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77..    FFUURRTTHHEERR  IINNSSIIGGHHTTSS  FFRROOMM  

GGRRAAPPHH  TTHHEEOORRYY  
 

 

 

 

 

The interaction analysis conducted in Chapter 6 showed that the interaction measures 

selected from the literature do not give the full picture of interaction in the case study 

process. The measures produced different results and gave conflicting 

recommendations. The common factor in the measures examined was their reliance on 

the system transfer function matrix G which relates the overall inputs and outputs, and 

hence does not take into account the underlying relationships between these variables. 

In this Chapter, two approaches based on Graph Theory with the potential to reveal the 

underlying relationships are investigated.  

 

 

7.1 AN APPROACH TO CLOSED LOOP DESIGN USING 

GRAPH THEORY 
It is well known that analysing a system with control loops included will result in a 

more complete picture of the interaction in the final system. However, closing the 

control loops will itself add a substantial number of extra loops, which will differ 

depending on the pairing chosen. This will also increase substantially the computational 

effort required in any analysis, and will also require tuning the controllers. An approach 

to closed loop design is explored here initially through a simple example and then to 

evaluate whether, in the case of the refrigeration system, the outcome can justify the 

extra effort needed. 
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7.1.1. A Simple 2 × 2 Example 

The proposed closed control loop design approach is presented here through its 

application to a simple 2 × 2 example. The system considered is defined as: 

 

A =    ,   B =    ,   C =     ,   D =  







−

−
21

11







 −
21
12









10
01









00
00

(7.1)

 

 

where A, B, C and D are the system matrices defined in Equations 2.1 and 2.2. 

 

Here, the measured variables are also the state variables, hence the matrix C is the 

identity matrix. Therefore, the measured variables are denoted by x instead of y 

hereafter. 

 

At steady state, the system matrix G(0) is evaluated as: 

 

G(0) =  







13
05

(7.2)

 

And the relative gain array Λ for the system is evaluated as 

 

Λ =  







10
01

(7.3)

 

which suggests that pairing x1 with u1 and x2 with u2 will show no interaction. 

 

The steady state signal flow graph (SFG) between the measured variables (here the 

state variables) of the open loop system is given in Figure 7.1a. Using the full state 

space model, the SFG identifies the existence of one loop between x1 and x2 that 

represents interaction. Figure 7.1b, using the system transfer function matrix to draw a 

SFG for inputs and outputs, fails to show the existence of any underlying loops, and 

thus the internal interaction is hidden. This illustrates clearly that the matrix G is not 

sufficient in analysing interaction as it fails to identify the interacting loops. 
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Figures 7.1c and 7.1d show the equivalent situations under the two alternative closed 

loop control pairings. For example, closing x1-u1 and x2-u2 loops results in five new 

additional loops in Figure 7.1c, but only three in Figure 7.1d. 
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Figure 7.1: Steady state SGF for the 2 × 2 system defined in Equation 7.1 

(---- x1-u1 & x2-u2 pairing; ….. x1-u2 & x2-u1 pairing) 

 

 

Extending the analysis into the s-domain, the SFG for the system with the pairing x1-u1 

and x2-u2 is shown in Figure 7.2. 
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Figure 7.2: SGF for the 2 × 2 system – transfer function representation for the 

pairing  x1-u1 & x2-u2 

(proportional controllers are shown as ….. )  

 

 

The two input / output open loop transfer functions (i.e. k11 = k22 = 0) in Figure 7.2 

reduce to: 
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and 
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The change in the stability of the control system for change in the gain values k11 and 

k22 is an indicator of the interaction caused by one loop on the other loops in the 



Chapter 7: Further Insights from Graph Theory 141 
 

system. The Routh Stability Criterion and the Routhian Array can be used to determine 

stability conditions for the system. 

 

Using the Routhian Array to examine the stability of the individual SISO control loops 

in the system results in the following limits 

 

k11 ≥ -0.2 

k22 ≥ -1.0 

(7.6a)

(7.6b)

 

Closed loop transfer functions can be determined from the SFG in Figure 7.2 by the 

application of Mason’s Rule (Henley and Williams, 1973; D’Azzo and Houpis, 1995). 

