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22..    LLIITTEERRAATTUURREE  RREEVVIIEEWW  
 

 

 

 

 

This chapter reviews previous published work on the control of multivariable 

systems, and the methods to assess interaction in these systems. It also contains a 

general review on dynamic simulation and its application to refrigeration systems 

dynamics and control.  

 

 

2.1. INTRODUCTION TO THE CONTROL OF MULTIVARIABLE 

SYSTEMS 
Control of multivariable systems has developed dramatically in recent years due to 

the rapid development in computer technology. Although the principles of control do 

not differ from the classical single loop control principles, the application and the 

implementation of the principles is more complex. In this section a review of the 

subject is presented as a basis for application of relevant techniques in refrigeration 

system control. 

 

The concepts and applications of multivariable process control are wide, difficult to 

explain, and cannot be covered totally in such a small space. Consequently some sort 

of classification is required to facilitate the presentation of these concepts. In this 

thesis, the concepts are presented in such a way that parallels the development of 

controller design: 

 

1. The methods to select the variables to be included in the control problem from all 

the available variables are presented. These methods require the analysis of the 

process to assess some of its criteria by using several methods and measures. The 
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main methods used are: 

• Input and Output Effectiveness 

• Controllability 

• Resiliency 

 

2. The measures to analyse the interaction within the selected set of measured and 

manipulated variables, and guide the selection of the appropriate input / output 

pairing. Several measures were proposed in the literature, and some found more 

acceptance than the others. A few measures are discussed in this thesis, with 

more interest given to the ones used actually in the analysis of the refrigeration 

system. These measures are: 

• Relative Gain Array (RGA) 

• Relative Interaction Array (RIA) 

 

3. The measures that evaluate the interaction in fixed pairings. These measures rank 

pairings in the form of single numbers evaluated using specific procedures. The 

measures discussed in detail in this thesis are: 

• Jacobi Eigenvalue Criterion (JEC) 

• Dynamic Interaction Measure (DIM) 

• Performance Interaction Measure (PIM) 

• µ Interaction Measure (µIM) 

 

4. The methods to assess the closed loop control system design. Two major 

approaches can be used: 

• Analytical methods that assess the stability and robustness of the control 

systems. These methods require the information regarding the controller 

design. However, since this information is not usually available at an early 

stage of the process design, the usage of these methods is limited, and 

therefore are not covered in detail here. 

• Time simulations that use the developed linear and /or non-linear models 

to examine the performance of the control systems. This method is preferred 

here as it gives better insight into the dynamics of the system. 
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In order to understand some of the methods and measures presented later, essential 

mathematical principles and control concepts need to be presented. The aim of the 

presentation is to aid understanding the terms used in the subsequent sections.  

 

 

2.2. BASIC CONCEPTS AND MATHEMATICAL PRINCIPLES 
In this section, basic concepts and mathematical principles are defined for use in 

discussion of the methods of multivariable control systems analysis presented later. 

 

2.2.1. State Space Representation 

In the time domain, a system can be described in general by a set of linear 

differential and algebraic equations (i.e. state space model): 

 

dt
dx  = Ax + Bu (2.1)

 

y = Cx + Du (2.2)

 

where x is the vector of state variables, u is the vector of inputs (manipulated 

variables), y is the vector of outputs (controlled / measured variables), and A, B, C, 

and D are constant matrices of appropriate dimensions. 

 

Taking the Laplace transform of Equations 2.1 and 2.2 with zero initial conditions, 

and re-arranging, the system transfer function matrix G(s), the relationship between 

the inputs u and the outputs y relates the state model equations 2.1 and 2.2 as: 

 

G(s) = 
)s(
)s(

u
y  = C (sI – A)-1 B + D (2.3)

 

Representation of the state space model was developed based on graph theory 

principles. Two main types are used: 

1. The signal-flow-graph (SFG) type. See Henley and Williams (1973) for detailed 

discussion. 
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2. The matrix representation (Russell and Perkins, 1987). 

The first type is easier to use and thus has been adopted by other researches (Johnston, 

1990; Wang and Cameron, 1993), and it has also been used here for the same reason. 

 

Each SFG consists of directed branches interconnected at nodes. In the state space 

model, the nodes represent the variables (signals), and the branches connecting the 

nodes indicate that these nodes are related. Each branch is assigned a numerical value 

or a function, which quantifies the relationship between the two variables in terms of a 

gain factor or a transfer function. 

 

2.2.2. Eigenvalues 

In a square matrix A of dimensions n × n, the eigenvalues λi , i=1,..n, are the n roots 

of the polynomial equation 2.4 (Luyben, 1990) 

 

Det [λI – A] = 0 (2.4)

 

In a state space model, the eigenvalues of the matrix A are the roots of the 

characteristic equation of the system. They are essential for the analysis of the 

dynamic behaviour of the systems as they can show the stability, the speed and the 

nature of the system’s dynamic response.  

 

The product of the eigenvalues equals the determinant of the matrix A, and their sum 

equals the trace of A, denoted as tr(A). Also, the spectral radius of the matrix A, 

denoted as ρ(A), is defined as the magnitude of the largest absolute eigenvalue of A 

(Doyle, 1982). 

 

ρ(A) = max ( | λi | ) (2.5)

 

2.2.3. Matrix Norms 

A norm ║.║ is a single number measuring the size of a vector, a matrix, a signal or a 

system. The commonly used matrix norms in control theory are: 

 

1. ║A║1 induced norm, defined as the maximum column sum of the matrix A  
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║A║1 = 




∑

i
j,i

j
amax  (2.6)

 

2. ║A║∞ induced norm, defined as the maximum row sum of matrix A 

 

║A║∞ = 





∑

j
j,i

i
amax  (2.7)

 

3. ║A║2 induced norm, also known as the Frobenius or Euclidean norm, defined as 

the square root of the spectral radius of the matrix (ATA). 

 

║A║2 = )( T AAρ  (2.8)

 

It should be noted that the spectral radius of the matrix A provides a lower bound on 

any matrix norm such that: 

 

ρ(A) ≤ ║A║ (2.9)

 

2.2.4. Singular Value Decomposition (SVD) 

Singular value decomposition (SVD) is a unique decomposition for a given general 

matrix G (not necessarily the system transfer function matrix) which is reduced to a 

diagonal form by premultiplying and postmultiplying it by unitary matrices (Golub 

and Van Loan, 1983; Stewart, 1973) as follows: 

 

G = UΣVT (2.10)

 

Σ is the diagonal matrix of singular values diag(σ1 , σ2  , ..., σq ). σi is the ith singular 

value, and σ1  ≥ ... ≥  σq  > 0. The columns of U are known as left singular vectors, 

and the columns of V are known as right singular vectors. U and V are both unitary, 

i.e., for U matrix: UTU = I.  

 

By definition, the singular values are also given as the positive square roots of the 
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non-zero eigenvalues of the Hermitian Matrix GTG or GGT (Karlsmose et al., 1994)  

 

σi = ( )GGT
iλ   (2.11)

 

and it can be shown also that 

 

σmax(G) =  ║G║2  (2.12)

 

The singular values of a matrix are a measure of how close the matrix is to being 

“singular”, i.e., having a determinant that is zero (Koung and MacGregor, 1992).  

