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Abstract

Two design problems at different levels in the control hierarchy are con-
sidered; optimization of robust low-level controllers with constrained con-
trol signal activity and optimization of economical high-level polyethylene
grade changes.
As for the first design problem, a constraint on control signal activity

due to measurement noise is presented and used when optimizing and
comparing PI/PID controllers with measurement filters of different or-
ders. The results show increased performance when roll-off is present in
the feedback loop and that similarities exist between PID and high-order
Youla-parametrized controllers.
Robustness margins separating the dead-time uncertainty from other

process uncertainties are presented. Methods to compute the margins,
posed as optimization problems based on Nyquist diagram interpretations,
are given.
PID and predictive PI (PPI) controllers with measurement filters are

optimized and compared using the presented control signal activity con-
straint and robustness margins. The two controllers show similar per-
formance on industrially representative processes, with a few exceptions
where the PID controller outperforms the PPI controller.
Concerning the second design problem mentioned above, a cost func-

tion for optimization of economical polyethylene grade changes is proposed.
It considers inflow costs, on- and off-grade polymer production revenues
and polymer quality variable intervals to define on-grade production as
well as economical incentives for on-target production.
Using the JModelica.org platform, several stationary operating points

and dynamic grade changes are optimized with regards to economy. The
optimizations are based on Modelica models of both a gas-phase polyethy-
lene reactor and the polyethylene plant PE3 at Borealis AB. The results
show that economically optimal grade changes can be divided into three
phases with distinguishing features, and that the synchronization of con-
trol flows and the usage of recycle area off-gas flows are important.
A Modelica library for the plant PE3 at Borealis AB, including three re-

actors and three distillation columns, is presented.
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Preface

Contents and Contributions of the Thesis

This thesis consists of two introductory chapters, six papers and one sup-
plement. This section describes mainly the two chapters, the contributions
of each paper and the contributions made by each author of the papers.
It also gives a brief description of the supplement and provides a list of
additional publications by the author of the thesis.

Chapter 1 – Optimization of Low-Level Controllers

This chapter provides brief overviews of the PID controller and the pre-
dictive PI controller. Measures of performance, robustness and noise sen-
sitivity, useful at optimization of low-level controllers and measurement
filters, are reviewed to give a background to the contributions of papers I–
III. This chapter gives also a more detailed overview of the contributions
of the papers I–III and suggestions on future work.

Chapter 2 – Optimization of High-Level Polymer Grade Change s

An introduction to why and how grade changes are performed by polymer
producers today is given in this chapter. An overview of the modeling
language, optimization methodology and tools used when optimizing grade
changes in papers IV–VI is also provided. This chapter gives also a more
detailed overview of the contributions of the papers IV–VI and suggestions
on future work.

Paper I

Larsson, P. and T. Hägglund (2011): “Control Signal Constraints and
Filter Order Selection for PI and PID Controllers.” In Proceedings of
the 2011 American Control Conference, San Francisco, USA.
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Preface

This paper presents a constraint on the control signal activity due to
measurement noise. PI and PID controllers, together with measurement
filters of different orders, are designed via optimization with regards to
load disturbance attenuation, the presented constraint and robustness
requirements related to process uncertainties. The implications of using
measurement filters of different orders are presented. For performance
comparison, optimal linear controllers of high orders are designed via
Youla parametrization.
The control signal constraint was derived by P. Larsson. The optimiza-

tion framework for PI and PID controllers and measurement filters is work
of P. Larsson, while the optimization framework for Youla parametrized
controllers is work of A. Wernrud, see citation in the paper. The optimiza-
tions of PI, PID and Youla parametrized controllers and measurement
filters, and the analysis of the results, were performed by P. Larsson.
T. Hägglund provided valuable comments during the work.

Paper II

Larsson, P. and T. Hägglund (2009): “Robustness Margins Separating
Process Dynamics Uncertainties.” In Proceedings of the 2009 European
Control Conference, Budapest, Hungary.

This paper presents robustness margins that separate the process
dead-time uncertainty from other process uncertainties. The robustness
margins are based on extended sensitivity functions that depend on the
dead-time uncertainty. The margins can be shown graphically in a Ny-
quist diagram as frequency dependent prohibited areas for the Nyquist
curve. Methods to calculate the robustness margins are presented and
based on the graphical interpretations.
The derivations of the robustness margins were performed by P. Lars-

son. The graphical interpretations and the methods to calculate the mar-
gins are also work by P. Larsson. T. Hägglund provided support and in-
sight on process uncertainties during the work.

Paper III

Larsson, P. and T. Hägglund (2011): “Comparison Between Robust PID
and Predictive PI Controllers with Constrained Control Signal Activ-
ity.” Submitted to the 2012 IFAC Conference on Advances in PID, Bres-
cia, Italy.

This paper presents a comparison between PID and predictive PI con-
trollers with associated measurement filters. The controllers and filters
are optimized for load disturbance attenuation with constraints on control
signal activity due to noise and robustness towards process uncertainties

16



Contents and Contributions of the Thesis

using the constraint and margins presented in Paper I and II, respec-
tively. The differences between the prediction methods associated with
the controllers are shown and the performances of the two controllers on
industrially representative processes are compared.
The optimization framework used when designing optimal controllers

and filters is work by P. Larsson. The analysis of the results was performed
by P. Larsson, while T. Hägglund contributed with support during the
work and with his experience of both the controllers.

Paper IV

Larsson, P., J. Åkesson, S. Haugwitz, and N. Andersson (2011): “Model-
ing and Optimization of Grade Changes for Multistage Polyethylene
Reactors.” In Proceedings of the 18th IFAC World Congress, Milano,
Italy.

This paper presents a brief overview of the models representing the
three Borealis Borstar RF polyethylene reactors, implemented in a Modelica
library. DAE initialization problems and a quadratic optimization prob-
lem for a grade change are solved using the JModelica.org platform. The
optimization results are shown and briefly discussed. The paper provided
an important evaluation of the optimization methodology and tools con-
sidering the applicability to large-scale systems.
P. Larsson and N. Andersson constructed the Modelica library for the

three reactors. Models for solving DAE initialization problems and the
quadratic grade change optimization problem were built by P. Larsson.
Manual scaling of model variables, optimization of the grade change and
discussion of the results were provided by P. Larsson. Development of
JModelica.org and helpful comments regarding optimization and Model-
ica library structuring were given by J. Åkesson. S. Haugwitz provided
industrial insight and help regarding the reactor models.

Paper V

Larsson, P., J. Åkesson, and N. Andersson (2011): “Cost Function Design
for Economically Optimal Grade Changes for a Polyethylene Gas-Phase
Reactor.” To appear in Proceedings of the 50th Conference on Decision
and Control and European Control Conference, Orlando, USA.

This paper presents a cost function that considers inflow costs and
revenues from production of on- and off-grade polymer. It uses the poly-
mer quality variable intervals for defining on-grade polymer and adds
economical incentives to produce on-target polymer. Additionally, the cost
function includes a preparatory time interval prior defined transition time
that may be utilized for economical preparations of reactor conditions. Us-
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ing JModelica.org, several stationary operating points and grade changes
are optimized for a previously published polyethylene gas-phase reactor
model. The implications of using the designed cost function are shown
and discussed.
P. Larsson implemented the polyethylene gas-phase reactor model in a

Modelica library and constructed also the optimization models. The cost
function for economical grade changes was designed by P. Larsson. All op-
timizations, both stationary and dynamic, and analysis of the associated
results, were also made by P. Larsson. J. Åkesson and P. Larsson had
several discussions concerning the design of the cost function. J. Åkesson
provided also with development and support of the JModelica.org plat-
form.

Paper VI

Larsson, P., J. Åkesson, N. Carlsson, and N. Andersson (2011): “Model-
Based Optimization of Economical Grade Changes for the Borealis
BorstarRF Polyethylene Plant.” Submitted to Computers & Chemical
Engineering.

This paper presents grade change optimizations with regards to econ-
omy on a model of a Borealis Borstar RF polyethylene plant, including three
reactors and three distillation columns. More detailed descriptions of the
Borealis Borstar RF reactor models than in Paper IV are provided together
with models of the distillation columns. The plant is modeled using the
Modelica language and the Modelica library in Paper IV is extended to
also include the distillation columns. The cost function presented in Pa-
per V is extended and optimizations of two stationary operating points
and two grade changes with regards to economy are performed. The grade
changes are thoroughly reviewed considering characteristics and usage of
control flows. The paper shows that the considered models, cost function,
optimization methodology and tools are appropriate to use at large-scale
optimization.
The implementation of the reactor models in the Modelica library and

the library structure are results of joint work of P. Larsson and N. An-
dersson, while the implementation of the distillation column models was
made by P. Larsson. The extension of the cost function in Paper V was
made by P. Larsson. Construction of optimization models, optimization
of grade changes, and analysis of the optimization results, are work per-
formed by P. Larsson. N. Carlsson helped clarifying the practical operation
of the plant and provided an industrial view of the results. Except for de-
velopment and support of the JModelica.org platform, J. Åkesson gave
P. Larsson helpful comments regarding the performed optimizations.
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Contents and Contributions of the Thesis

Supplement A – PE3Lib – A Modelica Library for the Plant PE3 at
Borealis AB

This supplement gives a description of the Modelica library PE3Lib for the
plant PE3 at Borealis AB. The library is used in Paper IV and VI when
optimizing grade changes.

Additional Publications

Below is a list of additional publications by the author of the thesis that
were chosen not to be included in the thesis.

Larsson, P. and R. Braun (2008): “Construction and Control of an
Educational Lab Process – The Gantry Crane.” In Proceedings of
Reglermöte 2008, Luleå, Sweden.

Larsson, P. and T. Hägglund (2008): “Relations Between Control Signal
Properties and Robustness Measures.” In Proceedings of the 17th IFAC
World Congress, Seoul, Korea.

Larsson, P., N. Andersson, J. Åkesson, and S. Haugwitz (2010): “Modelica
Based Grade Change Optimization for a Polyethylene Reactor.” In
Proceedings of the 9th International Symposium on Dynamics and

Control of Process Systems, Leuven, Belgium.

Larsson, P., N. Andersson, J. Åkesson, and S. Haugwitz (2010): “Modeling
and Optimization of Grade Changes for a Polyethylene Reactor.” In
Proceedings of Reglermöte 2010, Lund, Sweden.

Larsson, P., J. Åkesson, S. Haugwitz, and N. Andersson (2010): “Mod-
eling and Optimization of Grade Changes for Multistage Polyethylene
Reactors.” In Proceedings of the 16th Nordic Process Control Workshop,
Lund, Sweden

Andersson, N., P. Larsson, J. Åkesson, S. Haugwitz and B. Nilsson (2011):
“Calibration of a Polyethylene Plant for Grade Change Optimizations.”
In Proceedings of the 21st European Symposium on Computer-Aided
Process Engineering, Chalkidiki, Greece.

Errata and Clarifying Notes

Errata and clarifying notes for Paper II and IV are found on the backs of
the corresponding front covers.
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1

Optimization of

Low-Level Controllers

1.1 Problem Formulation

Many plants today have several hierarchical levels of control. At the top
level, plant-wide optimization is performed, finding optimal steady state
production of the plant. At a lower level, production unit optimizers are
present, considering steady state operation of each single unit, often us-
ing more detailed models than at the top level. Set-points are sent from
the unit optimizer to the dynamic controller of the unit at a lower level,
such as a model predictive controller (MPC). At the lowest level of control,
set-points are received by the low-level controllers from the dynamic con-
troller. These set-points can be time varying or constant, i.e., the low-level
controllers are in servo or regulatory mode. Additionally, the set-points
may e.g., also be set manually or by other low-level control loops. The
low-level controllers are most often of simple structure, such as PI, PID,
additional lead-lag filters, and dead-time compensating controllers, com-
bined in different control structures and used with e.g., logics, sequential
functions and selectors. These control structures are sufficient for most of
the low-level control problems.
At each control level, it is often assumed that the control at the under-

lying levels are perfect. Even though e.g., an MPC is perfectly designed,
the performance of the production unit may be poor due to insufficient
performance of the low-level controllers. Thus, as expressed in [Åström
and Hägglund, 2006], low-level controllers can be viewed as the “bread
and butter” of control engineering.
In many plants in for instance pulp and paper and chemical industry,

the number of low-level control loops are overwhelming and the controllers
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N

D

UE Z
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C P
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Figure 1.1 Control loop with process P, controller C and measurement filter F.

are tuned by the maintenance personnel and operators. This puts several
requirements on the low-level controllers. The maintenance personnel and
operators cannot be required to have expertise in control engineering, so
the tuning of the controllers must be simple, and desirably, made in an
automatic fashion. If the automatic tunings gives non-satisfying results, it
should be easy to manually re-tune the low-level controllers. This requires
the number of parameters to set in the controller to be small and have
intuitive effect on the control. Due to the number of control loops, the time
it takes for tuning a low-level controller is also of essence.
In this thesis, only the regulatory problem of the low-level control loop

will be considered, that is, keeping the process output at a constant de-
sired value. This is not a restriction as set-point responses can be tuned
for by using a feed-forward filter on the set-point before being fed to the
controller [Åström and Hägglund, 2006]. Apart from the above mentioned
requirements on the controller, the main concerns when designing regu-
latory low-level controllers are

• disturbance rejection

• robustness towards process uncertainties

• measurement noise sensitivity of the control signal

A block diagram of a low-level control loop in regulatory mode with
constant set-point, for simplicity set equal to 0, is found in Figure 1.1.
The process P is controlled by the low-level controller C, which has a
measurement filter F. The controlled variable, i.e., the process output,
is denoted Z and the measurement Y is corrupted with noise N. The
input to the controller is the control error E and the output is the control
signal U . A load disturbance D is assumed to act on the process input.
The design problem of the controller C and the measurement filter F
considered in this thesis is to make the process output to be as close
as possible to 0, despite the presence of load disturbances, measurement
noise and uncertainties in the process.
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1.2 Low-Level Controllers

Robustness towards process uncertainties can be expressed using the
sensitivity and complementary sensitivity functions, defined as

S = 1
1+ PCF (1.1)

T = PCF

1+ PCF , (1.2)

respectively. They are uniquely given by the open loop transfer function
PCF. The process output response to load disturbances and the control
signal response to measurement noise, are found as

Z = P

1+ PCF D = PSD (1.3)

U = − CF

1+ PCF N = −CFSN. (1.4)

Thus, all the three main concerns in a regulatory low-level control loop
can be considered by using the transfer functions S, T , PS and CFS,
which are all affected by the controller C and the measurement filter F.
In fact, as no set-point is considered, the closed loop system is completely
characterized by the four transfer functions [Åström and Hägglund, 2006].
In the design problem of C and F, which is the main topics of Paper I and
III, properties of the four transfer functions should thus be specified.
The remainder of this chapter will give an overview of two low-level

controllers; the PID controller used in Paper I and III and the predictive
PI controller used in Paper III. It will also present different measures
of the load disturbance rejection performance, i.e., the response of the
transfer function PS, robustness towards process uncertainties using S
and T , and also the noise sensitivity of the control signal using the trans-
fer function CFS. Some of the measures presented are used directly in
the controller and measurement filter designs in Paper I and III, while
additional measures are presented in Paper I and II.

1.2 Low-Level Controllers

This section will give a short introduction to the PID and predictive PI
controllers. Co-design of PID controllers and measurement filters is con-
sidered in Paper I, while both PID and predictive PI controllers are co-
designed with measurement filters in Paper III, where also a performance
comparison between the two controllers is made.
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PID

The PID controller structure considered throughout this thesis is the stan-
dard parallel form where the control signal u(t) is given by

u(t) = K



e(t) + 1
Ti

t
∫

−∞

e(τ ) dτ + Td
de(t)
dt



 , (1.5)

where K , Ti and Td are the proportional gain, integral time and derivative
time, respectively, and e(t) is the control error. A PI controller is obtained
by setting Td = 0. The proportional part considers the current control
error, while the integral part considers the history of the control error.
The derivative part, together with the proportional part, introduce a linear
prediction of the control error with prediction length Td. This is seen from
a Taylor series expansion of the control error e(t+ Td) as

e(t+ Td) ( e(t) + Td
de(t)
dt

+ . . . , (1.6)

where the two first terms are multiplied by the proportional gain K in
the PID controller.
The drawback of high gain for high-frequency signals and noise sen-

sitivity introduced by the ideal derivative in the PID controller is often
suppressed to some extent by introducing a filter only on the derivative
part. Another common choice, which is used in this thesis, is to filter the
measurement signal before it is used by the controller, as in the control
loop in Figure 1.1. This is motivated by the noise sensitivity introduced
by the proportional gain as well.

Predictive PI

An alternative to the linear prediction in the PID controller is prediction
by simulation of an internal model of the process inside the controller,
using the control signal applied to the process. Controllers preforming
this type of prediction are known as dead-time compensating controllers.
The first such structure was presented in [Smith, 1957], now commonly
known as the Smith predictor. The predictive PI (PPI) controller is a
simplified form of the Smith predictor, and its structure is here described
in the light of the Smith predictor structure.
The main idea behind the Smith predictor is to separate the process

model P̂ into a dead-time free part and a pure dead-time as

P̂ = P̂0e−sL, (1.7)

24



1.2 Low-Level Controllers

C0 P

−P̂0 e−sL

−1

Z

−Zp

UZr

+ +

+

Figure 1.2 Control loop with a Smith predictor.

and to use the simulated output of P̂0 as a prediction of the process output
L time units ahead. The Smith predictor structure can be seen in the
control loop in Figure 1.2, where C0 is e.g., an ordinary PI or PID controller
and P is the process. If P̂0 is a perfect model of the delay free part of P,
then the output zp is a perfect prediction of the process output z, where
zp and z are the time-domain equivalents of Zp and Z , respectively. The
prediction may thus be used instead of the true process output and is fed
back to the controller C0. However, as P̂0 may not be a perfect model of the
delay free part of the process and disturbances may act on the process, an
outer feedback loop is also used, comparing the process and model output.

The Smith predictor structure can be interpreted as an ordinary con-
troller C0 with a feedback structure around it, composed of the difference
between the process model and the delay free part of the process model, as

C = C0

1+ C0 P̂0(1− e−sL)
. (1.8)

It can also be viewed as a controller in cascade with a predictor as C =
C0Cpred, where the predictor is

Cpred =
1

1+ C0 P̂0(1− e−sL)
. (1.9)

If C0 is a PI controller, the predictor corresponds to the derivative part
in a PID controller, with the difference that the prediction is model-based
instead of a linear extrapolation. This is clearly seen in the input-output
relation of the Smith predictor, as it may be written as

U = C0
(

E − P̂0(1− e−sL)U
)

, (1.10)
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where U and E are the control signal and control error, respectively. The
term P̂0(1 − e−sL)U can be interpreted as the predicted output due to
the control signal during the time interval (t − L, t), and is used by the
controller C0.
The predictor Cpred can yield large phase advance which is useful when

compensating for process dead-time. However, it may come with the price
of unstable poles, and also high sensitivity towards modeling error in the
dead-time if the controller C0 is designed for high bandwidth of the nom-
inal closed-loop system, see for instance [Palmor, 1980]. Thus, designing
a Smith predictor requires careful robustness considerations.
The simplest and most used Smith predictor has a PI controller and a

first order system with dead-time as process model, i.e.,

P̂ = Kp

sT + 1 e
−sL. (1.11)

Thus, adding prediction capability to a PI controller, if not considering
measurement filter, requires three additional parameters to be deter-
mined for the Smith predictor, i.e., Kp, T and L, while for a derivative
part only Td requires to be determined. Hence, the operational complexity
of a Smith predictor is significantly higher than for a PID controller.
Simplifications of the Smith predictor structure, yielding fewer pa-

rameters to set, have been introduced. One such structure is the PPI
controller, also known as the PIτ controller, see [Hägglund, 1996] and
[Shinskey, 1994]. In this structure, the process model parameters Kp and
T are related to the parameters of the controller C0 as

Kp = 1/K , T = Ti. (1.12)

This decreases the number of parameters to be determined to three, which
is equal to the number of parameters in the PID controller.
The transfer function of the PPI controller can, as for the Smith pre-

dictor, be divided into an ordinary PI controller C0 and predictive part
Cpred defined as

Cpred =
1

1+ 1
sTi

(1− e−sL)
. (1.13)

The controller is easily implemented by adding the dead-time L into the
positive feedback in a PI controller, see Figure 1.3. The input-output re-
lation of the predictive PI controller becomes

U = K
(

1+ 1
sTi

)(

E − K−1

sTi + 1
(

1− e−sL
)

U

)

= K
(

1+ 1
sTi

)

E − 1
sTi

(

1− e−sL
)

U ,
(1.14)
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E U
+K

e−sL

1+ sTi

Figure 1.3 Structure of the predictive PI controller.

where U and E are the control signal and control error, respectively.
If K and Ti are not chosen explicitly according to an estimated process

model, the prediction is no longer performed using a model of the process,
as seen in the input-output relation. The PPI controller is not constrained
to model-matching. Instead, the parameters K , Ti, and L can be tuned
manually, much like when tuning a conventional PID controller [Shinskey,
2001].
In the time-domain, the input-output relation of the PPI controller is

u(t) = K



e(t) + 1
Ti

t
∫

−∞

e(τ ) dτ



 − 1
Ti

t
∫

−∞

(u(τ ) − u(τ − L)) dτ , (1.15)

where the first term is an ordinary PI controller and the second term
performs the prediction by low-pass filtering the control signal. This can
be compared to the PID controller, which uses high-pass filtering of the
measurement signal, see Eq. (1.5).
It is interesting to compare the predictor part with the linear prediction

performed in a PID controller. Figure 1.4 shows the Bode diagram of a
predictor with Ti = 0.25 and L = 1. A Taylor series expansion of the
predictor for small s is, see [Åström and Hägglund, 2006],

Cpred (
1

1+ L/Ti

(

1+ 1
2
(L/Ti)2
1+ L/Ti

Tis+ . . .
)

, (1.16)

showing that the static gain of the predictor is 1/(1 + L/Ti). A PD con-
troller, with K and Td set according to the Taylor series expansion of the
PPI predictor as

K = 1
1+ L/Ti

, Td =
1
2
(L/Ti)2
1+ L/Ti

Ti, (1.17)

and the ideal predictor esTd are also shown in Figure 1.4 for comparison.
The phase of the predictor Cpred follows the ideal predictor well up

to a certain frequency but falls rapidly for higher frequencies. The PD
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Figure 1.4 The predictor Cpred in the predictive PI controller (–), a PD controller
(-⋅-) and an ideal predictor esTd (--).

controller, however, cannot follow the ideal predictor but gives instead
phase advance in a wider frequency interval. The ideal predictor has a
magnitude equal to 1 for all frequencies, while the predictor Cpred has
several peaks in the magnitude where the phase is advanced. Compared
to the PD controller, the magnitude of the predictor Cpred increases more
rapidly at low frequencies, but the magnitude of the PD controller tends
to infinity at high frequencies whereas the magnitude of Cpred tends to 1.
Hence, for bounded high-frequency gain, the PPI controller does not need
a filter, whereas the PID controller needs a first order filter.
A performance comparison between the PPI and PID controllers, and

thus a comparison between the predictor Cpred and linear prediction by
derivative action, is the topic of Paper III. The comparison includes de-
mands on robustness margins and constraints on noise sensitivity of the
control signal.

1.3 Performance

Load disturbances yield in general the process output to deviate from its
set-point. As most process control systems operate in regulatory mode,
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tuning low-level controllers for fast load disturbance rejection is common,
both in industry and academia. The transfer function from load distur-
bance to process output, governing the load disturbance response, is, as
noted in Section 1.1,

PS = P

1+ PCF . (1.18)

Load disturbances often have low-frequency characteristics and it is thus
the low-frequency part of PS that essentially will determine the response.
For processes with P(0) ,= 0, measurement filters with F(0) = 1 and
controllers with integral action, the following approximation can be made,

P

1+ PCF (
s

ki
, (1.19)

where ki = K/Ti is the integral gain of the controller. Thus, for fast dis-
turbance rejection, a high low-frequency gain of the controller is desired,
and hence, ki is a good measure of the disturbance rejection capability of
the controller.
In the design of low-level controllers, a performance measure is se-

lected. Frequency domain measures are for instance the low-frequency
controller gain ki, the open-loop gain cross-over frequency ω �c or, as used
in [Kristiansson and Lennartson, 2006b], the peak value Jv defined as

Jv =
∥

∥

∥

∥

1
s
PS

∥

∥

∥

∥

∞
. (1.20)

Time-domain measures are often based on the process output response
to a load disturbance step at time t = 0 on the process input. Two mea-
sures are the maximum deviation, zmax, and the time to reach it, tmax,
defined as

zmax = max
t∈[0, ∞)

pz(t)p, tmax = argmax pz(t)p, (1.21)

where z(t) is the time-domain equivalent to Z in Figure 1.1. More common
are the integral criteria of z(t). Two examples are the integrated error (IE)
and the integrated absolute error (IAE), defined as

IE =
∞
∫

0

z(t) dt, IAE =
∞
∫

0

pz(t)p dt. (1.22)

These two measures are equal if the response is monotone. It can be shown
that IE = 1/ki, which is appealing. However, IE has the disadvantage of
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having a low and misleading value for oscillative responses, while IAE
contains an inherent stability criteria as it will steadily increase. Other
measures are the integrated time-weighted absolute error (ITAE) and
integrated squared error (ISE), defined as

ITAE =
∞
∫

0

tpz(t)p dt, ISE =
∞
∫

0

z2(t) dt. (1.23)

The ITAE criteria tends to penalize long term deviation from set-point
more than short transients. This makes the load response to have a short
but high peak, which is generally not desirable, see [Shinskey, 1994]. The
ISE criteria has the opposite effect, as it penalizes large errors more than
small, yielding the response to a have a small amplitude but a prolonged
settling time. When designing low-level controllers in Paper I and III, IAE
is used as a performance measure as it penalizes all deviations equally
and is considered to be the most useful, see the discussion in [Shinskey,
1994].

1.4 Robustness

The concept of feedback has many advantages, such as making a process
follow set-points and rejecting disturbances. However, introducing feed-
back also comes with the possibility of causing instability. Design of a
control system is often made using a model of the process, which contains
simplifications and assumptions. Therefore, at the design phase, robust-
ness towards process uncertainties must be considered in order to avoid
instability when the control system is used on the process. Notions used
for robustness can essentially be divided into specifications on the loop
transfer function and specifications on the sensitivity functions.

Loop Transfer Function Specifications

Two classical stability margins are based on the loop transfer function of
the system, i.e., Gl = PCF, and are well illustrated in a Nyquist diagram,
see left part of Figure 1.5. The first one is the gain margin �m, which is the
smallest increase in the process gain that will yield an unstable system
and is defined as

�m =
1

pGl(ωπ )p
, (1.24)

where ωπ is the phase cross-over frequency, i.e., the lowest frequency
where the phase lag of Gl is −π rad/s. The second one is the phase margin
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Figure 1.5 Left: Definition of phase margin φm and gain margin �m. Right: Ny-
quist curve showing the drawbacks of φm and �m (Courtesy K.J. Åström and T. Hägg-
lund).

φm, indicating the increase in phase lag required to reach instability. If
using the gain cross-over frequency ω �c, i.e., the lowest frequency where
the loop transfer function has unit magnitude, the phase margin may be
calculated as

φm = π + argGl(iω �c). (1.25)

Both gain and phase margins were originally proposed for the case
when the Nyquist curve only intersects the unit circle and negative real
axis once. For more complicated loop transfer functions, it is necessary
to consider all frequency points where Gl(iω ) has unit magnitude or a
phase of −π ± 2π k, k = 1, 2, . . . ., and then choose the points with worst
margins. Additionally, the smallest decrease in phase lag and gain yielding
instability should also be considered.
A third classical stability margin, although not seen directly in a Ny-

quist diagram, is the dead-time margin dm. It considers how much the
process dead-time can increase until the system becomes unstable. Orig-
inally, it was defined by using the classical phase margin and gain cross-
over frequency as

dm =
φm
ω �c
. (1.26)

As for the phase margin, it is important to extend the definition to consider
all frequency points where the loop transfer function have unit gain, and
also consider that a decrease in process dead-time may yield instability.
The delay margin is especially important for controllers with dead-time
compensating structures, as the Smith predictor and the predictive PI
controller in Section 1.2.
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There are however some drawbacks with the three margins above. They
are computed almost independently of each other, meaning that simulta-
neous changes in process gain and phase are not considered. The right
part of Figure 1.5 shows a Nyquist diagram where the system has good
gain and phase margins. However, simultaneous changes, smaller than
the computed margins, yield the closed loop system unstable.

Sensitivity Function Specifications

A process may be modeled with a nominal model P and an additive stable
transfer function ∆PT , expressing uncertainties in e.g., process gain, time
constants and dead-time, as

P̃ = P
(

1+ ∆PT
P

)

. (1.27)

The additive uncertainty ∆PT changes the nominal Nyquist curve with
C∆PT . To avoid instability, the Nyquist curve should avoid the critical
point −1, that is, the distance between any point on the Nyquist curve
and −1 should be greater then 0, i.e.,

p1+ P̃CFp > 0. (1.28)

Using Eq. (1.27), this condition can for every frequency ω be expressed as

p∆PT (iω )p
pP(iω )p < 1

pT(iω )p , (1.29)

where T is the complementary sensitivity function of the nominal system.
A simple, but conservative, estimate of the allowed relative error is 1/MT ,
where MT is the maximum value of pT(iω )p, i.e.,

MT = qTq∞. (1.30)

This quantity can be related to both gain and phase margin as a specific
value of MT guarantees that

�m ≥ 1+
1
MT

(1.31)

φm ≥ 2 arcsin
(

1
2MT

)

. (1.32)

With the same approach, but now considering an inverse uncertainty of
the process, i.e.,

P̃ = P
(

1+ ∆PS
P

)−1
, (1.33)
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yields the constraint
p∆PS(iω )p
pP(iω )p < 1

pS(iω )p (1.34)

at every frequency ω , where S is the sensitivity function of the nominal
system. Also for this inequality, a simple, but conservative, estimate of
the allowed relative process error can be used, i.e., 1/MS, where MS is
the maximum value of the sensitivity function,

MS = qSq∞. (1.35)

Analogous to MT , the quantity MS can be related to both gain and phase
margin as a specific value of MS guarantees that

�m ≥
MS

MS − 1
(1.36)

φm ≥ 2 arcsin
(

1
2MS

)

. (1.37)

Additionally, if the open loop and closed loop responses to a load distur-
bance are denoted Yc and Yo, respectively, then

Yc

Yo
= S. (1.38)

The sensitivity function thus shows which disturbance frequencies are
attenuated and which are amplified by feedback, and MS gives the maxi-
mum amplification.
Requirements of the sensitivity functions T and S having peak values

less than MT and MS, respectively, can be given graphical interpretations
in a Nyquist diagram in the form of circles. The circles have centers and
radii as given in Table 1.1 and examples of the circles can be found in
Figure 1.6. For qTq∞ < MT , with MT > 1, the Nyquist curve should be
outside the MT -circle, while if MT < 1, then the Nyquist curve should
be inside the circle. For MT = 1 the circle degenerates to a straight line.
For qSq∞ < MS to be fulfilled, the Nyquist curve should be outside the
MS-circle.
The simple but conservative peak values MT and MS have been used

successfully as design parameters when designing PI and PID controllers,
see [Åström and Hägglund, 2006], and are also used in Paper I as design
parameters. However, the simplicity comes with a price. As MT and MS
are set as upper amplitude limits on T and S, respectively, for all fre-
quencies, all frequency dependent model errors may not be covered. For
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Table 1.1 Centers and radii of circles representing constant values MT > 1 and
MS of T and S, respectively.

Peak value Center Radius

MT − M2T
M2T − 1

MT

M2T − 1
MS −1 1/MS

−1.5 −1 −0.5

−0.5

0

0.5

−4 −3 −2 −1

−2

−1

0

1

2

Re Re

ImIm

Figure 1.6 Left: Circles corresponding to MT = 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8.
Right: Circles corresponding to MS = 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8.

PID, this has shown not to be a problem for industrially common pro-
cesses, see [Åström and Hägglund, 2006]. However, for controllers with
dead-time compensating structures, that are inherently sensitive to pro-
cess dead-time modeling errors, frequency independent constraints on the
sensitivity functions have shown not to be sufficient. Paper II gives a pro-
cedure to include a guaranteed dead-time margin as well as using MT and
MS as design parameters for robustness towards other type of uncertain-
ties, e.g., gain and time constant uncertainties. This procedure is used
in Paper III when comparing PID and PPI controllers. In the following
example, PPI controllers will be designed both using an upper limit on
the sensitivity function and the robustness margin presented in Paper II.

EXAMPLE 1.1—OPTIMIZATION OF THE PREDICTIVE PI CONTROLLER
In this example, optimization of the predictive PI (PPI) controller, consid-
ering the integrated absolute error (IAE) as a performance measure, will
be made. Optimization results with two different robustness measures
will be given, showing the sensitivity towards dead-time modeling error
of the PPI controller and the importance of setting adequate robustness
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Table 1.2 Optimal predictive PI controller parameters and constraint function
values in Example 1.1.

Design constraint IAE K Ti L qSq∞ qS∆(∆L)q∞

qSq∞ ≤ MS 2.30 0.46 0.02 1.04 1.30 ∞
qS∆(∆L)q∞ ≤ MS 3.06 0.37 0.13 0.99 1.22 1.30

constraints. The optimizations will be performed in a discrete time setting
on the following first order process with dead-time,

P(s) = 1
0.1s+ 1 e

−s. (1.39)

Both process and PPI controller are discretized using zero-order hold with
sampling period h = 0.02 and no measurement filter will be considered.
The first robustness constraint is the commonly used amplitude peak

of the sensitivity function S. The optimization problem may be stated as

min
K ,Ti,L

h

∞
∑

k=0
pz(k)p

s.t. qSq∞ ≤ MS,
(1.40)

where z(k) is the time-domain response to a load disturbance step at ini-
tial time. The constraint on the sensitivity function is set to MS = 1.3,
which is conservative, see [Åström and Hägglund, 2006]. The optimal con-
troller parameters are found in Table 1.2 together with IAE and constraint
function values, while the Bode diagram of the controller is shown in Fig-
ure 1.7. The controller has a very small integral time, yielding the predic-
tor to have undesirably high amplitude peaks. Figure 1.8 shows the nomi-
nal Nyquist curve and sensitivity function of the system, which fulfills the
constraint. Hence, the system has a at least a gain and a phase margin of
4.3 and 45○, respectively. The amplitude peaks cause the Nyquist curve to
have significant loops in the right half-plane and the sensitivity function
to have significant amplitude dips. The resulting closed-loop is sensitive
towards modeling errors ∆L of the process dead-time, and approximately
∆L = ±0.085, i.e., ±8.5% of nominal process dead-time, yield instability.
Figure 1.8 shows also the implications on the Nyquist curve and sensi-

tivity function as the dead-time is varied in the interval [0.915, 1.085]. It
is often implied that it is the loop with highest gain in the right half-plane
of the Nyquist diagram that causes the sensitivity towards dead-time un-
certainties. However, for the presented design, it is the fourth amplitude
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Figure 1.7 Bode diagram of the predictive PI controller from Example 1.1 when
using the constraint qSq∞ ≤ MS.

peak in the PPI controller that causes the instability for ∆L = ±0.085.
This peak is considerably smaller than the highest peak, but it is located
at a higher frequency yielding larger phase shift for an equal dead-time
uncertainty. The presented results show that using only an upper ampli-
tude bound on the sensitivity function is not enough at optimization of
PPI controllers.
A more robust system could have been designed if an even lower value

of MS was selected. However, this would e.g., also increase the gain mar-
gin to an even more conservative value. Another method is to separate
the dead-time uncertainty and other uncertainties, as in the presented
robustness margin in Paper II, which was subsequently used in the de-
sign of PPI controllers in Paper III. Using the notation from Paper III,
the optimization problem may then be expressed as,

min
K ,Ti,L

h

∞
∑

k=0
pz(k)p

s.t. qS∆(∆L)q∞ ≤ MS, ∆L ≤ ∆L ≤ ∆L,

(1.41)

where S∆(∆L) is the sensitivity function extended to depend on the dead-
time uncertainty, which has upper and lower limit ∆L and ∆L, respec-
tively. The constraint on S∆(∆L) guarantees that any dead-time uncer-
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Figure 1.8 Nyquist diagrams and sensitivity function magnitudes from Exam-
ple 1.1 when using the constraint qSq∞ ≤ MS. Top left: Nominal Nyquist curve.
Top right: Nyquist curves when process dead-time is shifted within the interval
[0.915, 1.085]. Middle: Nominal sensitivity function. Bottom: Sensitivity functions
when process dead-time is shifted within the interval [0.915, 1.085]. Circles and
horizontal lines (--) indicate the limit qSq∞ = 1.3.
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Figure 1.9 Bode diagram of the predictive PI controller from Example 1.1 when
using the constraint qS∆(∆L)q∞ ≤ MS.

tainty in the specified interval cannot yield the ordinary sensitivity func-
tion S to have a larger amplitude than MS. As an example, the dead-
time uncertainty interval is set by ∆L = −0.085 and ∆L = 0.085, while
MS = 1.3, yielding at least the same gain margin as in the previous opti-
mization problem.
The resulting controller parameters together with IAE and constraint

function values are found in Table 1.2 and a Bode diagram of the controller
is found in Figure 1.9. Compared to when using a constraint on qSq∞, the
integral time is larger and the proportional gain is smaller, resulting in a
less aggressive controller with smaller gain peaks. The IAE is increased
and the nominal sensitivity function has a decreased peak value. The ro-
bustness properties of the closed-loop system are however considerably
improved as seen in Figure 1.10, where Nyquist curves and sensitivity
functions are shown for different values of the process dead-time uncer-
tainty within the specified interval. As required by the design, the sensi-
tivity function of the system has a magnitude smaller than or equal to 1.3
for all dead-times in the defined interval, and thus, the Nyquist curves are
outside or touch the circle indicating qSq∞ = 1.3. Hence, the constraint
on qS∆(∆L)q∞ presented in Paper II may be used in optimization of ro-
bust PPI controllers, guaranteeing robustness towards process dead-time
uncertainties without increasing e.g., specified gain margin.
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Figure 1.10 Nyquist diagrams and sensitivity function magnitudes from Exam-
ple 1.1 when using the constraint qS∆(∆L)q∞ ≤ MS. Top left: Nominal Nyquist
curve. Top right: Nyquist curves when process dead-time is shifted within the inter-
val [0.915, 1.085]. Middle: Nominal sensitivity function. Bottom: Sensitivity func-
tions when process dead-time is shifted within the interval [0.915, 1.085]. Circles
and horizontal lines (--) indicate the limit qSq∞ = 1.3.
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1.5 Noise Sensitivity

A control system requires measurements of the process to be controlled.
In general, the measurements contain noise, and noise is thus fed into the
control loop, see Figure 1.1. The control variable affects the process via
actuators that often have mechanical parts and the control signal move-
ment due to the noise may cause undesirable wear. These control signal
variations depend on the nature of the noise, but also on the transfer
function from noise to control signal, i.e., CFS, as seen in Section 1.1.
To remove noise from the measurement signal, the measurement filter

F may be designed in an advantageous way and the selection of filter order
for PI and PID controllers is the topic of Paper I. In practice, the mea-
surement filter is often inserted after the controller design to obtain de-
sired noise sensitivity, or its settings are related directly to the controller
design. In the first case, the outcome is a controller tuned for another sys-
tem than it will be used in, making in general its performance not follow
the design specifications. The second case may yield undesirable control
signal variations, yielding re-design of the control system necessary, as
pointed out in [Isaksson and Graebe, 2002]. As both the measurement
filter F and controller C affect the closed loop behavior, it is thus clear
that they should be co-designed and that specifications on CFS should be
considered already at the design phase.
Two measures of the noise impact on the control signal are presented

in [Åström and Hägglund, 2006]. One is the peak value Mn of the transfer
function CFS, i.e.,

Mn = qCFSq∞, (1.42)
which in some cases can be related to controller parameters. The second
one is the variance σ 2u of the control signal calculated by using the power
spectrum φn(ω ) of the noise as

σ 2u =
∞
∫

−∞

pC(iω )F(iω )S(iω )p2φn(ω ) dω . (1.43)

The latter measure is used in both Paper I and III for sampled systems,
with the addition of also considering the control signal derivative due to
the noise.