In this case, the two closed loop transfer functions can be obtained as: 
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which reduces to 
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and 
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which reduces to 
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The resulting characteristic equation is: 

 

0.5s2 +(1.5 + k11 + k22)s + (0.5 + 2.5k11 + 0.5k22 + 2.5k11.k22) = 0 (7.11)

 

Using the Routhian Array to examine its stability results in the following limits: 

 

(k11 ≥ -0.2 & k22 ≥ -1)     or     (k11 ≤ -0.2 & k22 ≤ -1) 

and 

k11 ≥ -1.5-k22 

(7.12a)

(7.12b)

 

The significance of Equation 7.12 is shown in Figure 7.3. The graph axes are the gain 

factors of the two controllers. Two distinct regions can be determined; a stable region, 

and an unstable region. These regions are bounded by the Equations 7.12a and 7.12b 

respectively. 

 
 

Figure 7.3: Stability of closed loop system for the pairing x1-u1 & x2-u2 when both 

loops are closed - yellow areas indicate stable regions 

 

Comparing the stability limits determined from Equation 7.6 for the individual SISO 
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loops with the stability regions in Figure 7.3 illustrates clearly the effect of interaction 

between loops in this system, as the presence of both the controllers changes the 

stability limit of the two separate controllers. It should be noted however that the effect 

is not always bad, as one controller can extend the range of stability of the other. In 

Figure 7.3, referring to the x1-u1 and x2-u2 pairing, the stability region includes a small 

triangle for k22 < -1 and k11 < -0.2. If in this region either of the two controllers is 

switched to manual, the system will become unstable, however with both control loops 

closed, the system is stable. Simulation results shown in Figure 7.4 confirm this 

finding. The two controllers used are proportional controllers with gain factors of –0.25 

and –1.1 for k11 and k22 respectively. 
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Figure 7.4: Responses of x1 and x2 to unit changes in their set points (x1-u1 & x2-u2 

pairings). Interaction between the loops ensures stability so long as both loops are 

closed 
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Similarly, the same analysis was also conducted on the pairing x1-u2 and x2-u1 shown in 

Figure 7.5. The resulting characteristic equation is:  

 

0.5s2 +(1.5 + 0.5k21 – 0.5k12)s + (0.5 + 1.5k21 - 2.5k12.k21) = 0 (7.13)
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Figure 7.5: SGF for the 2 × 2 system – transfer function representation for the 

pairing  x1-u2 & x2-u1 

(proportional controllers are shown as ….. )  

 

Using the Routhian Array, the stability limits for the two input / output loop transfer 

functions (i.e. k12 = k21 = 0) is: 

 

k12 ≤ 3.0 

k21 ≥ -0.333 

(7.14a)

(7.14b)

 

Closing the two loops results in the following stability limits: 

 

k21 ≥ k12-3 

and 

k21 ≥ 
3k5

1

12 −
 

(7.15a)

(7.15b)
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Figure 7.6 shows the stability regions for the alternative pairings x1-u2 and x2-u1 

determined by Equations 7.15a and 7.15b. Examining this graph shows two important 

features: 

1. The stability region expands to include a small triangular area when k12 is greater 

than 3, and also a large area when k21 is smaller than –0.333. This behaviour has 

also been seen in Figure 7.3. 

2. The area of stability of the system was reduced in other areas in Figure 7.6, which 

are bounded by Equation 7.15b. For example if k21 and k12 were set to 1, each loop 

is stable on its own, but placing both loops on automatic results in an unstable 

system. This is confirmed by simulation in Figure 7.7. 

 

 
Figure 7.6: Stability of closed loop system for the pairings x1-u2 & x2-u1 when both 

loops are closed - yellow areas indicate stable regions 

 

The two cases examined in analysing this simple example illustrate clearly that graphs 

similar to Figures 7.3 and 7.6 can be used as a design tool in visualising regions of 

stability in systems of multiple SISO control loops. Such figures can show stability 

regions and point out potential instability problems than can be caused by either placing 

the controllers on automatic or by switching some of them to manual. The figures also 
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can be used as an indication of interaction in a system, as any alteration in the stability 

limits of a controller as a result of switching on or off another controller is seen as an 

indicator of interaction in the system. 
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Figure 7.7: Responses of x1 and x2 to unit changes in their set points (x1-u2 & x2-u1 

pairings). Interaction between the loops shows instability so long as both loops are 

closed 

 

 

7.1.2. Application to the Refrigeration Case Study 

An attempt was made to apply the analysis method described in the previous section to 

the two-stage refrigeration system, utilising the symbolic toolbox in MATLAB to 

determine the characteristic equation and the transfer functions between the variables. 

