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Feedback is a central feature of life. The process of feedback governs
how we grow, respond to stress and challenge, and regulate factors

such as body temperature, blood pressure and cholesterol level.

Hoagland and Dodson (1995), The Way Life Works

A mechanical clock uses feedback,
but not for command following or disturbance rejection.

Instead, feedback provides a stable limit cycle [...]
The technology may be vintage, but the principles are timeless.

Bernstein (2011), Exquisite Coupling





Preface

The concept of (negative) feedback, albeit simple, is extremely powerful, and
has since the Industrial Revolution changed our world dramatically. Nowa-
days, control systems are everywhere. In process industry, for example, they
keep the manipulated variables close to the set-points in spite of disturbances
and changes in the plant. Moreover, feedback provides the only means to sta-
bilize unstable processes. This way, the feedback mechanism is essential for
improving product quality and energy efficiency, which yields better (sustain-
able) economy.

The theme of this thesis is on analytical design of feedback compensators
through linear control theory. The restriction to the Linear Time Invariant
(LTI) case is not severe in the sense that most processes are well modeled
locally by LTI systems. The operating range of the controller can then be
extended using gain scheduling or adaptation (Astrom and Hagglund, 2005).
Within this work, the standard single-loop feedback configuration is assumed.
Among the control objectives, stability and robustness are important consid-
erations because of the presence of uncertainty in practice. Apart from that,
the controller faces servo (set-point tracking) and regulation (disturbance re-
jection) objectives.

In the considered scenario, it is well-known that there is an inherent com-
promise between robustness and performance. In general, the servo and regu-
lation objectives are also conflicting and sometimes a balance is desirable. An
example is in cascade configurations: the inner loop should be tuned based on
tracking as it receives the set-points from the master loop. However, the inner
loop may also need acceptable load disturbance suppression capabilities. An-
other good example is found in Model Predictive Control (MPC) applications
due to frequent changes of set-points by the server. Finally, there may be a
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trade-off between the response to disturbances entering at the input and at the
output of the plant, which can be understood as a servo/regulator trade-off
too.

The goal of this thesis is to provide model-based design procedures in terms
of the Robustness/Performance and Servo/Regulator trade-offs, and give in-
sight into how the tuning depends on the process parameters. In the presented
methods, the designer is not required to choose weighting functions nor ref-
erence models as in other approaches, and the involved parameters have a
clear meaning to facilitate the tuning process. Because PID controllers are
prevalent in industry, application to PID tuning is considered most of the
times. Although numerical methods for controller derivation may yield supe-
rior performance than analytical ones, the latter category has been preferred
for several reasons. First, analytical procedures help understand the problem
at hand. Second, when applied to low-order models, well-motivated tuning
rules which are simple and easy to memorize can be obtained. These features
are very desirable from the operator’s point of view, and for teaching purposes
too.

This work was started in October 2008 and it has resulted in the papers
listed in Table 1. The thesis document is organized in the form of a brief
introduction (Chapter 1), followed by six chapters (Chapters 2–7) based on
the papers of Table 1. A final chapter (Chapter 8) summarizes the main
conclusions and highlights some points for further research.

ii



Publication Chapter
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Alcántara, S., C. Pedret and R. Vilanova (2010). On the model
matching approach to PID design: Analytical perspective
for robust Servo/Regulator tradeoff tuning. Journal of Pro-
cess Control 20(5), 596–608.

4
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Chapter 1

Introduction

The aim of this introduction is to guide the reader through the contributions
made in Chapters 2–7. The discussion that follows is based on the unity feed-
back, LTI and Single-Input-Single-Output (SISO) continuous-time system of
Figure 1.1, where P is the plant and K the feedback controller to be designed.
The output signals y, u represent, respectively, the plant output and the con-
trol action. Two exogenous inputs to the system are considered: d and r.
Here, d represents a disturbance affecting the plant input, and the term regu-
lator mode refers to the case when this is the main exogenous input. The term

PK
-

uer y

d

Figure 1.1: Conventional feedback configuration.

servo mode refers to the case when the set-point change r is the main concern.
Although the reference tracking can be improved by using a two-degree-of-
freedom (2DOF) controller (Skogestad and Postlethwaite, 2005; Astrom and
Hagglund, 2005), there will always be some unmeasured disturbance directly
affecting the plant output, which may be represented as an unmeasured signal

3



4 Introduction

r (in this case, the plant output would be the control error e = r − y). In
summary, there is a fundamental trade-off between the regulator (input dis-
turbance) and servo (output disturbance) modes. The closed-loop mapping
for the system in Figure 1.1 is given by[

y
u

]
=

[
T SP
KS S

] [
r
d

]
.
= H(P,K)

[
r
d

]
(1.1)

where S
.
= 1

1+PK and T
.
= PK

1+PK denote the sensitivity and complementary
sensitivity functions (Skogestad and Postlethwaite, 2005), respectively (note
that S+T = 1). In terms of the performance for the regulator and servo modes,
the closed-loop effect of disturbance and set-point changes on the output error
is given by

y − r = −e = −Sr + SPd (1.2)

The most basic requirement for the controller K is internal stability, which
means that all the relations in H(P,K) are stable. The set of all internally
stabilizing feedback controllers will be hereafter denoted by C. At this point, it
is also convenient to introduce a special notation for the set of stable transfer
functions, or RH∞ for short. Many times, arguments in signals and transfer
functions will be dropped for simplicity, i.e., we will write y instead of y(t) or
y(s), and P instead of P (s). We also note here that P will be normally used
to refer both to the real plant and the model of it. Depending on the context,
however, we will also use the notation P̃ for the real (uncertain) plant in order
to distinguish it from the model.

1.1 Two sources of inspiration: IMC (λ-tuning) and

H∞ control

This work has received the influence of Internal Model Control (IMC) and H∞
control. These two paradigms are briefly outlined next. A design method that
puts them together will also be reviewed.

1.1.1 Internal Model Control

Let us start factoring the plant as P = PaPm, where Pa ∈ RH∞ is all-pass
and Pm is minimum-phase (MP). As reported in (Skogestad and Postlethwaite,
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2005; Dehghani et al., 2006), the broad objective of the IMC procedure (Morari
and Zafiriou, 1989) is to specify the closed-loop relation Tyr = T = Paf , where
f is the so-called IMC filter. Assuming that P has k unstable poles, the filter
is chosen as follows:

f(s) =

∑k
i=1 ais

i + 1

(λs+ 1)n+k
(1.3)

The purpose of f is twofold: first, to ensure the properness of the controller
and the internal stability requirement (to this double aim, n must be equal
or greater than the relative degree of P , whereas the a1, . . . , ak coefficients
impose S = 0 at the k unstable poles of P ). Second, the λ parameter is
used to find a compromise between robustness and performance. Roughly
speaking, the choice T = Paf is motivated by H2 optimization1, in such a
way that when λ → 0 the closed-loop minimizes ‖S 1

s‖2. By using Parseval’s
theorem and the fact that S = Ter, as it is clear from (1.2), minimizing ‖S 1

s‖2
is equivalent to minimizing the Integrated Square Error (ISE) over time due
to a set-point change. Starting with a small value of λ, optimality can then be
sacrificed for the sake of robustness (this process is referred to as detuning).
In general, the larger the value of λ, the more robust (and slow) the resulting
system. For example, in the stable plant case —i.e., k = 0 in (1.3)— it
is readily seen that λ is closely related to the closed-loop bandwidth since
|T | = |Paf | = |f | = 1

|(λjω+1)n| .

The main advantages of IMC are its simplicity and analytical character,
while some of its drawbacks are listed below 2:

1 For a SISO (strictly proper) LTI system G(s), the H2 norm is defined as

‖G(s)‖2 .
=

(
1

2π

∫ ∞

−∞

|G(jω)|2dω
)1/2

Parseval’s theorem says that

‖G(s)‖22 = ‖g(t)‖22 .
=

∫ ∞

0

|g(t)|2dt

where g(t) = L−1(G(s)) denotes the impulse response of G. Therefore, ‖G(s)‖2 can be
interpreted in terms of the Integrated Square Error of the impulse response. For more
performance interpretations (both deterministic and stochastic), and a definition covering
the multivariable case, consult (Skogestad and Postlethwaite, 2005).

2For an exhaustive list of the IMC shortcomings, consult (Dehghani et al., 2006, Section
3). Here, only the points relevant to the thesis are considered.
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• For stable plants, the poles of P are cancelled by the zeros of the con-
troller K. This yields good results in terms of set-point tracking but re-
sults into sluggish disturbance attenuation when P has slow/integrating
poles (Chien and Fruehauf, 1990; Horn et al., 1996; Skogestad, 2003;
Shamsuzzoha and Lee, 2007).

• For unstable plants, the pole-zero pattern of (1.3) can lead to large peaks
on the sensitivity functions, which in turn means poor robustness and
large overshoots in the transient response (Campi et al., 1994).

• In general, poor servo/regulator performance compromise is obtained
(Skogestad, 2003).

1.1.2 H∞ control

Modern H∞ control theory (Skogestad and Postlethwaite, 2005) is based on
the general feedback setup depicted in Figure 1.2, composed of the generalized
plant G and the feedback controller K. Once the problem has been posed
in this form, the optimization process aims at finding a controller K which
makes the feedback system in Figure 1.2 stable, and minimizes the H∞-norm3

(sometimes referred to as min-max or supremum norm) of the closed-loop
relation from w to z. Mathematically, the synthesis problem can be expressed
as

min
K∈C

‖N‖∞ = min
K∈C

‖Fl(G,K)‖∞ (1.4)

where

N = Fl(G,K)
.
= G11 +G12K(I −G22K)−1G21 = Tzw (1.5)

An important feature of the H∞-norm is that not only captures performance
but also robustness objectives. More concretely, uncertainty (usually denoted
by Δ) can be explicitly considered in the general control configuration, see

3 For a (proper) LTI system G(s), the H∞ norm is defined as

‖G(s)‖∞ .
= max

ω
σ̄(G(jω))

where σ̄ denotes the largest singular value (induced 2-norm). In the SISO case, σ̄(G(jω)) =
|G(jω)|. Thus, the H∞ norm is simply the peak of the transfer function magnitude. By
introducing weights, the H∞ norm can be interpreted as the magnitude of some closed-loop
transfer function(s) relative to a specified upper bound (Skogestad and Postlethwaite, 2005).
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v

w

u

K

G z

Figure 1.2: Generalized control setup.

Figure 1.3. Then, if ‖N11‖∞ < 1, the Small-Gain theorem guarantees that
the closed-loop remains stable for every (normalized) perturbation such that
‖Δ‖∞ < 1 (this is referred to as Robust Stability). Thus, using the H∞ norm,
it is possible to deal with performance and robustness issues simultaneously
by means of the so-called mixed sensitivity problems. From this point of view,
the basic idea behind the H∞ design methodology is to press down the peaks
of several closed-loop transfer functions; some may be related to performance
and some others to robustness. The main difficulty with the H∞ methodology

D
z

1

z
2

w
1

w
2 �

Figure 1.3: Generalized control setup including uncertainty.

is that the designer has to select suitable frequency weights included in G
(this point will be exemplified shortly later), which may require considerable
trial and error. Furthermore, for stacked problems involving three or more
closed-loop transfer functions, the shaping becomes considerably difficult for
the designer (Skogestad and Postlethwaite, 2005).

1.1.3 Blending IMC and H∞ control

In (Dehghani et al., 2006), a systematic H∞ procedure to generalize IMC is
presented. The idea is to avoid the limitations of the IMC design method
when these are present, but retain its desirable features and simplicity when
these shortcomings are absent. To achieve this goal, the following problem is
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posed to be solved numerically:

ρ = min
K∈C

‖N‖∞

= min
K∈C

∥∥∥∥∥∥Fl

⎛
⎝
⎡
⎣−Paf ε2P P

0 ε1ε2 ε1
1 −ε2P −P

⎤
⎦ ,K

⎞
⎠
∥∥∥∥∥∥
∞

= min
K∈C

∥∥∥∥ T − Paf ε2SP
ε1KS ε1ε2S

∥∥∥∥
∞

(1.6)

where ε1 and ε2 are stable, MP and proper weighting functions. The basic
philosophy is to minimize the closeness between the input-to-output relation
and a specified reference model, which is set as Paf along the lines (but with
more flexibility) of the standard IMC. At the same time, the (1,2) term of
(1.6) limits the size of SP = Tyd, whereas the (2,1) term limits the size of
KS = Tur. The index in (1.6) automatically guarantees that

|T (jω) − Paf(jω)| � ρ ∀ω, (1.7)

|SP (jω)| � ρ/|ε2(jω)| ∀ω, (1.8)

|KS(jω)| � ρ/|ε1(jω)| ∀ω (1.9)

Now, if the design specifications are written as ‖T − Paf‖∞ � α, |SP (jω)| �
βi
p ∀ω ∈ [wi

1, w
i
2], and |KS(jω)| � βi

k ∀ω ∈ [ωi
3, ω

i
4] where α, βi

p, β
i
k, w

i
1, w

i
2, w

i
3

and wi
4 are positive real numbers representing the closed-loop objectives, ε1

and ε2 can be chosen as

|ε1(jω)| � α/βi
k ∀ω ∈ [ωi

3, ω
i
4] and |ε2(jω)| � α/βi

p ∀ω ∈ [ωi
1, ω

i
2](1.10)

Then, if ρ � α, the design specifications are certainly met4. Note that by
selecting ε1 = ε2 = 0 (corresponding to βi

k, β
i
p → ∞) and f as in (1.3), the

design reduces, essentially, to the original IMC procedure.

4Notice that if ρ > α one cannot conclude anything about achieving the performance
objectives.
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The revised design method has great versatility, blending IMC and H∞
ideas elegantly5. In exchange, the resulting procedure inevitably loses part of
the IMC simplicity (even if f, ε1, ε2 can be chosen in a systematic way) and
its analytical character. Without some caution, this may translate into design
pitfalls as noted in (Lee and Shi, 2008). Another disadvantage of the H∞
machinery is that it usually gives high-order controllers, requiring the use of
model order reduction techniques (Skogestad and Postlethwaite, 2005).

As it was pointed out in Section 1.1, some basic problems with IMC are
related to servo/regulation issues. In this thesis, the design methodology will
share the analytical character of IMC and much of its simplicity. This will be
achieved by considering a simple weighted sensitivity formulation. Apart from
considering the inherent compromise between robustness and performance,
extra design parameters will be finally introduced into the weight to deal with
the trade-off between the servo and regulatory performance.

1.2 The starting point: a model matching design
for PID tuning

Vilanova (2008) proposed a robust PID tuning that was the starting point
for this thesis. After passing through some preliminary concepts, this section
reviews the aforementioned solution and introduces the first proposed design,
which arose from a simplification of the settings in (Vilanova, 2008).

1.2.1 A word about PID controllers

Proportional, Integral and Derivative (PID) controllers have been around in
process industry for more than seven decades (O’Dwyer, 2006). In spite of
their old existence, current surveys estimate that the great majority of the
controllers are (still) of PID type. For example, in (Kano and Ogawa, 2010),
the process control state of the art in Japan is surveyed, and it is reported
that the ratio of applications of PID control, conventional advanced control,

5 The reader may be aware of other techniques with strong links to the size of H(P,K).
One is the H∞ loop-shaping method (McFarlane and Glover, 1992; Skogestad and Postleth-
waite, 2005), which has points in common with the design philosophy in (Dehghani et
al., 2006). Note, however, that the frequency cost functions ε1 and ε2 capture the design
objectives differently.



10 Introduction

and MPC is 100:10:1. The main reasons for the great success of PID con-
trollers are that they are well-performing in many applications, and that they
are easy to understand and implement. Furthermore, today’s technology pro-
vides additional features like automatic tuning or gain scheduling (Astrom and
Hagglund, 2005). Add to this a long history of proven operation, and it is not
difficult to understand the decision.

Originally, the PID algorithm was conceived as the combination of three
basic control actions, hence its name, so that the control law can be ideally
expressed as

u(t) = Kc

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

)
(1.11)

where the tuning parameters Kc, Ti, Td are known as the proportional gain,
integral and derivative times, respectively. Accordingly, the ideal PID law
is based on the present (e(t)), past (

∫ t
0 e(τ)dτ) and estimated future (ė(t))

error information. PID controllers can also be understood in terms of lead-lag
compensation. Even for such a simple strategy, it is not easy to find good
settings for Kc, Ti, Td without a systematic procedure (Pedret et al., 2002;
Ogunnaike and Mukati, 2006). In this regard, a visit to a process plant will
usually show poorly tuned PID controllers (Skogestad, 2003).

Because pure derivative action cannot be implemented, the following com-
mercial PID transfer function is usually considered:

K = Kc

(
1 +

1

sTi
+

sTd

1 + sTd/N

)
(1.12)

In the (noninteractive) industrial ISA form (1.12), N is the derivative filter
parameter. Although N is normally fixed by the manufacturer (or restricted to
a limited range), the advantages of considering N an extra tuning parameter
have been stressed in different works (Luyben, 2001; Isaakson and Graebe,
2002; Leva and Maggio, 2011). Adhering to this recommendation, N will be
considered tunable. In fact, disregarding N at the design stage is in part
responsible for the myth that derivation action does not work (it is common
to find PID controllers acting as PI controllers, namely Td = 0, to avoid
noise sensitivity problems). As reported in (Kristiansson and Lennartson,
2006; Larsson and Hagglund, 2011), improved filtering of PID controllers has
a great potential to show industry the benefits of derivative action.
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From a modern perspective, a PID controller is simply a controller of up
to second order containing an integrator:

K =
c1s

2 + c2s+ c3
s(d1s+ 1)

(1.13)

where c1, c2, c3, d1 are positive real constants. Considering the general second
order form (1.13) is quite natural (Isaakson and Graebe, 2002), and helps
to avoid the computational oddities that may exist in the PID algorithms of
common vendors. For example, N and Td may be negative when going from
(1.13) to (1.12). This problem is avoided if the practical output-filtered form
(1.14) introduced in (Morari and Zafiriou, 1989) is used for implementation:

K = Kc

(
1 +

1

sTi
+ sTd

)
1

TF s+ 1
(1.14)

where TF is a fourth tuning parameter. A general reformulation of the PID
controller along the lines of (1.13), but including up to 5 tuning parameters,
can be found in (Kristiansson and Lennartson, 2006).

Although it is surprising that such a simple structure (1.13) works so well,
the simplicity entails limitations too, implying that in some applications better
performance can be obtained using more sophisticated strategies. For example,
for processes with long time delays it should be better to combine the PID con-
troller with a dead-time compensator like the Smith-Predictor. Another situa-
tion where the the PID controller (alone) is not recommended is for oscillatory
processes (Astrom and Hagglund, 2005). Even in such cases, a PID controller
properly augmented with an additional low-pass filter may yield acceptable re-
sults in practice (Kristiansson and Lennartson, 2006). Consequently, although
simple candidates to replace the PID compensator have appeared in the lit-
erature (Pannocchia et al., 2005; Ogunnaike and Mukati, 2006), it seems that
PID control has a future yet. Definitely, it still constitutes an active research
field, including topics such as PID (automatic) tuning methodologies (Leva
and Maggio, 2011), adaptive and robust PID control (El Rifai, 2009), stabi-
lizing PID parameters (Hohenbichler, 2009), Fractional PID control (Padula
and Visioli, 2011) or event-based PID control (Sánchez et al., 2011).
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1.2.2 The Model Matching Problem within H∞ control

The (SISO) Model Matching Problem (MMP) (Doyle et al., 1992) consists of:

min
Q∈RH∞

‖T1 − T2Q‖∞ (1.15)

where T1, T2 ∈ RH∞. Let {z1, z2, . . . , zν} be the distinct Right Half-Plane
(RHP) zeros of T2. Then,

Lemma 1.2.1. The optimal matching error Eo = T1 − T2Q in (1.15) is an
all-pass function (Francis, 1987; Doyle et al., 1992; Vilanova, 2008), more
precisely:

Eo(s) =

{
ρ q(−s)

q(s) if ν ≥ 1

0 if ν = 0
(1.16)

where q(s) = 1 + q1s + · · · + qν−1s
ν−1 is a strictly hurwitz polynomial. Fur-

thermore, the constants ρ and {qi}ν−1
i=1 are real and are uniquely determined by

the interpolation constraints

E(zi) = T1(zi) i = 1 . . . ν (1.17)

Remark 1.2.1. For ν = 1 or ν = 2, Lemma 1.2.1 can be directly used to
obtain explicit formulae for the solution of (1.15) (Zames and Francis, 1983).
However, because the interpolation conditions (1.17) constitute a nonlinear
system, for ν ≥ 3 it should be better to find Eo by using a more systematic
procedure like the Nevanlinna-Pick’s algorithm (Doyle et al., 1992).

The importance of the MMP relies on the fact that any generalized control
problem can be expressed as a MMP6. This is achieved by means of the cele-
brated Youla-Kucera parameterization (Youla et al., 1976; Vidyasagar, 1985;
Skogestad and Postlethwaite, 2005), which states that any K ∈ C can be
parameterized as

K =
Y +MQ

X −NQ
(1.18)

being Q ∈ RH∞ a free parameter, and X,Y,M,N ∈ RH∞ a coprime factor-
ization of P , implying that P = NM−1 and XM+Y N = 1 (Vidyasagar, 1985;

6In general, in the multivariable case, the MMP is expressed as min
Q∈RH∞

‖T1 − T2QT3‖∞,

where Q,T1, T2, T3 ∈ RH∞ are matrix transfer functions.
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Skogestad and Postlethwaite, 2005; Kwok and Davison, 2007). The above re-
sult allows to express any closed-loop transfer function affinely in Q in the
form of a MMP. For example, a basic problem in H∞ (of main importance
in this thesis) is the Weighted Sensitivity Problem (WSP) (Skogestad and
Postlethwaite, 2005, Section 2.8.2):

min
K∈C

‖WS‖∞ (1.19)

where W is a performance weight in charge of shaping S conveniently. With
respect to Figure 1.2, the WSP corresponds to the generalized plant

G =

[
W −WP
1 −P

]
(1.20)

Using (1.18), the sensitivity function can be parameterized as S = M(X −
NQ), and the WSP (1.19) can then be cast into the MMP form by selecting
T1 = WMX,T2 = WMN , where T1, T2 ∈ RH∞ as long as W ∈ RH∞.

1.2.3 Vilanova’s (2008) design for robust PID tuning revisited

Let us consider the following problem

min
K∈C

‖W (Td − T )‖∞ (1.21)

where Td represents the desired complementary sensitivity (the input-to-output
response: Tyr) and W is a frequency weight (see Figure 1.4). The idea in

PK

Td W

Figure 1.4: Diagram for problem (1.21). Here, e denotes the error between
the desired and actual outputs.

(Vilanova, 2008) is to use simple settings in order to obtain a PID controller:



14 Introduction

• Td = 1
TM s+1 , where the TM parameter specifies the desired speed of

response.

• W = zs+1
s . The integrator forces integral action by requiring perfect

matching between T and Td at zero frequency. The z parameter is used
to adjust the robustness margins: the larger the value of z, the more
robust the resulting system.

In addition, many processes have rather simple dynamics and are often mod-
eled using low-order models of the form

P = Kg
e−sh

τs+ 1
(1.22)

called First Order Plus Time Delay or just FOPTD systems, where Kg, h, τ
are, respectively, the gain, the (apparent) delay, and the time constant of the
process. These models can be obtained easily through open-loop and closed-
loop step response tests (Shamsuzzohaa and Skogestad, 2010). Alternatively,
one can start from an accurate description of the process and apply then
some model reduction technique. In this regard, Skogestad’s (2003) Half-Rule
provides a simple analytic approach. Supported by these considerations, an
stable FOPTD model is used in (Vilanova, 2008). However, for derivation
purposes, the time delay in (1.22) is approximated using a first order Taylor
expansion:

• P = Kg
−sh+1
τs+1

Note that the problem at hand could now be posed in terms of the general
control setup (see Figure 1.5) to be solved numerically for particular values
of the tuning parameters. For such a simple problem, however, the solution
can be obtained analytically. First, note that for stable plants we can take
X = 1,M = 1, N = P, Y = 0 in (1.18), and express all stabilizing controllers
as

K =
Q

1− PQ
(1.23)

Then, in terms of Q, T = PQ, and (1.21) is equivalent to

min
Q∈RH∞

‖W (Td − PQ)‖∞ (1.24)
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Td W

P

K

Figure 1.5: Problem (1.21) rearranged in the general control form.

which is a MMP (1.15) with T1 = WTd, T2 = WP . The solution to (1.24)
follows immediately from Lemma 1.2.1 (with ν = 1) and, after straightforward
algebra, the resulting feedback compensator obtained using (1.23) turns out
to be a PID controller:

K =
1

Kg(ρ+ TM )

(1 + τs)(1 + χs)

s(1 + zTM+hχ
ρ+TM

s)
(1.25)

where

ρ =
h+ z

h+ TM
h χ = h+ z − ρ (1.26)

The tuning parameters Tm, z can be fixed for auto-tuning purposes:

TM = 2h z =
√
2h (1.27)

With these values for z, TM , which are chosen according to robustness consid-
erations, the tuning rule (in ISA-PID form) can be expressed as

Kp =
Ti

Kgh2.65

Ti = τ + 0.03h (1.28)

Td

N
= 1.72h

N + 1 =
τ

Ti
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Vilanova’s (2008) tuning rule has been found to work well in practice, exhibit-
ing a robust behaviour in the face of process abnormalities including model
mismatch, valve stiction and sensor noise (Amiri and Shah, 2009).

1.3 Outline/summary of the thesis

Chapter 2: Simple model matching approach to robust PID
tuning

The following observation can be made regarding the design in (Vilanova,
2008) revised in Section 1.2.3:

• The tuning parameters z and TM have a very similar effect on the final
controller and are somehow redundant.

This means that the settings used for analytical derivation can be simplified
to make the final solution dependent on a single tuning parameter. The cor-
responding simplified design can be found in Chapter 2. In particular, the
settings below are suggested:

• Td = 1. For this reference model, the problem is a sensitivity problem,
see Figure 1.4. Now, e is the conventional error between the reference
and the actual output, and problem (1.24) is a WSP:

min
Q∈RH∞

‖W (Td − PQ)‖∞ = min
Q∈RH∞

‖W (1− PQ)‖∞ = min
Q∈RH∞

‖WS‖∞
(1.29)

• W = 1
s . This weight is used to force integral action (S(0) = 0). Note

that the resulting performance objective is

min

∥∥∥∥S 1

s

∥∥∥∥
∞

= minmax
ω

∣∣∣∣S(jω) 1

jω

∣∣∣∣ (1.30)

Although (1.30) has often been used as a general performance criterion
for control design, it is particularly suitable for the servo mode. This
can be understood from (1.2). The relation between the reference r and
the error e = r − y is given by Ter = S = 1

1+PK . At low frequencies

(where feedback is effective), |L| = |PK| 	 1, and S ≈ P−1K−1(jω) ≈
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P−1(jω) 1
ki
jω, where ki represents the integral gain of the controller (in

case it is of PID type, ki = Kc
Ti
). Therefore, when ω → 0 in (1.30),

S(jω) 1
jω → P−1(jω) 1

ki
.

• P = Kg
−h

2
s+1

(τs+1)(h
2
s+1)

, which results from using a first order Padé approx-

imation for the time delay in the FOPTD model (1.22).

For this setup, the optimal Q parameter is not proper, which leads to an
improver K. To circumvent this problem, Q is augmented using the filter
f = 1

(λs+1)2
, where λ is the only tuning parameter. The resulting design is

very similar to IMC, and λ is used in the same way to detune the optimal
controller. If one assumes multiplicative uncertainty Δ, the Small-Gain the-
orem ensures the closed-loop stability provided that |T | = |PQ| < 1/|Δ| ∀ω.
Therefore, increasing λ reduces the closed-loop bandwidth and contributes to
high-frequency robustness against model uncertainty. Another reason to keep
|T | small at high frequencies is that sensor noise is transferred to the output
by T (Skogestad and Postlethwaite, 2005). In terms of λ, the final feedback
controller is given by

K =
1

Kg

(
2λ+ h

2

) (h2s+ 1)(τs + 1)

s

(
λ2

2λ+h
2

s+ 1

) (1.31)

Note that the gain of the controller K (i.e., |K(jω)|) gets reduced by increasing
λ. Because Tur = KS, large values of λ will yield moderate levels of control
activity. Taking all these considerations into account, λ is finally fixed to get
an automatic rule that directly gives the controller parameters in terms of the
process model information. The choice λ = h , which results into the ISA-PID
tuning rule

Kp =
0.4Ti

Kgh

Ti = τ + 0.1h (1.32)

Td

N
= 0.4h

N + 1 = 1.25
τ

Ti
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yields very similar results to (1.28). Both (1.28) and (1.32) are aimed at smooth
set-point response, yielding MS ≈ 1.42, which is a good robustness indicator7.
By smooth control we mean the slowest possible control with acceptable dis-
turbance rejection (Skogestad, 2006). Of course, the definition may depend on
the application at hand, and the term smooth is sometimes used in this thesis
merely as a synonym of robust.

Chapter 3: Improving the load disturbance response (γ-tuning)

A common drawback of Vilanova’s (2008) and the design in Chapter 2 is
that poor disturbance attenuation is obtained for lag-dominant plants8. This
phenomenon occurs because of pole-zero cancellation between the plant P and
the controller K. Effectively, both (1.25) and (1.31) have a zero at the plant
pole at s = −1/τ . In order to prevent this to happen, a modification of
(Vilanova, 2008) is presented in (Vilanova and Arrieta, 2007) which consists
of specifying a different target closed-loop , taken now as:

Td =
(TM − γ)s+ 1

1 + TMs
(1.34)

Equivalently, the new Td corresponds to the desired sensitivity function

Sd = 1− Td =
γs

TMs+ 1
(1.35)

With this change, the solution to (1.21) is

K =
1

Kg(ρ+ γ)

(1 + τs)(1 + χs)

s(1 + zTM+hχ
ρ+γ s)

(1.36)

7 Mid-frequency sensitivity to modelling errors can be captured by the peak of the sen-
sitivity function:

MS
.
= ‖S(jω)‖∞ .

= max
ω

∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ (1.33)

MS indicates the inverse of the shortest distance from the Nyquist plot to the critical point
−1 + 0j (Skogestad and Postlethwaite, 2005).

8With respect to the FOPTD model (1.22), a process is said to be lag-dominant if τ/h
is larger than about 10 (integrating plants fit into this category as an extreme example).
Sometimes, however, by lag-dominant we just mean τ/h > 1, including plants with relatively
balanced lag/delay ratio.



