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Optimal steady operation of continuous integrated chemical processes requires 

the design of a plantwide control system that drives the process operation as close as 

possible to the optimally active constraints and closely tracks the optimum values of 

controlled variables (CVs) corresponding to any remaining unconstrained degrees of 

freedom (dofs). The combinatorial flexibility in CV-MV (manipulated variable) 

pairings is usually gainfully exploited to obtain pairings that achieve tight control of the 

active constraints. This allows the process to be driven as close as possible to the active 

constraint limits with negligible back-off. In case the active constraint set changes, 

overrides or supervisory model predictive control (MPC) effects the necessary 

reconfiguration in the CV-MV pairings for tight control of the new active constraint set. 

Given tight active constraint control, the remaining issue is obtaining and tracking the 

optimum value of CVs corresponding to any unconstrained dofs. Tracking is usually 

desirable as the optimum value of the unconstrained CV changes with operating 

conditions and disturbances with significant economic loss for constant setpoint 

operation. Optimal management of the unconstrained CVs is one of the more 
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challenging issues in economic plantwide control system design. This work evaluates 

three extant approaches, namely, hill-climbing control, real-time optimization (RTO) 

and self optimizing control (SOC) for managing optimally unconstrained dofs. These 

approaches are evaluated for optimal operation of a reactor-separator-recycle process 

with the A + B → C reaction chemistry, which has been used previously in plantwide 

control studies. Optimal operation is evaluated for two modes of operation. In Mode I, 

the throughput is given and the column boilup (or sometimes recycle rate) is minimized. 

In Mode II, the throughput is maximized subject to a capacity bottleneck.  

 First, Shinskey's hill-climbing controller is evaluated for tracking the optimum 

value of the reactor composition setpoint in the reactor-separator-recycle process. This 

is a variant of extremum seeking control, where the process is perturbed to estimate the 

gradient of the economic objective with respect to the unconstrained CV and feedback 

is applied to drive this gradient to zero, corresponding to the CV optimum. This is 

followed by the development of a steady state model and specific parameter estimation 

method to fit recent plant data for RTO of the reactor composition setpoint. The steady 

state results show that the RTO economic loss from the actual plant optimum is less 

than 0.1% suggesting that the proposed RTO method drives the reactor composition 

very close to the actual plant optimum. The dynamic economic performance of the RTO 

method developed is then evaluated. In particular, overrides for handling the capacity 

bottleneck are shown to provide a smooth Mode I ↔ Mode II transition. Also the 

economic benefit is found to be similar to the results from the steady state analysis. The 

idea of a globally optimal invariant based control law for tracking the optimum value of 

the reactor composition is then explored. The invariant is obtained from an analysis of 

the overall plant material balance. The analysis is performed for alternative reaction 

kinetic expressions. It reveals that at constant reactor A/B ratio, near optimum process 
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operation is achieved over the envisaged disturbance space regardless of the plant 

reaction kinetic expression. The reactor A/B ratio is thus a good self-optimizing CV 

(SOCV), which by definition, achieves near optimal process operation at constant 

setpoint. To avoid cumbersome and expensive reactor composition measurements in 

this SOCV, using the separator distillation column top tray temperature as an inferential 

replacement of the reactor A/B ratio is proposed. The closed loop dynamic and 

economic performance of the synthesized plantwide control system is then evaluated 

and quantified. The work concludes with a summary of the main findings from the 

evaluation of the various approaches for (near) optimal management of an 

unconstrained dof and pointers for future work. 
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Chapter 1 

Introduction 

 

1.1 Integration in Process Industry 

 The continuous process industry is the bedrock supporting the modern, consumerist, 

high standard-of-living lifestyle of today. Petroleum fuel products such as gasoline, diesel and 

aviation turbine fuel, petrochemicals such as polymers and resins as well as chemicals such as 

esters, alcohols and ketones, are manufactured in bulk in continuous integrated chemical plants 

1. These are then supplied to downstream processing chains that result in the finished end-

products, such as clothing, vinyl floors/tiles, PET beverage bottles, plasticware, fuels etc, for 

use by the consumer. Market competition as well as long-term sustainability concerns dictate 

that the continuous processes be designed for maximum possible raw-material and energy 

utilization efficiency. Material and energy recycle is thus routinely employed to maximize the 

respective efficiencies. This is also referred to as process integration 2.  