However, graphs similar to Figures 7.3 and 7.6 cannot be produced directly because 

with five controllers there is a need for five-dimensional graphs, thus limiting the 
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analysis to determine the controller gains in a maximum of three closed loops at a time 

(with 3 dimensional plots). The other two control loops would have been fixed settings 

for a given plot. 

 

For the refrigeration system, Wilson and Jones (1994) showed that the two liquid level 

control loops interact. Consequently, an attempt to produce graphs similar to Figures 

7.3 and 7.6 for the stability regions between the two level control loops was made. The 

other three control loops had fixed tuning (see Table 5.3). The results of the analysis 

were extremely complicated, and difficult to plot. To illustrate the degree of 

complexity, the resulting characteristic equation is 

 
   400 [5.553e32s12 
+(2.14e34 + 4.03e32 k1 + 6.78e32 k2)s11  
+(3.33e34 + 1.52e32 k1 + 2.43e32 k2 + 4.93e30 k1k2) s10 
+(2.65e32 + 2.30e32 k1 + 3.48e31 k2 + 1.78e30 k1k2) s9 

+(1.13e31 + 1.77e30 k1 + 2.55e30 k2 + 2.59e29 k1k2) s8 

+(2.47e29 + 7.28e28 k1 + 1.00e29 k2 + 1.89e29 k1k2) s7 

+(2.31e27 + 1.53e27 k1 + 2.03e27 k2 + 7.40e27 k1k2) s6 

+(4.45e24 + 1.39e25 k1 + 1.78e25 k2 + 1.48e25 k1k2) s5 
+(2.29e21 + 2.65e22 k1 + 3.43e22 k2 + 1.27e23 k1k2) s4 

 -(1.53e17 + 1.37e19 k1 + 1.83e19 k2 + 2.43e20 k1k2) s3 

+(1.73e12 -  8.55e14 k1 -  5.58e14 k2 + 1.30e17 k1k2) s2 

+(2.13e7   + 1.05e10 k1 -  3.08e9 k2   -  4.20e12 k1k2) s 

+(4.70e1   + 5.53e4 k1   -  5.18e3 k2   -  1.82e7 k1k2)] = 0 

(7.16)

 

Attempts to construct the Routhian Array for the two control loops resulted in 

impractical and cumbersome solutions. 

 

Analysis of the 2 × 2 simple example and the refrigeration system illustrate that the 

closed loop approach discussed is only successful for simple low order systems as its 

application to high order systems is cumbersome and makes large computational 

demands. 

 

 

7.2. INSIGHTS INTO OPEN LOOP BEHAVIOUR USING GRAPH 

THEORY 
All the interaction measures investigated in Chapter 6 based their analysis on the 

system transfer function matrix G. Although this matrix gives the relationship between 
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the inputs and outputs, it fails to identify the underlying loops between the inputs and 

the outputs themselves. Also, the closed loop approach discussed in the Section 7.1 

failed in high order systems. 

 

In designing any control system, only a few measured variables are usually considered 

in the analysis. The number of these variables is in general considerably less than that 

of the state variables. Thus, it becomes clear that analysing the Jacobian matrix A is not 

the solution that identifies underlying loops for the following reasons: 

1. The analysis cannot identify directly the interaction occurring between the 

measurements as it analyses only the state variables through matrix A. 

2.  If the same system is modelled in terms of different state variables, different results 

can be obtained. Hence the choice of state variables is introduced as an additional 

factor to be considered in the analysis, and this is undesirable. 

 

Thus it makes sense to try to investigate the possibility of identifying interactions using 

the full state space model matrices in a way that can reveal the underlying relationships 

between the inputs and outputs. Such a solution will not only analyse directly these 

relationships, but will also cut significantly the amount of calculation needed and will 

not be affected by the choice of state variables used in formulating the model. In the 

next section, a method is described which makes use of this idea. 

 

7.2.1. Developing the Input / Output Interaction Array (IOIA) 

A new steady state interaction measure, the Input / Output Interaction Array IOIA, is 

proposed here, taking as its starting point the idea of Johnston (1990) of dividing the 

steady state gain of a pairing into “Direct Effect” and “Indirect Effect”. Here the Direct 

Effect is the non-interactive effect between ui and yi, whereas all other effects between 

ui and yi are denoted Indirect Effect. The steady state gain is the sum of the Direct 

Effect and the Indirect Effect. 