Outline/summary of the thesis 19

where

ρ =
h+ z

h+ TM
(h+ TM − γ) χ = h+ z − ρ+ TM − γ (1.37)

Note that when γ = TM , the design coincides with that revised in Section
1.2.3. In particular, (1.36) and (1.37) simplify to (1.25) and (1.26). By fixing
z, Tm as in (1.27), γ turns out to be the only tuning parameter now. The role
of γ is to balance the performance between the servo and regulator modes:

• Setting TM =
√
2 corresponds to the servo mode (good set-point track-

ing).

• Setting TM >
√
2 allows improvement of the regulatory performance

(better disturbance attenuation).

The above points are fully addressed in Chapter 3, where the servo/regulator
interval for γ is found to be:

√
2h ≤ γ ≤ 12.36h(τ −√

2h)

h+ τ
(1.38)

and it is assumed that τ ≥ 1.7262h so that (1.38) makes sense.

Chapter 4: λ-tuning versus γ-tuning

The design in Chapter 2 depends on a single tuning parameter: λ, used to
adjust the robustness/performance trade-off. Regarding the design discussed
in Chapter 3 (Alcántara et al., 2010b), the only tuning parameter is γ, and
its role is to adjust the servo/regulator trade-off. In Chapter 4, these two
strategies are compared from a balanced servo/regulator point of view: first,
an interval for λ is defined based on the smooth and tight control concepts
(Skogestad, 2006; Ali and Majhi, 2009):

• Smooth control, as already commented, is the slowest possible control
with acceptable disturbance rejection. In (Alcántara et al., 2010a), λ = h
for smooth control, yielding MS ≈ 1.42.

• Tight control is the fastest possible control with acceptable robustness.
In (Alcántara et al., 2010a), λ = 0.56h for tight control, resulting in
MS ≈ 1.75.
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Then, the trade-off value λ = 0.7h is picked up to be used for balanced
servo/regulator operation. The conclusion of Chapter 4 is that one can use
the tuning λ = 0.7h for plants such that h/τ ≥ 0.1. In these cases, the γ-
tuning method of Chapter 3 provides no real advantage. However, for more
lag-dominant plants, the γ-tuning technique allows better suppression of load
disturbances with the same degree of robustness.

Chapter 5: Combined λγ approach: a first H∞ design

A general conclusion of Chapter 4 (Alcántara et al., 2010d) is that it would be
convenient to consider at least two design parameters: one to adjust the ro-
bustness/performance trade-off and the other one to balance the performance
between the servo and regulator modes. With this idea in mind, in Chapter
5, the λ-tuning design of Chapter 2 (Alcántara et al., 2010c) is modified to
introduce an extra design parameter to deal with servo/regulation issues. The
WSP (1.19) is considered again, but now:

• P = Kg
−sh+1
τs+1 , which results from a first order Taylor approximation of

the time delay in the FOPTD model (1.22).

• The weight W = 1
s is replaced with

W =
(λs+ 1)2

s(αs+ 1)
(1.39)

where α ∈ [λ, τ ]. The resulting feedback compensator is

K =
1

Kg(2λ+ h− γ)

(τs+ 1)(γs + 1)

s
((

λ2+hγ
2λ+h−γ

)
s+ 1

) (1.40)

where

γ =
hα+ 2λα− λ2

α+ h
(1.41)

The rationale behind W in (1.39) is as follows:

• When α = λ, W = λ+1
s . For λ ≈ 0, the performance objective is

min
∥∥1
sS
∥∥
∞ which is suitable for the servo mode. By augmenting λ, the

WSP minimizes |S| in a wider frequency range. This makes the closed-
loop slower and helps to reduce MS (the peak on |S|). Thus, the role of
λ is to detune the controller if necessary.
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• When α = τ , W = (λ+1)2

s(τs+1) . Now, provided that λ < τ , W penalizes

less the magnitude of S at middle-high frequencies because
∣∣∣λjω+1
τjω+1

∣∣∣ < 1.

Thus, the resulting S is bound to have a larger peak (MS value). By a
waterbed effect argument (Skogestad and Postlethwaite, 2005), |S| will
in turn decrease at low frequencies (around the slow pole at s = −1/τ),
favouring the disturbance rejection task.

In summary, we can use λ for detuning the controller and α for servo/regulator
purposes. If α = λ, the design corresponds to the servo mode, whereas α = τ
represents the regulator mode. Intermediate values of α result into balanced
performance between the set-point tracking and disturbance suppression tasks.
In terms of γ (1.41), the extreme values are

• γ = λ (servo). For this value of γ, the controller (1.40) is of PI type

K =
1

Kg(λ+ h)

τs+ 1

s
(1.42)

and it is based on pole-zero cancellation (the pole at s = −1/τ in P is
cancelled by the zero of K).

• γ = γld = −λ2−2λτ−hτ
h+τ (regulation). For this value of γ, a PI controller

is also obtained:

K =
1

Kg(2λ+ h− γ)

γs+ 1

s
(1.43)

For the regulator mode, the pole at s = −1/τ of P is no longer cancelled
by K. Instead, the slow pole is cancelled by S, i.e. S(−1/τ) = 0. This
is easy to understand, recall from (1.2) that Tyd = SP . Consequently,
S must cancel the slow pole to avoid sluggishness in the disturbance
response.

Figure 1.6 illustrates the design for the system e−s

20s+1 . The experiment con-
siders a unity set-point change at t = 0 and a load disturbance of magnitude
5 entering at t = 25. For the case λ = 1, we have that MS ≈ 1.6 (γ = τ)
and MS ≈ 2.5314 (γ = γld). Therefore, the improvement of the regulatory
performance has been achieved at the cost of a large peak on |S|. A large
value of MS normally correlates with a large value of MT (the peak on |T |);
for the case at hand, MT = 1 (λ = τ) and MT ≈ 2.53 (γ = γld). The latter
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Figure 1.6: Sensitivity function (top) and set-point/load disturbance responses
(bottom) for different values of λ and γ.

value is consistent with the large overshoot exhibited in Figure 1.6 (bottom)
(Skogestad and Postlethwaite, 2005). In order to yield less aggressive solu-
tions, λ can be augmented. In Figure 1.6 (right column), the choice λ = 2 is
made. The same kind of conclusions follow with respect to the extreme values
of γ, but now the time responses are smoother as expected. The correspond-
ing peaks on the sensitivity functions are MS ≈ 1.35,MT = 1 (γ = τ) and
MS ≈ 1.84,MT ≈ 1.42 (γ = γld).

Chapter 6: An improved H∞ design

There are two important problems with the design in Chapter 5 (Alcántara et
al., 2010d) imputable to the weight (1.39):
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1. We saw that the PI controllers (1.42) and (1.43) were obtained for the
extreme values of γ. However, the general expression for K is given in
(1.40), which is a (filtered) PID compensator. Hence, the order of K
increases (unnecessarily) for intermediate values of γ.

2. The method is not applicable to unstable plants; the resulting closed-
loop system would be internally unstable.

An improved selection of W to undergo these problems is presented in Chapter
6. According to (Alcántara et al., 2011c), the weight W in the WSP (1.19)
can be chosen as follows:

W (s) =
(λs+ 1)(γ1s+ 1) · · · (γks+ 1)

s(τ1s+ 1) · · · (τks+ 1)
(1.44)

where τ1, . . . , τk are the time constants of the unstable or slow poles of P ,
λ > 0, and

γi ∈ [λ, |τi|] (1.45)

As before, λ is used to adjust the robustness/performance trade-off. The γi
parameters permit to balance the servo/regulator performance (Alcántara et
al., 2011c). For the sake of clarity, set λ ≈ 0 and τi > 0 (stable plant case).
By similar arguments as those used for Chapter 5 we have that:

• If γi = τi, i = 1, . . . , k, the corresponding weight is W = 1
s , and the WSP

is equivalent to the performance objective min
∥∥1
sS
∥∥
∞, which is suitable

for the servo mode.

• If γi = λ, i = 1, . . . , k, the resulting weight W reduces |S| at low fre-
quencies to improve the disturbance rejection properties. Note that,
heuristically, the choice γi = λ can be understood (for small values of λ
and neglecting the effect of the zeros of P ) in terms of the performance
objective min

∥∥1
sTyd

∥∥
∞ = min

∥∥1
sSP

∥∥
∞. This performance objective is

suitable for regulatory purposes (Kristiansson and Lennartson, 2006).
In particular, when ω → 0, one has that 1

jωS(jω)P (jω) → 1
ki
, which

is coherent with the well-known fact that the integral gain of the con-
troller gives a measure of the system’s ability to reject low-frequency
load disturbances9.

9For example, for a PID controller Astrom and Hagglund (2005) show that a unit step
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A good point of the weight (1.44) is that it is also valid for unstable plants
(τi < 0 for some i). As it is shown in (Alcántara et al., 2011c; Alcántara et
al., 2011b), the use of the possibly unstable weight (1.44) avoids any notion of
coprime factorization. Let us assume that P is purely rational and contains
at least one RHP zero, in such a way that:

P =
np

dp
=

n+
p n

−
p

d+p d
−
p

(1.46)

where n+
p , d

+
p contain the unstable (or slow in the case of d+p ) zeros of np, dp

and n−
p , d

−
p contain the stable zeros of np, dp. The weight (1.44) can be factored

similarly

W =
nw

dw
=

nw

d+p d′w
(1.47)

Then, the optimal weighted sensitivity for problem (1.19) using the weight
(1.47) is given by

N o = ρ
q(−s)

q(s)
(1.48)

where ρ and q = 1+ q1s+ · · ·+ qν−1s
ν−1 (a hurwitz polynomial) are uniquely

determined by the interpolation constraints:

W (zi) = N o(zi) i = 1 . . . ν, (1.49)

being z1 . . . zν (ν ≥ 1) the RHP zeros of P . The corresponding controller is:

K =
dpχ

ρn−
p q(−s)dw

=
d−p χ

ρn−
p q(−s)d′w

(1.50)

where χ is a polynomial satisfying

q(s)nw − ρq(−s)dw = n+
p χ (1.51)

Based on simple models for the plant, the described procedure can be applied
to PID tuning. In particular, Table 1.1 collects the tuning rules associated
with first and second order models. In the second order model case, it is

disturbance applied at the plant input yields an integral of the error (IE) equal to −1/ki,
i.e.:

IE =

∫ ∞

0

e(τ )dτ = −Ti

K
=

−1

ki

Indeed, the result holds for any controller including integral action. For a robust design
exhibiting a non-oscillatory response, one has that |IE| = 1/ki ≈ IAE =

∫∞

0
|e(τ )|dτ .
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Table 1.1: PI/D tuning rules based on H∞ Weighted Sensitivity.

Model Kc Ti Td

Kg
e−sh

τs+1
1
Kg

Ti
λ+γ+h−Ti

τ(h+λ+γ)−λγ
τ+h - γ ∈ [λ, |τ |]

Kg
e−sh

(τ1s+1)(τ2s+1)
1
Kg

Ti
λ+γ+h−Ti

τ1(h+λ+γ)−λγ
τ1+h Td = τ2 γ ∈ [λ, |τ1|]

assumed that |τ1| > τ2 > h > 0, and that a series form PID controller is used
for implementation:

K = Kc

(
1 +

1

Tis

)
(Tds+ 1) (1.52)

The use of the series form is convenient here because it allows a simplification
of the tuning expressions (Skogestad, 2003); in particular, we get the simple
relationship Td = τ2 for the derivative time. For implementation purposes,
the derivative filter present in the real PID forms should also be designed. In
order to convert the ideal PID law into the real one in the best possible way,
it is advisable to follow the indications given in (Leva and Maggio, 2011).

Chapter 7: The H2 counterpart

The frequency domain design in Chapter 6 uses the H∞ norm. However, the
same kind of WSP can be posed in terms of the H2 norm to make the resulting
design closer to conventional IMC. This is the purpose of Chapter 7, where
the H∞ WSP is replaced with

min
K∈C

‖WS‖2 (1.53)

Now, the servo/regulator modes are understood in terms of input/output dis-
turbances. With respect to Chapter 6, there are several other differences:
first, the weight depends on the input type (e.g., steps, ramps, etc); sec-
ond, P may contain a time delay (in this case, a dead time compensator is
directly obtained). In addition, the extension to plants with complex con-
jugate poles is addressed; for oscillating plants, it is specially important to
distinguish between the servo and regulatory tasks (Kristiansson and Lennart-
son, 1998; Alcántara et al., 2011a).
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For illustration purposes, let us assume that the inputs to the system are
step signals and denote by s = −1/τ1, . . . ,−1/τk the unstable/slow poles of
P (we restrict here to non-repeated real poles). Then, the weight in (1.53) is
taken as

W (s) =
(λs+ 1)n(γ1s+ 1) · · · (γks+ 1)

s(τ1s+ 1) · · · (τks+ 1)
(1.54)

The only difference with (1.44) is the term (λs + 1)n, where n is used to
ensure the properness of the final controller. In the case at hand, n must
be at least equal to the relative degree of P (Alcántara et al., 2011a). The
other parameters: λ > 0 and γ1, . . . , γk ∈ [λ, |τ |], have the same meaning as in
Chapter 6. Because the WSP problem is now posed in terms of the H2 norm,
the performance interpretation changes accordingly; for negligible values of λ:

• If γi = |τ |, |W | ≈ ∣∣ 1
s

∣∣. In this case, the WSP (1.53) minimizes the ISE
with respect to a step disturbance entering at the plant output (which
is equivalent to minimizing the ISE for a set-point change).

• If γi = λ, W ≈ 1
s(τ1s+1)···(τk+1) , and the WSP (1.53) minimizes now the

ISE with respect to a step disturbance passing through the conflictive
poles of P (input/load disturbances).

Set P = PaPm, where Pa ∈ RH∞ is all-pass and Pm is MP. By using the
IMC parameterization (1.23) for K, a quasi-optimal proper solution to (1.53)
is given by:

Q = (PmW )−1
{
P−1
a W

}
	

(1.55)

where the operator {}	 denotes that after a partial fraction expansion (PFE)
of the operand, the non-strictly proper terms and all the terms involving the
poles of P−1

a are omitted10. Equation (1.55) can be expressed as

Q = P−1
m f (1.56)

with f = W−1
{
P−1
a W

}
	
. Taking W = nw

dw
, we can alternatively write f as

f =
χ

nw
=

∑δ(dw)−1
i=0 ais

i

(λs+ 1)n
∏k

i=1(γis+ 1)
(1.57)

10Note that the operator {}� is slightly different from the operator {}∗ defined by Morari
and Zafiriou (1989, Theorem 5.2-1).
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where δ(dw) denotes the degree of dw and a0, . . . , ak are determined from the
following system of linear equations

T |s=πi = PQ|s=πi = Paf |s=πi = 1 i = 1 . . . δ(dw) (1.58)

being πi, i = 1, . . . , δ(dw) the poles of W . As long as the ai coefficients satisfy
(1.58), the filter time constants λ and γi can be selected freely without any
concern for nominal stability or asymptotic tracking. By using Lagrange-Type
interpolation theory (Morari and Zafiriou, 1989), it is possible to develop an
expression for (1.57) explicitly:

f =
1

nw

δ(dw)∑
j=1

(P−1
a nw)|s=πj

δ(dw)∏
i=1
i�=j

s− πi
πj − πi

(1.59)

The filter (1.59), or (1.57), represents a generalization of the conventional filter
(1.3) used within IMC. In the case at hand, the γi parameters are used to bal-
ance the regulatory performance between step-like input/output disturbances.
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Chapter 2

Simple model matching
approach to robust PID
tuning

Based on (Alcántara et al., 2010c)

This chapter addresses PID tuning for robust set-point response from a
min-max model matching formulation. Within the considered context,
several setups result in a PID controller. This work investigates the
simplest one, leading to a PID controller solely dependent on a single
design parameter. Attending to common performance/robustness indi-
cators, the free parameter is finally fixed to provide an automatic tuning
in terms of the model information. Simulation examples are given to
evaluate the proposed settings.

2.1 Introduction

In spite of the modern control theory state of the art, PID controllers con-
tinue to be the most common option in the realm of control applications,
with an absolute dominance within the process control industry (Astrom
and Hagglund, 2004; Astrom and Hagglund, 2005; Shamsuzzohaa and Skoges-
tad, 2010). This is explained due to their simplicity both in implementation
and in understanding. As a matter of fact, in most of the situations a PID
can perform reasonably well and is indeed all that is required.

29
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Recent advances in optimal methods have boosted the control solutions
based on optimization procedures. In particular, a plethora of PID designs
based on direct optimization have been reported in the literature during the
last years, see, for example (Astrom et al., 1998; Panagopoulos et al., 2002; Ge
et al., 2002; Toscano, 2005). However, many of them, although effective, rely
on somewhat complex numerical optimization procedures (several local min-
ima may exist) and/or fail to provide tuning rules (Vilanova, 2008; Sanch́ıs et
al., 2010). A different approach is to derive PID solutions based on a simpli-
fied (first or second order) model of the plant. Tuning rules obtained in this
way through numerical optimization can be consulted in (Zhuang and Ather-
ton, 1993; Visioli, 2001; Astrom and Hagglund, 2004; Tavakoli et al., 2007),
whereas an analytical approach is followed in other works such as (Rivera et
al., 1986; Skogestad, 2003; Zhang et al., 2006c; Vilanova, 2008).

Following the latter perspective, this chapter addresses the analytical deriva-
tion, within a min-max model matching context, of PID tuning rules for
smooth set-point response. To achieve results as close as possible to the
industrial situation, the widely used ISA PID structure (Astrom and Hag-
glund, 2005) is chosen for the control law. The analytical min-max model
matching approach to PID design was already conducted in (Vilanova, 2008),
but the derived solution involved two tuning parameters. In this work, sim-
pler settings depending on a single tuning parameter (and yielding the same
degree of robustness/performance) are proposed. The tuning parameter is
finally fixed to provide an automatic tuning solely dependent on the model
information. For design purposes, a FOPTD model is employed; although a
FOPTD model does not capture all the features of a high order system (it
cannot represent well a system with oscillating step response), it has been
shown to represent reasonably well an important category of industrial pro-
cesses (Astrom and Hagglund, 2005).

The chapter is organized as follows: Section 2.2 is devoted to the problem
statement. In Section 2.3, the general min-max model matching problem
(MMP) is solved for a particular setup leading to a PID compensator with
a single tuning parameter. Section 2.4 addresses the stability of the derived
controller. In Section 2.5, the tuning parameter is conveniently fixed, thus
providing automatic tuning. Simulation examples to show the applicability
of the proposed method are provided in Section 2.6 while concluding remarks
are collected in Section 2.7.
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2.2 Problem statement

In this section, the control framework and the MMP on which the controller
derivation is based are introduced. The latter obeys to a min-max optimization
problem that captures the performance objective.

2.2.1 The control framework

The customary unity feedback controller is depicted in Figure 1.1. Closed-loop
performance and robustness are typically evaluated in terms of the sensitiv-
ity S and the complementary sensitivity T transfer functions (Skogestad and
Postlethwaite, 2005), respectively:

S
.
=

1

1 + L
(2.1)

T
.
= 1− S =

L

1 + L
(2.2)

where L
.
= PK(s) is the loop transfer function. As it has already been stated,

the model of the plant is given by:

P = Kg
e−sh

τs+ 1
(2.3)

For design purposes, it is convenient to approximate the delay term in (2.3)
so as to achieve a purely rational process model. By using the first order Padé
expansion e−sh ≈ −(h/2)s+1

(h/2)s+1 , (2.3) can be approximated as follows

P ≈ Kg
−h

2s+ 1

(τs+ 1)(h2 s+ 1)
(2.4)

Regarding the control law, the following ISA PID form (Astrom and Hagglund,
2005) is chosen:

u = Kp

(
1 +

1

sTi
+

sTd

1 + sTd/N

)
e (2.5)

where e(s) = r(s) − y(s), being r(s), y(s) and u(s) the Laplace transforms
of the reference, process output and control signal, respectively. Kp is the
PID gain, whereas Ti and Td are its integral and derivative time constants.
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Finally, N is the ratio between Td and the time constant of an additional pole
introduced to assure the properness of the controller. This way, the following
transfer function for the controller K is assumed:

K = Kp
1 + s(Ti +

Td
N ) + s2Ti

Td
N (N + 1)

sTi(1 + sTd
N )

(2.6)

2.2.2 The Model Matching Problem

The controller design will be based on a desired input-output response. Math-
ematically, the following min-max optimization problem is posed to capture
the performance objective:

min
K∈C

‖W (Td − T )‖∞ (2.7)

where Td(s) is a desired reference model for the closed-loop system response,
W (s) is a weighting function and T (s) is the complementary sensitivity func-
tion, which corresponds to the transfer function from the input to the output.
In Section 2.3, the control problem (2.7) will be solved for a suitable particu-
lar case yielding a regulator K of the form (2.6). The Youla parametrization
(Morari and Zafiriou, 1989) for stable plants will be used to simplify the search
of the optimal stabilizing controller in (2.7). According to Figure 1.1, this re-
sult states that any internally stabilizing controller K can be expressed as

K =
Q

1− PQ
(2.8)

where Q(s) is any stable transfer function. The role of Q is better under-
stood within the IMC configuration (Morari and Zafiriou, 1989) depicted in
Figure 2.1. In the context of the IMC structure, Q is the parameter to be de-
signed. The main advantage of this approach comes from the fact the all the
closed-loop feedback relations become affine in the Q parameter. For instance,
H(P,K) in (1.1) simplifies to:(

y
u

)
=

(
PQ P (1− PQ)
Q −PQ

)(
r
d

)
(2.9)

In particular, one has that:
S = 1− PQ (2.10)
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Figure 2.1: IMC configuration. Here, P̃ represents the real (uncertain) plant,
whereas P denotes the available model. In the nominal scenario, the model is
assumed to be perfect, i.e., P̃ = P .

and
T = PQ (2.11)

With all these considerations in mind, the constrained problem (2.7) can be
posed in terms of Q as follows:

min
Q∈RH∞

‖W (Td − PQ)‖∞ (2.12)

Once the problem above has been solved, the equivalent unity feedback con-
troller is obtained from (2.8).

2.3 Analytical solution

We are now concerned with finding a simple solution to problem (2.12), which
aims at minimizing the functional

E = ‖W (Td − T )‖∞ (2.13)

Several methods could be followed in order to solve this H∞ general prob-
lem. See, for example, (Francis, 1987; Vilanova and Serra, 1999). However,
our interest focuses on simple instances of the problem (2.7) leading to a
controller of the form (2.6). Following this rationale, the above min-max
problem was solved in (Vilanova, 2008) for the following particular setup:
W = 1+zs

s , Td = 1
1+TMs . Additionally, a first order Taylor approximation for
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the delay in (2.3) was taken into account. The resulting controller depends on
two tuning parameters: z, TM . The role of TM is clear: it specifies the desired
speed of response whereas z allows for adjustment of the robustness of the
control system. In what follows, a different setup is suggested, resulting in a
single-parameter PID control law which provides very similar performance.

The suggested settings for minimizing (2.13) are:

P = Kg
−h

2s+ 1

(h2s+ 1)(τs + 1)
Td = 1 W =

1

s
(2.14)

The weight W = 1
s is the simplest one ensuring integral action in the design,

whereas the selected reference model Td = 1 specifies the ideal input-to-output
relation. Needless to say, this is not achievable in practice: if a very quick
response is desired, this would be normally at the expense of a large overshoot
in the output transient and poor robustness margins. As it will be seen,
controlling the overshoot will be an easy task once the optimum controller has
been derived. Substituting the expressions for W and Td into (2.12) we finally
arrive at

min
Q∈RH∞

∥∥∥∥1s (1− PQ)

∥∥∥∥
∞

(2.15)

Note that problem (2.15) is indeed a sensitivity one because 1 − PQ = S.
In addition, (2.15) corresponds to a MMP (recall Section 1.2.2) with T1 =
1/s, T2 = P/s. Because T2 (equivalently P ) has only one RHP zero (ν = 1)
at s = h/2, Lemma 1.2.1 implies that the optimal E in (2.13) is1

Eo = ρ
q(−s)

q(s)
= ρ (2.16)

where the constant ρ is determined from the interpolation constraint

E
(
2

h

)
= W

(
2

h

)
Td

(
2

h

)
= W

(
2

h

)
=

h

2
(2.17)

1For the case of a single RHP zero in T2, the MMP (1.15) can also be solved by direct
application of the maximum modulus principle of complex variable (Churchill and Brown,
1986; Skogestad and Postlethwaite, 2005; Alcántara et al., 2009).
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Consequently, from (2.17), ρ = h
2 . This means that the optimal IMC controller

Q is such that

Eo = ρ =
h

2
= W (Td − PQ) =

1

s
(1− PQ) (2.18)

By isolating Q from (2.18) we arrive at

Q =

(
−h

2
s+ 1

)
P−1 =

1

Kg

(
h

2
s+ 1

)
(τs+ 1) (2.19)

From (2.19), we see that the optimal Q solving the minimization problem
is not proper. In order to yield a realizable compensator, it is necessary to
augment it with a filter:

Q =
1

Kg

(
h

2
s+ 1

)
(τs+ 1)f(s) =

1

Kg

(h2s+ 1)(τs + 1)

(λs+ 1)2
(2.20)

By making λ → 0, the optimal behaviour is recovered. The equivalent unity
feedback controller K is given by (2.8)

K =
1

Kg

(h2s+ 1)(τs + 1)

s(λ2s+ 2λ+ h
2 )

(2.21)

and can be cast into the commercial form (2.6) according to the following
tuning rule:

Kp =
χ(λ)

Kg(4λ+ h)
(2.22)

Ti =
χ(λ)

2
Td

N
=

2λ2

4λ+ h

N + 1 =
τh(4λ+ h)

2λ2χ(λ)

where

χ(λ) =
4λ(2τ + h) + (τ + h)2 − τ2 − 4λ2

4λ+ h
(2.23)
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Remark 2.3.1. Although the focus in this chapter is on the FOPTD model,
the above analytical procedure is readily applicable to other low-order stable2

models:

• Second Order Processes with Time Delay (SOPTD):

Kg
e−hs

(τ1s+1)(τ2s+1) ≈ Kg
−hs+1

(τ1s+1)(τ2s+1) .

• Second Order Processes with Inverse Response (SOPIR): Kg
−αs+1

(τ1s+1)(τ2s+1) .

The latter case was considered in (Alcántara et al., 2009).

2.4 Stability analysis

This section addresses how the λ parameter influences both the nominal and
the robust stability of the proposed controller. The main objective is to pre-
pare the groundwork for assisting in the selection of the tuning parameter
based on robustness considerations. This task is finally accomplished in Sec-
tion 2.5, where a free-of-λ tuning rule is proposed.

2.4.1 Nominal stability

Since we have considered the approximation (2.4) for the adopted FOPTD
model, the basic requirement of nominal stability is not guaranteed for a
FOPTD plant even when all its parameters are perfectly known. The nominal
stability issue is dealt with here by means of the Dual Locus technique along
the lines of (Zhong, 2003). This technique, based upon the Argument Princi-
ple (Churchill and Brown, 1986), can be regarded as a modified version of the
well-known Nyquist criterion (Skogestad and Postlethwaite, 2005). Taking the
controller from (2.21) together with the model (2.3) results in the following
characteristic equation:

1 + L = 1 +
h
2s+ 1

λ2s2 + (2λ+ h
2 )s

e−sh = 0 (2.24)

2The design, as it has been presented here, is not applicable to unstable plants since it
would result in an unstable pole/zero cancellation between the plant P and the controller
K.
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which can be rewritten in the form

L1 − L2 = 0 (2.25)

by making the following assignments:

L1 = −λ2s2 + (2λ+ h
2 )s

h
2s+ 1

L2 = e−sh

The Dual Locus diagram technique is now applied: briefly stated, the closed-
loop system is stable if the locus of L1 reaches the intersection point earlier
than L2. The loci of L1 and L2 have been displayed in Figure 2.2 for positive
frequencies of the imaginary axis.

Im

Re

L1

L2 = e−sh

ω = 0

ωc

−1 1

Figure 2.2: Dual Locus diagram.

The intersection frequency can be determined by solving the equation:∣∣∣∣∣−λ2s2 + (2λ+ h
2 )s

h
2s+ 1

∣∣∣∣∣
s=jω

= 1 (2.26)

from which the positive frequency of interest can be seen to be:

ωc =

√
−4− 2μ+

√
(−4− 2μ)2 + 4

√
2λ

(2.27)
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where μ = h
λ . The phase angles of L1 and L2 at ωc are, respectively:

φ1 = arctan−2 + 1
2μ

λωc
− arctan

1

2
μλωc (2.28)

and
φ2 = −hωc (2.29)

The stability condition is satisfied only when the phase angle of L1 is larger
(in absolute value) than that of L2 at ωc, i.e, if φ1 − φ2 < 0. From the fact
that μ = h

λ and (2.27) it can be seen that the function φ1 − φ2 is ultimately
only a function of μ.
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φ
2

μ ≈ 13.5135

Figure 2.3: φ1 − φ2 vs μ = h
λ .

The function φ1 − φ2 is plotted against the μ parameter in Figure 2.3. It
can be concluded that the resulting closed loop system is stable provided that
λ = h

μ is chosen such that

λ >
1

13.5135
h ≈ 0.074h (2.30)
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2.4.2 Robust stability

To account for model uncertainty we will assume that the dynamic behaviour
of a plant is described not only by a single LTI model but by a whole family,
usually referred to as the uncertainty set. More precisely, we will consider the
possible plants at hand belonging to the following set:

F =
{
P̃ = P (1 + Δm)

}
(2.31)

where Δm is the relative (multiplicative) model error

Δm
.
=

P̃ − P

P
(2.32)

satisfying |Δm(jω)| ≤ |Wm(jω)|. Wm(s) is a frequency weight bounding
the model error (plant/model mismatch). It is well-known (Skogestad and
Postlethwaite, 2005; Morari and Zafiriou, 1989) that a controller K that sta-
bilizes the nominal plant P , also stabilizes all the plants in (2.31) provided
that

‖WmT‖∞ < 1 (2.33)

Condition (2.33) evaluates robust stability in terms of the nominal comple-
mentary sensitivity function T . We need to compute the relative model error
between the model (2.3) and the real plant, which is considered to be

P̃ = Kg(1 + rk)
e−h(1+rh)s

(1 + rτ )τs + 1
(2.34)

for rk, rτ , rh in the interval (−1,+1). It can be seen that if we denote by
δk, δτ , δh the maximum (positive) values of rk, rτ , rh, respectively, then the
worst case relative error Δm, corresponding to the most difficult plant to
stabilize, is given by:

Δ∗
m = (1 + δk)

τs+ 1

(1− δτ )τs + 1
e−shδh − 1 (2.35)

From (2.4) and (2.20), the nominal complementary sensitivity function is

T = PQ =
−h

2s+ 1

(λs+ 1)2
(2.36)
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In our case, the robust stability condition (2.33) holds if and only if

|T (jω)| < 1

|Δ∗
m(jω)| ,∀ω (2.37)

From the nominal stability analysis we know that by choosing λ > 0.074 the
closed-loop is stable for a perfectly known FOPTD system. The necessary
minimum λ — thus, providing the fastest response — yielding robust stability
can be determined graphically by plotting the magnitudes of (2.36) and (2.35)
for a given parametric uncertainty pattern, increasing λ until (2.37) is satisfied.
This method could be followed by the control system designer in order to
conveniently adjust the robustness/performance trade-off. In order to make
this procedure completely automatic, the following section proposes a way to
fix λ, providing thus an auto-tuning of the proposed controller.