 

2.2.5. Condition Number 

The condition number γ of the matrix G is defined as the ratio between the largest 

and the smallest singular value 

 

γ = 
σ
σ

min

max  (2.13)

 

Another way to calculate it has been also defined as (Joseph and Brosilow, 1978; 

Grosdidier et al., 1985; Nett and Manousiouthakis and, 1987): 

 

γ = ║G║2 ║G-1║2  (2.14)

 

In general, large values of γ indicate that the matrix G is closer to being singular. 

 

2.2.6. Structured Singular Value (SSV) 

The structured singular value (SSV), denoted µ, was introduced by Doyle (1982). It 

involves the matrix problem of determining necessary and sufficient conditions such 

that  

 

Det(I + G∆) ≠ 0 (2.15)
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where G is the transfer function matrix from the collective outputs of the 

perturbations to their inputs, and ∆ is a diagonal perturbation matrix containing the 

uncertainty of the system. 

 

Mathematically, it is defined as: 

 

µ(G) = { 
0 if no ∆ solves Det(I + G∆) = 0 

( min {σ
∆

max(∆) | Det(I + G∆) = 0})-1 (2.16)

 

which means that µ-1(G) is equal to the smallest maximum singular value of ∆ which 

is needed to make (I + G∆) singular. 

 

The computation of µ is complicated and no single method exists for its exact 

calculation (Hovd et al., 1994). Therefore several bounds were found to estimate its 

value. Hovd et al. (1993) stated that the bounds are almost always within 1-2% of 

the real values, and for engineering purposes µ never has to be calculated exactly. 

 

Skogestad et al. (1988) and Morari and Zafiriou (1989) concluded that µ is bound by 

the spectral radius and the maximum singular value of G such that: 

 

ρ(G) ≤ µ(G) ≤ σmax(G) (2.17)

 

Doyle (1982) stated and proved several properties of µ. His work was followed by 

many researches, who expanded the µ-approach and explored methods to compute it 

for specific cases, e.g. Fan and Tits (1986), Nett and Uthgenannat (1988), Morari and 

Zafiriou (1989), and Yamamoto and Kimura (1995). 

 

2.2.7. Relative Gain Array (RGA) 

The relative gain array (RGA) was introduced by Bristol (1966). A theoretical basis 

for it was later developed by Tung and Edgar (1981), Grosdidier et al. (1985), and 

Hovd and Skogestad (1992). For a non-singular m × m matrix G of steady state gain 

factors (i.e. G(0)), the RGA, denoted by Λ, is in general an m × m matrix defined as: 
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Λ = G ⊗ (G-1)T (2.18)

 

where ⊗ denotes Hadamard (element by element or Schur) multiplication. 

 

The sum of each row and each column in Λ equals 1, and any permutation of the 

rows and columns of G results in the same permutation in Λ.  

 

A full discussion regarding the applications of RGA in interaction analysis and 

pairing selection is presented in Section 2.4.1. 

 

2.2.8. Scaling of Process Variables 

Scaling can be viewed as the choice of units for process variables when modelling 

the plant. It requires the engineer to make a judgement at the start of the design 

process about the required performance of the system regarding the allowed 

magnitude of each input, the allowed deviation of each output, and the expected 

magnitudes of disturbances. Unlike system properties which are independent of 

variable scaling such as the RGA and the eigenvalues of A and G, SVD analysis is 

scaling dependent, i.e. for the same system model using different variable units leads 

to different SVD matrices which consequently result in different measures of system 

behaviour. Because of this dependence, the variable scaling choice is crucial when 

using analysis methods based on SVD. 

 

Several authors referred to the scaling as a problem when using SVD, but with few 

exceptions, most pass over the issue in a few sentences and give no practical 

solutions of how to handle it (e.g. Smith, 1981; McAvoy, 1983a; Grosdidier et al., 

1985; Grosdidier and Morari, 1986; Grosdidier and Morari, 1987; Chang and Yu, 

1990; Hovd and Skogestad, 1992; Brambila and D’Elia, 1992; Alatiqi et al., 1994; 

Karlsmose et al., 1994; Sågfos and Waller, 1995). 

 

Moore (1986) suggested that a good scaling can be expressed in terms of percent 

changes such that the units of G(s) are defined as: 
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Scaling unit = 
%

%
of sensor span

of range of manipulator
 (2.19)

 

Luyben (1990) also suggested using dimensionless gains in the transfer functions 

matrix such that the gains with engineering units should be divided by the 

appropriate transmitter spans and multiplied by the appropriate valve gains. The 

principle of this method is also similar to Moore’s suggestion. This method has been 

applied by Alatiqi et al. (1994) on two anaerobic digestive schemes, and by 

Skogestad and Postlethwaite (1996). 

 

Cao et al. (1996) scaled the state and output variables by dividing their values by 

their associated steady state values. The inputs were scaled to be within the range of 

±1 by dividing their values by scaling factors that equal the smaller of the difference 

between either the higher or lower limits and the steady state values of the associated 

variables. Based on a similar concept, Skogestad (1997), and Laush et al. (1998) 

scaled all variables to be in an interval of ±1, where inputs were scaled in respect to 

their constraints, outputs in respect to their expected variations, and disturbances in 

respect to their expected range. 

 

Keller and Bonvin (1987) made an alternative suggestion that the variables all be 

scaled so as to exhibit a unity steady state gain. The same method was used by Alsop 

and Edgar (1990). 

 

Waller and Waller (1995) gave an excellent review of the scaling issue, and they 

recommended using the scaling that leads to the minimised condition number 

defined in the next section. The same concept was earlier applied by Nguyen et al. 

(1988), who developed a scaling policy known as G-balancing. This method is 

iterative and gives results close to the minimised condition number in a matter of 2-3 

iterations.  

 

2.2.9. Minimised Condition Number 

The minimised condition number γmin of the system transfer function matrix G is 

obtained by minimising the condition number with respect to all input and output 
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scaling. It is defined in Equation 2.20 where S1, S2 are real diagonal matrices with 

non-zero diagonal elements (Grosdidier et al., 1985; Nett and Manousiouthakis, 

1987; Maciejowski, 1989). 

 

γmin (G) = γ (S
S S1 2,
min 1 G(s) S2) (2.20)

 

Methods to calculate the minimised condition number were reported frequently in 

the literature in terms of upper or lower bounds (Grosdidier et al, 1985; Skogestad 

and Morari, 1987; Nett and Manousiouthakis, 1987). Grosdidier et al. (1985) 

obtained an upper bound on the minimised condition number by scaling the process 

transfer function matrix G until the minimised condition number is obtained. For the 

matrix process transfer function G of dimensions n × n, this bound is expressed in 

Equation 2.21, where Λ is the relative gain array RGA, 1Λ  is the 1-norm of the 

RGA, and and ∞Λ  is the infinity-norm of the RGA. 