 

To achieve this, the state space model described in Equations 2.1 and 2.2 is transformed 

into a form that defines the relationship between the measurements and the manipulated 

variables. The derivation of the IOIA is explained below. 

 

From the state space model, the measurements are defined as 
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y = C x + D u (2.2)

 

Taking the derivative of Equation 2.2 with respect to time 

 

dt
dy  = C 

dt
dx  + D 

dt
du  (7.17)

 

From the standard state space equation 

 

dt
dx  = A x + B u (2.1)

 

Substituting Equation 2.1 in Equation 7.17 leads 

 

dt
dy = C A x + C B u + D 

dt
du  (7.18)

 

Rearranging Equation 2.2 gives 

 

x = C-1 (y – D u) (7.19)

 

Note that the psuedo-inverse as defined in MATLAB is used to evaluate C-1 when C is 

not a square matrix. The psuedo-invesre has been used by Chang and Yu (1989) in 

evaluating the non-square RGA.  

 

Substituting in 7.18 gives 

 

dt
dy  = C A (C-1 y – C-1 D u) + C B u + D 

dt
du  (7.20)

 

Expanding the brackets and collecting terms 

 

dt
dy  = C A C-1 y + (C B – C A C-1 D) u + D 

dt
du  (7.21)
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So the matrix E can be defined as 

 

E = C A C-1 (7.22)

 

And the matrix F can be defined as 

 

F = C B – C A C-1 D = C B – E D (7.23)

 

At steady state, 
dt
dy  = 

dt
du  = 0. Hence Equation 7.21 reduces to 

 

0 = E y + F u  (7.24)
 

 

The IOIA uses the transformed system matrices (i.e. matrices E and F defined in 

Equations 7.22 and 7.23) to determine the ratio of the Direct Effect to the Indirect 

Effect between variables in u and y at steady state.  

 

At steady state, Equation 7.24 is rearranged into the form 

 

y1 = (-1/e11) * [(e12 y2 + e13 y3 + ….) + (f11 u1 + f12 u2 + ….)] 
… 

yn = (-1/enn) * [(en1 y1 + en2 y2 + ….) + (fn1 u1 + fn2 u2 + ….)] 
(7.25)

 

The Direct Effect between yi and uj is denoted as De. The ijth element of De is 

expressed as 

 

De = {deij} = 






−
e
f
ii

ij
  (7.26)

 

And the Indirect Effect, denoted as Ie, is all the rest, and is calculated as 

 

Ie = {ieij} =  { gij(0) – deij} (7.27)

 

Elements in the IOIA are defined as the ratio of the Direct Effect to the Indirect Effect. 
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For the yi-uj pairing, this is expressed as: 

 

IOIA ={ioiaij} = 












ie
de

ij

ij  (7.28)

 

A MATLAB program to perform these calculations is presented in Appendix C. 

 

If the pairing yi-uj does not suffer interaction from other system pairings then the 

Indirect Effect is zero and the ijth IOIA element will be infinity. The best pairings are 

those which have the largest (absolute value) IOIA elements. IOIA elements of unity 

indicate equal Direct and Indirect Effects, and elements below 1 indicate that the 

Indirect Effect is larger than the Direct Effect in the ijth pairing. Negative values 

indicate that the Direct and Indirect Effect are in opposite directions. 

 

It should be noted that elements in the IOIA are scaling independent. Also, like the 

RGA this array is not intended to give a quantitative measure of the interaction in sets 

of pairings but only a pairing guidance.  

 

7.2.2. IOIA Applied to the 2 × 2 Simple System 

The application of the IOIA was first performed on the 2 × 2 simple example defined in 

Equation 7.1.  

 

Starting from the system matrices A, B, C, and D, and using Equations 7.22 and 7.23, 

the matrices E and F are calculated as: 

 

E =   







−

−
21

11
(7.29)

 

and 

 

F =      






 −
21
12

(7.30)
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Note that in this example, the measured variables are the state variables, hence the 

matrix C is the identity matrix and therefore matrices A and E are identical. 

 

Applying Equation 7.26, the Direct Effect matrix De is then calculated as 

 

De =  






 −
15.0
12

(7.31)

 

Remembering that the steady state gain matrix G(0) is 

 

G(0) =  







13
05

(7.2)

 

The IOIA is then calculated as 

 

IOIA =  







∞
−

2.0
1667.0

(7.32)

 

The best pairing indicated by the IOIA is x2-u2 associated with the infinite element. 