2.5 Automatic PID tuning derivation

This section is aimed at conveniently fixing the value of λ in the tuning rela-
tions (2.22), giving rise to a tuning rule solely dependent on the model. So far,
the particular MMP (2.15) has been solved. Its solution (2.22) has been found
to depend on the FOPTD model in addition to an extra tuning parameter: λ.
The lower the value of λ, the lower the value of the functional (2.13). However,
an excessively low value for λ providing very fast responses is not desirable
since it is bound to produce large overshoots in the step response. This is not
taken into account by the adopted performance criterion. Besides, from the
stability analysis of Section 2.4, in order to make the closed loop robust, λ
has to provide the necessary detuning and cannot be so small in practice. In
accordance with this, we summarize below the requirements to be met:

• Performance: A sufficiently fast, free-of-overshoot nominal set-point re-
sponse. This performance specification obeys the fact that in many
processes such as chemical or mechanical systems an excessive overshoot
is not acceptable. Consequently, λ has to produce a small value for the
functional (2.13) while ensuring smooth set-point response.

• Robustness: As the controller is obtained from the model, it has to be
chosen in such a way that the closed-loop is not too sensitive to vari-
ations in process dynamics. Making direct use of the robust stability
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condition (2.37) is not easy and would be restricted to parametric un-
certainty. Instead, a more general and simpler robustness measure will
be used. In spite of this, condition (2.37) will be used at a later stage
to assess robustness in the face of parametric uncertainty. Sensitivity
to modelling errors can alternatively be captured by the peak of the
sensitivity function:

MS
.
= ‖S(jω)‖∞ .

= max
ω

∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ (2.38)

which indicates the inverse of the shortest distance from the Nyquist
plot to the critical point. Having MS < 2 is a traditional robustness
indicator (Skogestad and Postlethwaite, 2005).

It is evident that both the overshoot and the sensitivity peak will depend on
the loop function L. On the other hand, as T = L

1+L = −(h/2)s+1
(λs+1)2

is a function

of just h and λ, L depends only on h, λ as well. Consequently, if we define
q1=”overshoot”, q2=”sensitivity peak” it is clear that there exist functional
relations f1, f2 such that qi = fi(h, λ), i = 1, 2. In these functional relations
we have two variables and only one independent unit (time). By applying
the Buckingham Pi Theorem from Dimensional Analysis, consult for instance
(Tavakoli et al., 2007; Balaguer et al., 2009), it is possible to describe the
same relationships by using only one dimensionless parameter. In particular,
relations qi = fi(h, λ) can be expressed more compactly as πi = φi(

λ
h) where

πi contains the quantity of interest qi, proving that both the overshoot and
the sensitivity peak depend only on λ

h . This dependence can be seen in Figure
2.4, from which the zero overshoot requirement is met for λ > 0.6h. However,
at λ

h = 0.6 the sensitivity peak curve slope is still significant. For the sake
of an improvement in robustness, some extra nominal performance in terms
of closed-loop bandwidth is sacrificed by choosing λ = h, point on which
MS ≈ 1.42 and the sensitivity curve has a slope of almost zero. This indicates
that it is not worth slowing down the nominal response further. With the
choice λ = h, the tuning rule (2.22) becomes that of Table 2.1. Condition
(2.37) can be used now to give an idea of the achieved robustness with λ = h
in terms of parametric uncertainty. For λ = h, (2.36) becomes

T =
−h

2s+ 1

(hs + 1)2
(2.39)
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Table 2.1: Proposed ISA PID tuning.

Kp Ti Td/N N+ 1

0.4Ti

Kgh
τ + 0.1h 0.4h 1.25 τ

Ti

Let us consider the worst case uncertainty Δ∗
m in (2.35) with δk = δτ =

δh = δ = 0.65 — i.e, assume 65% of simultaneous parametric uncertainty —
and T in (2.39) and define the variable q3=”frequency distance between bode
plots of T and 1/Δ∗

m”. It is clear that q3 = f(h, τ). By invoking again the
Buckingham Pi Theorem, the same functional relationship can be expressed
in the more compact form π3 = φ(h/τ), where π3 contains the quantity of
interest q3. One can try out different values for h/τ until the magnitude bode
plots of 1/Δ∗

m and T almost intersect. This has been found to happen for
h/τ = 0.63, see Figure 2.5. Consequently, it can be claimed that 65% of
parametric uncertainty is allowed for any FOPTD system for which h/τ =
0.63. The described procedure can be repeated for different values of δ. This
experiment yields the bounds shown in Table 2.2. It is worth noting that the
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Table 2.2: Permissible simultaneous parametric uncertainty in Kg, τ, h.

h/τ 0.1 0.25 0.5 0.63 1 5 10

δ × 100 38% 45% 59% 65% 84% 97% 98%

proposed tuning rule is robust for lead-dominant systems, tolerating almost
100% of uncertainty in the plant parameters. Proceeding likewise, the worst
case overshoots for different values of δ have been plotted in Figure 2.6.

2.5.1 Control effort constraints

As it will be seen in Section 2.6, moderate control usage is required by the
proposed controller in Table 2.1. However, as the control effort is important
in practical applications, we provide here quantitative guidelines for selecting
λ according to saturation limits and slew rate constraints.

From (2.9) and (2.20), the control signal associated with a set-point change
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is given by

u(t) = L−1

{
Q
1

s

}
= L−1

{
1

Kg

(τs+ 1)(h2 s+ 1)

(λs+ 1)2
1

s

}
(2.40)

where L−1 denotes the inverse Laplace transform. By calculating (2.40) the
maximum value for u(t) can be found to be

‖u(t)‖∞ =

{
1
Kg

(
1− τh−2τλ−hλ+2λ2

2λ2 e
− 2τh−2τλ−hλ

(−2λ+h)(τ−λ)

)
if τ > λ

1
Kg

if τ ≤ λ
(2.41)

From this point on, it is assumed that λ/h > 0.5 (indeed, it was shown in
Figure 2.4 that λ/h ≥ 0.6 for zero nominal overshoot). From (2.41) it can be
seen that ‖Kgu(t)‖∞ only depends on h

τ and λ
h . Thus, once a given plant has

been modelled according to a FOPTD description, a particular h
τ relation is

obtained. With this in mind, ‖Kgu(t)‖∞ only depends on λ
h and λ can be tuned

so as to obtain acceptable peaks on the control signal. On the other hand, if
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λ
h is fixed first, then ‖Kgu(t)‖∞ becomes a function of h

τ . This function can
be used to give an idea of the maximum control effort required along different
lead-lag ratios. In our case, we fixed λ

h = 1. Substituting λ = h in (2.41) leads
to

‖u(t)‖∞ =

{
1
Kg

(
1− 1

2

(−τ+h
h

)
e

h
−τ+h

)
if h < τ

1
Kg

if h ≥ τ
(2.42)

which can be easily expressed as a function of Kg and h
τ .

Slew rate constraints can be similarly tackled. From (2.40) the derivative
of the control signal is

u̇(t) = L−1 {Q} = L−1

{
1

Kg

(τs + 1)(h2s+ 1)

(λs + 1)2

}
(2.43)

By calculating (2.43) and considering the following decomposition3

u̇(t) = u̇+(t) + u̇−(t) (2.44)

where

u̇+(t)
.
=

{
u̇(t) if u̇(t) > 0
0 if u̇(t) ≤ 0

and u̇−(t)
.
=

{ −u̇(t) if u̇(t) < 0
0 if u̇(t) ≥ 0

(2.45)
the following expressions can be easily obtained

‖u̇+(t)‖∞ = −1

2

2τh− 2τλ− hλ

Kgλ3
(2.46)

and

‖u̇−(t)‖∞ =

{
1
2
2λ2−2τλ−hλ+τh

Kgλ3 e
− 3τh+2λ2−4τλ−2hλ

(−2λ+h)(τ−λ) if τ > λ

0 if τ ≤ λ
(2.47)

which represent, respectively, the highest rates of change in the increasing
and decreasing directions. For the proposed tuning rule λ = h the above two
expressions simplify to

‖u̇+(t)‖∞ =
1

2Kgh
(2.48)

3A similar decomposition was not used for u(t) in (2.40) due to the fact that u(t) ≥ 0 for
t ≥ 0.
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and

‖u̇−(t)‖∞ =

{
1
2

h−τ
Kgh2 e

− τ
τ−h if h < τ

0 if h ≥ τ
(2.49)

2.6 Simulation examples

In this section we will evaluate the proposed simple automatic tuning rule of
Table 2.1 through simulations. The objective is to cover a representative set
of examples so as to properly obtain conclusions regarding the performance
and robustness of the suggested method. Table 2.3 collects the information of
the experimental setup. Firstly, four linear processes are considered including
the lag-dominant, lead-dominant and balanced lag and delay cases. The first
one consists of a FOPTD plant for which there is only parametric uncertainty
whereas the other three systems are linear processes modelled as FOPTD
plants. These three last examples are taken from (Astrom and Hagglund,
2004). Additionally, a fifth non-linear system is taken into account. This
last process represents the isothermal series/paralel Van de Vusse reaction
(de Vusse, 1964) taking place in an isothermal continuous stirred tank reactor
(CSTR). The corresponding approximate FOPTD model has been derived
assuming the system in a stationary point.

For the sake of comparison, other approaches to PID design considering
FOPTD models are examined. Since a complete comparison is not possible
due to the large number of existing tuning rules (see (O’Dwyer, 2006)) we will
concentrate on two existing methods also conceived in the spirit of simplicity:

• SIMC tuning rule (leading to a PI). A really simple and effective tuning
proposed in (Skogestad, 2003).

• AMIGO tuning rule (leading to a PID). A rule along the lines of the
classical Ziegler-Nichols method. See (Astrom and Hagglund, 2004).

In order to evaluate the robustness and the performance obtained with the
different methods at hand, the following standard measures will be used:

• Robustness: The peak of the Sensitivity function, MS , is the inverse of
the minimum distance from the Nyquist plot to the critial point and con-
stitutes a quite standard robustness indicator (Skogestad and Postleth-
waite, 2005).
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Table 2.3: Processes within the experimental setup together with their
FOPTD approximations. P1−4 are linear processes. Regarding P5, f(x, u) =
(f1(x, u), f2(x, u)) = (−50x1 − 10x21 + (10 − x1)u, 50x1 − 100x2 − x2u). The
assumed working point is (x∗, u∗) = (3, 1.117, 34.2805).

Real process FOPTD Model

P1 =
1.2e−1.2s

0.8s+1
e−s

s+1

P2 =
1

(1+s)(1+0.1s)(1+0.01s)(1+0.001s)
e−0.073s

1.073s+1

P3 =
e−s

(1+0.05s)2
e−s

0.093s+1

P4 =
1

(1+s)4
e−1.42s

2.9s+1

P5 ≡
{

ẋ = f(x, u)
y = x2

0.0126e−0.0085s

0.01s+1

• Output performance: The Integrated Absolute Error (IAE) of the error
e = r − y will be computed.

IAE =

∫ ∞

0
|e(t)|dt

• Input performance: To evaluate the manipulated input usage, the total
variation (TV) of the control signal u(t) will be computed.

TV =

∫ ∞

0
|u̇(t)|dt

To provide a more global and complete comparison framework, the perfor-
mance measures above will be calculated for both a set-point change and load
disturbance. In addition, the percent overshoot of the output y(t), denoted
by yov, will be taken into account for set-point output performance. Similarly,
the peak of the control signal u(t), i.e. ‖u(t)‖∞, will be indicated for load
disturbance performance. Table 2.4 summarizes the results obtained.
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Table 2.4: Results of performance/robustness evaluation for the set of plants
{Pi}5i=1. As the system P5 is nonlinear, the robustness indicator MS has been
computed with respect to its linearization on the working point, which turns
out to be −1.117s+188.8

s2+278.6s+1.937e04
.

Plant Tuning Robustness Performance

set-point disturbance

MS IAE TV yov IAE TV ‖u(t)‖∞
P1 Proposed 1.74 2.15 1.1 3.3 1.25 0.55 0.51

SIMC 2.12 2.4 1.64 20.95 1.235 0.79 0.6
AMIGO 1.85 1.7 6.13 10.96 0.91 0.72 0.56

P2 Proposed 1.33 0.21 11.03 6.36 0.09 0.57 0.53
SIMC 1.56 0.24 16.11 23.42 0.04 0.75 0.62
AMIGO 1.31 0.24 11.56 23.55 0.027 0.75 0.62

P3 Proposed 1.42 2.5 1 0 1.25 0.5 0.5
SIMC 1.6 2.18 1.09 4.27 1.09 0.54 0.52
AMIGO 1.46 1.94 1.46 0 0.97 0.56 0.5

P4 Proposed 1.66 3.76 1.78 5.1 1.77 0.61 0.53
SIMC 2 4.08 2.68 18.77 1.54 0.82 0.6
AMIGO 1.62 3.23 2.02 15.54 1.26 0.67 0.58

P5 Proposed 1.4 0.0026 11.1 0.4 0.0005 2.3 34.46
SIMC 1.57 0.0026 15.6 1.6 0.0047 2.5 34.48
AMIGO 1.38 0.0022 51.4 1.1 0.0041 3 34.73
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It follows from Figures 2.7–2.11 that the proposed tuning rule generates
quite smooth responses requiring moderate control action level4. Table 2.4
shows that the required control usage is lower than the associated with the
other two methods. In particular, for plants P1 and P5 the proposed tun-
ing control usage is far below that of the AMIGO tuning. It can also be
seen that the proposed method provides, generally, both the minimum output
overshoots and the control signal peaks. With respect to set-point evaluation,
the AMIGO tuning rule gives better IAEs. However, if one inspects Figures
2.7–2.11 it is clear that the set-point responses of the proposed method exhibit
less overshoot than those of the AMIGO tuning.

Regarding disturbance rejection, the proposed method provides an inferior
performance with respect to the SIMC and AMIGO proposals. This is a quite
expected result since the proposed tuning rule was derived for smooth set-
point. Nevertheless, disregarding the lag-dominant plant P2, the disturbance
rejection responses are not significantly inferior, and in the case of the SIMC,
they are indeed quite comparable. This is explained in part due to the fact
that the optimization problem in (2.15) is, as a matter of fact, a sensitivity
optimization problem. A deeper analysis of the servo/regulator trade-off tun-
ing within a generalized version of the presented framework is being currently
conducted and will be the topic of a future work.

Lastly, Table 2.4 shows that for the five considered systems the robustness
indicator for the proposed method is always very close to that associated with
the best method. This robustness is in accordance with the smoothness of the
corresponding control and output signals.

4Indeed, the results obtained are very similar to those presented in (Vilanova, 2008) for
the automatic tuning (1.28). That is why the method in (Vilanova, 2008) has been excluded
from Table 2.4.
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Figure 2.7: P1 time responses for set-point change and load disturbance for
the proposed (solid), SIMC (dotted), AMIGO (dashed) and Vilanova’s (2008)
(dashdot) tuning rules.
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Figure 2.8: P2 time responses for set-point change and load disturbance for
the proposed (solid), SIMC (dotted), AMIGO (dashed) and Vilanova’s (2008)
(dashdot) tuning rules.
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Figure 2.9: P3 time responses for set-point change and load disturbance for
the proposed (solid), SIMC (dotted), AMIGO (dashed) and Vilanova’s (2008)
(dashdot) tuning rules.
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Figure 2.10: P4 time responses for set-point change and load disturbance for
the proposed (solid), SIMC (dotted), AMIGO (dashed) and Vilanova’s (2008)
(dashdot) tuning rules.
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Figure 2.11: P5 time responses for set-point change and load disturbance for
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2.7 Summary

Starting by considering a general MMP in the supremum norm, tuning rela-
tions for PID design have been presented modelling the plant as a FOPTD
system. For the derivation of the suggested tuning, the general MMP has been
customized so as to arrive at a PID control solution. The concrete MMP finally
solved corresponds to a sensitivity one and leads to a single tuning parameter.
Since the controller is derived by means of a purely rational approximation, the
nominal stability region for this parameter has been determined. Finally, an
automatic robust tuning rule has been derived for smooth set-point following.

The primary goal of the presented method has been to obtain smooth
set-point response. Because responses to set-points and load disturbances are
usually conflicting, future work is conducted to show how the trade-off between
the servo and regulator modes can be tackled within the adopted (weighted
sensitivity) framework.
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Chapter 3

Improving the load
disturbance response
(γ-tuning)

Based on (Alcántara et al., 2010b)

Due to the fact that sometimes a one-degree-of-freedom (1DOF) PID
has to deal with both set-point changes and load disturbances, it would
be desirable to have at one’s disposal simple methods to achieve a good
compromise in this situation. Based on the well-established min-max
model matching theory, this chapter addresses the smooth tuning of a
1DOF PID controller for both acceptable load disturbance attenuation
and set-point tracking. As the design specifications are commonly given
in the form of maximum allowed overshoot, peak on the sensitivity func-
tion and other popular measures, the analysis to carry out the design
quantitatively based on these indexes is also provided.

3.1 Introduction

It is well-known that most of the control systems in industry are operated
by PID controllers still nowadays (Astrom and Hagglund, 2005; Shamsuzzo-
haa and Skogestad, 2010). This is somehow explained due to their simplicity
and acceptable performance in practice. Consequently, given the widespread

55
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use of PID compensators, it is clear that even a small improvement over the
already existing tuning methods could represent a benefit in process control.
Fortunately, the gap between the theory and practice in control engineering
has been reduced during the last twenty years in an attempt of incorporat-
ing the methods of optimal and robust control theory to the PID area. As a
consequence, new theoretical results as well as several PID designs have been
reported (He et al., 2000; Skogestad, 2003; Astrom and Hagglund, 2004; Vi-
lanova, 2008; Hohenbichler, 2009; Sanch́ıs et al., 2010), confirming a trend that
endures.

Among the well-established analytical methods, the design of compen-
sators by means of a desired closed-loop specification is a quite common one.
Regarding PID controllers, some model matching based approaches have ap-
peared during the last years (Aguirre, 1992; Vilanova, 2008). The problem
with the approach in (Aguirre, 1992) is that robustness is not considered
explicitly and no tuning rule is finally provided. Avoiding these problems,
in (Vilanova, 2008) an analytical model matching based robust PID design
is proposed for smooth set-point tracking. In this chapter, we extend this
approach, completing the preliminary work initiated in (Vilanova and Arri-
eta, 2007), so that the controller can be tuned somewhere in between the
servo and the regulator operating modes by means of adjusting a single de-
sign parameter: γ. Obviously, within the 1DOF context is not possible to
have both optimal set-point and load disturbance attenuation simultaneously
(Skogestad and Postlethwaite, 2005). Thus, some kind of trade-off is necessary
in order to minimize the overall performance degradation. From a numerical
point of view, the underlying idea was originally presented in (Arrieta and
Vilanova, 2007), and further developed in (Arrieta et al., 2010). The contri-
butions of the present chapter are summarized below:

• First, the interval for the γ parameter in (Vilanova and Arrieta, 2007)
is determined considering that the disturbances enter at the input of
the plant (i.e., load disturbances). Additionally, the nominal stability
analysis is conducted.

• Second, once the interval for γ is known, quantitative tuning guidelines
based on common robustness/performance indexes are given.

In (Astrom and Hagglund, 2005), it is claimed that many analytical meth-
ods for PID design produce pole-zero cancellations, which makes them unsuit-
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able for regulator purposes. This is one of the drawbacks of the conventional
IMC method (Morari and Zafiriou, 1989; Skogestad, 2003) and some IMC-like
approaches (Zhang et al., 2002; Vilanova, 2008; Ali and Majhi, 2009; Alcántara
et al., 2010c). These approaches are suitable for servo operation but may ex-
hibit poor disturbance attenuation. On the contrary, the presented method is
aimed at providing good responses in both servo and regulator mode.

This chapter is organized as follows: Section 3.2 is devoted to the problem
statement. Section 3.3 reviews the model matching analytical γ-tuning design.
The exact interval for γ considering load disturbances is determined in Section
3.4, which also concerns the stability analysis. In Section 3.5, the quantita-
tive tuning of γ is addressed according to standard robustness/performance
indexes. Section 3.6 illustrates by example the suggested methodology for
balancing servo and regulator performance. Finally, Section 3.7 concludes the
chapter drawing some final conclusions.

3.2 Problem statement

In this section, the control framework and the problem formulation are intro-
duced.

3.2.1 The control framework

The conventional 1DOF scenario of Figure 3.1 is assumed, where a distinction
is made between input (di) and output (do) disturbances. A FOPTD model

PK
-

uer

do

y

di

Figure 3.1: Feedback control scheme.

for the plant P is used, i.e.:

P = Kg
e−sh

τs+ 1
(3.1)
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For design purposes, it is convenient to approximate the delay term in (3.1) so
as to achieve a purely rational process model. By using the first order Taylor
expansion e−sh ≈ 1− sh , the model in (3.1) can be approximated as follows

P ≈ Kg
−sh+ 1

τs+ 1
(3.2)

Regarding the control law, the ISA PID form (Astrom and Hagglund, 2005)
is considered:

u = Kp

(
1 +

1

sTi
+

sTd

1 + sTd/N

)
e (3.3)

where e(s) = r(s) − y(s), being r(s), y(s) and u(s) the Laplace transforms
of the reference, process output and control signal, respectively. Kp is the
PID gain, whereas Ti and Td are its integral and derivative time constants,
respectively. Finally, N is the ratio between Td and the time constant of an
additional pole introduced to assure the properness of the controller. There-
fore, the transfer function representation of the chosen controller K is given
by

K = Kp
1 + s(Ti +

Td
N ) + s2Ti

Td
N (N + 1)

sTi(1 + sTd
N )

(3.4)

3.2.2 The Model Matching Problem

In this section the min-max model matching approach to controller design is
presented. The controller derivation will be based on a desired model for a
given closed-loop transfer function. Mathematically, a min-max optimization
problem of the form

min
K∈C

‖W (Xd −X)‖∞ (3.5)

is posed to capture the performance objective. W (s) is a weighting function,
X(s) is a given closed-loop system relation and Xd(s) is the target model for
X(s). For instance, one could choose X = T , the complementary sensitivity
function. In this case Xd = Td would specify a desired input-to-output re-
sponse for the closed-loop system. Another possibility is to choose X = S,
the sensitivity function. In this case Xd = Sd would represent the desired
sensitivity shape in frequency. Note that
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min
K∈C

‖E‖∞ = min
K∈C

‖W (Td − T )‖∞ (3.6)

= min
K∈C

‖W ((1− Sd)− (1− S))‖∞
= min

K∈C
‖W (Sd − S)‖∞ (3.7)

Consequently, (3.6) and (3.7) ultimately amount to the same optimization
problem. However, depending on the choice of the desired relations, the opti-
mization will be better regarded as a complementary sensitivity problem for
set-point tracking purposes or as a sensitivity one for disturbance rejection.
By using the Youla parameterization (1.23), the constrained problem (3.6) can
be recast in the more convenient form:

min
Q∈RH∞

‖E‖∞ = min
Q∈RH∞

‖W (Td − PQ)‖∞ (3.8)

3.3 Model matching approach to PID design

With the purpose of making the present work more self-contained, this section
briefly outlines the PID-oriented solution to (3.8) presented in (Vilanova, 2008;
Vilanova and Arrieta, 2007). In order to constrain the solution of (3.8) to be
a PID compensator, the following setting was proposed:

Td =
(TM − γ)s+ 1

1 + TMs
(3.9)

which corresponds to a desired sensitivity function Sd of the form

Sd =
γs

TMs+ 1
(3.10)

with respect to the sensitivity problem (3.7). Regarding the weighting function
in (3.8), the following choice was made:

W =
1 + zs

s
(3.11)

in order to automatically include integral action and keep it as simple as
possible. The solution to the model matching problem (MMP) (3.8) can be
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obtained applying Lemma 1.2.1 with T1 = Td and T2 = PQ, where P is taken
as in (3.2). In this case, there is only one RHP zero in P (ν = 1) at s = 1

h .
Consequently, the optimum error is given by Eo = ρ, being ρ determined from
a single interpolation constraint:

Eo(1/h) = ρ = W (1/h)Td(1/h) =⇒ ρ =
1 + z

h
1
h

(TM − γ) 1h + 1

1 + TM
h

, (3.12)

or more compactly:

ρ =
h+ z

h+ TM
(TM + h− γ) (3.13)

Now, the optimum Q can be easily computed

ρ = Eo = W (Td − PQ) =⇒ Q =
(
Td − ρW−1

)
P−1 (3.14)

By taking P as in (3.2) and substituting (3.9), (3.11) and (3.13) into (3.14),
the optimal Q is

Q =
1

Kg

(1 + τs)(1 + χs)

(1 + TMs)(1 + zs)
(3.15)

with

χ = z + h− ρ+ TM − γ (3.16)

The equivalent unity feedback controller is given by (2.8):

K =
1

Kg(ρ+ γ)

(1 + τs)(1 + χs)

s(1 + zTM+hχ
ρ+γ s)

(3.17)

The compensator in (3.17) can be cast into (3.4) in accordance with:

Kp =
Ti

Kg(ρ+ γ)
(3.18)

Ti = τ + χ− zTM + hχ

ρ+ γ

Td

N
=

zTM + hχ

ρ+ γ

N + 1 =
τ

Ti
χ

ρ+ γ

zTM + hχ
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It can be seen that there are three design parameters: TM , z and γ. The
meaning of TM and z can be easily understood by considering the choice
γ = TM . This way, γ disappears and Td in (3.9) becomes

Td =
1

1 + TMs
(3.19)

Accordingly, (3.8) represents now a MMP with respect to the desired input-
to-output relation Td in (3.19). Based on this particular scenario, z and TM

can be fixed to obtain smooth set-point responses (Vilanova, 2008). The role
of TM is clear: it captures the desired closed-loop bandwidth. The role of
z is to provide tolerance to model uncertainty. Let us assume first that the
dynamic behaviour of the plant under control is described not only by the
nominal model but by a whole family of possible plants:

F =
{
P̃ = P (1 + Δm)

}
(3.20)

where Δm is the relative (multiplicative) model error

Δm
.
=

P̃ − P

P
(3.21)

satisfying |Δm(jω)| ≤ |Wm(jω)| and Wm is a frequency weight bounding the
modelling error. It is well-known (Skogestad and Postlethwaite, 2005; Morari
and Zafiriou, 1989) that a controller K that stabilizes the nominal plant P ,
also stabilizes all the plants in (3.20) provided that

‖WmT‖∞ < 1 (3.22)

From (3.2), (3.15) and the fact that T = PQ, the robust stability condition
(3.22) can be written as∣∣∣∣ (1− sh)(1 + χ1s)

(1 + Tmjω)(1 + zjω)

∣∣∣∣ <
∣∣∣∣ 1

Wm(jω)

∣∣∣∣ ∀ω (3.23)

where χ1 = z + τ − ρ. Let us consider |Wm(jω)| = 1 in (3.23), giving rise to
the following condition:∣∣∣∣ (1− sh)(1 + χ1s)

(1 + Tmjω)(1 + zjω)

∣∣∣∣ < 1 ∀ω (3.24)
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Although this may seem conservative, mid and high frequency uncertainty
will be allowed. The constraint (3.24) imposes that the closed-loop transfer
function does not have spikes and behaves as a low pass filter. By choosing

TM =
√
2h z = 2h (3.25)

a suitable pole-zero pattern is obtained, leading to a complementary sensitivity
function with the desired low-pass shape. Selecting TM and z as in (3.25)
(with γ = γsp = TM ) yields smooth set-point response. Nevertheless, as it
was pointed out in (Vilanova, 2008), this design can lead to poor disturbance
rejection. Improving the disturbance rejection is precisely the role of the γ
parameter.

In (Vilanova and Arrieta, 2007) it is shown that by choosing γ > TM =√
2h, the disturbance attenuation can be improved. However, the analysis in

(Vilanova and Arrieta, 2007) only takes into account disturbances entering at
the output of the plant, remaining open how to select γ if the disturbance
enters at the input. Another missing aspect is the stability analysis. These
points are the subject matter of the next subsection.

Remark 3.3.1. In what follows, z and TM will remain fixed as indicated
in (3.25). Therefore, the tuning rule (3.18) depends on a single tuning pa-
rameter: γ. As it will be illustrated in the next subsection, γ = γsp =

√
2h

corresponds to the servo operation. From this point on, increasing the value
of γ allows improvement of the regulatory performance. In this sense, (3.18)
can be considered as a (robust) unified servo/regulator tuning rule.