1.6 Design of Low-Level Controllers

Design of low-level controllers, such as the PID and predictive PI con-
trollers presented in Section 1.2 with associated measurement filters, dif-
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fer from the general controller design problem as the structure is fixed.
Design methods for the predictive PI controller (PPI) are rare in the

literature, but some guidelines are given in [Hägglund, 1996, Åström and
Hägglund, 2006], where the controller parameters are directly related to
the step response of the process to be controlled and to the desired closed
loop time constant. The design methods do not explicitly address robust-
ness, which was noted and improved on in [Normey-Rico et al., 1997].
However, the noise sensitivity of the PPI controller was not analyzed in
the above references.
For the design problem of the PID controller, on the contrary to the PPI

controller, an abundance of different tuning methods for the PID param-
eters and a variety of processes can be found, see for instance [O’Dwyer,
2009]. The first attempt for systematic tuning, and probably most known,
is the tuning method by Ziegler and Nichols [Ziegler and Nichols, 1942],
from which several extensions have been made, see [Åström and Häg-
glund, 2006]. However, neither robustness nor noise sensitivity were ex-
plicitly considered. This is in general also true for the standard method
of pole placement, where specifications are set by closed-loop poles.
During the last two decades, simple design rules for PID controllers

have been derived from optimization. One example is the AMIGO method,
presented in [Åström and Hägglund, 2006]. For a batch of processes, PI
and PID controllers were designed such that the integrated error (IE) at
a load disturbance was minimized, while setting robustness by using a
combined sensitivity with S and T . Simple tuning rules were then found
both for PI and PID controllers by correlating the resulting controller pa-
rameters with normalized process parameters. However, noise sensitivity
was not considered directly. The controllers have to be de-tuned or re-
tuned with a pre-determined measurement filter in the loop if desired
noise sensitivity is not obtained.
The noise sensitivity was however considered together with robustness

in [Kristiansson and Lennartson, 2006a] and [Kristiansson and Lennart-
son, 2006b], where minimization of a frequency domain objective, closely
related to IE, was performed for a batch of processes. Tuning rules were
based on observed relations between the resulting controller parameters
and process parameters, which can be estimated in practice by relay ex-
periments and characterize the difficulty of controlling the process.
All the above mentioned tuning rules have at least two points in com-

mon. First, the resulting robustness and noise sensitivity have to be an-
alyzed after the design has been performed. Secondly, the tuning rules
have been derived using specifications set by the corresponding inventors.
If the resulting design does not fulfill the desired specifications, another
tuning method must be used or the controller parameters must be tuned
manually, requiring knowledge and insight.
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Another type of PID controller tuning is based on the internal model
control (IMC) principle, where the controller contains an approximate in-
verse of the process model. The controller also contains a tunable filter
that determines the trade-off between robustness and performance, which
is hence explicitly considered in the design. With certain model orders and
approximations of the process dead-time, the resulting controllers are of
PI and PID type, see [Rivera et al., 1986]. The lambda tuning method,
see [Dahlin, 1968, Higham, 1968], is a special case of the IMC method,
where the closed loop response time is the only design parameter. The IMC
method yields satisfying set-point responses, but as process poles and ze-
ros are canceled in the design, load disturbance responses may be slow
for processes with lag-dominated dynamics. To overcome this deficiency,
the SIMC tuning rule was presented in [Skogestad, 2003], containing an
ad hoc modification of the integral time in the controller which yields
better responses to load disturbances. Neither of the IMC based methods
considers the noise sensitivity explicitly. However, guidelines for the con-
troller gains in the SIMC method that results in smooth control, and thus
less noise sensitivity, were presented in [Skogestad, 2006].
A tuning procedure for low-level controllers should be able to explicitly

address performance, robustness and noise sensitivity. Additionally, the
procedure should be able to handle tuning in different settings. For in-
stance, the robustness specification depends on how detailed and accurate
the process model is, while the noise sensitivity should be specified when
the noise level of the measurement signal is known. It is hence impossible
to find simple tuning rules based on only process model parameters, sim-
ilar to the tuning rules above, that can handle the performance and all
specifications simultaneously for various settings in an optimal manner.
The advances of optimization algorithms, and the limited number of

controller and filter parameters, yield model-based controller optimiza-
tion attractive. A performance measure together with constraints on ro-
bustness and noise sensitivity may explicitly be set in each design case.
Such optimization problems have recently been posed and solved, see for
instance [Kristiansson and Lennartson, 2006a, Garpinger, 2009, Šekara
and Mataušek, 2009]. The work presented in Paper I and III in this thesis
are along the same lines, where PID or PPI controller parameters are op-
timized together with measurement filter parameters, while considering
both robustness towards process uncertainties and noise sensitivity of the
control signal. However, compared to the listed references, additional and
different noise sensitivity measures are used. The robustness constraint
used in Paper III is also different and is presented in Paper II.
Optimization-based low-level controller design is conceptually simple,

but care must be exercised. If the optimization routine terminates suc-
cessfully, the resulting controller is optimal in some sense. However, it
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may still be unsuitable to use due to e.g., lack of significant constraints in
the optimization formulation or a local minimum in the objective function
has been found. An example of the former was seen in Example 1.1.

1.7 Contributions Overview

The author of the thesis read the paper [Shinskey, 2001] in the beginning
of his Ph.D. studies, which was the starting point of the work on low-level
controllers. The paper presented a PID controller, which was extended
with a predictor transfer function equal to the predictor presented in Sec-
tion 1.2. The controller showed a much better performance compared to an
ordinary PID controller. The predictor structure had a high-frequency gain
of 1, indicating that the noise sensitivity was not significantly higher than
for the original PID controller, yielding it interesting to analyze. To eval-
uate the predictor, the work was first directed towards making a compar-
ison between a PI controller extended with a predictor, i.e., the predictive
PI (PPI) controller, and an ordinary PID controller. However, designing
the controllers by optimization using frequency independent limits on the
sensitivity functions, as is common for PID, were not feasible due to the
sensitivity of dead-time uncertainties of the PPI. Thus, robustness con-
straints, considering simultaneous uncertainties in e.g., dead-time, gain
and time constants of the process, were needed. Additionally, the robust-
ness constraints were also supposed to be easy to use and interpret. The
resulting work on robustness constraints is presented in Paper II, where
the uncertainty in process dead-time is separated from other uncertain-
ties. The margins use sensitivity functions that are extended to depend on
the dead-time uncertainty. Amplitude limits on the extended sensitivity
functions are specified and should hold for all dead-time uncertainties in
a specified interval. Hence, the ordinary sensitivity functions are guaran-
teed to have peak values less than the specified limits for all considered
dead-time uncertainties. Methods to compute the margins are presented
in the paper. The work gave insight into how dead-time uncertainties
change the Nyquist curve and that the Nyquist diagram can be separated
into permissible and impermissible areas that depend on frequency.
During the work of Paper II, the author of the thesis had several

discussions on PID controller and measurement filter design regarding
noise sensitivity with the author of [Garpinger, 2009]. This was inter-
esting from the PPI controller point of view, as the noise sensitivity of
the predictor was to be analyzed. An iterative design method for discrete
time PI and PID controllers and measurement filters was presented in
[Garpinger, 2009]. Robustness was considered by constraining the peak
values of the sensitivity functions, while noise sensitivity was considered
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by constraining the transfer function from measurement noise to control
signal as qCFSq2 ≤ η1. However, it was pointed out that the resulting
feedbacks were suboptimal. The author of the thesis, inspired by the work
in [Garpinger, 2009], constructed a framework to pose and solve the joint
optimization problem of PI/PID controllers and measurement filters, re-
sulting in optimal feedbacks. Robustness and noise sensitivity were con-
sidered as in [Garpinger, 2009]. The framework has been used in both
Paper I and III and is thus a significant contribution even though not
explicitly stated in the papers. It was constructed in MATLAB RF using the
Control System ToolboxTM , Optimization ToolboxTM, and Simulink RF , see
[The MathWorks, Inc, 2010a, The MathWorks, Inc, 2010b, The MathWorks,
Inc, 2010c].
A main issue with the constraint qCFSq2 ≤ η1, is that rapid variations

in the control signal are treated in the same manner as slow variations.
However, rapid variations cause in general more wear on actuators than
slow variations. This inspired to the first part of the work in Paper I,
presenting a constraint on the inter-sample behavior of the control signal
due to measurement noise as q∆zCFSq2 ≤ η2, where ∆z is the difference
operator. A guideline on how to set η2 is given in the paper. The second
part of Paper I considers the measurement filter order for PI and PID con-
trollers. Controllers and measurement filters with different orders were
designed for a batch of processes with the constraints above. In papers
published on PID control, the most common measurement filter is the
first order filter that only acts on the derivative part, yielding a limited
high-frequency gain but no roll-off in the feedback. However, the results in
Paper I show the importance of roll-off when considering noise sensitivity
constraints. Comparisons with optimal high-order controllers designed via
Youla parametrization were made. When considering processes with lag-
dominated dynamics, the comparisons show that the optimal high-order
controller emphasizes the same frequency regions as a PID controller with
a second order measurement filter with low damping. To the best knowl-
edge of the authors, the co-design of PI/PID controllers and measurement
filters with the considered constraints, has not been considered elsewhere.
The constructed framework for optimization was extended to also in-

clude the PPI controller and the robustness margins presented in Paper II.
Hence, comparisons between the two prediction types of the PID and the
PPI controller using both robustness and noise sensitivity constraints,
could be performed. The result of the work is presented in Paper III. In
general, the differences between the two prediction methods are that the
PPI predictor is able to give larger phase advance and higher gain peak
over a narrower frequency interval than what the derivative part of a PID
controller can, while the derivative part is able to give phase advance and
gain increase over a wider frequency interval than what the PPI predic-
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tor can. For the selected constraint parameters in Paper III, the perfor-
mances of the two prediction methods are similar for the majority of the
considered processes, reflecting processes found in an industrial setting.
However, for processes and constraints that allow the frequency interval
for phase advance and gain increase in the feedback to be significantly
wider than what the PPI controller is able to use, the PID controller is
significantly better. To the best knowledge of the authors, optimization
of the PPI controller with associated measurement filter, regarding both
robustness and noise sensitivity, has not been considered elsewhere.

1.8 Future Work

This section provides some interesting areas for future work, and is prefer-
ably read after the papers I–III have been read.
The upper amplitude limits on the sensitivity functions and the ex-

tended sensitivity functions presented in Paper II may be frequency de-
pendent. However, for simplicity, the limits were frequency independent
in Paper I and III. Frequency dependent limits could be found via e.g.,
parameter uncertainties in the process model. Implications of using these
limits, compared to commonly used values of frequency independent lim-
its, would give further insight on how robustness specifications affect the
design of low-level controllers.
The noise sensitivity constraint presented in Paper I, and used both in

Paper I and III when designing low-level controllers with measurement
filters, are based on white measurement noise. However, measurement
noise in practice does very rarely contain low-frequency components. An
interesting path to take for the optimization formulation is to use sim-
ple models to describe the noise characteristics and include them the in
constraints.
Academic papers on design of low-level controllers focus in general on

a performance criteria and robustness towards process uncertainties re-
garding instability. Lately, designs considering the noise sensitivity of the
control signal have also occurred. However, it is also of interest how the
performance is changed due to process variations, which is very rarely
discussed. Performing an analysis of the optimal low-level controllers and
measurement filters in Paper I and III regarding robust performance
would be interesting. Especially an analysis of the predictive PI con-
troller would be interesting as it gives phase advance and increased gain
over only a narrow frequency interval. An analysis regarding parame-
ter changes in a first-order system with dead-time was provided in [In-
gimundarson and Hägglund, 2002] for PI and PID controllers as well as
a PI controller with Smith predictor structure. A more unified approach
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than the presented one would however be desirable.
Working with low-level controllers and filters, and the requirements

pointed out in Section 1.1, an important aspect of future work is to focus
on keeping things as simple as possible, making the results useful in
industry.
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2

Optimization of High-Level

Polymer Grade Changes

2.1 Problem Formulation

Why Grade Changes?

Polymer, such as polyethylene, comes in different grades, i.e., has different
properties such as color, texture, odor, and mechanical properties. The
different grades are usually composed of the same raw materials, but
they are produced at different reactor operating conditions such as raw
material concentration ratios, pressures and temperatures. Today, more
than 100 million tons of polymers are produced per year with a wide
variety of grades and prices, see [Dünnebier et al., 2005] and [Kadam
et al., 2007], and the use of polymer has increased in several areas such as
automotive, electronics, and food during the last decades. Specific polymer
properties are desired for each area and application by the customer and
the diversification has steadily been increasing.
For the polymer producers to increase their profitability, the above has

made it imperative to have flexible operation of production, see [Backx
et al., 1998], and to make specific tailoring of the produced polymer. How-
ever, it is prohibitively expensive to invest in process equipments such
that each grade may be produced continuously. Instead, reactors capable
of producing a multitude of grades are used. Adaptation to the highly
demand driven market, raw material pricing and sell prices of polymers,
is achieved by grade changes, i.e., changing production from one grade
to another, utilizing the same process equipment, see Figure 2.1 for an
illustration. This results in product campaigns that run between a couple
of days up to weeks before change of product. During the grade transfers,
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Figure 2.1 Example of grade changes. Solid lines (–) represent stationary pro-
duction, while dotted lines (⋅⋅) represent transitions, i.e., non-stationary production.
Dashed lines (--) show polymer grade variable intervals specifying on-grade polymer.

the produced polymer is in most cases considered to be off-grade, meaning
that it does not fulfill the properties of neither start nor end grade. Such
polymer must be sold at a lower price than premium polymer, and often
to a lower price than the production cost. The schedule of products, made
at a supervisory level, aim to minimize the losses during transitions.

Grade Change Requirements

During a grade change, reactor operating conditions change continuously
and for a grade change strategy to be useful in practice it should sat-
isfy four properties as pointed out in e.g. [McAuley and MacGregor, 1992,
Flores-Tlacuahuac et al., 2006, Chatzidoukas et al., 2003],

• the reactors should during the transition be operated with obeyed
safety requirements on e.g., pressures, concentrations, temperatures,
inflows and production rates.

• the transition should be made during continuous production.

• transfer product properties from start grade to end grade, minimiz-
ing or maximizing some pre-determined quantity, e.g., production of
off-specification polymer, transition time, or total profit during the
transition.

• the transition should not adversely affect the quality or consistency
of the on-grade polymer in the reactor at the end of the transition
period.

The first point is obvious, while the second one considers economy. Even
though a grade change is faster when performing stop-and-start of the
reactor compared to performing it during continuous production, it is not
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economically recommended due to the large losses in raw material [Chatzi-
doukas et al., 2003].
What quantity to minimize or maximize during transition may depend

on market conditions, see [Takeda and Ray, 1999]. This thesis considers
mainly the problem of maximizing total profit during the transition, i.e.,
the difference between revenues and costs.
The last point above considers the measures used when defining a

grade. Newly produced polymer has instantaneous values of polymer qual-
ity variables, reflecting the reactor condition at the time it was produced.
This polymer is mixed with polymer in the reactor bed, yielding the bed
average polymer quality variables, which are often used when defining a
polymer grade. As the bed average measures are to be changed at transi-
tion, rapid transitions may be performed by over- and undershooting the
instantaneous variables considerably. Thus, even though the transition
polymer has correct bed average values, it may be composed of polymer
with considerably different instantaneous properties, see [McAuley and
MacGregor, 1992]. Such transitions should therefore be avoided.

Grade Change Challenges

Changing operating conditions in polymerization reactors comes with a set
of challenges, and several different authors have used a multitude of solu-
tion approaches, see Paper VI for an overview. The polymerization process
is inherently non-linear since e.g., the reaction rates depend on concentra-
tions of monomer, co-monomer and hydrogen in a non-linear fashion. In
addition, the exothermic reaction depends on the catalyst properties and
also on the reactor temperature, making reactor runaway possible during
a grade change if the reactor temperature is not properly controlled.
Operating conditions, both during steady state operation and grade

changes, are limited to known safe regions, which must be respected when
formulating an optimization problem for finding optimal grade change tra-
jectories. Measurements of operating conditions such as pressures, tem-
peratures and concentrations during grade changes are available on-line,
while measurements of polymer grade variables are found via product
sampling and examination in laboratory settings associated with long de-
lays, see [Embiruçu et al., 1996].
For rapid grade transitions, the reactor inflows of raw material and

diluents are required to change not only quickly and often with over- or
undershoots, but also simultaneously. The effect on the reactor state from
each inflow is complicated and to handle these interactions, advanced,
multivariable, control strategies are imperative [Takeda and Ray, 1999].
Flows of raw material, diluents, and also off-gas flows, are limited by
minimum and maximum values. Additionally, their rates of change are
also limited, which must be considered at transition optimization.
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The main polymer production plant considered in this thesis incorpo-
rates three cascaded reactors, and they affect each other in the forward
direction, not only by raw material components and diluents, but also via
catalyst and polymer properties. Additionally, the reactors also partly af-
fect each other in the reverse direction. This is because unreacted raw
material and diluents are sent for purification to a recycle area, consist-
ing of three distillation columns, and are subsequently used as inflows to
the reactors.
The recycle area contributes to a significantly better economy of the

plant. However, when considering grade changes with hydrogen mass de-
creases in the reactors, the recycle area yields longer transition times, as
also noted in [McAuley and MacGregor, 1992]. This is because hydrogen
has a very low reaction rate, yielding that significant parts of the total
hydrogen inflows to the reactors come from the recycle area. Thus, to re-
move hydrogen fast from the reactors, closing hydrogen fresh inflows may
in some cases not give fast enough transitions, and economically undesir-
able off-gases on the recycle distillation columns must be used.
Thus, with the above in consideration, formulating an optimization

problem for transferring the operating point of a polymer plant from sta-
tionary production of one grade to another, is a great challenge.

2.2 The PIC-LU Project

Process Industrial Center – Lund University (PIC-LU) is a collaboration
between the departments Automatic Control and Chemical Engineering at
Lund University and several companies, one of which is Borealis AB. The
core of the center is close collaboration between academia and industry
on process industrial problems. The aim is that the solutions could be
generalized and applied outside the scope of the original problem. The
PIC-LU project started in July 2008.

PIC-LU and Borealis AB

Parts of this thesis, Paper IV and VI, are results from close collaboration
with Borealis AB, who originally formulated the research project in PIC-
LU, acknowledging the need of grade change optimization in industry.
Borealis AB has actively participated in the project and their contributions
have been, among others,

• mathematical models of their Borstar RF reactors

• measurement data from the plant PE3 at Borealis AB, Stenungsund,
Sweden
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• significant feedback on the results regarding relevance and applica-
bility

• personnel resources

• several meetings at Borealis AB and telephone conferences

The above has provided a great insight into their work, plant operation
and needs regarding grade transitions. Additionally, the Ph.D. students
involved in the project have been at a one week internship in the process
control room of PE3 at Borealis AB, getting familiar with operators’ work
and the plant during grade changes.
Lund University has contributed with the work of two full time Ph.D.

students, P. Larsson and N. Andersson, constructing a Modelica library
for the plant, solving grade change optimization problems and performing
model calibrations in various settings. Also, a part time Assistant Profes-
sor, J. Åkesson, has been involved, developing the used Modelica based
optimization tool JModelica.org.

PE3 at Borealis AB

Borealis is one of the worlds largest polymer producers and one of their
sites are located in Stenungsund, Sweden, where the polyethylene plant
PE3, considered in this thesis, is found. PE3 is a Borstar RF plant devel-
oped by Borealis and consists of two slurry reactors and one fluidized bed
gas-phase reactor in cascade and a recycle area constituted of three dis-
tillation columns for recovery of unreacted components and diluents, see
Figure 2.2. Additionally, an area for further processing of the polymer,
such as pelleting, blending, baggaging and storing, is a part of the plant.
This part will however not be covered in this thesis.
The Borstar RF process was primarily developed to produce bi-modal

polyethylene and at PE3, high-density polyethylene (HDPE) is produced.
The main raw material is ethylene, which together with Borealis’ propri-
etary Ziegler-Natta catalyst control the plant production rate. Hydrogen
and butene are used for control of melt index and density. Propane is
used as diluent in the slurry reactors, while also nitrogen is used in the
gas-phase reactor (GPR).
In the pre-polymerization reactor, see Figure 2.2, which is compara-

tively small and has inflows of catalyst, ethylene, hydrogen and propane,
the catalyst is coated with polymer, preventing it to break later in the
process. The polymer produced is conveyed into the subsequent loop re-
actor, and the low molecular weight part of the bi-modal polyethylene is
produced under super-critical conditions. The raw materials ethylene and
hydrogen and the diluent propane are fed continuously to the reactor, pro-
ducing approximately half of all polymer at the plant. The polymer slurry
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Figure 2.2 Overview of the plant PE3 at Borealis AB including three Borealis
Borstar RF reactors and a recovery area with three distillation columns.
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is transported from the loop reactor to a flash tank, separating polymer
and gases. Unreacted raw material and diluent is sent for purification to
the heavies distillation column and further to the lights distillation col-
umn, from which the top flow is subsequently used as inflow to the loop
reactor and the bottom flow, mainly propane, is stored in a propane buffer.
The polymer is conveyed into the GPR by using a part of the recycle flow
of the GPR, and a propane purge flow assure that no leakage of GPR
gas mixture to the flash tank is present. With a lower concentration of
hydrogen in the GPR compared to the loop reactor, high molecular weight
polymer is produced, which broadens the molecular weight distribution
and yields the bi-modal end polymer. Co-monomer butene is added for
control of the end product density. Approximately, the second half of the
total polymer production at the plant is in the GPR. The conversion per
pass through in the GPR is low and the gas reaching the reactor top sec-
tion is cooled and fed back into the reactor together with the fresh feeds.
Polymer, together with gas, is continuously withdrawn at the reactor bot-
tom and fed to a separator, from which the gas is sent to the propane
distillation column. The polymer is sent to a degassing tank and then fur-
ther to pelleting. Top and bottom flow of the propane column are fed back
into the GPR, while the side draw, mainly propane, is sent to the heavies
column and then further to the lights column, and thus, subsequently to
either the loop reactor or the propane buffer.

Current Grade Change Practice at PE3

At PE3, a non-linear model predictive controller (NMPC) is used for plant
operation, see [Andersen et al., 2000]. The NMPC utilizes a non-linear
physical model, updated recursively using plant measurements and uses
a thermodynamic package for calculation of e.g., fluid densities and in-
stantaneous production rates. These are parts of the Advanced Process
Control (APC) used on the Borealis Borstar RF reactors.
During grade changes, the NMPC is disconnected from the plant, and

some inflows and inflow ratios are set in manual mode and controlled by
the operators, as experienced during [Internship, PE3 Borealis AB, 2009].
This is because the operators find the NMPC lacking aggressiveness and
they have their own ideas of how certain steps in the grade transitions
should be performed. At a grade transition, the operators of the reactors
follow a recipe which is a combination of a time schedule and a task and
action list, based on the experience of former transitions made between
the two considered grades. This list may have the conceptual look of,

1. Approximately 20 h before transition, start decreasing polymer mass
in the loop reactor to X tons and ethylene inflow to Y kg/h.

55



Chapter 2. Optimization of High-Level Polymer Grade Changes

2. Decrease production rate in the loop reactor to Z tons/h, 2 h prior
transition time.

3. Increase the butene inflow to the gas-phase reactor with W kg/15
min and make a slight overshoot over the target value.

4. Increase the hydrogen inflow to the loop reactor with Q g/30 min.
Observe the hydrogen-ethylene molar ratio; it may increase too fast
since the ethylene is decreased.

5. During the transition, at all times, keep the bed level and the bulk
density in the gas-phase reactor under close watch.

6. . . .

As the new grade is reached, the NMPC is again connected to the plant
and controls it towards steady state.
After each transition, the recipe is updated by an experienced process

engineer based on how successful the grade change was. This procedure
is also followed elsewhere, see [Takeda and Ray, 1999, Tousain, 2002].
Even if a recipe is followed by the operators, two transitions between

the same polymer grades will never be the same for several reasons, and
some of them are, as explained in [Internship, PE3 Borealis AB, 2009]
and noted in [Kadam et al., 2007],

• initial points are never exactly the same

• disturbances act on the reactors and distillation columns during the
transitions

• two different operators may perform the same task in two different
ways

Additionally, the operators work in shifts and they also take turn in what
reactor to control. It may thus take several months before an operator
performs the same grade change again on the same reactor, and thus
acquire experience.
The recipes developed iteratively by experience work well. This does not

mean they are optimal grade change procedures and there is a clear need
for operator support and process engineer tools and advisory systems for
finding, according to some criteria, optimal trajectories for the transitions.
The optimal trajectories may also be used at a grade scheduling level.

PIC-LU Project Aims

The PIC-LU project aims at developing prototypes of tools and methods for
off-line grade change optimization and analysis, that can be generalized to
processes other than polymer plants. It is a feasibility study of a platform
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that should be used by and support process and planning engineers to find
feasible transition paths between grades that have low safety risks and
are economically tenable. The project may be divided into four different
parts,

1. Construct a Modelica model library containing components corre-
sponding to units at the PE3 plant, such as reactors and distillation
columns. The library should contain models and templates for sim-
ulation, parameter estimation, optimization, as well as models for
verification of optimization results.

2. Perform parameter sensitivity analysis of the model constructed
from the model library and develop methods for model calibration
based on plant measurement data from stationary production and
grade transitions.

3. Perform a feasibility study of grade change optimization using mod-
els from the constructed model library, aiming at maximizing the
profit during transition under plant constraints.

4. Design an engineering support system with a graphical user inter-
face where calibration and grade change optimization problems are
formulated, solved and presented in a user-friendly manner.

The resulting Modelica library is described in Supplement A. Calibration
using stationary plant data together with the Modelica models has been
performed in [Andersson et al., 2011], while parameter sensitivity analy-
sis and calibration using dynamic data is work in progress. Grade change
optimization results based on the Modelica library are presented in Pa-
per IV and VI and in [Larsson et al., 2010]. In Paper V, a reactor previously
published by other authors is considered for optimization. The design of
an engineering support system that is linked to the measurement and
product database at Borealis AB was performed as a M.Sc. thesis project
supervised by P. Larsson, see [Stenmark, 2011].

2.3 Modelica

The Modelica language for modeling of complex systems is becoming wide-
ly used in industry, see [The Modelica Association, 2011]. Applications
include robotics, automotive and power plants, and models are almost ex-
clusively used for simulation. The most important features of the Modelica
language are [Fritzson, 2004],
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• Modelica is based on equations instead of assignment statements
and acausal modeling may therefore be performed. The equations
can be stated by mixing differential, algebraic and discrete equations
and there is no need for the modeler to solve for certain variables as
e.g., derivatives.

• Modelica supports multi-domain modeling, i.e., models from differ-
ent domains such as electrical, mechanical, thermodynamic, hydrau-
lic, biological and control applications can be used together.

• Modelica is an object-oriented language providing structuring fea-
tures such as classes, components, and inheritance, which gives the
modeler means to build reusable model libraries.

• Modelica has strong support for building models using components,
connections between components, and defining interfaces, making it
easy for the modeler to structure the model in a hierarchical manner.

Most of the above features were extensively used in papers IV–VI. Li-
braries were constructed and included, amongst others, reactor and dis-
tillation column models, models for stationary and dynamic optimization,
models for verification of optimization results and templates defining dif-
ferent plant configurations. The model library used in Paper IV and VI
is described in Supplement A and is one of the main contributions of
the PIC-LU project. The modeling and optimization methodology used in
papers IV–VI will be described by an example, based on the Hicks-Ray
continuously stirred tank reactor (CSTR) system, see [Hicks and Ray,
1971].

EXAMPLE 2.1—MODELING OF A CSTR REACTOR.
The Hicks-Ray continuously stirred tank reactor (CSTR) model was orig-
inally presented in [Hicks and Ray, 1971]. It describes an exothermic re-
action with temperature dependence and the model has two states, the
concentration C and the temperature T , and one algebraic variable, the
reaction rate Rr . The reactor is cooled by a jacket that has a coolant flow
with temperature Tc, which is the control input. The CSTR model is

V Ċ = F0(C0 − C) − VRr (2.1)

VṪ = F0(T0 − T) −
dHV

ρCp
Rr +

2UV
rρCp

(Tc − T) (2.2)

Rr = Ck0 exp
(

− E
RT

)

, (2.3)

where the first two equations describe the component and energy balance,
respectively, and the third describes the reaction rate. The model contains
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model CSTR

//Input

input Real Tc(nominal=Tc_0);

//States

Modelica.SIunits.Concentration C(start=C_init,fixed=true,nominal=C_0);

Modelica.SIunits.Temp_K T(start=T_init,fixed=true,nominal=T_0);

//Algebraic variable

Real R_r(start=R_r_init,nominal=R_r_0,final unit="mol/(s.m3)");

//Nominal values

parameter Modelica.SIunits.Concentration C_0 = 1000;

parameter Modelica.SIunits.Temp_K T_0 = 350;

parameter Modelica.SIunits.Temp_K Tc_0 = 300;

parameter Real R_r_0(final unit="mol/(s.m3)") = C_0*k0*exp(­EdivR/T_0);

//Initial values

parameter Modelica.SIunits.Concentration C_init = 1;

parameter Modelica.SIunits.Temp_K T_init = 1;

parameter Real R_r_init(final unit="mol/(s.m3)") = C_init*k0*exp(­EdivR/T_init);

//Model parameters

parameter Modelica.SIunits.VolumeFlowRate F_0 = 1/600;

parameter Modelica.SIunits.Length r = 0.219;

parameter Modelica.SIunits.Volume V = 100;

parameter Modelica.SIunits.Temp_K EdivR = 8750;

parameter Modelica.SIunits.Density rho = 1000;

parameter Modelica.SIunits.SpecificHeatCapacity Cp = 0.239*1000;

parameter Modelica.SIunits.DensityOfHeatFlowRate U = 915.6;

parameter Real k0(final unit="1/s") = 7.2e10/60;

parameter Real dH(final unit="J/mol") = ­5e4;

equation

V*der(C) = F_0*(C_0­C) ­ V*R_r;

V*der(T) = F_0*(T_0­T) ­ dH*V*R_r/(rho*Cp) + 2*U*V/(r*rho*Cp)*(Tc­T);

R_r = C*k0*exp(­EdivR/T);

end CSTR;

Listing 2.1 Modelica model CSTR in Example 2.1.

simplifications such as constant volumetric hold-up and equal density and
heat capacity of feed and product streams. More elaborate models can be
found in [Luyben, 2007].
The above model will be used both for simulation, finding stationary

points, dynamic optimization and verification of the optimal solution. In
Listing 2.1, it is encoded in the Modelica model CSTR. The Modelica code
is divided into two sections, one with all variables and parameters and
one with the equations describing the system. At the top, the input Tc
is found together with the states C and T and reaction rate Rr . Each of
these is given correct unit either by using the standard Modelica library
or using the unit attribute directly. They are also given nominal values
which are used as scaling factors when solving an optimization problem.
Setting correct units in the model is advantageous since available simu-
lation tools for Modelica models may notify the user if different terms in
the equations are incompatible. The initial state is set by parameters and
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when the model is used for e.g., simulation or optimization, the desired
initial state is set by changing the parameter values. For now, they are
both set equal to 1. The initial values may either be fixed or free, i.e.,
specified to certain values or only used as initial guesses when solving an
initialization problem. Below the initial value parameters are the model
parameters. The model equations are in the second section, indicated by
equation, and written in a form identical to Eqs. (2.1)–(2.3). With proper
initial values, the model may now be simulated using an appropriate tool.

2.4 Dynamic Optimization Methods

Over the last decades, dynamic optimization has received significant at-
tention in academia and the application of dynamic optimization has in-
creased in industry. It is used both for on-line tasks such as model predic-
tive control (MPC) and state-estimation, and off-line tasks such as tra-
jectory optimization and model parameter optimization. The optimization
problem on the time interval [t0, t f ] may in general be formulated as

min
u(t)
J(x(t f ))

s.t. F(ẋ(t), x(t),w(t),u(t)) = 0
F0(ẋ(t0), x(t0),w(t0),u(t0)) = 0
Cineq(ẋ(t), x(t),w(t),u(t)) ≤ 0
Cend(ẋ(t f ), x(t f ),w(t f ),u(t f )) ≤ 0
x(t0) = x0,

(2.4)

where x, w and u are states, algebraic variables and control variables,
respectively, and x0 is the initial state. The cost function J to be minimized
is scalar, F is the differential-algebraic equation (DAE) representing the
dynamics of the system to be optimized, F0 represent the DAE augmented
with additional initial conditions and Cineq and Cend are path and end
point inequality constraints, respectively. Several different approaches for
solving the optimization problem in Eq. (2.4) exist and they may be divided
into indirect and direct methods, see [Biegler, 2010, Betts, 2009]
The indirect, or variational approach, is based on the solution of the

first order necessary conditions for optimality obtained from Pontryagin’s
Maximum Principle, see [Pontryagin et al., 1962]. If no inequality con-
straints are present in the problem, the conditions may be written as a
set of DAEs and several approaches to solve these exist. However, if in-
equality constraints are present, the activation sequence must be known
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a priori and it may also be difficult to find initial guesses for adjoint vari-
ables. These drawbacks make the variational methods hard to apply to
large-scale systems.
In direct methods, the basic idea is to transform the infinite dimen-

sional optimization problem in Eq. (2.4) to a finite dimensional non-linear
programming problem (NLP), see [Binder et al., 2001]. The size of the fi-
nite dimensional problem depends on what type of transformation is used,
and there are two main branches of direct methods; sequential and simul-
taneous methods. In the context of polymer grade changes, it is mainly
sequential methods and collocation methods, which is a subgroup of simul-
taneous methods, that have received the most attention. Since collocation
is used in papers IV–VI, it will be the main focus in this section. However,
short overviews of other direct methods will be given as well, together
with a comparison of the solution methods.

Sequential Methods

In sequential methods, the control variables are parametrized by a finite
number of parameters p, for instance by piecewise polynomials [Vassil-
iadis, 1993]. Given initial condition of the DAE, and initial values of the
parameters p, the system may be integrated and the result used for evalu-
ating the cost function in the optimization problem in Eq. (2.4). Thus, the
cost function depends only on the parameters p, i.e., J(x(t f )) = J̃(p). An
NLP solver updates the parameters and the system is integrated again,
repeating the procedure, as illustrated in Figure 2.3. When the optimiza-
tion procedure terminates it returns the parameters describing the op-
timal control profile. Gradients of the cost function with respect to the
control signal parameters p are obtained either by sensitivity functions
of the DAE system or by integration of the adjoint equations. Path con-
straints can be approximated by introducing a penalty term in the cost
function or by evaluating the constraint function on a fine time grid where
the constraints are enforced, see [Binder et al., 2001].

Optimizer Integrator

pi

J̃(pi)

p0

p∗

Figure 2.3 Illustration of a sequential method for solving a dynamic optimization
problem where p0 is the initial value of the control parameters, pi the control param-
eters updated by the optimizer, J̃(pi) the cost function value given when integrating
the system, and p∗ is the optimal value of the control parameters.
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Simultaneous Methods

The simultaneous methods include mainly two different approaches, mul-
tiple shooting and collocation.

Multiple Shooting A step towards fully discretizing the problem is
made in the multiple shooting method where the optimization interval
is divided into a number of segments and in each segment the DAE is
integrated separately with initial values that are optimization variables.
Continuity of the state profiles are enforced by equality constraints of the
state profile end and state profile initial value of two contiguous segments.
The control variables are parametrized as in the sequential methods. Sen-
sitivities are obtained for both control parameters and initial conditions for
the states in each segment. This approach, compared to sequential meth-
ods, adds the possibility to enforce path constraints in each grid point,
but they may not be satisfied in between the grid points.

Collocation In the collocation method, the optimization problem is
fully discretized by approximating both states, algebraic variables and
control variables by polynomials, resulting in one large NLP. The colloca-
tion scheme briefly presented below is the one used in the JModelica.org
platform, see [Åkesson et al., 2010], which subsequently is used in pa-
pers IV–VI for formulating and solving optimization problems.
The optimization interval [t0, t f ] is divided into Ne elements, each

with a normalized length h0, . . . ,hNe−1 with the property that

Ne−1
∑

i=0
hi = 1. (2.5)

The element junction points ti may thus be written as

ti = t0 + (t f − t0)
i−1
∑

k=0
hk, i = 1, . . . ,Ne − 1. (2.6)

In each element, Nc Radau based collocation points τ j ∈ (0, 1], j ∈
{1, . . . ,Nc} are introduced, which gives the collocation time points

ti, j = t0+(t f − t0)
(

i−1
∑

k=0
hk + τ jhi,

)

, i = 0, . . . ,Ne−1, j = 1, . . . ,Nc, (2.7)

where the indices i and j correspond to element i and collocation point
j in the element, respectively. The state, algebraic variable, and control
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u

w

x

titi−1ti−2 ti+1 ti+2

Figure 2.4 Example of approximations of control, algebraic and state variable
profiles in a collocation method with Nc = 3. The circles (○) represent collocation
points and crosses ($) represent the extra interpolation points used when enforcing
continuous state variable profiles.

profiles are approximated by Lagrange polynomials based on the Radau
collocation points τ j . A Lagrange polynomial of order Nc − 1 is defined by

LNcj (τ ) =















1, if Nc = 1
Nc
∏

k=1,k ,= j

τ − τ k
τ j − τ k

, if Nc ≥ 2,
(2.8)

and thus at collocation point τ k

LNcj (τ k) =
{

1, if j = k
0, if j ,= k. (2.9)

The state variables are approximated by Lagrange polynomials of order
Nc, where the extra point τ0 = 0 is used, while algebraic variables and
control profiles are approximated by Lagrange polynomials of order Nc−1,
in each element, see Figure 2.4 for an example. The approximated profiles
on the time interval [ti, ti+1] are written as

x(t) =
Nc
∑

k=0
xi,kL

Nc+1
k

(

t− ti
hi(t f − t0)

)

, t ∈ [ti, ti+1] (2.10)

w(t) =
Nc
∑

k=1
wi,kL

Nc
k

(

t− ti
hi(t f − t0)

)

, t ∈ [ti, ti+1] (2.11)

u(t) =
Nc
∑

k=1
ui,kL

Nc
k

(

t− ti
hi(t f − t0)

)

, t ∈ [ti, ti+1], (2.12)
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and with the properties of the Lagrange polynomials it follows that

x(ti, j) =
Nc
∑

k=0
xi,kL

Nc+1
k (τ j) = xi, j i = 0, . . . ,Ne − 1, j = 0, . . . ,Nc (2.13)

w(ti, j) =
Nc
∑

k=1
wi,kL

Nc
k (τ j) = wi, j i = 0, . . . ,Ne − 1, j = 1, . . . ,Nc (2.14)

u(ti, j) =
Nc
∑

k=1
ui,kL

Nc
k (τ j) = ui, j , i = 0, . . . ,Ne − 1, j = 1, . . . ,Nc, (2.15)

where xi, j , wi, j and ui, j now represent the discretized profiles. As Radau
points are used, the last collocation point is τNc = 1 and with the extra
interpolation point for the state variables at τ0 = 0, continuity over the
element borders are ensured by enforcing the relation

xi,Nc − xi+1,0 = 0, i = 0, . . . ,Ne − 1. (2.16)

The state derivatives are approximated on the time interval [ti, ti+1] by
the derivative of Eq. (2.10) as

ẋ(t) = 1
hi(t f − t0)

Nc
∑

k=0
xi,k L̇

Nc+1
k

(

t− ti
hi(t f − t0)

)

, t ∈ [ti, ti+1], (2.17)

which thus gives

ẋ(ti, j) =
1

hi(t f − t0)

Nc
∑

k=0
xi,k L̇

Nc+1
k (τ j) = ẋi, j , i = 0, . . . ,Ne − 1 (2.18)

j = 1, . . . ,Nc,

where ẋi, j now represent the discretized state derivative trajectory.
For the initial value problem, i.e., F0 in Eq. (2.4), introduce the vari-

ables ẋ0,0, w0,0 and u0,0. To provide an equation for u0,0, it may for instance
be chosen equal to u0,1, or as in JModelica.org, by interpolation using the
Lagrange polynomials as

u0,0 =
Nc
∑

k=1
u0,kL

Nc
k (0). (2.19)

The variables representing the trajectories may now be summarized as

• at the initial point t0: ẋ0,0, x0,0,w0,0,u0,0.
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• at the collocation points ti, j: ẋi, j , xi, j,wi, j,ui, j, i = 0, . . . ,Ne − 1,
j = 1, . . . ,Nc.

• at the element junction points ti: xi,0, i = 1, . . . ,Ne.
Considering the original optimization problem in Eq. (2.4), the constraints
are transformed into only being valid at the collocation points, the initial
point and end point as

F(ẋi, j , xi, j,wi, j,ui, j) = 0, i = 0, . . . ,Ne − 1, j = 1, . . . ,Nc (2.20)
F0(ẋ0,0, x0,0,w0,0,u0,0) = 0 (2.21)
Cineq(ẋi, j , xi, j ,wi, j,ui, j) ≤ 0, i = 0, . . . ,Ne − 1, j = 0, . . . ,Nc (2.22)
Cend(ẋNe−1,Nc , xNe−1,Nc ,wNe−1,Nc ,uNe−1,Nc) ≤ 0. (2.23)

If all variables defining the trajectories are collected in a vector x, the
equality equations in Eq. (2.16) and Eqs. (2.18)–(2.21) are collected in
h(x) = 0, and the inequality conditions in Eqs. (2.22)–(2.23) are collected
in �(x) ≤ 0, then the dynamic optimization problem is transformed into
an NLP defined as

min
x
f (x)

s.t. h(x) = 0
�(x) ≤ 0,

(2.24)

where f (x) = J(xNe−1,Nc). This NLP may be solved directly and simulta-
neously for all state, algebraic and control variables representing the ap-
proximated trajectories and thus, no simulation, i.e., use of a DAE solver,
is involved.

Comparison of Direct Methods

Choosing optimization method when solving the optimal control problem
in Eq. (2.4) requires some considerations as the individual methods both
have advantages and disadvantages, see [Binder et al., 2001]. Several pa-
pers on grade change optimization have been written, and they are clearly
dominated by sequential and collocation methods.
The sequential methods have the advantage of being conceptually very

simple and intuitive for the user, giving confidence in the methods. The
methods can be applied using standard NLP solvers, as the NLP to solve
is in general small compared to the one at collocation methods. It may
also take advantage of developments of state of the art DAE integrators.
A disadvantage with the sequential methods is the computational burden,
since a DAE is integrated in every iteration. In particular, this is true if
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also considering sensitivity or adjoint equations. However, this approach
also yields the dynamic constraints of the model equations to be fulfilled
in each step. A premature stop of the algorithm produces a control vector
yielding in general better trajectories than the initial guess. Path con-
straints and unstable systems, which are common in grade transitions for
polymer reactors, are difficult to manage with sequential methods.
Collocation methods do not rely on DAE integrators as the optimiza-

tion problem is fully discretized. However, the resulting NLP in Eq. (2.24)
is in general very large. To solve it efficiently, the sparsity structure of
the constraint Jacobian and Hessian must be exploited. Such NLP solvers
exist and have been developed significantly during the last two decades,
see [Biegler et al., 2002]. Even with state of the art NLP solvers, such as
[Wächter and Biegler, 2006], the NLP is sensitive to scaling of the vari-
ables. If the problem is ill-conditioned, convergence may be slow or even
lost. Initial values for all variables are also essential for good convergence,
i.e., trajectory values at all collocation points are desirable. In papers IV–
VI, scaling and initial values of all variables have been imperative for good
convergence and in some cases also to have convergence at all.
After successful termination by the NLP solver, and only then, are the

dynamic constraints of the DAE fulfilled within tolerances. Thus, a prema-
ture stop of the algorithm yields unusable trajectories. Compared to the
sequential methods, introducing path constraints at the collocation time
points are straight forward as seen in Section 2.4, and the discretization
also renders the method better suited for unstable systems.
The multiple shooting method, which is not commonly used in litera-

ture of polymer grade change optimizations, inherits properties both from
sequential and collocation methods. Path constraints can only be consid-
ered at segment junctions and may thus be violated inside the segments,
which is similar to the collocation method where the constraints may be
violated between the collocation points. The numerical stability proper-
ties are improved compared to sequential methods when many segments
are used. The computational burden is still large, as a DAE is integrated
in each segment, and the number of variables to solve for in the NLP
requires tailored NLP solvers. Initial values should be supplied for all
segment junctions and the dynamics are only fulfilled at successful ter-
mination.
As previously stated, the collocation method was chosen when solving

the grade transition optimization problems in papers IV–VI. This was with
the background of its direct capability of handling constraints on all in-
cluded variables, which is important in grade transitions. Also, an imple-
mentation of a collocation method was available in the JModelica.org plat-
form, c.f. Section 2.5, which includes the Optimica extension that bridges
the gap between Modelica models and formulating an optimization prob-
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lem. This platform had been used successfully in [Haugwitz, 2007], where
optimization of start-ups of a plate reactor was considered. In parallel to
the work in papers IV–VI, several other applications have been considered
using JModelica.org, such as power plants, post-combustion adsorption
units, robotics and pendulum systems, see [Casella et al., 2011, Åkesson
et al., 2011, Olofsson et al., 2011, Hast et al., 2009, Giselsson et al., 2009].