Consequently the only other pairing possible is x1-u1 which is associated with an IOIA 

element of 0.667. This relatively small IOIA value, and the relatively large IOIA 

element (-1) associated with x1-u2 suggest that substantial interaction will occur in the 

system. ACSL simulation results for this case are shown in Figure 7.8. Here, PI 

controllers are used on both loops. The controller gain factors are both 1, and the 

integral times are 2.618. Figures 7.8a and 7.8b show the existence of interaction as both 

x1 and x2 react to a disturbance on the opposite set point while their loops are on 

manual.  

 

In Figures 7.8c and 7.8d, the significance of the IOIA elements can be seen, as 

interaction between the two control loops is evident as variables respond as a result to a 

step change in either set point. This behaviour was not predicted by the RGA which 

suggested that no interaction occurs in this case. 
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(c) Response to a unit step change in x1sp 

(both loops on automatic) 

(d) Response to a unit step change in x2sp 

(both loops on automatic) 

x1                    x2  

 

Figure 7.8: Responses of x1 and x2 to unit changes in their set points (x1-u1 & x2-u2 

pairings) illustrating interaction in the system 

 

7.2.3. IOIA Applied to the Refrigeration Case Study 

The IOIA analysis was applied to the two-stage refrigeration system for Cases 1 to 5 

(defined in Table 6.1). The resulting IOIA matrices are shown in Table 7.1. 

 

The application of the IOIA pairing guidance on Case 1 is explained in detail. The first 

pairing to be chosen is the one associated with the largest element (absolute value) in 

the IOIA. Examining the IOIA matrix for Case 1 shows that this element is 176.7 

which corresponds to the pairing P2-XV1. Fixing this pairing removes the row 

associated with P2 and the column associated with XV1 from further pairing 

consideration. The next largest element in the remaining array is 12.3 which 

corresponds to the pairing P1-N, hence fixing it removes the associated row and 

column leaving a 3 × 3 array. The next largest remaining element fixes the pairing L1-
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XV2 (4.5), then P3-FCP3 (3.8). Consequently, the last pairing is fixed by default as L2-

XV3 (0.42), this is associated with a small IOIA element suggesting high interaction. 

 

Table 7.1: IOIA results for the refrigeration system case study * 
Case  IOIA     
1  Base-Con  XV2 XV3 N XV1 FCP3   

 L1 -4.533 0 -1.652 -0.688 0   
 L2 -1.436 -0.420 -0.098 -0.924 -0.009   
 P1 -0.642 0 -12.344 -0.887 0   
 P2 0.082 0.161 0.084 176.730 0.004   
 P3 0 -0.130 -2.056 -1.287 3.803   
      

2  Base-Dir  XV2 XV3 N XV1 FCP3   
 L1 1.004 0 94.335 -0.463 0   
 L2 -1.436 -0.420 -0.098 -0.924 -0.009   
 TP1o -0.130 0 -1.082 -6.303 0   
 P2 0.082 0.161 0.084 176.730 0.004   
 P3 0 -0.130 -2.056 -1.287 3.803   
      

3  Base-Cas  XV2 XV3 P1 XV1 FCP3   
 L1 1.004 0 -7.836 -0.463 0   
 L2 -1.436 -0.420 0.922 -0.924 -0.009   
 TP1o -0.130 0 -1.079 -6.303 0   
 P2 0.082 0.161 -0.310 176.730 0.004   
 P3 0 -0.130 -2.037 -1.287 3.803   
      

4  L1/L3-Cas  XV2 XV3 P1 XV1 FCP3   
 L1 0.145 0 0.409 -0.179 0   
 L3 0.000 0.683 0.469 4.354 -0.311   
 TP1o -0.130 0 -1.079 -6.308 0   
 P2 0.082 0.161 -0.310 180.450 0.004   
 P3 0 -0.130 -2.037 -1.287 3.799   
      

5  L2/L3-Cas  XV2 XV3 P1 XV1 FCP3   
 L2 -1.490 -0.401 0.797 -0.918 -0.008   
 L3 0.000 -1.667 -2.037 -1.250 -0.735   
 TP1o -0.130 0 -1.079 -6.301 0   
 P2 0.082 0.161 -0.310 176.790 0.004   
 P3 0 -0.130 -2.037 -1.287 3.802   
      

* Bold values indicate recommended IOIA pairings 

 

A closer look at this set of pairings suggests that strong interaction will affect the L2-

XV3 loop resulting from the relatively large IOIA elements in L2 row associated with 

XV2 (1.4) and XV1 (0.9), which means significant interaction between L2 and L1 and 

L2 and P2 loops. 
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This pairing suggested by the IOIA for Case 1 agrees with the performance results 

reported in Section 5.5, where the system performance was acceptable based on the ISE 

of TP1o. The interaction between the two liquid level loops shown by the IOIA agrees 

also with Wilson and Jones (1994) who identified its existence using root-locus plots.  

