8800e1
—1.2836e€l 5.6625 5.8074el —7.0754el
—9.0597e — 1 —2.1648e — 1 1.1047 1.8060
—8.4346e —1 —1.7710e—1 —3.1062 —1.5664
—4.2669¢e2 —2.4561el 6.5573 2.1068
1.7767€2 —7.7590el —5.1685 1.1543el
—1.1969e2 —8.5803el 4.2686 —6.8490
—2.2224€2 —1.0741e3 3.7405 1.8707
8.4893e2 —6.1536e€l —8.7353 —2.7574
—1.4075e3 1.2333e2 1.4884el —5.1282¢l
—3.1449e1 —1.0347e3 —2.3112 5.7209
3.1634€2 3.7314e3 —7.4159 7.8021
—1.2241e3 3.8248el 1.0899¢1 —4.1061el
—3.1096e€2 —3.0888e3 7.6702 —9.1807
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(' is 4 x 24 and is given by
Columns 1 through 6

8.0025e4 3.1945e4 —6.1877e2 —1.5772e3 —3.3619e3 2.0570e3

—5.1658e — 1 —2.2538¢ -1 —-1.5065¢—-1 —1.8573e—1 —-7.5234e—1 2.8808e—1
—7.2095e — 3 —-1.2739e -2 —-3.0802¢ -3 —-2.1603e -3 —-2.2132¢—-3 6.7502¢e — 4
4.2700e — 3 7.9424e — 3 —1.3461e — 3 4.1355e—4 —1.4176e — 4 6.8714e — 4

Columns 7 through 12

—7.8116e2 1.3076e2 —3.0411e3 —3.8347e3 —2.8862e3 4.4349e3
—1.2860e2 —2.1614el —4.2880e —1 —6.1328e—1 —3.3563e—1 5.5412e—1
3.8000e —2 —4.5109e¢ — 2 5.0004e — 4 —1.1446e — 3 —2.3896e —4 —5.1152¢ — 4
2.5236e —2 —2.8204e -2 —-3.226le—4 —-3.5679¢—4 —2.886le—4 3.6287e—4

Columns 13 through 18

4.4671e2 1.0190e3 —8.5058e — 1 —1.4674 7.2693e — 1 4.2562e¢ — 1
—1.8943e2 —1.1715e2 9.8667e — 2 —1.7612¢e — 1 —7.1644e — 3 4.3546e — 2
7.0669¢ — 2 7.6391e — 2 2.9974e — 2 1.6913e -1 —1.4770e — 3 —1.2853e — 2
1.4610e — 2 2.4364e — 2 2.2070e — 2 —3.1052¢ — 2 —6.6635e — 2 —2.6015e — 2

Columns 19 through 24

8.093%9¢ —2 —-9.5773e—-1 2.2128e—1 9.7850e — 1 1.6490 9.2049%9¢ - 1
2.0318e —1 —-2.1551le—1 —4.6984e -2 7.6519e—2  4.2868e — 1 1.1673e -1
1.1909e — 2 2.1346e — 1 —3.0267e —3 —8.8313e—-3 —-2.2218e—1 —4.0983e—3
5.9647¢ —3 —1.3476e—2 —-1.9336e—-2 —-9.6279¢—2 1.9373e -2 —9.8857e — 2

Dy and D; are both 4 x 2 and [D; D,] is given by

4.6888¢2 4.8517e2 —1.8877el —-1.6796e — 1
—1.2078e —3 —1.0149¢ -3 —5.7959¢ —4 2.0480e — 6
—2.9297e -5 —-2.6383e—-5 —-1.3517e—5 4.9146e—8
—9.788%¢ — 6 —9.7834e —6 —4.2906e -6 1.6211e—8

(Note in the above —9.7834e — 6 means —9.7834 x 10~% and so on.)
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The variable vectors are given by

_ B -
leyout Tinl F
Yy = ,U = ,W =
Toutl Tin2 1 in
I Tout?2 |

and the model has been scaled so that:
o —1 <w<l,

e u has a range of 1, i.e., —0.6263 < Tinl < 0.3737 and 0 < Tin2 <1,

e y(2:4)isgiven by, —oo < lciout < 1, =1 < Toutl <0 and —0.04654 < Tout2 <
0.95346.

y(1) is the objective and is not scaled.