2.5 JModelica.org

The Modelica language has been developed with the aim of simulation and
simulation tools have become very sophisticated during the last decades.
Now, focus is also directed towards using the models for optimization.
Support has started to emerge in various forms, e.g., model integration
tools that interface several design tools for analysis, simulation and opti-
mization, modeling tools with limited optimization add-ons, and numerical
optimization packages, see [Åkesson et al., 2010].
Using state of the art numerical solvers is not straight forward as

numerical packages often require high level of model details, including
derivatives and sparsity structures. Additionally, users are often required
to be skilled since the original optimization problem often has to be tran-
scribed in some way.
Dynamic optimization is often an iterative process. To try different

solution methods, it is beneficial if the optimization problem is stated in
a high-level fashion, directly associated with the mathematical formula-
tion in Eq. (2.4), with the option of selecting the solution approach. From
the perspective of the PIC-LU project, where prototype software for grade
change optimization is developed and aimed towards process engineers,
the methodology of solving the optimization problems should be as au-
tomated as possible. The process engineer is not expected to be highly
conversant with optimization methods, nor numerical optimization algo-
rithms. From the software developer’s side, it should be straight forward
to interface with different types of optimization algorithms.
One software package that supports the above is JModelica.org, an

open-source platform that is well integrated with Modelica models and
that uses Optimica for formulation of dynamic optimization problems. An
optimization class and optimization attributes are introduced in Optim-
ica, making it possible to encode the optimization problem in a high-level
fashion similar to the formulation in Eq. (2.4) and structured as a Mod-
elica model, see [Åkesson, 2008] for further details. JModelica.org bridges
the gap between simulation models expressed in a high-level language
and state of the art optimization algorithms.
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The JModelica.org platform includes a compiler for Modelica and Op-
timica models, generating C code that contains the model equations and
XML output that holds model meta data such as variable specifications,
names and attributes. A run-time library provides a C interface for the
generated code, having, amongst others, functions to set parameters in
the compiled model. The interface can be divided into four different parts:
an ODE interface, a DAE interface, a DAE initialization interface and
an optimization interface. The two first provide evaluation of the ODE
derivative function and residual function of the DAE, respectively, while
the latter two provide functions for solving the DAE initialization problem
and evaluation of the cost function and the constraints. In addition, for
all interfaces, Jacobians and sparsity patterns can be obtained for all the
functions by the utilization of CppAD, a package for symbolic differentia-
tion [Bell, 2011].
Two different optimization algorithms for solving dynamic optimiza-

tion problems are implemented in JModelica.org. One is a collocation
based method, as presented in Section 2.4, that is implemented in C.
It is interfaced with the state of the art NLP solver IPOPT, that is de-
veloped particularly for solving problems arising when discretizing a dy-
namic optimization problem with collocation, see [Wächter and Biegler,
2006]. The other algorithm is a multiple shooting method implemented in
Python, relying on the integrator SUNDIALS, see [Bock and Plitt, 1984]
and [Hindmarsh et al., 2005]. The implementations of the optimization
algorithms serve as examples of how the C interface is used such that
users may contribute with other optimization algorithms.
For scripting and automating the optimization procedures, JModel-

ica.org contains a Python package. It provide means for managing the com-
pilers and file input/output for simulation and optimization, and is also
used for calling the functions in the run-time library interface. Python is
a free open-source language, supporting for instance scientific computing,
see [Python Software Foundation, 2011]. It has packages for e.g., plotting
and creating GUIs, highly suitable for the aims of the PIC-LU project,
i.e., developing prototype versions of software for process engineers. See
[Åkesson et al., 2010] for a more in-depth review of JModelica.org.
As JModelica.org has been used in papers IV–VI for grade change

optimization using the presented collocation method, the optimization
methodology will be shown by an example using the CSTR reactor in Ex-
ample 2.1. Dynamic optimizations and verifications of optimal solutions
in the papers are performed as in the example. For finding stationary
points of a system, the method in the example is similar to the one used
in Paper IV, while the stationary points in Paper V and VI were found
via optimization with regards to economy.
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EXAMPLE 2.2—OPTIMAL CHANGE OF OPERATING POINT FOR A CSTR.
The reactor presented in Example 2.1 has non-linear dynamics and the
rate of the exothermic reaction increases rapidly with increasing temper-
ature. Two different stationary points, A and B, for the reactor will be
computed, where A corresponds to a cold reactor with low reaction rate
and B corresponds to a higher temperature and a higher reaction rate.
The difficulty of changing operating point from A to B is to increase the
reaction rate with a controlled reactor temperature increase.
The two operating points are defined by coolant flows with tempera-

tures TAc = 250 K and TBc = 280 K, respectively, and to solve for the two
points, an initialization model CSTR_init is constructed, see Listing 2.2.
It contains the component CSTR, as defined in Example 2.1, a parameter
that sets the coolant temperature in the equation section with a value
that may be modified from Python, and initial equations that hold at ini-
tial time t = 0. As seen in the initial equation section in the model, the
derivatives of the reactor states are set to 0 at initial time, thus specify-
ing stationary conditions. The variables to solve for are C(0), T(0), Rr(0),
Ċ(0) and Ṫ(0), and with the five equations at initial time, i.e., model and
initial equations, the initial equation system is well defined. By setting
the coolant flow to any of the two operating point values, the system is
solved by invoking the DAE initialization algorithm in JModelica.org. The
resulting two stationary operating points are reported in Table 2.1.
The change of operating point will be optimized by formulating a

quadratic cost function. The temperature in the reactor is constrained
to be lower than 350 K and the coolant flow has lower and upper limits of
230 K and 370 K, respectively, and rate constraints of ±20 K/s. Using the
coolant temperature derivative as decision variable allows to easily set

model CSTR_init

CSTR cstr(C(fixed=false),T(fixed=false));

parameter Modelica.SIunits.Temp_K Tc_init = 1;

equation

cstr.Tc = Tc_init;

initial equation

der(cstr.C) = 0;

der(cstr.T) = 0;

end CSTR_init;

Listing 2.2 Modelica model CSTR_init for finding stationary points in Exam-
ple 2.2.

Table 2.1 Stationary operating points for the CSTR in Example 2.2.

Operating point i Ci [mol/m3] T i [K] Rir [mol/m3s] T ic [K]

A 956.3 250.1 0.0007288 250

B 338.8 280.1 0.01102 280
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its constraints. The dynamic optimization problem on the time interval
t ∈ [0, 160] for transferring the reactor operating point from A to B, may
be formulated as

min
Ṫc

160
∫

0

(

qC(CB − C)2 + qT (TB − T)2 + qTc(TBc − Tc)2 + qṪc Ṫ
2
c

)

dt

s.t. Eqs. (2.1) − (2.3)

Tc =
∫ t

0
Ṫc dτ

T ≤ 350
230 ≤ Tc ≤ 370
−20 ≤ Ṫc ≤ 20
C(0) = CA, T(0) = TA, Tc(0) = TAc ,

(2.25)

where qj , j ∈ {C, T , Tc, Ṫc} are weights and Ci, T i, T ic , i ∈ {A, B} are
stationary points corresponding to the two operating points in Table 2.1. A
term penalizing Ṫc is added to influence the smoothness of Tc. Using the
Optimica extension, an optimization model CSTR_opt is constructed that
expresses the optimization problem, see Listing 2.3. The class attributes
startTime and finalTime are used for setting the optimization interval,
while objective defines the cost function. The first section of the optimiza-
tion model contains an input, i.e., the derivative of Tc, a CSTR component
and the cost variable. Additionally, nominal values for the input and cost
are set, and reference values and cost function weights, that may be set
from Python, are declared. In the equation section, the input is connected
to the derivative of the CSTR input and the cost function is constructed,
expressed as in the original optimization problem, see Eq. (2.25). In the
third section, beginning with constraint and specific for Optimica, are
the constraints expressed directly on the model variables.
The optimization problem is to be solved by collocation, and as pointed

out in Section 2.4, providing initial values for all variables at the collo-
cation points are advantageous for good convergence. For this reason, the
simulation model CSTR_trajGen, providing such values, is constructed, see
Listing 2.4. It contains the same variables as the optimization model does
and is simulated in JModelica.org by initializing the model from Python
to operating point A and then holding the coolant flow temperature con-
stant, i.e., the reactor is operated in steady state during the simulation
of 160 s. The reference values in the cost function are set to operating
point B, yielding an increasing cost function during the simulation. The
simulation result is saved and used as initial guess for the optimization.
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optimization CSTR_opt(objective=cost(finalTime),startTime=0.0,finalTime=160)

input Modelica.SIunits.TemperatureSlope Tc_der(start=0,fixed=false,nominal=Tc_der_0);

CSTR cstr(Tc(start=Tc_A,fixed=true));

Real cost(start=0,fixed=true,nominal=cost_0);

//Nominal values

parameter Modelica.SIunits.TemperatureSlope Tc_der_0 = 20;

parameter Real cost_0 = 100;

//Initial value for Tc

parameter Modelica.SIunits.Temp_K Tc_A = 1;

//Reference values

parameter Modelica.SIunits.Concentration C_B = 1;

parameter Modelica.SIunits.Temp_K T_B = 1;

parameter Modelica.SIunits.Temp_K Tc_B = 1;

//Cost function weights

parameter Real q_C(final unit="m6/(mol2.s)") = 1;

parameter Real q_T(final unit="1/(K2.s)") = 1;

parameter Real q_Tc(final unit="1/(K2.s)") = 1;

parameter Real q_Tc_der(final unit="s/K2") = 1;

equation

der(cstr.Tc) = Tc_der;

der(cost) = q_C*(C_B­cstr.C)^2 + q_T*(T_B­cstr.T)^2

+ q_Tc*(Tc_B­cstr.Tc)^2 + q_Tc_der*Tc_der^2;

constraint

cstr.T <= 350;

cstr.Tc >= 230;

cstr.Tc <= 370;

Tc_der <= 20;

Tc_der >= ­20;

end CSTR_opt;

Listing 2.3 Optimica model CSTR_opt for formulating the optimization problem in
Example 2.2.

An element length of 1 s is used in the collocation method with 3 col-
location points in each element. The decision variable, i.e., the derivative
of the coolant temperature, is constant in each element. The optimization
is invoked from Python, resulting in an NLP with approximately 5000
variables which is solved in less than 20 s by IPOPT. Using numerical
methods, the solution is always an approximation. To verify the solution,
Ṫc is used as input to a verification model, see Listing 2.5, which is ini-
tialized to operating point A and then simulated 160 s. The optimization
and verification results are found in Figure 2.5, and are practically iden-
tical. The used collocation method corresponds to a fixed step size Radau
solver, while the solver used in the verification simulation was IDA from
the SUNDIALS suite, see [Hindmarsh et al., 2005], which is a variable
step size backward differentiation formula (BDF) solver with error control.
Thus, it is most likely that the solution found fulfills the model equations,
at least to specified tolerances.
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model CSTR_trajGen

CSTR cstr(Tc(start=Tc_A,fixed=true));

Real cost(start=0,fixed=true);

Modelica.SIunits.TemperatureSlope Tc_der = Tc_der_init;

//Parameters for temperature trajectory

parameter Modelica.SIunits.Temp_K Tc_A = 1;

parameter Modelica.SIunits.TemperatureSlope Tc_der_init = 1;

//Reference values

parameter Modelica.SIunits.Concentration C_B = 1;

parameter Modelica.SIunits.Temp_K T_B = 1;

parameter Modelica.SIunits.Temp_K Tc_B = 1;

//Cost function weights

parameter Real q_C(final unit="m6/(mol2.s)") = 1;

parameter Real q_T(final unit="1/(K2.s)") = 1;

parameter Real q_Tc(final unit="1/(K2.s)") = 1;

parameter Real q_Tc_der(final unit="s/K2") = 1;

equation

der(cstr.Tc) = Tc_der;

der(cost) = q_C*(C_B ­ cstr.C)^2 + q_T*(T_B ­ cstr.T)^2

+ q_Tc*(Tc_B ­ cstr.Tc)^2 + q_Tc_der*Tc_der^2;

end CSTR_trajGen;

Listing 2.4 Modelica model CSTR_trajGen for generating initial trajectories for
optimization problem in Example 2.2.

model CSTR_sim

input Modelica.SIunits.TemperatureSlope Tc_der;

CSTR cstr(Tc(start=Tc_A,fixed=true));

parameter Modelica.SIunits.Temp_K Tc_A = 1;

equation

der(cstr.Tc) = Tc_der;

end CSTR_sim;

Listing 2.5 Modelica model CSTR_sim for simulation and verification of optimal
solution in Example 2.2.

The change of operating point is performed by increasing the reactor
temperature as fast as possible in the beginning, the constraint on Ṫc is
active until Tc reaches its maximum value. At approximately t = 30 s, the
increase in temperature T gives a drastic increase in reaction rate Rr .
The coolant flow temperature is decreased as rapidly as possible with the
constraint on Ṫc active, holding the reactor temperature at its constraint.
As the concentration approaches its reference value, the reactor is cooled
with Tc at its lower constraint, yielding the reactor temperature and re-
action rate to reach their operating point B values.

A User’s Perspective on JModelica.org and Collocation

At the start of PIC-LU, the JModelica.org project was already initiated.
However, it has evolved and matured during the PIC-LU project. Evalu-
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Figure 2.5 Optimal change of operating point for the CSTR in Example 2.2. Col-
location based trajectories (–), simulated trajectories (- ⋅ -) and reference values (--),
i.e., desired stationary end point.

ating a tool such as JModelica.org, it must be taken into account that it
is mostly focused on research, algorithm development and education. The
perspective given here will be in the light of using the collocation method
for solving dynamic optimization problems.
The main advantages of JModelica.org for a user is the simplicity of

formulating optimization problems at a high level, following the Modelica-
way of modeling, and not having to discretize the model and optimization
problem manually when interfacing state of the art optimization algo-
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rithms. However, for the use of numerical solvers, some precautions must
be taken that are obstacles in the solving methodology, partly distracting
the user from the optimization results.
As noted in Section 2.4 and seen in Example 2.2, states, algebraic vari-

ables and inputs are given nominal values for scaling in the optimization
problem. This requires the modeler and the optimization algorithm user
to know approximately in what ranges the different variables are. This
may not be a problem as the system can be simulated near the consid-
ered operating points used at dynamic optimization, yielding approximate
values. However, these values are only indications since the optimal solu-
tion may require large changes in states, algebraic variables and inputs.
The optimal solution is only known after scaling has been performed,
but to reach the optimal solution, scaling must be performed correctly.
This has shown to be a major task requiring iteration, both in small op-
timization examples, as Example 2.2, and in large-scale problems, such
as papers IV–VI, and especially if considering control derivatives as de-
cision variables. When Paper IV was written, scaling with nominal was
not supported in JModelica.org, manual scaling of variables was instead
performed by P. Larsson.
In the collocation method, the problem is solved simultaneously for

states, algebraic variables, inputs, but also state derivatives, and as the
scaling is set by the nominal attribute in the models, there is no direct
way of setting the scaling factors of the state derivatives. The solution to
this in JModelica.org is that the state derivative inherits the scale factor
from the state. This can cause an unsuitable scale factor to be used for
the derivatives, considering for instance a state with large value but with
small changes during optimization, or vice versa. Additionally, a scaling
factor must be provided for the objective function, and thus the optimal
value must approximately be known prior to performing optimization.
The scaling problems are somewhat relieved by using automatic scal-

ing in the NLP solver IPOPT, but it has turned out to be one of the major
obstacles in the solution methodology. An automatic scaling procedure in
JModelica.org is highly desirable and a prerequisite if the tool should be
used by non-advanced users.
Simulation of Modelica models is not as sensitive to how the equations

are written as optimization has turned out to be. Changing an equation,
by for instance multiplication with a constant on both sides, changes the
Jacobian. Means for equation scaling, similar to the variable scaling using
nominal, are desirable, but lacking in JModelica.org. An automatic scaling
procedure would be preferred, as this will allow the modeler to write the
equations in the most intuitive manner, as was the aim of the Modelica
language. And also, the platform would not have to rely on scaling of the
Jacobians in the NLP solver.
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If problems occur in solving the resulting NLP from collocation, such as
slow or lack of convergence, it is difficult for an user to see what remedies
to take. It may be a variable that causes problems, by for instance non-
suitable scaling, but it can also be some part of the cost function yielding
too small or large derivatives making step sizes in the NLP solver too large
or small. An analysis of the results from a premature stop can yield some
answers, but as the DAE is not fulfilled, the system cannot be simulated
with resulting trajectories to find a solution to the problems. However,
this property is inherent to the collocation method.

2.6 Contributions Overview

The main aims of the PIC-LU project considered in this thesis are con-
struction of a Modelica library for the plant PE3 at Borealis AB and to
perform dynamic optimizations of grade changes. The library is described
in Supplement A and has been used in Paper IV and VI. It contains con-
nectors, reactor and distillation column models, models for optimization
and verification of optimization results, and different templates defining
plant configurations. Dynamic optimization of grade changes are consid-
ered in papers IV–VI and in [Larsson et al., 2010]. The papers give a good
overview of the project progression over time and Paper VI has the highest
value of contribution. The work has evolved together with the development
of the Modelica library, but also with JModelica.org.
Using a simple quadratic cost function and only the pre-polymerization

reactor, the work in [Larsson et al., 2010] was an introduction for the
thesis’ author to polymerization reactor operation and the use of JMod-
elica.org. It was also the initiation of the Modelica library. The library
has undergone several changes since then and the description in [Larsson
et al., 2010] is out of date. The choice of quadratic cost function is moti-
vated by its simplicity, it is well known from other optimization problems
and yields often rapid convergence. Additionally, it had been used before
by several other authors for optimization of grade changes.
In step towards using the whole plant model, the loop reactor and

the gas-phase reactor were added to the structure, increasing model com-
plexity. Again, a quadratic optimization criterion was set up, resulting in
Paper IV. This was a performance measure of the tools and optimization
methodology, showing that they are capable to solve such large-scale prob-
lems. The optimizations in both [Larsson et al., 2010] and Paper IV were
performed with manually scaled variables, implemented by P. Larsson,
since the scaling feature with nominal variables values was not available
in JModelica.org at that time. This procedure was cumbersome, but gave
insight into the numerical optimization methods.
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Quadratic cost functions are advantageous in many aspects, but they
may be difficult to design such that they resemble the economical cost
of grade changes. As one aim of the PIC-LU project was to consider the
economy during a grade change, a cost function expressed in terms of
prices of raw material and diluents and product sell prices was there-
fore constructed and applied to a smaller model of a gas-phase reactor
in Paper V. This model has been used by several other authors, and the
model equations as well as the model parameters are openly available,
which is rare in the community due to e.g., model sizes, limited article
lengths, but also confidentiality reasons. The cost function also took into
concern the quality variable intervals used when defining on-grade poly-
mer and economical incentives were added to produce on-target polymer,
which has not been, to the best knowledge of the paper’s authors, consid-
ered elsewhere. Also, active use of the reactor bleed stream as a decision
variable and a preparatory time interval prior transition time, are both
uncommon in the articles published in the community, but shown to be
very useful. Due to the severe non-linearities in the economic cost func-
tion, the optimization is much more difficult compared to a quadratic cost
function. Performing initial optimizations and analysis on a smaller, pre-
viously published model, compared to using the full confidential Borstar RF

model directly, was critical for cost function design choices. This yielded
also the results reproducible by the community.
The main paper concerning grade changes in this thesis is Paper VI,

where the Borstar RF reactors are complemented with a recycle area, i.e.,
a model of the plant PE3 at Borealis AB is used. This required design
of simple models of the distillation columns in the recycle area by using
measurement data, and the resulting models are incorporated in the Mod-
elica library of the plant. The cost function regarding economy developed
in Paper V were used, including prices of raw materials and diluents and
polymer sell prices, quality variable intervals and economical incentives to
produce on-target polymer. Adding the recycle area to the three Borstar RF

reactors changed the overall system dynamics considerably compared to
Paper IV, as the outflows of the reactors essentially are additional inflows
to the reactors. This yields for instance longer time constants and diffi-
culties in removing hydrogen from the reactors. The solutions from grade
change optimizations take into consideration the recycled components and
how they are affected by the fresh inflows and reactor states. The flare
flow of the GPR is used as a decision variable, and so are the off-gas flows
on two of the three recycle distillation columns. To the best knowledge of
the authors of the paper, using off-gases in a recycle area of a plant as
decision variables, has not been studied in previous work in the commu-
nity, and proved to be useful when removing hydrogen from the reactor.
A great majority of the papers published in the field of polymer grade
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transitions utilizes a quadratic cost function, either on grade variables,
controls or states, or a combination. From the results in Paper VI, it is not
clear how a quadratic cost function should be designed to approximate the
behavior of the solution. For instance, the resulting off-gas flows on the
distillation columns have high peaks during short time intervals, which
may be difficult to select weights for in a quadratic optimization criteria.
At Borealis AB, the work in the PIC-LU project has generated sev-

eral questions on how they operate the PE3 plant today during grade
changes, how different costs relate to each other and how an optimization
problem concerning PE3 should be formulated. Plans of changing from
recipe based transitions to an on-line transition management system ex-
ist. Niclas Carlsson, Asset Development Expert at Borealis AB, expressed
that a tool similar to the prototype outcome of the PIC-LU project would
be very useful for optimizing input trajectories to such a system.

2.7 Future Work

The papers presented in this thesis are part of a feasibility study. Several
different interesting paths may be taken to improve the work and some of
them will be mentioned briefly here. This section is preferably read after
the papers IV–VI have been read.

Solutions Analysis

Sensitivity analysis with respect to model and parameter errors of the
solutions from the optimizations may be performed. This may be done
either in open loop or in closed loop with e.g., an (N)MPC with feed-
forward trajectories from the optimization. This is interesting both from a
model perspective, i.e., to see what parameters are important to have good
estimates of, and also from an application point of view if the trajectories
should be used on the physical plant.

Modeling

Models of the production of inerts, such as ethane, in the reactors should
be added. The inert content in the overall system is an important aspect
of the off-gas flow control in the recycle area as the enrichment of inerts
is undesirable and can be suppressed by the off-gas flows. More detailed
models of the polymer, using e.g. molecular weight distributions, is an-
other interesting path to take. Models of the recycle area components can
be improved significantly, as the current models are only simple filters
with split factors, and also, additional components such as e.g., flash and
degassing tanks may be included in the model. Developing models has
not been a main focus in PIC-LU, as the reactor models were provided by
Borealis AB.
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Solution Method

In papers IV–VI, the collocation method was used for solving the opti-
mization problems. A comparison with sequential methods, and perhaps
also multiple shooting, in terms of e.g., convergence rate, effort of scal-
ing and constraints handling, would be very interesting. Handling of the
discrete non-approximated non-linear economic cost function using e.g.,
mixed integer dynamic optimization may also be used in the comparison.

Cost Function

Terms considering, for instance, costs of cooling, heating, electricity, steam
flows and other major operating costs are natural extension of the cost
function that regards economy. In the same cost function, set-point han-
dling of operation variables may be troublesome if the number of operation
variables is increased compared to the numbers in the presented papers.
Other strategies such as e.g., quadratic penalties or more elaborate meth-
ods can be tried. In any case, the penalty for deviating from set-points
will always be compared to the increase in difference between revenues
and costs, yielding tuning difficult.
It would be interesting to try different approximations of the on-grade

function, trying to improve convergence rate. Especially, approximations
where the on-grade function derivatives with respect to the quality vari-
ables not tend to 0 outside the on-grade interval. This would perhaps
push quality variable trajectories toward on-grade more than the con-
sidered approximation, and also affect the off-grade price, introducing a
trade-off between profit accuracy and convergence rate.
Not explicitly part of the cost function, but affecting it, are minimum

and maximum values of different variables. These limits may not be the
same during steady state operation and during dynamic grade transition.
For example, if the minimum values of the off-gas flows are lower during
transition than during stationary production, then the dynamic optimiza-
tion with regards to economy will try to reach a stationary production
point with lower off-gas flows than what the stationary optimization is
capable of. This may yield undesirable transients in the beginning of the
optimization interval and just prior constant control flows.
Finally, reverse engineering of the weights in a quadratic cost func-

tion using the economically optimal trajectories would be interesting. This
would give an indication of how close one may get to the economical opti-
mum when using quadratic cost functions.
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Paper I

Control Signal Constraints
and Filter Order Selection for
PI and PID Controllers

Per-Ola Larsson and Tore Hägglund

Abstract

Large control signal derivatives or inter-sample differences may
harm actuators. An optimization constraint limiting such variations,
related to measurement noise, is derived. Using the constraint, op-
timal PI, PID and measurement filters with different orders are de-
signed for several processes and compared to the optimal linear con-
troller of high order found via Youla parametrization. Simulations of
load disturbance rejections and measurement noise sensitivities are
shown and conclusions on filter order selection for PI and PID con-
trollers are drawn.

cF2011 ACC. Reprinted, with permission, from Proceedings of the 2011
American Control Conference, San Francisco, USA, 2011.
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1. Introduction

1. Introduction

Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) con-
trollers have been used for decades and are still today the most commonly
used controllers in for instance process industry, see [Desbourough and
Miller, 2002]. Several tuning methods exist and during the recent years
a considerable research effort has been made for improvements, both in
robustness and disturbance rejection. However, in practice, as noted in
[Isaksson and Graebe, 2002], PI controllers are often chosen over PID con-
trollers even though a considerable improvement can be made by adding a
derivative part. One reason mentioned is the noise sensitivity introduced
by the derivative part. This may give undesirable control signal varia-
tions, leading to expensive wear of actuators. Controller de-tuning is one
remedy, used in e.g., λ-tuning and internal model control, see [Åström and
Hägglund, 2006] and [Skogestad, 2004], while another is to set controller
parameter bounds, see [Skogestad, 2006].
For PID, derivative filters of order one is commercial standard, where

the time constant has a preset relation to derivative time [O’Dwyer, 2009].
However, as shown in [Isaksson and Graebe, 2002], the filter cut-off fre-
quency may have a significant impact on both performance and noise
sensitivity and should thus be part of the design procedure of the con-
troller. Recently, four-parameter tunings have emerged. In [Kristiansson
and Lennartson, 2006] and [Šekara and Mataušek, 2009] an upper bound
on the H∞-norm of the transfer function from measurement noise to con-
trol signal is used while tuning PID controllers with first order filters.
The H 2-norm of the transfer function is used in [Garpinger, 2009] together
with PI and PID controllers with order one roll-off by using appropriate
filters. In [Fransson and Lennartson, 2003], PID is used with a second
order filter together with H∞-norm constraints on the transfer functions
from noise to control signal and its derivative.
Light filtering of measured signal implies ability to react fast to load

disturbances but gives often undesirable variations in control signal due to
noise, while substantial filtering yields the opposite if the same controller
settings are used. There is hence a trade-off and a need for quantifying
performance gains and noise rejection abilities for different filter orders
when constraints are set on control signal behaviour.
In this paper, such a behaviour constraint is presented, involving the

closed loop transfer function from noise to control signal, that is related
to measurement noise and practical considerations. Optimal PI(D) con-
trollers and noise filters with different orders together with optimal linear
high order controllers will be designed. Simulations of load disturbances
and noise rejection abilities will be shown for the different control struc-
tures.
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2. Specifications on Control Signal

2.1 Control Signal Inter-Sample Amplitude Difference

The control structure considered can be found in Figure 1 with process
P and controller C with the measurement filter F such that CF is at
least proper. Controlled process output is denoted f and measured output
y, while the control signal, measurement noise and load disturbance are
denoted u, n and d, respectively. As mentioned in Section 1, a highly
varying control signal is undesirable due to e.g., wear of actuators. It is
important to emphasize that in most cases it is not the size of the control
signal amplitude, assuming it is in actuator range, that may be harmful.
It is rapid fluctuations in the control signal that may cause most damage.
Fluctuations in the control signal can be seen by e.g. large derivatives

or large inter-sample differences. Since the control signal is in discrete
time with constant value between sampling instants, the approximation
of the derivative, i.e., ∆u/h, where ∆u is the inter-sample amplitude dif-
ference and h is the sampling period, will be used. Assuming that the
measurement noise is white with zero mean and standard deviation σ n,
then the discrete time derivative of the control signal will be zero mean
with standard deviation

σ ∆u

h
=
∥

∥

∥

∥

z− 1
zh

CF

1+ PCF

∥

∥

∥

∥

2
σ n, (1)

where σ ∆u is the standard deviation of ∆u.
The above measure may be used to constrain control signal movement,

and two different view points may be taken,

1. Considering control signal derivative, as used in velocity limiters,
see [Shinskey, 1994].

2. Considering inter-sample differences associated with e.g., full control
signal range.

n

d

u f

y

C P

−F +

+

Figure 1. Process P, controller C, and measurement filter F.
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2. Specifications on Control Signal

The two view points are application and user dependent and differ only in
a scaling factor of h−1 in Eq. (1), and are thus identical. In the sequel, the
inter-sample difference view point will be used, removing h−1 from both
sides.
Since ∆u is a stochastic process, a measure of the control signal activ-

ity is how large part of the distribution of ∆u is outside a certain limit,
±∆ulimit. Assuming that α percent of the control activity is allowed outside
the limit and using that ∆u is normal, leads to the relation

∆ulimit = σ ∆uλα /2, (2)
where λα /2 is a quantile for a normal distribution, giving

∥

∥

∥

∥

z− 1
z

CF

1+ PCF

∥

∥

∥

∥

2
= ∆ulimit

σ n
⋅
1

λα /2
.

Since equality does not have to be fulfilled at controller design, the con-
straint becomes

∥

∥

∥

∥

z− 1
z

CF

1+ PCF

∥

∥

∥

∥

2
≤ ∆ulimit

σ n
⋅
1

λα /2
.

This constraint relates directly to measurement signal quality, i.e., mea-
surement noise, and allowed control signal movement. When used at feed-
back system design, it can specify how active the control signal may be.

Constraint Properties Some properties of the constraint may be re-
marked,

– smaller α , i.e., less accepted activity outside the limits, yields larger
λα /2 and a tighter constraint.

– more noise, i.e., larger σ n, yields tighter constraint.

– larger inter-sample difference acceptance, i.e., larger ∆ulimit, yields
softer constraint.

Specifying Constraint Limit The noise variance σ n may be estimated
using standard techniques on measurement data, see e.g., [Shinskey, 1994],
while the inter-sample amplitude limit may be related to control signal
range and actuator properties. Selecting α will then determine the con-
straint. However, these specifications may be scaled in relation to each
other yielding the same upper limit. For simplicity, ∆ulimit and σ n are set
equal, and all specifications are collected in α , leading to the simplified
constraint

∥

∥

∥

∥

∆z
CF

1+ PCF

∥

∥

∥

∥

2
≤ 1

λα /2
, (3)

where ∆z = (z− 1)/z has been introduced.
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2.2 Control Signal Energy

The constraint in Section 2.1 limits rapid variations in the control signal.
However, also control signal energy and low frequency variations due to
measurement noise should be considered. As in [Garpinger, 2009], the
variance of the control signal amplitude due to noise is used, i.e.,

σ 2u
σ 2n

=
∥

∥

∥

∥

CF

1+ PCF

∥

∥

∥

∥

2

2
≤ η2.

The limit η is application dependent, and for simplicity chosen to 1 when
investigating the constraint in Section 2.1, yielding no energy amplifica-
tion of the noise.

3. Feedback Structures

3.1 PID and Measurement Filter

The considered PI(D) controllers are on parallel form, i.e.,

C(s) = KC
(

1+ 1
Tis

+ Tds
)

,

where the integral and derivative parts are discretized using forward and
backward differences, respectively, with sampling period h. For compari-
son, three different measurement filters will be used such that the con-
trollers have roll-offs of orders 0–2 in continuous time, i.e., a PI without
filter will also be compared. Using roll-off less than 2 would not be pos-
sible if continuous time was considered, using that ∆z/h corresponds to
s, since the transfer function in Eq. (3), with a proper process, must be
strict proper in this case. The filters are restricted to have at most two
tuning parameters, yielding few optimization variables. A natural choice
is the damping ζ and time constant T f of the filters, and thus the three
different filters are chosen as

F1(s) =
1

sTf + 1
, F2(s) =

1
s2T2f + 2ζ T f s+ 1

,

F3(s) = F1(s)F2(s),
(4)

and sampled using zero-order hold technique. Note that the third order
filter does not have full degree of freedom when choosing poles since only
two parameters may be specified.
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3. Feedback Structures

3.2 Youla Parametrization

For evaluation of designed PI(D) controllers and measurement filters, the
optimal linear controller of high order, i.e., the Youla parametrization,
also known as Q-parametrization, will be used. Additionally, this con-
troller will give a performance bound. Consider the generalized process
in Figure 2,

G =
[

Gzw Gzu

Gyw Gyu

]

,

where z is controlled outputs, ymeasured output, u controlled input andw
exogenous inputs, with negative SISO feedback K . Closing the loop yields

Hzw = Gzw − GzuK (I + GyuK )−1 Gyw
= Gzw − GzuQGyw,

where Q = K (I + GyuK )−1. If G is stable, then Hzw is stable for all stable
transfer functions Q.
Choosing G properly, many convex control costs and specifications, in-

cluding those used in this paper, may be set on the individual elements
of Hzw. They are convex in Q due to the affine relationship between Hzw
and Q. However, since Q may be any stable transfer function, the search
space when optimizing over Q is infinite dimensional. For numerical com-
putations, Q is parametrized as a FIR filter,

Q(z) =
N−1
∑

i=0
qiz

−i,

where N is the length and the convexity properties are found in the qi
coefficients. This methodology is found in e.g., [Boyd et al., 1990] and
[Wernrud, 2008a], and implemented in the toolbox QTOOL, see [Wernrud,
2008b], which is used when solving the optimization problem to be stated.

wz

u

[

Gzw Gzu

Gyw Gyu

]

y

−K

Figure 2. Set-up with generalized process G, SISO negative feedback controller
K , exogenous inputsw, control input u, controlled outputs z and measured output y.
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Finding K from Q is a direct calculation as the mapping is unique. Com-
pared to PI(D) control, no additional measurement filter will be designed,
it is incorporated in K directly. Choosing N large, then K , and thus Hzw,
may be shaped almost arbitrarily as long as the constraints are respected.

4. Optimization Problem

4.1 Optimization Problem Formulation

The integrated absolute error (IAE) at a load disturbance step is used as
objective function to minimize, see e.g., [Åström and Hägglund, 2006]. Ro-
bustness towards multiplicative and inverse multiplicative uncertainties,
see [Zhou and Doyle, 1998], may be achieved by constraining the H∞-norm
of the sensitivity functions,

S = 1
1+ KP , T = KP

1+ KP

where K is the feedback transfer function, e.g., controller and measure-
ment filter. Frequency independent upper limits MS and MT as in e.g.,
[Åström and Hägglund, 2006], hold the number of optimization parame-
ters to select reasonably small.
With a load disturbance step applied at process input at initial time

when the system is in steady state, the optimization problem may be
stated as

minimize
K

h

∞
∑

k=0
p f (k)p (5a)

subject to qSq∞ ≤ MS (5b)
qTq∞ ≤ MT (5c)
qKSq2 ≤ η (5d)
q∆zKSq2 ≤ 1/λα /2, (5e)

where K contains PI(D) and measurement filter parameters or FIR co-
efficients at Youla parametrization. In the case of PI(D) control, K is
factorized as K = CF as in Section 2.

4.2 Additional Constraints on PI(D) Measurement Filters

Two constraints on the filter parameters are set. They will restrain the
PI(D) and measurement filter from being a richer structure compared to
how they are normally used.
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4. Optimization Problem

Damping ζ In [Kristiansson and Lennartson, 2006], a ζ around 0.4
is used as a rule of thumb for a second order filter. However, a small
ζ may give oscillations in the control signal due to the amplitude peak
and in general, a measurement filter may only perform attenuation of
the measured signal. The filters defined in Eq. (4) have static gain 1 and
if the damping coefficient is restricted to be greater than 1/

√
2, this is

fulfilled. Additionally, to have only one break point of the filter, defined
by T f , an upper limit of 1 is set on ζ , giving the following constraint in
the optimization problem,

ζ ∈
[

1/
√
2, 1

]

.

Time Constant Tf The time constant of the measurement filter must
be smaller than the inverse of the largest modulus of the controller ze-
ros. That is, filtering is only present at higher frequencies than e.g., the
derivative action start frequency of a PID controller. Since the system is
sampled, the filter cut-off frequency must be lower than the Nyquist fre-
quency. Thus, the filter time constant is restrained to be in the interval

Tf ∈
[

h

π
, Ti

]

, or (6a)

Tf ∈





h

π
,

∣

∣

∣

∣

∣

1
2Td

+
√

1
4T2
d

− 1
TiTd

∣

∣

∣

∣

∣

−1

 , (6b)

for PI and PID, respectively. The upper limits are derived from continuous
time controllers and hold approximately for discrete time versions if high
enough sampling rate.

4.3 General Process for Youla Parametrization

The considered process P in Figure 1, with control signal u and load
disturbance d, process output f , and measured output y, may be written
in state-space form as

xk+1 = Axk +Buk +Bdk
fk = Cxk +Duk +Ddk
yk = fk + nk.

Letting udk = uk + dk, we can define the general signals
– Control input: uk
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– Exogenous inputs: wk = [ dk nk ]T

– Controlled outputs: zk = [ fk udk ∆uk ]T

– Measured output: yk

which gives the following generalized process G, using the state vector
xek+1 = [xTk+1 uk ]T ,

xek+1 =
[

A 0

0 0

]

xek +
[

B 0 B

0 0 1

]







dk

nk

uk







[

zk
yk

]

=











C 0

0 0

0 −1
C 0











xek +











D 0 D

1 0 1

0 0 1

D 1 D

















dk

nk

uk






.

The closed loop transfer function from wk to zk is then

Hzw =







PS −T
S −KS

−∆zT −∆zKS






,

containing all relevant transfer functions for stability analysis and to solve
the optimization problem in Eq. (5). Hzw may be used directly in QTOOL,
see [Wernrud, 2008b], by associating the objective cost in time domain and
constraints in frequency domain with the corresponding matrix elements.
The resulting optimization problem is solved using YALMIP [Löfberg, 2004]
and SEDUMI [Sturm, 1999] with built-in functions in QTOOL [Wernrud,
2008b].

5. Process Batch

As pointed out in [Åström and Hägglund, 2006], PI(D) control is not suit-
able for all processes. An appropriate process batch was given with process
dynamics ranging from first to eighth order, with or without time delays.
The batch includes integrating, non-oscillative, and oscillative processes
as well as processes with non-minimum phase zeros. A subset of the batch
has been used in e.g., [Kristiansson and Lennartson, 2006] and [Šekara
and Mataušek, 2009] to evaluate four parameter designs for PID. The op-
timization problem posed in Section 4.1 has been solved for the batch for
PI and PID control with different filter orders and for Youla parametrized
controllers.
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6. Performance Comparison

The optimization problem for PI(D) and measurement filter is solved us-
ing the Optimization ToolboxTM , Control System ToolboxTM and Simulink RF

in MATLAB RF, see [The MathWorks, Inc, 2010b, The MathWorks, Inc, 2010a,
The MathWorks, Inc, 2010c]. Two processes from the batch serve as ex-
amples, using sampling time h = 0.02 and the constraints

MS = MT = 1.4, η = 1,
α = 15% yielding 1/λα /2 = 0.97.

With load steps of amplitude 1 and measurement noise with standard
deviation of 0.025, the performances of the different feedback designs will
be shown.

6.1 Example I: P1(s) = 1/((s+ 1)(0.5s+ 1))
Optimization results for P1, i.e., IAE, constraint function values and con-
troller parameters, can be found in Table 1 and Figure 3 shows load dis-
turbance and noise responses.

Table 1. Optimal controllers for P1(s) = 1/ ((s+ 1)(0.5s+ 1)).

Typeorder IAE qSq∞ qTq∞ qKSq2 q∆zKSq2
PI0 1.15 1.40 1.10 0.70 0.97

PI1 0.77 1.40 1.04 0.91 0.97

PI2 0.76 1.40 1.05 1.00 0.97

PID1 0.77 1.40 1.04 0.91 0.97

PID2 0.55 1.40 1.13 1.00 0.38

PID3 0.59 1.40 1.12 1.00 0.30

Youla 0.47 1.40 1.17 1.00 0.43

KC Ti Td Tf ζ

PI0 0.69 0.65 – – –

PI1 1.38 1.07 – 0.022 –

PI2 1.39 1.05 – 0.012 0.71

PID1 1.38 1.07 0 0.022 –

PID2 2.11 1.06 0.27 0.150 0.71

PID3 2.06 1.11 0.29 0.087 0.98
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Figure 3. Top to bottom, responses for (indices denote filter order): PI0, PI1, PI2,
PID1 (PI1), PID2, PID3, and Youla param. controller at step load disturbance and
measurement noise for P1(s). Upper: Output y. Middle: Control signal u. Lower:
Inter-sample control signal differences ∆u. Biases with steps of 0.1 have been added
for separation.