 

Applying the IOIA to Case 2 fixes the first pairing as P2-XV1 (176.7). Following the 

same procedure already explained, the next pairings suggested are L1-N (94.3), then 

P3-FCP3 (3.8), then L2-XV2 (1.4), then TP1o-XV3 (0). However, the last pairing 

cannot be accepted as it is associated with an IOIA element of zero which indicates no 

Direct Effect from XV3 on TP1o, therefore the pairing procedure must be repeated by 

going back a step to the last remaining 2 × 2 array and pairing on the second largest 

element of the IOIA. This results in the pairings L2-XV3 (0.42) and TP1o-XV2 (0.13), 

where the latter pairing is associated with a small (0.13) IOIA element and hence is 

relatively unacceptable. Going a step further back to the 3 × 3 array stage results in two 

pairings P3-FCP3 (3.8) and TP1o-XV3 (0). Consequently the procedure is repeated 

from the 4 × 4 array stage, this time fixing P3-FCP3 (3.8) as the second pairing in the 

system. Following the same procedure through repeats the initial pairing which was 

already rejected. Hence, as the 3 × 3 stage, pairing moves to the second largest element 

and the procedure is repeated. The detailed application of the procedure is explained in 

Table 7.2. The final three pairings fixed are: TP1o-N (1.08), then L1-XV2 (1), then L2-

XV3 (0.42). This is an acceptable result as it maximises the smallest IOIA element in 

the set of pairings. 

 

Table 7.2: Application of the IOIA pairing procedure 

 
 XV2 XV3 N XV1 FCP3  

L1 1.004 0 94.335 -0.463 0
L2 -1.436 -0.42 -0.098 -0.924 -0.009
TP1o -0.13 0 -1.082 -6.303 0
P2 0.082 0.161 0.084 176.73 0.004
P3 0 -0.13 -2.056 -1.287 3.803

1. Fix the pairing P2-XV1 
and remove its associated 
row and column 
 
 

    
 XV2 XV3 N FCP3  

L1 1.004 0 94.335 0
L2 -1.436 -0.42 -0.098 -0.009
TP1o -0.13 0 -1.082 0
P3 0 -0.13 -2.056 3.803

2. Fix the pairing L1-N and 
remove its associated row 
and column 
 
 

contd…./
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Table 7.2 (cont.): Application of the IOIA pairing procedure 

    
 XV2 XV3 FCP3  

L2 -1.436 -0.42 -0.009
TP1o -0.13 0 0
P3 0 -0.13 3.803

3. Fix the pairing P3-FCP3 
and remove its associated 
row and column 

    
 XV2 XV3  

L2 -1.436 -0.42 
TP1o -0.13 0 

4. Fix the pairing L2-XV2 
and remove its associated 
row and column 

    
 XV3   

TP1o 0  5. Remaining pairing by 
default is TP1o-XV3 

    
Pairing of TP1o-XV3 is rejected as it is associated with an IOIA element of 0. Hence go back a step and re-start 
from the 2 x 2 matrix in Step 4 

    
 XV2 XV3  

L2 -1.436 -0.42 
TP1o -0.13 0 

6. Fix the pairing L2-XV3 
and remove its associated 
row and column 

    
 XV2   

TP1o -0.13  7. Remaining pairing by 
default is TP1o-XV2 

    
Pairing of TP1o-XV3 is rejected as it is associated with an IOIA of 0.13. Hence go back a step and re-start from 
the 3 x 3 matrix in Step 3 

    
 XV2 XV3 FCP3  

L2 -1.436 -0.42 -0.009
TP1o -0.13 0 0
P3 0 -0.13 3.803

8. Fix the pairing L2-XV2 
and remove its associated 
row and column 

    
 XV3 FCP3  

TP1o 0 0  
P3 -0.13 3.803  

    
Either choice of pairing TP1o in the above matrix will result in a pairing associated with a zero IOIA, and 
consequently rejected. Hence go back a step and re-start from the 4 x 4 matrix in Step 2  