 For integrated processes involving the transformation of raw materials to value added 

products via appropriate reaction chemistry, the ideal process takes in only the reactants and 

gives out only the product with no waste streams, i.e. zero waste discharge, implying 100% 

raw-material utilization efficiency. In addition to highly selective reaction chemistry, this 

necessarily requires the separation of the valuable product from the reactor effluent mixture as 

well as recovery and recycle of the unconverted reactants. Almost all continuous processing 

plants involving chemical transformations thus have the "reaction followed by separation" 

topology with at least one material recycle stream between the reaction and separation sections3. 

Even for separations that are complicated by e.g. the presence of azeotropes, it is usually 
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economical to employ more complex separation cum recycle schemes 4 that achieves the (near) 

perfect raw material utilization efficiency target. This is because raw-materials are usually quite 

expensive and energy is relatively much cheaper so that the savings due to efficient raw 

material utilization easily compensates for the higher separation cost (Douglas doctrine 5). For 

such systems, the overall plant topology is more involved with potentially multiple material 

recycle loops. 

 Given a process topology that achieves the best possible material utilization efficiency, 

the process economics can be further improved by process-to-process heat exchange so that the 

external utility (e.g. steam or refrigeration) consumption per kg product is reduced for better 

energy efficiency. A very common example in reactor-separator-recycle processes is the hot 

reactor effluent preheating the cold feed. Such process-to-process heat exchange creates an 

energy recycle loop 6. It is easy to imagine even the simplest of plants having multiple energy 

recycle loops for enhanced energy efficiency 7-8. 

 

1.2 Plantwide Control of Integrated Processes 

 From the economic perspective, process integration with multiple material/energy 

recycle loops is very appealing. From the plant operations perspective however, the loops create 

interconnections between different sections of the plant with steady state and dynamic 

implications. The positive feedback due to recycle results in high steady state non-linearity. 

Common examples are the high recycle rate sensitivity to fresh feed rate changes (snowball 

effect 9) as well as steady state multiplicity 10-12.  At the dynamic level, the loops create multiple 

pathways over which disturbances can propagate. A "local" disturbance in one section, unless 

properly managed by a well-designed plantwide control system, may propagate to other plant 

sections and further on, to the entire plant with non-linear amplification of the transients due to 

steady state non-linearity 13-14. The realization of the economic benefit in integrated chemical 

plants is thus intimately linked to the plantwide control system. 
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1.2.1 Basic Regulatory Plantwide Control System 

 At the most basic level, a plantwide control system is required to close all the 

independent plant material and energy balances. The corresponding control system is also 

referred to as the basic regulatory control system. For robustness, usually a decentralized 

control system with PID controllers is used 15. The controller manipulates either the input rate or 

the output rate or the generation rate in the associated material/energy balance equation.  

 The plant balances to be closed include obvious ones on each of the individual unit 

operations as well as subtler highly non-linear plantwide balances encompassing the recycle 

loops16. Further, the transients associated with the overall plant balances are plantwide in nature 

as they must necessarily propagate across the entire recycle loop. Consequently, the open loop 

dynamics of plantwide balances involving recycle loops is usually quite slow 16-17. This 

discussion highlights that one of the key issues in plantwide regulatory control is managing the 

transients around recycle loops. 

 The design of a robust regulatory control system is a very interesting problem with 

several possible pairings due to the curse of dimensionality (combinatorial complexity). For 

example, at a given feed rate, the simple distillation column has four basic control 

configurations 18. These are the well known LQ, DQ, LB and DB configurations (see Figure 

1.1), the latter being applied in superfractionators 19. Instead of fixing the fresh feed rate, if one 

of the other material streams is fixed (e.g. distillate rate, bottoms rate or steam rate), one would 

obtain alternative control structures (see Figure 1.2). It is easy to see that for a more complex 

plant with multiple columns, the number of possible regulatory control structures grows 

exponentially. How does then one systematically deal with the curse of dimensionality in 

plantwide regulatory control system design?  
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Figure 1.1. Schematics of (a) LQ (b) DQ (c) LB and (d) DB control configurations 
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Figure 1.2. Alternate control structures with TPM at (a) L (b) B (c) D and (d) Q  
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 Over the years, a vast body of literature has emerged on designing a robust plantwide 

regulatory control system that effectively closes the independent plant material/energy balances. 