For low order processes such as P1, a PI controller is often considered
sufficient. With no filter action, KC is the high frequency gain, yielding it
sensitive to the constraint in Eq. (5e). However, adding filter action of or-
der 1, the inverse of the integral gain, i.e., Ti/KC, a good estimate of IAE
for closed loop systems with essentially monotone load step response, may
be decreased. This effect is also seen in Figure 4, showing the feedback
transfer functions, where the small filter time constant makes the ampli-
tude curve drop at high frequencies. The phase tends to −180○ due to the
filter sampling. Increasing noise filter order to 2 has small effect on the
responses, see figures 3 and 4. The optimal second order filter has damp-
ing ζ = 1/

√
2, i.e., as low as possible, which has a more distinct cut-off

than a first order filter. Due to the increased roll-off, the filter time con-
stant may be halved compared to first order filter, still fulfilling the high
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Figure 4. Optimal PI controllers and measurement filters (indices denote filter
order), PI0 (–), PI1 (- -) and PI2 (-⋅-) for P1(s).

frequency emphasizing constraint in Eq. (5e). However, this increases the
constraint function in Eq. (5d), see Table 1.
For PID control, with a first order filter, i.e., no roll-off, and a Td > 0,

Ti/KC has to be increased a considerable amount compared to a PI with
first order filter to fulfill the control signal constraints. This is due to the
additional constraint in Eq. (6b), yielding that with Td close to 0 and first
order filter, the feedback will essentially be a PI without any filter action.
For a first order filter, it is thus optimal to choose Td = 0, recovering a PI
controller while using the constraint in Eq. (6a) instead. However, increas-
ing filter order, i.e., roll-off in the feedback, derivative action may be al-
lowed, increasing performance significantly, see Table 1 and Figure 3. The
optimal second order filter has ζ = 1/

√
2, thus trying to save as much of

the phase and gain at mid-frequencies as possible. However, the increased
mid-frequency gain requires larger filter time constant, Tf = 0.150, such
that enough attenuation is given at high frequencies to hold the control
signal constraints. This implies that control effort is shifted towards lower
frequencies, i.e., the control signal energy constraint is active instead of
the control signal inter-sample difference, see Table 1 and responses in
Figure 3. This decreases e.g., wear on actuators. Third order filter de-
creases the inter-sample differences further, but to the cost of increased
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Figure 5. Optimal PID controllers and measurement filters (indices denote filter
order), PID1 (–) (PI1), PID2 (- -), and PID3 (-⋅-) and Youla parametrized controller
(grey) for P1(s).

IAE. The damping of the optimal third order filter is large and a smaller
filter time constant is possible due to the higher roll-off.
To evaluate PI(D) control performance, a Youla parametrized con-

troller with N = 1000, corresponding to a 20 s. long FIR filter, was de-
signed. Performance results can be found in Table 1 and Figure 3 and
controller transfer function is shown in Figure 5. There are strong simi-
larities between PID control with filter order higher than 1 and the Youla
controller. The same constraints are active and the magnitude of the feed-
back transfer function has the same characteristics. Due to the high order,
the Youla controller is able to give a higher peak and phase advance at
mid-frequencies and also phase advance at high frequencies. This con-
tributes to the only 15% better IAE value than the optimal PID with
second order filter, showing that PID is close to optimal for this process
when control signal and robustness constraints are set.

6.2 Example II: P2(s) = 1/(s+ 1)4
Increased complexity of the process, comparing P1 and P2, often requires
increased complexity of the controller for good performance. PI and PID
controllers and a Youla parametrized controller were designed for P2 and
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Table 2. Optimal controllers for P2(s) = 1/(s+ 1)4.

Typeorder IAE qSq∞ qTq∞ qKSq2 q∆zKSq2
PI0,1,2 5.24 1.40 1.00 0.43 0.61

PID1 4.45 1.40 1.00 0.68 0.97

PID2 3.05 1.40 1.04 1.00 0.37

PID3 3.13 1.40 1.04 1.00 0.21

Youla 2.34 1.40 1.04 1.00 0.31

KC Ti Td T f ζ

PI0,1,2 0.43 2.26 – – –

PID1 0.80 3.41 1.16 1.37 –

PID2 0.95 2.44 1.19 0.21 0.71

PID3 0.93 2.46 1.20 0.14 0.71

the results are found in Table 2 while step and noise responses are seen
in Figure 6.
Pure PI control is not able to be sufficiently aggressive for the control

signal constraints to be active and hence, adding a measurement filter will
not increase performance. However, adding derivative gain and a first or-
der filter and thus increasing controller complexity, decreases IAE but at
the same time increases noise sensitivity seen by the active constraint of
inter-sample control signal amplitude. Compared to P1, it is however pos-
sible to have PID control with a first order measurement filter, although
the derivative gain is small since the filter cancels much of the gain, see
Figure 7 for the feedback transfer functions. The phase of the feedback at
high frequencies tend to −180○ due to sampling effects. The upper limit
on Tf from Eq. (6b) is approximately 2, which the optimal value is close
to. With orders 2 and 3 of the filter, a larger derivative action may be
used since the filters are able to decrease feedback gain at high frequen-
cies. The optimal filters have low damping, ζ = 1/

√
2 and significantly

smaller T f , 0.21 and 0.14, respectively. This yields as much as possible
of the derivative phase advance and gain can be used to increase perfor-
mance, as seen in Table 2, which also shows that control action is shifted
to lower frequencies compared to a first order filter. This effect is also
seen in figures 6 and 7.
The Youla parametrized controller with N = 1200 has again the same

magnitude characteristics as a PID with higher order filter, see Fig-
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Figure 6. Top to bottom, responses for (indices denote filter order): PI0,1,2, PID1,
PID2, PID3, and Youla parametrized controller at step load disturbance and mea-
surement noise for P2(s). Upper: Output y. Middle: Control signal u. Lower: Inter-
sample control signal differences ∆u. Biases with steps of 0.15 have been added for
separation.

ure 7. It is able to give larger amplification and phase advance at mid-
frequencies than a derivative part due to its high order, which yields a
23% better performance than the optimal PID controller. Optimizations
without the lower bound on ζ have been performed, yielding the resulting
measurement filter to give a peak to the feedback similar to the Youla
parametrized controller and results in [Fransson and Lennartson, 2003].
However, in this case, the filter is more than a noise attenuating filter.

7. General Results and Conclusions

For low order simple processes, e.g., first and well damped second or-
der dynamics, PI control is sufficiently aggressive for at least one of the
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Figure 7. Optimal PI(D) controllers and measurement filters (indices denote
filter order), PI0,1,2 (gray - -), PID1 (–), PID2 (- -) and PID3 (-⋅-) and Youla
parametrized controller (grey – ) for P2(s).

control signal constraints to be active. It has also been noted that, in
general, if no filter is used, the control signal inter-sample constraint is
active while control signal amplitude constraint is far from active. Adding
a filter increases performance significantly and yields more control sig-
nal energy in mid-frequencies, increasing the control signal amplitude
constraint function, as was seen for P1. However, for higher order and os-
cillative processes, PI control will in general not give active control signal
constraints if not set very hard. It has also been noted that the perfor-
mance difference between no filter and first order filter for PI control is
significant when control signal constraints are active, while the difference
between first and second order filter is small, which was seen for P1.
PID control, with its derivative action, is for the process batch in gen-

eral able to have at least one of the control signal constraints active due
to the derivative action. A PID controller with a first order filter often
have very small or no derivative action since the filter cancels it to hold
the control signal constraints. When using second or third order filters,
which in general has as low damping as possible to save phase advance
and gain, performance is increased. Due to the roll-off, smaller filter time
constants may be used, noise sensitivity is decreased, and control signal
energy is shifted to mid-frequencies where it is less harmful for actuators.
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The difference between second and third order filters is however slight.
This filter effect was seen in both examples.
Youla parametrized controllers, that due to high orders have the abil-

ity to choose the most important frequencies in the feedback, emphasizes
the importance of increased gain and phase advance at mid frequencies
with a strong peak and roll-off in the feedback, as shown in the examples.
For the constraints set in Section 4.1 and considered processes without
large time delays, the magnitude of the Youla parametrized controller is
very similar to a PID controller with roll-off apart from having a slightly
more defined peak at mid-frequencies, compare to [Fransson and Lennart-
son, 2003]. However, this is not realizable by the PI(D) controllers due
to the constraint on ζ . Processes with large time delays yield the Youla
parametrized controllers to give feedback similar to dead-time compen-
sating control.
Numerical values of α and η are application dependent and the values

set in this paper may be used as starting point. As seen from the sim-
ulations, the control signal inter-sample amplitude constraint will limit
e.g., wear on actuators, and together with the characteristics of Youla
parametrized controllers, it is concluded that measurement filters should
be chosen such that roll-off is present in the feedback.
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Paper II

Robustness Margins Separating
Process Dynamics Uncertainties

Per-Ola Larsson and Tore Hägglund

Abstract

In controller design, not only set-point tracking and disturbance
rejection can be considered, also robustness towards process uncer-
tainties is a key issue. In this paper, new robustness measures that
divide uncertainties into dead time and non-dead time uncertainties,
are presented. It is shown, to the contrary of classic measures such as
phase/gain/dead time margins, to guarantee stability towards simul-
taneous process changes, but at the same time being more flexible and
less conservative than the robust control framework. The measures
depend on extended sensitivity functions and are well illustrated in a
Nyquist diagram giving valuable insight. Procedures to calculate the
robustness margins are presented and examples are given.

cF2009 ECC. Reprinted, with permission, from Proceedings of the 2009
European Control Conference, Budapest, Hungary, 2009.

103



Paper II. Robustness Margins Separating Process Dynamics Uncertainties

Errata

Page Location Correction

106 Text line 29 Remove “[Åström and Hägglund, 2006]”
115 Text line 37 “1/1.4” should read “1/2.9”
117 First eq. on page Remove “ReCP(iω k) =”
117 Figure 5 Remove “ReCP(iω k)”

104



1. Introduction

1. Introduction

In the design of a controller, one is often focused on achieving good set
point and load responses by tuning controller parameters. Nevertheless,
one of a control systems most important tasks is preserving closed loop
stability even though process parameters such as time constants, gains,
and dead time, change simultaneously within certain limits. A system
achieving this is known as a robust system, or a system with robustness
margins. Often, the more robust a system is, the more conservative is the
tuning of responses, which gives a clear trade-off, see e.g., [Shinskey, 1994,
Skogestad and Postlethwaite, 2005]. It is hence desirable to model process
uncertainties as accurately as possible when designing the controller and
that the robustness measures used can handle the detailed description.
Many robustness measures exist today, and the most common ones

used on a regular basis are described in Section 2. However, they have
some shortcomings as will be seen in the same section. In this paper,
we will instead present new robustness margins in Sections 3 and 4 that
give constraints on extended versions of the sensitivity functions and that
are able to separate between delay and delay free uncertainties. It will
be seen that the margins, computed as in Sections 5 and 6, contain the
existing robustness measures as special cases. Also, they have a clear,
illustrative interpretation in a Nyquist diagram giving insight into how
different uncertainties influence closed loop robustness.

2. Existing Robustness Measures

2.1 Classic Measures

The robustness measures below, commonly used in industrial settings, do
not require extensive uncertainty modeling.

Phase and Gain Margin Most common are the phase and gain mar-
gin, denoted φm and �m, respectively. They give robustness towards phase
and gain increases up to φm and �m in the process, although, not at the
same time. Note that φm is defined at the lowest frequency where the
amplitude of the open loop is 1 and �m at the lowest frequency where the
open loop phase is −180○.

Dead Time Margin The traditional way of defining a dead time mar-
gin, is by finding the smallest additional delay in the open loop at the
frequency of φm giving an unstable closed loop system. That is, if the
phase margin is φm at the frequency ωφ , then the dead time margin is
∆Lmax = φm/ωφ > 0. Note that the dead time margin is not defined for
negative delay errors.
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2.2 Model Uncertainty Based Methods

If a model of the process is derived, there are often uncertainty bounds on
e.g., gains, time constants, and dead times. By combining these intervals
an uncertainty region for the process transfer function is found. The shape
of this region often has a complex description and is hard to handle at a
systematic controller design, see for instance [Morari and Zafiriou, 1989].
The most commonly used systematic approach is therefore to bound this
region by a disk with certain radius, i.e., norm bound uncertainty. In a
Nyquist diagram this can be illustrated as an uncertainty circle at every
frequency. This leads to the design possibility of setting constraints on the
sensitivity and complementary sensitivity function

S(s) = 1
1+ P(s)C(s) , T(s) = P(s)C(s)

1+ P(s)C(s) ,

where P(s) and C(s) are the process and controller transfer function,
respectively. The constraints are often expressed as

qS(s)WS(s)q∞ < 1, qT(s)WT(s)q∞ < 1,

that is, by the infinity norm, see [Morari and Zafiriou, 1989, Åström
and Hägglund, 2006, Zhou and Doyle, 1998, Skogestad and Postlethwaite,
2005]. This is known as robust stability in the framework of robust control
and the weights WS(s) and WT(s) are design parameters. If the uncer-
tainty regions are hard to model, the weights can be chosen as constants
and the constraints are expressed as qS(s)q∞ < MS and qT(s)q∞ < MT .
The constraints can then be illustrated as frequency independent circles
in a Nyquist diagram and are commonly used in process control due to
its simplicity, see e.g. [Åström and Hägglund, 2006].
One of the main problems with the above approach is the possibil-

ity of conservatism. The region covered by a circle might not in reality
have a shape resembling a circle and thus, the process model can contain
practically infeasible processes.

2.3 Motivating Example

Consider the first order process with dead time

P(s) = 1
s+ 1 e

−s.

We design a PI controller using the method described in e.g., [Åström
and Hägglund, 2006, Garpinger and Hägglund, 2008], i.e., minimizing
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the Integrated Absolute Error (IAE) at a load disturbance step with the
constraints qS(s)q∞ < 1.4 and qT(s)q∞ < 1.4. The resulting controller is

C(s) = 0.36
(

1+ 1
0.98s

)

and the classic robustness margins for the system are

�m = 4.25, φm = 68○, ∆Lmax = 3.2 s,

which are considered almost too conservative. A gain margin as small as 2
is considered standard in practice.
The robustness margins in Section 2.1 consider separate process vari-

ations, that is, either in the dead time or time constants/gains alone. This
is not a realistic viewpoint since a process most often has simultaneous
changes. Consider a delay change of 50% of the delay margin and a gain
increase of 40% of the gain margin in the above system. This would give an
unstable closed loop system even though we are well below the robustness
specifications.
Instead, in the framework of robust control, we can guarantee stability

if we model the uncertainties properly. Consider the above process again,
but we have an uncertainty of the dead time, ∆L ∈ [−1, 1]. The systematic
way of modeling this uncertainty is by the weight

WT(iω ) =
{

pe−iω − 1p ω < π

2 ω ≥ π .

If we design a PI controller by minimizing IAE with the above weight on
the complementary sensitivity function, we achieve an IAE of 1.77 and a
delay margin of 1.74 s. This can be compared to the case when we only
consider the delay margin at an optimization. Then we have an IAE of
1.52 and a delay margin of 1.06 s. Note that it is not optimal for the
delay margin constraint to be active. We can see that disk approximation
of the dead time uncertainty gives large conservatism. This is due to an
error in dead time gives only rotation of the Nyquist curve and is badly
approximated by a circle.
The above two, rather simple, examples show that there is a need for

a robustness measure that simultaneously considers time delay, phase,
and gain changes, and nonlinearities, and at the same time being flexible
enough such that conservatism is as small as possible.
The above process example with a PI controller will be revisited in the

following sections.
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3. Complementary Sensitivity Function Based Robustness

As noted in the introduction, one of the key features of feedback is to
attain good performance even though the process changes. In this section,
we will derive a measure, using the complementary sensitivity function,
of how large process variations the closed loop system can tolerate.

3.1 Extended Complementary Sensitivity Function

Assume a nominal model P(s) = Po(s)e−sL where Po(s) is delay free. We
will now consider variations in process dynamics. Assume that we have a
dead time error in the process, ∆L, which is in the interval [∆Lmin, ∆Lmax].
Assume further that uncertainties in time constants and gains can be
modeled with a stable additive transfer function, ∆P(s), which corresponds
to a multiplicative relative uncertainty. The process model including un-
certainties is then

Po(s)
(

1+ ∆P(s)
Po(s)

)

e−s(L+∆L)

which is assumed to be norm bounded. Denote the controller by C(s) and
consider Figure 1 where the nominal open loop CP(iω ), assumed stable, is
drawn in a Nyquist diagram. With the delay uncertainty ∆L, point A will
be rotated with phase −ω ∆L and then be shifted by pC∆P(iω )e−iω (L+∆L)p =
pC∆P(iω )p in any direction. That is, A will stay inside a circle with radius
qC∆P(s)q∞ and center CP(iω )e−iω ∆L. The distance from CP(iω )e−iω ∆L to
the critical point −1 is

p1+ CP(iω )e−iω ∆Lp.

This means that the perturbation C∆P(iω )e−iω (L+∆L) will not give suffi-
cient shift to induce instability provided that

pC∆Pe−iω (L+∆L)p = pC∆Pp < p1+ CPe−iω ∆Lp.

This should hold for all ω , ∆P, and ∆L, and dividing by CPo and using
that pe−iω (L+∆L)p = 1, we can write it as

∣

∣

∣

∣

∆P(iω )
Po(iω )

∣

∣

∣

∣

<
∣

∣

∣

∣

1+ CP(iω )e−iω ∆L

CP(iω )e−iω ∆L

∣

∣

∣

∣

.

Introducing the extended complementary sensitivity function

T(s,∆L) = CP(s)e−s∆L
1+ CP(s)e−s∆L
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Figure 1. Nyquist diagram of nominal loop transfer function and its uncertainty
due to process variations in delay free part and time delay, ∆P and ∆L, respectively.

we thus have the following condition for robust stability,
∥

∥

∥

∥

∆P(s)
Po(s)

T(s,∆L)
∥

∥

∥

∥

∞
< 1, ∆L ∈ [∆Lmin, ∆Lmax].

3.2 Nyquist Interpretation

The robustness criterion can easily be illustrated graphically in a Nyquist
diagram. Consider a certain frequency ω and introduce the notations

CP(iω ) = ReCP(iω ) + iImCP(iω ) = x + iy
φ∆ = ω ∆L.

We can then write

CP(iω )e−iω ∆L = (x + iy)(cosφ∆ − i sinφ∆)
= (x cosφ∆ + ysinφ∆) + i(ycosφ∆ − x sinφ∆).

The magnitude of T(iω ,∆L) at ω is then given by

pT(iω ,∆L)p =
√

x2 + y2
1+ 2x cosφ∆ + 2ysinφ∆ + y2 + x2

,

109



Paper II. Robustness Margins Separating Process Dynamics Uncertainties

and is constant for x, y and φ∆ satisfying

x2 + y2 = M2Tω
(1+ 2x cosφ∆ + 2ysinφ∆ + y2 + x2),

where MTw = pT(iω ,∆L)p has been introduced for convenience. This can
be written as
(

x +
(

M2Tω

M2
Tω
− 1

)

cosφ∆

)2

+
(

y+
(

M2Tω

M2
Tω
− 1

)

sinφ∆

)2

−
M2Tω

(

M2Tω
− 1
)2 = 0,

which is a circle with center and radius

−
(

M2Tω

M2
Tω
− 1

)

(cosφ∆ , sinφ∆) ,
MTω

M2
Tω
− 1,

respectively. Hence, if T(iω ,∆L) should be smaller than some value MTω

as defined by the robust stability condition, the Nyquist curve at a certain
frequency ω must be strictly outside the defined frequency dependent
circle if MTω

> 1, otherwise inside the circle.
Since it is assumed that only the interval of the delay uncertainty is

know, i.e., [∆Lmin, ∆Lmax], the above condition at a certain frequency ω
must hold for all ∆L. It is easily seen that a prohibited area then is given
in the Nyquist diagram which can be used in assessing robustness of the
system.
Note that ∆Lmin and ∆Lmax will give the fastest movement clockwise

and counter clockwise, respectively, of the center as ω : 0 → ∞. Analo-
gously, if ∆L = 0 no movement of the circle centers will take place and
we recover the ordinary robust stability notation.

3.3 Specification Choices

To use the above defined robust stability condition, the uncertainty inter-
val for ∆L and additive frequency dependent error ∆P for the delay free
part needs to be specified. Hence, we have the flexibility to treat delay
uncertainties as a special case leading to reduced conservatism.
Considering only ∆P we can relate to the usual setting of weights in

robust control, the only difference is that the inequality should hold for
all ∆L. A simple, and now less conservative choice, is to define

MT∆
= max

∆L∈[∆Lmin ,∆Lmax]
qT(s,∆L)q∞,

which can be calculated in the controller design. With this specification, a
relative uncertainty of the delay free part of less than 1/MT∆

guarantees
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a stable system even in the presence of delay uncertainties. This corre-
spond to the simplified condition of MT , see Section 2.1, and the radii of
the circles are in this case constant. Note that it is not certain that the
maximum is achieved at the ends of the interval. The robustness condi-
tion can easily be evaluated using the Nyquist diagram and the prohibited
areas.
If we in the specification set ∆L = 0, we get in return the ordinary

condition for robust stability. On the contrary, letting MT∆
→ ∞, i.e.,

∆P→ 0, the centers of the circles tend to (− cosω ∆L,− sinω ∆L) with the
radii tending to 0. Hence, the area will be an arc. This implies that we
have recovered the ordinary definition of dead time margin except now all
frequencies are accounted for. Thus, in the example in Section 2.3, using
the above robustness criteria, we would have found the PI controller with
lowest IAE.
The newly defined robustness criteria can be considered to be in be-

tween ordinary robust control and classic robustness margins, since it
is less conservative than ordinary robust stability but at the same time
guarantees stability to simultaneous process uncertainties.

3.4 Motivating Example Revisited

Consider again the example in Section 2.3. The specification using MT
is intended to give robustness towards delay and gain/time constants
changes. Instead, using the definition of MT∆

we can split the robustness
into two parts. Consider the case when MT∆

= 1.4 is desired, as in the
example. Using the definition in Section 3.1 we have that ∆L ∈ [−1, 1.06].
This interval is much smaller than what the traditional delay margin
indicates, since we now have simultaneous robustness towards process
uncertainties. The optimization problem to calculate this interval is pre-
sented and solved in Section 5.
According to the definition of MT∆

it is not possible to have a delay mar-
gin of 3.2 s as in the original example since then we must have MT∆

→∞.
For example, if we let the delay uncertainty be in the interval [−1, 1.6] we
have MT∆

= 2.1. In Figure 2 the prohibited area is shown for ω = 0.475
and 1.5 rad/s. Note that for ω = 0.475 rad/s the Nyquist curve touches
the prohibited area. The optimization problem for this result is posed and
solved in Section 6.

4. Sensitivity Function Based Robustness

In this section we will consider a measure related to the sensitivity func-
tion and how it is associated with process uncertainties and disturbance
responses.
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Figure 2. Illustration of prohibited areas for the Nyquist curve in the example,
Section 3.4. We have ∆L ∈ [−1,1.6] and MT∆

= 2.1 and areas are shown for ω =
0.475 and 1.5 rad/s, dark and light grey, respectively. Note that the Nyquist curve
touches the prohibited area for ω = 0.475 rad/s.

4.1 Extended Sensitivity Function

In the case of the complementary sensitivity function we considered mul-
tiplicative uncertainties of the delay free part of the process. Consider
now on the contrary an inverse multiplicative uncertainty, i.e., we have a
process model as

Po(s)
(

1+ ∆P(s)
Po(s)

)−1
e−s(L+∆L).

Assuming the open loop with uncertainties is stable and norm bounded,
the condition for robust stability is, see [Skogestad and Postlethwaite,
2005],

∣

∣

∣

∣

∣

1+ CPo(iω )
(

1+ ∆P(iω )
Po(iω )

)−1
e−iω (L+∆L)

∣

∣

∣

∣

∣

> 0\
∣

∣

∣

∣

1+ ∆P(iω )
Po(iω )

+ CPoe−iω (L+∆L)
∣

∣

∣

∣

> 0,
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for all ∆L ∈ [∆Lmin, ∆Lmax], ∆P(iω ), and ω . Since ∆P(iω ) can have any
direction in the complex plane we can express the condition as

∣

∣

∣1+ CPoe−iω (L+∆L)
∣

∣

∣−
∣

∣

∣

∣

∆P(iω )
Po(iω )

∣

∣

∣

∣

> 0.

Introducing the extended sensitivity function

S(s,∆L) = 1
1+ CPe−s∆L

the robust stability condition is

∥

∥

∥

∥

∆P(s)
Po(s)

S(s,∆L)
∥

∥

∥

∥

∞
< 1, ∆L ∈ [∆Lmin, ∆Lmax].

The extended sensitivity function also measures the closed loop sensi-
tivity. This can be illustrated as follows. Consider a closed loop system

G(s) = CPo(s)e−sL
1+ CPo(s)e−sL

,

where Po(s) is delay free and L is the delay. It is easily derived, by taking
the derivative of G(s) with respect to Po(s), that

dG(s)
G(s) =

1
1+ CP(s)

dPo(s)
Po(s)

,

and hence with a delay uncertainty in the process we have

dG(s)
G(s) = S(s,∆L)dPo(s)

Po(s)
.

We see that the extended sensitivity function gives an estimate of how
sensitive the closed loop system is towards changes in the delay free part
of the process.
Consider instead an open loop and a closed loop system with outputs

Yol(s) and Ycl(s), and the delay uncertainty ∆L. We then have the rela-
tionship

Ycl(s)
Yol(s)

= 1
1+ CP(s)e−s∆L = S(s,∆L).

With S(s,∆L) it is hence easy to see what frequencies of the disturbances
that will be attenuated or amplified, respectively.
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Figure 3. Nyquist curve of a nominal transfer function and illustration of robust
stability inequality based on inverse multiplicative uncertainty.

4.2 Nyquist Interpretation

As with T(s,∆L), we can illustrate the conditions on S(s,∆L) in a Ny-
quist diagram. If we have P(iω ) = Po(iω )e−iω L, the complex quantity
1 + CP(iω )e−iω ∆L for a certain frequency ω can be interpreted as the
distance from the Nyquist curve CP(iω ) multiplied with the delay un-
certainty, i.e., CP(iω )e−iω ∆L, to the point −1. That is, 1/S(iω ,∆L) is
the distance from −1 to the rotated Nyquist curve. For a certain weight
∆P(s)/Po(s) we have the robust stability inequality

p1+ CP(iω )e−iω ∆Lp = peiω ∆L + CP(iω )p >
∣

∣

∣

∣

∆P(iω )
Po(iω )

∣

∣

∣

∣

.

Thus, at a certain frequency ω we see that the Nyquist curve must be out-
side a circle with center −eiω ∆L and radius p∆P(iω )/Po(iω )p, see Figure 3.
Since, again, we only know the interval of ∆L, i.e., ∆L ∈ [∆Lmin,∆Lmax],
the Nyquist curve at ω must be outside an area defined by the circles for
all ∆L in this set.

4.3 Specification Choices

As for the specification of T(s,∆L), we need to specify ∆P and ∆L for
S(s,∆L) which again gives the flexibility to separate the different uncer-
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tainties. The radii of the frequency dependent circles is defined by ∆P
while the movement of the centers is given by ∆L. For simplicity, assume
a frequency independent uncertainty in the delay free part. Analogous to
MT∆
, we can then introduce

MS∆
= max

∆L∈[∆Lmin ,∆Lmax]
qS(s,∆L)q∞,

as a measure, corresponding to constant radii of 1/MS∆
. This will not

only guarantee robustness towards inverse multiplicative uncertainties
of magnitude 1/MS∆

when a delay uncertainty is present, but also bound
sensitivity of the closed loop system and worst case amplification of distur-
bances. Note that the maximum might not be achieved at the boundaries
of ∆L. The choice of interval for ∆L depends, naturally, on the real process
and model fidelity. In the design phase, the robustness criterion above can
easily be assessed in a Nyquist plot.
Note that, analogous to the constraint on T(s,∆L), the constraint on

S(s,∆L) degenerates to the ordinary robust stability notion if no dead time
uncertainty is modelled, and to a dead time margin over all frequencies
if no uncertainty in the delay free part Po is present.

4.4 Motivating Example Revisited

Consider again the example in Section 2.3 where a first order system with
dead time was controlled by a PI-controller. We can now determine the
systems robustness and sensitivity using the separate measures of MS∆

and ∆L.
If MS∆

is chosen as MS in the example, we see that by the definition of
MS∆

the system is not robust toward any positive dead time error since the
Nyquist curve touches the MS-circle. This interpretation emphasized the
fact that process uncertainties are now considered simultaneously instead
of separate since by the old definition of delay margin, the system is robust
towards an error up to 3.2 s. To have a delay margin, we must hence accept
a higher sensitivity by increasing MS∆

, that is, decreasing the circles radii.
Using for example MS∆

= 1.8, the uncertainty interval of ∆L we can accept
is then [−1, 0.67].
In the opposite case, consider the dead time interval [−1, 1.6] as in

Section 3.4. For this system, we must accept a sensitivity and robustness
towards delay free errors of MS∆

= 2.9, which is more than twice as large
as the sensitivity defined by the ordinary MS-circle. Again, this is due to
the simultaneous process changes. The prohibited areas for the Nyquist
curve for this case are shown in Figure 4. Note that both areas stem from
circles with same radii, i.e, 1/1.4.
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Figure 4. Illustration of prohibited areas for the Nyquist curve in the example,
Section 4.4. We have ∆L ∈ [−1,1.6] and Ms∆ = 2.9 and areas are shown forω = 0.52
and 1.5 rad/s, dark and light grey, respectively. Note that the Nyquist curve touches
the prohibited area for ω = 0.52 rad/s.

5. Delay Margin Calculation

In this section, we will consider the case when we have specified the
weights on the extended sensitivity functions, i.e., ∆P, and the largest
delay margin interval is to be calculated. For clarity, we will do this for
constant weights, but the calculations are straightforward to extend to
frequency dependent weights. The below outlined optimization was used
in the examples in Sections 3.4 and 4.4.
Assume that we have the constraints

qT(s,∆L)q∞ < MT∆
, qS(s,∆L)q∞ < MS∆

,

where it is assumed that MT∆
> 1. The constraint can then be illustrated

as circles with radii r = MT∆
/(M2T∆

−1) and 1/MS∆
, respectively, and center

of the form c ⋅ (cosω ∆L, sinω ∆L), where c = −M2T∆
/(M2T∆

− 1) or −1.
Hence, the center angle relative the origin is determined by ω ∆L, which
will be used in the following. Consider Figure 5, where two circles are
drawn in the complex plane. The leftmost has center at c and radius r,
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Figure 5. Definition of θ k and φk used in the time delay margin calculation.

corresponding to one of the constraints above. Assume that we have a
frequency vector ω with indexation k and a Nyquist curve CP(iω ) of a
stable closed system. The rightmost circle has center at the origin and
radius pCP(ω k)p, where C(s) and P(s) is the controller and process transfer
function, respectively. The index k is chosen such that the two circles
intersect, that is, the Nyquist curve at frequency ω k is able to rotate inside
the constraint circle if a ∆L is present. The real part of the intersection
points is

ReCP(iω k) =
pCP(iω k)p2 + c2 − r2

2c
,

and the angle θ k, see Figure 5, can be determined as follows,

θ k = arccos
(

−pCP(iω k)p
2 + c2 − r2

2cpCP(iω k)p

)

.

Now consider point CP(iω k) on the Nyquist curve. Then we can define
the angle φk = π − argCP(iω k) in Figure 5. Since a negative ∆L gives a
counter clockwise rotation of the Nyquist curve, i.e., e−iω k(L+∆L), we can,
for the frequency ω k, define the largest negative ∆L such that the upper
half of the constraint circle is reached, as

∆L−(k) = −
φk − θ k

ω k
≤ 0.
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Similarly we have for a positive ∆L

∆L+(k) =
2π − φk − θ k

ω k
≥ 0,

which rotates the Nyquist curve such that it reaches the lower half of the
constraint circle. Now define the set

K = {k
∣

∣ pCP(iω k)p ∈ [c− r, c+ r]},

that is, K is the set of indices of frequencies where it is possible for the
Nyquist curve to rotate into the constraint circle. Thus, using ∆L−(k)
and ∆L+(k) for all k in the above set, the delay margin interval can be
calculated as

∆Lmin = max
k∈K

∆L−(k), ∆Lmax = min
k∈K

∆L+(k),

when using one of the constraint circles. If both MS∆
and MT∆

are used,
the minimization/maximization is performed for both circles. Note that in
the calculation of ∆Lmin it is possible that the result fulfills L+∆Lmin < 0.
Obviously, in this case we have ∆Lmin = −L. The calculation is straight-
forward to extend for frequency dependent weights by using frequency
dependent r and c.

6. Delay Free Uncertainty and Sensitivity Calculation

The opposite case of Section 5, i.e., when the time delay uncertainty is
specified and the sensitivity and robustness towards delay free errors are
calculated, is presented in this section. The calculations in Section 5 of
the dead time margin will be used and for simplicity constant weights are
assumed. The procedure below was used in the examples in Sections 3.4
and 4.4.
Large robustness in sense of Mj , i.e., either MS∆

or MT∆
, is equivalent

to small values and hence a large radius on the corresponding circle. Con-
sidering a Nyquist diagram of a stable system, it is clear that the larger
the radius is the smaller must the uncertainty in dead time be, hence
∆Lmin and ∆Lmax is an increasing and decreasing function, respectively,
of circle radius. The choice of Mj is therefore equivalent to decreasing Mj
until the specified limit of time delay uncertainty becomes active. Hence,
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7. Summary

we can formulate it as a simple optimization problem,

min
M j>Mminj

Mj

s.t. ∆Lmin(Mj) < ∆Lmin

∆Lmax(Mj) > ∆Lmax,

where ∆Lmin(Mj) and ∆Lmax(Mj) are the dead time margins as function
of Mj as calculated in Section 5. The constraints ∆Lmin and ∆Lmax are the
limits in the predefined time delay uncertainty interval. The optimization
variable constraint Mj > Mminj is either MT∆

> 1 or MS∆
> 0.

If both MS∆
and MT∆

are specified, the minimization is performed for
each of them.

7. Summary

In this note we have described new robustness measures. Simultaneous
process changes are considered and the measures are therefore more suit-
able to use than classic measures such as gain, phase, and dead time
margins. The new measures separate dead time and other process uncer-
tainties, and are hence more flexible and less conservative than robust
stability in the robust control framework. The new robustness constraints
on the sensitivity functions can be illustrated in a Nyquist diagram yield-
ing understanding of the inherent problem of dead time. It has also been
shown that the aforementioned known measures are found as special
cases. Procedures to calculate the new measures have been presented and
exemplified.
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Paper III

Comparison Between Robust PID and
Predictive PI Controllers with

Constrained Control Signal Activity

Per-Ola Larsson and Tore Hägglund

Abstract

A performance comparison between PID and predictive PI (PPI)
controllers, i.e., two different prediction methods, is presented. Op-
timization of controller and measurement filter parameters, consid-
ering load disturbance rejection, robustness and noise sensitivity, is
performed for a batch of industrially representative processes. For a
majority of the processes and the constraints chosen, results show that
the performances of the controllers are similar. However, the PID con-
troller yield better performance for processes where increased phase
and gain may be achieved over a wider frequency interval than what
is possible by the PPI controller.

Submitted to the 2012 IFAC Conference on Advances in PID, Brescia, Italy.
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1. Introduction

1. Introduction

Low-level controllers in the process industry are required to have few
tuning parameters, be easy to tune manually, and the parameters should
affect the control loop in an intuitive manner. The most common control
structure in process industry is the PID structure, and most often is the
derivative action turned off, resulting in a PI controller. This is due to the
introduction of noise sensitivity by the derivative part, but also because
it requires tuning and additional filtering. Adding derivative action may
increase performance significantly and joint design of PID controller and
measurement filter for load rejection, where limitations on noise sensitiv-
ity may be set, have recently emerged, see for instance [Kristiansson and
Lennartson, 2006, Garpinger, 2009, Larsson and Hägglund, 2011].
Adding derivative action to a PI controller yields phase advance, i.e.,

prediction capability. Another type of prediction is given by a Smith pre-
dictor, see [Smith, 1957]. The Smith predictor structure contains a model
of the process without dead-time, which is used for simulation internally
with the control signal as input. If the model is accurate, its output is
a prediction of the process output with the prediction horizon equal to
the process dead-time. However, adding a predictor structure increases
the number of controller parameters significantly and adds to the opera-
tional complexity. A simplified form of the Smith predictor structure with
a PI controller, denoted PIτ or predictive PI (PPI), has the same number
of parameters as the PID controller and can be tuned manually in an
analogous manner, see [Shinskey, 1994] and [Hägglund, 1996].
Performance comparisons between the PID and the PI controller with

a Smith predictor structure, regarding load disturbances, have been made
in e.g., [Kristiansson and Lennartson, 2001] and [Ingimundarson and Häg-
glund, 2002]. In this paper, comparison between the performance of the
PID and the PPI controller will be considered. The differences to the be-
forementioned references are that the compared control structures have
the same number of tuning parameters and the comparison is performed
in a discrete time setting. Additionally, both robustness towards process
uncertainty and control signal noise sensitivity are considered using other
types of measures.

2. Feedback and Controller Structures

The closed loop considered in the comparison is shown in Figure 1, where
P, C and F are the process, controller and measurement filter, respec-
tively. The sensor signal Y, giving information about the process output
X , is corrupted by measurement noise N. The load disturbance D is as-
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N
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U XE
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C P

−F +
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Figure 1. Closed loop control structure with process P, controller C and measure-
ment filter F.

sumed to enter on the process input together with the control signal U ,
which is calculated by the controller from the control error E.
The considered PID controller is on parallel form with the input-output

relation

U = K
(

1+ 1
sTi

+ sTd
)

E,

where K , Ti and Td are proportional gain, integral time and derivative
time, respectively. The comparison will be made in a discrete time setting
and the integral and derivative parts are discretized using forward and
backward differences, respectively, with sampling period h.
The input-output relation of the PPI controller is

U = K
(

1+ 1
sTi

)(

E − K−1

sTi + 1
(

1− e−sL
)

U

)

= K
(

1+ 1
sTi

)

E − 1
sTi

(

1− e−sL
)

U ,

where K , Ti and L are the proportional gain, integral time and controller
dead-time, respectively. Compared to a PI controller with Smith predictor,
the process model in the PPI controller is parametrized with gain K−1,
time constant Ti and dead-time L. Thus, only for certain values of the
parameters is the PPI controller equal to a PI controller with a Smith pre-
dictor using a first order model with dead-time, i.e., model matching. The
PPI controller is not limited to model matching and its performance can
in general be improved if model matching is not considered, see [Shinskey,
2001]. Due to the model parametrization, the PPI controller handles in-
tegrating processes, no additional filters are required as for the Smith
predictor structure.
The input-output relation of the PPI controller shows that an ordinary

PI controller acts on the control error E and the prediction, due to the pro-
cess model parametrization, is performed by low-pass filtering the control
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E U
+K

e−sL

1+ sTi

Figure 2. Implementation of the predictive PI controller.

signal U . The transfer function of the PPI controller can be factorized as
C0Cpred, where C0 is a PI controller and Cpred is a predictor structure as

C0 = K
(

1+ 1
sTi

)

, Cpred =
1

1+ 1
sTi

(1− e−sL)
.

The predictor behavior is essentially determined by the ratio L/Ti and its
gain tends to 1 at high frequencies. Thus, the PPI controller gain tends
to K .
The PPI controller may be implemented by introducing the dead-time

L in the positive feedback in a PI controller implementation, see Figure 2.
Discretization is made by zero-order hold of the positive feedback transfer
function.
To achieve desired noise sensitivity level of the feedback, measurement

filters should be designed together with the controllers, see [Isaksson and
Graebe, 2002]. In [Larsson and Hägglund, 2011], it was shown that a
second order filter with damping 1/

√
2 is preferable to a first order filter

for a PID. To achieve the same roll-off in the feedback when using a PPI
controller, a first order filter will be used together with the PPI. The filters
are parametrized by the time constant T f as

FPPI =
1

sTf + 1
, FPID =

1

s2T2f +
√
2T f s+ 1

,

and are discretized using zero-order hold. Thus, both the design of a PID
controller and a PPI controller, with their associated measurement filters,
will have four parameters to determine.

3. Comparison of Prediction Methods

The two controllers presented in the previous section perform prediction
in two different ways. A Taylor series expansion of the time-domain control
error e(t+ Td) is

e(t+ Td) ( e(t) + Td
de(t)
dt

+ . . .
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Figure 3. The predictor Cpred in the PPI controller (–) and a PD controller (--).

The two first terms is the linear prediction performed jointly by the pro-
portional and derivative part of the PID controller. The prediction in the
PPI controller is performed by Cpred, which has the following Taylor series
expansion for small s, see [Åström and Hägglund, 2006],

Cpred =
1

1+ L/Ti

(

1+ 1
2
(L/Ti)2
1+ L/Ti

Tis+ . . .
)

.

In Figure 3, the transfer function Cpred, with Ti = 0.25 and L = 1, is
shown together with a PD controller with K and Td set using the Taylor
series expansion of Cpred as

K = 1
1+ L/Ti

, Td =
1
2
(L/Ti)2
1+ L/Ti

Ti.

The predictor Cpred has a distinct phase advance peak, associated with a
peak in the gain. The phase advance falls rapidly after the peak. The PD
controller has an increasing phase over a wider frequency interval, asso-
ciated with a steadily increasing gain. As noted in the previous section,
the gain of Cpred tends to 1 at high frequencies, while the gain of the PD
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controller tends to infinity, hence the orders of FPPI and FPID. Adding the
measurement filters to the predictors, the phase advances will be smaller
and gains lower, but the differences in characteristics remain.