3.4 Trade-off tuning interval for γ considering load
disturbances

First, we will review how to select γ for optimal step disturbance rejection at
the output of the plant. Assuming that P = P̃ in Figure 2.1, we have that
y = (1− PQ)do. Taking do =

1
s , P as in (3.2) and Q from (3.15) finally gives

y = S
1

s
≈
(
1− (1− sh)(1 +

(√
2h+ 0.24γ

)
s)

(1 +
√
2hs)(1 + 2hs)

)
1

s
(3.26)
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We can choose γ according to the Integral Squared Error, defined as

ISE
.
=

∫ ∞

0
(r(t)− y(t))2 dt (3.27)

As we are concerned with the output disturbance rejection, we can assume
that the reference is zero (r(t) = 0), which leads to

ISE(γ, h) =

∫ ∞

0
y2(t)dt = ‖y‖22 (3.28)

By applying the Parseval’s theorem (Morari and Zafiriou, 1989), this calcula-
tion can be rewritten as

ISE(γ, h) =
1

2π

∫ ∞

−∞
y(jω)y(−jω)dω =

1

2πj

∮
y(s)y(−s)ds (3.29)

Application of the residue theorem (Churchill and Brown, 1986) to solve (3.29)
yields

ISE(γ, h) ≈ 2.25h − 0.1065γ +
0.0112

h
γ2 (3.30)

By taking the derivative with respect to γ we can obtain the optimal value
that minimizes the ISE criterion

∂ISE(γ, h)

∂γ
= 0 ⇒ γldo ≈ 4.56h (3.31)

In (Vilanova and Arrieta, 2007) it was shown that if the disturbance occurs
at the input of the plant, the disturbance rejection produced by taking γ as in
(3.31) may still be improved significantly, but the exact tuning was not given.
In what follows, we will address how to choose γ for disturbances at the input
of the plant. In this situation, the disturbance to output relation is

y = PSdi (3.32)

Instead of optimizing the ISE criterion as before, a more heuristic approach
is taken. In the lag-dominant case, it is evident that a sluggish response will
be obtained unless S cancels the slow dynamic of P . In fact, the impossibility
of producing such a cancellation is the reason why the IMC-like design in (Ali
and Majhi, 2009) cannot be used for regulator purposes. Thus, it would be
necessary for good input disturbance attenuation that

S|s=− 1
τ
= 0 (3.33)
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Taking S as in (3.26), the following value for γ is finally obtained

γldi ≈ −12.36h(−τ +
√
2h)

h+ τ
(3.34)

It is clear that γldi in (3.34) can be regarded as a function of just τ
h . Provided

that τ ≥ 3h, the following chain of inequalities holds

γsp =
√
2h < γldo ≈ 4.56h < γldi (3.35)

For example, if τ
h = 10, γldi ≈ 9.65h. We will assume from this point on that

disturbances enter at the input of the plant. Thus, we will tune γ as in (3.34)
for the regulator mode. Consequently, we are finally considering the following
interval for the γ parameter:

γ ∈ [γsp =
√
2h, γld = γldi] (3.36)

where the extremes represent the tuning for servo (γ = γsp) and regulator
(γ = γld) operation.

3.4.1 Nominal stability

Since we have considered the approximation (3.2) for the FOPTD model, the
basic requirement of nominal stability is not guaranteed for a FOPTD plant
even when all its parameters are perfectly known. The nominal stability issue
is dealt with here by means of the Dual Locus technique along the lines of
(Zhong, 2003). Taking the unity feedback controller from (3.17) together with
the model (3.1) results in the following loop transfer function

L ≈ 1 +
(√

2h+ 0.24γ
)
s

(3h− 0.24γ) s+
(
3
√
2h2 + 0.24hγ

)
s2

e−sh (3.37)

The characteristic equation 1 + L = 0 can then be rewritten in the form

L1 − L2 = 0 (3.38)

by making the following assignments:

L1 = −(3h− 0.24γ) s+
(
3
√
2h2 + 0.24hγ

)
s2

1 +
(√

2h+ 0.24γ
)
s

L2 = e−sh
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The Dual Locus diagram technique states that the closed-loop system is stable
if the Nyquist locus of L1 reaches the intersection point with the locus of L2

before L2 does so. In this situation, the number of encirclements of L1 − L2

around the origin when traversing the Nyquist contour1 is zero. Thus, by the
Argument Principle (Churchill and Brown, 1986), there is no RHP pole in
the closed-loop system. The idea is illustrated for a particular case in Figure
3.2. The phase angles of L1 and L2 at ωc (the intersection frequency) are,
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−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

Real

Im
ag

in
ar

y

L1(jω)

L2(jω)

(b) 0 < ω(rad/s) ≤ 5

Figure 3.2: Dual locus diagram (restricted to the positive imaginary axis only)
for h = 1,γ =

√
2. The closed-loop is stable because φ1 − φ2 < 0 at the

intersection frequency ωc, approximately 0.4 rad/s.

respectively:

φ1 = arctan
−3h+ 0.24γ(

3
√
2h2 + 0.24hγ

)
ωc

− arctan
(√

2h+ 0.24γ
)
ωc (3.39)

1In our case, L has a pole at the origin and the conventional Nyquist contour must be
modified to avoid passing through the point 0+ j0 when traversing the imaginary axis. One
way to do it is to construct a semicircular arc with infinitely small radius r around 0 + j0,
that starts at 0+j(0−r) and travels anticlockwise to 0+j(0+r). For our purposes, however,
it is enough to consider the Nyquist contour on the positive imaginary axis.
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and

φ2 = −hωc (3.40)

The stability condition is satisfied only when the phase angle of L1 is larger
(in absolute value) than that of L2, i.e., if φ1 − φ2 < 0 (see Figure 3.2). Since
|L2(jω)| = 1, the intersection frequency can be determined from∣∣∣∣∣−(3h− 0.24γ) s+

(
3
√
2h2 + 0.24hγ

)
s2

1 +
(√

2h+ 0.24γ
)
s

∣∣∣∣∣
s=jωc

= 1 (3.41)

Solving (3.41) leads to

ωc =
1

h
(
6 + 0.24

√
2η
)√−(B2 − C2)2 +

√
(B2 − C2)2 + 4A2 (3.42)

where

A = 3
√
2 + 0.24η

B = 3− 0.24η (3.43)

C =
√
2 + 0.24η

and η
.
= γ

h . It can be seen from (3.42) and (3.43) that ωch can be expressed
as a function of γ

h . From (3.39) and (3.40), this in turn shows that φ1 − φ2

depends solely on γ
h . As we are considering the interval in (3.36), then γ

h ∈
[
√
2, 12.36(τ/h−

√
2)

1+τ/h ]. The maximal interval corresponds to the situation in which

τ/h → ∞, which yields
√
2 ≤ γ

h < 12.36. In Figure 3.3, φ1 − φ2 is plotted
against γ

h . It can be concluded that the closed-loop system remains stable
within the considered maximal interval. Hence, the nominal stability is always
guaranteed.

So far, we have verified that the control system is stable with respect to
the FOPTD model. Sometimes, however, the available model of the plant
does not correspond to a FOPTD process. In these cases, we adopt a simple
FOPTD model for the sake of simplicity: a low-order model will yield a low-
order controller. Consequently, in theses cases, the nominal stability must
consider the mismatch between the approximate FOPTD model (3.2) and the
one precisely describing the dynamics of the real process. If we assume that
the real plant P̃ is perfectly known, we can take Δm as in (3.21) and use the



Trade-off tuning interval for γ considering load disturbances 67

2 4 6 8 10 12 14
−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

η = γ
h

φ
1
−

φ
2

Figure 3.3: The closed-loop is stable because (φ1 − φ2)(η) < 0.

robust stability condition (3.22) for nominal stability purposes. As in this
specific case we are considering that Δm is perfectly known (we know both
P̃ and P ) we can apply (3.22) taking Wm = Δm and restricted to the phase
crossover frequency only:

|T (jω180)Δm(jω180)| < 1 (3.44)

where ω180 verifies

∠ (T (jω180)Δ(jω180)) = −180◦ (3.45)

This can be readily understood by looking at Figure 3.4: the first feedback

loop is stable if and only if the second one is stable. As TΔ = PQ P̃−P
P =

Q(P̃−P ) is stable (we are considering stable plants), condition (3.44) coincides
with the Nyquist stability criterion (Skogestad and Postlethwaite, 2005) when
∠(T (jω)Δ(jω)) crosses −180◦ only once. If it crosses −180◦ several times
(this would seldom happen in practice), then (3.44) must account for all the
phase crossover frequencies and becomes only a sufficient condition.

In the next subsection, guidelines for the tuning of γ are given. In partic-
ular, robustness is captured in terms of the peak on the sensitivity function.
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Figure 3.4: Equivalent Stability Loops.

3.5 Quantitative guidelines for the tuning of γ

In classical control theory, the performance of a control system is usually char-
acterized in terms of the transient and steady-state time domain responses.
Well-known time domain performance indicators are, among others, the over-
shoot and the settling time. On the other hand, the classical frequency do-
main approach provides typical robustness indexes as for example the GM
(Gain Margin), the PM (Phase Margin) or the peak on the sensitivity func-
tion (MS). These and other common standard measures usually capture the
design specifications in practical designs and have something in common: they
all depend only on the finally achieved loop function L

.
= PK.

This section is aimed at showing that the optimization procedure used to
derive the presented controller can be ultimately put in connection with the
classical robustness/performance indicators. For the sake of space limitations,
only the overshoot and the MS specifications will be considered, for which the
following qualitative facts hold:

• The greater the value of γ, the greater the overshoot. This point is
important because some plants have a strict limitation on the overshoot.

• Augmenting γ also reduces the stability margins, i.e., augments MS .
Recall that MS , defined as

MS
.
= ‖S(jω)‖∞ .

= max
ω

∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ ,
corresponds to the inverse of the shortest distance from the Nyquist
plot to the critical point. This constitutes a more reliable robustness
indicator than the popular Gain and Phase Margins. This is because a
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control system with good Gain and Phase Margins can be very close to
instability. On the contrary, it can be seen (Skogestad and Postlethwaite,
2005) that

GM ≥ MS

MS − 1
PM ≥ 2 arcsin

(
1

2MS

)

From (3.37), it is easily observed that L depends solely on h and γ in the
nominal case. This means that the classical measures depending on L can
be finally expressed as functions of the variables h and γ. Moreover, by ap-
plying the Buckingham Pi Theorem (Balaguer et al., 2009) from Dimensional
Analysis, both the overshoot and MS can be expressed in terms of the single
dimensionless relation γ/h. This result has several implications:

• First, it shows that the single parameter γ allows a quantitative tuning
of the classical indicators.

• Second, it shows that it is not necessary to calculate explicitly the corre-
sponding measures of interest (overshoot, MS , etc) since the exact graphs
of the corresponding (general) functions can be obtained through a single
simulation experiment.

Figure 3.5 depicts the nominal overshoot and MS as functions of γ/h. In order
to facilitate the usage of this information for design purposes, the following
linear approximations (valid in the range γ ≥ 5h) have been obtained

MS = 0.06913
γ

h
+ 1.254 (3.46)

Overshoot (%) = 5.521
γ

h
− 19.13 (3.47)

It is also useful to have an idea of how uncertainty degrades performance.
More concretely, next we analyze the effect of parametric uncertainty on the
overshoot. Let us consider a certain amount (δ) of simultaneous uncertainty
on each parameter of the FOPTD model. The worst case for this uncertainty
profile is given by

P̃ = Kg(1 + δ)
e−s(1+δ)h

(1 − δ)τs + 1
(3.48)
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Figure 3.5: Overshoot and MS vs γ
h .

Thus, fixing δ is possible to determine the worst case overshoot as a function
of γ

h . Figure 3.6 does so for different values of δ whereas Table 3.1 provides
simple linear approximations.

Remark 3.5.1. It is worth noting (see Figure 3.5(b)) that robustness de-
creases as we get closer to the regulator mode. The cancellation (3.33) (in
conjunction with the waterbed effect (Skogestad and Postlethwaite, 2005)) in-
creases the peak on S. This can be regarded as an inherent feature of a
regulator-type tuning. In Figure 3.7 this point has been exemplified.
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Figure 3.6: Maximum overshoots for different levels of parametric uncertainty
with respect to the FOPTD model.
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Table 3.1: Worst case (approximate) overshoots for different levels of para-
metric uncertainty.

uncertainty worst case overshoot
δ = 0.1 6.2γ/h− 9.33
δ = 0.2 7.86γ/h+ 1.05
δ = 0.3 9.86γ/h+ 17.22
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Figure 3.7: Shapes of the sensitivity (solid) and complementary (dash) sensi-

tivity functions for P = e−s

10s+1 and different tunings of γ. When γ = γld = 9.65,
condition (3.33) pushes up the peak of the sensitivity function.
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3.6 Simulation examples

This section illustrates the presented method by considering two simulation
examples.

3.6.1 Example 1

First, this example shows how the tuning of γ can be done quantitatively
in terms of prescribed levels for the maximum overshoot. Second, it stresses
the main feature of the suggested γ-tuning procedure: smooth control with
adjustable operation mode. The following model will be used

P =
e−0.073s

1 + 1.073s
(3.49)

It will be assumed that the real plant consists of a FOPTD process. However,
20% of parametric uncertainty with respect to the model in (3.49) will be
considered. Consequently, the worst case real plant is given by

P1 =
1.2e−0.0876s

1 + 0.858s
(3.50)

The following controller specifications are given:

• Obtain the best possible load disturbance attenuation ensuring that the
overshoot does not exceed 50%.

From (3.34), the best load disturbance attenuation is achieved for γ = 0.764.
However, this tuning would lead to a high overshoot even in the nominal
response. In fact, from (3.47) the nominal overshoot is approximately 40%.
On the contrary, the worst load disturbance attenuation is given by γ = 0.1032,
which leads to low overshoots. The value of γ satisfying the given requirement
can be easily obtained from Table 3.1 (case δ = 0.2). The exact value turns
out to be γ = 0.4036. Figure 3.8 shows the time responses associated with
the nominal model P . The responses for the case with 20% of parametric
uncertainty can be seen in Figure 3.9. It is readily seen how the best possible
disturbance rejection has been obtained while keeping the worst case overshoot
below the prescribed value. It should be noted that in the case of the plant not
being a FOPTD process, the quantitative formulae derived in this work are
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not exact. In this case, the important point is that the general methodology
continues to be valid as long as the plant can be adjusted well by a FOPTD
model.
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Figure 3.8: Nominal time responses for γ = 0.1032 (dash), γ = 0.4036 (solid)
and γ = 0.764 (dash-dot).
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Figure 3.9: Worst case time responses in presence of 20% of parametric un-
certainty with respect to P for γ = 0.1032 (dash), γ = 0.4036 (solid) and
γ = 0.764 (dash-dot).

In (Skogestad, 2006), it is claimed that smooth control is probably the
most common objective in industrial practice, where very high performance is
not the main concern. Despite this, almost all published PID tuning rules aim
at high performance (Skogestad, 2006). Even in direct synthesis approaches
like IMC, which have the closed loop time constant λ as a tuning parame-
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ter, the emphasis is to obtain a lower bound on λ (tight control). To clarify
these points, we will consider the ISE-optimal tuning rules obtained numer-
ically in (Zhuang and Atherton, 1993) for setpoint tracking and disturbance
attenuation. In Figure 3.10, the responses associated with these rules and
the proposed approach are compared. The tuning rules given in (Zhuang and
Atherton, 1993) do not specify a value for N in (3.3); for the simulations,
the value N = 20 has been used2. As it can be seen, the responses for the
method in (Zhuang and Atherton, 1993) are extremely aggressive, resulting
into poor robustness. It has been found that MS = 2.65 for the set-point
tuning, whereas MS = 21.22 (!) for the regulatory tuning, indicating that no
robustness consideration was taken into account. In contrast with these neg-
ative indicators, the proposed approach yields MS = 1.41 (γ = TM = 0.1032)
and MS = 1.98 (γ = 0.755 ≈ γld), adhering to the rule of thumb MS < 2 for
good robustness (Skogestad and Postlethwaite, 2005). The smoothness of the
control action is also evident, and the performance level acceptable.

The IMC-based tuning in (Ali and Majhi, 2009) has also been evaluated
in the load disturbance column of Figure 3.10. Following the work in (Ali and
Majhi, 2009), we have adjusted the value of λ to obtain tight control, i.e., the
best possible disturbance attenuation with acceptable robustness (MS < 2).
Taking λ = 0.0321 yields MS = 1.98. For smaller values of λ, the robustness
margins decrease. Therefore, the γ-tuning strategy allows to obtain consid-
erably better regulatory performance with the same robustness level, only at
the expense of a modest increment in the control effort.

3.6.2 Example 2

The aim of this example is twofold: on the one hand, it illustrates that the
proposed general methodology continues to be valid when the plant is not a
FOPTD system. On the other hand, it shows that the presented approach
gives good results, in terms of smooth responses, when compared with a well-
known tuning rule suggested in the literature. Let us consider the isother-
mal series/paralel Van de Vusse reaction (de Vusse, 1964) taking place in an
isothermal continuous stirred tank reactor (CSTR). The rates of formation of
A and B are assumed to be:

2It can be seen that N = 10, a more common value, yields even worse results.
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Figure 3.10: Setpoint and load disturbance responses.

rA = −k1cA − k3c
2
A

rB = k1cA − k2cA

where k1 = 50h−1, k2 = 100h−1 and k3 = 10 l(gmol · h)−1 are the reaction
rate constants. The feed steam consists of pure A. The mass balance for A
and B is given by

V
dcA
dt

= F (cA0 − cA) + V (−k1cA − k3c
2
A)

V
dcB
dt

= F (−cB) + V (k1cA − k2cA)

where F is the inlet flow rate of product A, V is the reactor volume which is
kept constant during the operation, cA and cB are the concentrations of the
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PID
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cB

Feed

Coolant

Desired cB

Products

Figure 3.11: CSTR control system.

species A and B inside the reactor, respectively, and cA0 = 10 gmol · l−1 is the
concentration of A in the feed steam. We wish to maintain cB at its set-point
using the dilution rate F/V as the manipulated variable. Figure 3.11 depicts
the CSTR control system under consideration. The system can be put in the
standard form

ẋ1 = −k1x1 − k3x
2
1 + (cA0 − x1)u

ẋ2 = k1x1 − k2x2 − x2u

y = x2

where x1 = cA, x2 = cB , u = F/V, y = cB. Initially the system is at steady
state with x1 = 2, x2 = 0.851. For control purposes, the non-linear system
is approximated at the initial steady state by a FOPTD model with Kg =
0.033, τ = 0.02, h = 0.005. Figure 3.12 shows the responses of the non-linear
(real) system and the linear (FOPTD) approximation. Now we will turn our
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Figure 3.12: Real non-linear system (dashed) and FOPTD (solid) approxima-
tion.

attention to the control of the described plant. For comparison purposes, we
will include the well-known AMIGO tuning rule in the simulations. As it is
explained in (Astrom and Hagglund, 2004), the AMIGO tuning rule for the
ISA PID controller was obtained to yield good disturbance attenuation along
the lines the classical Ziegler-Nichols method, but with improved robustness.

In order to evaluate the performance obtained with the two methods at
hand, the following standard measures will be used:

• Output performance: The Integrated Absolute Error (IAE) of the error
e = r − y will be computed.

IAE =

∫ ∞

0
|e(t)|dt

• Input performance: To evaluate the manipulated input usage, the total
variation (TV) of the control signal u(t) will be computed.

TV =

∫ ∞

0
|u̇(t)|dt
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In addition, the percent overshoot of the output y(t), denoted by yov, will
be taken into account for set-point output performance. The results obtained
are depicted in Figure 3.13 and summarized in Table 3.2.
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Figure 3.13: Time responses for the proposed: γ = 0.0071 = TM (dot), γ =
0.032 = γld (dash-dot), γ = 0.0195 (bold solid), and AMIGO (dashed) tuning
rules.

It can be seen that the AMIGO tuning provides better results in general,
the reason for this superior performance relies on the numerical, non-convex
optimization approach on which it is based. However, it requires a more
aggressive control effort in the set-point response. Overall, it can be observed
that the proposed tuning yields smooth control, while allowing for an easy
adjustment of the operation mode of the controller.
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Table 3.2: Results for set-point and load disturbance.

SP LD

Tuning method IAE yov TV IAE TV

Proposed (γ = 0.0071) 0.048 7.02% 32.28 0.0044 11
Proposed (γ = 0.032) 0.060 31.85% 66.8 0.0024 16.96
Proposed (γ = 0.0195) 0.0051 16.23% 46.7 0.0034 13.03
AMIGO 0.0041 15.15% 158.86 0.0023 14.7

3.7 Summary

A model matching analytical approach to PID design assuming a FOPTD
model for the plant has been presented and quantitatively analyzed. The
studied method leads to a γ-tuning procedure in which the γ parameter is
selected according to the desired operating mode for the PID controller. The
servo and the regulator behaviours can be regarded as the extreme points of
a curve, parameterized by γ, in the PID parameters space. If an intermediate
value for γ is chosen, then a trade-off tuning is reached. Finally, quantitative
tuning guidelines for γ in terms of popular robustness/performance indexes
have been given, and simulation examples have confirmed the obtention of
smooth responses with acceptable performance.



80 Improving the load disturbance response (γ-tuning)



Chapter 4

λ-tuning versus γ-tuning

Based on (Alcántara et al., 2010a)

Chapter 2 presented a simple (IMC-like) analytical design based on a
weighted sensitivity problem (WSP). The tuning of the controller in-
volved a single tuning parameter (λ), closely related to the closed-loop
bandwidth. It was shown in Section 2.6 that, for lag-dominant processes,
the disturbance attenuation was sluggish. On the other hand, Chapter
3 revised a model matching strategy for improving the load disturbance
response. More concretely, a tuning parameter (γ) was used to account
for a servo/regulator balance. This chapter compares the λ and γ-tuning
methods from a servo/regulator point of view. Simulation examples clar-
ify the discussion and confirm the effectiveness (and the limits) of each
approach.

4.1 Introduction

The design revised in Chapter 3 conducted to the controller

K =
1

Kg(ρ+ γ)

(1 + τs)(1 + χs)

s(1 + zTM+hχ
ρ+γ s)

(4.1)

whereKg, τ, h constitute the FOPTD model information, χ = z+h−ρ+TM−γ
and z, TM were fixed in (3.25). It was shown in Section 3.4 that if one considers
disturbances entering at the output of the plant, choosing γ = γo = 4.56h

81
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provides the best disturbance attenuation with respect to the ISE criterion.
In addition, it was shown that if the disturbance occurs at the input of the
plant, the disturbance rejection produced by taking γ = γo = 4.56h may still
be improved significantly. At the end, the following interval for γ was found

γ ∈ [γsp =
√
2h, γld] (4.2)

where

γld ≈ −12.36h(−τ +
√
2h)

h+ τ
(4.3)

and extreme values for γ represent the tuning for servo (γ = γsp) and regulator
(γ = γld) operation. In general, the greater the value of γ, the greater the
overshoot in the set-point response and the smaller the stability margins.

From the point of view of balanced servo/regulation operation, this chapter
compares the control settings discussed in Chapter 3 (Alcántara et al., 2010b)
through the γ-tuning procedure with those obtained using the simpler IMC-
like design of Chapter 2 (Alcántara et al., 2010c). Within the latter method,
the tuning parameter λ provides a means to adjust the robustness/performance
trade-off. In this situation, we can distinguish between two tuning strategies
(Skogestad, 2006; Ali and Majhi, 2009):

• Smooth control, which corresponds to the slowest possible control with
acceptable disturbance rejection. In Chapter 2 (Alcántara et al., 2010c),
the value λ = h was selected for smooth control, yielding MS ≈ 1.42.

• Tight control, which obeys the fastest possible control with acceptable
robustness. This option implies a reduction in the value of λ which can
be used to improve the regulatory performance.

How to tune λ for tight control is addressed in this chapter. Afterwards, a
compromise between smooth and tight control is determined, corresponding
to an intermediate value for λ.

The organization of this chapter is as follows. Section 4.2 proposes a tuning
interval for λ, and suggests a value for balanced smooth/tight control. Section
4.3 is devoted to compare, from a servo/regulation point of view, the λ and
γ-tuning approaches. Section 4.4 deals with some implementation aspects,
whereas simulation examples are given in Section 4.5. Lastly, Section 4.6
summarizes the main ideas and draws some final conclusions.
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4.2 Smooth/Tight interval for λ

Based on a FOPTD model, the controller obtained in Chapter 2 is given by

K =
1

Kg

(h2s+ 1)(τs + 1)

s(λ2s+ 2λ+ h
2 )

(4.4)

and depends on a single tuning parameter: λ. As in the standard IMC pro-
cedure (Morari and Zafiriou, 1989), the role of λ is to provide the necessary
roll-off at high frequencies. First, let us consider the following question: How
to choose λ for optimal load disturbance? We know from Chapter 2 that the
optimal behaviour is recovered for λ → 0. However, this would imply no ro-
bustness according to the detuning role of λ. It is easy to see (consult the
Appendix 4A) that the value λ ≈ 0.22h provides the best disturbance rejec-
tion with respect to disturbances entering at the output of the plant and the
ISE criterion. However, the corresponding robustness for λ ≈ 0.22h is poor.
As it is shown in the Appendix 4A, augmenting λ increases the value of the
ISE also for disturbances entering at the input. Consequently, according to
the tight control concept, the idea is to select the smallest possible value (and
consequently, the best possible load disturbance rejection) for λ providing ac-
ceptable robustness. Stated otherwise, since the IMC-like approach cannot
produce the cancellation in (3.33), the best that it can be done to improve the
load disturbance attenuation is making the closed-loop system faster. Sen-
sitivity to modelling errors can be captured by the peak of the sensitivity
function:

MS
.
= ‖S(jω)‖∞ .

= max
ω

∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ (4.5)

By applying the Buckingham Pi Theorem (Balaguer et al., 2009) from Di-
mensional Analysis, MS can be determined in terms of a unique dimensionless
parameter: λ/h. In concrete, λ = 0.56h provides MS ≈ 1.75. We will consider
this value of λ for tight control.

On the other hand, we saw in Chapter 2 (Alcántara et al., 2010c) that
by choosing λ = h, point on which MS ≈ 1.42, smooth set-point responses
are obtained. The conclusion of the above analysis is that the interval to be
considered for the smooth/tight trade-off is

λ = [λld = 0.56h, λsp = h] (4.6)
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where the extreme values represent the tight (λ = 0.56h) and smooth (λ = h)
tunings for the proposed controller.

Now, we will inspect when the λ-tuning approach is suitable to provide
balanced servo/regulator operation, comparing it with the γ-tuning procedure.
The first issue is how to adjust the value of λ, as Figure 4.1 illustrates. Let us
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Figure 4.1: Sensitivity peak (MS) and output overshoot against λ/h. Smooth
& Tight control mode tuning.

define

Δ(ISE)(λ/h) =
ISE(λ/h, 1) − ISE(0.56, 1)

ISE(0.56, 1)
(4.7)

and

Δ(MS)(λ/h) =
MS(λ/h)− 1.42

1.42
(4.8)

as measures of the relative load disturbance performance and robustness degra-
dation with respect to the corresponding optimal values. The ISE degradation
index captures how the ISE due to a disturbance degrades with λ/h (consult
the Appendix 4A for the details). In the case of load disturbance peformance,
the minimum value is obtained for λ = 0.56h. As for the minimum value of
MS , it corresponds to 1.42. Now, it stands to reason to determine the trade-off
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tuning λ value as

(λ/h)trade-off = argmin
λ/h

max {Δ(ISE),Δ(MS)} (4.9)

Figure 4.2 displays the situation graphically. The trade-off value for λ is finally
found to be λ = 0.7h. This value can be taken as a good rule of thumb as it
will be seen later on.
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Figure 4.2: Smooth/Tight trade-off tuning. Normalized MS and ISE degra-
dations against λ/h.

In the next subsection, we explore in more depth the applicability of the
suggested λ-tuning, comparing it with the γ-tuning strategy of Chapter 3.

4.3 Comparison of the λ and γ-tuning approaches

The λ-tuning strategy yields good set-point and disturbance responses when
disturbances enter at the output of the plant. However, for lag-dominant
plants, it provides sluggish (load) disturbance response. This way, in this
comparison we will focus on load disturbance rejection capabilities. Let us
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define the load disturbance performance degradation with respect to the γ-
tuning method as follows

ΔLD =
ISE(LD)λ−tuning − ISE(LD)γ−tuning

ISE(LD)γ−tuning
(4.10)

Based on Dimensional Analysis (Balaguer et al., 2009), it can be seen that ΔLD

only depends on h
τ once the values for λ and γ have been fixed. Remember

that we are interested in obtaining a compromise between the servo and the
regulator modes. In order to establish a comparison framework, let us assume
that the maximum nominal overshoot is 10%. For a lag-dominant plant, it can
be seen that this specification is met for γ ≤ 5.25h. Figure 4.3 displays ΔLD

for γ = 5.25h and λ = 0.7h. It can be observed that the λ-tuning provides
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Figure 4.3: Load disturbance performance degradation of the λ-tuning method
(λ = 0.7h) with respect to the γ-tuning one (γ = 5.25h) in servo/regulator
trade-off mode.

better disturbance rejection than the γ-tuning design in the balanced lead/lag
and lead-dominant cases. However, for h

τ < 0.175 the γ-tuning method pro-
vides better disturbance attenuation. In order to outline the basic differences
between the two approaches, let us take a look at the (approximate) sensi-
tivity and complementary sensitivity functions depicted in Figure 4.4. It can
be observed that the γ-tuning and the λ-tuning methodologies provide almost
the same design when tuned in servo (smooth) mode, see Figure 4.4(c). As
we move towards the regulator (tight) mode, it is clear that MS increases for
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(b) Servo/Regulator trade-off tuning: γ = 5.25h, λ = 0.7h
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(c) Servo (Smooth) mode tuning: γ = γsp =
√
2h, λ = h

Figure 4.4: Sensitivity (thick) and Complementary Sensitivity (thin) func-
tions for the γ-tuning (dashed) and λ-tuning (solid) approaches in Reg-
ulator (Tight), Servo (Smooth) and trade-off modes for the plant P =

−0.5s+1
(0.5s+1)(10s+1) ≈ e−s

10s+1 .

the γ-tuning approach. As it was discussed in Chapter 3, the reason for this
greater peak can be attributed to condition (3.33).
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4.4 Implementation aspects

So far in this chapter, the controller has been taken in the second order form

K =
c1s

2 + c2s+ c3
s(d1s+ 1)

(4.11)

where c1, c2, c3, d1 are assumed to be positive real constants. The controller
above has four degrees of freedom and can be considered a general PID con-
troller. However, for implementation purposes, it is desirable to cast this
general form into practical PID realizations. In Chapters 2 and 3, the ISA
PID structure (Astrom and Hagglund, 2005) was considered:

K = Kp

(
1 +

1

sTi
+

sTd

1 + sTd
N

)
(4.12)

The controller above has the three modes (Kp, Ti, Td) working additively and
it is sometimes referred to as noninteractive, ideal or parallel. The derivative
filter parameter N is typically fixed by the manufacturer, being N = 10 a
typical value (O’Dwyer, 2006). However, as reported in (Isaakson and Graebe,
2002), fixingN independently of the other three parameters may not be a good
idea. This can be observed by posing (4.12) in the general second order form
(4.11)

K = Kp

Td

(
1 + 1

N

)
s2 +

(
1 + Td

TiN

)
s+ 1

Ti

s
(
Td
N s+ 1

) (4.13)

It is clear that the filter derivative parameter N has a big influence on the
coefficients of the second order controller. Consequently, PID design should
be a four-parameter design including N (Isaakson and Graebe, 2002) (this was
also the case in Chapters 2 and 3). As it is claimed in (Luyben, 2001), the
use of the fixed derivative filter parameter N explains in part the industrial
myth that derivative action does not work. Another problem with the ISA
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PID form can be detected if we convert from (4.11) to (4.12):

Kp = c2 − c3d1

Td =
c1
Kp

− d1 (4.14)

Ti =
Kp

c3

N =
Td

d1

It is evident that there are combinations of c and d that cannot be described.
For example, the tuning rule for the proposed controller with λ = 0.7h is
indicated in Table 4.1. It is easy to see that both N and Td may become

Table 4.1: Tuning rule for the proposed controller assuming the ISA PID
algorithm.