 

γmin ≤ 2 max ( 1Λ , ∞Λ ) (2.21)

 

Nett and Manousiouthakis (1987) obtained a lower bound on the minimised 

condition number defined as: 

 

γmin ≥ max ( 1Λ , ∞Λ ) (2.22)

 

 

2.3. INPUT / OUTPUT VARIABLE SETS 
A key issue in designing multivariable control systems is the appropriate choice of 

input (manipulated) and output (measured) variables, as a wrong set of variables may 

impose fundamental limitations on the system’s performance that cannot be 

overcome even by complex control strategies. The need to find simple methods to 

assess the choice is more important for large-scale control systems where the number 

of pairing possibilities becomes huge. A summary of some of the recently suggested 

methods can be found in van de Wal and de Jager (1995). 
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Cao and Rossiter (1997) identified that for a process with M candidate outputs and N 

candidate inputs, the total number of control schemes CS with m measurements and 

n manipulated variables can be computed as 

 

CS = 
)!nN(!n

!N
)!mM(!m

!Mn

1n

m

1m −−ΣΣ
==

 (2.23)

 

The main criteria to select the set of the inputs and outputs is to achieve robust 

stability and accepted performance. A basic method is to test each selection for the 

number and location of right half plane poles and zeros (van de Wal and de Jager, 

1995). Other methods were developed to try to automate the selection, see, e.g Cao 

et al. (1997a, 1997b). 

 

Most of the research in this area was directed towards the selection of the appropriate 

measurements. Downs in 1984 used an SVD based method to find controlled 

variables from a large number of choices (Yu and Luyben, 1987). The method 

depends on analysing the elements of the matrix U resulting from a SVD of the plant 

steady state gain matrix G(0). The largest elements in each column of the U matrix 

indicate which outputs of the process are the most sensitive, and hence which to 

select as controlled variables. 

 

This method has been applied by several researchers. Moore (1986; 1992) used this 

method to select the temperature sensors in a 50 tray distillation column. Yu and 

Luyben (1987) used this method to select the location of temperature measurements 

in controlling multicomponent distillation columns. Bequette and Edgar (1989) used 

the SVD to select the appropriate measurements in the control system in a distillation 

column, This method was also used by Luyben (1990) to select the best variables to 

be controlled in a distillation column, Chylla and Çinar (1990) to select the most 

sensitive temperature in a reactor case study, and Alatiqi et al. (1994) to determine 

the best controlled variables in two anaerobic digestive schemes. Keller and Bonvin 

(1987) used also an SVD based method to select the input variables for the purpose 

of model reduction and control design. 
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2.3.1. Input and Output Effectiveness 

Cao and Rossiter (1997) developed a method based on SVD to select inputs, and 

extended it later to select outputs as well (Cao et al., 1997b). The technique they 

developed is called the Input Effectiveness IE, denoted as ηI, and the Output 

Effectiveness OE, denoted as ηO. A simple method to calculate these measures is by 

utilising the non-square RGA (NRGA) of the matrix G (see Section 2.4.1). The sum 

of the ith column of NRGA equals the square of the Input Effectiveness, and the sum 

of its ith row equals the square of the Output Effectiveness.  

 

Hence for a G matrix of size m × n, the following relations were defined: 

 

∑ λ
m

i
ij  = ηI

2 (2.24)

 

∑ λ
n

i
ij  = ηO

2 (2.25)

 

The candidate input variables are ranked by selecting the best variables in terms of 

having the most effect on the output variables. The opposite is done to the output 

variables. This simply means to select the variables that have η greater than 0.5, and 

eliminate the variables with η less than 0.5. The method should be repeated with the 

remaining variables until the desired number of candidates is reached. It should be 

noted that after each elimination η values always increase, and that these measures 

are scaling dependent since ηI is input scaling dependent and is ηO output scaling 

dependent. 

 

2.3.2. Controllability: 

The term “controllability” is a widely mentioned term in process control literature. 

However, the exact definition of the term is rather ambiguous. In this thesis, it refers 

to input-output rather than the usual controllability term in old control literature. 

Some of the definitions that go online with the meaning adopted in this thesis are 

mentioned below. According to Moore (1986) it indicates the practicality to satisfy 

the entire set of control objectives, or in other words, the ability of a process to be 
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operated economically and safely without violating the constraints imposed to 

achieve various design objectives in the presence of various uncertainties (Kwon and 

Yoon, 1996). 

 

In process control, the condition number γ of G (defined in Equation 2.13) has been 

widely used recently as a measure for controllability, where it is taken to show on a 

relative basis how much more difficult it will be to control a process using different 

alternatives. According to Moore (1986) a large γ(G) indicates that it will be 

impractical to satisfy the entire set of control objectives. However the quantitative 

meaning of “large” varies between from 10 (Lau et al., 1985), to 50 (McAvoy, 

1983a), to 100 (Joseph and Brosilow, 1978).  

 

Alsop and Edgar (1990) studied the control of a high purity distillation column and 

used the condition number of G to screen the selection of process inputs from an 

input-output model description. Papastathopoulou and Luyben (1991) used the 

condition number γ(G) alongside other steady state indexes to decide alternative 

control structures for a binary distillation column. They said that the smaller γ(G) is, 

the better is the control, but their analysis results showed some inconsistency 

between γ and other applied indexes. Alkaya et al. (1992) used the same concept to 

select the best controlled variables in a multicomponent high-purity distillation 

column, and their evaluation was based on selecting the pair which has the lowest 

condition number obtained amongst different pairs. This approach was used earlier 

by Joseph and Brosilow (1978), but proved to be impractical to find the set which 

gives the minimum condition number by going through all possible combinations. 

Recently, Dimian et al. (1997) used the same condition number to assess alternative 

control structures in a plant-wide process that handles the removal of impurities in a 

plant with nested loops. 

 

McAvoy (1983a) used the condition number γ(G) as a measure of decoupling. Lau et 

al. (1985) used it as an indication of sensitivity of the system. They considered that if 

γ(G) is less than 10 in the specified frequency range, it implies good condition, 

which means that modelling uncertainties can be tolerated. Nguyen et al. (1988) used 

γ(G) as an indicator of the inherent controllability of a process, and pointed to its 
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significance as the most useful index in assessing the controllability of alternative 

plant designs.  

 

Sågfos and Waller (1995) defined a system to be “ill-conditioned” if the condition 

number of the process matrix is large. Waller and Waller (1995) stated that the 

condition number is used as a measure when comparing or designing different 

control structures. Karlsmose et al. (1994) also suggested that systems with high 

condition number are termed “ill conditioned” and are inherently difficult to control. 

 

Grosdidier et al. (1985), Skogestad and Morari (1987), and Skogestad and Havre 

(1996) investigated using the RGA as an indicator to assess controllability. 