4. Robustness and Noise Sensitivity

Robustness towards process uncertainties is imperative to consider at con-
troller design. The Smith predictor structure, and thus also the PPI con-
troller, is sensitive towards modeling errors in the process dead-time, see
[Palmor, 1980]. A method to reduce the sensitivity, presented in [Normey-
Rico et al., 1997], is to add a low-pass filter in the feedback structure.
This approach requires at least one parameter in the added filter to be
set, yielding undesirable increase in design complexity. Another method
was presented in [Kristiansson and Lennartson, 2001], where an upper
gain limit on the open-loop transfer function is set after the phase cross-
over frequency. In [Ingimundarson and Hägglund, 2002], the open-loop
gain was instead limited to be strictly less than 1 after the gain cross-
over frequency. The last two methods may be conservative as they imply
that any reduction in process dead-time will never yield instability, even
though bounds on the dead-time uncertainty may be known.
The robustness measures for process uncertainties to be used in this

paper were presented in [Larsson and Hägglund, 2009] for continuous time
systems and can be used for discrete time systems with negligible approx-
imation errors if an appropriate sample period is used, see Appendix A.
The measures consider upper amplitude limits on S∆ and T∆ , which are
the closed loop sensitivity and complementary sensitivity functions ex-
tended to depend on the process dead-time uncertainty ∆L. Constraints
may be set as

qS∆(∆L)q∞ ≤ MS (1)
qT∆(∆L)q∞ ≤ MT , (2)

which should hold for all considered ∆L in an interval ∆L ≤ ∆L ≤ ∆L,
where ∆L and ∆L and lower and upper bounds on the dead-time uncer-
tainty. Thus, the constraints guarantee that the maximum gains of the
sensitivity functions S and T are less than or equal to MS and MT , re-
spectively, when the process dead-time is changed within the interval.
The parameters MS and MT may be specified to set desired robustness
towards process gain and time constant uncertainties. See [Larsson and
Hägglund, 2009] for a method to calculate the largest interval, which in-
cludes 0, for ∆L in Eqs. (1)–(2) when a nominal Nyquist curve and MS
and MT are given.
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Measurement noise may yield undesirable activity of the control sig-
nal. Assuming the noise is white with zero mean and with variance, i.e.,
energy, σ 2n, then the constraint

qCFSq2 ≤ ηu,

where S is the sensitivity function, limits the control signal energy due
to measurement noise to σ 2u ≤ η2uσ

2
n. Rapid variations in the control sig-

nal are also undesirable from an actuator point of view. In [Larsson and
Hägglund, 2011], a measure was presented that considers the inter-sample
amplitude of the control signal, i.e., derivative, due to measurement noise.
It may be expressed as

q∆zCFSq2 ≤ η∆u,

where ∆z is the difference operator, i.e., ∆z = (z− 1)/z. Both the above
constraints on noise sensitivity of the control signal will be used in the
design of controllers and measurement filters.

5. Optimization Formulation

The controllers and measurement filters will be compared using the in-
tegrated absolute error (IAE) at a load disturbance step as performance
measure. The design optimization problem, with the constraints in the
previous section, may be stated as follows,

minimize
K

h

∞
∑

k=0
px(k)p

subject to qS∆(∆L)q∞ ≤ MS, ∆L ≤ ∆L ≤ ∆L

qT∆(∆L)q∞ ≤ MT , ∆L ≤ ∆L ≤ ∆L

qCFSq2 ≤ ηu

q∆zCFSq2 ≤ η∆u

T f ≤ T f ≤ T f ,

(3)

where K contains controller and measurement filter parameters, x(k) is
the process output when a load disturbance step is applied at initial time,
and h is the sample period. The constraints on the extended sensitivity
functions are required to hold for all dead-time uncertainties ∆L that are
in the interval defined by ∆L and ∆L. The lower limit on T f is set to
T f = h/π due to sampling. The upper limit T f is set such that the filter
break point is at a higher frequency than the frequency where derivative
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6. Process Batch and Design Parameters

action or prediction by Cpred is begun. That is, the filter may not be used
for loop-shaping at low- and mid-frequencies, only for attenuation at high
frequencies, i.e., as a measurement filter. For the PPI controller, the in-
verse of the lowest frequency where the controller amplitude curve has a
positive derivative, denoted ω f , is taken as an upper limit and may be
calculated numerically in the optimization. For PID control, the limit is
taken as the inverse of the largest modulus of the controller zeros of the
continuous time transfer function. Thus, for FPPI and FPID, respectively,
the upper limits are

T f =
1

ω f

, and T f =
∣

∣

∣

∣

∣

1
2Td

+
√

1
4T2d

− 1
TiTd

∣

∣

∣

∣

∣

−1

.

6. Process Batch and Design Parameters

Controllers and filters have been optimized for the following batch of 82
industrially representative processes,

P1 =
e−s

sT + 1, T = 0.1, 0.2, 0.3, 0.5, 1, 1.5, 4, 10, 50

P2 =
e−s

(sT + 1)2 , T = 0.1, 0.2, 0.3, 0.5, 1, 2, 6, 10, 50

P3 =
1

(s+ 1)(sT + 1)2 , T = 0.05, 0.1, 0.2, 0.5, 2, 5, 10

P4 =
1

(s+ 1)n , n = 3, 4, 5, 6, 7, 8

P5 =
1

Π3k=0(α ks+ 1)
, α = 0.4, 0.5, . . . , 0.9

P6 =
e−sL1

s(sT1 + 1)
, P7 =

e−sL1

(sT + 1)(sT1 + 1)
, T = 1, 10

L1 = 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1, L1 + T1 = 1

P8 =
1−α s

(s+ 1)3 , α = 0.1, 0.2, . . . , 1.1

P9 =
1

(s+ 1)((sT)2 + 1.4sT + 1) , T = 0.1, 0.2, . . . , 1.

The batch includes both lag-dominated, delay-dominated, oscillative and
integrating processes as well as processes with inverse step responses. All
processes are sampled using zero-order hold with sample period h = 0.02
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at optimization. In all designs, MS = MT = 1.4, which is a common
value when considering upper limits on the sensitivity functions, see
[Åström and Hägglund, 2006]. The noise sensitivity constraints are set
to ηu = η∆u = 1, see [Larsson and Hägglund, 2011] for design choices. For
simplicity, if the considered process has a dead-time L, then ∆L = −L/10
and ∆L = L/10. If the process is modeled without dead-time, only an
additive dead-time uncertainty is considered by ∆L = 0 and ∆L = L̃/10,
where L̃ is the apparent dead-time of the process.
The optimization problems are solved in MATLAB RF using the Control

System Toolbox
TM
, Optimization Toolbox

TM
, and Simulink RF .

7. Batch Results

Ratios between the resulting IAE for the PPI and PID structures are
found in Figure 4 as functions of the normalized process dead-time τ . For
a majority of the processes, the performances of the two prediction meth-
ods are similar, yielding ratios within 0.9–1.1. Comments on the specific
processes are given below.
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Figure 4. Ratios between IAE for PID and PPI feedback structures as a function
of normalized dead-time τ for the processes in the batch.
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7. Batch Results

For the PPI structure and P1 and P2 with τ > 0.5, it is only the con-
straint on qS∆q∞ that is active, limiting the peak gains. For the PID struc-
ture, the corresponding limit is τ > 0.8. For these processes, a derivative
part may give gain increase and phase advance over a wider frequency
interval than the PPI predictor, which yields a better performance for the
PID structure. See Example I in Section 8, where the designs for P1 with
T = 0.3 are shown in detail.
At τ close to 0, P1 is essentially a first-order process, requiring no

phase advance in the feedback for high low-frequency gain and thus low
IAE. Resulting feedbacks are basically PI controllers with measurement
filters and the constraints on qCFSq2 and qS∆q∞ are active.
For higher order processes, phase advance in the feedback may in-

crease performance significantly. For P2 and P3 with large time constants,
i.e., T ≥ 10, and thus small τ , phase advance should be made at low fre-
quencies for high performance. As the constraint functions qCFSq2 and
q∆zCFSq2 are calculated over all frequencies and essentially only over
high frequencies, respectively, significant gain increase in the open-loop
can be given in desired frequency interval as the measurement filter can
decrease the gain sufficiently at high frequencies. This benefits the PID
structure, which can have phase advance and gain increase over a wider
frequency interval than the PPI structure, and has therefore significantly
better performance for these processes. Both control structures have the
constraints on qS∆q∞ and qCFSq2 active. However, the PID controller
has higher gain than the PPI controller at low frequencies, and the PPI
controller has higher gain than the PID controller at high frequencies.
In comparison with P2 and P3 with T ≥ 10, the other non-integrating

processes with 0 < τ < 0.5, except for P1, have essentially smaller time
constants. Thus, the phase advance should be at higher frequencies. Here,
the phase advance and gain of the derivative part may not be used over
a significantly wider frequency interval than the interval with phase ad-
vance and gain given by the PPI predictor, resulting in similar perfor-
mances of the two controller structures. In general, both structures have
the constraint on qS∆q∞ active for the considered processes. The PID struc-
ture has always qCFSq2 on the constraint, but never q∆zCFSq2. The PPI
structure has in general a smaller T f than the PID structure, resulting in
a higher high-frequency gain and either qCFSq2 or q∆zCFSq2 active. This
will be seen in Example II below, where P9 with T = 0.3 is considered.
The open-loop transfer function for the integrating processes P6 has an

initial phase of −π rad/s , requiring phase advance to rotate the Nyquist
curve away from the robustness constraints. This can be made over a
wider frequency interval by the PID structure than by the PPI structure,
resulting in a significantly better performance for the PID structure. Both
control structures have qS∆q∞ = qT∆q∞ = 1.4, while the PID structure
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has qCFSq2 active for all values of L and the PPI structure has q∆zCFSq2
active only for L < 0.3. Thus, the PPI structure cannot give enough phase
advance for L ≥ 0.3 over a wide frequency interval such that the gain can
be increased and yield the control signal constraints active.

8. Design Examples

Table 1 shows the resulting IAE, parameter and constraint function val-
ues for Example I and II below. Nyquist diagrams, Bode diagrams of the
feedbacks and load disturbance step responses are shown in figures 5–7
for Example I and in figures 8–10 for Example II. In the load disturbance
response simulations, the measurement signal is in the second half cor-
rupted with zero mean white noise with a standard deviation of 0.025.

8.1 Example I: P1, T = 0.3
The optimal PPI controller with measurement filter for P1 with T = 0.3
was not able to give sufficient gain for the noise sensitivity constraints to
be active, yielding the filter time constant to be at its lower bound. The
presented result for the PPI controller is therefore from an optimization
without measurement filter. To yield phase advance, the PPI controller

Table 1. IAE, feedback parameter and constraint function values in Example I
and II.

Process Controller IAE K Ti Td L T f

P1, T = 0.3
PPI 2.17 0.60 0.17 - 1.1 -

PID 2.10 0.29 0.61 0.30 - 0.034

P9, T = 0.3
PPI 0.825 2.0 0.46 - 0.98 0.042

PID 0.892 1.1 0.77 0.32 - 0.096

Process Controller qS∆q∞ qT∆q∞ qCFSq2 q∆zCFSq2

P1, T = 0.3
PPI 1.40 1.00 0.61 0.84

PID 1.40 1.00 1.0 0.89

P9, T = 0.3
PPI 1.40 1.08 1.0 0.84

PID 1.40 1.13 1.0 0.52
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Figure 5. Nyquist curves in Example I with PPI (–) and PID (--). Circles corre-
spond to qSq∞ = qTq∞ = 1.4.

makes gain peaks, resulting in loops in the Nyquist diagram. Prior the
phase cross-over frequency, ∆L = ∆L yields qS∆q∞ = MS, while the two
first gain peaks yield qS∆q∞ = MS for ∆L = ∆L. Hence, the robustness
constraint limits the loop gain to be even larger, and hence also the phase
advance of the predictor. After the two first peaks, the open loop tends
to 0 as the gain of the predictor tends to 1. The PPI controller is not
able to increase its gain at higher frequencies, and the noise sensitivity
constraints are not active. The optimal controller parameters are not equal
to model-matched design.
The PID controller follows the initial phase advance of the PPI con-

troller, but the gain does not have, nor is able to have, a distinct peak
at mid frequencies. Prior the phase cross-over frequency, ∆L = ∆L yields
qS∆q∞ = MS. After the phase cross-over frequency, the PID controller can
increase its gain, yielding phase advance over a wide frequency interval.
As the process gain decreases with frequency, the PID gain increases,
making the Nyquist curve to be almost circular and qS∆q∞ = MS at the
negative real axis. At higher frequencies, the measurement filter yields
roll-off such that the noise sensitivity constraints are met. The control sig-
nal from the PID controller, compared to the PPI controller, reacts faster
when the load disturbance is seen in the measurement signal and is also
more sensitive to measurement noise.
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Figure 6. Bode diagram of feedbacks in Example I with PPI (–) and PID (--).
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Figure 7. Load disturbance responses in Example I with PPI (upper curves) and
PID (lower curves). Top: Measurement signal.Middle: Control signal. Bottom: Inter-
sample difference of control signal. Biases of 0.5 and 0.2 are added for separation.
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The maximum phase advance and associated gain are higher for the
PPI structure than for the PID structure. However, for this example, phase
advance and gain increase over a wider frequency interval are better than
over a narrow interval. This results in a 5% lower IAE for the PID struc-
ture compared to the PPI structure.

8.2 Example II: P9, T = 0.3
The optimal PPI controller with measurement filter for the process P9
with T = 0.3, have the robustness constraint qS∆q∞ ≤ MS active prior
the phase cross-over frequency when ∆L = ∆L. Phase advance is given
by the predictor, but is limited together with the gain as qS∆q∞ = MS
at the negative real axis in the Nyquist diagram. The highest gain of
the predictor is at the first peak. Since the process is of third order and
the measurement filter time constant yields roll-off such that the noise
sensitivity constraints are fulfilled, the Nyquist curve tends to 0 rapidly
after the first predictor peak. The process may be approximated by a first
order system with dead-time with static gain, time constant and dead-time
approximately equal to 1, 1 and 0.35, respectively. From the controller
parameters, it is seen that the design of the optimal PPI controller does
not resemble model-matched design.
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Figure 8. Nyquist curves in Example II with PPI (–) and PID (--). Circles corre-
spond to qSq∞ = qTq∞ = 1.4.
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Figure 9. Bode diagram of feedbacks in Example II with PPI (–) and PID (--).
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Figure 10. Load disturbance responses in Example II with PPI (upper curves) and
PID (lower curves). Top: Measurement signal.Middle: Control signal. Bottom: Inter-
sample difference of control signal. Biases of 0.5 and 0.2 are added for separation.

136



9. Summary

The PID controller follows the phase advance of the PPI controller
and has qS∆q∞ = MS for ∆L = ∆L prior the phase cross-over frequency.
Compared to Example I, the PID controller may not increase its gain
and phase over such a wide frequency interval above the phase cross-
over frequency due to the noise sensitivity constraints. The differences in
increased gain and phase given by the two prediction methods are not as
large as in Example I.
The optimal PPI structure yields a slightly higher gain cross-over fre-

quency compared to the PID structure. It also has significantly higher gain
at high frequencies. This yields the inter-sample sensitivity of the control
signal due to noise to be larger, as seen in the load disturbance responses,
but gives also a more rapid response to load disturbances. The PPI struc-
ture gives approximately 7.5% lower IAE than the PID structure. Hence,
in this example, it is advantageous to use a feedback structure that may
yield significant gain and phase advance peaks over a narrow frequency
interval.

9. Summary

This paper presented a comparison between PID and PPI controllers with
associated measurement filters, considering load disturbance rejection,
robustness towards process uncertainties and noise sensitivity of the con-
trol signal. For the optimization parameters chosen and the majority of
the processes in the batch, the performances of the two different struc-
tures, and hence the different prediction methods, are similar. However,
for some processes with comparatively large time constants, the derivative
part is allowed by the noise sensitivity constraints to yield phase advance
and increased gain over a frequency interval wider than what is possible
by the PPI predictor. This yields better performance by the PID structure
than by the PPI structure.
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Appendix A. Robustness Calculation

The robustness calculation method presented in [Larsson and Hägglund,
2009] is based on the open loop transfer function C(s)F(s)G(s), where
C(s) is the controller, F(s) is the measurement filter and G(s) = G0(s)e−sL
is the nominal process. The method considers a rotation of the Nyquist
curve such that a point on the curve with amplitude close to 1 is rotated
a certain angle. From the rotation, the corresponding change ∆L in dead-
time can be calculated. When G(s) is discretized using zero-order hold
(ZOH), then

G0(s)e−sL
ZOH−−→ P0(z)z−n,

where n = ⌈L/h⌉, h is the sampling period, and ⌈⋅⌉ is the ceiling func-
tion. Adding ∆L to the time delay does not change G0(s), however, it may
change P0(z) as

G0(s)e−s(L+∆L) ZOH−−→ P̃0(z)z−m,
where m = ⌈(L + ∆L)/h⌉. For the case ∆L = kh, i.e., ∆L is an integer
number of sample intervals, P̃o(z) = Po(z) and m = n + k. However, for
the case ∆L ,= kh, P̃o(z) and Po(z) have minor differences in both phase
and amplitude affecting the Nyquist curve. The differences are mainly
at high frequencies close to the Nyquist frequency and if an appropriate
sampling period is selected, the differences are negligible in the frequency
interval wherein ∆L is computed. Hence, the method to calculate ∆L in
[Larsson and Hägglund, 2009] may be used, yielding negligible errors.
This is confirmed when analyzing the designed controllers and filters for
the considered process batch.
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Paper IV

Modeling and Optimization of a
Grade Change for Multistage
Polyethylene Reactors

Per-Ola Larsson, Johan Åkesson,
Staffan Haugwitz and Niklas Andersson

Abstract

Grade changes in polyethylene reactors, i.e., changes of operating
conditions, are performed on a regular basis to adapt to market de-
mands. In this paper, a dynamic optimization procedure is presented
built upon the Modelica language extended with Optimica constructs
for formulation of optimization problems. A Modelica library for the
Borstar RF multistage polyethylene reactors at Borealis AB, consist-
ing of two slurry and one gas phase reactor, has been constructed.
Using JModelica.org, a framework to translate dynamic optimization
problems to NLP problems, optimal grade transitions between grades
currently used at Borealis AB, can be calculated. Optimal inflows and
grade key variables are shown.

cF2011 IFAC. Reprinted, with permission, from Proceedings of the 18th
IFAC World Congress, Milano, Italy, 2011.
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Errata and Clarifying Notes

Page Text line Correction

150 20 “xB” should read “yB”

151 10 “y” should read “w”

• Correction of the discussion in Section 3 regarding outtake of poly-
mer slurry from the pre-polymerization reactor: The polymer slurry
is transferred by transfer legs, yielding the outflow and reactor con-
tents to have equal concentrations. This is modeled as in Paper VI.

• Clarification of the grade definition in Section 5.1 and the DAE ini-
tialization problem in Section 5.2: The polymer grade is defined by
bed average concentrations and concentration ratios X e1, X he1, X e2,
X he2, X p3, X e3, X he3 and X be3, polymer production rates Q1 and
Q2, split factor S, and pressure P3 in the gas-phase reactor. These
variables are contained in the output y of the model and their spec-
ifications for a grade are set in yspec.. Table 2 in the paper should be
as Table 2 below.
Specifying X e1 and X he1 implicitly specifies X h1 and thus also X p1
as the sum of the molar concentrations is normalized to 1, see Pa-
per VI.

Table 2. Normalized grade definitions.

Grade A B

X e1 1 1.000

X he1 1 0.37

Q1 1 1.064

X e2 1 1.160

X he2 1 2.371

Q2 1 1.134

Grade A B

X p3 1 1.009

X e3 1 0.8828

X he3 1 1.846

X be3 1 1.279

S 1 0.9167

P3 1 1.000

• The following constraints should be added to the dynamic optimiza-
tion problem in Eq. (12):

u =
∫ t

t1

u̇ dτ , x(t1) = xA, u(t1) = uA.
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1. Introduction

Polyethylene reactors are able to produce different grades by manipulating
inflows of raw material. It is imperative for polyethylene manufacturers
to change product grades to increase profitability as market demands
change, but also due to market competition and raw material pricing.
The result is product campaigns, varying in length between a few days
up to weeks. During grade transitions it is therefore of importance that
production of off-specification material, i.e., material that does not fulfill
specification of any grade, is minimized. On the other hand, there is also
a cost in raw material and time that has to be taken into account when
performing a grade change, see e.g., [van Brempt et al., 2004].
The grade transition problem has been the subject of several papers.

For gas phase reactors, [McAuley and MacGregor, 1992] uses the con-
trol variable parametrization method (CVP) with control profiles approx-
imated by series of ramps, while in [Gisnas et al., 2003] optimization
results in bang-bang type solutions. A series of two slurry reactors has
been considered by [Takeda and Ray, 1999], also using the method of CVP,
and in [Prata et al., 2008] a grade change for a series of a slurry and a
gas phase reactor was performed with a discretization scheme based on
direct single and multiple shooting.
This paper presents an optimization procedure for a grade change of a

Borstar RF polyethylene plant including three polyethylene reactors in se-
ries, two slurry and one gas phase reactor, and is an extension of [Larsson
et al., 2010] where one reactor was considered. The developed plant model
is encoded in the Modelica language and a simultaneous optimization
method based on collocation is applied using the optimization extension
Optimica and the framework of JModelica.org.

2. Borstar R© Polyethylene Plant

The BorstarRF polyethylene plant incorporates in total three polyethylene
reactors, two slurry and one gas phase reactor (GPR), see Figure 1. It is a
bimodal plant and can thus produce polymer with a two-peaked molecular
weight distribution. The pre-polymerization slurry reactors main function
is to induce the polymerization in a pre-specified composition and has a
negligable production compared to the two other reactors. It has catalyst,
monomer ethylene and the chain transfer agent hydrogen along with the
diluent propane as inflows. Using the second reactor, i.e., the loop slurry
reactor, polymer with low molecular weight is shaped. The loop reactor
has the same material inflow as the pre-polymerization reactor except
that no catalyst is added. Temperature and pressure is high resulting in
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Figure 1. Reactor chain of a Borstar RF process: pre-polymerization, loop, and gas
phase reactor.

a super-critical state of the polyethylene slurry. The slurry stream from
loop reactor is fed to a flash tank where gases are separated from polymer,
which are transported to recovery area and the GPR, respectively. To the
subsequent fluidized bed GPR, apart from the same type of raw material
added to the loop reactor, also the co-monomer butene is added together
with nitrogen. This gives the high molecular weight polymer resulting in
the bimodal polymer product.

3. Plant Model

Several assumptions are made when modeling, keeping model complexity
resonable and usable for grade change optimization. The two loop reac-
tors are assumed to have perfect temperature and pressure control, while
control systems for reactor content volumes are in regulatory mode and
incorporated in the model. Both loop reactors have high volumetric circu-
lation rates compared to outflow rates. This results in recycle ratios well
above 30, yielding no considerable gradients of molecular species nor tem-
peratures exists along the reactors, see [Zacca and Ray, 1993]. The latter
is also supported with measurements along the reactor. Thus, the loop
reactors can be considered well-mixed. The outtakes of polymer from the
loop reactors are settling legs, making the outflow have higher concen-
tration of polymer than the reactor contents, see [Reginato et al., 2003].
Hence, the approach of non-ideal CSTR for the loop reactors is suitable,
see [Reginato et al., 2003] and [Touloupides et al., 2010], where the settling
legs are modelled using discharge factors.
The temperature in the GPR is assumed to be controlled to a constant

value and the regulatory system for bed level is incorporated in the model,
using the outflow as control variable. The content in the GPR is assumed
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3. Plant Model

Table 1. Components summary and abbrev.

Component i

Catalyst c

Ethylene e

Hydrogen h

Butene b

Component i

Propane p

Nitrogen n

Polyethylene pe

Incorp. butene pb

well mixed and conversion per pass through is low, making the gas com-
position approximately uniform in the bed, see e.g., [Xie et al., 1994] and
[McAuley and MacGregor, 1992].
The model, derived by Borealis AB and used today in a non-linear

model predictive controller of the plant, includes both first principles,
semi-empirical, and empirical relations. The main inflows are, as de-
scribed in Section 2, the raw materials, diluents and catalyst which gives
a total of 12 control inputs available for optimization at a grade change. If
the reactors are numbered from left to right with index j, i.e., j ∈ {1, 2, 3},
then for every component i in Table 1 that is a fluid, gas or catalyst, the
mass balance read

ṁi j = qi, j−1 + ui j − qi j − ri j , (1)

where qi j and ri j is the outflow and reaction rate of component i, respec-
tively, in reactor j and ui j is the controlled inflow of component i. Note
that qi j , ri j or ui j might be zero depending on which reactor or component
that is considered.
For the polymer, i.e., polyethylene and incorporated butene, it is im-

portant to indicate in what reactor it has been formed due to the process
bi-modality, and therefore an extra index, k ∈ {1, 2, 3}, is supplied. For a
solid component in a reactor it is formed in, i.e., j = k, the mass balance is

ṁi jk = hi j − qi jk, (2)

where hi j is the production rate of the polymer component i in reactor j
and is a function of the reaction rates of the raw materials in Eq. (1). For
a polymer component in a reactor it has not been formed in, i.e., j ,= k,
it reads

ṁi jk = qi, j−1,k− qi jk, (3)
which is a pure transportation of the component through the reactor. For
every fluid or gas component, the instantaneous molar concentration X i j
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may be calculated. Molar concentrations and all component masses for
reactor j are collected in vectors X j and m j .
The reaction rates used above are calculated using extended Arrhenius

expressions of the form

ri j = Ri j(c j , Pj ,m j ,X j) exp
(

ki j1

Tj
+ ki j2

)

, (4)

where Ri j is a non-linear function of the catalyst properties c j , reactor
pressure Pj and the component masses and concentrations. The reaction
rate is inversely proportional to the temperature Tj in the exponent with
two empirical constant ki j1 and ki j2 for each component i and reactor j.
Analogously, reaction rates are collected in the vector r j .
The states of the Ziegler-Natta catalyst in reactor j, such as mean ac-

tivity and deactivated sites, have the non-linear dynamics of a function Cj ,

ċ j = Cj(c j ,r j ,m j , qc, j−1,uc1), (5)

where the two last variables are the inflow of catalyst from previous reac-
tor and controlled input of catalyst to pre-polymerization reactor, respec-
tively.
By using reactor geometry, knowledge of the reactor content properties

and empirical relations for a super-critical state, the densities for fluids
and solids in each reactor may be calculated. In general, densities have
dependencies as

ρ j = ̺ j(X j , Pj ,Tj), (6)
with the non-linear function ̺ j , where ρ j is a vector containing densities
for fluids and solids in reactor j.
Pressure in the GPR is given by reactor content properties and tem-

perature through the non-linear function P3

P3 = P3(X3,m3,ρ3,T3). (7)

The resulting polymer properties depends on the ratios between monomer,
co-monomer and hydrogen, see e.g. [McAuley and MacGregor, 1991], and
the model therefore also includes the following ratios,

Xhe1 = Xh1/X e1, Xhe2 = Xh2/X e2
Xhe3 = Xh3/X e3, Xbe3 = Xb3/X e3.

(8)

Note that there is no butene-ethylene ratio in the pre-polymerization and
loop reactors since co-monomer is only added in the GPR.
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Due to the residence time in each reactor, also the bed average of the
concentrations and concentration ratios defined above, emphasized with
a bar, e.g., X i j , are considered. These indicate during what conditions, in
average, the polymer has been formed and are calculated by filtering the
instantaneous values using the ratio between mass of solids and outflow
of solids for considered reactor as time constant.
The bi-modality of the polyethylene molecular weight distribution is

formed by producing polymers with different molecular weight in loop re-
actor and GPR. A measure of the bi-modality is the split factor, calculated
using masses of polyethylene produced in the different reactors as

S = mpb33 +mpe33
mpb33 +mpe33 +mpe32 +mpe31

, (9)

i.e., as the ratio of polymer mass in the GPR formed in the GPR to the
total mass of polymer in the GPR.
For economical reasons, the production rate of solids in each reactor

is considered when optimizing a transition, which is defined as the sum
of production rate of polyethylene and incorporated butene in each reac-
tor, i.e.,

Q j = hpe, j + hpb, j. (10)
The model contains, apart from Eqs. (1)–(10) also additional algebraic
equations. If the inputs and outputs of the model are denoted u and y,
respectively, and the states and algebraic variables are denoted x and w,
the model can be written in the general non-linear index 1 differential
algebraic equation (DAE) form

0 = F(ẋ,x,w,u)
y = g(x,w,u). (11)

The model has ny outputs, used for defining a grade with correct produc-
tion rate, and nu = 12 inputs and nx = 55 states, nw = 180 algebraic
variables and 225 equations, disregarding g(⋅), and has been subjected
for calibration using plant measurement data in [Andersson et al., 2011].

4. Modeling and Optimization Environment

Modelica, a high level language for encoding of complex physical systems
aimed at simulation and supporting object oriented concept is used for
plant modeling. Main features of the language are that text-book style
declarative differential and algebraic equations may be used and mixed,
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but it lacks language constructs for formulating dynamic optimization
problems. Notations such as cost functions, constraints and mechanism to
select input and parameters to optimize has been proposed in the Opti-
mica extension, see [Åkesson, 2008], enabling the user to construct such
problems based on Modelica models.
Numerical solver interfaces are typically written in C or FORTRAN

and the translation of Modelica models and optimization problems are
performed in the framework JModelica.org, an open source project tar-
geted at dynamic optimization, see [Åkesson et al., 2010]. It features com-
pilers supporting code generation of Modelica/Optimica models to C, a
C API for evaluating model equations and their derivatives, optimization
algorithms and supports the Optimica extension.
The JModelica.org platform contains an implementation of a simulta-

neous optimization method based on collocation on finite elements, [Bie-
gler et al., 2002]. In this method, states, inputs and algebraic variables,
are parametrized by Lagrange polynomials based on Radau points of or-
der three, two and two, respectively. This corresponds to a fully implicit
Runge-Kutta method, and possesses well known and strong stability prop-
erties. The dynamic optimization problem is thus translated into a non-
linear program (NLP), which may be very large. To efficiently solve the
NLP, derivative information together with sparsity patterns of the con-
straint Jacobians need to be provided to the numerical solver. In JMod-
elica.org, the simultaneous optimization algorithm is interfaced with the
large-scale NLP solver IPOPT, see [Wächter and Biegler, 2006], particu-
larly developed to solve NLP problems arising in simultaneous dynamic
optimization. Simultaneous methods handle non-linear systems well, and
also, constraints on state, input and algebraic variables are easily incor-
porated, and is thus well suited for the optimization of a grade transition
treated in this paper.
Using the Modelica language, a library of necessary entities was con-

structed, see [Larsson et al., 2010]. The library contains models both for
simulation, experiments as well as optimization models with Optimica
constructs.

5. Optimal Grade Transition

5.1 Grade Definition

Many measures may to be used when defining a grade, such as densities,
molecular weight, molecular distribution, melt flow indices and raw ma-
terial concentrations, which are controlled by polymerization conditions.
Commercial practice is to give grade specifications by melt index and
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density due to convenience in industrial settings, see [Xie et al., 1994].
Melt flow indices are measures of the molecular weight distribution and
may be used to calculate the flow ratio, yeilding a polydispersity mea-
sure. However, as indicated in [Xie et al., 1994], these measures only give
relative properties and not detailed information about polymer structure,
which if desired, requires detailed models not suitable for over all plant
optimization as considered in this paper.
In [McAuley and MacGregor, 1991], relations between melt index, den-

sity and reactor concentration ratios, both monomer and co-monomer, was
presented based on reaction kinetics. Only a limited number of products is
produced, and thus only a few steady state operation points exists where
melt index may give measurement data. Thus, using this operation data,
which is taken with a two hour interval, will give models with large un-
certaintes. Therefore, the concentration ratios, verified with process data,
will be used when defining a grade. The concentration ratio data are calcu-
lated from chromatography measurements, i.e., component concentration
measurements, with a sampling interval of 1 minute.
Except from the concentrations above also the split factor is used when

defining a grade. Additionally, also the GPR pressure and the production
rates are considered, although not effecting polymer properties directly.
Table 2 lists variable values from a grade transition performed at Bore-
alis AB, normalized by grade A. The reactant concentrations are specified
from polymer properties while inert gases are given specifications from
e.g., desired partial pressures, heat removal from exothermic reaction and
other operating conditions. Note that e.g., specifying X e1 and Xhe1 implic-
itly also specifies Xh1, and thus also the remaining gas, i.e., Xp1, since
reactor content volume is constant at stationarity. Similar argument holds
for Xp2 and Xn3. The split factor is set to give correct bi-modality of the
polymer. This, together with specifications of Q1 and Q2 implicitly defines
production rate in GPR, and thus also total production rate. GPR pressure
is set to nominal reactor value.

5.2 DAE Initialization

A grade transition changes production from one steady state to another,
both representing on-specification production. The DAE initialization and
stationarity problem for a specific grade requires the output y, containing
all variables defining a grade from the previous section, and derivatives ẋ
to be specified. The variables to solve for are x, u, and w. Here, u is now
an algebraic variable instead of input and its size determines how many
grade specifications may be used, i.e., size of y, if the non-linear equation
system should have zero degrees of freedom. For full flexibility, as used
here, all variables in u will be free. If constructing the extended algebraic
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Table 2. Normalized grade definitions.

Grade A B

X e1 1 1.000

Xhe1 1 0.37

Q1 1 1.064

X e2 1 1.160

Xhe2 1 2.371

Q2 1 1.134

Grade A B

Xp3 1 1.009

X e3 1 0.8828

Xhe3 1 1.846

Xbe3 1 1.279

S 1 0.9167

P3 1 1.000

variable vector z = [w, u ], the problem may be formulated as

0 = F̃(ẋ,x,z)
0 = ẋ
0 = g̃(x,z) − yspec.,

where F̃ and g̃ corresponds to F and g without input u, and yspec. contains
the grade definitions in Table 2. The first equation has, as the DAE in
Eq. (11), nx + nw equations, and the second and third has nx and nu,
respectively, and thus, there is equally many equations as variables to
solve for, yielding zero degrees of freedom.
The problem is encoded with JModelica.org using the Modelica models.

Initial guesses may be set for all variables to solve for and upper and lower
limits helps the solver. The solution time for each grade is less than 10
seconds.
For the two grades, inputs uA and uB can be defined, giving stationary

production. Analogously, define the outputs yA and yB, state vectors xA
and xB, and algebraic vectors wA and wB.

5.3 Dynamic Optimization of Grade Transition

The dynamic optimization problem solves for optimal trajectories between
the two grades A and B, satisfying dynamics and constraints on states,
algebraic variables, inflows and outputs.
Initial conditions of the plant is the solution from DAE initialization for

grade A, i.e., xA, wA, and uA, and a quadratic cost function that includes
deviations from grade B specifications in form of xB, wB and uB is used.
Introducing the deviation vectors

∆y = y− yB, ∆u = u− uB, ∆w = w−wB,

150



5. Optimal Grade Transition

the dynamic grade transition optimization problem can be formulated as

min
u̇

t2
∫

t1











∆y

∆u

∆w

u̇











T 









Q∆y 0 0 0

0 Q∆u 0 0

0 0 Q∆w 0

0 0 0 Qu̇





















∆y

∆u

∆w

u̇











dt (12)

subj. to 0 = F(ẋ,x,w,u), y = g(x,w,u),
ymin ≤ y ≤ ymax, umin ≤ u ≤ umax,
wmin ≤ w ≤ wmax, u̇min ≤ u̇ ≤ u̇max,
xmin ≤ x ≤ xmax,

The weight Q∆y may be used to emphasize importance of the different
grade defining variables, while Q∆w and Q∆u is used to remove too large
over- and undershoots of algebraic variables and inflows. The optimization
variables are the inflow derivatives u̇, which gives possibility to directly
include them in the cost function using Qu̇ to control inflow smoothness,
and also in the constraints, without any additional filtering of the inflows
u. All weights are chosen diagonal for simplicity.
Over- and undershoots are accepted up to a certain limit for the in-

stantaneous concentrations and ratios, i.e, X i j , set as constraints on y.
However, for the bed average concentrations and ratios, i.e., X i j , and the
split S, no over- or undershoots are accepted in the grade change. The
constraints on the algebraic variables w and states x are for instance
limits on volumes, pressures, reaction rates, component masses and cat-
alyst properties, while constraints on inflows, both magnitudes and rates
of changes, concern physical limits such as e.g., pump capacities.

5.4 Optimal Grade Transition Trajectories

For non-convex optimization it is advantageous to have good initial values.
Since a simultaneous method is used, all variables at all discretization
points are solved for at the same time, hence, initial trajectories should
be supplied. Since the stationary points are known, i.e., solved for in DAE
initialization problem, one can generate initial trajectories by ramping
inflows from uA to uB and simulate the response. This can be performed
in JModelica.org where simulation is available through SUNDIALS, see
[Hindmarsh et al., 2005].
The transition time is normalized to 1 time unit (t.u.) and the dy-

namic optimization problem have been solved several times for different
element lengths approximately in the range 0.015-0.075 t.u. with 3 collo-
cation points in each element. Resulting optimal inflows have been used
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Figure 2. Optimal inflows to loop reactor (−) and values for grade A and B at
stationarity (-⋅-).

as inputs in simulations, showing that the discretization is fine enough,
i.e., the difference between simulated response and discretized response
from optimization is negligable. After discretization, the NLP problem
contains approximately 20.000-200.000 variables depending on number of
elements. Using an Intel RF CoreTM2 Duo CPU@3.00GHz, a solution is ob-
tained in approximately 5-90 minutes depending on number of variables
and initial values.
Figures 2-3 show the resulting optimal inflows to the loop reactor, key

grade variables, and mass of polymer in loop reactor, respectively, while
figures 4-6 shows the corresponding for GPR. Note the scaling, i.e., the
transition is 1 time unit (t.u.) and all variables have initial value 1.
Since the production rate Q2 is higher in grade B than in grade A,

the inflow of ethylene is increased in total and at the same time inflow
of the diluent propane is decreased, making room for more ethylene and
hydrogen, as shown in Figure 2. This results in a larger mass of polymer
in the loop, see Figure 3. Both X e2 and Xh2 are higher in grade B than in
grade A and to meet the hydrogen specification, the inflow of hydrogen is
increased. To reach the specification of the hydrogen-ethylene ratio Xhe2
rapidly, the inflow of ethylene is initially decrased and hydrogen overshot.
Note that both the inflow of ethylene and hydrogen have their deriva-
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Figure 3. Instantanous (--) and bed average conc. and ratios, production rate and
polymer mass (−) for loop and values for grade A and B at stationarity (-⋅-).

tive constraints active in the beginning, seen by the linear decrease and
increase, performing the transition of Xhe2 as fast as possible.
From Figure 3 it is seen that the under- or overshoot constraints on

the averaged concentrations and ratios are followed and the instantaneous
measures have over- or undershoots. The transition in loop reactor is com-
pleted after 0.5 t.u.
The split S, see Figure 5, which indirectly depends on the production

rates, is decreased by increasing the production rate Q2 but also lowering
production rate Q3. This is performed by decreasing the ethylene inflow
ue3, see Figure 4, and thus also the ethylene concentration X e3. The ethy-
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Figure 4. Optimal inflows to GPR (−) and values for grade A and B at station-
arity (-⋅-).

lene inflow has an undershoot giving a more rapid decrease of production
rate. The change in ue3 is not enough for the specification on Xbe3 to be
fulfilled and an increase of butene inflow, ub3, is required, see figures 4
and 6. Analogously, inflow of hydrogen is increased. Propane and nitrogen
are changed such that e.g., reactor pressure P3 is inside desired limits,
specified to ±1% from nominal pressure, see Figure 5.
All averaged concentrations and ratios in the GPR, and also in the pre-

polymerization reactor although not shown here, together with the split,
follow constraints of no under- or overshoot. Corresponding instantaneous
values do have under- and overshoots, yielding faster transition.
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Figure 5. Split, production rate and pressure for GPR (−) and values for grade A
and B at stationarity (-⋅-), and pressure limits (--).

6. Summary and Future Work

In this paper, modeling of multistage polyethylene reactors has been per-
formed in the high level language Modelica. Optimal trajectories for tran-
sition between grades currently used at Borealis AB have been found
by formulating an optimization problem using Optimica constructs and
solved in the framework of JModelica.org.
Future work includes modeling of additional polymer specifications

such as melt indices and densities and also economic objectives in the
optimization formulation.
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Figure 6. Instantanous (--) and bed average concentrations and ratios (−) for
GPR and values for grade A and B at stationarity (-⋅-).
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Paper V

Cost Function Design for
Economically Optimal Grade
Changes for a Polyethylene

Gas-Phase Reactor
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and Niklas Andersson

Abstract

This paper considers optimization of stationary production and
dynamic grade changes for a gas phase polyethylene reactor. The de-
signed cost function considers costs of inflows and revenues from pro-
duced polymer. At dynamic optimization, the cost function uses grade
variable intervals for defining on-grade polymer and includes eco-
nomical incentives to produce on-target polymer. Additionally, it also
considers a preparatory time interval prior defined transition time,
used for economical preparation of reactor state. A previously pub-
lished model of a gas phase reactor is used and several grade changes
are optimized, showing the effects of an economical cost function.

cF2011 IEEE. Printed with permission. To appear in Proceedings of the
50th IEEE Conference on Decision and Control and European Control

Conference, Orlando, USA, 2011.
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1. Introduction

Polyethylene gas phase reactors (GPR) are today able to produce several
different grades defined by industrial standard quality variables. Produc-
tion is a continuous process and polyethylene properties are altered by
manipulating the inflows of fresh raw material. This is valuable for pro-
ducers since they can adapt to market conditions, both in terms of raw
material pricing, product price and market demands. This has led to prod-
uct campaigns varying in length between a few days up to weeks. During
grade transition, i.e., the transferring of production from one product to
another, there is in general production of polymer that is not acceptable
as neither start nor end grade and must be sold at a lower price. This,
together with inflow costs, must be taken into account when performing
economic optimization of grade changes.
The grade change problem has been formulated and solved in several

different ways. Quadratic criteria penalizing deviation from end grade
multiplied by production rate, yielding less off-grade polymer, was used
in [McAuley and MacGregor, 1992] together with a sequential method.
With a similar method, quality variable intervals defining polymer grades
was used in [Takeda and Ray, 1999] by having different quadratic func-
tions inside and outside the intervals. Collocation based optimization of
grade changes, using quadratic critera has been considered in e.g., [Flores-
Tlacuahuac et al., 2006]. However, translating economics into weights in
a quadratic criteria is a difficult task. Economics was considered to an
extent in [Gisnas et al., 2003], comparing minimization of total transition
time and minimization of off-grade polymer production. A more direct ap-
proach was considered in [Tousain, 2002], where maximization of profit
during the transition was performed using quality variable intervals and
a sequential method. However, the optimization procedure did not enforce
quality variables to be on-target, only inside acceptable intervals, and
thus not considering product consistency towards market and raw mate-
rial and product price changes. The contributions of this paper are the
development of a continuously differentiable cost function that considers
plant economy and that uses quality variable intervals. The cost function
also adds incentives to produce a polymer that is on-target. Additionally,
the optimization includes a time interval prior defined transition time,
used for economical preparation of reactor state. A model of a GPR pre-
viously published in [McAuley et al., 1995] is used for demonstrating the
cost function and its implications by maximizing profit during several dif-
ferent transitions.
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2. Process Description

2.1 Process Overview

The process consists of the reactor and a cooling system with a compres-
sor and heat exchanger, see the schematic diagram in Figure 1 and also
[McAuley et al., 1995]. The gas phase, providing the fluidization in the
reactor, consists of the monomer ethylene, co-monomer butene and hydro-
gen and also inert nitrogen, while the solid phase is polyethylene and a
heterogeneous Ziegler-Natta catalyst. Ethylene is the main raw material,
while butene and hydrogen are added for density and melt index control,
respectively. Nitrogen is used as carrier for added catalyst and heat re-
moval from the exothermic reaction [McAuley et al., 1995]. The unreacted
gas at the top of the reactor may either be bled off in the bleed stream used
for pressure and impurity control of the reactor or it is recycled through
the cooling system. The recycled part is added to the fresh gas feed and
since the single pass conversion is as low as 2–5%, the recycle stream
is much larger than the fresh feed [McAuley et al., 1995]. The produced
polyethylene is withdrawn at the bottom of the reactor.