These include several example case-studies (see e.g.20-30) as well as step-by-step procedures for 

synthesizing effective plantwide regulatory control stuctures31-33. The key issue in regulatory 

control of integrated plants is the propagation of transients around recycle loops. The guiding 

principle is to structure the control system to avoid large swings in the recycle rate, since such 

swings would end up disturbing all the equipment in the recycle loop. These transients may also 

get exacerbated by amplification due to steady state non-linearity with the possibility of one or 

more of the equipment hitting an operational/capacity constraint. Thus, instead of fixing the 

fresh feed rate into a material recycle loop and letting the recycle rate float in order to close the 

associated plantwide material balance, it is recommended that the total rate (fresh + recycle) be 

fixed and let the fresh feed rate float appropriately to close the associated overall plant 

balance34-36. This is schematically illustrated in Figure 1.3. The strategy helps mitigate large 

swings in the recycle rate by transforming the material imbalance transients out of the loop via 

appropriate control configuration. Similar ideas are also employed in energy recycle loops 

where the energy balance control system is structured to transform imbalances in the energy 

balances out of the recycle loop37.  

 

Figure 1.3. Plant material balance with TPM at (a) Fresh feed (b) Total feed 
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 Another key idea in regulatory control system design is the throughput manipulator 

(TPM), which fixes the processing rate through a train of interconnected units. As illustrated in 

Figure 1.4, the TPM dictates the orientation of the material balance control system with the 

upstream material balance controllers oriented in the reverse direction of process flow and 

downstream controllers oriented in the direction of process flow 38. When the TPM location is 

flexible, which is often the case, locating the TPM inside the material recycle loop ensures large 

swings in the recycle rate are avoided and the fresh feed is brought in as a make-up stream 

under material balance control 34. An extension of this TPM heuristic is to locate the TPM at the 

plant capacity bottleneck, which is often inside the recycle loop due to the high sensitivity of the 

recycle rate to fresh feed rate changes (snowballing) 39-40. By locating the TPM at the capacity 

bottleneck inside the recycle loop, one achieves the twin objectives of tight bottleneck 

constraint control as well as mitigation of large swings in the recycle rate. As illustrated in 

Figure 1.5, tight bottleneck constraint control allows the process to be pushed very close to the 

capacity limit with only a small back-off. The achievable maximum production from the plant 

can then be significantly higher compared to a conventional structure with the TPM at a fresh 

feed, which is susceptible to large recycle rate swings with consequently large back-off from the 

bottleneck capacity limit, a hard constraint. 

 

Figure 1.4. Inventory control loop orientation around TPM 
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 Several articles in the literature demonstrate the application of the above common sense 

heuristics for robust process regulation as well as tight bottleneck control for achieving higher 

maximum production from a given plant 41-43. Given a robust regulatory control system, the 

process gets operated at the steady state determined by the regulatory loop setpoints. The 

obvious next question is what should be the values of the regulatory loop setpoints or in other 

words, what steady state should the process be operated at. Clearly, the regulatory setpoint 

values should be chosen to optimize an economic objective. Examples include minimizing 

expensive utility consumption per kg product or maximizing production or yield to desired 

product (i.e. material efficiency). 

 

1.2.2 Economic Plantwide Control 

 The optimum steady state with the regulatory setpoints as the decision variables is a 

non-linear constrained optimization problem. The optimum solution typically has multiple 

active constraints, the capacity bottleneck being a hard one. For optimality, the process should 

be driven as close as possible to these active constraints. In other words, all active constraints 

Figure 1.5. Illustration of tightness of active constraint control and backoff 
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must be controlled tightly. Out of a total of N steady state degrees of freedom (equivalently, 

regulatory setpoints with a steady state effect), if there are M optimally active constraints (M ≤ 

N), then M regulatory setpoints will get used for tight active constraint control. For a given 

active constraint set, it is usually possible to exploit the input-output pairing flexibility (curse of 

dimensionality) to configure the regulatory control system for the tightest possible active 

constraint control. This has been clearly demonstrated in recent literature case studies 44-45. We 

then have the M active constraint control loops with their setpoints at the constraint limits, and a 

small back-off in case an active constraint is a hard one. This leaves N-M unconstrained 

regulatory setpoints that exhibit a hill/valley shaped optimum with respect to the economic 

objective. The overall plantwide control system, including active constraint control loops, then 

has N setpoints that affect the process steady state, of which M setpoints are at their active 

constraint limits (maximum or minimum), with appropriate back-offs where necessary, and N-

M setpoints are unconstrained. This is pictorially depicted in Figure 1.6.  