Grosdidier et al. (1985) stated that the condition number is related rigorously to 

sensitivity and robustness, and that ill conditioned systems show both high condition 

numbers and large elements in RGA. The same was concluded by Skogestad and 

Morari (1987) and Skogestad and Havre (1996) who said that large minimised 

condition number and large RGA elements are causes of concern. All these authors 

concluded that RGA can be used as an additional indication of controllability and 

concluded that systems with large RGA elements are inherently difficult to control 

and sensitive to modelling errors.  

 

Few authors used the singular values instead of the condition number as 

controllability indexes, where larger values of singular values indicate better 

controllability. Nguyen et al. (1988) and Cao et al. (1996) used the minimum 

singular value for this purpose. 

 

2.3.3. Resiliency 

Morari (1983) defined resiliency as the ability of the plant to move fast and smoothly 

from one operating condition to another (including start-up and shut-down) and to 

deal effectively with disturbances. Luyben (1990) considered it as the ease of 

controllability, i.e. some choices of manipulated and controlled variables produce 

systems that are easier to control than others. 

 

Morari (1983) developed the Morari Resiliency Index (MRI) which is simply the 
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minimum singular value of the process transfer function matrix G(s). His criterion is 

that the larger the value of MRI the more resilient is the process which can be 

explained that the larger the minimum singular value of a matrix it is further from 

being singular and hence easier to find its inverse. This index is a useful tool for 

comparing alternative processes and alternative manipulating variables as it depends 

only on the controlled and manipulated variables and not on the pairing of the 

variables or the controllers tuning.  

 

MRI method was applied by Johnston and Barton (1984) and Nguyen et al. (1988). 

Luyben (1990) used it as a way to determine the manipulated variables choice in the 

process where he recommended using the set of manipulated variables which have 

higher resiliency, and it also was used by Papastathopoulou and Luyben (1991) to 

study alternative control structures for a binary side-stream distillation column. 

Recently, Laush et al. (1998) used it alongside other methods to assess resiliency of 

control structures in a plant-wide system that handles reaction, recovery and 

purification processes.  

 

 

2.4. GUIDANCE ON INPUT / OUTPUT PAIRINGS 
The selection of variable pairing is seen as a main step in designing decentralised 

multivariable controllers. The selection is done usually so as to minimise the 

interaction in the system so that the multivariable system resembles the SISO 

independent loops as closely as possible. Here, interaction means that in a 

multivariable control system each manipulated variable affects more than one 

controlled variable.  

 

The linkage between the pairings selection and interactions lead to the development 

and utilisation of several interaction measures to assist in the choice of pairing, see, 

e.g. Jensen et al. (1986) and Khelassi (1991) who both reviewed different interaction 

measures. In general these measures can be classified into two main categories: 

measures that assess the interaction by examining the process itself, and measures 

that include the controller design in its assessment.  
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Examples of the measures that involve a fixed controller design include the Dynamic 

Block Relative Gain (Reeves and Arkun, 1989), and the General Interaction Factors 

(Balchen and Mummé, 1988). These measures are not discussed here as using them 

requires a full knowledge of the control system structure and design. This 

undermines the main advantage of interaction analysis of assessing the system by 

analysing the plant model only.  

 

The most famous interaction measure that utilises the plant model only is the 

Relative Gain Array, defined in Section 2.2.7. Recently other measures were also 

suggested including several extensions of the RGA, the Structural Interaction Array 

SIA (Johnston, 1990), and the Relative Interaction Array RIA.  

 

Johnston (1990) looked at this problem and based on the graph theory and using the 

state space model developed what he called the Structural Interaction Array SIA. This 

array gives the ratio between the direct effect between each input variable u and its 

corresponding output variable y and the total closed loop gain for the same two 

variables subject to a unit change in each output variable. His analysis becomes very 

complicated with higher order systems as it analyses the Jacobian matrix A of state 

variables, which has the major drawback of prohibitive computational effort. It also 

requires the determination of the steady state values of the u variables for a unit change 

in each y. 

 

2.4.1. The Relative Gain Array and Its Extensions 

This is the most famous and most widely used tool in interaction analysis due to its 

simplicity. Bristol (1966) defined relative gain as the ratio of an open loop gain 

(when the other loops are on manual) to the same loop gain where the other loops are 

all under perfect control. With perfect control, a controlled variable is held at its set 

point no matter what disturbances attempt to change it. Calculation of the RGA was 

introduced in Section 2.2.7, and requires only the steady state gain information. 

Hence for a steady state gain matrix G(0), the RGA Λ is calculated as: 

 

Λ = G(0) ⊗ (G(0)-1)T (2.26)
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Table 2.1 summarises the properties associated with the RGA values (Shinskey, 

1984; 1988; 1992; Ogunnaike and Ray, 1994). 

 

It should be noted however that the RGA measures the interaction in the individual 

loops in the system, and the closeness of each element to 1 is a qualitative measure 

and does not quantify the amount of interaction.  

 

Since the RGA is a dimensionless value, it is not affected by scaling of variables. 

But in needing only the steady state gain matrix, is a disadvantage as it does not take 

into account the effect of the process dynamics. Another limitation is that it is only 

applicable to square matrices and only works if perfect controllers are applied. 

 

In his original RGA proposal, Bristol (1966) gave an RGA pairing rule that pairing 

should be done always on positive RGA elements closest to unity. McAvoy (1981; 

1983a) extended the pairing rules of RGA to check its stability, and suggested an 

improved pairing rule which states the pairing should also be checked by the 

Niederlinski Index*. If found unstable the next positive pairing closest to 1 is chosen, 

if possible avoiding negative pairings. Zhu (1996) added that large RGA elements 

(i.e. much larger than 1) should also be avoided.  

 

 

                                                 
* Niederlinski Index (NI): 
This method was introduced by Niederlinski (1971) as a necessary but not sufficient condition for 
stability for closed-loop systems with integral action. It applies only when integral action is used in all 
loops. The Niederlinski Index (NI) is defined as: 
 

NI = 
)0(

)0(

ii

n

1i

||

G

G

Π
=

 
 

 
where Π is the product of the diagonal elements of G(0), and |G(0)| is the determinant of G(0).  
 
The criterion states that if NI is negative the closed-loop system is unstable, and if not the system may 
or may not be stable. 
 
Zhu and Jutan (1993) extended the stability Niederlinski Index NI to measure the overall interaction 
of a system, and stated that variables should be paired in such a way that the resulting pairing 
corresponds to an NI closest to 1. This rule lacks any theoretical basis, and was shown that it may 
result in incorrect pairing choices (Zhu, 1996). 
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Table 2.1: Significance of Relative Gain Array values features 

RGA value Properties 
λ < 0 Interaction acts in the opposite direction to the interaction-free 

process gain. Negative numbers indicate that the sign of controller 
gain may have to be switched when auto/manual loop transfers are 
made  

λ = 0 Interaction acts in the reverse direction to interaction-free process 
gain 

0 < λ < 1 Interaction acts in the same direction as interaction-free process 
gain. The closer the diagonal element to 1, the less interaction 
exists 

λ = 1 No interaction 
λ > 1 Interaction acts in the same direction and more strongly than the 

interaction-free process gain. Large numbers indicate very high 
interaction 

λ → ∞ Loops are completely dependent 
 

Smith (1981) and McAvoy (1983a) combined the analysis of both RGA and SVD. 