Kp Ti Td/N N+ 1

0.53
kg

Ti

h
τ + 0.25h 0.258h 1.94 τ

Ti

negative, which is physically unfeasible and restricts the application of the
proposed method. As pointed out in (Luyben, 2001) regarding model-based
designs, the following practical form introduced in (Morari and Zafiriou, 1989)
is preferable

K = Kp

(
1 +

1

Tis
+ Tds

)
1

TF s+ 1
(4.15)

This alternative form provides a more straightforward parameterization of the
second order controller (4.11):

Kp = c2

Td =
c1
Kp

(4.16)

Ti =
Kp

c3
TF = d1

The corresponding tuning rule is given in Table 4.2. Note that it undergoes
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Table 4.2: Tuning rule for the controller (4.4) in the ideal, output-filtered form
(λ = 0.7h).

Kp Ti Td TF

1
kg

Ti

1.9h
τ + h

2
τh
2Ti

0.2579h

the limitations found in the ISA PID case. The advantages of using the four-
parameter, parallel, output-filtered PID structure (4.15) in conjunction with
the IMC method can be consulted in (Luyben, 2001). Due to all these con-
siderations, the PID form (4.15) is the recommended one for the presented
designs.

4.5 Simulation examples

The purpose of this section is to compare by example the λ and γ-tuning
methods. The experimental setup is summarized in Table 4.3, and it has been
taken from (Astrom and Hagglund, 2004) (Examples 1,3,4) and (Arrieta and
Vilanova, 2007) (Example 2). As it can be seen, we will adopt a FOPTD model

Table 4.3: Experimental setup.

Example Model h
τ

Real plant
CASE I CASE II

1 e−s

1+0.093s
10.75 e−s

(1+0.05s)2
1.2e−1.2s

1+0.0744s

2 e−0.99s

1+1.65s
0.6 e−0.5s

(s+1)2
1.2e−1.188s

1+1.32s

3 e−1.42s

1+2.9s
0.49 1

(s+1)4
1.2e−1.704s

1+2.32s

4 e−0.073s

1+1.073s
0.068 1

(1+s)(1+0.1s)(1+0.01s)(1+0.001s)
1.2e−0.0876s

1+0.8584s

for four different plants. Simulations will be shown for the nominal case —
i.e., we will assume that the real plant corresponds exactly to the model — as
well as for the uncertain scenario. Two cases will be distinguished here:
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• CASE I: The real plant will not be a FOPTD model. This case will tackle
the usual situation in which a simple model is used to represent a real
(more complex) system, giving rise to neglected/unmodeled dynamics.

• CASE II: The real plant will be assumed to be perfectly described by the
model. But 20% of parametric uncertainty will be taken into account.

The tuning of γ for the design of Chapter 3 will be done so as to get the
best possible results limiting the nominal overshoot to a 10% value. This
performance specification obeys the fact that in many processes an excessive
overshoot is not acceptable. Figures 4.5,4.7,4.9 concern the lead-dominant and
balanced lag and delay cases (Examples 1–3) and it is shown, especially for the
lead-dominant plant (Example 1), that the λ-tuning is superior to the γ-tuning
strategy, achieving a better trade-off tuning. The most interesting case is
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Figure 4.5: Time responses for Example 1.

the lag-dominant one, which is dealt with in Example 4. The corresponding
simulation results are captured in Figure 4.11. In this case, a trade-off tuning
is more difficult to achieve. The γ-tuning produces excellent load disturbance
attenuation by selecting γ = γld = 0.76. Nevertheless, this choice produces an
excessive nominal overshoot (40%). The value of γ needs to be decreased until
γ = 0.38 in order to reduce the overshoot to approximately the 10%. When
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Figure 4.6: Control effort for Example 1.

this is done, the load disturbance attenuation gets approximately the same as
that obtained with the IMC-like approach. Regarding the set-point response,
the suggested method provides clear superiority.

The results obtained for the examples 1–4 are collected and quantified
in Tables 4.4 and 4.5 for the sake of a more precise comparison. Figures
4.6,4.8,4.10,4.12 plot the required control effort for the two methods at hand. It
is noticeable that the γ-tuning results into less demanding controller generally.
In spite of this, the manipulated variable movements are still quite acceptable
for the IMC-like design tuned with λ = 0.7h. If strictly necessary, the control
action kicks can be reduced by slightly augmenting the value of TF in the
tuning rule of Table 4.2. This is illustrated for Example 4. In this case, it
can be seen that TF = 0.0188. Figures 4.13 and 4.14 show that by increasing
this value — corresponding to the d1 coefficient with respect to (4.11) — the
required control effort can be made equal to that of the γ-tuning method while
still producing quite similar set-point and load disturbance responses. It has
been verified that that MS = 1.618 for TF = 0.0288, whereas MS = 1.64 for
TF = 0.0388.
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Table 4.4: Performance evaluation for the nominal case.
Example Tuning SP

ISE
LD
ISE

MS

1 λ-tuning (λ = 0.7) 1.48 1.44 1.58
γ-tuning (γ = 2.82) 1.82 1.76 1.48

2 λ-tuning (λ = 0.69) 1.47 0.67 1.58
γ-tuning (γ = 4) 1.72 0.85 1.55

3 λ-tuning (λ = 0.99) 2.1 0.85 1.58
γ-tuning (γ = 7) 2.43 1 1.6

4 λ-tuning (λ = 0.05) 0.1085 0.0084 1.58
γ-tuning (γ = 0.38) 0.1243 0.0077 1.62
γ-tuning (γ = 0.76) 0.139 0.0026 1.99

Table 4.5: Performance evaluation for the uncertain case.
Example Tuning CASE I CASE II

SP
ISE

yov (%) LD
ISE

SP
ISE

yov (%) LD
ISE

1 λ-tuning 1.49 0 1.45 1.59 16.8 2.23
γ-tuning
(γ=2.82)

1.82 1 1.78 1.86 12.7 2.63

2 λ-tuning 1.42 1.66 0.66 1.55 22.68 0.95
γ-tuning

(γ=4)

1.68 7.15 0.85 1.75 21.24 1.22

3 λ-tuning 2.25 14.2 0.95 2.24 24.36 1.16
γ-tuning

(γ=7)

2.66 23.2 1.17 2.56 29.2 1.43

4 λ-tuning 0.11 8.7 0.0085 0.1212 35 0.009
γ-tuning
(γ=0.38)

0.13 18.6 0.0078 0.144 43 0.009

γ-tuning
(γ=0.76)

0.15 46 0.0027 0.2366 86 0.0042



94 λ-tuning versus γ-tuning

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

o
u
tp

u
t

γ−tuning (γ=4)
Proposed (λ=0.7h)

(a) Nominal case

0 5 10 15 20 25 30
0

0.5

1

1.5

2

time
o
u
tp

u
t

0 5 10 15 20 25 30
0

0.5

1

1.5

2

time

o
u
tp

u
t

(b) Uncertain case. Top: CASE I. Bottom:
CASE II

Figure 4.7: Time responses for Example 2.

4.6 Summary

This chapter has compared the λ and γ-tuning approaches (Chapters 2 and 3).
First, the rule λ = 0.7h has been proposed for obtaining balanced performance
between the servo and regulator modes based on a trade-off between smooth
and tight control. The servo/regulator trade-off limits within the λ-tuning
method have been explored; if the allowed nominal overshoot is required to be
inferior to a 10%, the λ-tuning method provides in general both better servo
and regulatory responses for plants such that h/τ ≥ 0.1. Nevertheless, for
larger allowed overshoots and/or more lag-dominant plants, then the γ-tuning
technique allows better (input) disturbance attenuation for a given degree of
robustness.
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Figure 4.8: Control effort for Example 2.
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Figure 4.9: Time responses for Example 3.
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Figure 4.10: Control effort for Example 3.
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Figure 4.12: Control effort for Example 4.
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Figure 4.14: Control effort for Example 4 with increased value of TF .



Appendix 4A

From (2.4) and (2.20), we have that

y = (1− PQ)do =

(
1− −h

2s+ 1

(λs + 1)2

)
1

s
=

λ2s+ 2λ+ h
2

(λs + 1)2
(4.17)

Along the lines of Section 3.4, the ISE criterion can be calculated as the sum
of the residues of y(s)y(−s) at its poles in the left half-plane (LHP):

ISE(λ, h) = Res

(
y(s)y(−s),− 1

λ

)
= h

20
(
λ
h

)2
+ 1 + 8λ

h

16λ
h

(4.18)

The plot of ISE/h versus λ/h appears in Figure 4.15. Now, by taking the
derivative with respect to λ, we can obtain the value that minimizes the ISE
criterion

∂ISE

∂λ
= 0 ⇒ λ =

√
5h

10
≈ 0.22h (4.19)

producing the following value

ISEop(h) ≈ 1.06h (4.20)

Robustness associated with the tuning λ = 0.22h is poor (MS can be seen
to be around 3). As commented in Section 4.2, for Tight control the idea
is to increase λ so as to achieve acceptable robustness margins. This will
provide the fastest possible closed-loop system since λ directly controls the
closed-loop bandwidth. In concrete, this implies that the best disturbance
attenuation will be obtained. Although only output disturbance has been
explicitly considered, it is easy to check that the smaller the value of λ, the
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better the load disturbance rejection as well. To see this, let us consider the
output to a load disturbance1:

y = P (1− PQ)di =
(−h

2s+ 1)(λ2s+ 2λ+ h
2 )

(h2s+ 1)(τs + 1)(λs + 1)2
(4.21)

Proceeding as before, the associated ISE can be computed as the sum of the
residues of y(s)y(−s) in its LHP poles:

ISE(λ, τ, h) =
1

4

5λ3 + 8τλ2 + 2λ2h+ 1
4h

2λ+ 4τλ+ 1
2τh

2

(λ+ τ)2
(4.22)

Straightforward calculations yield

∂ISE(λ, τ, h)

∂λ
=

20λ3 + 60τλ2 − h2λ+ 64τ2λ− 3h2τ + 16hτ2

16(λ+ τ)3
(4.23)

1In what follows, we assume Kg = 1 in (2.4).
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The sign of ∂ISE
∂λ is determined by the sign of the numerator in (4.23). Dividing

it by h3, the sign can be determined in terms of the following function:

f(
λ

h
,
τ

h
) = 20

(
λ

h

)3

+ 60

(
λ

h

)2 τ

h
− λ

h
+ 64

(τ
h

)2 λ
h
− 3

τ

h
+ 16

( τ
h

)2
(4.24)

The plot of f is shown in Figure 4.16. As it can be appreciated, f remains
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Figure 4.16: f versus λ/h and τ/h.

positive. This means that the ISE with respect to load disturbance is an
increasing function of λ in the considered interval (0.22 < λ

h ≤ 1).
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Chapter 5

Combined λγ approach: a
first H∞ design

Based on (Alcántara et al., 2010d)

Sometimes a 1DOF PID compensator operates in both servo and reg-
ulator mode. In this scenario, it is clear that it will be impossible to
achieve both optimal set-point tracking and load disturbance attenua-
tion. However, it would be desirable to possess a simple methodology to
adjust a convenient compromise. This chapter presents a simple analyt-
ical PID design aimed at stable plants. Its distinguishing feature is that
two design parameters allow adjustment of the robustness/performance
as well as the servo/regulator trade-offs. The resulting unified design
extends some previous approaches where only one of the aforementioned
trade-offs is considered.

5.1 Introduction

The γ-tuning philosophy (recall Chapter 3) obeys the fact that sometimes
a 1DOF PID compensator is to operate in both servo and regulator mode.
It is well-known that within the 1DOF context is not possible to have both
optimal set-point and load disturbance attenuation simultaneously (Skogestad
and Postlethwaite, 2005). Thus, some kind of servo/regulator trade-off is
necessary if the minimum overall performance degradation is sought. The
name given to the technique comes from the fact that a single adjustable
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parameter (γ) allows selection of the operating mode of the controller. Tuning
γ appropriately results into a convenient servo/regulator compromise. The
main shortcoming of the γ-tuning procedure is that it lacks the possibility of
adjusting robustness easily.

On the other hand, it is well-known that the popular IMC design (Morari
and Zafiriou, 1989) allows to trade-off between robustness and performance
(understood as speed of response or closed-loop bandwidth) by means of ad-
justing a single parameter, normally denoted by λ. This approach leads to
good servo responses. However, as reported in several works (Chien and Frue-
hauf, 1990; Horn et al., 1996; Astrom and Hagglund, 2005), the conventional
IMC design can exhibit poor disturbance rejection and it is therefore unsuit-
able for regulator purposes generally.

This chapter presents an analytical PID design which combines the two
commented proposals (γ-tuning and λ-tuning) while avoiding their shortcom-
ings. The resulting method involves two tuning parameters: λ and γ, which al-
low adjustment of the robustness/performance and the servo/regulator trade-
offs, respectively.

The chapter outline is given next. Section 5.2 introduces the control frame-
work. The proposed design (called λγ-tuning) is presented in Section 5.3,
which also deals with robustness considerations and an interpretation in terms
of IMC methodology. Section 5.4 illustrates the presented ideas by means of
a simulation example. Finally, Section 5.5 makes a summary of the chapter.

5.2 The control framework

The conventional 1DOF scenario is assumed throughout this chapter and it
is depicted in Figure 1.1. As usual, r, d, y denote, respectively, the reference,
the disturbance and the output signals. On the other hand, e = r − y is
the tracking error. Step signals are assumed for both the reference and the
disturbances. A simple FOPTD model of the plant is assumed:

P = Kg
e−sh

τs+ 1
(5.1)

where Kg, τ, h denote, respectively, the gain, time constant, and delay (dead-
time) of the process. For design purposes, it is convenient to approximate the
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delay term in (5.1) so as to achieve a purely rational model. By using the first
order Taylor expansion e−sh ≈ 1− sh , (5.1) can be approximated as follows

P ≈ Kg
−sh+ 1

τs+ 1
(5.2)

Regarding the control law, the following practical PID forms are considered:

K = Kp

(
1 +

1

sTi
+

sTd

1 + sTd/N

)
(5.3)

and

K = Kp

(
1 +

1

sTi
+ sTd

)
1

TF s+ 1
(5.4)

The parameters Kp, Ti, Td are known as the proportional gain, integral time
and derivative time, respectively. TheN parameter in the ISA form (5.3) is the
derivative filter parameter, necessary to implement the derivative action. In
the output-filtered form (5.4) introduced in (Morari and Zafiriou, 1989), TF is
an additional tuning parameter defining the first order filter that multiplies the
output of the ideal PID. Instead of carrying out the design in the conventional
setting of Figure 1.1, the Q-parameterization (1.23) will be used as in previous
chapters.

5.3 Proposed λγ-tuning

The proposed approach stems from considering the following weighted sensi-
tivity problem (WSP) (Skogestad and Postlethwaite, 2005)

min
K∈C

‖WS‖∞ = min
Q∈RH∞

‖WS‖∞ (5.5)

where W (s) is a frequency weight which has to be designed. The problem
above can be regarded as a min-max model matching problem (MMP) by
expressing it in the form min

Q
‖T1 − T2Q‖∞. A well-known solution of such a

problem lies in optimal (Nevanlinna-Pick) interpolation theory (recall Lemma
1.2.1). For our purposes, however, it is not strictly necessary to invoke these
results. By approximating the FOPTD plant (5.1) as in (5.2), the sensitivity
transfer function is given by

S = 1− PQ = 1−Kg
−hs+ 1

τs+ 1
Q (5.6)
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It is clear that WS is analytical in the complex Right Half Plane (RHP)
as long as S has zeros located at the unstable poles of W . In this case,
the maximum modulus principle (Churchill and Brown, 1986) from complex
variable guarantees that |WS| attains its maximum over the imaginary axis.
From (5.6), S(1/h) = 1, then

‖WS‖∞ ≥ |W (1/h)S(1/h)| = W (1/h) � ρ (5.7)

Consequently, the optimal Q is such that

W (1− PQ) = ρ (5.8)

from where

Q = P−1
(
1− ρW−1

)
=

1

Kg

(
τs+ 1

−sh+ 1

)(
1− ρW−1

)
(5.9)

Besides, the corresponding complementary sensitivity transfer function is

T = PQ = 1− ρW−1 (5.10)

Note, from (5.9), that (
1− ρW−1

) |s=1/h = 0 (5.11)

because Q must be stable. In the light of (5.11), (5.10), (5.9), and (5.5), the
following form for W is proposed

W =
(λs+ 1)2

s(αs+ 1)
(5.12)

The rationale behind this choice is as follows:

• From (5.10), the pole at the origin ensures integral action, that is, T (0) =
1, or equivalently, S(0) = 0.

• From (5.10), it is clear that the zeros of W are poles of the closed-loop.
Assume now that α = λ in (5.12), then W = λs+1

s and ρ = W (1/h) =
λ+h. Substituting these values into (5.10), the input-to-output relation
becomes T = −sh+1

λs+1 . This way, λ is used to specify the closed-loop
bandwidth. The smaller its value, the faster the closed-loop.
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• The response to a disturbance is given by

y = SPd = SKg
−hs+ 1

τs+ 1
d (5.13)

Thus, when τ dominates over h, the slow dynamic 1
τs+1 needs to be can-

celled by S. Otherwise, the disturbance attenuation would be sluggish.
That is, S(−1/τ) = 0 is necessary for good Regulator behaviour. From
(5.5), the pole at s = −1/α in (5.12) yields S(−1/α) = 0. This way,
α ∈ [λ, τ ] can be thought of as a tuning parameter in charge of adjusting
the servo/regulator compromise. If α = λ, T = −sh+1

λs+1 . From this point
on, we can improve the disturbance attenuation by increasing the value
of α. As commented, the best disturbance attenuation will be obtained
for α = τ .

Now that we have designed W , we will proceed to the obtention of Q.
From (5.12),

ρ = W (1/h) =
(λ+ h)2

α+ h
(5.14)

and the optimal Q can be found from (5.9)

Q =
1

Kg

(τs+ 1)(γs + 1)

(λs + 1)2
(5.15)

with

γ =
hα+ 2λα− λ2

α+ h
(5.16)

The sensitivity and the complementary sensitivity transfer functions become:

T =
−hs+ 1

λs+ 1

(
γs+ 1

λs+ 1

)
(5.17)

S =
(λs + 1)− (−hs + 1)

(
γs+1
λs+1

)
λs+ 1

(5.18)

Elementary calculus shows that γ ≥ λ when α ≥ λ. More exactly, γ = λ
when α = λ and ∂γ

∂α > 0 for α ≥ λ. In this situation, the term γs+1
λs+1 is a lead

network. When γ = λ (α = λ) we have that

T =
−hs+ 1

λs+ 1
S =

s(λ+ h)

λs+ 1
(5.19)
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From (5.17), it is clear that improving the load disturbance attenuation by aug-
menting γ (equivalently α) will increase the overshoot in the input-to-output
response. Finally, an equivalent unity feedback controller can be recovered
from (1.23):

K =
1

Kg

(τs + 1)(γs + 1)

s ((λ2 + hγ)s + 2λ+ h− γ)
(5.20)

Regarding the PID form in (5.4), the following tuning rule is obtained

TF = λ2+hγ
2λ+h−γ Ti = τ + γ

Td = τγ
τ+γ Kp = τ+γ

Kg(2λ+h−γ)

(5.21)

Remark 5.3.1. It is noteworthy that in a Two-Degree-Of-Freedom (2DOF)
setting, the servo (free-of-overshoot) response given by T in (5.19) can be
recovered by simply adding the reference prefilter fR = λs+1

γs+1 .

5.3.1 Robustness considerations in terms of λ and γ

The lead network γs+1
λs+1 appears in the transition from the servo to the regulator

mode. We will inspect now how λ and γ influence robustness, which can be
measured by looking at the peak of S, normally denoted by MS . This value
represents the inverse of the shortest distance from the Nyquist curve to the
critical point: −1 + 0j. Figure 5.1 displays the magnitude of S for the plant
P = e−s

5s+1 ≈ −s+1
5s+1 when varying γ.

As it can be appreciated, augmenting γ leads to larger MS . This can be
explained generally by a waterbed effect (Skogestad and Postlethwaite, 2005)
argument. When γ > λ (equivalently α > λ), the low frequency pole at
s = −1/α pushes down |S(jω)| at low frequencies. As a result, |S(jω)| pops up
at high frequencies, provoking a larger MS . The peak on the magnitude of T :
MT , is also a robustness indicator. Obviously, because of the lead term γs+1

λs+1 ,
the larger the value of γ in (5.17), the larger the value of MT . Consequently,
improving the disturbance rejection (augmenting γ) worsens robustness.

A robustness interpretation for λ comes from the well-known small gain
theorem (Skogestad and Postlethwaite, 2005). If we suppose that the model
is not perfect — this is, of course, the situation in practice — and assume the
real plant belonging to the following set

F =
{
P̃ = P (1 + Δm)

}
(5.22)
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Figure 5.1: |S(jω)| for different values of γ.

where Δm is the relative (multiplicative) model error

Δm
.
=

P̃ − P

P
(5.23)

satisfying |Δm(jω)| ≤ |Wm(jω)|, with Wm(s) a frequency weight bounding the
modelling error, it is well-known (Skogestad and Postlethwaite, 2005; Morari
and Zafiriou, 1989) that a controller that stabilizes the nominal plant P , also
stabilizes all the plants in (5.22) provided that

‖WmT‖∞ < 1 (5.24)

It is easy to see that the Robust Stability condition (5.24) holds if and only if

|T (jω)| < 1

|Δ∗
m(jω)| ∀ω (5.25)

where Δ∗
m denotes the worst relative error (5.23). Let us consider now that

P = e−s

5s+1 ≈ −s+1
5s+1 and assume the real plant affected by parametric uncer-

tainty. As shown in Figure 5.2, considering γ = 4.33, the robust stability
condition is satisfied for λ = 4.25, but not for λ = 3. Generally, the greater
the value of λ, the slower (and the more robust) the closed-loop.
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Remark 5.3.2. In all the calculations, the nominal model has been taken as
the FOPTD approximation in (5.2). Consequently, the real plant has been
considered to belong to the set (5.22).

5.3.2 IMC interpretation

The presented λγ approach can be interpreted within the IMC method (Morari
and Zafiriou, 1989). Factor P in (5.1) according to the inner-outer factoriza-
tion

P = PmPa (5.26)

where Pm =
Kg

τs+1 , Pa = e−sh are the MP and all-pass portions. The optimal
IMC controller Q minimizing the tracking Integrated Squared Error (ISE) is
given by

Q = P−1
m =

τs+ 1

Kg
(5.27)
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However, the controller above is not proper. In order to make Q physically
realizable it is necessary to extend it with a filter. By selecting

fsp =
1

λs+ 1
(5.28)

the following controller is finally obtained

Qsp = Qfsp =
1

Kg

τs+ 1

λs+ 1
(5.29)

Note that the optimum Q is recovered as λ → 0.

The controller Qsp, obtained by means of using the filter fsp, allows to
trade-off between robustness and performance through the adjustment of the
λ parameter. This is enough for set-point tracking purposes but fails to pro-
vide good disturbance attenuation for a lag-dominant plant (Chien and Frue-
hauf, 1990). Controller (5.29) is not able to produce S(−1/τ) = 0 no matter
how the λ parameter is chosen. In order to remedy the sluggish disturbance
rejection obtained when using fsp, the following alternative detuning filter can
be considered (Horn et al., 1996)

fld =
γs+ 1

(λs+ 1)2
(5.30)

Then, the resulting controller becomes

Qld = Qfld =
1

Kg

(τs+ 1)(γs + 1)

(λs+ 1)2
(5.31)

If we try to recover a conventional unity feedback controller from (5.1), (5.31)
and (1.23), a delay will appear in the denominator of K. By approximating
this delay by its first order Taylor polynomial (e−sh ≈ −sh+1), the controller
in (5.20) is rederived. This way,

• λ has been inherited from the traditional IMC methodology, and is in
charge of adjusting the robustness/performance trade-off.

• γ permits, once the robustness level has been specified with λ, to bal-
ance the performance conveniently between the servo and the regulator
operation.
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More concretely, γ ∈ [λ, γld], where

γld ≈ −λ2 − 2λτ − hτ

h+ τ
(5.32)

corresponds to α = τ in (5.16), providing S(−1/τ) = 0. In order to provide
some guidelines for the tuning of λ and γ, Figure 5.3 shows howMS depends on
the ratio λ/h (assuming γ = λ). Besides, for each value of λ, the corresponding
MS value to γ = γld is shown. When γ > λ, MS also depends on the ratio
τ/h.

0.5 1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

λ/h

M
S

Servo (γ=λ)
Regulator (γ=γ

ld
)

γ=λ, γld

Figure 5.3: MS for different values of λ/h. P = e−s

10s+1 .

5.4 Simulation example

Let us consider the FOPTD process

P =
e−0.073s

1.073s + 1
(5.33)

In (Zhuang and Atherton, 1993), optimal tuning rules for FOPTD systems
were derived for both set-point and load disturbance response (the tuning rules
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in (Zhuang and Atherton, 1993) were taken for servo and regulator operation in
the numerical γ-tuning procedures (Arrieta and Vilanova, 2007; Arrieta et al.,
2010)). In particular, for the ISE criterion and (5.33), the parameters of (5.3)
areKp = 11.6791, Ti = 0.9171, Td = 0.0482 (set-point) andKp = 19.9738, Ti =
0.1272, Td = 0.0462 (load disturbance). As for the N parameter, we take
N = 20. Figure 5.4 and Figure 5.5 compare the tuning for set-point tracking
with the proposed approach for λ = h = 0.073 and λ = 2h = 0.146. In order to
obtain good results for the servo mode, we take γ = λ. From (5.4) and (5.21),
it is easy to see that the corresponding servo-type controllers are of PI type,
with Kp = 7.3493, Ti = 1.073 (λ = h) and Kp = 4.896, Ti = 1.073 (λ = 2h).
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Figure 5.4: Set-point responses.

The tuning rules in (Zhuang and Atherton, 1993) achieve optimal performance
at the expense of an aggressive control action. In accordance with this, the
output response is somewhat oscillatory, indicating that robustness may be
poor (MS = 2.65). This type of responses is not desirable in industry, where
smoother control is preferable. Within the proposed method, this is achieved
by increasing the value of λ, which makes the control system slower and more
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Figure 5.5: Control effort for the set-point responses.

robust. For λ = h we obtain MS = 1.59, whereas λ = 2h leads to MS = 1.35.
Similarly, Figure 5.6 and Figure 5.7 depict the time responses for the regulator
mode. Now, we select γ = γld to provide the best disturbance attenuation.
The corresponding controllers are again of PI type: Kp = 10.774, Ti = 0.2004
(λ = h) and Kp = 7.7215, Ti = 0.3231 (λ = 2h) and provide, respectively,
MS = 2.96 and MS = 1.81. It is clear from Figure 5.6 and Figure 5.7 that the
optimal design given in (Zhuang and Atherton, 1993) results into an excessively
high control action variation. Accordingly, it can be verified that MS = 21.23,
which is a very bad robustness indicator. Robustness can be improved by
increasing N , for instance, if N = 50, MS = 14.06, which continues to be too
high, however. A typical value is N = 10 (O’Dwyer, 2006). For this value, we
have that MS = 77.88.

Let us turn our attention now to the standard IMC (Morari and Zafiriou,
1989) method. In (Ali and Majhi, 2009), the traditional PI tuning based on the
IMC method is reexamined under the light of tight control and smooth control
(Skogestad, 2006). The fastest possible control with acceptable robustness
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Figure 5.6: Load disturbance responses.

is achieved by tight control, whereas smooth control results in the slowest
control subject to achieval of acceptable disturbance rejection. In (Ali and
Majhi, 2009), the normalized IMC filter time constant (λ/h) is designed to
achieve a particular value of MS that results in smooth (λ/h = 1.47) and tight
(λ/h = 0.74) control for stable FOPTD plants. In particular, the following PI
settings are considered

Kti
p =

0.4τ

Kgh
≈ 5.88 T ti

i = τ = 1.073 (5.34)

Ksm
p =

0.57τ

Kgh
≈ 8.38 T sm

i = τ = 1.073 (5.35)

respectively for tight and smooth control. In the smooth control case, MS =
1.38, whereas in the tight control case, MS = 1.71. In this approach, the
basic idea is to improve the load disturbance rejection by means of making
the system faster (and consequently less robust). This approach fails when
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Figure 5.7: Control effort for the load disturbance responses.

considering lag-dominant plants. In Figure 5.8, the load disturbance responses
associated with the smooth and tight PI settings in (Ali and Majhi, 2009)
are compared with those obtained using the proposed method tuned with
λ = 2.4h = 0.1752, γ = γld, which leads to the PI controller Kp = 6.8765, Ti =
0.3696. This tuning of our λγ controller provides good disturbance attenuation
and good robustness: MS = 1.6551. As it can be seen, the approach in (Ali and
Majhi, 2009) improves the disturbance rejection by making the system faster.
In order to provide acceptable robustness, the system bandwidth is limited
to that providing MS = 1.71. Although the amplitude of the disturbance
rejection response is attenuated, the response continues to be sluggish because
the slow pole of the plant at s = −1/τ is not cancelled.