2.2 Modeling Assumptions

A first-principles model, capturing the main dynamics of the process, is
presented in [McAuley et al., 1995]. Several assumptions are made and
motivated, keeping model complexity low, yielding it advantageous for
grade transition optimization and evaluation of cost function design. Gas
and solid phases in the reactor are assumed well mixed, the temperature

Compressor

Heat exchanger

Fresh feeds

Product

Recycled gas Bleed stream

Catalyst feed

Figure 1. Schematic diagram of a gas phase reactor with recycle system.
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in the reactor is uniform and perfectly controlled, and a constant bed
level is achieved by a perfect bed level controller. Variable bed level has
been considered in e.g., [Gisnas et al., 2003] but this is often not used
in practice due to the risk of polymer sticking to reactor walls, creating
hot spots. Further, the time-delay associated with the recycle flow through
compressor and heat exchanger is negligible compared to reactor dynamics
and the gas exiting with the product outflow is captured directly and
recycled.

2.3 Mathematical Model

The process model, described in [McAuley et al., 1995], is a macro scale
model suited for grade transition optimization and control [Xie et al.,
1994]. Based on the assumptions in 2.2, the following mass balances are
written for the gas phase components,

V�
dxe

dt
= ue/Me − be − re (1)

V�
dxb

dt
= ub/Mb − bb − rb (2)

V�
dxh

dt
= uh/Mh − bh − rh (3)

V�
dxn

dt
= un/Mn − bn, (4)

where xi, i ∈ {e, b,h,n}, are molar concentrations of ethylene, butene,
hydrogen and nitrogen, respectively. The concentrations are increased by
fresh inflows of the gases, i.e., ui, and decreased by bleed flows bi and
reaction rates r j , j ∈ {e, b,h}, for the reactive components. The inflows
together with the total bleed uB are control variables and the component
bleeds may be calculated from respective mole fraction and total bleed
[McAuley et al., 1995]. Mi are the molar weights and V� is the gas volume
in the reactor and is assumed constant.
The Ziegler-Natta catalyst is assumed to have one active site, as in

[Gisnas et al., 2003], and the number of moles of active catalyst sites in
the bed, Y, may be modeled as [McAuley et al., 1995]

dY

dt
= uYaY − Y

r

Bw
− kdY − k fYxh + khNxe (5)

N = Yk f xh

khxe + r/Bw
, (6)

where N is the number of moles of sites deactivated by hydrogen, modeled
using the stationary hypothesis. The bed weight Bw is assumed constant
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Table 1. Parameter and constant values in process model.

Param. Value Unit Param. Value Unit

Pv 17.225 bar kph 0.036 m3/(molh)
T 360 K kh 3.6 m3/(molh)
Me 28.05 g/mol k f 0.3168 m3/(molh)
Mh 2.016 g/mol kd 0.36 1/h
Mb 56.11 g/mol k1 0.100 (g/10min)1/3.5
Mn 28.0 g/mol k2 0.400 (g/10min)1/3.5
R 8.314⋅10-5 m3bar/(molK) k3 0.700 (g/10 min)1/3.5
V� 150 m3 p1 989 kg/m3
Bw 35 000 kg p2 10.3 kg/m3/ ln (g/10min)
aY 0.548 mol/kg p3 -38.0 kg/m3
kpe 306 m3/(molh) p4 0.300 −
kpb 10.8 m3/(molh)

motivated by only minor variations in the gas mixture and polymer den-
sity. The first term on the right hand side of Eq. (5) is inflow of active sites
where uY is a control flow and aY is a catalyst constant, while the second
term is outflow of catalyst. Next, two terms of deactivation of catalyst are
found, and the last term considers reactivation. The constants kd, k f , and
kh are rate constants for deactivation, site deactivation by hydrogen, and
reactivation reaction with ethylene, respectively. Parameter values for the
model are found in Table 1.
Reactor pressure P, with a reference value of Pv, is calculated using

the gas components as,

Pi = xiRT , i ∈ {e, b,h,n} (7)
P = Pe + Pb + Ph + Pn, (8)

where R and T are the ideal gas constant and reactor temperature, re-
spectively, and Pi is the partial pressure of component i. Due to the bed
level assumption, the production rate r is equal to the total reaction rate,
and found directly from the reaction rates and molar weights Mi as,

r = Mere + Mbrb + Mhrh (9)
ri = Ykpixi, i ∈ {e, b,h}, (10)

where kpi are pseudo-propagation rate constants. Compared to [McAuley
et al., 1995], a small rate constant is added for hydrogen.
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The two most frequently used quality variables for polyethylene are
melt index MI, an indirect measure of the molecular weight, and den-
sity ρ, see e.g., [Xie et al., 1994]. Polymer produced at a certain time
instant has in general different quality variables values than the mixture
of polymer in the reactor, i.e., the cumulative values of the bed. This is
because the polymerization reaction is much faster than the dynamics of
the gas and solids phase in the reactor [McAuley and MacGregor, 1991].
Instantaneous values for MI and ρ in this study are calculated as

MI = (k1 + k2xh/xe + k3xb/xe)3.5 (11)
ρ = p1 + p2 lnMI + p3 (xb/xe)p4 , (12)

while the cumulative values are found as

d

dt
M I

− 1
3.5

c = 1
Bw/r

(

MI−
1
3.5 − MI−

1
3.5

c

)

(13)

d

dt

(

1
ρc

)

= 1
Bw/r

(

1
ρ
− 1

ρc

)

. (14)

The four equations above have the same structure as derived in [McAuley
and MacGregor, 1991]. The parameter values used in this paper can be
found in Table 1.
The reactor states, algebraic variables and control flows in the model

are collected in x, w and u, respectively.

3. Grade Definition and Prices

The two cumulative quality variables MIc and ρc in the previous section
define a polyethylene grade and are also center values for the intervals
that define acceptable values for premium priced product. Added to the
list of quality variables is the reactor pressure with a target value of Pv,
see Table 1. The pressure has not a direct effect on product properties in
the model, but can instead be seen as a reactor operations quality variable
affecting long term production. The quality variable values and intervals
for all grades A–E considered in this paper can be found in Table 2.
The polymer sell price ($/kg) depends on the polymer properties. Pre-

mium sell price for grade j, denoted Sj , j ∈ {A, . . . , E}, is assumed to be
given only if all quality variables are inside their defined intervals, other-
wise the off-grade price Soff ($/kg) is given. However, for e.g., consistency
reasons to the market, the quality variables should be as close to target
values as possible. Table 2 gives the premium prices Sj , and Table 3 gives
the inflow costs Ci ($/kg), i ∈ {e, b,h,n,Y}, and off-grade polymer sell
price Soff .
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Table 2. Grade definitions with intervals, polymer sell prices and instantaneous
profits.

Grade j M Ij ρ j Pj xh/xe xb/xe Sj R j

A 0.35 944.0 Pv 0.40 0.70 10.35 21544

B 0.35 948.5 Pv 0.84 0.44 10.35 21847

C 0.90 952.0 Pv 0.75 0.83 10.64 25063

D 0.50 952.0 Pv 1.03 0.45 9.45 9575

E 0.25 942.0 Pv 0.38 0.61 11.25 33882

Interval ±0.025 ±1 ±0.15 - - - -

Table 3. Costs of inflows and off-grade polymer sell price.

Ce Cb Ch Cn CY Soff

8 10 60 0.03 750 6.75

4. Modeling and Optimization Framework

The process is modeled using the Modelica language, which is a high level
language for complex physical models, where the user may mix differen-
tial and algebraic equations. For optimization, the open source platform
JModelica.org is used [Åkesson et al., 2010]. This platform has been suc-
cessfully used on significantly larger reactor models, see [Larsson et al.,
2011].
JModelica.org contains an implementation of a simultaneous optimiza-

tion method based on collocation on finite elements [Biegler et al., 2002].
State and algebraic variables are parametrized by Lagrange polynomials
of order three and two, respectively, based on Radau points, while the
inputs are constant during each finite element. This yields a non-linear
program (NLP) with structure, which is exploited by the solver IPOPT
[Wächter and Biegler, 2006].

5. Optimization Formulation

5.1 General Process Constraints

Specifications of MIc and ρc sets the ratios of the reactants, but not the
production level. If the product sell price is greater than the inflow costs,
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the production level will in general be as high as possible, limited by,
for instance, safety, post-processing capacity, lump formation due to too
high ethylene partial pressure or catalyst amount and insufficient heat
removal. This sets limits on e.g., ethylene concentration, and subsequently,
limits on the other reactant concentrations may be set. For the reactor
pressure to be on its target value, nitrogen is added, which also should be
able to remove enough heat. In addition, to handle impurities, a non-zero
bleed is preferred in industry, see [McAuley and MacGregor, 1992] and
[Gisnas et al., 2003], which sets a lower limit on the bleed. The behavior
of the inflows, both in terms of range and rate of change, is limited due
to e.g., pump capacities and safety.

5.2 Stationary Optimization

During stationary production, the quality variables should be on targets,
while the reactor is operated in an economically beneficial way, respecting
process safety and constraints. The instantaneous production profit for
grade j, denoted R j , is the difference between revenue from sold polymer
and inflow costs as

R j = Sjr −
∑

i∈{e,b,h,n,Y}
Ciui.

The profit may be maximized during stationary production by solving the
following optimization problem,

min
ẋ,x,w,u

− R j

s.t. Eqs. (1)–(14)
xmin ≤ x ≤ xmax
wmin ≤ w ≤ wmax
umin ≤ u ≤ umax
ẋ = 0
MIc = MIj , ρc = ρ j , P = Pj ,

(15)

The inequality constraints are related to the limitations in the previous
section and the three last equality constraints yield production corre-
sponding to grade j in Table 2.

5.3 Dynamic Optimization

Upon performing a transition it is important not to only focus on the end
grade. Before the actual transition, preparations may be performed in the
reactor state such that the transition becomes easier. If a transition time
tT is defined, then the grade transition cost function may be divided into
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two parts that concentrate on start and end grade, respectively. In each
part, the revenue is a function of the quality variables and production
rate. In the ideal case, if all quality variables are inside their interval,
the sell price is Sj , while if at least one is outside, the product sell price
is Soff. Considering the first part, i.e., time before tT, the instantaneous
profit for start grade j is,

R j = ((Sj − Soff)θ j(Q) + Soff) r −
∑

i∈{e,b,h,n,Y}
Ciui,

where the effective sell price is (Sj − Soff)θ j(Q) + Soff. Q contains the
quality variables, i.e., Q = [MIc, ρc, P ], and θ j(Q) = 1 if all quality
variables are inside their intervals defined by grade j, else θ j(Q) = 0. R j
is non-linear and discrete due to θ j(Q) and must be made continuously
differentiable for efficient optimization. One approximation is

θ̃ j(Q) =
(

nQ
∑

i=1

(

2
qi − qji
wji

)ni

+ 1
)−1

,

where nQ is the length of Q, qi is the ith quality variable in Q, qji and wji
are qi’s target value and interval width, respectively, specified by grade
j, and ni is a sufficiently large even integer giving satisfying approxima-
tion error. An alternative would be to use e.g., trigonometric functions
[Tousain, 2002].
An incentive to be on-target is that premium sell price Sj is only given

when all quality variables are on-target, i.e., a reward for product con-
sistency towards the market. This can be formulated by giving a large
percentage of Sj when on-grade but off-target, and then add the small
remainder depending on how close the quality variables are their target
values. This is an approximation of the relation between price and qual-
ity variables in Section 3. However, the small remainder should only be
greater than the cost of change of inflows required to move the quality
variables from the interval boundary to the target. This cost is in general
very small in comparison to the cost of the fresh feeds. Thus, θ̃ j may be
given an extension fulfilling these properties as,

Π j(Q) = θ̃ j(Q)



p+ 1− p
nQ

nQ
∑

i=1

(

(

2
qi − qji
h ji

)2

+ 1
)−1



 ,

where p ∈ [0, 1] determines the percentage of the difference Sj − Soff that
at least is given additionally when on-grade compared to off-grade, qi is
the ith quality variable in Q, qji is qi’s target value for grade j and h ji
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Figure 2. Example of ΠA(Q) with only MIc and ρc, i.e., nQ = 2, with parameters
ni = 20, p = 0.95, hAi = wAi/6. Projections of ΠA(Q) (–) and θ A(Q) (--) are also
shown for comparison.

defines the width of the effective sell price peak at target value for quality
variable qi and grade j. Thus, for every quality variable being on-target, a
(1− p)/nQ-part of Sj−Soff is added to the effective sell price. An example
of ΠA(Q) with only MIc and ρc can be found in Figure 2.
The start grade j and the end grade k at a transition have different

on-grade functions, i.e., Π j and Πk. To calculate the approximated total
profit during a transition, a switch between Π j and Πk, defined by tT, is
included in the instantaneous profit R during a grade change as

R = (Sj − Soff)Π j(Q)T(tT)r + (Sk − Soff)Πk(Q) (1− T(tT)) r
+ Soff r −

∑

i∈{e,b,h,n,Y}
Ciui,

The switch may be well approximated by

T(tT) = 1/2− arctan (γ (t− tT)) /π ,

with a large γ . In this study, γ = 500 has been used, which gave a suffi-
ciently small approximation error compared to an ideal step function.
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The dynamic optimization problem on the time interval tstart ≤ tT ≤
tend of transferring production from grade j to grade kmay be stated using
the above R, as

min
u̇

tend
∫

tstart

(

−R + u̇TUdu̇
)

dt

s.t. Eqs. (1)–(14), u =
∫ t

tstart

u̇ dτ

xmin ≤ x ≤ xmax, wmin ≤ w ≤ wmax
umin ≤ u ≤ umax u̇min ≤ u̇ ≤ u̇max
x(tstart) = x j , u(tstart) = u j
u = uk, t ≥ tend − Tc

(16)

where x j and u j are state and control flows from stationary optimization
of grade j and uk is from stationary optimization of grade k.
In order to penalize highly varying inflows, the control flow deriva-

tives u̇ are used as optimization variables and a quadratic term with the
diagonal matrix Ud is introduced.
The control signal constraint of holding u constant to end grade spec-

ified values during a time interval of Tc at the end of the optimization
interval is due to the finite optimization horizon. If the constraint is not
included, it would be economically beneficial to close all inflows just prior
tend since this will not effect production until after tend due to reactor dy-
namics. Thus, in this case, the instantaneous profit would be greater at
tend than found at stationary optimization, but the end point is not sta-
tionary and impossible to retain. Tc should be chosen large enough such
that the system essentially is in stationarity at tend, independently of the
control flow movement prior tend − Tc
Inequality constraints on MI and ρ are set for preventing excessive

under- and overshoots since this may give a product with a mixture of
polymers that have significantly different MI and ρ. Even though the
cumulative values are on-target, the transition polymer may in these cases
differ considerably from on-target polymer produced at stationarity, see
[McAuley and MacGregor, 1992] for a further discussion.

6. Optimization Results

As all grades cost less than sell price to produce, the stationary opti-
mization aims to maximize production, which has limits as pointed out
in Section 5.1. Assuming the limit of raw material is high, it is the ethy-
lene partial pressure, catalyst, and down-stream capacity that sets the
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Table 4. Variable limits at optimization.

Variable Lower limit Upper limit

r 5000 13500

Pe 1 6

uB 5000 10000

MI min(MIj ,MIk) − 2wj1 max(MIj ,MIk) + 2wj1
ρ min(ρ j , ρk) − 2wj2 max(ρ j , ρk) + 2wj2
P Pv − 0.3 Pv + 0.3

limits. To minimize the amount of expensive catalyst used, the ethylene
partial pressure should be as high as possible. Table 4 shows the most
important limits used at all optimizations, both static and dynamic. At all
economically optimal stationary solutions, both ethylene partial pressure
and production rate are on their upper bounds, and amount of catalyst is
well inside limits. Additionally, the bleed flow is at its minimum, yielding
minimum waste of raw materials and diluent. In Table 2, the resulting
instantaneous profits R j are reported together with the ratios xh/xe and
xb/xe. It is mainly the sell price Sj that contribute to the differences in
profits as the inflow costs are similar for all grades, dominated by ethy-
lene.
From the stationary optimization, initial and end values are given to

the dynamic optimization which is specified to be 36 h long and divided
into three parts,

– 12 h before transition time tT .

– 12 h after transition time tT .

– 12 h with control flows equal to stationary optimization result of end
grade, i.e., Tc = 12 h.

This does not specify the transition time, only upper limits on preparation
and completion times are defined.
The on-grade functions Π j in the optimizations utilizes MIc, ρc and

P as quality variables with the intervals in Table 2. For simplicity, all
quality variables are treated equally by setting the function parameters
as in the example in Figure 2. The under- and overshoot limits on MI
and ρ are given by using start and end grade values and intervals, see
Table 4. These limits are process and user specific and are trade-offs
between fast change of cumulative values and the range of instantaneous
polymer properties in the end product. Hard limits are also set on the
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reactor pressure due to e.g., safety reasons. The cost of highly varying
inflows is set by Ud, yielding smooth control flows.
Four consecutive grade changes, A to E, have been optimized, and qual-

ity variables, control flows, on-grade functions, production and economics
are found in figures 3–5. The element length in the discretization is cho-
sen to 10 min. and the figures show only the first 24 hours of optimization,
since stationarity is reached at this time for all optimizations.
Considering the first grade change, A–B, only an increase of density

requires changes in both hydrogen and butene concentrations. To prepare
a fast transition, inflows of hydrogen and butene do small changes that
first decrease the instantaneous value ρ. Then, by making fast changes in
the inflows, the rate of change of ρc during the off-grade time is greater
than if the preparation not had been performed. This is since ρ was given
time to accelerate to a greater rate of change before leaving start grade
specification. Preparative operations like this are found in all considered
grade changes. They are the preparation equivalents of making under-
and overshoots in the instantaneous values after the start grade has been
left, which is also performed at the transitions. Additionally, the inflows
are synchronized such that the polymer is on-grade during only a short
time interval, even though the inflows change over a significantly longer
time period. In this first grade change, the overshoot of ρ reaches the con-
straint set in Table 4. During the transition, inflow of nitrogen is closed,
making room for the hydrogen overshoot and an increase of catalyst holds
production high even with the undershoot of butene inflow, yielding time
constants for MIc and ρc as small as possible. Only a small increase of
bleed is used, minimizing waste, and the transition is performed in ap-
proximately 1 h as can be seen from the on-grade functions in Figure 5.
At the second grade change, B–C, starting at t = 24 h, both MI and ρ
are to be increased. Rapid increase of ub and decrease of ue and a small
increase in uh causes MI to be on overshoot limit, thus giving as fast rise
of the cumulative value as possible. However, ue may not be decreased too
much since this will decrease the production and hence increase the time
constant for MIc and ρc. The overshoot constraint of MI is kept active
while decreasing uh and increasing ue and ub such that ρ is as large as
possible. To make room for more butene in the reactor without too much
bleed, un is completely closed and reactor pressure is at its upper limit.
The transition is performed in approximately 6 h.
A decrease of only MIc, as in the change C–D, is performed by decreas-

ing ub and increasing uh. More nitrogen is added to the reactor to keep
pressure at target due to the loss of butene. Production rate is kept high
with increased ue and uY , making time constants for MIc and ρc small.
As quality variables come close to grade D specifications, the nitrogen is
turned off and the reactor is filled with correct concentrations of hydro-
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Figure 3. Upper and middle: Instantaneous MI and ρ (- ⋅ -), cumulative MIc and
ρc (−) and quality variable intervals (--). Bottom: P (−) with quality interval (--)
and limits (- ⋅ -).

gen and butene. The transition takes 2.5 h and hold both ρc and P inside
quality variable intervals.
Grade changes with large decreases in hydrogen concentration are con-

sidered hard, see e.g. [McAuley and MacGregor, 1992], due to the slow hy-
drogen dynamics in the reactor. This is seen in the last transition, D–E.
To lower the hydrogen concentration as fast as possible, uh is completely
closed and the bleed is at maximum. To minimize raw material waste,
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Figure 4. Control flows at transitions. Vertical lines (--) indicate transition times
defined by tT .
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Figure 5. Upper: On-grade functions Π j (− and --).Middle: Production rate. Bot-
tom: Cumulative profit, set to 0 at optimization start. Vertical lines (--) indicate
transition times defined by tT .

ue is decreased substantially, and the amount of catalyst in the reactor
is increased such that the production rate is not decreased too much. A
large amount of inexpensive nitrogen is instead inserted into the reac-
tor to keep pressure and to bleed off until enough hydrogen is removed.
Close to transition time, ue and un are again increased and decreased,
respectively, making time constants for MIc and ρc small again, yielding
fast transfer. A small overshoot of ub and small corrective actions in uh
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give fast settling of MIc and ρc and the transition takes approximately
4 h. This transfer shows that a bleed stream is effective for hydrogen
decreases.
For all transitions, the grade change is made such that the grade with

highest instantaneous profit is produced as for a long time as possible, as
seen in Figure 5. This is due to the maximization of cumulative profit.

7. Summary

An economic cost function, with a preparatory time interval prior grade
change, utilizing quality variable intervals and giving incentives to pro-
duce on-target polymer, has been presented and used for several transi-
tions. The main effects of the cost function are

• the grade with highest profit of the two transition grades is produced
for as long time as possible.

• control flows are synchronized to yield short off-grade periods and
are actively changed over larger time intervals than the off-grade
periods.

• hydrogen and butene inflows make preparations of instantaneous
variables before defined transition time, and the transitions are per-
formed with significant under- or overshoots. This yields the cumu-
lative values, defining the grade, to move fast through the off-grade
interval.

• production rate is often as high as possible, set mainly by ethylene
and catalyst inflows, yielding a small time constant for cumulative
quality variables.
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Paper VI

Model-Based Optimization of
Economical Grade Changes for the
Borealis Borstar RF Polyethylene Plant

Per-Ola Larsson, Johan Åkesson,
Niclas Carlsson and Niklas Andersson

Abstract

In this paper, economical grade changes are considered for a Bo-
realis BorstarRF polyethylene plant model, incorporating two slurry-
phase reactors, one gas-phase reactor and a recycle area with three
distillation columns. The model is constructed in the Modelica lan-
guage and the JModelica.org platform is used for optimization. The
designed cost function expresses the economical profit during a grade
change and is formulated using on-grade intervals for seven poly-
mer quality variables such as melt index, density and reactor split
factors reflecting polymer bi-modality. Additionally, incentives to pro-
duce polymer with quality variables on grade target values, not only
inside grade intervals, are added together with a preparatory time in-
terval prior defined transition time. In total, twelve inflows and three
purge flows are used at optimization. Two optimal grade changes are
thoroughly reviewed, showing the effect of using a cost function that
regards plant economy. The resulting trajectories can be divided into
three phases with distinguishing features, and the synchronization of
inflows and usage of recycle area off-gas flows are important in the
optimized grade changes.
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1. Introduction

1. Introduction

Today, polymers are widely used in many different production areas and
applications such as car parts, electronics and foods, and the polymer pro-
duction is over 100 million tons per year, see [Dünnebier et al., 2005] and
[Kadam et al., 2007]. The different areas require different grades of poly-
mer, produced with the same type of raw material but at different polymer-
ization conditions. To increase profitability, the polymer producers have
to follow the changing market, both considering polymer sell prices and
grade demands, but also raw material pricing, see [Backx et al., 1998]. To
have several production lines that each produce one specific grade is not
economically tenable, instead grade transitions are considered at generic
production lines. The result is product campaigns, lasting from a couple
of days up to weeks of continuous production. During the transition, as it
is performed during polymer production, off-grade polymer is produced,
which must be sold at a much lower price than premium polymer. Thus,
there is an enormous economical incentive to perform the grade transi-
tions as advantageous as possible as shown in [Flores-Tlacuahuac et al.,
2006], where it is estimated that several hundred thousand dollars are
lost in non-optimized transitions for a medium sized plant.
The grade transition problem has been considered by several authors

previously, and one of the earliest was [Debling et al., 1994], consider-
ing polyolefin production and heuristic transition rules applied to their
dynamic simulator POLYRED. Model-based optimization of transitions
emerged during the same time period, using different kinds of cost func-
tions and solution methods.
There are two main methods that have been used for solving dynamic

grade transition optimization problems, namely, sequential and colloca-
tion methods, see [Binder et al., 2001], and they both result in non-
linear programs (NLP). In sequential methods, the control trajectories
are parametrized with a small number of parameters and the model is
simulated to evaluate e.g., cost function and gradients, and an NLP solver
updates the parameters iteratively. In collocation, all state, algebraic vari-
able and control trajectories are discretized, resulting in a large NLP,
requiring specialized solvers that explore the problem structure.
Early ground-breaking work on model-based optimization was per-

formed by [McAuley and MacGregor, 1992] on a gas-phase reactor us-
ing a sequential method with inflows parametrized with ramps. The cost
function considered deviations of melt index and density, weighted with
production rate, rewarding production of polymer close to specified grade.
[Takeda and Ray, 1999] continued with the model-based approach using
POLYRED, considering multistage polyolefin reactors and using piecewise
constant control flows. They acknowledge that a polymer is considered
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on-grade if the polymer quality variables are sufficiently close to grade
defined values. Therefore, they used a quadratic cost function of density
and average molar weight, with weights depending on density and average
molar weight values. They also weighted with time to penalize long term
deviation from target. Both easy and hard transitions, i.e., optimizing a
few inflows and all inflows, respectively, were considered. A year after,
[Wang et al., 2000] also used time weighted quadratic penalties with a
sequential method, with the addition of also having switching times of
the control profiles as decision variables and ramps between the constant
parts. Four different optimal profiles for the considered slurry reactor
were tracked using a model predictive controller (MPC) utilizing the non-
linear model by linearization along the trajectories. Closed loop simula-
tions with model mismatches and successful results were shown. Selection
of closed loop controllers were incorporated with trajectory optimization
in [Chatzidoukas et al., 2003], while considering a gas-phase reactor with
quadratic penalty on quality variables, resulting in a mixed-integer dy-
namic optimization problem. Recently, a model- and measurement-based
approach was introduced by [Bonvin et al., 2005] with subsequent work
in [Kadam et al., 2007]. Using optimized trajectories from a sequential
method, a solution model is constructed where the control variables are
described by arcs and switching times, related to necessary conditions of
optimality. The control variables are then adapted on-line by measure-
ments during transition, trying to track the necessary conditions of opti-
mality. The optimization is based on minimization of the transition time.
However, it does not consider stationary production at the optimization
interval end, only that correct grade is reached.
An approach to grade changes regarding plant economy, trying to max-

imize the profit during a grade change, has been considered by, for in-
stance, [van der Schot et al., 1999, van Brempt et al., 2001, van Brempt
et al., 2002, van Brempt et al., 2004] with sequential methods using inter-
vals for quality variables to defined on-grade production. The cost function
was based on raw material and polymer prices and was designed such that
the added value by polymer production was maximized. In [Tousain, 2002],
a framework for optimization regarding inflow costs and production rev-
enues was constructed where on- and off-grade intervals also were used.
It was built upon a sequential method and applied to, among others, a
gas-phase polyethylene reactor.
In [Larsson et al., 2011a], orthogonal collocation was used together

with a cost function for maximization of the profit during grade change
while considering intervals for grade variables to define on-grade polymer
production. Additionally, economical incentives to be on grade targets, not
only inside on-grade intervals, were added. Collocation was also used by
[Flores-Tlacuahuac et al., 2006], considering a polystyrene polymerization
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process using a quadratic cost function of states and control variables.
[Cervantes et al., 2002] used a model of a polyethylene plant. However, the
cost function used at transition optimization only considered concentration
of butene.
In this paper, a model of the Borealis Borstar RF polyethylene plant PE3

at Borealis AB in Stenungsund, Sweden, is considered. Both optimization
of stationary economical production and dynamic economical transitions
between grades are performed. The transitions are optimized using or-
thogonal collocation of the model, which is an extension of the model used
in [Larsson et al., 2010] and [Larsson et al., 2011b] for grade change op-
timization with quadratic criterias and in [Andersson et al., 2011] for
plant data-based calibration. A cost function, previously considered on a
small gas-phase reactor model and published in [Larsson et al., 2011a], is
extended and used. It expresses the economical profit during transition
using quality variable intervals and rewards production on grade target
values. Additionally, it incorporates a preparatory time interval prior the
defined transition time, making economical preparations possible.
The first contribution of this paper is the application of the consid-

ered cost function on a significantly larger model compared to the model
in [Larsson et al., 2011a], showing the applicability of the cost function,
and also the solution method, to large-scale systems. Secondly, it is seen
that the economically optimal grade transitions can be divided into three
phases with distinguishing features and synchronized control flows. Third-
ly, active use of the off-gases on the distillation columns at the recycle area
of the plant is a significant contribution, as they are seen to be very useful
during a transition with hydrogen decreases. Fourthly, using the Modelica
language, a Modelica library containing components corresponding to the
plant units was constructed and used when formulating and solving opti-
mization problems using the Modelica extension Optimica together with
the platform JModelica.org.

2. Overview of the Plant PE3 at Borealis AB

The plant PE3 at Borealis AB incorporates three reactors in cascade and
three distillation columns for recycling of unused raw material and dilu-
ents, see Figure 1. The reactors are of Borealis Borstar RF technology, devel-
oped by Borealis mainly to produce high-strength, bi-modal type polyethy-
lene. The two first reactors are of slurry type while the third is a fluidized
bed gas-phase reactor. The distillation columns are of packed, adsorption
and stripper type. Table 1 summarizes the notations used in the sequel
for the different components and subsystems.
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Figure 1. Schematic diagram of the plant PE3 at Borealis AB with the three cas-
caded Borealis Borstar RF reactors and a recycle area with three distillation columns.

Table 1. Component, reactor and distillation column notations.

Component Subscript Subsystem Subscript

Ethylene e Pre-poly. reactor 1

Hydrogen h Loop reactor 2

Butene b Gas-phase reactor 3

Propane p Propane column 4

Nitrogen n Heavies column 5

Polyethylene pe Lights column 6

Incorp. butene pb

Catalyst c

The pre-polymerization reactor, that has the main function of induc-
ing polymerization in a pre-specified composition, has inflows of the raw
materials ethylene and hydrogen, diluent propane and catalyst, denoted
ue1, uh1, up1 and uc1, respectively. Compared to the two other reactors, the
polymer production in the pre-polymerization reactor is very low.
The polymer slurry is transferred out from the pre-polymerization re-

actor using transfer legs to the loop slurry reactor that has the same
inflow components as the pre-polymerization reactor except for catalyst,
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denoted ue2, uh2 and up2. Polymer with low molecular weight is produced,
i.e., one of the peaks in the bi-modal molecular weight distribution. With
high temperature and pressure, the polyethylene slurry is in a super-
critical state in the loop reactor, and the polymer has low solubility in
the diluent, thus decreasing the risk of fouling. Approximately half of the
total polyethylene production is produced in the loop reactor. The polymer
slurry is withdrawn from the loop reactor via settling legs and continu-
ous outtake and transferred to a flash tank where polymer and gases are
separated. The gas mixture is sent to the heavies column at the recycle
area, see Figure 1, while the polymer is transported to the gas-phase re-
actor (GPR) using a part of the recycle gas of the GPR. A fixed propane
purge flow u fp3 assure that no leakage of GPR recycle gas to the flash
tank is present. Fresh inflows to the GPR are, apart from the same type
of components as to the loop reactor, also inert nitrogen for pressure con-
trol and the co-monomer butene used for controlling the polymer density.
The inflows to the GPR are denoted ue3, uh3, ub3, up3 and un3. In the
GPR, due to the low concentration of hydrogen, high molecular weight
polymer is produced, yielding the second peak in the molecular weight
distribution and thus the bi-modal end product. When the gases reach
the expanded top section of the reactor, they are led through a cooler and
again inserted into the reactor together with the fresh feeds at the reac-
tor bottom. The polymer and gas mixture may be withdrawn continuously
or using a batch system at the reactor bottom, and are transferred to a
separator from which the gases go to the propane column in the recycle
area and the finished product is transferred to pelleting via a degassing
tank.
The recycle area consist of three distillation columns, i.e., propane,

heavies, and lights column, see Figure 1. The propane column is a packed
column and its main task is to remove propane from the gas mixture from
the GPR, and send the remaining gas back to the GPR via top and bottom
outtakes. Prior to the column is a pre-condenser, used for removing some
of the light components, which decreases the load on the column. The
removed components are added to the top flow of the column and led back
to the GPR. The side flow, mainly propane, is led to the heavies column
together with the gas mixture from the flash tank, while the bottom flow
composed of heavy components are recycled directly back to the GPR.
The heavies column is an adsorption column, i.e., the components

that are to be removed are accumulated at the column bottom. The com-
ponents to be removed are heavier components than propane together
with oligomers formed in the loop reactor during polymerization as a bi-
product. The top flow of the heavies column are led to the lights stripper
column, where light components and a small amount of propane are dis-
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tilled to the top and recycled directly into the loop reactor together with
the fresh feeds. The bottom flow from the lights column may be considered
to be pure propane and is stored in a propane buffer to be used as fresh
inflows.
Except for the inflows to the reactors above, two off-gas flows and one

flare flow flows may be used for control. Off-gases on propane and lights
columns denoted uop and uol , respectively, are sent to other parts of the
industrial area, and the flare flow uflare on the gas-phase reactor is sent
directly to be burnt.

3. Modeling and Optimization Environment

Models of reactors and distillation columns are encoded in the Modelica
language. Modelica is a high level language, designed for modeling of
complex physical systems. Some of its main features are, see [The Modelica
Association, 2011] and [Fritzson, 2004],

• the possibility to express the model equations in a text-book declar-
ative style, i.e., there is no need to solve for certain variables when
implementing the model.

• differential and algebraic equations may be mixed.

• it is an object oriented language with classes, components and in-
heritance.

• it supports component-based modeling with the possibility of inter-
connecting the components.

These features were utilized when a model library for the plant was con-
structed. The library, which is an extension of the library presented in
[Larsson et al., 2010], contains reactor and distillation column models,
optimization models for stationary and dynamic optimization, and simu-
lation and validation models.
Simulation of Modelica models is a well established technology. How-

ever, optimization utilizing Modelica models is not yet advanced since the
language lacks support for formulating such problems. In [Åkesson, 2008],
the extension Optimica was proposed and includes notations for cost func-
tion and constraints as well as means to select optimization variables.
Recently, the open-source platform JModelica.org was presented, which
includes the Optimica compiler, see [Åkesson et al., 2010]. JModelica.org
can generate C code containing the model equations and XML code con-
taining variables names and parameter values from the Modelica/Optim-
ica models. It also includes an Application Programming Interface (API)
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for evaluating the compiled Modelica model equations and optimization
notions such as cost function and constraints specified in the Optimica
code. Additionally, automatic differentiation is used for evaluation of Ja-
cobians and sparsity patterns. The API also includes an algorithm for
discretization of a dynamic optimization problem, such as the grade tran-
sition problem, by direct collocation on finite elements, see [Biegler et al.,
2002]. In the implemented method, state and algebraic variables are ap-
proximated by Lagrange polynomials based on Radau points of order three
and two, respectively. The inputs may be discretized similarly to the al-
gebraic variables or specified to be constant over each finite element. In
the work presented in this paper, constant inputs over the finite elements
are used. The discretization, which corresponds to a fully implicit Runge-
Kutta method and thus has the same strong stability properties, results
in a large NLP. This problem is efficiently solved by the large-scale NLP
solver IPOPT, see [Wächter and Biegler, 2006], by providing it with deriva-
tives and sparsity patterns of constraint Jacobians computed in the API.
The collocation method incorporates constraints on states, algebraic vari-
ables and inputs directly and handles non-linear systems well and is thus
suited for optimization of grade transitions based on the plant model in
this paper.

4. Quality Variables

The main quality variables used today at Borealis AB are polymer melt
index and density and reactor split factors. Both density and melt index
may easily be measured in an industrial setting and are associated with
end-use characteristics, see [Xie et al., 1994, Richards and Congalidis,
2006]. The models that are used for describing density and melt index
produced at a certain time instant are correlation models based on the
work in [McAuley and MacGregor, 1991]. They use the power law relation-
ship between melt index and weight average molecular weight, and relates
the quality variables to raw material concentrations in the reactors.
The polymer in the reactors is composed of polymers that may have

been produced during different reactor conditions. It is therefore impor-
tant to separate between instantaneous properties, describing the polymer
produced at a certain time instant, and bed average properties, describing
the mean value of the polymer properties throughout the polymer mass in
the reactor. The bed average melt index and density are found by mixing
rules as proposed in [McAuley and MacGregor, 1991].
The cascaded reactors in the Borstar RF process has the ability to pro-

duce a tri-modal polymer, i.e., the molecular weight distribution of the
finished polymer has three peaks. However, as the production rate in the
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pre-polymerization reactor is significantly smaller than in the loop reactor
and the GPR, and the polymerization conditions are very similar in the
pre-polymerization and the loop reactor, the polymer can be considered
bi-modal. The model used in the optimizations does not contain such de-
tailed information as molecular weight distribution. Instead, as a measure
of the bi-modality, split factors between zero and one are used, providing
information about how much of the finished polymer has been produced
in each reactor. The split factor for the pre-polymerization reactor is close
to zero, while for the loop reactor and the GPR, the split factors are close
to 0.5. To provide a bed average measure of the bi-modality, bed average
values of the split factors are used.

5. Plant Model

Modeling of a polymer reactor may be performed in different levels of de-
tail and assumptions, see e.g., [Xie et al., 1994], and the chosen level
depend on model usage. The same holds for distillation columns, and
as the considered plant incorporates three reactors and three distillation
columns and the model should be used for optimization, macro-scale mod-
eling is used. This means, no finer level of polymer modeling than e.g.,
mass balances and reaction rates are considered, which is appropriate for
grade transition optimization as noted in [Xie et al., 1994]. Also, simple
dynamics with split factors for the distillation columns are used.

5.1 Reactor Models

The two loop reactors are both assumed to have perfect temperature con-
trol, constant pressures and well mixed contents. Control systems in regu-
latory mode are incorporated in the models for holding reactor content vol-
umes constant using outflows as control variables. As the polymer slurry
is taken out from the pre-polymerization reactor using transfer legs, the
outflow has the same concentrations as the reactor content and the reac-
tor may be modeled as an ideal continuously stirred tank reactor (CSTR).
However, since the loop reactor uses both continuous outtake and sett-
ling legs, the outflow has a higher concentration of polymer than the
reactor content, see [Reginato et al., 2003]. Therefore, using a modeling
approach of a non-ideal CSTR where the settling legs are modeled using
a discharge factor is thus suitable, see [Reginato et al., 2003, Touloupi-
des et al., 2010]. The subsequent flash tank is assumed to have negligible
hold-up time compared to the reactors and recycle area and is excluded
from the model.
The temperature in the GPR is assumed to be controlled to a constant

value and the regulatory system for the bed volume is incorporated in
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the model using the outflow as control variable. The polymer and gas in
the bed are assumed well mixed and the conversion per pass-through is
low. The gas composition in and above the bed is therefore assumed equal
and uniform, see [McAuley and MacGregor, 1992, Xie et al., 1994]. It is
also assumed that the time delay associated with gas recycling through
the cooler is negligible. With these assumptions, the GPR may be modeled
with outflow and reactor bed concentrations equal. The subsequent sep-
arator between the GPR and the propane column has negligible hold-up
time for the gas mixture and is excluded from the model together with
the degassing tank.
The reactor models, derived by Borealis and used today in an on-line

non-linear model predictive controller (NMPC) of the plant, include both
first principles, semi-empirical, and empirical relations. For optimization,
there are 12 control inflows of raw material, diluents and catalyst to the
reactors and one flare flow from the GPR, as given in Section 2.