    
 XV2 XV3 N FCP3  

L1 1.004 0 94.335 0
L2 -1.436 -0.42 -0.098 -0.009
TP1o -0.13 0 -1.082 0
P3 0 -0.13 -2.056 3.803

9. Fix the pairing P3-FCP3 
and remove its associated 
row and column 

    
 XV2 XV3 N

L1 1.004 0 94.335
L2 -1.436 -0.42 -0.098
TP1o -0.13 0 -1.082

10. Fix the pairing L1-N 
and remove its associated 
row and column 
 

contd…./
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Table 7.2 (cont.): Application of the IOIA pairing procedure 

    
 XV2 XV3  

L2 -1.436 -0.42  
TP1o -0.13 0  

    
The above matrix is a repetition of Step 4 which was rejected. Hence go back a step to the 3 x 3 matrix in Step 10

    
 XV2 XV3 N  

L1 1.004 0 94.335
L2 -1.436 -0.42 -0.098
TP1o -0.13 0 -1.082

11. Fix the pairing L2-XV2 
and remove its associated 
row and column 

    
 XV3 N  

L1 0 94.335  
TP1o 0 -1.082  

    
Either choice of pairing in the above matrix will result in a pairing associated with a zero IOIA, and 
consequently rejected. Hence go back a step and re-start from the 3 x 3 matrix in Step 11 

    
 XV2 XV3 N  

L1 1.004 0 94.335
L2 -1.436 -0.42 -0.098
TP1o -0.13 0 -1.082

12. Fix the pairing TP1o-N 
and remove its associated 
row and column 

    
 XV2 XV3  

L1 1.004 0 
L2 -1.436 -0.42 

13. Fix the pairing L2-XV2 
and remove its associated 
row and column 

    
 XV3   

L1 0  14. Remaining pairing by 
default is L1-XV3 

    
Pairing of L1-XV3 is rejected as it is associated with an IOIA element of 0. Hence go back a step and re-start 
from the 2 x 2 matrix in Step 13 

    
 XV2 XV3  

L1 1.004 0 
L2 -1.436 -0.42 

15. Fix the pairing L1-XV2 
and remove its associated 
row and column 

    
 XV3   

L2 -0.42  16. Remaining pairing by 
default is L2-XV3 

    
Pairing is acceptable as it maximises the smallest IOIA element in the set of selected loops 

 

 

The pairings determined for the remaining three cases in Table 7.1 were made 

following the same procedure. 
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The best pairings resulting from the IOIA analysis for Cases 2-5 agree with the 

heuristics pairings results reported in Section 5.5.  

 

Comparing results of using the IOIA with the RGA results (see Table 6.4) shows that: 

• Both methods recommend the same set of pairings for Case 1. 

• The pairings recommended by the RGA for Cases 2 and 3 suggested pairing TP1o 

with XV2 and L1 with N (or P1 in the cascade temperature case). As shown in 

Section 5.5, the system performance was poor with very high ISE of TP1o, though 

the level controller performance was acceptable. This behaviour can be explained 

looking at the IOIA as the L1-N (or P1) loop corresponds to a very large IOIA 

element hence the good performance, and the TP1o-XV2 loop corresponds to an 

IOIA element of only 0.13 hence the bad performance.  

• The pairings recommended by the RGA for Cases 4 and 5 failed, whereas the IOIA 

pairings agree with the results of Section 5.5.  

 

7.2.4. The IOIA Applied to a Coal Gasifier 

As a further example of applying the IOIA analysis approach, it is now applied to a 

detailed non-linear model for a coal gasifier. This model was developed and validated 

by GEC Alsthom. A linearised version of their ACSL model was made available to 

universities who participated in the MEC Benchmark Challenge, in which alternative 

solutions for controlling the system were called for (Dixon, 1997; Dixon et al., 1998). 

The gasifier itself can be considered as a reactor where coal is gasified with air and 

steam. Pulverised coal and limestone, which is required to capture sulphur, are 

conveyed by pressurised air and steam, and spouted into the gasifier. The air and steam 

not only fluidise the solids in the gasifier, but also react with the carbon and volatiles 

from the coal, producing a low calorific value fuel gas. The remaining char (ash from 

coal, limestone and unreacted carbon) is removed as bed material from the base of the 

gasifier or elutriated as fines with the product gas. The fuel gas is then cleaned and fed 

to a gas turbine.  