5.5 Summary

This chapter has presented a unified servo/regulator analytical design for ro-
bust PID tuning of stable plants. The design combines the basic ideas behind
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Figure 5.8: Load disturbance rejection for the proposed method and that in
(Ali and Majhi, 2009) considering the FOPTD model (5.33).

the IMC and the γ-tuning approaches. A simulation example has verified the
effectiveness of the proposed method. As a summary of this example, it has
been shown how the proposed method allows for an easy adjustment of both
the robustness margins (in contrast with some approaches focusing on the op-
erating mode (Zhuang and Atherton, 1993; Arrieta et al., 2010; Alcántara et
al., 2010b)) and the operating mode of the controller (in contrast with IMC
and IMC-like procedures).
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Chapter 6

An improved H∞ design

Based on (Alcántara et al., 2011c; Alcántara et al., 2011b)

This chapter presents an H∞ design that alleviates some difficulties with
standard Internal Model Control (IMC), while still obeying the same
spirit of simplicity. The controller derivation is carried out analyti-
cally based on a weighted sensitivity formulation. The corresponding
frequency weight, chosen systematically, involves two tuning parameters
with clear meaning in terms of common design specifications: one ad-
justs the robustness/performance trade-off as in the IMC procedure; the
other one balances the servo and regulatory performance. For illustration
purposes, the method is applied to analytical tuning of PI compensators.
Due to its simplicity and effectiveness, the presented methodology is also
suitable for teaching purposes.

6.1 Introduction

Simplicity is a desired feature of a control algorithm: we would like it to be
widely applicable and easy to understand, involving as few tuning parameters
as possible. Ideally, these parameters should possess a clear engineering mean-
ing, making the tuning a systematic task according to the given specifications.
As for implementation, low-order controllers are preferable.

In this line, the PID controller is recognized to be the bread and butter of
automatic control, being by far the most dominating form of feedback in a wide
range of industrial applications; the PID strategy is particularly effective in

119
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process control, where a combination of benign process dynamics and modest
performance requirements finds its place (Astrom and Hagglund, 2005). The
ideal PID law is based on the present (P), past (I) and estimated future (D)
error information. In accordance with this original conception, there are only
three tuning parameters. Even for such a simple strategy, it is not easy to find
good settings without a systematic procedure (Pedret et al., 2002; Skogestad,
2003; Ogunnaike and Mukati, 2006).

During the last twenty years, there has been a revived interest in PID
control, motivated by the advent of model predictive control, which requires
well-tuned PID compensators at the bottom level, and the emergence of auto-
tuning tools (Astrom and Hagglund, 2001). As a result, numerical (optimization-
based) techniques have been suggested in the literature (Zhuang and Ather-
ton, 1993; Visioli, 2001; Astrom and Hagglund, 2004; Toscano, 2005). In the
same vein, analytically-derived tuning rules have appeared (He et al., 2000; Lee
et al., 2000; Shamsuzzoha and Lee, 2007; Vilanova, 2008). Another reason for
the PID revival has been the lack of results regarding stabilization of de-
layed systems (Silva et al., 2002; Hohenbichler, 2009; Songa et al., 2009; Ou et
al., 2009). These research efforts, specially the trend for analytical design, has
incorporated into the PID arena the control theory mainstream developments,
leaving aside more specific techniques.

Among the analytical methods, IMC (Morari and Zafiriou, 1989) has gained
remarkable industrial acceptance due to its simple yet effective procedure
(Skogestad, 2003; Dehghani et al., 2006). Internal Model Control theory was
first applied to PID control of stable plants in (Rivera et al., 1986), solving
the robustness problems associated with some early tunings like (Ziegler and
Nichols, 1942). Although the IMC-PID settings (Rivera et al., 1986) are ro-
bust and yield good set-point responses, they result in poor load disturbance
rejection for integrating/lag-dominant plants (Chien and Fruehauf, 1990; Horn
et al., 1996). Alternative PID tuning rules aimed at good regulatory perfor-
mance can be consulted in (Horn et al., 1996; Shamsuzzoha and Lee, 2007).
In (Skogestad, 2003), remarkably simple tuning rules which provide balanced
servo/regulator performance are proposed based on a modification of the set-
tings in (Rivera et al., 1986). It is important to realize that the problems with
the original IMC-based tunings come indeed from inherent shortcomings of
the IMC procedure, thoroughly revised in (Dehghani et al., 2006).

The purpose of this chapter is to present an H∞ design which avoids some
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of the limitations of the IMC method, while retaining its simplicity as much
as possible. In particular, the method is devised to work well for plants of
modest complexity, for which analytical PID tuning is plausible.

Roughly speaking, the design procedure associated with modern H∞ con-
trol theory involves the selection of frequency weights which are used to shape
prescribed closed-loop transfer functions. Many practitioners are reluctant to
use this methodology because it is generally difficult to design the frequency
weights properly. At the end of the day, it is quite typical to obtain high-order
controllers, which may require the use of model order reduction techniques.
Apart from the cumbersome design procedure, control engineers usually find
the general theory difficult to master as well. To alleviate the above difficul-
ties, we rely here on the plain H∞ weighted sensitivity problem (WSP). By
investigating its analytical solution, the involved frequency weight is chosen
systematically in such a way that a good design in terms of basic conflicting
trade-offs can be attained. The main contributions of the proposed procedure
are:

1. The selection of the weight is systematic (this is not common in H∞
control) and simple, only depending on two types of parameters:

• One adjusts the robustness/performance trade-off as in the IMC
approach.

• The other one allows to balance the performance between the servo
and regulator modes. As it will be explained, this can be interpreted
in terms of a mixed S/SP sensitivity design.

2. The method is general : both stable and unstable plants are dealt with
in the same way. This differs from other analytical H∞ procedures.

3. The controller is derived analytically. For simple models, this leads
to well-motivated PID tuning rules which consider the stable/unstable
plant cases simultaneously.

The rest of the chapter is organized as follows: Section 6.2 presents the
proposed design method, based on the H∞ WSP, while Section 6.3 deals with
its application to analytical tuning of PI controllers. Simulation examples are
given in Section 6.4 to emphasize the new features of the proposed approach.
Finally, Section 6.5 contains a summary of the chapter.
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6.2 Proposed design procedure

The proposed approach stems from considering the WSP (Zames and Francis,
1983; Skogestad and Postlethwaite, 2005):

|ρ| = min
K∈C

‖N‖∞

= min
K∈C

∥∥∥∥Fl

([
W −WP
1 −P

]
,K

)∥∥∥∥
∞

= min
K∈C

‖WS‖∞ (6.1)

6.2.1 Analytical solution

Before selecting W to shape S, we will look for an analytical solution of (6.1).
The classical design found in (Francis, 1987; Doyle et al., 1992) consists of
transforming (6.1) into a Model Matching Problem (MMP) using the Youla-
Kucera parameterization (Youla et al., 1976). From an analytical point of
view, the problem with this parameterization is the need of computing a co-
prime factorization when P is unstable. In order to deal with stable and
unstable plants in a unified way, it would be desirable to avoid any notion
of coprime factorization. Towards this objective, the key point is to use a
possibly unstable weight:

Theorem 6.2.1. Assume that P is purely rational (i.e., there is no time delay
in P ) and has at least one Right Half-Plane (RHP) zero. Take W as a MP
weight including the unstable poles of P . Then, the optimal weighted sensitivity
in problem (6.1) is given by

N o = ρ
q(−s)

q(s)
(6.2)

where ρ and q = 1 + q1s + · · · + qν−1s
ν−1 (Hurwitz) are uniquely determined

by the interpolation constraints:

W (zi) = N o(zi) i = 1 . . . ν, (6.3)

being z1 . . . zν (ν ≥ 1) the RHP zeros of P .
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Proof. The following change of variable (or IMC parameterization (Morari
and Zafiriou, 1989))

K =
Q

1− PQ
(6.4)

puts H(P,K) in the simpler form

H(P,K) =

[
PQ (1− PQ)P
Q 1− PQ

]
(6.5)

As shown in (Morari and Zafiriou, 1989), internal stability is then equivalent
to

• Q ∈ RH∞

• S = 1− PQ has zeros at the unstable poles of P

The weighted sensitivity WS = W (1− PQ) = N o in (6.2) is achieved by

Q0 = P−1(1−N oW−1) (6.6)

First, we must verify that Q0 is internally stabilizing. That Q0 ∈ RH∞ follows
from the interpolation constraints (6.3). On the other hand, S = 1 − PQ0 =
N oW−1 is such that S = 0 at the unstable poles of P (because W contains
them by assumption). Now that internal stability has been verified, it remains
to be proved that Q0 (equivalently N o) is optimal. For this purpose, we use
the result, proved in (Morari and Zafiriou, 1989), that the set of internally
stabilizing Q’s can be expressed as

Q = {Q : Q = Q0 +ΥQ1} (6.7)

where Q1 ∈ RH∞ is any stable transfer function, and Υ ∈ RH∞ has (exclu-
sively) two zeros at each closed RHP pole of P (the exact shape of Υ is not
necessary for the proof). Hence, any admissible weighted sensitivity has the
form

W (1− PQ) = W (1− P [Q0 +ΥQ1])

= W (1− PQ0)−WPΥQ1

= N o −WPΥQ1
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Minimizing ‖N o −WPΥQ1‖∞ is a standard MMP in terms of Q1, with T1 =
N o ∈ RH∞, T2 = WPΥ ∈ RH∞. From Lemma 1.2.1, the optimal error
Eo = T1 − T2Q1 is all-pass and completely determined by the RHP zeros of
T2, which are those of P . More concretely, for each RHP zero of P , we have
the interpolation constraint Eo(zi) = N o(zi). Obviously, this implies that
Eo = N o. Equivalently, the optimal solution is achieved for Q1 = 0, showing
that Q0 is indeed optimal.

Once the optimal weighted sensitivity has been determined, the following
corollary of Theorem 6.2.1 gives the corresponding (complementary) sensitiv-
ity function and feedback controller:

Corollary 6.2.1. Consider the following factorizations:

P =
np

dp
=

n+
p n

−
p

d+p d
−
p

W =
nw

dw
=

nw

d′wd
+
p

(6.8)

where n+
p , d

+
p contain the unstable (or slow in the case of d+p ) zeros of np, dp,

respectively. Similarly, n−
p , d

−
p contain the stable zeros of np, dp. Then,

S = N oW−1 = ρ
q(−s)dw
q(s)nw

(6.9)

T = 1−N oW−1 =
n+
p χ

q(s)nw
(6.10)

K =

(
1−N oW−1

N oW−1

)
P−1 =

d−p χ
ρn−

p q(−s)d′w
(6.11)

where χ is a polynomial such that

q(s)nw − ρq(−s)dw = n+
p χ (6.12)

Proof. The optimal Weighted Sensitivity N o corresponds to

S = N oW−1 and T = 1−N oW−1 (6.13)

From the definitions of S and T , the feedback controller can be expressed as

K =
T

S
P−1 =

1−N oW−1

N oW−1
P−1 (6.14)
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Furthermore, the interpolation constraints (6.3) guarantee that Q0 ∈ RH∞.
Thus, there exists a polynomial χ such that (6.6) can be rewritten as

Q0 =
dp

n+
p n

−
p

(
q(s)nw − ρq(−s)dw

q(s)nw

)
=

dpχ

n−
p q(s)nw

(6.15)

where the factorizations in (6.8) have been used. In terms of Q0, we have that
S = 1 − PQ0, T = PQ0 and K = Q0

1−PQ0
. Finally, straightforward algebra

yields the polynomial structure of equations (6.9)–(6.11).

Remark 6.2.1. It is noteworthy that the feedback controller (6.11) is realizable
only if P is biproper. Hence, in practice, it may be necessary to add fictitious
high-frequency zeros to the initial model to meet this requirement.

6.2.2 Selection of W

Let us denote by τ1, . . . , τk the time constants of the unstable or slow poles of
P . Equation (6.9) reveals that, except by the factor ρ, |S| is determined by
|W−1| (N o is all-pass). Based on (6.9) and (6.10), the following structure for
the weight is proposed

W (s) =
(λs+ 1)(γ1s+ 1) · · · (γks+ 1)

s(τ1s+ 1) · · · (τks+ 1)
(6.16)

where λ > 0, and
γi ∈ [λ, |τi|] (6.17)

The rationale behind the choice of W in (6.16) is further explained below:

• Let us start assuming that k = 0 (i.e., W = λs+1
s ). The integrator in

W forces S(0) = 0 for integral action. From (6.10), the term (λs + 1)
in the numerator of W appears in the denominator of the input-to-
output transfer function. Consequently, the closed-loop will have a pole
s = −1/λ. The idea is to use λ to determine the speed of response, as
in standard IMC.

• If P has slow stable poles, it is necessary that S cancels them if distur-
bance rejection is the main concern. Otherwise, they will appear in the
transfer function Tyd = SP , making the response sluggish. This is why
W also contains these poles. As a result, slow (stable) and unstable poles
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are treated basically in the same way. This unified treatment ensures
internal stability in terms of the generalized D-stability region of Figure
6.1.

Re

Im

�

Figure 6.1: General stability region: slow and unstable poles are D-unstable.

• As it has been said, producing S(−1/τi) = 0, i = 1, . . . , k is necessary
for internal stability and disturbance rejection. Notice, however, that
these constraints mean decreasing |S| at low frequencies. By a waterbed
effect argument (Skogestad and Postlethwaite, 2005), recall the Bode’s
Sensitivity Integral:

∫ ∞

0
|S(jω)|dω = π

k∑
i,τi<0

|τi|−1, (6.18)

this will augment |S| at high frequencies, maybe yielding an undesirable
peak (MS) on it. This, in turn, will probably augment the peak of |T |
(MT ) and the overshoot in the set-point response. In order to alleviate
these negative effects, for each slow/unstable pole of P , we introduce a

factor (γis + 1) in the numerator of W : as γi ↗ |τi|,
∣∣∣ τijω+1
γijω+1

∣∣∣ ↘ 1; the

resulting flatter frequency response will reduce the overshoot (improving
the robustness properties, see Section 6.2.3) at the expense of settling
time.

• We have supposed that λ < |τi| ∀k = 1 . . . k. In other words, we are
considering relatively slow plants: for stable plants without slow poles,
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the standard IMC procedure will provide good results in terms of track-
ing and disturbance rejection; there is no conflict between Tyr and Tyd.
Note, in addition, that forcing S = 0 (T = 1) at high frequency is un-
desirable from a robustness point of view. This is why we discard rapid
stable poles from the denominator of W . If the plant is unstable, there
is no option and one has to force S = 0 (T = 1) at the rapid unstable
poles, which imposes a minimum closed-loop bandwidth.

Essentially, there are two tuning parameters in W : λ is intended to tune
the robustness/performance compromise. The set of numbers γi allow us to
balance the performance between the servo and regulator modes. The latter
point can be interpreted in terms of a mixed S/SP sensitivity design: let
us assume that λ ≈ 0. Then, when γi = |τi| (servo tuning), we have that
|WS| ≈ |S/s| and we are minimizing the peak of |S| (= |Ter|) subject to
integral action. In the other extreme, if γi = λ (regulator tuning), the poles
of P appear in W . If the zeros of P are sufficiently far from the origin, we
have that |WS| ≈ |SP/s| in the low-middle frequencies. Heuristically, we are
minimizing the peak of |SP | (= |Tyd|) subject to integral action.

Remark 6.2.2. Let us consider that P has a RHP pole at s = −1/τi (τi < 0)
and a RHP zero at s = zi. Then, from (6.3) and (6.16), it follows that

∣∣∣∣ 1

τizi + 1

∣∣∣∣
∣∣∣∣∣(λzj + 1)

∏k
j=1(γjzj + 1)

zj
∏k

j=1,j �=i(τjzj + 1)

∣∣∣∣∣ = |ρ|
∣∣∣∣q(−zi)

q(zi)

∣∣∣∣ (6.19)

As the RHP pole −1/τi and the RHP zero zi get closer to each other, τizi →
−1, which makes the left hand side grow unbounded. Since

∣∣∣ q(−zi)
q(zi)

∣∣∣ � 1,

|ρ| → ∞. Note that this happens regardless the values of λ and the γj ’s,
and obeys the fact that plants with unstable poles and zeros close to each other
are intrinsically difficult to control (Morari and Zafiriou, 1989).

Remark 6.2.3. For simplicity, the γi parameters could be determined from a
single parameter γ ∈ [0, 1] as indicated below:

(γ1, . . . , γk)
T = (1− γ)(λ, . . . , λ)T + γ(|τ1|, . . . , |τk|)T (6.20)
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6.2.3 Stability and Robustness

Because of the assumptions in Theorem 6.2.1, the possible delay of the plant
must be approximated by a non-minimum phase rational term. This approxi-
mation creates a mismatch between P (the purely rational model used for de-
sign) and the nominal model containing the time delay, let us call it Po. The
following sufficient condition for Nominal Stability can be derived from the
conventional Nyquist stability criterion (Skogestad and Postlethwaite, 2005):

Proposition 6.2.1. Assume that P is internally stabilized by K, and that P
and Po have the same RHP poles. Then, K internally stabilizes Po if∣∣∣∣Lo − L

1 + L

∣∣∣∣ < 1 ∀ω ∈ Ωpc (6.21)

where L = PK,Lo = PoK, and Ωpc =
{
ω : ∠

(
Lo−L
1+L

)
= −π + 2πn, n ∈ Z

}
is the set of phase crossover frequencies of Lo−L

1+L .

Figure 6.2 illustrates the situation graphically for a stable plant: the dis-
tance from L to the point (−1, 0) must exceed |Lo−L| when the vectors Lo−L
and −1− PK are aligned. Rather than using Proposition 6.2.1, a more prac-
tical approach is to check Robust Stability with respect to P (Skogestad and
Postlethwaite, 2005; Morari and Zafiriou, 1989), including Po in the uncertain
set under consideration (Vilanova, 2008). Generally, the way in which λ and
γi influence robustness is:

• Augmenting λ decreases the closed-loop bandwidth, making the system
more robust and less sensitive to noise.

• Decreasing γi improves the disturbance rejection, but increases the over-
shoot in the set-point response to the detriment of robustness.

These robustness implications can be understood in terms of the Robust Sta-
bility condition ‖ΔT‖∞ < 1 (equivalently |T | < 1/|Δ| ∀ω), where Δ mod-
els the multiplicative plant uncertainty (Skogestad and Postlethwaite, 2005).
Augmenting λ makes the system slower, which favours Robust Stability. On
the other hand, decreasing γi increments the peak of |T | (responsible for the
overshoot increment), which limits the amount of multiplicative uncertainty.
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L(ω2)

Lo − L(ω1)

Lo − L(ω2)

(−1, 0)

O

Figure 6.2: Stability condition for Po in terms of P . The magnitude condition
|1 + L| > |Lo − L| must be true for ω1 (which is a phase crossover frequency,
i.e., ω1 ∈ Ωpc), but not for ω2.

6.3 Application to PI tuning

This section deals with the application of the presented design method to the
tuning of PI compensators.

6.3.1 Stable/unstable plants

Let us consider the First Order Plus Time Delay (FOPTD) model given by

Po = Kg
e−sh

τs+1 , where Kg, h, τ are, respectively, the gain, the (apparent) delay,
and the time constant — negative in the unstable case — of the process. For
design purposes, we take

P = Kg
−sh+ 1

τs+ 1
(6.22)
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where a first order Taylor expansion has been used to approximate the time
delay. From (6.16) and (6.22), with k = 1, the following weight results

W =
(λs+ 1)(γs + 1)

s(τs+ 1)
(6.23)

where λ > 0, γ ∈ [λ, |τ |]. The optimal weighted sensitivity is determined from
(6.3). In this case, P has a single RHP zero (ν = 1), and N o becomes

N o = ρ =
(λ+ h)(γ + h)

τ + h
(6.24)

From (6.11), the controller is finally given by

K =
χ

Kgρs
(6.25)

where

χ =
τ(h+ λ+ γ)− λγ

τ + h
s+ 1 (6.26)

The feedback controller (6.25) can be cast into the PI structure:

K = Kc

(
1 +

1

Tis

)
(6.27)

according to the tuning rule in the first row of Table 6.1.

Table 6.1: Proposed PI tuning rules.
Model Kc Ti

Kg
e−sh

τs+1
1
Kg

Ti
λ+γ+h−Ti

τ(h+λ+γ)−λγ
τ+h λ > 0, γ ∈ [λ, |τ |]

Kg
e−sh

s
1
Kg

Ti
λγ+hTi

h+ λ+ γ λ > 0, γ ∈ [λ,∞)

Essentially, the trade-off between disturbance rejection and set-point track-
ing is controlled by Ti. This can be verified by considering the proposed PI
settings for the extreme values of γ. This has been done in Table 6.2 for the
stable plant case (τ > 0). Certainly, Ti is the parameter which varies more

with γ: Kc varies from 1
Kg

τ
λ+h to 1

Kg

τ
λ+h

(
h+2λ−λ2/τ

h+λ

)
as γ is decreased from

τ to λ. This way, as we improve disturbance rejection, the controller gain
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Table 6.2: PI tuning rules for the extreme values of γ.
γ = λ γ = τ

Kc Ti Kc Ti

1
Kg

τ
λ+h

(
h+2λ−λ2/τ

h+λ

)
τ(h+2λ)−λ2

τ+h
1
Kg

τ
λ+h τ

increases. The multiplicative factor h+2λ−λ2/τ
h+λ equals one when λ = τ . If

τ 	 h, λ, then h+2λ−λ2/τ
h+λ ≈ h+2λ

h+λ < 2, which shows that Kc augments mod-
erately in the transition to the regulator mode. Based on these facts, it is
reasonable to select Kc =

1
Kg

τ
λ+h , and fix Ti for good servo/regulation trade-

off. This strategy is the essence of the SIMC tuning rule for stable plants
(Skogestad, 2003).

Next, we will compare the input-to-output transfer functions achieved for
the extreme values of γ. For small values of the time delay, n+

p = −sh+1 ≈ 1,
and equation (6.10) (with q(s) = 1, χ = ζs+ 1, nw = (λs+ 1)(γs + 1)) allows
us to write:

|T (jω)| ≈
∣∣∣∣ 1

λjω + 1

∣∣∣∣
∣∣∣∣ ζjω + 1

γjω + 1

∣∣∣∣ (6.28)

For a lag-dominant plant, the following approximations are valid:

• When γ = λ, the closed-loop magnitude is

|T (jω)| ≈
∣∣∣∣ 1

λjω + 1

∣∣∣∣
∣∣∣∣∣∣
(
τ(h+2λ)−λ2

τ+h

)
jω + 1

λjω + 1

∣∣∣∣∣∣ ≈
∣∣∣∣ 1

λjω + 1

∣∣∣∣
∣∣∣∣ (h+ 2λ)jω + 1

λjω + 1

∣∣∣∣
(6.29)

• When γ = |τ |, we have that

|T (jω)| ≈
∣∣∣∣ 1

λjω + 1

∣∣∣∣ (6.30)

for the stable plant case (τ > 0). If P is unstable (τ < 0), T is such that

|T (jω)| ≈
∣∣∣∣ 1

λjω + 1

∣∣∣∣
∣∣∣∣∣∣
(
τ(h+λ+|τ |)−λ|τ |

τ+h

)
jω + 1

|τ |jω + 1

∣∣∣∣∣∣
≈

∣∣∣∣ 1

λjω + 1

∣∣∣∣
∣∣∣∣(h+ 2λ+ |τ |)jω + 1

|τ |jω + 1

∣∣∣∣ (6.31)
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Therefore, as the value of γ is increased, the pole and the zero of ζs+1
γs+1 in

(6.28) get closer to each other, reducing the overshoot and providing flatter
frequency response.

6.3.2 Integrating plant case (τ → ∞)

If the plant under control is integrating, it can be modelled by an Integrator

Plus Time Delay (IPTD) model: Po =
Kge−sh

s . For this case, we take

P = Kg
−sh+ 1

s
(6.32)

The corresponding weight is chosen as

W =
(λs+ 1)(γs + 1)

s2
(6.33)

where λ > 0, γ ∈ [λ,∞). The optimal weighted sensitivity becomes

N o = ρ = (λ+ h)(γ + h) (6.34)

From (6.11),

K =
1

Kg

ζ ′s+ 1

(λγ + hζ ′)s
(6.35)

where
ζ ′ = h+ λ+ γ (6.36)

The associated PI tuning rule can be consulted in the second row of Table 6.1.
Alternatively, the tuning rules for the IPTD model could have been derived by
taking the limit τ → ∞ in the FOPTD settings, considering the approximation
Kg

e−sh

τs+1 =
Kg

τ
e−sh

s+1/τ ≈ Kg

τ
e−sh

s .

6.4 Simulation examples

This section evaluates the tuning rules given in Table 6.1 through four simula-
tion examples. Examples 1–3 emphasize that the design presented in Section
6.2 generalizes standard IMC. The purpose of the fourth example is to illus-
trate that, for simple plants and modest specifications, the presented design
overcomes basic limitations of IMC, thus not being advisable to embark on
more complex strategies. A summary of the controller settings for Examples
1–4 can be consulted in Table 6.3.
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6.4.1 Example 1

The IMC-based PI tuning rule for stable FOPTD processes is given by (Morari
and Zafiriou, 1989):

Kc =
1

Kg

τ

λ+ h
Ti = τ (6.37)

In this example, the following concrete process e−0.073s

1.073s+1 is considered. Regard-
ing the λ parameter, two different values are chosen in order to achieve smooth
(λ = 0.10731) and tight (λ = 0.05402) control (Ali and Majhi, 2009), resulting
into: Ksm

c = 5.88, T sm
i = 1.073, and Kti

c = 8.38, T ti
i = 1.073. In the smooth

control case, MS = 1.38, whereas in the tight control case, MS = 1.71. The
associated disturbance responses are shown in Figure 6.3. As it can be seen,
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0
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IMC (tight)
IMC (smooth)

Figure 6.3: Load disturbance response for Example 1.

it is possible to reduce the magnitude of the disturbance rejection response
by decreasing λ. However, the conventional IMC-based tuning continues to
exhibit poor disturbance attenuation even for the tight case. To the detriment
of robustness, decreasing further the value of λ would improve the regulatory
performance a little, but the response would continue to be sluggish. Accord-
ingly, it is not possible to get both good regulatory performance and good
robustness for the process under examination.
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In the design of Section 6.2, setting γ = λ produces an improvement of the
regulation performance. Consequently, the problem reduces now to finding
a value for λ providing the prescribed robustness level. This is achieved for
λ = 0.1752, which yields MS = 1.6551. The corresponding time response is
depicted in Figure 6.3.

It should be noted that the poor disturbance attenuation obtained through
conventional IMC can be remedied in several (more ad hoc) ways. For exam-
ple, approximating the process at hand by an integrating one (Chien and
Fruehauf, 1990). Then, conventional IMC design gives satisfactory distur-
bance rejection. A limitation of this approach is that it does not consider
the servo/regulator trade-off. Other IMC-based approaches for improved reg-
ulatory performance can be found in (Horn et al., 1996; Shamsuzzoha and
Lee, 2007). However, even for the simple FOPTD model, these approaches re-
quire a more complicated control structure (PID or PID plus filter). Overall,
the presented tuning rules are simpler and more instructive.

Table 6.3: Tuning of λ, γ (and corresponding PI settings) for Examples 1–4.
Ex. Model λ γ Kc Ti Design type

1 e−0.073s

1.073s+1 0.1752 0.1752 6.8765 0.3696 Regulator

0.146 1.073 4.8995 1.0730 Servo (=IMC)

2 e−0.073s

1.073s+1 0.146 0.4 5.8481 0.5286 Servo/Regulator

0.146 0.146 7.7215 0.3231 Regulator

3 e−s

−20s+1 2 2 -11.56 5.4737 Regulator (≈IMC)

0.9 9 -11.9 11.9 Servo/Regulator

0.1 0.1 18.2 0.22 Regulator (≈IMC)

4 −1
−s+1 ≈ −e−0.01s

−s+1 0.1 1 10.9 1.22 Servo

0.1 14 10.0642 15.667 Servo (K ≈ 10)

6.4.2 Example 2

Generally speaking, the γ parameter allows to balance the performance be-
tween set-point tracking and disturbance rejection. To clarify this, we will
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Figure 6.4: Tracking and disturbance responses for Example 2.

continue Example 1, selecting λ = 2h = 0.146 and considering three dif-
ferent values for γ. The first value is γ = τ = 1.073 (servo tuning). The
resulting design is identical to the conventional IMC one. The second value
is γ = λ = 0.146 (regulator tuning). Finally, we set γ = 0.4 for balanced
servo/regulator performance. Figure 6.4 shows the three time responses. We
have also included the SIMC tuning rule (Skogestad, 2003):

Kc =
1

Kg

τ

λ+ h
Ti = min {τ, 4(λ + h)} , (6.38)

which was presented as a modification of the original settings (6.37) to improve
the regulatory performance. Note, however, that in the edge case τ ≈ 4(λ+h),
there is no difference between (6.38) and (6.37). This is the situation in this
example: τ = 1.073 is close to 4(λ + h) = 0.876. Looking at Figure 6.4, it
is confirmed that the SIMC tuning gives approximately the same responses
as conventional IMC. Lacking a rigorous analysis (this is not the intention
here), the proposed PI tuning rule with γ = 0.4 seems to offer a better over-
all compromise. Finally, it is remarkable that, whereas the SIMC rule was
derived only considering stable plants, the proposed tuning rule unifies the
stable/unstable cases.
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6.4.3 Example 3

For unstable plants, the IMC filter may cause large overshoot and poor ro-
bustness due to the large peak in the filter frequency response (Campi et
al., 1994; Dehghani et al., 2006). The search of new filters to alleviate these
shortcomings has resulted in more complicated (and application-specific) pro-
cedures (Campi et al., 1994). In this example we deal with an unstable plant,
analyzing how the proposed method, albeit simple, can mitigate these nega-
tive effects. Let us consider the unstable process e−s

−20s+1 . The IMC controller

is such that T = e−sf , where f = a1s+1
(λs+1)2

and a1 = 20
(
e1/20(λ/20 + 1)2 − 1

)
.