Pre-Polymerization Reactor For the pre-polymerization reactor, whi-
ch has no direct inflows from the recycle area, the mass balances for fluids,
polymer and catalyst are

ṁe1 = ue1 −we1 − re1 (1)
ṁh1 = uh1 −wh1 − rh1 (2)
ṁp1 = up1 −wp1 (3)
ṁpe1 = rpe1 −wpe11 (4)
ṁc1 = uc1 −wc1 (5)
m f1 = me1 +mh1 +mp1 (6)
ms1 = mpe1 +mc1, (7)

where wi1(1) and ri1 are outflows and reaction rates, respectively, and m f1
and ms1 are total masses of fluids and solids. The reaction rates are ex-
tended non-linear Arrhenius expressions with pre-factors Ri1(⋅) depending
on reactor condition, i.e.,

re1 = Re1(mc1, a1, X e1, Xh1, P1) exp
(

ke11

T1
+ ke12

)

(8)

rh1 = Rh1(mc1, a1, Xh1, P1) exp
(

kh11

T1
+ kh12

)

(9)

rpe1 = re1 + rh1, (10)

where P1 and T1 are the reactor pressure and temperature, respectively,
ke11, ke12, kh11 and kh12 are reaction kinetics parameters and rpe1 is the
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total reaction rate in the pre-polymerization reactor. The molar concen-
trations X i1 of the fluids are defined as

X i1 =
mi1/Mi
∑

j∈{e,h,p}
m j1/Mj

, i ∈ {e,h, p}, (11)

where Mi and Mj are the molar weights of the different components.
The plant model use a Ziegler-Natta catalyst activity profile along the

cascaded reactors, modeled with mean activity and deactivated sites. For
the pre-polymerization reactor, the catalyst states are

ȧ1 = fa1(uc1,mc1, a1,d1, a0,d0, rpe1) (12)
ḋ1 = fd1(uc1,mc1, a1,d1, a0,d0), (13)

where fa1(⋅) and fd1(⋅) are non-linear functions and a0 and d0 are initial
values of mean activity and deactivated sites for unused catalyst.
Polymer properties such as melt index and density will be used for

defining a polymer grade in the loop reactor and the GPR. However,
reliable models of these quantities could not be found for the pre-poly-
merization reactor due to lack of data. Since production in the prepoly-
merization reactor compared to in the loop reactor and in the GPR is
small and that it has similar reactor conditions as the loop reactor, its
end effect on the product quality variables is negligible. Instead, for fur-
ther calculations, polymer density is set to an average value ρs1 of pre-
polymerization reactor polymer produced at the plant for different grades,
while melt index is not calculated. To define the polymer grade in the pre-
polymerization reactor, the bed average of the molar ratio of hydrogen and
ethylene will be used, which is calculated from the instantaneous ratio de-
fined as

Xhe1 =
Xh1

X e1
. (14)

Using the solid-phase residence time, which is the ratio between mass of
solids ms1 and solids outflow ws1, the bed average ratio is found as

Ẋ he1
ms1

ws1
= −X he1 + Xhe1. (15)

Fluid density ρ f1 in the pre-polymerization reactor is calculated using an
empirical relation depending on pressure, temperature and fluid molar
concentrations, utilized when calculating reactor content volume V1 as,

ρ f1 = ̺1(P1,T1, X e1, Xh1, Xp1) (16)

V1 =
m f1

ρ f1
+ ms1

ρs1
. (17)
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Assuming the reactor is always full of fluids and solids and that the
fluid is incompressible, the total volumetric outflow q1 is set by

q1 =
up1 + ue1 + uh1

ρ f1
+ uc1

ρc
− rpe1

(

1
ρ f1

− 1
ρs1

)

+ K1
(

V1 − V ref1
)

, (18)

where ρc is the catalyst density. The two first terms are the total in-
flow to the pre-polymerization reactor, while the third term compensate
for volume contraction due to polymerization. At stationarity, due to the
incompressibility assumptions on the fluids and the mass balances, the
volumetric flow constituted of the three first terms is equal to the volumet-
ric outflow. An additional volumetric outflow is added to obtain correct
volume of reactor content at stationarity, i.e., a proportional controller
with gain K1 and set-point V ref1 . At stationarity, the contribution of this
terms is zero and there will be no stationary error of V1.
The volumetric outflow from the pre-polymerization reactor is the sum

of solid and fluid volumetric outflows, i.e.,

q1 =
ws1

ρs1
+ w f1

ρ f1
. (19)

Since transfer legs are used, the ratio of solid and fluid outflows and the
ratio of solid and fluid masses in the reactor are equal. Using this relation
and solving for the two mass flows yields,

ws1 =
ms1

ms1

ρs1
+ m f1

ρ f1

q1 (20)

w f1 =
m f1

ms1

ρs1
+ m f1

ρ f1

q1. (21)

The component-wise fluid and solid outflows are found using mass frac-
tions as

wi1 =
mi1

m f1
w f1, i ∈ {e,h, p} (22)

wj1 =
m j1

ms1
ws1, j ∈ {pe, c}. (23)

Loop Reactor The loop reactor has the same model structure as the
pre-polymerization reactor. However, it has both fresh inflows, inflows
from recycle area, and also inflows from the pre-polymerization reactor.
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The mass balances for fluids, polymer and catalyst and the total mass of
fluids and solids are written as,

ṁe2 = ue2 +wrece2 +we1 −we2 − re2 (24)
ṁh2 = uh2 +wrech2 +wh1 −wh2 − rh2 (25)
ṁp2 = up2 +wrecp2 +wp1 −wp2 (26)
ṁpe21 = wpe11 −wpe21 (27)
ṁpe2 = rpe2 −wpe22 (28)
ṁc2 = wc1 −wc2 (29)
m f2 = me2 +mh2 +mp2 (30)
ms2 = mpe21 +mpe2 +mc2, (31)

where superscript rec indicates that a flow is coming from the recycle
area. The outflows are controlled by a volume controller and a settling
factor models the settling leg effect. To be able to calculate the grade
defining split factors, the polymer mass in the loop reactor is divided into
two states. First, mpe21 is the mass of polyethylene formed in the pre-
polymerization reactor and second, mpe2 is the mass polyethylene formed
in the loop reactor.
Similar to the pre-polymerization reactor, the reaction rates are ex-

tended non-linear Arrhenius expressions as

re2 = Re2(mc2, a2, X e2, Xh2, P2) exp
(

ke21

T2
+ ke22

)

(32)

rh2 = Rh2(mc2, a2, Xh2, P2) exp
(

kh21

T2
+ kh22

)

(33)

rpe2 = re2 + rh2, (34)

where P2 and T2 are the reactor pressure and temperature, respectively,
ke21, ke22, kh21 and kh22 are reaction kinetics parameters and rpe2 is the
total reaction rate in the loop reactor. The molar concentrations X i2 of
fluids are found as,

X i2 =
mi2/Mi
∑

j∈{e,h,p}
m j2/Mj

, i ∈ {e,h, p}, (35)

where Mi and Mj are the molar weights of the different components.
The catalyst properties have non-linear dependencies on catalyst in-

flow and mass and total reaction rate, similar to the catalyst property
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models in the pre-polymerization reactor model, i.e.,

ȧ2 = fa2(wc1,mc2, a2,d2, a1,d1, rpe2) (36)
ḋ2 = fd2(wc1,mc2, a2,d2, a1,d1). (37)

Modeling of the polymer density in the loop reactor could not be per-
formed reliably due to lack of plant data. Therefore, the density was set to
an average value ρs2 of the loop polymer produced at the plant for differ-
ent grades, yielding the instantaneous and bed average densities equal.
As the polymer in the loop reactor is produced without any co-monomer,
no branching of the polymer is present which results in a polymer density
with only minor variations due to raw material concentrations. Thus, a
constant value is justified. Fluid density may, as in the previous reactor,
be calculated using an empirical relation and is used when calculating
reactor content volume V2 as

ρ f2 = ̺2(P2,T2, X e2, Xh2, Xp2) (38)

V2 =
m f2

ρ f2
+ ms2

ρs2
, (39)

where m f2 and ms2 are total masses of fluids and solids, respectively.
As for the pre-polymerization reactor, the volumetric outflow is set by

the total volumetric inflow, a volume contraction term due to polymer-
ization, and a proportional controller with gain K2 and set-point V ref2 for
obtaining correct stationary volume, i.e.,

q2 =
up2 + ue2 + uh2

ρ f2
+
wrecp2 +wrece2 +wrech2

ρ f2

+ ws1
ρs2

+ w f1
ρ f2

− rpe2
(

1
ρ f2

− 1
ρs2

)

+ K2
(

V2 − V ref2
)

. (40)

The volumetric outflow is composed of solid and fluid flows as

q2 =
ws2

ρs2
+ w f2

ρ f2
. (41)

As the loop reactor uses settling legs, the concentration of solids is higher
in the outflow than in the reactor. The ratio of solid and fluid outflows
is not equal to the ratio of solid and fluid masses in the reactor and is
instead modeled using a settling factor s2 > 1 and the mass fraction zs2
of solids in the reactor as,

w f2 = ws2�2 (42)

�2 =
1− s2zs2
s2zs2

, (43)
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where the mass fraction of solids is

zs2 =
ms2

ms2 +m f2
. (44)

Solving for solid and fluid flows in Eq. (41) and using Eq. (42) yields

ws2 =
1

1
ρs2

+ �2
ρ f2

q2 (45)

w f2 =
�2

1
ρs2

+ �2
ρ f2

q2. (46)

For a settling factor s2 = 1, no settling of the polymer is present and the
above equations degenerate to equations similar to the pre-polymerization
reactor case. However, for the loop reactor, a settling factor of s2 > 1 is
used due to the settling legs.
The component-wise fluid and solid outflows used in the mass balances

are found by the mass ratios of the reactor content and the fluid and solid
outflows, i.e.,

wi2 =
mi2

m f2
w f2, i ∈ {e,h, p} (47)

wj2 =
m j2

ms2
ws2, j ∈ {pe, c} (48)

wpe21 =
mpe21

ms2
ws2. (49)

A model for the instantaneous melt index MI2 of the loop reactor pro-
duced polymer, based on the work in [McAuley and MacGregor, 1991], is
used. The model has the structure

lnMI2 = l21 + β ln
(

l22 + l23
Xh2

X e2

)

, (50)

where Xh2 and X e2 are molar concentrations of hydrogen and ethylene,
respectively, β is a constant approximately equal to 3.5, see [Vinodograd
and Malkin, 1980] and l21, l22 and l23 are model parameters. Following
[McAuley and MacGregor, 1991], the dynamics of the bed average melt
index is found by mixing the current bed average with the melt index of
the currently produced polymer as

d

dt

(

MI
− 1β
2

)

ms2

ws2
= −MI−

1
β

2 + MI−
1
β

2 , (51)
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where the quotient ms2/ws2 is the solid-phase residence time of the loop
reactor.
Note that there is no modeling of the mixing of pre-polymerization re-

actor polymer and loop reactor polymer with regards to quality variables,
motivated by the low production of polymer in the pre-polymerization re-
actor and similar reactor conditions. It is thus assumed that the polymer
transferred out from the loop reactor have density and melt index equal
to the density and melt index of the polymer produced in the loop reactor.

Gas-Phase Reactor Except for the fluid components in the two previ-
ous reactors, the co-monomer butene and the diluent nitrogen are used
in the GPR. The mass balances for the gases, polymer produced in either
pre-polymerization reactor, loop reactor or GPR and catalyst and total
masses of gas and polymer are given by

ṁe3 = ue3 +wrece3 −wflaree3 −we3 − re3 (52)
ṁh3 = uh3 +wrech3 −wflareh3 −wh3 − rh3 (53)
ṁb3 = ub3 +wrecb3 −wflareb3 −wb3 − rb3 (54)
ṁp3 = up3 +wrecp3 −wflarep3 −wp3 + u fp3 (55)
ṁn3 = un3 +wrecn3 −wflaren3 −wn3 (56)
ṁpe31 = wpe21 −wpe31 (57)
ṁpe32 = wpe22 −wpe32 (58)
ṁpe3 = rpe3 −wpe33 (59)
ṁpb3 = rpb3 −wpb33 (60)
ṁc3 = wc2 −wc3 (61)
m f3 = me3 +mh3 +mb3 +mp3 +mn3 (62)
ms3 = mpe31 +mpe32 +mpe3 +mpb3 +mc3, (63)

where wflarei3 is the flare flow of component i, u fp3 is the fixed propane
purge flow assuring no leakage of GPR gas mixture to the flash tank and
mpb3 is the mass of polyethylene with incorporated butene. The total solids
outflow from the GPR is the production rate of the plant, i.e.,

ws3 = wpe31 +wpe32 +wpe33 +wpb33 +wc3. (64)

The reaction rates are analogous to the reaction rates in the two pre-
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vious reactors, i.e.,

re3 = Re3(mc3, a3, X e3, Xh3, Xb3, P3) exp
(

ke31

T3
+ ke32

)

(65)

rh3 = Rh3(mc3, a3, Xh3, P3) exp
(

kh31

T3
+ kh32

)

(66)

rb3 = Rb3(mc3, a3, Xb3, P3) exp
(

kb31

T3
+ kb32

)

(67)

rpe3 = re3 + rh3 (68)
r3 = rpe3 + rb3, (69)

where P3 and T3 are the pressure and temperature, respectively, ke31,
ke32, kh31, kh32, kb31 and kb32 are reaction kinetics parameters and r3 is
the total reaction rate in the GPR. The reaction rate of hydrogen is several
magnitudes smaller than for ethylene and butene and it is assumed that
all reacted hydrogen gives polyethylene without incorporated butene.
The catalyst property models are similar to the analogous in the pre-

polymerization and loop reactor models, i.e.,

ȧ3 = fa3(wc2,mc3, a3,d3, a2,d2, r3) (70)
ḋ3 = fd3(wc2,mc3, a3,d3, a2,d2), (71)

and so is also the fluid molar concentrations X i3,

X i3 =
mi3/Mi
∑

j∈{e,h,b,p,n}
m j3/Mj

, i ∈ {e,h, b, p,n}, (72)

where Mi and Mj are molar weights of the different components.
The instantaneous split factors for the polymer in the GPR may be

calculated directly from the different polymer masses as

S1 =
mpe31

mpe31 +mpe32 +mpe3 +mpb3
(73)

S2 =
mpe32

mpe31 +mpe32 +mpe3 +mpb3
(74)

S3 =
mpe3 +mpb3

mpe31 +mpe32 +mpe3 +mpb3
, (75)

and using the GPR solids residence time ms3/ws3, the bed average bi-
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modality measures are given by

Ṡ1
ms3

ws3
= −S1 + S1 (76)

Ṡ2
ms3

ws3
= −S2 + S2 (77)

Ṡ3
ms3

ws3
= −S3 + S3. (78)

The polymer in the GPR is essentially a mixture of loop produced
polymer and polymer being produced in the GPR. Several mixing rules
for polymers with different melt indices and densities exist and the most
commonly used in literature are presented in [McAuley and MacGregor,
1991] and will also be used here.
The instantaneous melt index of the mixed polymer is calculated from

the bed average melt index MI2 of the incoming loop reactor polymer and
the instantaneous melt index MI3 of the polymer produced in the GPR as

MI
− 1β
mix = (1− S3)MI

− 1β
2 + S3MI

− 1β
3 . (79)

MI3 is modeled by following the structure in [McAuley and MacGregor,
1991] as

lnMI3 = l31 + β ln
(

l32 + l33
Xh3

X e3
+ l34

Xb3

X e3

)

, (80)

where l31, l32, l33 and l34 are model parameters. The bed average melt
index MImix of the mixed polymer in the GPR, i.e., the melt index of the
final product, is found by mixing bed average melt index and instanta-
neous melt index of polymer added to the bed as

d

dt

(

MI
− 1β
mix

)

ms3

ws3
= −MI−

1
β

mix + MI
− 1β
mix. (81)

The instantaneous density ρmix of the mixed polymer in the GPR is
calculated as

1
ρmix

= 1− S3
ρs2

+ S3
ρs3
, (82)

where ρs2 is the density of the polymer from the loop reactor and ρs3 is the
instantaneous density of polymer produced in the GPR. Again, using the
model structure in [McAuley and MacGregor, 1991], ρs3 may be calculated
as

ρs3 = p31 + p32 lnMI3 − p33
(

Xb3

X e3

)p34

, (83)
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where p31, p32, p33 and p34 are model parameters. The bed average density
ρmix of the mixed polymer in the GPR is found from

d

dt

(

1
ρmix

)

ms3

ws3
= − 1

ρmix
+ 1

ρmix
. (84)

The gas density ρ f3 in the reactor is found by using the total reactor
volume V3 as

ρ f3 =
m f3

V3 − Vs3
, (85)

where Vs3 is the solids volume, i.e.,

Vs3 =
ms3

ρmix
, (86)

and m f3 is the total mass of gas in the GPR. The reactor pressure is
subsequently given by the ideal gas law as

P3 =
ρ f3RT3

M3
, (87)

where M3 is the mean molar weight of the gases, i.e.,

M3 =

∑

i∈{e,h,b,p,n}
mi3

∑

j∈{e,h,b,p,n}
m j3/Mj

, (88)

and Mj is the molar weight of component j.
The partial pressures in the reactor are found by the reactor pressure

and the molar concentrations as

Pi3 = P3X i3, i ∈ {e,h, b, p,n}. (89)

The fluidized bed in the GPR is composed of both polymer and gas and its
density depends on the gas velocity through the reactor. As the velocity is
close to constant, and both ρ f3 and ρmix only have minor variations, the
bed density ρb3 is assumed constant in the model. The total bed volume
Vb3, used for bed volume control in the model, is the sum of gas volume
V f b3 in the bed and polymer volume Vs3, i.e.,

Vb3 = V f b3 + Vs3. (90)
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The total mass of the fluidized bed, i.e., both polymer and gases, is

Vb3ρb3 = V f b3ρ f3 + Vs3ρmix (91)

and solving for gas volume in the bed yields

V f b3 =
ρmix − ρb3
ρb3 − ρ f3

Vs3, (92)

which may be used when calculating total bed volume.
The outflow from the GPR is at the bottom of the bed, and the ratio of

solids and gas in the bed and the ratio of solids and gas in the outflow are
thus equal. The volumetric outflow is set by a PI bed volume controller
with set-point V refb3 , i.e.,

q3 = K3
(

Vb3 − V refb3
)

+ K4
t
∫

−∞

(

Vb3 − V refb3
)

dτ , (93)

with proportional and integral gain K3 and K4, respectively. The mass
outflows of solids and gas are found by using the volumetric outflow and
the bed density as

ws3 =
ms3

ms3 + V f b3ρ f3
ρb3q3 (94)

w f3 =
V f bρ f3

ms3 + V f bρ f3
ρb3q3. (95)

The component-wise bottom outflows are given by the mass ratios and the
gas and solids outflows, i.e.,

wi3 =
mi3

m f3
w f3, i ∈ {e,h, b, p,n} (96)

wj3 =
m j3

ms3
ws3, j ∈ {pe, pb, c} (97)

wpe31 =
mpe31

ms3
ws3 (98)

wpe32 =
mpe32

ms3
ws3. (99)

Similarly, the component-wise outflows in the flare flow are

wflarei3 = mi3
m f3

uflare, i ∈ {e,h, b, p,n}. (100)
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5.2 Distillation Column Models

Modeling of distillation columns may be made very detailed. However,
even these detailed models will not describe the recycle area completely
since there is also an extensive overlaying control system of the columns
and also e.g., pre-condensers and different transport systems for the gas
needed to be modeled. The columns also have 3–5 inflow components and
the propane column has a side flow, which comprise an even greater mod-
eling task. Additionally, similar to the reactors, a high level of detailed
modeling of the distillation columns are not feasible if the models are to
be used for optimization.
Two of the most important aspects of recycle area modeling are to

estimate how much of the total inflow of components to the reactors are
recycle flows and how the recycle flows change when the plant operating
point is changed. For instance, approximately half of all hydrogen to the
loop reactor is recycled hydrogen and even more for the GPR. Additionally,
the recycled part of total butene inflow to the GPR is comparable in size
to the fresh feed.
The structure chosen for the recycle area model is similar to the one

used in the off-line planning and optimization models currently in use by
Borealis AB cracker plant, see [Andersson et al., 2002]. It is assumed that
pressures and temperatures in the columns are perfectly controlled, which
thus gives constant split factors for the components. Every distillation col-
umn together with its control system and supporting components such as
pre-condensers, are lumped together to one system where the dominat-
ing time constant for each component flow into the system is estimated
from measurement data. However, the measurement data could not give a
complete mass balance over each system due to lack of sensors and insuf-
ficient data quality, and could therefore not support modeling of different
time constants for e.g. top, side, and bottom flows of the columns. A crude
approximation was made by setting these equal.
Two control flows are present in the recycle area, i.e., the off-gas flows

uop and uol on the propane and lights column, respectively.

Propane Column The overall propane column system is modeled as
described above, and each component has an associated time constant Ti4
as,

ẇi4Ti4 = −wi4 +wi3, i ∈ {e,h, b, p,n}, (101)

where wi3 is the component flow from the GPR. The resulting flows are
then divided into the different outtake flows of the system, i.e., top, side
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Table 2. Propane and lights column split factors.

i e h b p n

Propane Column Top, Sti4 0.88 1 0.13 0.35 1

Side, Ssi4 0.09 0 0 0.44 0

Bottom, Sbi4 0.03 0 0.87 0.21 0

Lights Column Top, Sti6 1 1 - 0.1 -

Bottom, Sbi6 0 0 - 0.9 -

and bottom flow, as

wti4 = Sti4wi4 (102)
wsi4 = Ssi4wi4 (103)
wbi4 = Sbi4wi4, (104)

where Sti4, S
s
i4 and S

b
i4 are the component split factors for top, side and

bottom, respectively, and are found in Table 2. It is assumed that the
light components hydrogen and nitrogen are only present at column top.
The heaviest component, i.e., butene, is present at both top and bottom,
but not side. Some butene is condensed together with light components
in the pre-condenser and added to the top flow back to the GPR, while
the column itself is assumed to distill butene only to the bottom. The
two remaining components, i.e., propane and ethylene, are present in all
outtakes.
The off-gas flow uop is taken from the top flow and may be used for

control purposes since this flow has a higher concentration of light com-
ponents than the gas in the GPR. The component-wise recycle flows back
to the GPR, i.e., wreci3 , are thus,

wreci3 = wti4 +wbi4 −wopi4 , i ∈ {e,h, b, p,n}, (105)

where the component-wise off-gases are

w
op
i4 =

wti4
∑

j∈{e,h,b,p,n}
wtj4
uop, i ∈ {e,h, b, p,n}. (106)

The side flows wsi4 are led to the heavies column for further processing.
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Heavies Column Since the reactor models do not include the produc-
tion of heavier components such as pentane, hexane, etc., and oligomers,
the bottom flow of the heavies column is assumed to be zero, and all in-
flow components are distilled to the column top. This assumption yields
that no split factors are needed for the heavies column and the component
flows are

ẇi5Ti5 = −wi5 +wi2 +wsi4, i ∈ {e,h, p}, (107)

where wi2 and wsi4 are the component flows from the loop reactor and the
propane column, respectively, and Ti5 is the associated time constant of
the component. Since it is assumed that all nitrogen and butene in the
propane column are recycled directly back to the GPR, the heavies column
model incorporates only ethylene, hydrogen and propane.

Lights Column The only inflow to the lights column is from the heavies
column and it is therefore only necessary to model ethylene, hydrogen and
propane. With measurement data support, it is assumed that the majority
of propane is distilled to the column bottom, while all lighter components
are distilled to the column top.
The model structure is similar to the propane column model, using an

associated time constant and split factors for each component as

ẇi6Ti6 = −wi6 +wi5 (108)
wti6 = Sti6wi6 (109)
wbi6 = Sbi6wi6, (110)

where i ∈ {e,h, p}. The split factors for the three different components
are found in Table 2. The recycle inflow to the loop reactor is the top flow
from the lights column except for the off-gas flow uol , which may be used
for control purposes since the light component concentration is high in
the recycle flow compared to the concentration in the loop reactor. The
component-wise recycle flows are thus

wreci2 = wti6 −woli6, i ∈ {e,h, p} (111)

with the component-wise off-gas flows

woli6 =
wti6
∑

j∈{e,h,p}
wtj6
uol , i ∈ {e,h, p}. (112)
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5.3 Model Form and Size

If a state, algebraic variable and input vector are defined and denoted
x, w and u, respectively, the plant model may be written as a general
non-linear index-1 differential-algebraic equation (DAE) as

0 = F (ẋ,x,w,u)
y = gy (x,w,u)
z = gz (x,w,u)
x(t0) = x0,

(113)

where x0 is the initial state, y are variables that will be used for defining
a polymer grade and z are additional reactor operation variables with
target values that must be considered explicitly. The number of states,
algebraic variables and inputs are 46, 167 and 15, respectively, and the
number of equations is 213 when disregarding gy and gz.

6. Grade Definition

A polymer grade is defined by the quality variables described in Section 4.
As there is no model for melt index in the pre-polymerization reactor, the
molar ratio of hydrogen and ethylene is used. The melt index may be mod-
eled dependent only on this ratio and is thus then indirectly determined.
For the loop reactor, however, the melt index is specified, which indirectly
specifies the raw material molar ratio. For the GPR, both melt index and
density are specified, and thus the molar ratio of hydrogen and ethylene
and the molar ratio of butene and ethylene are determined. The split fac-
tors are specified for the GPR, determining how much of the product is
produced in each reactor and hence the bi-modality of the product. Thus,
the output vector y, considering polymer quality variables, is

y = [ X he1 MI2 MImix ρmix S1 S2 S3 ]T . (114)

Two different grades will be considered in the sequel, denoted A and B,
and their quality variable values and sell prices Ej , j ∈ {A, B}, are
found in Table 3. The quality variables are scaled with grade A values
and sell prices are scaled with the ethylene price. These two grades were
chosen mainly because all grade variables are different, except for the
pre-polymerization reactor split factor which is rarely changed in prac-
tice. The transitions between the two grades require increases of hydrogen
masses in the reactors, but also decreases, which is significantly harder,

203



Paper VI. Model-Based Optimization of Economical Grade Changes

Table 3. Grade defining variables with intervals, product sell prices, and instan-
taneous profits for grade A and B.

Grade X he1 MI2 MImix ρmix S1 S2 S3 Ej R j

A 1.00 1.00 1.00 1.000000 1.000 1.000 1.000 1.24 1.00

B 0.37 6.50 3.51 1.001065 1.000 1.132 0.917 1.46 1.92

±% ±5 ±5 ±5 ±0.1 ±0.5 ±0.5 ±0.5 - -

Table 4. Target, minimum and maximum values for operation variables for both
grade A and B.

Variable Target Min Max

P3 1 0.99 1.01

Pp3 1 0.77 1.08

see [McAuley and MacGregor, 1992]. Additionally, for the same plant pro-
duction rate, the reaction rates in the loop reactor and the GPR are differ-
ent for the two grades, and so is the co-monomer content in the polymer,
requiring significant changes of both ethylene and butene inflows.
In practice, it is impossible to have the quality variables identical to the

defined grade values, i.e., on target values, during long term production.
Therefore, the product is considered on-grade if the quality variables are
within certain intervals. The sell price Ej of grade j polymer is in practice
indifferent to whether the polymer is on target values or only considered
on-grade, e.g., a quality variable is only inside specified interval and not
on target value. Percentages of the quality variable grade values are used
for determining the intervals, see Table 3. However, a product with one
or many quality variables on the interval limits is undesirable from a
customers point of view, and thus also from the polymer producers’, which
gives an incentive to be as close as possible to the defined grade values.
Apart from the variables defining a grade, many other variables have

targets during operation. Two of these operation variables that will be
considered here are the pressure in the GPR and the partial pressure of
propane in the GPR, which are included in the output z in Eq. (113), i.e.,

z = [ P3 Pp3 ]T . (115)

Normalized target values of the two pressures together with their maxi-
mum and minimum values are found in Table 4.
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7. Optimization Formulations

This section presents formulations of the stationary optimization problem
as well as the grade change optimization problem regarding costs and
revenues.

7.1 Plant Constraints

Operating a plant requires several constraints to be respected. Not only
are limitations set by operating equipment, but also safety and operating
conditions are crucial.
The manipulated inflows have minimum and maximum values set by

e.g., minimum cooling by diluents or by maximum pump capacity. The rate
of change of the inflows are also constrained due to equipment limitations,
but also safety. Changing for instance the inflow of catalyst drastically may
have undesirable effects both on raw material concentrations, reaction
rates and temperatures in the reactors. The flare flow of the GPR is in
practice used for pressure control and may also be used when reactor
gas content is to be exchanged rapidly. However, it is desired to have it
equal to zero, which is its minimum value set in the model. All minimum
and maximum values concerning the control flows are taken from the
currently running NMPC.
As seen in Section 6, constraints are set on the GPR pressure, but also

on the propane partial pressure and hence the concentration of propane.
Such constraints are present on all raw material and diluent molar con-
centrations in all three reactors. This limits the operating range of the
reactors to regions known to be safe. An example is the upper limit on the
partial pressure of ethylene in the GPR. As the polymer can be electrostat-
ically charged, it may stick to the reactor walls. A too high ethylene molar
concentration can then give high local reaction rate, and since the cooling
may not be sufficient, this can lead to lump formation of the polymer.
Minimum and maximum values are also set for both instantaneous

and bed average quality variables. During a grade change, a rapid transi-
tion of y from one grade definition to another, requires the instantaneous
measures to over- or undershoot. If this is made too aggressively, the poly-
mer outflow from a reactor may be composed of polymers that have widely
different instantaneous quality variable values, even though the bed av-
erage quality variables are on grade target values, see e.g., [McAuley and
MacGregor, 1992].
Component masses in the reactors are constrained by limits of total

mass of solids and fluids or gases in the reactors and the molar con-
centration constraints. The outflow of solids from the reactors, and thus
essentially the total reaction rates, have upper limits due to limitations on
the systems transferring polymer out from the reactors. Additionally, as
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the outflow of solids from the GPR, i.e., the production rate of the plant,
is sent downstream for further processing, it must be limited such that
subsequent production units are capable of managing the flow.
The recycle part is modeled only with flows and split factors which

allows only to set upper and lower limits on the flows. Lower limits on the
column off-gases are set in practice to always have bleeds of impurities
and undesired inert components, such as ethane, that are produced at
polymerization. The plant model does not incorporate these components,
but minimum values that are greater than zero are set on the off-gas flows
to resemble current practice and are taken from the currently running
NMPC.

7.2 Stationary Optimization

At stationary economically optimal production, all quality variables are
on grade target values together with the operation variables. Inflows and
off-gases are used such that the profit is maximized during production
and constraints on both states, algebraic variables and control flows are
respected. The considered model has several inflows to be used at opti-
mization and their respective cost, Ci, i ∈ {c, e,h, b, p,n}, normalized by
the cost of ethylene, can be found in Table 5. Off-gases from the propane
and lights columns are sent to other parts of the industrial area and their
sell price Eo� is also found in the table. The flare flow of the GPR however,
is burnt directly, and produces no revenue. The instantaneous production
profit at on-target production of grade j may be written as

R j = Ejws3 + Eo�uol + Eo�uop + Cpwbp6
−
∑

i∈{c,e,h,p}
Ciui1 −

∑

i∈{e,h,p}
Ciui2 −

∑

i∈{e,h,b,p,n}
Ciui3 − Cpu fp3. (116)

The first term is the revenue due to produced polymer since ws3 is the
solids outflow from the GPR, i.e., total plant production, while the two
next terms are revenues from selling the off-gas flows uol and uop. The
fourth term is the bottom flow of propane from the lights column that
is stored in a propane buffer, which is considered to be outside the plant
boundaries. The three first negative terms refer to the cost of controlled

Table 5. Costs and sell prices for raw materials, diluents, off-gas and off-grade
polymer.

Cc Ce Ch Cb Cp Cn Eo� Eoff

214.6 1.000 8.003 1.419 0.501 0.044 0.266 0.880
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fresh inflows to the three reactors, while the last term considers the cost
of the fixed purge flow of propane for assuring no leakage of GPR recycle
gas to the flash tank.
At economical optimum, the instantaneous profit is maximized, and

the desired stationary point is found by solving the following optimization
problem,

min
ẋ,x,w,u

− R j

s.t. 0 = F (ẋ,x,w,u)
y j = gy (x,w,u)
z j = gz (x,w,u)
ẋ = 0
xmin ≤ x ≤ xmax
wmin ≤ w ≤ wmax
umin ≤ u ≤ umax,

(117)

where R j is the instantaneous profit for grade j defined in Eq. (116). The
vector y j contains the grade defined values in Table 3 and thus, the sec-
ond equality constraint considers on-target production. The third equality
constraint considers production target values z j found in Table 4 for the
operation variables z, and the fourth equality constraint sets stationary
production. Inequality constraints are set on states, algebraic variables
and control flows according to the discussion in Section 7.1.

7.3 Dynamic Optimization

The economically optimal grade change transfers the plant from station-
ary production of start grade to stationary production of end grade, with
the performance objective of maximizing total profit during transition.
The optimization problem posed must thus include the revenue as a func-
tion of the quality variables and their specification intervals.
Considering solely product j, the product sell price Ej is only received

if all quality variables are inside their intervals specified in Table 3, oth-
erwise, the polymer must be sold at a lower off-grade price denoted Eoff,
see Table 5. Introduce the ideal on-grade function for grade j as

θ j(y) =
{

1 if yminji ≤ yi ≤ ymaxji , i ∈ {1, . . . , 7}
0 otherwise,

(118)

where yminji and y
max
ji are the minimum and maximum value of the interval

for the ith quality variable in y for grade j in Table 3. Then Eq. (116)
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may be extended to include quality variable intervals for grade j as

R j = ((Ej − Eoff)θ j(y) + Eoff)ws3 + Eo�uol + Eo�uop + Cpwbp6
−
∑

i∈{c,e,h,p}
Ciui1 −

∑

i∈{e,h,p}
Ciui2 −

∑

i∈{e,h,b,p,n}
Ciui3 − Cpu fp3, (119)

where the first term now considers the effective sell price of the polymer
depending on quality variable values and the plant production rate. As
θ j(y) = 1 it equals Ejws3, i.e., revenue from polymer sold as on-grade
polymer, while if θ j(y) = 0 it equals Eoffws3, i.e., revenue from polymer
sold as off-grade polymer. The remaining terms consider off-gas and lights
column bottom flow revenues and fresh feed costs, as in Eq. (116).
The time when a grade transition is to be carried out is often known

several days in advance due to production planning. Therefore, prepara-
tions of the reactor contents can be performed prior the specified grade
transition time. Considering a transition time tT and a time interval
t0 < tT < t1 for an optimization with start grade A and end grade B,
then the instantaneous profit is

R =
{

RA, t0 ≤ t ≤ tT
RB, tT < t ≤ t1.

(120)

The total profit to be maximized at a grade transition during the consid-
ered time interval, i.e., cost function at optimization, is thus

Veco =
t1
∫

t0

Rdt. (121)

A cost function such as Veco is non-linear, but also discrete due to the
on-grade function θ j(y). At least two different approaches may be taken.
The first one is to consider a mixed-integer non-linear program, which is
intrinsically very hard to solve. The second, and chosen approach, is to
approximate θ j(y) with a continuously differentiable function, resulting
in a non-linear program that may be solved by an ordinary NLP solver.
The on-grade function θ j(y) is essentially a multivariate rectangle

function. Several continuously differentiable approximations exists, such
as e.g., trigonometric approximations used in [Tousain, 2002] and rational
functions, which will be used here. For a multivariate rectangle function
with center and width equal to 0 and 1, respectively, for all variables, a
rational function approximation is

rect(x) ( 1
∑nx
k=1 (2xk)

nk + 1, (122)
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where nx is the length of x and the even and integer parameters nk may be
used for setting approximation accuracy. Using the grade specific values
and intervals for y in Table 3, θ j(y) can thus be approximated by

θ̃ j(y) =
(

7
∑

i=1

(

2
yi − yji
ymaxji − yminji

)ni

+ 1
)−1

, (123)

where yi is the ith quality variable in y, yji its grade j target value and
ymaxji − yminji is the interval width.
In Eq. (121), which may now be approximated using θ̃ j(y), targets val-

ues for neither y or z are considered. Depending on raw material pricing
and grade produced, it may be economically beneficial to have some or
all of the quality variables y on their interval limits or be at an operat-
ing point where z are off target values. However, from a customers point
of view, the quality variables of the product should be the same regard-
less of e.g., raw material pricing. Thus, an incentive to be on target values
should be reflected in the cost function. A formulation of this with regards
to economy is to have the effective sell price to peak when all variables are
at target values. Thus, for an on-grade polymer, but with quality variables
not on target values, the effective sell price used at optimization is much
higher than the off-grade price Eoff, but not as high as the on-grade price
Ej . As the quality and operation variables get closer to their target val-
ues, the effective sell price in the cost function increases and only when on
target values, on-grade sell price Ej is received. The increase in effective
sell price as the operation variables get closer to their target values can
be seen as a reward for operating the plant under correct conditions.
Many different modeling approaches for this effective sell price depen-

dence on quality and operation variables in the cost function may exist.
For simplicity, it is modeled similarly to the on-grade approximation in
Eq. (123). Assume that, when the polymer is on-grade, the effective sell
price is increased by at least a large percentage pj of the difference be-
tween on-grade and off-grade sell prices, i.e., Ej − Eoff, compared to the
off-grade sell price. Therefore, introduce Ω j(y,z) to model the effective
sell price dependence as

Ω j(y,z) = pj +
7
∑

i=1
pji

(

(

2
yi − yji
wji

)2

+ 1
)−1

+
2
∑

k=1
l jk

(

(

2
zk − zjk
h jk

)2

+ 1
)−1

,

(124)

where zk is the kth operation variable in z, yji and zjk are target values for
quality and operation variables, respectively, for grade j found in Table 3
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and 4, and the parameters pj , pi j and l jk fulfills

pj +
7
∑

i=1
pji +

2
∑

k=1
l jk = 1. (125)

The function Ω j(y,z) has a minimum value of pj , and each quality and
operation variable may increase the function value by their respective
parameter pji or l jk, by being on target value. The peak value of Ω j(y,z)
is equal to 1 due to the constraints on the parameters pj , pi j and l jk in
Eq. (125), and achieved when all grade and operation variables are on
target values. An approximated on-grade function, with small peaks at
quality and operation variable target values, may now be defined as

Π j(y,z) = θ̃ j(y)Ω j(y,z) (126)

and the approximated instantaneous profit at production of grade j is

R̃ j = ((Ej − Eoff)Π j(y,z) + Eoff)ws3 + Eo�uol + Eo�uop + Cpwbp6
−
∑

i∈{c,e,h,p}
Ciui1 −

∑

i∈{e,h,p}
Ciui2 −

∑

i∈{e,h,b,p,n}
Ciui3 − Cpu fp3. (127)

When any grade variable is outside its grade limits, θ̃ j(y) yields Π j(y,z)
close to 0 and the effective polymer sell price close to Eoff. If all quality and
operation variables are at target values, then θ̃ j(y) = Ω j(y,z) = 1 and
thus, Π j(y,z) = 1 and the effective sell price is Ej . If the polymer is on-
grade, but not on target values, or any operation variable is not on target
value, the effective sell price is in the interval (pjEj + (1− pj)Eoff, Ej).
The tuning parameters for Ω j(y,z) are pj , pji, wji, l jk and h jk, where
wji and h jk determine the peak width in effective sell price given by each
variable, while pji and l jk determine the maximum increase of the effective
sell price by each variable. Together they specify the economical incentives
for the optimization to yield the quality and operation variables on target
values, and thus, have the effective sell price to equal Ej .
Utilizing the approximations above, the approximated total profit dur-

ing a grade change, when also considering economical incentives to be on
target values, is thus

Ṽeco =
t1
∫

t0

R̃ dt, (128)

where

R̃ =
{

R̃A, t0 ≤ t ≤ tT
R̃B, tT < t ≤ t1,

(129)
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Figure 2. Example of how the effective sell price in R̃ depend on time and on
the specifications of S3 at transition from grade A to B. The approximated on-grade
function parameters are n7 = 20, pj = 0.95, pj7 = 0.05 and wj7 = (ymaxj7 − ymin

j7 )/3.
The on-grade interval for S3 is for illustrative reasons 2 (ymaxj7 − yminj7 ).

if considering a transition from grade A to grade B.
An example of how the effective sell price in R̃ depend on time and

specifications during a transition from grade A to B is found in Figure 2,
considering only the GPR split factor S3. Projections of the effective sell
price when using θ j(y) and Π j(y,z) are also shown.
If using no end constraints at time t1, the optimization with the cost

function given by Eq. (128) will exploit the slow dynamics of the system
by setting all inflows close to zero at t1. The quality variables y and op-
eration variables z will not change considerably at t1, neither will the
total production rate. Thus, at an interval close to t1, there will effectively
be no cost of fresh inflows, since the effect seen after time t1 of closing
all inflows is not taken into account. The end-point at time t1 from the
optimization will thus not be a stationary point, and the economically
optimal stationary point of the end grade found in the stationary opti-
mization, will not be reached. One remedy, used in [van Brempt et al.,
2001], is to add terms for bookkeeping of plant material hold up at initial
and final time. Another method, used here and in e.g., [Tousain, 2002], is
to set the control flows equal to economically optimal values for the end
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grade during a time interval of length Tc at the end of the optimization
interval. The time interval should be long enough such that the system is
essentially in stationarity at t = t1, regardless of the control actions taken
prior t = t1 − Tc.
As pointed out earlier, constraints are set on the control flow deriva-

tives. The derivatives may be approximated by filtering the control flows
with a derivative filter with bounded high frequency gain. Another, more
direct approach, is to use the control flow derivatives as decision variables
in the optimization, which may then be integrated before being fed to the
plant. Thus, the model is extended with the 15 input derivatives

u̇i1, i ∈ {c, e,h, p}
u̇ j2, j ∈ {e,h, p}
u̇k3, k ∈ {e,h, b, p,n}
u̇ol , u̇op, u̇flare.

Apart from setting minimum and maximum values, a quadratic cost on
the derivatives is added in order to influence the smoothness of the control
flows, i.e.,

Vu̇ =
t1
∫

t0

u̇TUdu̇ dt, (130)

where Ud is a diagonal matrix and u̇ contains the derivatives. The deriva-
tives are parametrized as piecewise constant over each collocation ele-
ment, and thus, the control flows are piecewise linear.
The dynamic optimization problem for an economical grade transition

over the time interval t0 ≤ t ≤ t1 may now be formulated as

min
u̇
−Ṽeco + Vu̇

s.t. 0 = F(ẋ,x,w,u)
y = gy (x,w,u)
z = gz (x,w,u)

u =
∫ t

t0

u̇ dτ

xmin ≤ x ≤ xmax, wmin ≤ w ≤ wmax
umin ≤ u ≤ umax, ymin ≤ y ≤ ymax
zmin ≤ z ≤ zmax, u̇min ≤ u̇ ≤ u̇max
x(t0) = xs, u(t0) = us
u = ue, t1 − Tc ≤ t ≤ t1,

(131)
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where the initial values xs and us and the control flow end values ue are
given by the stationary optimizations of start and end grade, respectively.
The introduction of control flow derivatives, ΠA(y,z), ΠB(y,z) and costs
function terms Ṽeco and Vu̇ gives an optimization model with 63 states,
169 algebraic variables, 15 inputs and 232 equations.

7.4 Scaling and Initial Trajectories

The stationary optimization problem and the discretized dynamic opti-
mization problem are both NLP problems that are solved using IPOPT.
For good convergence in IPOPT, it is an advantage if all variables are in
the same order of magnitude. Therefore, all variables were given a nom-
inal value used for scaling and also the internal scaling in IPOPT was
used. Additionally, initial values of all variables are important for conver-
gence rate and for finding a solution at all. For stationary optimization,
control flows taken from averaged plant data, corresponding to station-
ary production of considered grade, were used in simulation of the plant
model to find suitable initial values. For the dynamic optimization prob-
lem, values of all states, derivatives, algebraic variables and control flows
at the collocation points must be supplied. Such trajectories can be found
by simulating the model using initial values and constant control flows
corresponding to stationary production of start or end grade, found from
the stationary optimizations. Both grades have been used for generating
initial trajectories with similar convergence results.