 

The control objective set was to design a control system for the linearised model of the 

gasifier at its 100% load operating point. In addition, the design required that control 
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schemes also be evaluated on models representing the 50% and 0% load cases to 

investigate robustness. 

 

The gasifier is a non-linear, truly multivariable system, having five inputs (coal, 

limestone, air, steam and char extraction) and four outputs (pressure, temperature, bed 

mass and gas quality) with a high degree of cross coupling between them. 

 

The manipulated inputs are: char extraction flow; air mass flow; coal flow; steam mass 

flow and limestone mass flow. The limestone absorbs sulphur in the coal so its flowrate 

should be set to a fixed ratio of the coal flowrate - nominally this should be to 1:10 

limestone to coal. This leaves effectively 4 degrees of freedom for the control design. 

 

The outputs are: fuel gas calorific value; bed mass; fuel gas pressure and fuel gas 

temperature. The set disturbance for the control systems is a step in the sink pressure, 

which is the gas turbine inlet pressure which would vary according to the position of 

the gas turbine fuel valve. 

 

A important feature of the problem is the tight constraints on both the limits and rates of 

change of the manipulated variables. 

 

A valid control design that complies with most of the system requirement is shown in 

Figure 7.10, and is described by Asmar et al. (1998b), and is presented more fully in 

Appendix D. 

 

The IOIA analysis was applied to the gasifier model to investigate interaction in 

controlling the gasifier system. The IOIA for the gasifier 100% load case is shown in 

Table 7.3. 

 

Table 7.3: IOIA for the coal gasifier at 100% load 

 Char Air Coal Steam 
C.V. -4.87E-03 -1.37 -1.65 -1.45 
Mass -1.47E-17 2.85E-25 0 0 
Pressure 7.16E-04 -3.57 -1.34 1.53 
Temperature -6.78E-06 6.05E-03 3.92E-04 1.14E-03 
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Figure 7.9: Control scheme of the gasifier 

 

The pairing suggested by the IOIA is to pair P-Air, then CV-Coal, then T-Steam, then 

Mass-Char. This pairing was also recommended by the RGA. It was applied to the 

gasifier system and was simulated as Scheme 1 in Appendix D. Although the control 

system was successful, the strict rate constraints imposed on inputs and outputs made it 

unacceptable as a valid answer. 

 

Repeating the IOIA pairing procedure starting from the second largest element results 

in the following pairing: CV-Coal, P-Steam, T-Air, and Mass-Char. This pairing was 

also applied to the gasifier system and was simulated as Scheme 2 in Appendix D. 

Although the control system was successful, the strict rate constraints imposed on 

inputs and outputs made it again unacceptable as a valid answer. 

 

However, the IOIA result corresponds with the acceptable performance obtained from 

the pairing shown in Figure 7.9. It can be explained easily, as it uses, particularly the 

large IOIA elements associated with the pairing CV-Air and P-Steam. The IOIA 

element associated with the Mass-Coal pairing is zero, thus explaining the slow drift 

observed in the mass response in Scheme 3, and justifies necessity of the extra link 

between the mass and the char in Scheme 4. 
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7.2.5. Discussion 

The three examples above demonstrate that the IOIA can successfully identify 

interactive effects in control systems. They also show that it works in situations where 

the RGA failed. The measure can be used to assess interaction in the system at an early 

stage, and thus allow for the inevitable interactive effects by adapting the design at that 

stage. 

 

The IOIA is based on a full state space model rather than the system transfer function 

matrix. It requires the availability of the full state space model matrices (A, B, C and 

D). Until recently, this was a problem, however, the rapid development in computer 

software (e.g. ACSL) make it easy to obtain linearised models numerically from their 

non-linear form. 

 

In comparison with a related approach made by Johnston (1990), the closed loop SIA, 

the IOIA can provide an assessment for systems of any order whereas the method 

proposed by Johnston is only practical to low order cases as it requires the identification 

of all loops within the system in order to apply Mason’s Rule. His calculation also 

requires the evaluation of the manipulated variables changes to keep the controlled 

variables (except the variable in the pairing investigated) unchanged. 

 

In the case of the refrigeration system, which is of prime interest in this thesis, applying 

the IOIA analysis shows that the simulation results of heuristics pairings which were 

used in Chapter 5 validate the resulting IOIA pairings. 
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