D.2 The Nonlinear Evaporator Model

The variables are described as follows:
e F1 is the feed flowrate (kg/min)
e 2 is the product flowrate (kg/min)
e 3 is the circulating flowrate (kg/min)
e F4 is the vapor flowrate (kg/min)
e |5 is the condensate flowrate (kg/min)
e X1 is the feed composition (%)
e X2 is the product composition (%)

e T1 is the feed temperature (° C)
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e T2 is the product temperature (° C)
e T3 is the vapor temperature (° C)
e 12 is the separator level (m)
e P2 is the operating pressure (kPa)
e F'100 is the steam flowrate (kg/min)
e T100 is the steam temperature (° C)
e P100 is the steam pressure (kPa)
e Q100 is the heater duty (kW)
e 200 is the cooling water flowrate (kg/min)
e 1200 is the cooling water inlet temperature (° C)
e 1201 is the cooling water outlet temperature (° C)
e (3200 is the condenser duty (kW)
The equations are given as:

e Process liquid mass balance:

pA [2 =F1-F4-F2

e Process liquid solute mass balance:

M X2 = (F1 X1) - (F2 X2)

e Process vapour mass balance:

C P2 = F4-F5

e Process liquid energy balance:
T2 = (0.5616 P2) 4 (0.3126 X2) + 48.43
T3 = (0.507 P2) 4 55.0
F4 = (Q100 - (F1 Cp (T2 - T1)))/A
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e Heat steam jacket:
T100 = (0.1538 P100) + 90.0
Q100 = 0.16 (F1 + F3) (T100 - T2)
F100 = Q100 / X,

e Condenser:
Q200 = (UA2 (T3 - T200)) / (1 + (UA2 / (2 Cp F200)))
T201 = T200 + (Q200 / (F200 Cp))
F5 = Q200 / A

where the constants are described as:

e pA, (liquid density) x (cross-sectional area of the separator),=20 kg/m

e M, amount of liquid in evaporator,=20 kg

C, constant that converts the mass of vapor into an equivalent pressure,=4

kg /kPa

Cp, heat capacity of liquor,=0.07 kW /K(kg/min)

e )\, latent heat of vaporisation of liquor,=38.5 kW/(kg/min)

As, latent heat of steam,=36.6 kW /(kg/min)

e UA2, (overall heat transfer coefficient) x (the heat transfer area),=6.84 kW /K.

The steady state levels of the four possible disturbances are F1,,=10 kg/min, X1,,=5.0
%, Tl,=40 ° C, T200,,=25 ° C, while the steady state values of F2, P100, F200 and
F'3 are chosen either for the level PID or by the optimisation.

D.3 Path Constraints on X2 and P2

The path constraints

e, < e < M,

0 0

_rangelR)py o Apy < TN, (D.2)
100% 100%
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can be enforced by creating new variables in the model and putting final time con-
straints on these into the optimisation.

For example if we have the path constraint:
U<y <y
for some variable y, then we create the new variables dy; and 4y, as follows

1
Sy = toly/f[max(y;—y,O)]Q.dt

0
¢

Sy, = toly/f[max(y—yu,O)]Q.dt
0

and put the inequality constraints

IV
o

optacc(1 — dy;)

optace(l —dy,) > 0

in the optimisation. Here optacc is the optimisation accuracy used and was selected to

be 107" in this example, while tol, > 0 should be chosen so that the violations
dy; or by, = tol,

are acceptable.

D.4 The Linearised Evaporator Model

The linearised continuous state space model of the evaporator is described by

w
t = A z + [B B
U
3 (D.S)
w
y = C X —|— [Dl DQ]
U

where

—1.5402 x 107" —1.5718 x 107!
—6.6706 x 107% —3.9477 x 1072
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B —2.8472 x 10~* 1.0000 x 10!
1= )
1.4236 x 1072 0

9 =

3.6931 x 107! 0 2.8472 x 107!
4.5605 x 102  —5.3764 x 10=* 3.5159 x 1072

C =1y, D1 = 0349 and Dy = 0343. The vectors w, u, x and y are given as follows

P100
F1 X2
w = ,u=| F200 |, = ,
X1 P2
F3

and y = x. This model has been scaled by 10% deviations in all the variables.
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