Smith (1981) used SVD of the steady state gain matrix as a complementary 

technique with RGA to choose pairings especially in the case of processes near 

singularity. McAvoy (1983a) used the condition number of the steady state gain 

matrix as a measure of decoupling feasibility and recommended to use SVD as a 

check to linear decoupler design based on RGA.  

 

Zhu and Jutan (1993) proposed using an empirical RGA based measure to assist in 

the pairing choice in cases where ambiguities occur when more than one set of 

pairings satisfy the RGA pairing rule. They stated that the final pairing amongst the 

chosen alternatives is the one in which the relative gains exhibit the minimum 

overall distance from 1. i.e,  

 

min ∑ −λ 1k
ij  (2.27)

 

where  is the paired RGA elements corresponding to the kλk
ij

th altrernative. 

 

Zhu (1996) showed that this rule may result in incorrect pairing choices, and he 

developed the RIA pairing rule (see next section) instead. 
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Despite its success and its adoption as a first pairing rule, there were reported cases 

in which the RGA resulted in incorrect results. For example, Hovd and Skogestad 

(1992) showed a case in which the RGA pairing resulted in an unstable system 

despite that each individual loop was stable.  

 

Chang and Yu (1989) extended the RGA to include non-square matrix systems. 

Their array, denoted NRG or ΛN, is similar to Bristol’s RGA (including using only 

steady state gain matrix) with only one difference, that is using the pseudo-inverse 

G+ instead of the normal matrix inverse G-1 so  

 

ΛN = G(0) ⊗ (G(0)+)T (2.28)

 

NRG measures quantitatively the ultimate steady state performance of a non-square 

control system. The closeness of each row to unity has a strong implication in non-

square control performance. Small values indicate that the specific output will be 

controlled poorly if a non-square controller is used. Therefore it can be used to select 

the controlled and manipulated variables. In their examples NRG gave results similar 

to SVD based methods when the systems examined were properly scaled. It should 

be noted, however, that unlike the RGA the NRG is dependent on output scaling. 

 

Several authors extended the RGA to account for dynamic features such as Witcher 

and McAvoy (1977), Bristol (1978), McAvoy (1981) and Tung and Edgar (1981). In 

terms of matrix operations, the relative dynamic gain array RDGA for the process 

transfer function matrix G(s) is expressed as (Bristol, 1978; Jensen et al., 1986; 

Hovd and Skogestad, 1992) 

 

Λ(s) = G(s) ⊗ (G(s)-1)T (2.29)

 

The information contained in the RDGA is best expressed by plotting it as an array 

of polar plots (Jensen et al., 1986) or as a magnitude and phase plots (Khelassi, 

1991). Witcher and McAvoy (1977) stated that interaction is small if the magnitude 

of the diagonal elements of Λ(s) is close to 1, and the magnitude of all other 

elements is small.  
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The RDGA was used recently by several researchers to assess interaction, see, e.g. 

(Schmidt et al., 1992, Karlström et al., 1992; Karlsrome et al., 1994; Dimian et al., 

1997; Kookos and Lygeros, 1998). Despite this acceptance, some have their 

reservations on its usage, e.g.  Jensen et al. (1986) and Grosdidier and Morari (1986; 

1987). Luyben (1990) said that the RGA itself is not an effective tool for control 

applications. 

 

McAvoy (1983a; 1983b) extended the RGA to account for pure integrals. For a 3 ×3 

matrix he showed that the 1/s terms are cancelled out, and therefore the RGA for the 

integrating system G(s) turned out to be the same as the RGA of the non-integrating 

system. Arkun and Downs (1990) generalised this method, and developed a general 

method to calculate RGA for integrating processes based on the state space model 

and SVD techniques. 

 

Hovd and Skogestad (1992) proposed the performance relative gain array PRGA, 

denoted Γ, as an extension to the RGA to indicate the existence of one-way coupling 

 

Γ(s) = Gd(s) G(s)-1 (2.30)

 

where Gd is the diagonal elements of G. PRGA needs to be calculated any time G is 

rearranged. Also it is dependent on output scaling (i.e. Γ(G) ≠ Γ(DG)). Plants with 

small values are preferred, and plots of γii are used to evaluate the achievable closed 

loop performance. Grosdidier (1990) originally introduced the PRGA at steady state, 

and stated that RGA can be used as an indicator of the performance loss caused by 

interactions in the decentralised control systems, and linked it to the diagonal 

elements of the matrix Γ(0) such as  

 

γii = λii (2.31)

 

2.4.2. Relative Interaction Array (RIA) 

This method was proposed by Zhu (Zhu, 1996; Zhu and Jatan, 1996) as an improved 

interaction measure based on the RGA, but unlike the RGA, this measure represents 
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the relative amount of interaction in the loop thus it is quantitative. RIA, denoted φ, 

is defined as 
 

φij = 
λij

1  - 1 (2.32)

 

Table 2.2 summarises the properties associated with the RIA values (Zhu, 1996). 

 

Table 2.2: Significance of Relative Interaction Array values features 

RIA value Properties 
φ < -1 Reverse interaction dominates over interaction-free process gain 
-1 < φ < 0 Interaction acts in reverse direction as interaction-free process gain 
φ = 0  No interaction 
0 < φ < 1 Interaction acts in the same direction as interaction-free process 

gain 
φ > 1 Interaction dominates over interaction-free process gain 

 

The difference between RIA and RGA is that the distance of an RIA element from 0 

actually quantifies the amount of interaction in a loop. 

 

Zhu (1996) proposed the RIA paring rule which states that variables should be paired 

such that all RIA elements area as close as possible to 0, NI is positive, the RIA 

elements are greater than –1, and the elements close to –1 should be avoided. 

 

The best pairing is chosen as the pairing that exhibits the least amount of interaction. 

And since the distance between any RIA element and 0 actually quantifies the 

amount of interaction, the pairing whose elements exhibit the minimum overall 

distance from 0. i.e,  

 

min ∑ φk
ij  (2.33)

 

where  is the paired RIA elements corresponding to the kφk
ij

th altrernative, is chosen. 

 

This method was compared to other pairing measures by Zhu (1996) who said it can 

identify the appropriate pairings. It was later used by Kookos and Lygeros (1998). 
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2.5. PERFORMANCE MEASURES FOR FIXED INPUT / OUTPUT 

PAIRINGS 
Several interaction measures were suggested that quantify the amount of interaction 

in a system in terms of a specific number. These measures assume a fixed pairing in 

the system to perform their calculations. To compare between two different pairings, 

the calculation procedure must be performed twice. Examples of these measure are 

the Dynamic Interaction Measure (Lau et al. 1985), and the µ Interaction Measure 

(Grosdidier and Morari, 1986; 1987). Some of these measures are discussed in detail 

below. 