Suppose that λ = 2 produces the desired closed-loop bandwidth, then a1 =
5.4408. The feedback controller is K = (−20s+1) f

1−e−sf , which is not purely

rational. Approximating e−s ≈ −sh+ 1, we finally obtain

Kimc =
−11.53s2 − 1.542s + 0.1059

s2 − 0.04669s
(6.39)

As for the proposed method, we start considering the initial tuning λ = 2, γ =
λ. Figure 6.5 (Nominal Case) shows that this design is almost identical to the
IMC one. Both Kimc and the proposed PI provide excellent disturbance rejec-
tion. However, it could be desirable to reduce the overshoot in the set-point
response or improve the robustness properties. Within the IMC procedure,
the only way to it is to roll-off the controller (increasing λ), making the sys-
tem slower. Contrary to this, if we take λ = 0.9, γ = 9 ∈ [0.9, 20] = [λ, |τ |],
it can be seen from Figure 6.5 (Nominal Case) that it is possible to reduce
the overshoot (at the expense of disturbance attenuation and settling time)
without slowing down the system. Figure 6.6 depicts the frequency response
of |S| and |T |. Recalling Section 6.2.3, the reduction of MS and MT confers
more robustness and smoother control, as confirmed in Figure 6.5 (Uncertain
Case), where the real plant delay is assumed to be h = 1.6 instead of one. Cer-
tainly, the new settings provide the best responses in both set-point tracking
and disturbance attenuation.

6.4.4 Example 4

Finally, we revisit the design method in (Dehghani et al., 2006) (briefly sum-
marized in Section 1.1.3). This H∞ procedure was devised to generalize IMC:
in particular, for unstable plants, it allows to use a different filter from that
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Figure 6.5: Tracking and disturbance responses for Example 3.

in (1.3), hence proving more flexible. The following design example, taken
from (Dehghani et al., 2006), makes it clear: given the unstable plant −1

−s+1

(Pa = 1, Pm = −1
−s+1), the controller is designed in order to achieve a closed-

loop response similar to 1
0.1s+1 , that corresponds to f = 1

0.1s+1 in problem
(1.6). This specification is coherent, in the sense that the desired closed-loop
bandwidth is considerably beyond the unstable pole frequency (Dehghani et
al., 2006). Note that Paf |s=1,0 ≈ 1, taking into account internal stability
constraints and zero steady state error (unity low frequency gain). The de-
sired closeness between T and Paf = 1

0.1s+1 is specified by the inequality
‖T − Paf‖∞ < α, with α = 0.1. In addition, it is assumed that the actuators
can pump up a maximum gain of 10 (βc = 10). The frequency cost ε1 is
chosen to gradually reach the maximum gain α/10 as the plant model loses
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Figure 6.6: Magnitude frequency responses of S and T for Example 3. For
λ = 0.9, γ = 9, the peaks of |S| and |T | are decreased without reducing the
closed-loop bandwidth.

its bandwidth to the controller. Finally, ε2 = 0. Solving (1.6) leads to the H∞
controller

K∞ =
1.099 × 106(s+ 18.34)(s2 + 6s+ 9)

(s+ 1.15 × 105)(s + 17.14)(s2 + 5.94s + 8.85)
(6.40)

and the flag ρ = 0.1 � α. This (supported by the discussion in Section 1.1.3)
means that the desired objectives have been achieved. Figure 6.7 depicts the
results both in the frequency and the time domain1. In view of Figure 6.7,
it is clear that K∞ does not provide integral action, even if f |s=0 = 1. As
claimed in (Lee and Shi, 2008), where this and other pitfalls in applying the
design in (Dehghani et al., 2006) are highlighted, there are two possible sources
of difficulty: first, the fact that f |s=1 is not exactly one, as required by the
unstable plant pole at s = 1. Second, the fact that ε1 �= 0 or ε2 �= 0, as it is
also the case in this example.

1These plots are absent in (Dehghani et al., 2006).
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Figure 6.7: Frequency and time responses for Example 4.

In what follows, we will inspect the results obtained with the proposed
method, leaving the λ parameter fixed at λ = 0.1. Let us approximate −1

−s+1 ≈
− e−0.01

−s+1 in order to apply the tuning rules of Table 6.1. We start by selecting
λ = 0.1, γ = λ, but the actuator limits are violated. In order to adhere to
the given specifications, we take γ = 1, which almost verifies the actuator
restriction. As a matter of fact, we can make the closed-loop closer to f =

1
0.1s+1 by increasing further the value of γ (the additional value γ = 14 has been
considered). From Figure 6.7, it is evident that the proposed method always
provides integral action. When γ → ∞, a proportional controller K = 10 is
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obtained, for which the closed-loop is 1
0.1s+0.9 ≈ 1

0.1s+1 . It is remarkable that
K∞ can be handcrafted into such a plain gain too, yielding the same results as
the original fourth-order controller. However, in (Dehghani et al., 2006), the
application of a model reduction algorithm only lowered the order of K∞ to
three. This point stresses that care has to be taken when using/implementing
numerical designs. For the particular case at hand, γ = 1 gives a compromise
between the desired magnitude response, control effort, controller complexity,
and the inclusion of integral action in the loop. Obviously, the proposed design
may be insufficient for more stringent specifications. In these cases, the more
flexible procedure in (Dehghani et al., 2006) reveals advantageous.

6.5 Summary

This chapter has presented an analytical H∞ design method based on min-
imizing the weighted sensitivity function. The proposed weight, chosen in a
systematic way, guarantees internal stability. This point helps unifying the
treatment of stable/unstable plants, avoiding the notion of coprime factoriza-
tion. Another important feature of the proposed procedure is that it allows
to balance the performance between the servo and regulator modes, and not
only the robustness/performance compromise as in the original IMC proce-
dure. Both for stable and unstable plants, it has been shown that this extra
degree of freedom circumvents basic shortcomings of IMC reported in the lit-
erature.

For illustration purposes, the application to analytical tuning of PI con-
trollers has been considered based on FOPTD and IPTD models. The sug-
gested methodology allows to tune the controller in terms of two intuitive
parameters (λ and γ), therefore guiding the tuning process. Truly-PID rules
(including derivative action) could be derived similarly for the most common
first and second order models. These and other extensions, as providing λγ-
based auto-tuning, will be published elsewhere.
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Application to reset-based control

The use of 2DOF controllers is the most common option to decouple set-
point tracking and (load) disturbance rejection. For example, the following PI
control law is commercially available

u(t) = Kc

(
br(t)− y(t) +

1

Ti

∫ t

0
e(τ)dτ

)
(6.41)

where b is the so-called set-point weight. If b = 1, (6.41) reduces to the con-
ventional 1DOF PI controller. In general, the closed-loop system is described
by the equation

y =
K2P

1 +K1P
r +

P

1 +K1P
d (6.42)

where

K1 = Kc

(
1 +

1

Tis

)
K2 = Kc

(
b+

1

Tis

)
(6.43)

This corresponds to the block diagram of Figure 6.8. Another possibility to
combine good set-point and (load) disturbance processing is to switch between
suitable controllers for each purpose (Visioli, 2002). The potential advantages
of switched linear control have been reported in (Feuer et al., 1997), among
others. Consider the scheme of Figure 6.9.

• By default, the system operates in Regulator mode. Thus, K1 is tuned
using Table 6.1 (γ = λ).

141
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Figure 6.8: 2DOF control configuration.
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Figure 6.9: Switched feedback scheme.

• When a set-point change is signaled, we commute to K2, which is tuned
using Table 6.1 with γ = |τ |. This way, during the set-point tracking, a
servo-type tuning is used.

• After tsp seconds, the system switches back to K1.

If tsp = 0, there is no switching and the scheme reduces to the conventional
PI controller given by K1 (K2 is never active). By increasing tsp, K2 will be
active for a longer period of time, reducing the overshoot after a reference
change. Obviously, tsp should be chosen, at maximum, equal to the settling
time of the set-point response.

Reset controllers provide an alternative way to improve performance when
controlling strongly traded-off plants. A reset controller operates most of the
time as a linear system, but it performs a reset on its state when some condition
holds. In the time domain, this mechanism has been proved to be useful for
overcoming inherent limitations of linear controllers (Beker et al., 2001). Also
in the frequency domain, the advantages of the reset paradigm have been
justified using different techniques such as describing function analysis (Baños
and Vidal, 2007) or Poincare Maps (Barreiro and Dormido, 2011). The reset
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idea has also been applied to improve the performance of linear observers
(Paesa et al., 2011).

Recently, PI control with reset action — or PI+CI, following the nomen-
clature introduced in (Baños and Vidal, 2007)—, has been proposed in dif-
ferent articles (Baños and Vidal, 2007; Bakkeheim et al., 2008; Vidal and
Baños, 2010). As depicted in Figure 6.10, the PI+CI controller can be re-
garded as a conventional PI compensator with two possible integral gains.
Instead of using impulsive reset action based on the error signal as in (Baños

P
-

ur y

d

1-a

a

Kc

1

Ti

reset

1

s

1

s

Figure 6.10: Unity feedback scheme using the PI+CI controller.

and Vidal, 2007; Bakkeheim et al., 2008; Vidal and Baños, 2010), two alter-
native tunings based on switching and the proposed design are suggested in
Table 6.4. By assuming that set-point changes occur at t = 0, the reset signal
is:

reset(t) =

{
ON if 0 ≤ t ≤ tsp
OFF if t > tsp

(6.44)

The rationale behind Table 6.4 is explained next. Note that the PI+CI con-
troller offers only a restricted implementation of the general switched scheme,
since the reset mechanism just acts over the integral term. Therefore, Ti is
chosen as in Table 6.1 (γ = λ) when the reset is inactive, and α is such that
α
Ti

is equal to the other extreme value of Ti given in Table 6.1 for γ = |τ |. The
idea is to recover the largest possible value of Ti when the reset is active. This
way, during the set-point transient the integral gain is reduced to improve the
tracking (diminishing the overshoot). As Kc is not altered by the reset mech-
anism, the two options in Table 6.4 correspond to selecting Kc using γ = λ
or γ = |τ |. The first option chooses a servo-type tuning rule (Table 6.1, case
γ = |τ |) when the reset is active, and increases the integral gain for regula-
tion purposes when the reset is inactive. On the other hand, option 2 uses a
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regulator -type tuning rule (Table 6.1, case γ = λ) for normal operation, and
reduces the integral gain to improve the set-point response.

Table 6.4: Tuning rules for the PI+CI controller.
Option Kc Ti α

1 1
Kg

Ti
λ+|τ |+h−Ti

τ(h+2λ)−λ2

τ+h
τ(h+2λ)−λ2

τ(h+λ+|τ |)−λ|τ |
2 1

Kg

τ
λ+h

(
h+2λ−λ2/τ

h+λ

)
τ(h+2λ)−λ2

τ+h
τ(h+2λ)−λ2

τ(h+λ+|τ |)−λ|τ |

Example 6.0.1. For the plant P = e−s

10s+1 , Figure 6.11 (bottom) displays the
results obtained using conventional 1DOF and 2DOF PI controllers, and the
PI+CI controller using Option 1 in Table 6.4. In all the cases, the feedback

tuning is the same: Kc =
τ

Kg(λ+h) , Ti =
τ(h+2λ)−λ2

τ+h (γ = λ = 1.2). Substitut-

ing the concrete values into the tuning expressions, we get Kc = 4.545, Ti =
0.6512. Regarding the 2DOF PI controller, b = 0.25 (decreasing b further
does not reduce the overshoot significantly). As for the PI+CI controller,

α = τ(h+2λ)−λ2

τ(h+λ+|τ |)−λ|τ | = 0.1087 according to Table 6.4, and tsp = 3. In this

0 5 10 15 20 25 30 35 40
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2−DOF PI (b=0.25)
PI+CI (Option 1, tsp=3)

Figure 6.11: Time responses for 1DOF PI, 2DOF PI and PI+CI schemes.

particular example, it seems that the PI+CI controller may be advantageous
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with respect to the 2DOF PI controller. In particular, a set-point response
with shorter rise time and lower overshoot is attained. However, to establish
this thesis completely, a more thorough study is necessary.
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Chapter 7

The H2 counterpart

Based on (Alcántara et al., 2011a)

Based on Internal Model Control (IMC), we present a design method to
take into account both input and output disturbances. The proposed
design provides generalized IMC filters that can be used to obtain good
results in terms of output sensitivity (favouring output disturbances),
or in terms of input sensitivity (therefore placing the emphasis on load
disturbances). If both input and output disturbances are expected, the
design offers the possibility of obtaining a balance that improves the
overall disturbance rejection response.

7.1 Introduction

The objective of a control system is to make the output y behave in a desired
way by manipulating the plant input u. There are basically two different prob-
lems (Pernebo, 1981; Skogestad and Postlethwaite, 2005): the servo problem,
which concerns the tracking of the reference signal r, and the regulator prob-
lem, which aims at rejecting the disturbances d entering the control loop. In
both cases, the controller K is designed to make the control error e = y − r
small.

This chapter deals exclusively with the regulator problem. Note that
if the resulting tracking performance was not suitable, this could be fixed
in a second step by introducing a reference prefilter (Morari and Zafiriou,
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1989; Skogestad and Postlethwaite, 2005). More generally, the servo and the
regulator problems can be solved independently by using a Two-Degree-Of-
Freedom (2DOF) topology (Pernebo, 1981; Vilanova and Serra, 1997; Ibeas
and Alcántara, 2010). In what follows, we will assume that disturbances can-
not be measured and that can enter both at the input and at the output of the
plant P . Therefore, a feedforward strategy (Faanes and Skogestad, 2004; Vi-
lanova et al., 2009a) is not advantageous in the considered scenario, where the
feedback controller completely determines the disturbance response.

To cope with the input/output regulator problem, we rely here on the Inter-
nal Model Control (IMC) paradigm (Morari and Zafiriou, 1989). Historically,
the inherent shortcomings of the IMC method have resulted in the search of
new filters and/or alternative procedures: for minimum-phase (MP) unstable
plants, Campi et al. (1994) suggested a filter which allows easy adjustment of
the closed-loop bandwidth as well as a robustness improvement. For stable
plants, Horn et al. (1996) modified the conventional filter for enhanced in-
put disturbance attenuation. From a broader viewpoint, a simple IMC-based
procedure applicable to both stable and unstable plants and aimed at input
disturbances was presented by Lee et al. (2000). Some years later, Dehghani
et al. (2006) reported the difficulties with the IMC procedure in an exhaustive
manner and, in order to undergo them, devised a numerical design blend-
ing IMC and H∞ ideas. Although the latter design offers great versatility,
it requires judicious choices for some frequency weights and for the desired
closed-loop response, which may lead to design pitfalls as noted in (Lee and
Shi, 2008). Along these lines, a simpler IMC-like H∞ design overcoming basic
limitations of IMC has been reported by Alcántara et al. (2011c).

The analytical solution presented here can be seen as the H2 counterpart
of that in Chapter 6 (Alcántara et al., 2011c). With respect to (Alcántara et
al., 2011c), some assumptions have been removed: i.e., the plant model is not
restricted to be purely rational nor to contain at least one Right Half-Plane
(RHP) zero. In addition, plants with complex poles have been included in
the discussion. An interesting aspect of the here-adopted H2 approach is that
it unifies the previous designs (Campi et al., 1994; Horn et al., 1996; Lee et
al., 2000), resulting into a more general structure for the IMC filter. The distin-
guishing feature of the new filter is that it allows to balance the input/output
regulatory performance in a simple manner. This is a fundamental trade-off,
disregarded in (Campi et al., 1994; Horn et al., 1996; Lee et al., 2000), that
cannot be overcome using a 2DOF control configuration or a related approach
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PK
-

uer=0

d

y

W

Figure 7.1: Basic setup for the input/output regulator problem.

as done in the works (Visioli, 2002; Shamsuzzoha and Lee, 2007; Shamsuzzoha
and Lee, 2009).

An outline for the rest of the chapter is given next. Section 7.2 states the
problem formally and reviews basic material about H2 optimization and IMC.
The proposed design is introduced in Section 7.3, and is then illustrated by
example in Section 7.4 to obtain different balances of input/output disturbance
attenuation. Finally, Section 7.5 summarizes the main ideas and makes some
concluding remarks.

7.2 Problem statement and background material

To set the problem, we make use of Single-Input Single-Output (SISO) linear
models of the form

y = Pu+Wd (7.1)

for which the corresponding feedback setup is depicted in Figure 7.1. In (7.1),
W (which is not a physical component as P or K) represents a frequency
weight that will be designed to make it easy to balance the disturbance re-
sponse at the input and at the output of the plant. By absorbing the input
type (e.g. step-like disturbances) into the weight W too, we will assume here-
after that d in Figure 7.1 is an impulse, i.e. d(s) = 1. To derive the feedback
controller K, we will look at the structure of H2-optimal controllers. By an
H2-optimal controller, we understand here one such that the integrated square
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error

‖e‖22 =

∫ ∞

0
e2(t)dt (7.2)

is minimized for a particular input. Bearing in mind that e = −SWd = −SW ,
where S

.
= 1

1+PK is the sensitivity function, we can state problem (7.2) in the
frequency domain

min
K∈C

‖e‖22 = min
K∈C

1

2π

∫ ∞

−∞
|S(jω)W (jω)|2dω (7.3)

where C denotes the set of internally stabilizing controllers. Internal stability is
the requirement that all the closed-loop transfer functions are stable, implying
that cancellation of unstable poles between the plant P and the controller K
is not allowed. It is well-known that the IMC parameterization of the feedback
controller(Morari and Zafiriou, 1989),

K =
Q

1− PQ
, (7.4)

allows to write all the closed-loop relations affinely in Q (e.g., S = 1−PQ, T =
PQ). Then, in terms of Q, the following fundamental result solves (7.3):

Theorem 7.2.1 (Morari and Zafiriou, 1989, Theorem 5.2-1). Let us factor
both the plant P and the weight W into an all-pass and a MP portion so that
P = PaPm and W = WaWm. Denote by l, k the number of integrators and
unstable poles of P , respectively. Now, assume that the weight W contains
l′ ≥ l integrators and the first 0 ≤ k′ ≤ k unstable poles of P and define:

bP =
k∏

i=1

−s+ πi
s+ π̄i

and bW =
k′∏
i=1

−s+ πi
s+ π̄i

, (7.5)

being π1, . . . , πk the unstable poles of P . Then, the H2-optimal (internally
stabilizing) Q is given by

Q = bP (PmbWWm)−1
{
(bPPa)

−1bWWm

}
∗ (7.6)

where the operator {}∗ denotes that after a partial fraction expansion (PFE)
of the operand all terms involving the poles of P−1

a are omitted.
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Note that it is straightforward how to select W for the extreme cases at
hand. For example, if only step output disturbances are considered, the weight
should be W = 1/s, whereas W = P/s for the case of step disturbances
entering at the input of the plant. A more difficult problem is how to select
W systematically for balanced operation. In addition, W should be such that
it allows to adjust the robustness/performance trade-off. The selection of W
will be fully addressed in Section 7.3. We end this section by observing the
following facts:

Remark 7.2.1. The optimal solution in (7.6) only depends on the MP part
of W . Consequently, W can be restricted to be MP without loss of generality
(i.e., W = Wm).

Remark 7.2.2. For MP (possibly unstable) plants (Pa = 1), the optimal
solution in (7.6) becomes Q = P−1

m , independently of W .

7.3 Proposed input/output regulator design

This section first addresses the selection of a suitable weight W for the prob-
lem at hand (Section 7.3.1). After selecting W , an analytical solution for Q is
given based on the H2 minimization criterion (Section 7.3.2). Finally, in Sec-
tion 7.3.3 we examine the nominal performance, robust stability and robust
performance properties of the derived controller.

7.3.1 Selection of W

Let us take P = PaPm as in Section 7.2, and denote by dd the generating
polynomial of the disturbance (i.e., dd = s for steps, dd = s2 for ramps, etc).
For the sake of clarity, it is temporarily assumed that Pa �= 1 and that P has
not any complex poles or zeros, nor any pole at the origin. We also assume
that P has slow/unstable poles at s = −1/τ1, . . . ,−1/τk. Then, we make the
following choice of the (nonstrictly proper) weight:

W =
(λs+ 1)n

dd

k∏
i=1

γis+ 1

τis+ 1
(7.7)

with
n = max {1, δ(dd) + δ(P ) − 1} (7.8)
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where δ(dd), δ(P ) denote the degree of dd and the relative degree of P , respec-
tively. For the common case of step disturbances (dd = s), (7.8) simplifies to
n = max {1, δ(P )}. Finally, λ and γ1, . . . , γk in (7.7) are tuning parameters
verifying that

λ > 0 , γi ∈ [λ, |τi|] (7.9)

We recall here that the main objective of our design is to consider disturbances
entering both at the input and at the output of the plant. In addition, the
design has to account for model uncertainty. The rationale behind the selection
of W in (7.7) is explained below:

• In order to explain the role of λ and γi separately, let us start considering
that λ = 0. Then, we have that W = 1

dd

∏k
i=1

γis+1
τis+1 . Now, by making

γi = λ = 0, i = 1, . . . , k, the weight is W = 1
dd

∏k
i=1

1
τis+1 . For this choice

of γi, the design will provide good results in terms of input disturbance
attenuation since we are including the slow/unstables poles of P in W .
Stated otherwise, the disturbance passes through the conflicting poles of
the plant (note that fast stable poles do not impose a trade-off between
input/output regulatory performance).

• At this point, we can improve the output disturbance response by in-
creasing the value of each γi. To see this, let us consider that γi is set
to the upper bound of the interval (7.9), i.e., we take γi = |τi|. It is
then clear that |W | = 1

|dd| , for which (7.3) optimizes the ISE for output
disturbances.

• So far, we have assumed that λ = 0. Let us suppose now that each
γi has been fixed to a particular value. As we increase the value of
λ, the minimization in (7.3) will penalize the magnitude of S at higher
frequencies, resulting into a slower closed-loop. Therefore, λ can be used
to adjust the robustness/performance trade-off. Regarding n, the value
in (7.8) will ensure the properness of the final controller (this point will
be clarified later).

Remark 7.3.1. For simplicity, the γi parameters could be determined from a
single parameter γ ∈ [0, 1] as indicated below:

(γ1, . . . , γk)
T = (1− γ)(λ, . . . , λ)T + γ(|τ1|, . . . , |τk|)T (7.10)
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7.3.2 Analytical solution

The next step towards obtaining the IMC controller is to use Theorem 7.2.1.
As W = Wm in (7.7) contains the unstable poles of P , we have that bP = bW ,
and (7.6) simplifies to Q = (PmW )−1

{
P−1
a W

}
∗. This is a valid controller

when P is nonminimum-phase (NMP) in the sense that it is internally stabi-
lizing and proper. However, recalling the Remark 7.2.2, for MP plants (i.e.,
Pa = 1) the solution is Q = P−1

m regardless W . As a consequence, Q may be
improper, and it would be necessary to extend Q by cascading a filter as in the
conventional IMC procedure. We want to avoid this approach, and obtain a
proper solution directly from the specified weight W . Towards this objective,
we finally propose the following solution

Q = (PmW )−1
{
P−1
a W

}
	

(7.11)

where {·}	 acts like {·}∗, but also removing the non-strictly proper terms after
the PFE. The {·}	 operator gives the same result than {·}∗ when the plant
contains a delay. When P is delay-free, the actuation of {·}	 can be understood
in terms of {·}∗ as follows:

{
P−1
a W

}
	
=

⎧⎪⎨
⎪⎩
⎛
⎜⎝Pae

−sh︸ ︷︷ ︸
P ′
a

⎞
⎟⎠

−1

W

⎫⎪⎬
⎪⎭

∗

∣∣∣∣∣∣∣
h=0

That is to say, we consider a fictitious delay h, apply {·}∗ and then evaluate
at h = 0. The following example illustrates how to calculate (7.11):

Example 7.3.1. Let us consider the (possibly unstable) First Order Plus Time

Delay (FOPTD) model P = Kg
e−sh

τs+1 , for which Pm =
Kg

τs+1 , Pa = e−sh. We
assume that |τ | 	 h > 0 (k = 1). In addition, we assume step-like dis-
turbances, i.e. dd = s, and take n = 1. By substitution into (7.7), we get

W = (λs+1)(γs+1)
s(τs+1) , with λ > 0, γ ∈ [λ, |τ |]. If h > 0, the proposed controller
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(7.11) is identical to H2-optimal one:

Q =
(τs+ 1)2s

Kg(λs+ 1)(γs + 1)

{
esh

(λs+ 1)(γs + 1)

s(τs+ 1)

}
	

=
(τs+ 1)2s

Kg(λs+ 1)(γs + 1)

{
esh

(λs+ 1)(γs + 1)

s(τs+ 1)

}
∗

=
(τs+ 1)2s

Kg(λs+ 1)(γs + 1)

(
1

s
− τe−h/τ τ(1− λ/τ)(1− γ/τ)

τs+ 1

)

=
(τs+ 1)([τ − τe−h/τ (1− λ/τ)(1 − γ/τ)]s + 1)

Kg(λs+ 1)(γs + 1)
(7.12)

If h = 0, P becomes MP (Pa = 1). In this case, we make h = 0 in (7.12) and
we arrive at

Q =
(τs+ 1)([τ − τ(1− λ/τ)(1 − γ/τ)]s + 1)

Kg(λs+ 1)(γs + 1)
(7.13)

In particular, note that Q → P−1
m = (τs + 1)/Kg as λ → 0, implying that the

H2-optimal solution is approached for small values of λ.

The following proposition summarizes the most basic properties of the
proposed controller:

Proposition 7.3.1. The IMC controller Q in (7.11) is such that:

(P1) Q is H2-optimal if P contains a delay. If P is delay-free, Q tends to be
H2-optimal when λ → 0 provided that δ(dd) ≥ 1.

(P2) Q is proper and stable.

(P3) S = 1− PQ = 0 at the poles of W .

Proof.

(P1) The H2-optimal solution is given by Q = (PmW )−1
{
P−1
a W

}
∗. The

difference with respect to the proposed solution amounts to the {·}∗
operator. If P contains a delay, {·}∗ and {·}	 coincide because

{
P−1
a W

}
∗

is strictly proper. Thus, in this case, (7.11) is optimal (with respect to
the selected W ). When P is delay-free,

{
P−1
a W

}
	
→ {

P−1
a W

}
∗ when
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λ → 0. This is because P−1
a W tends to become strictly proper (the n

zeros at s = −1/λ of W move to infinity). By definition of {·}∗ , {·}	,
both yield the same result when applied to strictly-proper operands.
Thus, the proposed Q tends to Q = (PmW )−1

{
P−1
a W

}
∗ = P−1

m when
λ → 0.

(P2) From (7.7) and (7.11), straightforward algebra shows that the structure
of Q is given by

Q =
P−1
m χ

(λs + 1)n(γ1s+ 1) · · · (γks+ 1)
(7.14)

where χ is a polynomial of degree δd(dd) + k − 1. Therefore, δ(Q) =
n− δ(P )− δ(dd)+1. Selecting n as in (7.8) provides δ(Q) ≥ 0, implying
that Q is proper. Stability is also easy to check: the poles of Q are the
Left Half-Plane (LHP) zeros of P , collected in Pm, and the zeros of W ,
which are also in the LHP.

(P3) Equivalently, we will show that T = 1− S = 1 at the poles of W . The
complementary sensitivity function is

T = PQ = (P−1
a W )−1

{
P−1
a W

}
	

(7.15)

If W has a pole at s = p of multiplicity m, then we can write P−1
a W =

φ(s)
(s−p)m , and (7.15) can be expressed as

T =
(s− p)m

φ(s)

(
· · ·+

m−1∑
i=1

αi

(s− p)i
+

αm

(s− p)m
+ · · ·

)
(7.16)

where αm = φ(p). It is clear then that T |s=p =
(

αm
φ(s)

)∣∣∣
s=p

= 1.

Property (P1) can be interpreted as the combination of the two steps of
the IMC procedure into a single one. Properties (P2) and (P3) imply that
Q is realizable and internally stabilizing (because W contains the poles of
P ). In addition, (P3) means asymptotic rejection of the disturbances (be-
cause the denominator of W contains the generating polynomial dd, recall the
Internal Model Principle (Morari and Zafiriou, 1989; Skogestad and Postleth-
waite, 2005)).
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Remark 7.3.2. From (7.11) and Property (P3), Q and 1 − PQ have zeros
at the k slow/unstable poles of P . These zeros get cancelled when forming
the equivalent unity feedback controller K = Q

1−PQ . This means that adjusting
λ, γi in W does not change the structure of the final controller, but only its
parameters.

Remark 7.3.3. Strictly speaking, properties (P2) and (P3) are not sufficient
conditions for internal stability when P is a delayed unstable system. As
explained in (Zhang et al., 2006a), in this case there are irremovable RHP
pole/zero cancellations in K that do not allow a direct implementation. In
general, Q can be approximated by a practical controller K (e.g, PID type)
by following different methodologies (Wang et al., 2001; Shamsuzzoha and
Lee, 2007; Shamsuzzoha and Lee, 2009).

New insight into IMC filters

The proposed controller (7.11) can be expressed as

Q = P−1
m f (7.17)

with f = W−1
{
P−1
a W

}
	
. Let us take W = nw

dw
. Now, considering how

{·}	 acts and taking into account property (P3) in Proposition 7.3.1, we can
alternatively express f as

f =
χ

nw
=

∑δ(dw)−1
i=0 ais

i

(λs+ 1)n
∏k

i=1(γis+ 1)
(7.18)

where a0, . . . , aδ(dw)−1 are determined from the following system of linear equa-
tions

T |s=πi = Paf |s=πi = 1 i = 1 . . . δ(dw) (7.19)

being πi, i = 1, . . . , δ(dw) the poles of W . From (7.7), δ(dw) = k + δ(dd) in
general, except when P is stable and we take γi = τi for all i. In the latter
case, the weight (7.7) simplifies to W = (λs+1)n

dd
, and δ(dw) = δ(dd). Note

that, as long as the ai coefficients satisfy (7.19), the filter time constants λ
and γi can be selected freely without any concern for nominal stability. In
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more detail, (7.19) corresponds to⎛
⎜⎜⎝

π
δ(dw)−1
1 · · · π1 1

...
. . .

...
...

π
δ(dw)−1
δ(dw) · · · πδ(dw) 1

⎞
⎟⎟⎠
⎛
⎜⎝ aδ(dw)−1

...
a0

⎞
⎟⎠ =

⎛
⎜⎝ P−1

a nw|s=π1

...
P−1
a nw|s=πδ(dw)

⎞
⎟⎠
(7.20)

In the context of step-like inputs, the filter (7.18) generalizes some previously
reported filters in the following way:

• For stable plants, by taking γi = τi, the conventional IMC filter(Morari
and Zafiriou, 1989) is obtained. However, if we take γi = λ, then the
filter in (Horn et al., 1996) results.

• Essentially, the filter suggested in (Campi et al., 1994) for MP unstable
plants corresponds to taking γi → ∞ in (7.18). In the general unstable
plant case, the filter in (Lee et al., 2000) is recovered by choosing γi = λ.