8. Examples of Economically Optimal Grade Changes

Transitions between the two grades in Table 3 will be used as examples
for the stationary and dynamic optimizations in sections 7.2 and 7.3. The
two transitions include changes of all quality variables except for the pre-
polymerization reactor split factor.

8.1 Stationary Economically Optimal Production

Two stationary economically optimal points are computed, using the grade
definition and target values in tables 3 and 4. The resulting instantaneous
profits R j , normalized by RA, for each product can be seen in Table 3.
Since both grades have lower costs than revenues at stationary production,
the optimization gives maximum plant production, and thus ws3 is at its
maximum value. Also, since the costs of the off-gases are higher than
what they are sold for, all off-gases and the flare flow are at minimum
values. At optimum, the split factors for the reactors are at grade target
values, thus essentially setting the relations between the total reaction
rates in the reactors.
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For a certain set of catalyst properties and catalyst masses in the re-
actors, the molar concentrations of ethylene in the reactors are essentially
determined by the production rate and split factors. The molar ratio Xhe1
and the molar ratios Xh2/X e2, Xh3/X e3 and Xb3/X e3, corresponding to
specified melt indices and density, subsequently determines the hydrogen
and butene molar concentrations. For the GPR, the propane partial pres-
sure sets an equality constraint for the propane molar concentration Xp3.
Thus, for the three reactors, all molar concentrations are specified if the
catalyst properties and masses in the reactors are fixed. However, molar
concentrations of the different components do not alone determine the
component masses, only ratios, and the optimization may also use the in-
flow of catalyst to change reactor conditions when finding the economical
optimum.
For the GPR, if considering certain values of catalyst properties and

mass, maximum solids outflow and polymer production defined by the
grade, then the masses of gas and polymer are determined because of
the bed volume controller. Using the specifications of the molar concen-
trations, the component masses in the reactor are also determined. To
increase the production in the GPR, either the molar concentrations of
raw material must be increased, catalyst properties improved, or the cat-
alyst mass in the GPR increased, and vice versa. Since there is no transfer
of fluids from loop reactor to the GPR, the loop only affects the GPR via
catalyst properties and polymer flow. In the optimization, the operating
conditions in the GPR are thus affected when changing conditions in the
first two reactors.
For the pre-polymerization and loop reactor, similarly to the GPR, for

certain values of catalyst mass and properties and desired solids outflow
and polymer grade, the molar concentrations are defined. However, since
the outflows of fluids and solids are controlled by volume controllers, not
considering the ratios between masses of fluids and solids, it is at op-
timization allowed to change these masses. As most of the ethylene is
used for polymer production, the outflows of ethylene from the reactors
are negligible when compared to the propane outflows. So is also the
hydrogen outflow due to the small inflows compared to the propane in-
flows. The solids outflow from each reactor is essentially determined prior
stationary optimization due to reactor split factors and maximum plant
production rate, neglecting the substantially smaller catalyst mass com-
pared to polymer mass. This causes the ratio of solids and fluids masses
in the pre-polymerization and loop reactor basically be controlled by the
propane inflow, see Eqs. (20)–(21) and Eqs. (42)–(46). Propane is inert,
and is thus not consumed in the reactors. The inflow of propane to the
pre-polymerization reactor is subsequently an inflow to the loop reactor.
This gives the possibility to change fluids and solids masses in the loop
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reactor by changing pre-polymerization reactor inflow. Altering masses in
the reactors also change the masses of catalyst in the reactors, and sub-
sequently the polymerization rate. To maintain a certain polymerization
rate when e.g., mass of solids is increased, the ethylene molar concen-
tration must be decreased. Thus, changing the mass gives a degree of
freedom at optimization.
The optimal stationary point for grade B utilizes this degree of freedom

as much as possible by having the propane inflow to the pre-polymeri-
zation reactor at its maximum constraint, yielding a small polymer mass
in the pre-polymerization reactor. The propane inflow to the loop reactor
is at the minimum value while no constraints are active in the GPR.
A similar stationary operating point is found for grade A if not consid-

ering constraints on the ethylene partial pressure in the GPR. However, to
achieve correct total reaction rate in the GPR, this operating point violates
the maximum allowed value of the ethylene partial pressure. To satisfy
this constraint, the ethylene molar concentration must be decreased and
thus, the catalyst increased, compared to the infeasible operating point.
An increase in catalyst inflow requires less solids mass in the loop reactor,
with the effect of propane inflow to the loop reactor not being at its lower
limit at the optimal operating point for grade A.

8.2 Economically Optimal Grade Changes

Transitions from grade A to grade B and from grade B to grade A are
considered where the stationary operating points from the stationary op-
timizations are used as start and end values in the transition optimization
problems. For both transitions, the total optimization horizon is 30 nor-
malized time units (t.u.) and the collocation element length is 0.5 t.u.,
giving a sufficiently dense grid for the dynamics to be well represented.
The specified transition times tT are at 9 t.u., while the time interval
length Tc for constant control flows at the end of the interval, are 18 t.u.
for the transition from grade A to B and 14.5 t.u. for the reverse transition.
In the cost function, pj is set to 80% for both grades, i.e, at least 80%

of the difference Ej − Eoff is added to the effective sell price when being
on-grade compared to being off-grade, and the ideal on-grade function is
approximated by ni = 10 for all grade variables. For simplicity, no grade
variable is considered more important than another, neither are the target
values of the pressure and propane partial pressure in the GPR, yielding
pji = l jk = (1 − pj)/9 in Ω j(y,z). The peak widths in Ω j(y,z) are set by
wji = (ymaxji − yminji )/6 for the grade variables and h jk = (Pmax − Pmin)/6
for the operation variables, where Pmin and Pmax are the limits for the
GPR pressure. The weight matrix Ud is chosen from practical operating
considerations and for smoothness of the inflows.
The resulting trajectories for the two economically optimal grade chang-
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es are found in figures 3–17. In figures 3–5, the fresh inflows of fluids and
catalyst to the three reactors are shown while Figure 6 shows the GPR
flare flow and the propane and lights column off-gases. In figures 7–9 are
the seven variables defining a grade found, while Figure 10 and 11 show
the on-grade functions Π j(y,z), approximate total profit Ṽeco as function
of time, plant production rate ws3 and relevant pressures in the GPR.
The last six figures, i.e., 12–17, show the total reaction rate, fluid molar
concentrations, solids masses and fluid masses in the three reactors. All
trajectories are normalized such that the initial values are equal to 1.

Transition A to B. In the first transition, from grade A to B, MI2 and
MImix are increased together with an increase in ρmix. From the equations
of melt indices i.e., Eqs. (50) and (79)–(80), and density, i.e., Eqs. (82)–
(83), it is clear that the molar ratios Xh2/X e2, Xh3/X e3 and Xb3/X e3 are
to be increased. For the pre-polymerization reactor, the molar ratio Xhe1
is however to be decreased. The split factors are shifted such that the loop
reactor produces more and the GPR less.
In the pre-polymerization reactor, it is desired to have slowly varying

operating conditions due to e.g., catalyst sensitivity. Thus, the inflows are
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Figure 3. Inflows of ethylene, hydrogen, propane and catalyst to the pre-
polymerization reactor, i.e., ue1, uh1, up1 and uc1. Vertical lines (--) show transition
times and horizontal line (--) shows upper limit.
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Figure 4. Inflows of ethylene, hydrogen and propane to the loop reactor, i.e., ue2,
uh2 and up2. Vertical lines (--) show transition times and horizontal line (--) shows
lower limit.

not to be changed rapidly and all the weights in the matrix Ud consid-
ering pre-polymerization inflows are comparatively large. Changing ethy-
lene and hydrogen molar concentrations in pre-polymerization reactor is
easier than in the loop reactor and the GPR since no recycle flows are
present. At stationary economical optimum, the total reaction rate in the
pre-polymerization reactor is essentially determined from the maximum
plant production rate and the pre-polymerization reactor split factor. For
the two considered grades, both of these are equal, but with different cat-
alyst inflows. As the catalyst flow and mass are negligible compared to
polymer flow and mass, the total reaction rate in the pre-polymerization
reactor are significantly the same for both grades. In the beginning of
the optimization interval, the catalyst is increased slowly, and the inflow
of ethylene is slightly decreased, resulting in an almost constant total
reaction rate and decreasing ethylene molar concentration. To hold the
molar ratio X he1 specified by grade A, the inflow of hydrogen is at the
beginning slightly decreased as well, resulting in slowly decaying Xh1.
Prior t = 9 t.u., the inflow of hydrogen is rapidly decreased to its end
value with a small undershoot, thus changing the instantaneous molar
ratio Xhe1 with an undershoot and the bed average value of the ratio
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Figure 5. Inflows of ethylene, hydrogen, butene, propane and nitrogen to the GPR,
i.e., ue3, uh3, ub3, up3 and un3. Vertical lines (--) show transition times.

fast. The propane inflow is close to its maximum value and not changed
significantly, and since the total reaction rate is almost constant, the pre-
polymerization reactor split is fulfilled during the whole optimization in-
terval, as will be seen in the GPR, and the polymer and fluid masses are
almost constant. The molar ratio X he1 leaves grade A at approximately
t = 5.5 t.u. and grade B is reached at t = 9 t.u. From the inflows and mo-
lar ratios it is seen that grade B target value is reached prior stationarity
and constant inflows.
For the loop reactor, as for the pre-polymerization reactor, if the total

plant production rate is to be as high as possible with satisfied grade
variables, the solids outflow from the loop reactor is essentially defined by
the split factor and the maximum plant production, neglecting the catalyst
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Figure 6. Flare flow from the GPR, i.e., uflare, and off-gases on the propane and
lights columns, i.e., uop and uol . Vertical lines (--) show transition times.

mass as it is significantly smaller than polymer mass. The molar ratio
Xh2/X e2 is defined from melt index grade value. The fluid outflow from
the loop reactor is approximately equal to the total inflow of propane to the
loop and since the inflow of propane from the pre-polymerization reactor
is almost constant, the fluid outflow variations are due to fresh feed of
propane and to a small extent also recycled propane. The propane inflow
to the loop is to be decreased significantly, and thus also the fluid outflow,
to reach grade B. In the beginning of the optimization interval, the inflow
of propane is decreased, and if the polymer outflow should be constant and
thus hold the grade B reactor split target, then the ratio between mass of
solids and mass of fluids must increase. This is achieved since the inflow
of catalyst is increased. Due to the increased conversion rate, almost not
noticeable in the figure due to figure scale, the mass of ethylene, and
also molar concentration, is decreased in the loop in the beginning. To
produce polymer with correct melt index according to grade A, the total
inflow of hydrogen is decreased by decreasing the fresh inflow and by a
decreased recycle flow due to the higher conversion rate, but also since
the hydrogen outflow from the pre-polymerization reactor is lower. The
increased total reaction rate and the constant outflow of polymer causes
the solids mass to increase in the reactor. Prior the transition time at
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Figure 7. Upper: Instantaneous (- ⋅ -) and bed average (–) molar ratios Xhe1 and
X he1 in pre-polymerization reactor. Lower: Instantaneous (- ⋅ -) and bed average (–)
melt indices MI2 and MI2 in loop reactor. Horizontal lines (--) show upper and
lower limits of grade intervals.

t = 9 t.u., hydrogen and ethylene are changed rapidly, both with significant
overshoots, resulting in overshoots in instantaneous melt index and loop
split and a fast change of the bed average values. The hydrogen inflow
also compensates for the rapid decrease of hydrogen coming from the pre-
polymerization reactor. Prior to settling, the fresh feed of hydrogen makes
an undershoot. This is because the prior overshoot of hydrogen is recycled
and used as inflow to the loop again and this needs to be compensated for.
For the ethylene, this compensation is not as pronounced since the recycle
flow is considerably smaller than the fresh inflow. The propane inflow is
not changed as rapidly as the other inflows, holding the outflow large and
thus yielding the solid residence time small during the transition time
and hence fast changes of bed average values. The polymer in the loop
reactor leaves grade A at approximately t = 5.5 t.u. and enters grade B
at t = 9 t.u. The inflows are changed such that the correct bed average
melt index, and thus molar ratio of hydrogen and ethylene, is reached fast
and thereafter held at its target value even though the individual molar
concentrations change. Even after grade B is reached, the inflows are thus
actively changed to reach stationarity.
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Figure 8. Instantaneous (- ⋅ -) and bed average (–) densities and melt indices in
the GPR, i.e., ρmix, MImix, ρmix, and MImix. Horizontal lines (--) show upper and
lower limits of grade intervals.

For the last reactor, i.e., the GPR, four out of the five grade variables
are to be changed. At the starting point, the inflow of catalyst is increased
and in order to maintain correct split according to the grade A specifica-
tions, the optimization changes the raw material fresh feeds such that
raw material masses and concentrations are decreased in the reactor.
The void is filled by nitrogen and the inflow of nitrogen has a compar-
atively large overshoot because the off-gas flow at the propane column
removes a considerable amount. The melt index and density are not to be
changed in the beginning, and accordingly, the molar ratios Xh3/X e3 and
Xb3/X e3 are held constant by changing the inflows, and thus the molar
concentrations in the reactor, in a coordinated manner. During the tran-
sition of grade variables to grade B target values, the inflow of polymer
from the loop reactor increases. To reach the bed average split factors
for grade B fast, production of GPR polymer is rapidly decreased with
an undershoot of ethylene, causing the instantaneous split factors for the
loop and the GPR to over- and undershoot, respectively. The bed average
split factor for pre-polymerization reactor is slightly increased momentar-
ily, but stays inside grade intervals. The inflows of hydrogen and butene
are increased rapidly with overshoots, resulting in overshoots of the in-

221



Paper VI. Model-Based Optimization of Economical Grade Changes

0 10 20 30 40 50 60
0.99

1

1.01

0 10 20 30 40 50 60

1

1.05

1.1

1.15

0 10 20 30 40 50 60

0.92
0.94
0.96
0.98

1

S
1
,
S
1

S
2
,
S
2

S
3
,
S
3

Time

Figure 9. Instantaneous (- ⋅ -) and bed average (–) reactor split factors, i.e., S1,
S2, S3, S1, S2, and S3. Horizontal lines (--) show upper and lower limits of grade
intervals.

stantaneous melt index and density, and in rapid changes of bed average
properties. The propane inflow does not need to be changed considerably
to hold the propane partial pressure close to its target value. This is since
the other inflows are coordinated such that the sum of all molar con-
centrations, except for propane, is essentially constant. Additionally, the
inflows are coordinated with the inflows of the loop reactor, and thus the
loop polymer production, such that the bed volume controller of the GPR
does not have to change the outflow from the GPR to hold the correct
volume, i.e., the volumes of polymer and gas are not changed consider-
ably during the transition. This yields the total plant production rate to
be at maximum level, and the solid-phase residence time in the GPR is
thus as small as possible, making the quality variables, i.e., bed average
variables, to change fast. The grade variables for the polymer in the GPR
leave grade A at approximately t = 5.5 t.u. and enters grade B at t = 9 t.u.
At the latter point, some of the inflows are still actively changed, showing
the driving-force to be on-grade as fast as possible and the importance of
inflow synchronization.
For both the lights and the propane column, the off-gas flows are at

minimum values. This is because the off-gas flows have high concentra-
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Figure 10. Approximate on-grade functions, i.e., ΠA(y,z) (–) and ΠB(y,z) (- ⋅ -),
approximated total profit Ṽeco, and plant production rate ws3. Vertical lines (--) show
transition times and horizontal line (--) shows upper limit.

tions of light components such as hydrogen and nitrogen, and the hydrogen
concentration is to be increased in both the loop reactor and the GPR and
the nitrogen concentration is to be increased in the GPR. The flare of the
GPR is also at its minimum value for the same reason and because of the
fact that it is a pure economical loss to use it.
The total grade change takes about 3.5 t.u. to perform and the opti-

mization renders the plant production to leave grade A such that grade B
is reached at specified transition time. This is due to the maximization
of approximate total profit Ṽeco and the fact that the instantaneous profit
for grade B is higher than for grade A, which is clearly seen in Figure 10
where the cumulative profit is shown. As the grade variables are trans-
ferred, they both leave and enter target values directly without the poly-
mer being on-grade, but off target values, during a prolonged time period.
This shows that the economical incentive provided by a peak in the effec-
tive sell price using Π j(y,z) is sufficient. The ratio between the two terms
in the cost function is Vu̇/Ṽeco = 0.030, showing that it is the criteria that
expresses economy that clearly dominates the optimization.

Transition B to A In the transition from grade B to A, melt indices and
density are to be decreased and thus the molar ratios Xh2/X e2, Xh3/X e3
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Figure 11. Pressure, propane partial pressure and ethylene partial pressure in
the GPR, i.e., P3, Pp3 and Pe3. Vertical lines (--) show transition times and horizontal
lines (--) show upper and lower limits.

and Xb3/X e3 should be decreased. This transition is considered harder
since hydrogen must be removed from both the loop reactor and the GPR.
The hydrogen in the reactors may only leave the system as part of the
polymer or as off-gas. The reaction rates of hydrogen are very small com-
pared to ethylene and butene, and a considerable amount of the hydrogen
inflows to the loop reactor and the GPR come from the recycle area. Due to
the column split factors, both the propane and lights column have higher
ratios of light components in the off-gases than what is found in the reac-
tors, and thus also the GPR flare flow. They are therefore powerful control
flows for removing hydrogen. However, there is an economical loss in the
off-gas flows due to the component pricing.
As for transition from grade A to B, inflows to pre-polymerization re-

actor are changed slowly. The catalyst flow starts to decrease in the be-
ginning and the ethylene inflow is slightly increased, resulting in a nearly
constant total reaction rate and an increased ethylene molar concentra-
tion in the reactor. The hydrogen compensates with an increased inflow
so that X he1 is constant and on grade B target value. At the transition
time t = 39 t.u., the hydrogen inflow is rapidly increased such that the
instantaneous molar ratio Xhe1 changes with an overshoot and the bed
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Figure 12. Total reaction rates in the pre-polymerization and loop reactor and
the GPR, i.e., rpe1, rpe2 and r3. Vertical lines (--) show transition times.

average value X he1 reaches grade A approximately at time t = 42.5 t.u.
The change in X he1 is not performed until after specified transition time.
The propane inflow is nearly constant, yielding the polymer outflow from
pre-polymerization reactor essentially the same over the whole optimiza-
tion interval, and thus fulfilling the specification of the pre-polymerization
split factor, as will be seen in the GPR.
In the beginning of the optimization interval, the outflow of polymer

from the loop is constant in order to fulfill the loop reactor split factor
of grade B. At the same time, the amount of catalyst is decreased due
to the decreased inflow of catalyst to the pre-polymerization reactor. As
the propane inflow is increased in the beginning, the ratio between poly-
mer and fluid mass must decrease to hold outflow of polymer constant.
The inflows are coordinated such that the total reaction rate is slightly de-
creased, resulting in decreasing polymer mass. At the same time, the fluid
masses are increased to fill the void from the decreased polymer mass in
such a way that the ethylene molar concentration is increased, partly com-
pensating for the decrease of catalyst. The inflows are also coordinated
so that the molar ratio Xh2/X e2 yields the specification of melt index of
grade B to be fulfilled, i.e., the hydrogen inflow is slightly increased. The
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Figure 13. Molar concentrations in the pre-polymerization reactor, i.e., Xe1, Xh1,
and Xp1. Vertical lines (--) show transition times.

grade B specifications are left at t = 39 t.u. and at this point, the inflow of
ethylene is decreased rapidly with a large undershoot, resulting in an un-
dershoot of the total reaction rate in the loop reactor. The instantaneous
loop reactor split factor, calculated in the GPR, is subsequently undershot,
making the bed average value to settle fast at grade A target value. To
decrease melt index fast, and to compensate for the increased inflow of
hydrogen from the pre-polymerization reactor, the fresh feed of hydrogen
is undershot and the off-gas of the lights column is used to reduce the
hydrogen flow from the recycle area. To recover from the hydrogen under-
shoot, the hydrogen inflow makes a small correction before it settles at
the grade A target. The off-gas is only used at the end of the off-grade
period, where the fresh inflow of hydrogen starts to increase to make its
overshoot, keeping the total inflow of hydrogen low during the transition
period. This results in undershoots of the molar ratio Xh2/X e2 and the in-
stantaneous melt index. The total reaction rate undershoot and the rapid
increase of propane inflow during the transition time are coordinated so
that the polymer mass and polymer outflow undershoot with a result-
ing solid-phase residence time that is momentarily decreased during the
off-grade period. This yields a faster change of bed average melt index,
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Figure 14. Molar concentrations in the loop reactor, i.e., Xe2, Xh2, and Xp2, and
molar ratio Xh2/Xe2. Vertical lines (--) show transition times.

reaching on-grade target at approximately t = 42.5 t.u. After the loop
polymer is on grade target, the fresh inflows are still used for corrections
by the optimization to compensate for recycle flows and to reach correct
stationary point. Thus, the component molar concentrations in the reactor
change, but the molar ratio Xh2/X e2, and thus melt index, are at grade A
target values.
For the GPR in the optimization interval beginning, as the inflow of

catalyst decrease, the molar concentration of ethylene must be increased
to keep the correct total reaction rate, and thus correct split factor. This
is accomplished by adjusting the fresh inflows so that the mass of nitro-
gen is decreased, masses of raw material for polymer is increased and the
propane mass is almost kept constant. This yields the molar concentra-
tions of raw material to increase while the molar concentration of inert
nitrogen is decreased and both reactor pressure and propane partial pres-
sure to be close to target values. The nitrogen inflow is changed slowly,
since the off-gas on the propane column contains a high concentration of
nitrogen. The molar concentrations of gases in the reactor are changed
so that the melt index and density is on grade B targets, i.e., the molar
ratios Xh3/X e3 and Xb3/X e3 are constant. The transition of grade vari-
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Figure 15. Molar concentrations in the GPR, i.e., Xe3, Xh3, Xb3, Xp3 and Xn3,
and molar ratios Xh3/Xe3 and Xb3/Xe3. Vertical lines (--) show transition times.
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Figure 16. Solids masses in the pre-polymerization and loop reactor and the GPR,
i.e., ms1, ms2 and ms3. Vertical lines (--) show transition times.

ables starts at t = 39 t.u. and at that point is the inflow of polymer from
the loop reactor decreased with an undershoot and the production rate
of polymer in the GPR is increased. However, the total reaction rate in
the GPR cannot be increased with an overshoot since this would require
the ethylene partial pressure to overshoot, violating its constraint. There-
fore, the ethylene inflow is increased without any overshoot towards its
grade A target. The undershoot of polymer inflow from the loop makes
the split factor transitions faster, but the lack of polymer production over-
shoot in the GPR causes the total solids mass to begin to decrease. The
bed volume controller then decreases the total volumetric outflow so that
the bed volume is on its set-point. Thus, the total production rate of the
plant is decreased during grade transition. However, the decrease is mi-
nor. The transitions of melt index and density, essentially controlled by
the inflows of hydrogen and butene, are made by undershooting both fresh
inflows, causing the instantaneous properties to have undershoots. The
hydrogen inflow also makes a small increase prior settling at its correct
value to compensate for the undershoot. For fast removal of hydrogen,
the propane column off-gas is used at the transition start. This time in-
stant is beneficial since the concentration of hydrogen is high, and so is
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Figure 17. Fluids masses in the pre-polymerization and loop reactor and gas mass
in the GPR, i.e., m f1, m f2 and m f3. Vertical lines (--) show transition times.

the concentration of inexpensive nitrogen, thus reducing the economical
loss. The GPR flare flow is however not used for hydrogen removal due to
its comparatively low hydrogen concentration and associated economical
loss. The total pressure is held within limits and no significant change
in the propane inflow is needed for holding the propane partial pressure
close to its target value. Additionally, these operation variables differ only
from their targets during the off-grade period where the approximated
on-grade function is close to zero, and thus, no economical incentives for
keeping target values exist. The polymer in the GPR is on grade A target
at approximately t = 42.5 t.u. Several of the inflows continue to change
after grade A target is reached, and stationary production is thus not
reached until several time units later.
In total, the transition time is approximately 3.5 t.u. and as for the re-

verse transition, it is optimal to produce as much as possible of grade B,
see Figure 10, in order to maximize the cumulative profit. The ratio be-
tween the two cost function terms is Vu̇/Ṽeco = 0.065, showing that the
economy term dominates the cost. And similar to the former transition, it
is seen that the economical incentives from Π j(y,z) to be on target values
for quality and operation variables are sufficient.
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8.3 Grade Change Characteristics

The economically optimal grade changes can each be divided into three
different phases with distinguishable features.

Preparation Phase In the first phase, the reactors produce polymer on
start grade target and at maximum production rate. However, since e.g.,
the catalyst start to change directly due to its heavy derivative penalty,
the state of the reactors are continuously changed by adjusting the compo-
nent inflows, and thus, the reactors are not in stationary production. The
inflows to the three reactors are synchronized such that quality variables
y and operation variables z do not change during this first phase.

Transition Phase The next phase, having a non-stationary initial con-
dition, transfers the reactors from producing start grade to producing end
grade. The transfer is performed by having significant inflow over- or
undershoots depending on how the quality variables are to be changed,
resulting in over- or undershoots of the instantaneous quality variables.
This is made so that the bed average quality variables have fast transi-
tions. The inflows are coordinated such that their effect on the outflow
of the corresponding reactor, and thus also on the subsequent reactor or
distillation column with recycle flow, are taken into consideration. Ad-
ditionally, the off-gases on the propane and lights columns are used for
removing hydrogen if desired. The phase ends when all quality variables
are on end grade targets, but the reactors are not in stationary production.

Completion Phase The completion phase starts with non-stationary,
but on-target, production and the inflows transfer the production into sta-
tionarity. This is performed as the quality and operation variables are on
target values and having maximum plant production. Also in this phase,
the synchronization between the different control flows is important since
the component molar concentrations are to be changed to end grade values
while the molar ratios are held constant. The last part of the completion
phase contains constant control flows for stationary production of end
grade.

Comparison to Current Practice at PE3 Today, a grade change at
the plant PE3 at Borealis AB is performed manually by operators, fol-
lowing a time and action list. The list is specific for each transition and
is updated after a performed transition. These lists often emphasize that
preparation of the content in the reactors should be performed to make
the transition fast and that over- and undershoots of the fresh inflows
should be used. This aligns well with the optimization results. However,
the completion phase is not as pronounced in the lists.
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9. Summary and Conclusions

This paper has addressed optimization of stationary production and grade
changes with regards to economy on a model of the PE3 plant at Bore-
alis AB, incorporating three reactors and a recycle area consisting of three
distillation columns. A Modelica library with models of the plant units
has been constructed and used when building the plant model. The opti-
mization problems were formulated using the JModelica.org platform. A
direct collocation method was used for solving the resulting dynamic opti-
mization problems. The cost function for the grade transition optimization
problems was a smooth approximation of the ideal cost function with re-
gards to economy, acknowledging that a produced polymer is considered
on-grade if all the quality variables are inside certain intervals. The cost
function also considered incentives for the quality and operation variables
to be on targets. This was made by using an effective sell price that in-
creased as the variables got closer to their target values, and full on-grade
sell price was only received when all variables were at associated target
values.
Two different grades were considered and transitions between them

were optimized. In both cases, the optimization method succeeded in solv-
ing the transition problem with polymer quality variables being on grade
targets both prior to and after the transition. The optimization results
showed the importance of not starting the change of control inflows at
defined transition time, which is the most common procedure in litera-
ture. A preparatory interval gives the opportunity to prepare the plant
for a faster and economically better grade transition, similar to current
practice at the PE3 plant at Borealis AB.
In the two transitions considered in this paper, the reactor operations

during the preparatory time interval depend on the slow changes of the
catalyst inflow, set by the relative large weight on the catalyst inflow
derivative. This changed productivity with respect to the ethylene molar
concentrations in the subsequent reactors and required a careful syn-
chronization of the inflows for producing on-target polymer during the
non-stationary production prior the actual grade transition. A similar sit-
uation was found after the quality variables changed from start grade
to end grade targets, when end grade polymer was produced during non-
stationary conditions. Thus, during these two time intervals the optimiza-
tion rendered the inflows to change the molar concentrations in the re-
actors with respect to each other such that the molar ratios yielded on
target non-stationary production at high production rate.
The actual transitions of the molar ratio of hydrogen and ethylene in

the pre-polymerization reactor and the melt indices and density in the
loop reactor and the GPR are essentially performed by over- and under-
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shoots of hydrogen and butene. Transitions of the reactor split factors are
performed mainly by, if allowed, over- and undershoots of ethylene inflows.
The synchronization between fresh inflows, recycle flows, and contiguous
reactor flows together with usage of off-gas flows showed to be important
when making the transitions economically optimal.
The two time intervals with non-stationary on-grade production, high

production rate during the full optimization interval, and that the opti-
mization renders the plant to produce as much as possible of the grade
with highest instantaneous profit, shows the impact of using a cost func-
tion that expresses the costs and revenues. The resulting trajectories cor-
respond to almost pure optimization of the economy, as the approximations
of the on-grade function are minor and not taken advantage of in the re-
sults. Additionally, the ratio Vu̇/Ṽeco is very small in both transition cases.
Thus, the results are close to the limits of performance when considering
optimization of economical grade transitions on the plant PE3 at Bore-
alis AB, regarding inflow costs and revenues from off-gases and produced
polymer.
The transition optimization problem is large-scale and non-convex, and

the results show that the method and tools used are highly applicable for
solving it. However, compared to a quadratic optimization criteria, the
optimization times are long, and the method and tools are not suitable
for on-line usage in an iterative fashion as in e.g., NMPC. The resulting
trajectories may instead be used for e.g.,

• comparison to other optimization criterias and strategies as a limit
of performance.

• comparison to performed grade transitions on the actual plant re-
garding costs and revenues.

• as a planning tool for production order of different grades.

• as in indicator of how to synchronize different fresh inflows.

A drawback of the proposed cost function may be the inclusion of target
values for operation variables. Incentives, related to the operational cost
of not being on target, must be supplied and can be hard to quantize for
a plant.
Future work includes modeling of ethane production at polymerization

in the reactors, refinement of distillation column models and sensitivity
analysis of optimal trajectories with respect to model and parameter un-
certainties.
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Supplement A

PE3Lib – A Modelica Library for the Plant PE3 at

Borealis AB

The model library for the plant PE3 at Borealis AB, denoted PE3Lib, has
been used when formulating and solving the grade change and calibra-
tion optimization problems in Paper IV and VI, [Larsson et al., 2010] and
[Andersson et al., 2011]. It is implemented in the Modelica language and
several of the main features of the language described in Section 2.3 have
been used. The following supplement will give details of the library con-
tents.

A.1. Overview

The PE3 plant consists of six main units, i.e., the three reactors and the
three distillation columns. This yields a natural structure of the library,
where a Modelica component of each unit is constructed and means for
connecting the components are given. The library is constructed with the
aim of being easy to extend with additional components, and also to add
models with lower or higher complexity compared to the currently avail-
able models.
The library is organized into five main packages,

1. Interfaces – contains connectors and models that define how the
flows between the units are represented and what in- and outflows
the different units have.

2. Components – contains models with equations describing the differ-
ent units.

3. Templates – defines different topologies of the plant.

4. Experiments – contains models for calibration, optimization and sim-
ulation.

5. Miscellaneous – contains model parameters and constants, polymer
grade definitions, stationary operating points for different grades,
as well as minimum, maximum and nominal values for all variables
in the packages in items 1–4 above.

In the forthcoming sections, the different packages will be explained in
more detail.
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A.2. Interfaces

One of the main parts of the Interface package is the Connector pack-
age. It defines how the material flows and properties are represented
at the connection between two models. A connector model defining how
the fluid flow is represented between two units, such as a reactor and
a distillation column, has been custom made for the library. It contains
the total fluid flow and flow fractions of the different components, see
Listing A.1. A second connector type, also custom made for the library,
considers the flow of solids, i.e., polymer and catalyst, and their proper-
ties, see Listing A.2. It contains the total flow and the flow fractions of
polymer and catalyst. Additionally, the solids connector provides means to
transfer catalyst properties, i.e., mean activity and deactivated sites, and
also polymer properties such as density and melt index, used when defin-
ing polymer grades. The solids connector is used e.g., when transferring
polymer from the loop reactor to the GPR. The third, and last, connector in
the library is a connector considering both solids and polymer flows. It is
constructed by using the object-oriented features of Modelica, by contain-
ing one fluids connector and one solids connector. It is used e.g., between
the pre-polymerization and the loop reactor.
Apart from the connectors, the Interface package also contains in-

terfaces for the reactor and distillation column models, implemented as
partial models. The interfaces provide the in- and output structure of
each unit and defines what, at the minimum, needs to be modeled for the
unit. The interface models utilize the connectors above to define what in-
and outflows the different units have, except for off-gases and flare which
are modeled by inputs. For instance, the GPR interface model contains
four different connectors and one input, see Figure A.1, where the inter-
face is found together with the interfaces of the other units. One solids
connector is used for the polymer transferred from loop reactor, one fluid
connector considers the outflow of fluid to the propane column, one fluid
connector is used for the recycle inflow from the propane column, one
fluid connector is used for the fresh inflow of fluids, and lastly, the input
represents the flare flow of the GPR. Additionally, the GPR interface may
contain a connector for the solids outflow. As the subsequent units for e.g.,

connector Fluid

//Total fluids flow

flow Modelica.SIunits.MassFlowRate w_f(start=0,min=0,max=1,nominal=1);

//Mass fractions

Modelica.SIunits.MassFraction z_e(start=0,min=0,max=1,nominal=1); //ethylene

Modelica.SIunits.MassFraction z_h(start=0,min=0,max=1,nominal=1); //hydrogen

Modelica.SIunits.MassFraction z_b(start=0,min=0,max=1,nominal=1); //butene

Modelica.SIunits.MassFraction z_p(start=0,min=0,max=1,nominal=1); //propane

Modelica.SIunits.MassFraction z_n(start=0,min=0,max=1,nominal=1); //nitrogen

end Fluid;

Listing A.1 Fluids connector in the PE3Lib library.

240



A.3. Components

connector Solid

//Total solids flow

flow Modelica.SIunits.MassFlowRate w_s(start=0,min=0,max=1,nominal=1);

//Mass fractions, polymer, formed in current component

Modelica.SIunits.MassFraction ksi_pe1(start=0,min=0,max=1,nominal=1); //C2 polymer

Modelica.SIunits.MassFraction ksi_pb1(start=0,min=0,max=1,nominal=1); //C4 polymer

//Mass fractions, polymer, formed in previous component

Modelica.SIunits.MassFraction ksi_pe2(start=0,min=0,max=1,nominal=1); //C2 polymer

Modelica.SIunits.MassFraction ksi_pb2(start=0,min=0,max=1,nominal=1); //C4 polymer

//Mass fraction, catalyst

Modelica.SIunits.MassFraction ksi_c1(start=0,min=0,max=1,nominal=1);

//Catalyst mean activation, deactivated sites

Real c_a(start=0,min=0,max=1,nominal=1);

Real c_d(start=0,min=0,max=1,nominal=1);

//Melt index and density

Real MI(start=0,min=0,max=1,nominal=1);

Modelica.SIunits.Density rho(start=0,min=0,max=1,nominal=1);

end Solid;

Listing A.2 Solids connector in the PE3Lib library.

Figure A.1. Interface models of the three reactors and three distillation columns
in the PE3Lib library. From left to right: Pre-polymerization reactor, loop reactor,
gas-phase reactor, propane column, heavies column and lights column.

pelleting and packaging, are not included in the library, it was decided not
to add this connector. However, it is straight forward to add it if desired.
Except for the connectors, the interface models also contain declaration

of variables, which it is required to provide equations for when performing
the modeling. Such variables are, for instance, the mass of ethylene and
hydrogen in the reactors. The variables are given minimum, maximum
and nominal values, which are important at optimization.

A.3. Components

The Components package contains the reactor and distillation column mod-
els, but also models used for routing flows.
The reactor and distillation column models extend the corresponding

interfaces and implements the models, i.e., contain the equations describ-
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//Fluids

der(m_e1)= u_e1 ­ w_f1*m_e1/m_f1 ­ r_e1; //ethylene

der(m_h1)= u_h1 ­ w_f1*m_h1/m_f1 ­ r_h1; //hydrogen

der(m_p1)= u_p1 ­ w_f1*m_p1/m_f1; //propane

m_f1 = m_e1 + m_h1 + m_p1; //total fluids mass

//Solids

der(m_pe1) = r_pe1 ­ w_s1*m_pe1/m_s1; //polyethylene

der(m_c1) = u_c1 ­ w_s1*m_c1/m_s1; //catalyst

m_s1 = m_pe1 + m_c1; //total solids mass

Listing A.3 An excerpt from the pre-polymerization reactor model in the PE3Lib
library.

ing the different plant units. Listing A.3 gives an excerpt of the pre-
polymerization reactor model, showing the mass balances, and can be
compared to the equations in Paper VI. The models must at least have
equations for the variables specified in the interface models, but how de-
tailed the models are depend on the modeler. The component models also
introduce variables not found in the interfaces and they are given mini-
mum, maximum and nominal values.
Different levels of model detail may be used for e.g., calibration, opti-

mization and simulation. In the current library, only one level of detail
for each plant unit is considered. However, since the library utilizes in-
terface models for the units, it is straightforward to implement models of
lower or higher complexity and use them interchangeably, as long as they
adhere to the specified in- and output structures. The means to perform
such extensions and direct changes of utilized models are main features
of the library, valuable for its continued development.
The models used for flow routing are sources, sinks, an adder and

multiplexers. The sources yield constant outflows of fluids and/or solids
with different properties, while the sinks receive the flows. Both of these
are useful when analyzing e.g., one reactor model at the time. The adder
component adds two fluid flows that are described by the structure in the
connectors, i.e., total flow and flow ratios for the different components.
For instance, the top and bottom flow of the propane column are added
together using the adder component before being fed into the GPR. The
multiplexers have several fluid inputs, each with only one fluid compo-
nent, and one fluid output connector. The inputs are transformed into
one flow described by the structure in the fluid connector. The multiplex-
ers are used when multiplexing the different fresh inflows before they are
fed to the reactors.

A.4. Templates

Models in the Templates package define different plant topologies, such
as what plant units and control flows to use when performing calibration,
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Figure A.2. Template in the PE3Lib library describing the topology of the plant
PE3 at Borealis AB with three reactors, three distillation columns and 15 inputs.

optimization and simulation. The different template models use the inter-
face models of the plant units as replaceable models. Figure A.2 shows
the template model used in grade change optimizations in Paper VI. The
template models, as they only contain the interface models, can not be
simulated. It must be defined what model from the Components package
is to be used for each unit, made by using the redeclare notation. Tem-
plates are useful as the plant topology is setup only once. It can then be
used with unit models with different levels of detail as long as the unit
models adhere to the in- and output structures defined in the Interfaces
package. The library contains the template in Figure A.2 and a template
for using only the three cascaded reactors without the distillation columns.

A.5. Experiments

The Experiments package contains three packages: Calibration, Optimi­
zation, and Simulation. The models in all three packages use the template
models, i.e., setups of plant topologies.
The Calibration package contains models for calibration of stationary

operating points using averaged plant data from stationary production. It
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has also simulation models used at calibration with plant data recorded
during transitions. For both calibration cases, models with and without
the recycle area of the plant are included in the library.
The Optimization package include models for finding stationary points,

stationary optimization, generation of initial guesses to the dynamic op-
timization problem, and dynamic optimization of grade changes. Each of
these comes in two different versions, one where only the three cascaded
reactors are used, as in Paper IV, and one where the three reactors and
the three distillation columns are used, as in Paper VI. As the models use
the templates, they must define which implemented models are to be used
for the different units. This feature is, as noted previously, important in
the future when models with different levels of detail are implemented.
In the optimization models, some parameter and variable values are

set. For instance, in the models for finding stationary operating points
and in the models used for optimization of stationary operating points,
correct grade is set together with all derivatives equal to 0. The resulting
operating points are used as initial values in the models for generating ini-
tial guesses for the dynamic optimizations and in the models for dynamic
optimizations.
When working with large model libraries, it is advantageous to use a

simulation and modeling software. Therefore, the reactor library has been
built using the software Dymola, see [Dassault Systemes, 2011]. However,
as the Optimica extension, used for formulation of optimization problems,
is not an official extension of the Modelica language, it is not supported
by Dymola. Accordingly, using Optimica constructs for expressing the op-
timization problems yield errors in Dymola. Therefore, models to be used
in the optimization problem, not containing any Optimica constructs, are
implemented in the library. They are subsequently extended by separate
models, outside the library, that contain Optimica constructs to fully cover
the optimization problems. These additional models, which are similar to
the optimization model in Example 2.2, Section 2.5, contain e.g., the def-
initions of the cost functions to be used and the time intervals for the
dynamic optimizations. One of the main reasons to implement as much
as possible of the optimization models in the library is due to the use of
Dymola, as it helps the user to find modeling errors by helpful messages
at model compilation.
The Simulation package contains models with the same setups as in

the Optimization package and are used for validation of optimization re-
sults. Inflow trajectories resulting from optimizations may be used as
inputs to the models. For verification, Dymola or SUNDIALS through
JModelica.org, are used for simulation of the models. See [Hindmarsh
et al., 2005] for an overview of SUNDIALS. The collocation based method
used in the dynamic optimizations corresponds to a fixed step size Radau
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solver, while both Dymola and SUNDIALS use more advanced solvers.
Hence, if the simulation results and optimization results are equal within
considered tolerances, it is likely that the optimization results fulfill the
non-discretized dynamic constraints.

A.6. Miscellaneous

The Miscellaneous package contains various packages with parameters
and constants used by the models in sections A.2–A.5.
Packages with reactor and distillation column parameters and con-

stants, such as reaction kinetics parameters, distillation column split fac-
tors and reactor volumes, are found in the Miscellaneous package. Addi-
tionally, a package with physical constants, such as molar weights, is also
implemented.
Minimum, maximum and nominal values for the variables in the dif-

ferent models in sections A.2–A.5 are found in associated packages.
For the different grades, packages containing grade definitions, i.e.,

target values and intervals for the different quality variables, are pro-
vided. Cost function parameters, both for optimization using a quadratic
cost function and optimization regarding plant economy, are found in sep-
arate packages.
Several stationary operating points of the plant, corresponding to dif-

ferent polymer grades and found using the stationarity models in the
Experiments package, are saved in associated packages. They are mainly
used by the optimization and simulation models in the Experiments pack-
age as initial values and desired end values during grade changes.
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