 

2.5.1. Jacobi Eigenvalue Criterion (JEC) 

This criterion (Mijares et al., 1986) is a mathematical criterion based on the 

difficulty caused by the interaction terms (the off-diagonal elements in G(0)) in 

finding the inverse of the steady state gain matrix G(0). It considers the best pairing 

as the one most closely resembles a set of independent single-loop systems. For the 

process matrix G(0) arranged in such a way that the pairing is on its diagonal, Gd is 

the matrix of the diagonals. The Jacobi iteration matrix J is defined as 

 

J = I - Gd
-1 G (2.34)

 

The best pairing is the one with the smallest spectral radius of J, (min ρ(J)). 

 

Papastathopoulou and Luyben (1991) applied this JEC criterion in a study on 

controlling a binary side-stream distillation column. Zhu (1996) used it as a 

comparison to his RIA pairing rule, where he showed some inconsistencies. 

 

2.5.2. Dynamic Interaction Measure (DIM) 

The DIM measure θ was developed by Lau et al. (1985). It indicates how far the 

process transfer function matrix G(s) is from being a completely decoupled system. 

If σ1(s), σ2(s), ..., σq(s) are distinct singular values of G(s), then U(s) and V(s) can be 

partitioned: 
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U(s) = [u1(s) | u2(s) | ... | uq(s)] (2.35)

 

V(s) = [v1(s) | v2(s) | ... | vq(s)] (2.36)

 

where ui(s), vi(s) (i = 1, ..., q) are the singular decomposition vectors which 

correspond to the ith singular value.  

 

The total interaction measure of the system θ is obtained by  

 

θ = cos-1 
∑

∑

=

=

σ

θσ
n

1i

2
i

n

1i
i

22

i )cos(
 (2.37)

 

where 

 

θi = cos-1 (wij wij
+)½ (2.38)

 

and 

 

Wi(s) = ui (s) vi
T(s) (2.39)

 

The maximum entry of W defines a ui-yj pairing, i.e. the largest vector component of 

ui is paired with the largest vector component of vi). 

 

The θ values are plotted against log frequency. Values range between 0-90o, with a 

value of zero indicating no interaction exists, and values above 15o suggesting the 

need to introduce some compensation to reduce the level of interaction within the 

system.  

 

It should be noted that the DIM does not assume a fixed measured-manipulated 

variable pairing, but automatically determines an optimum pairing at each frequency. 

The pairing procedure was suggested by Lau et al. (1985) and also by Moore (1986). 
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It states that for the process transfer function matrix G, the pairing which will yield 

the least open loop multivariable interaction is one in which the sensor associated 

with the largest component of the column vector ui is paired with the manipulated 

variable associated with the largest vector of the column vi.  

 

However, this method may fail on some occasions, e.g. if the largest element in the 

different column vectors of U happens to be the same output. Also Moore (1992) 

stated that this analysis cannot predict closed loop stability problems that other 

indexes such as NI and RGA pairing rule can predict. 

 

2.5.3. Performance Interaction Measure (PIM) 

Feng and Grimble (1989) introduced the performance interaction measure PIM, 

denoted τ. For a given feedback control system with fixed pairing, PIM is defined as: 

 

τ = σmax(UVT-I) (2.40)

 

This interaction measure is between 0 and 2. Smaller τ indicates lower performance 

interaction. They stated that the difference between their method and DIM is that the 

latter depends on the column vectors of U and V whereas this measure depends on 

the row vectors for the same matrices. 

 

It should be noted that the PIM operates on a basis of a selected pairing, therefore, to 

select the least interactive structure, all alternatives need to be tested. 

 

2.5.4. µ Interaction Measure (µIM) 

The purpose of this interaction measure introduced by Grosdidier and Morari (1986; 

1987) is to quantify the performance degradation caused by using a decentralised 

control structure (multi SISO), it measures the interaction in the system caused by 

ignoring the off-diagonal elements in the matrix G. For a plant’s transfer function 

matrix G(s), the plant can be approximated by the matrix Gd(s), where 

 

Gd(s) = diag (g11(s), g22(s), ..., gmm(s)) (2.41)
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This interaction measure quantifies the difference between a plant G(s), and its 

approximation Gd(s), and guarantees the stability of the full closed loop transfer 

function matrix H(s) defined as 

 

H(s) = G(s) Kd(s) (I + G(s) Kd(s))-1 (2.42)

 

where Kd is the diagonal control matrix, by applying a bound on the magnitude of 

the decentralised closed matrix Hd(s) defined as 

 

Hd(s) = Gd(s) Kd(s) (I + Gd(s) Kd(s))-1 (2.43)

 

such as 

 

σmax(Hd(s)) < µ-1(E1(s)) (2.44)

 

The matrices E1(s) and E2(s) are known as the relative error matrices and are 

defined as 

 

E1(s) = (G(s) - Gd(s)) Gd
-1(s) (2.45)

 

E2(s) = (G(s) - Gd(s)) G-1(s) (2.46)

 

The µIM is implemented by examining the value of µ(E1) such that if the system G 

is stable, then the plant will be decentralised integral controllable (Morari and 

Zafiriou, 1989), i.e. there exists a stabilising decentralised controller with integral 

action such that each individual loop may be tuned independently by a factor of 0-1 

without introducing instability (Hovd and Skogetad, 1992), if  

 

µ(E1) < 1 (2.47)

 

As shown earlier in Section 2.2.6, the exact calculation of µ is not required for 

engineering purposes, instead upper and lower bounds are used. Grosdidier and 

Morari (1986; 1987) defined an upper bound for the optimal interaction µIM. This 



Chapter 2: Literature Review 32 

 

upper bound is the spectral radius ρ of E1(s), which equals the magnitude of the 

largest eigenvalue of |E1(s)|, which is the matrix E1 with all its values replaced by 

their magnitudes. This bound is found to be within 1-2% from the exact value of µ 

(Hovd et al. 1993; 1994). The simple implementation of µIM (µ-1(E1))is by plotting 

ρ(|E1(s)|) against log frequency. Then only if µ(E1) < 1 we are assured that the 

decentralised controller can incorporate integral actions.  

 

Morari and Zafiriou (1989) defined two lower bounds for µIM depending on the 

frequency as follows: 

 

µ-1(E1) > σmax(Hd)                                          at high frequencies (2.48a)

 

µ-1(E2) > σmax(E2)                                         at low frequencies (2.48b)

 

These bounds, however, require the full information regarding the controller 

structure and design. As a result, the upper bound is usually used in applying this 

measure. 

 

It should be noted that the µIM operates on a basis of a selected pairing, therefore, to 

select the least interactive structure, all alternatives need to be tested. 

 

 

2.6. METHODS FOR EVALUATING CLOSED LOOP 

PERFORMANCE 
The assessment of the closed loop control systems is the last major step in control 

design. Besides the verification of the design through running the true simulations, 

several analytical methods were developed to assess the stability and the robustness 

of the control design. A brief overview of these methods is given. 

 

2.6.1. Stability 

In a multivariable control system, the stability of the entire system is a major 

concern, as the stability of each individual loop does not guarantee overall stability. 
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It is a well-known fact that the location of the roots of any system’s characteristic 

equation determines the stability, damping and speed of the response of the system. 