Finally, by using Lagrange-Type interpolation theory (Morari and Zafiriou,
1989), it is possible to develop an expression1 for (7.18) explicitly:

f =
1

nw

δ(dw)∑
j=1

(P−1
a nw)|s=πj

δ(dw)∏
i=1
i�=j

s− πi
πj − πi

(7.21)

Extension to plants with integrators or complex poles

It has been shown that we can reduce the proposed design to the selection of a
proper filter f , so that Q = P−1

m f . In this subsection, we detail the structure
of such a filter (passing over W for brevity) when P has integrators and/or
complex conjugate poles. To keep it simple, we address each situation at a
time:

(i) P has (exclusively) l poles at the origin

Then, the corresponding filter is

f =

∑δ(dW )−1
i=0 ais

i

(λs+ 1)n
∏l

i=1(γis+ 1)
(7.22)

1The formula (7.21) is not valid for repeated poles.
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where δ(dW ) = l+δ(dd). The only difference with respect to (7.18) is that
now γi ∈ [λ,∞), whereas for slow/unstable poles we had γi ∈ [λ, |τi|].
This can be easily understood, since an integrator corresponds to a pole
with an infinitely large time constant.

(ii) P has (exclusively) m complex conjugate poles

Let us suppose that the m complex conjugate poles are at −ξiωni ±
jωni

√
1− ξ2i . Then, the structure of the filter is

f =

∑δ(dW )−1
i=0 ais

i

(λs + 1)n
∏m

i=1(γi,2s
2 + γi,1s+ 1)

(7.23)

where δ(dW ) = 2m+ δ(dd). For input disturbances, γi,2 = λ2, γi,1 = 2λ
so that

∏m
i=1(γi,2s

2+γi,1s+1) = (λs+1)2m. For output disturbances, we
want

∏m
i=1(γi,2s

2+γi,1s+1) equal to (1/ωni
2)
∏m

i=1(s
2+2|ξi|ωni+ωni

2),
which is achieved for γi,2 = (1/ωni)

2, γi,1 = 2|ξi|/ωni (in this extreme
case, only when P is stable, δ(dW ) = δ(dd)). It is not so simple now
to determine an interval for γi,1, γi,2 as in the real poles case (this will
be illustrated in Section 7.4). An exception occurs if the complex poles
are well-damped (|ξi| close to one), in this case we can disregard the
imaginary part and treat the complex conjugate pairs as double real
poles at s = −ωniξi. This allows to simplify the filter structure to

f =

∑δ(dW )−1
i=0 ais

i

(λs+ 1)n
∏m

i=1(γis+ 1)2
(7.24)

with γi ∈
[
λ, 1

|ωniξi|
]
.

7.3.3 Nominal performance and robust stability/performance

In any practical design method, robust performance is the ultimate goal: we
want the controller to work well under uncertain circumstances. Assuming
that a condition for robust stability is met, the next subsection gives an upper
bound for the performance degradation with respect to the nominal case. How
the robustness/performance compromise is influenced by the tuning parame-
ters λ and {γi}i is addressed later on.
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General relations

From Section 7.2, the ISE for an output disturbance d = 1/dd is given by

ISEo =

∫ ∞

0
e2(t)dt =

1

2π

∫ ∞

−∞

∣∣Sd−1
d (jω)

∣∣2 dω (7.25)

Similarly, when d enters at the input of the plant, the corresponding ISE is

ISEi =

∫ ∞

0
e2(t)dt =

1

2π

∫ ∞

−∞

∣∣PSd−1
d (jω)

∣∣2 dω (7.26)

Equations (7.25) and (7.26) indicate the nominal performance achieved by
the final design in terms of input/ouput disturbance attenuation. Robust
stability can be assessed by the well-known condition (Morari and Zafiriou,
1989; Skogestad and Postlethwaite, 2005)

‖ΔT‖∞ = sup
ω

|Δ(ω)T (jω)| < 1 (7.27)

where Δ(ω) ≥ 0 is a bound for the plant multiplicative uncertainty. In prac-
tice, nominal performance and robust stability alone are not enough because
some plants in the uncertain set may be on the verge of instability, yielding
very poor performance. It is therefore necessary to guarantee some degree of
robust performance. To this aim, it is useful to have an upper bound for both
ISEi and ISEo. The worst error is generated by the worst plant, which can be
expressed as P (1 + δ(s)Δ(ω)) for some δ(s) such that |δ(jω)| ≤ 1. By using
the inequality |1 + P (1 + δΔ)K| ≥ |1 + PK| − |PK|Δ, the actual sensitivity
function S can be bounded as

|S| =
∣∣∣∣ 1

1 + P (1 + δΔ)K

∣∣∣∣ ≤
∣∣∣∣ 1

1− |ΔT |
∣∣∣∣ |S| (7.28)

From (7.25), (7.26) and (7.28), the following upper bounds for the actual errors
result

ISEo ≤ ISEo =
1

2π

∫ ∞

−∞

∣∣∣∣ 1

1− |ΔT |
∣∣∣∣2 |Sd−1

d |2dω (7.29)

ISEi ≤ ISEi =
1

2π

∫ ∞

−∞

∣∣∣∣ 1

1− |ΔT |
∣∣∣∣2 |PSd−1

d |2dω (7.30)
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As it is logical, the modelling error increases the (finite) gap between ISEi

(ISEo) and ISEi (ISEo) as the stability boundary in (7.27) is approached,
exhibiting the typical trade-off between nominal performance and performance
degradation (Morari and Zafiriou, 1989; Zhou and Ren, 2001; Skogestad and
Postlethwaite, 2005).

Tuning guidelines for λ and γi

In view of equations (7.25), (7.26), (7.29) and (7.30), Nominal Performance
is captured in terms of S, whereas Robust Performance is expressed using T
(which also determines Robust Stability (7.27)). The shape of these transfer
functions depends on the values of the tuning parameters. The role of λ is
the same as in the conventional IMC: basically, for a given value of each γi,
increasing λ makes the system slower, to the detriment of ISEo and ISEi,
but favouring the Robust Stability condition (7.27) by reducing the closed-
loop bandwidth. Let us consider now that λ, γj , j = 1..k, j �= i have been
fixed, and see which is the influence of γi. From earlier discussion, when
γi = λ < |τi|, W is asking for good load disturbance rejection by forcing S = 0
at s = −1/τi, which may be responsible for a large peak on |S| and |T | and a
somewhat aggressive response (Alcántara et al., 2011c). As we increase γi, W
specifies lower gains for |S| at middle-high frequencies, which by a waterbed
effect argument (Skogestad and Postlethwaite, 2005; Alcántara et al., 2011c) is
achieved augmenting |S| at low frequencies. Consequently, augmenting γi has
an smoothing effect. In particular, this means that improving the response to
output disturbances will also make the system slower. As it will be shown in
Section 4, after increasing γi, λ can be decreased to compensate for the reduc-
tion of the closed-loop bandwidth. In summary, tuning γi has also an effect
on robustness, but it should be clear that the way of affecting the robustness
properties is different: λ is more related to the closed-loop bandwidth, which
by the Robust Stability condition (7.27) is responsible for robustness in the
high frequency region (model uncertainty). On the other hand, the γi param-
eters affect the mid-frequency robustness properties altering the peaks of the
sensitivity functions. More precisely, augmenting γi contributes to flatten out
the frequency response.
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7.4 Simulation examples

In this section, we consider three simulation examples to illustrate the features
of the proposed procedure. For evaluating robustness, we use the peak of the
sensitivity function

MS
.
= ‖S‖∞ = sup

ω

∣∣∣∣ 1

1 + PK(jω)

∣∣∣∣ (7.31)

Because MS is the inverse of the shortest distance from the Nyquist curve
of L = PK to the critical point −1 + 0j, small values of MS indicate good
robustness. For a reasonably robust system, an upper bound for the MS value
can be fixed at around two (Skogestad and Postlethwaite, 2005). Another
robustness indicator used throughout the examples is given by MT

.
= ‖T‖∞ .

=
sup
ω

|T (jω)|. The robustness interpretation for MT (the peak of |T |) comes

from the robust stability condition (7.27). To quantify the input usage, we
compute the total variation (TV) of the input u:

TV ≈
∞∑
i=1

|ui+1 − ui| (7.32)

where {ui}∞i=1 denotes a discretization sequence of u. In the examples that
follow, we restrict our attention to (unity) step disturbances (dd = s) as it is
commonly done in the literature.

Example 1 The purpose of this preliminary example is to illustrate the
different effect of the λ and γ parameters. We will consider the process

−(10s+1)(0.02s+1)
(−100s+1)(s+1)(0.2s+1) , modeled as P = − 10s+1

(−100s+1)(s+1) . The design of Section

7.3 yields Q = P−1
m f = P−1f , where

f =
a1s+ 1

(λs+ 1)(γs + 1)
(7.33)

with a1 = 100 [(1 + λ/100)(1 + γ/100) − 1] and γ ∈ [λ, 100]. For γ = λ,
(7.33) coincides with the conventional IMC filter used in (Morari and Zafiriou,
1989; Lee et al., 2000), which in this case favours input disturbances. As a
consequence, the response for output disturbances may be undesirable. Figure
7.2 displays the time/frequency responses for λ = γ = 0.15. As it can be
seen, the peak in |T | (MT = 1.16) degrades the robust stability margin and is
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Figure 7.2: Frequency and time responses (Example 1).
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Figure 7.3: Frequency and time responses (Example 1).

responsible for the large oscillations in the response to the output disturbance.
We know that by increasing γ (we take γ = 20) it is possible to improve this
response. As stated in Section 7.3, this tends to make the system slower too.
In order to preserve the original closed-loop bandwidth, the λ parameter can
be decreased (we finally take λ = 0.06). As shown in Figure 7.2, this retuning
allows to keep the original closed-loop bandwidth while avoiding the peak in
|T | (now, MT = 1). The resulting outcome is better robustness and smoother
output disturbance attenuation. It is remarkable that the peak in |T | cannot
be avoided using the classical filter in which γ = λ, as illustrated in Figure
7.3 and Figure 7.4. Clearly, if one uses the standard filter structure, the only
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Figure 7.4: Frequency and time responses (Example 1).

reasonable option is to detune the controller, moving the peak in |T | to lower
frequencies (see Figure 7.4). This will improve robustness at the expense of
nominal performance. In summary, even if there is an interaction between λ
and γ, their roles are clearly different.

Example 2 As pointed out in the early work (Scali and Semino, 1991), an
optimal controller designed for a specific type of disturbance (e.g., a step act-
ing at the input of the plant) may result in very poor performance if the actual
disturbance (e.g., a step acting at the output) is different from the one consid-
ered at the design stage. In this example, we examine how a balance between
the response of input and output disturbances can be achieved, focusing on
the FOPTD model P = Kg

e−sh

τs+1 (Kg = 2, h = 1, τ = 15). The controller was
already calculated in (7.13), and the corresponding filter has the same form
as (7.33), taking now a1 = τ − τ(1 − λ/τ)(1 − γ/τ). Let us start by selecting
λ = γ = 1.75, which providesMS = 1.69,MT = 1.28,TVi = 2.98,TVo = 39.78
(TVi,TVo denote, respectively, the total variation with respect to the input
and output disturbance). As shown by Figure 7.5(a), good attenuation of
load disturbances is obtained. However, a somewhat large undershoot oc-
curs for output disturbances. In the uncertain case (h = 1.9), we can see
that the system becomes quite oscillatory (TVi = 10.72,TVo = 82), see
Figure 7.5(b). By choosing γ = τ = 15, we can avoid the undershoot in
the output disturbance response, and improve the robustness margins, now
MS = 1.33,MT = 1,TVi = 2,TVo = 16.14. As a result, the responses are
smoother in the uncertain case (TVi = 2.52,TVo = 18.6), experiencing less
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(b) Uncertain case (Kg = 2, h = 1.9, τ = 15).

Figure 7.5: Input/Output step responses for Example 2.

performance degradation. However, the performance for load disturbances
is poor, showing a sluggish return to steady state (this fact, sometimes re-
ferred to as loss of integral action, is specially relevant for very lag-dominant
plants with high gain (Scali and Semino, 1991)). To reach a compromise, we
finally retune the controller taking λ = 0.9, γ = 5. The latter values give
MS = 1.6,MT = 1.13,TVi = 2.55,TVo = 40.67. In the uncertain case,
TVi = 6.73,TVo = 67.63. The data concerning this example has been col-
lected in Table 7.1.

Example 3 Lastly, we consider an stable second order system with a
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Nominal Case Uncertain Case

Model: Kg
e−sh

τs+1
Kg = 2, h = 1, τ = 15 Kg = 2, h = 1.9, τ = 15

Input dist. Out. dist. Input dist. Out. dist.

Tuning of (7.33) MS MT TV ISE TV ISE TV ISE TV ISE

λ = γ = 1.75 1.69 1.28 2.98 0.17 39.78 2.39 10.72 0.31 82 6.3
λ = 1.75, γ = 15 1.33 1 2 0.66 16.14 2.34 2.52 0.69 18.6 3.06
λ = 0.9, γ = 5 1.6 1.13 2.55 0.21 60.67 2.71 6.73 0.29 67.63 5.92

Table 7.1: Data summary for Example 2.

pair of poorly damped poles. The model is given by P = Kg
e−sh(

s
ωn

)2
+2 ξ

ωn
s+1

(Kg = 4, h = 1, ωn = 0.5, ξ = 0.25). Our design suggests the controller
Q = P−1

m f =
(
(s/ωn)

2 + 2ξ/ωns+ 1
)
f , where f has the following structure

f =
a2s

2 + a1s+ a0
(λs+ 1)2 (γ1,2s2 + γ1,1s+ 1)

(7.34)

and the ai coefficients satisfy that Paf = e−sf = 1 at the poles of

W =
(λs+1)2(γ1,2s2+γ1,1s+1)
s((s/ωn)2+2ξ/ωns+1)

. First, we select λ = 0.5. For output distur-

bances, we then take γ1,2 = (1/ωn)
2 = 4, γ1,1 = 2ξ/ωn = 1, which results into

f = 1
(0.5s+1)2 . The associated responses can be seen in Figure 7.6 for both

the nominal and the uncertain cases. The tuning λ = 0.5, γ1,2 = 4, γ1,1 = 1
gives MS = 1.62,MT = 1,TVi = 4.91,TVo = 140 (Nominal Case) and TVi =
6.5,TVo = 142 (Uncertain Case). This design gives good results for output
disturbances because the slightly damped poles are cancelled by the feedback
controller. However, as no additional damping is really provided, these modes
appear when excited from the input of the plant. Consequently, the response
to load disturbances is quite oscillatory. To obtain much better performance
for load disturbances, we select λ = 0.5, γ1,2 = λ2 = 0.25, γ1,1 = 2λ = 1. For

these settings, the filter is f = 2.9658s2+2.3389s+1
(0.5s+1)4

. As desired, the response to

load disturbances has been improved noticeably. However, a great undershoot
appears for output disturbances, indicating that robustness has been seriously
degraded: MS = 3.88,MT = 2.96. The corresponding input usage is given
by TVi = 41.44,TVo = 1840 (Nominal Case) and TVi = 236.8,TVo = 8365
(Uncertain Case, h = 1.15). A trade-off between the two designs considered
so far can be obtained by selecting λ = 0.25, γ1,2 = 3, γ1,1 = 2, which cor-

responds to the filter f = 4.682s2+2.06s+1
(0.25s+1)2(3s2+2s+1) . With this retuning, we finally
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Figure 7.6: Input/Output step responses for Example 3.

get MS = 2.21,MT = 1.35,TVi = 17.21,TVo = 903 (Nominal Case) and
TVi = 24.4,TVo = 1121 (Uncertain Case). The idea for selecting γ1,2, γ1,1 is
to place the complex poles of f to the left of those of the plant P , and with
increased damping factor. A summary of the results obtained can be consulted
in Table 7.2 and Table 7.3.

To conclude this example, we will consider the simplified structure for f
given by (7.24), which in the case at hand has the form

f =
a2s

2 + a1s+ a0
(λs+ 1)2(γs + 1)2

(7.35)
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(a) Nominal Case (Kg = 4, h = 1, ωn = 0.5, ξ = 0.25).
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Figure 7.7: Time responses for Example 3 with simplified filter structure.

where the ai coefficients satisfy that Paf = e−sf = 1 at the poles of

W = (λs+1)2(γs+1)2

s((s/ωn)2+2ξ/ωns+1)
. This filter has the same structure suggested by

Campi et al. (1994) for MP unstable plants. If we choose γ = λ, we recover
the design for input disturbances. The purpose now is to show that, although
this filter can also be used to improve robustness with respect to the design
for input disturbances, the robustness enhancement requires in general to sac-
rifice more nominal performance than when using the full-structure filter with
γ1,2, γ1,1. Taking λ = 0.25, γ = 2.2, the concrete filter f = 8.354s2+3s+1

(0.25s+1)2(2.2s+1)2

results, for which MS = 2.24,MT = 1.4. These robustness indicators are only
a little worse than those obtained for the previous trade-off tuning (MS =
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Nominal Case

Model: Kg
e−sh

(
s

ωn

)
2

+2 ξ
ωn

s+1
Kg = 4, h = 1, ωn = 0.5, ξ = 0.25

Input dist. Output dist.

Tuning of (7.34) MS MT TV ISE TV ISE

λ = 0.5, γ12 = 0.25, γ11 = 1 3.88 2.96 41.44 0.59 1840 11.55
λ = 0.5, γ12 = 4, γ11 = 2 1.62 1 4.91 3.78 140 8.19
λ = 0.25, γ12 = 3, γ11 = 2 2.21 1.35 17.21 2.14 903 9.78

Table 7.2: Data summary for Example 3 (Nominal Case).

Uncertain Case

Model: Kg
e−sh

(
s

ωn

)
2
+2 ξ

ωn
s+1

Kg = 4, h = 1.15, ωn = 0.5, ξ = 0.25

Input dist. Output dist.

Tuning of (7.34) TV ISE TV ISE

λ = 0.5, γ12 = 0.25, γ11 = 1 236.8 0.85 8365 33.82
λ = 0.5, γ12 = 4, γ11 = 2 6.5 4.73 142 8.34
λ = 0.25, γ12 = 3, γ11 = 2 24.4 2.62 1121 12.5

Table 7.3: Data summary for Example 3 (Uncertain Case).

2.21,MT = 1.35). However, the overall performance is considerably worse as
it can be appreciated from Figure 7.7. This shows the necessity of considering
complex conjugate poles in the filter f for the best trade-off design.

7.5 Summary

In this chapter, we have presented a regulatory design method which consid-
ers whether the disturbances enter at the input or at the output of the plant.
When both kind of disturbances are expected, the design allows to reach a
balance. This is achieved by means of considering a weighted sensitivity prob-
lem where the weight is mostly guided by the input type and the conflictive
poles of the plant. The final solution can be interpreted in terms of alternative
IMC filters which allow to adjust both the robustness/performance and the
input/output disturbance trade-offs. Simulation examples have shown that
improving the rejection of input disturbances inherently requires larger peaks
of the sensitivity functions, resulting into more aggressive responses. Further
work will focus on the application to PID control.



Chapter 8

Conclusions and perspectives

8.1 Conclusions

This thesis deals with various aspects of the design of single-loop feedback
compensators from an analytical point of view. The design methods that have
been presented rely on a model of the process under control, given as a trans-
fer function, and base the controller derivation on minimizing the weighted
sensitivity function using standard system norms. The initial works in Chap-
ters 2–4 motivate the usage of the H∞ WSP for controller design, and the
consideration of both robustness/performance and servo/regulator issues. A
first attempt to select the weight systematically is made in Chapter 5. Af-
terwards, a refined selection of the weight is presented in Chapter 6, where
the extension to unstable plants is carried out without using the notion of co-
prime factorization; this is achieved by considering possibly unstable weights.
Finally, Chapter 7 applies the same design ideas to H2 optimization, while
coping with some extensions such as plants with complex conjugate poles. In
addition, in Chapter 7 an interpretation of the proposed solution in terms of
generalized IMC filters is given.

In summary, the designs in Chapters 6 and 7 arise from a systematic choice
of the weight in the WSP that explicitly captures the following control require-
ments: robustness, set-point (or output disturbance) response and load dis-
turbance response. More precisely, a single parameter (λ) is used for detuning
purposes, allowing adjustment of the robustness/performance trade-off as in
IMC, whereas a set of parameters (γi) is used to balance the servo/regulator

169
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performance. Tuning γi has also an effect on robustness, but it should be
clear that the way of affecting the robustness properties is different: λ is more
related to the closed-loop bandwidth, which by the Small-Gain Theorem is re-
sponsible for robustness in the high frequency region (model uncertainty). On
the other hand, the γi parameters affect the mid-frequency robustness prop-
erties altering the peaks on the sensitivity functions (MS and MT ). Stated
otherwise, a regulatory design inherently requires larger values of MS and MT

than a servo one for a fixed value of λ.

Apart from the considered ones, there are other essential requirements of
a control system: noise sensitivity and required control activity. These points
have not received specific attention in this thesis, for example, perfect measure-
ment has been assumed. In practice, however, the sensitivity to measurement
noise and the manipulated variable must be kept within prescribed bounds to
reduce the actuator wear and tear. Although this may be conservative, aug-
menting λ to detune the controller implicitly decreases both the sensitivity
to noise and the demanded control effort (Skogestad, 2006). The conserva-
tiveness of this approach is something that one may accept in the interests
of mathematical convenience and simplicity. In this direction, if low-order
models are used, the presented methodology can be applied to PID control
as it has been done in Chapter 6. The resulting tuning rules are suitable for
teaching purposes and have been found to yield good results compared with
existing ones. The distinguishing feature of the derived tuning rules is that
they unify the stable/unstable plant cases while introducing a servo/regulator
consideration.

8.2 Perspectives

As always, there are improvements/extensions which can be addressed to con-
tinue the work done in this thesis. Some ideas are detailed below:

PID tuning

Revisiting the SIMC rules

Based on IMC principles, Skogestad (2003) presented remarkably simple and
effective tuning expressions for PI/D controllers known as the SIMC rules.
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Compared with the original IMC-based tuning rules (Rivera et al., 1986),
the SIMC settings provide an improvement of the regulatory performance in
terms of load disturbance rejection. A limitation of the SIMC rules, as noted
in the closely-related article (Shamsuzzohaa and Skogestad, 2010), is that they
are only applicable to stable systems. In contrast, the tuning rules given in
Chapter 6 include unstable plants too. Therefore, Chapter 6 constitutes a
good framework to revisit the SIMC rules including unstable plants in the
discussion. In this regard, some preliminary work can be found in (Alcántara
et al., 2011b).

Extension to fractional PID control

Fractional order control has received a considerable attention during the last
years. Generally speaking, it has been shown that, although the tuning of
the controller gets more involved, fractional order controllers outperform their
integer order counterparts in general. Consult, for example, (Padula and Vi-
sioli, 2011) and the references therein for a deeper discussion in the particular
context of fractional PID control. Although some analytic approaches have
been extended to the fractional order setting, there is a lack of results (to
the best of the author’s knowledge) regarding the H∞ weighted sensitivity
approach. Thus, one could try to reformulate (in fractional order terms) the
WSP used in Chapter 6 (will Lemma 1.2.1 still hold in the fractional order
case?): for example, one may consider a fractional FOPTD model and a frac-
tional weight. This could be used to obtain fractional order PID tuning rules.
The resulting framework would allow a fair comparison between different cases
arising from the use of fractional or integer order models for the plant and the
controller. Along these lines, preliminary results have already been obtained
in (Padula et al., 2011).

Fixed-order single-loop controllers

The methods in Chapters 6 and 7 can be used as the first step towards the
synthesis of fixed-order controllers. After giving suitable values to the tuning
parameters λ and γi, the resulting feedback controller K may be of high order
(this is the situation when a high order model for the plant is used). In a
second step, a model order reduction scheme can be applied to find out a low
order approximation K̂ that matches the original controller as well as possible.
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This would provide users with the option to achieve a specified approximation
accuracy at the cost of complexity or retain a simple controller accepting some
performance deterioration. It would also be useful to study when low-order
controllers as those of PID type are suitable and when higher-order realizations
are justified 1. For the conventional IMC design procedure, these ideas are
already implemented in (Wang et al., 2001), where the following loss function
is minimized

J (k) =

M∑
i=1

∣∣∣K̂(jωi)−K(jωi)
∣∣∣2 (8.1)

using standard least-squares. In (8.1), k denotes the order of K̂, and J (k)

is (implicitly) a function of the parameters of K̂ (e.g., Kc, Ti, Td in the ideal
PID case). Provided that K is internally stabilizing (and assuming that K
and K̂ have the same RHP poles), the stability issue for K̂ can then be easily
addressed with respect to K using standard robust control theory (Skogestad
and Postlethwaite, 2005). Within this approach, two sources of uncertainty are
considered: the real one (plant/model mismatch), and a fictitious one coming
from the controller approximation error (Wang et al., 2001). Because the
mismatch between K and K̂ is perfectly known (including phase information),
a less conservative procedure would be to check first that K̂ is internally
stabilizing and, in a second step, tackle robust stability with respect to K̂.

If the final aim is to get PID controllers, another popular option is to
consider a Maclaurin series expasion of the original controller. If we express
it as K = f(s)/s, then

K =
1

s

(
f(0) + f ′(0)s +

f ′′(0)
2

s2 + · · ·
)

(8.2)

With respect to an ideal PID controller, considering the first three terms yields
the following tuning

Kc = f ′(0) Ti =
f ′(0)
f(0) Td =

f ′′(0)
2f ′(0)

(8.3)

1Other interesting approaches to fixed-order attanaible performance can be consulted in
(Ibeas et al., 2008; Larsson and Hagglund, 2011). Ibeas et al. (2008) presents a solution
based on the Multiple-Model paradigm, whereas Larsson and Hagglund (2011) compares
PID controllers with optimal ones, obtained through the use of the Youla-Kucera parame-
terization.
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Of course, in order to get a PID compensator, one can also consider the
specific structure of the controller from the very beginning and try a direct
optimization as in the design reported in (Sanch́ıs et al., 2010). This (remark-
ably simple) direct approach avoids the inherent conservatism of using a low
order model (like the FOPTD one) to represent the real process, and better
performance can be obtained generally.

Independent tuning parameters and additional requirements

The design methods in Chapters 6 and 7 are based on adjusting the robust-
ness/performance and servo/regualtor trade-offs through the λ and γi’s param-
eters, respectively. These parameters are not independent in the sense that
there is some interaction between them. For example, if the (load) disturbance
attenuation is improved by increasing γi, this will also imply a robustness loss,
which may require a retuning of λ if the new robustness margins are below the
prescribed values. Although this makes sense because, in general, a regulatory
design results in inferior robustness than a servo one (Skogestad and Postleth-
waite, 2005, Chapter 2), it would be nice that the involved parameters were
noninteracting so facilitate the tuning task. A MPC design which achieves
this goal can be consulted in (Ogunnaike and Mukati, 2006), where three nor-
malized tuning parameters are used to tune robustness, set-point response and
disturbance suppression attributes independently.

On the other hand, there are important aspects that have not been explic-
itly considered in the adopted weighted sensitivity formulation. Two examples
are measurement noise sensitivity and control effort constraints. Incorporating
them into the design procedure is also left for future work. A recent numer-
ical approach taking into account restrictions on the control signal and noise
sensitivity is presented in (Larsson and Hagglund, 2011).

Alternatives to common 2DOF strategies

Although load disturbance regulation is often of primary concern, achieving
a high performance in the set-point following task is also important in many
applications. To address this problem, the typical approach is to adopt a 2-
DOF strategy, namely to use a feedforward (linear) compensator to reduce
the overshoot in the set-point response (Visioli, 2004). The common set-point
weighting strategy (Astrom and Hagglund, 2005) falls within this framework.
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The main limitation of this method is that the reduction of the overshoot is
paid by a slower response (Visioli, 2004). In order to achieve low rise times
and low overshoots simultaneously, different alternatives have been suggested
in the literature. For example, a switched scheme is presented in (Visioli, 2002)
based on IMC principles. Non-linear reference processing is used in (Visioli,
2004), whereas a non-causal approach based on dynamic inversion is taken in
(Piazzi and Visioli, 2006). Other proposals are based on a reset mechanism
(Baños and Vidal, 2007; Bakkeheim et al., 2008) or on using a multi-loop
control configuration (Tran et al., 2007; Tahboub, 2011) .

According to (Visioli, 2002), in order to accommodate conflicting specifi-
cations (i.e., having both good set-point following and good load disturbance
rejection at the same time), it seems sensible to use different control laws when
a set-point change occurs and when the steady-state has to be maintained. In
this direction, as the methods presented in Chapters 6 and 7 offer the possi-
bility of adjusting the servo/regulator modes, they can be used to guide the
selection of the controller for the extreme servo and regulator situations. In
(Alcántara et al., 2011b) (Appendix 6A), this idea is applied to the reset-
based PI controller introduced by Baños and Vidal (2007), and the results are
compared with those obtained using the classical set-point weighting strategy.
Nevertheless, this work finds itself at an early stage and no firm conclusion
has been reached yet.

MIMO extension

This work has concentrated on SISO systems. It is well-recognized that the
design for the multivariable case, also referred to as Multiple-Input Multiple-
Output (MIMO), is much more challenging. A simplistic approach with
widespread use in industry is given by decentralized control (Skogestad and
Postlethwaite, 2005). Roughly speaking, decentralized control is based on
considering the multivariable plant diagonal, neglecting the interaction be-
tween the off-diagonals channels. Therefore, the design is simplified to that of
n independent control loops. For MIMO plants with weak interactions, it is
clear then that the presented designs can be easily applied along the lines of
(Liu et al., 2005; Vilanova et al., 2009b).

The design gets more complicated when the interactions between the dif-
ferent channels are strong. In this case, one possibility is to use a decoupling
strategy to make the plant nearly diagonal in a first step, and then use a
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decentralized design. It is also possible to obtain decoupled (diagonal) re-
sponses in a single step (Zhang et al., 2006b). The last possibility (for sure the
most difficult one from an analytical point of view) is to adopt a centralized
approach.

Further research to extend the presented ideas to the decoupling and cen-
tralized cases is necessary. A good starting point are the works in (Zhang
et al., 2006c; Zhang et al., 2006b), where a SISO IMC-like design (Zhang et
al., 2006c) is extended to a decoupling MIMO design (Zhang et al., 2006b).

Finally, the above-listed ideas should be put into practice to see whether
they are beneficial to real-world control applications. As this thesis has only
addressed design methods for continuous-time systems, the final solutions must
be converted to discrete form for computer-based implementation.
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