Roots located in the right half s-plane indicate instability. Figure 2.1 illustrates the 

relationship between pole location and the transient response shape. 

 

 
Figure 2.1: Relationship between pole position and transient response (Golten and 

Verwer, 1991) 

 

The characteristic equation for an open-loop multivariable system G(s) can be 

constructed by setting the denominator of its transfer functions to zero. For a closed-

loop system, with a controller transfer function matrix K, the characteristic equation 

is given by  
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Det [I + G(s) K(s)] = 0 (2.49)

 

This equation applies to both multi SISO and full multivariable systems. If any of the 

roots of this equation is located in the right half s-plane, the control system is 

unstable. 

 

Sinha (1984) discussed the application of several stability criteria and their extension 

into multivariable systems. A simple method usually used is the extension of 

Nyquist’s stability criterion. In this method, the frequency response of Det [I + G(s) 

K(s)] is plotted for frequency ranging from 0 to ∞, and if it encircles the origin the 

system is closed loop unstable. In practice Det [G(s) K(s)] is plotted, and the 

encirculation of the point (-1,0) is observed. However, the curves can be quite 

complex especially with high order systems, which makes it difficult to visualise if 

the point (-1,0) is encircled (Luyben, 1990).  

 

Another method was introduced by McFarlane and Belletrutti (1973) known as the 

Characteristic Loci Plots. A brief justification of it is found also in Luyben (1990). 

For a multivariable system G with a controller K with specific structure and tuning, 

the method is simply to plot the eigenvalues of the matrix G(s)K(s) at changing 

frequency from 0 to ∞, and if any of the curves encircle the (-1,0) point, the closed-

loop system is unstable. 

 

2.6.2. Robustness 

Robustness is the ability of a closed-loop system to remain stable in the presence of 

model/plant mismatch (Grosdidier et al., 1985). Luyben (1990) stated that a control 

system is robust if it is tolerant to changes in process parameters. Several criteria 

were developed to assess robustness using mainly SVD or µ-based methods (Doyle 

and Stein, 1981; Skogestad and Morari, 1987; Khambanonda and Palazoglu, 1989; 

1990; Koung and MacGregor, 1992; Lundström et al., 1993). This subject is not 

covered in this thesis.  

 

2.6.3. Dynamic Simulation 

Simulation is a powerful method for qualitative and quantitative analysis of process 
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operating performance and is a useful tool for its design. In control engineering, 

simulation has been used for many years to analyse and design control loops. 

However, the usage was limited, for example, a typical model of a single distillation 

column could take six months to develop (Longwell, 1993). In recent years, the 

usage of simulation studies has grown rapidly as a result of the accelerating 

development in computer technology, and the growing number of its users which 

means that not only “experts” can implement it. It can also play an important role in 

plant operations (e.g. start-up) and safety analysis as assessment can be made by 

experimenting with the dynamic simulation model at the design stage rather than 

with the real plant.  

 

A few years ago, developing a simulation model would require writing the detailed 

computer code using standard programming languages such as FORTRAN or C++. 

This has been changed as different companies developed tools that are either 

complete simulation packages, or high level computer languages that facilitate the 

simulation development (Fell, 1997; 1998; Glassocock and Hale, 1994; Basta, 1995). 

 

Comprehensive packages for steady state simulation were developed for many years. 

They expanded in the nineties to include dynamic simulation. These packages now 

use graphical interfaces, which makes them user-friendly, and expanded rigorous 

thermodynamic data, which improve their accuracy. The most important packages 

are ASPEN PLUS / SPEEDUP from Aspen Technology (1998), PRO-II from 

Simulation Sciences (1998), and HYSIM / HYSIS from Hyprotech (1998).  

 

Despite their success, the above packages have several limitations in investigating 

non-standard problems (e.g. some catalytic reactors). In such cases, high level 

languages have been widely accepted as a tool in developing simulation models. 

Their usage requires the user to develop his own code. However, several powerful 

features supplied by the packages, such as integration algorithms, make the task 

easier. The most important packages available are MATLAB / SIMULINK from 

Mathworks (1998), MATHEMATICA from Wolfram Research  (1998), and ACSL 

from MGA (1998).  
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In general, simulation work consists of several steps: firstly gathering the data, then 

building the model, translation into computer code, debugging and running the code, 

and finally analysing the results (Zeghal et al., 1991). 

 

There are two basic methods used to solve dynamic problems (Griffiths, 1992; Juslin 

et al., 1991): Sequential modular methods in which each unit operation or a part of 

an operation is modelled as one block, then the whole plant model is solved 

sequentially one block after another, and the iterations continue until the needed 

accuracy is reached. Equation methods in which the whole plant model is described 

by a set of differential and algebraic equations which are solved simultaneously. For 

complex models this method looks better because it can use the vector processing 

capabilities of modern computer hardware to speed calculations. 

 

As a result of the increased capability and lower cost of digital computers, more 

accurate mathematical models can be used to provide economical solutions. Thus 

extremely complicated mathematical models which were out of reach can now be 

solved easily. However, this does not mean that a rigorous solution of a model is the 

best approach to all problems. Judgement should be applied so that a solution can be 

reached without using much unnecessary effort which can add a little to the accuracy 

of the results. Though, wherever possible rigorous calculation methods should be 

used to calculate thermodynamic properties in order to achieve a realistic 

representation of the process (Griffiths, 1992). 

 

The efficiency of dynamic models depends on the integration algorithms. Large scale 

dynamic problems need a powerful integration method which can handle stiff 

ordinary differential equations (Tyréus, 1997). Verification of simulation models can 

be done either by comparing the results with existing equipment, or for design 

purposes using pilot plant data (if the circumstances require it). Uncertain physical 

parameters and correlations can be measured and corrected. Then the simulation 

model can be scaled up to represent a best estimate model of a full scale plant. 

Finally when the full scale plant has been taken into use, the design model can be 

validated, updated if needed, and used for optimisation studies of the operation of the 

plant and operator training (Juslin et al., 1991; Kronberger et al., 1991, Vasek et al., 
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1991). 

 

Among the problems which have to be overcome when building dynamic models is 

the precise definition of the initial conditions for integration. This is one of the most 

serious problems which must be taken always into account since it can cause the 

failure of the whole model if it was defined inaccurately (Gerstle et al., 1984; Asmar, 

1995). 

 

 

2.7. SIMULATION AND CONTROL OF REFRIGERATION 

SYSTEMS 
In this section, a brief review concerning the dynamic simulation of refrigeration 

systems the application of control systems on such simulation models is included. 

 

2.7.1. Dynamic Simulation of Refrigeration Systems 

Unlike steady state simulation, only a few models (14 references) describing the 

transient behaviour of refrigeration systems were found in the literature. The papers 

found deal with relatively small-scale single stage refrigeration systems operating 

with a single refrigerant. Most approached the problem in a sequential method where 

submodels were used to simulate each component of the system, and then all were 

combined to form the dynamic problem. 

 

With the exception of Goldfarb and Oldham (1996) who used a commercially 

available dynamic simulator, all the papers developed their own mathematical 

models and corresponding computer programs to solve them. FORTRAN was the 

language used to write the programs. The integration method used in solving the 

differential equations was discussed by some authors (Dhar and Soedel, 1979b; 

James, 1984-85). They both found that using a fourth order Runge-Kutta method 

does not yield an appreciable reduction in computational time as compared to the 

Euler method for the same desired accuracy. However, Vargas and Praise (1995) 

used Runge-Kutta fifth order method to achieve better accuracy in their model. 

 

The first dynamic model cited was developed in 1965 by Hasegawa (James 1984-
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85). This described an air conditioning system in a railway passenger car and was 

run on an analogue computer. Marshall and James (1975) then presented a 

mathematical model that describes an industrial quick freezing plant using ammonia 

as the refrigerant. Later, James (1984-85) reviewed several models describing 

refrigeration and air conditioning systems, which he classified as either detailed 

models of specific refrigeration plants, and simpler generic models for larger scale 

processes.  

 

Dhar and Soedel (1979a; 1979b) formulated a general mathematical model for a 

refrigeration system consisting of a compressor, a thermostatic expansion valve, an 

evaporator, a condenser and an accumulator. They modelled each unit separately and 

then combined them to study the dynamic behaviour of the overall system. The 

program they developed was then applied to several cases to validate it. However, as 

indicated in the discussion of their paper, their model cannot be applied to 

centrifugal compressors. 

 

Several other models for the simulation of heat pumps and refrigeration took roughly 

the same approach, i.e. developing submodels for each component and then 

combining them (Chi and Didion, 1982; MacArthur, 1984; Murphy and 

Goldschmidt, 1985; Chen and Lin, 1991; Vargas and Praise, 1995). The models 

differ by using different expansion devices (thermostatic expansion valve or 

capillary tube) and by including or excluding the accumulator. The model developed 

by Murphy and Goldschmidt (1985) did not include a submodel for the evaporator. 

Instead  experimental data were used to replace it, thus restricting its usability.  

 

Sami et al. (1987) developed a simulation model for a heat pump based on the use of 

a lumped parameter approach. It consisted of five submodels describing the 

evaporator, condenser, compressor, accumulator and expansion device (thermostatic 

expansion valve and capillary tube). They initially used this model to examine the 

dynamic performance of traditional pure refrigerants. In a subsequent study they 

used the model to examine the use of alternative pure refrigerants (Sami and Duong, 

1991). Later this model was extended to investigate the usage of a non-azeotropic 

refrigerant mixture (Sami and Comeau, 1992). 
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Wilson and Jones (1994) developed a model describing a two-stage side-load 

refrigeration unit with a single component working fluid. They examined the effect 

of equipment sizing on the performance of the system. Their work was the 

background for the investigation reported in this thesis. 

 

In a paper designed to illustrate the usefulness of a commercial dynamic simulation 

package PROTISS, Goldfarb and Oldham (1996) used the package to simulate a 

multi-stage refrigeration loop, and to study several control configurations. The 

process they simulated was derived from an industrial case study in natural gas 

processing. Good agreement between model and plant data was achieved. 

 

2.7.2. Control of Refrigeration Systems 

The main advantage of developing dynamic simulation models is that it enables the 

testing of several control strategies before the plant is commissioned. This approach 

should produce a better designed and more controllable plant. Thus, control 

investigation is an essential and complementary part in all dynamic simulation 

studies. Some of the researchers mentioned above included a control study as a 

complementary part in their research. 

 

The published work on the control of refrigeration systems is very limited (9 

references were cited) and, with the exception of Wilson and Jones (1994) and 

Goldfarb and Oldham (1996), discussed the control of single stage refrigeration. 

Earlier references explored the concept of capacity control, which means the 

compressor’s capacity is matched to the changing flowrate, pressure and temperature 

requirements, i.e. the capacity of the compressor is changed by varying the number 

of cylinders operating in response to a signal obtained from the temperature of the 

liquid refrigerant supplied to the evaporator.  

 

In 1975, Marshall and James (1975) showed that using capacity control methods 

instead of traditional on/off control improves the refrigeration system performance. 

Later., Wong et al. (1987) and Wong and James (1988; 1989) conducted a review on 

capacity control where they found that significant energy savings are reported when 
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using variable-speed control to accommodate part load. They also compared their 

model with experimental results. With this model they studied six types of control 

including on/off control and variable speed compressor. The results of their 

investigations favoured using a variable speed compressor. 

 

Balchen et al. (1989) investigated adaptive control of a single control loop system. 

They developed an algorithm to estimate the frequency response parameters, and 

tested on a laboratory scale refrigeration cycle. 

 

Heyen et al. (1994) developed an object-oriented, lumped parameter, dynamic 

simulation model for process compression, expansion and heat transfer. Control 

design procedures are also included in the program which uses MATLAB. The 

control model enables designing PI block diagonal control systems. 

 

Wilson and Jones (1994) presented initial results for a study on controlling a multi-

stage refrigeration system. The investigation was performed using ACSL, and the 

effect of the equipment size on control system performance was studied. 

 

Vargas and Praise (1995) presented a control system for a heat pump system. They 

proposed a novel control approach based on power consumption in the process to 

keep the compressor at maximum speed until its temperature reaches a value very 

close to the desired value, then the speed is gradually reduced. They showed that 

substantial energy savings can be achieved.  

 

Goldfarb and Oldham (1996) used PROTISS to simulate a multi-stage refrigeration 

process. They used the controller units available in the package to design PI 

controllers.  Their objective was to control the process gas temperature exiting the 

chiller, and also to protect the compressor against surge. 

 

 

2.8. DISCUSSION 
In recent years, research on the control of multivariable processes has increased 

dramatically. The advances in computer technology enhanced the development 
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process, and allowed for more complex solutions to be considered. This initiated a 

new awareness of the interaction between design and control and attempts to 

incorporate the control design into the process design at an early stage. 

 

Research on the control of multivariable processes can be divided into four major 

categories paralleling the development of a control design: 

1. Selection of sets of variables for the control problem 

2. Methods to guide on pairings selection 

3. Interaction analysis of the selected fixed pairings 

4. Analytical or simulation evaluation of the closed loop control systems. 

 

Several methods and measures were proposed to cover each of the categories above. 

Most researchers were interested in the mathematical rather than the physical 

interpretation of the measures recommended. Little research has been conducted 

applying the measures to higher multivariable systems, and comparing the outcomes 

of several measures. In this thesis, work is performed on the usefulness of several 

measures to a high order multivariable system, namely the refrigeration system. 

 

It has also been noted that despite the rapid development in dynamic simulation, its 

implementation in refrigeration systems is still limited, with the majority 

concentrating on the single stage systems. Research on the application of control 

systems on the refrigeration systems is even rarer with only a handful of cited 

references. This lack of application was amongst the reasons that encouraged 

conducting the current research. 
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