 

 

Figure 1.6. Illustration of (a) Constraint (b) Unconstrained regulatory setpoints 
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 The choice of the setpoint value for the active constraints is very obvious, namely, at its 

maximum or minimum allowed value (with back-off if needed). The same is however not true 

for the unconstrained setpoints. This is because their unconstrained optimum value is unknown 

to begin with. Even if the optimum value is somehow obtained, it is liable to change as the plant 

operating conditions (e.g. production rate) and disturbances (e.g feed quality, catalyst activity 

etc) vary. An appropriate tracking mechanism is then needed that ensures the unconstrained 

setpoint is appropriately adjusted to remain near optimum. 

 

1.2.3 Overall Plantwide Control Hierarchy 

 In light of the above description, the overall plantwide control system has a hierarchical 

layered structure with the regulatory layer at the bottom effectively closing the plant 

independent material and energy balances and an economic layer on top calculating the 

economic optimum steady state, translating it into appropriate regulatory layer setpoint updates 

and cascading down the updates. This is schematically shown in Figure 1.7. Since it is possible 

that the optimally active constraint set changes with disturbances and operating conditions, the 

economic layer is further subdivided into an optimization sub-layer and a supervisory sub-layer. 

The optimization sub-layer calculates the optimum steady state, usually based on a plant model. 

The optimum solution gives the optimally active constraint set as well as unconstrained setpoint 

optimum values. Since the active constraint set dictates the "best" regulatory layer pairings for 

tight active constraint control, which may require shifting the TPM to a different location in the 

plant depending on the bottleneck capacity constraint, the role of the supervisory layer is to 

directly/indirectly effect the reconfiguration of the regulatory inventory control strategy for tight 

active constraint control. The direct approach is to implement override controllers that take-over 

/ give-up valve manipulation depending on whether a constraint goes active or inactive 46-47. The 

indirect approach is to use model predictive control, which is known to be particularly adept at 

handling multiple active constraints, to effect the required change in the inventory control 
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strategy 48-49. Given its primary function, the supervisory sub-layer may also be interpreted as 

the active constraint control manager. 

1.3 Approaches for Managing Unconstrained Setpoints 

 Regardless of the specific implementation in the supervisory sub-layer, the principal 

challenge in economic optimum operation is "tracking" the optimum value of the unconstrained 

regulatory layer setpoints. There are three primary approaches propounded in the literature for 

handling the unconstrained setpoints. These are hill-climbing or extremum seeking control and 

its variants 50-52, model based real-time optimization 53-55 and self-optimizing control 56-58. The 

primary motivation behind this thesis is to evaluate these approaches in tracking an 

unconstrained regulatory setpoint for an integrated chemical process for typically encountered 

operating and disturbance scenarios. 

 

 

Figure 1.7. Hierarchical three-layered control structure 
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1.3.1 Extremum-Seeking Control 

 Extremum seeking or hill-climbing control, as the phrase indicates, drives the gradient 

of the objective function with respect to the unconstrained setpoint to zero using a numerical 

method inspired scheme, such as the Newton Raphson method 59-60 or via feedback 61-63. 

Usually, the gradient is directly estimated by perturbing the decision variable and letting the 

plant settle at the new steady state. The obvious disadvantage is that the extremum seeker or hill 

climber can be easily confused to move in the wrong direction due to unmeasured disturbances. 

The advantage, of course, is the economic benefit of driving the unconstrained to near its 

optimum value. In terms of applications, extremum seeking control has been applied quite 

widely in the solar power industry to maximize the solar flux captured as the sun moves across 

the horizon, by adjusting the orientation of the solar panel 64-65. The application of extremum 

seeking control in the process industry is, however, quite sparse with very few open literature 

reports. Almost all of these reports are on standalone processes such as a continuous stirred tank 

reactor 66, a bioreactor 67, an anaerobic digester 68, a fermenter 69 etc. Quite surprisingly, there 

are no reports that apply hill-climbing / extremum seeking control to optimize an unconstrained 

regulatory setpoint in the context of plantwide control of integrated chemical processes. One of 

the chapters in this thesis is devoted to hill-climbing using Shinskey's simple PID feedback 

control scheme70 for driving an unconstrained setpoint to its optimum for alternative disturbance 

scenarios. 

 

1.3.2 Real-Time Optimization 

   The idea behind conventional two-step real time optimization (RTO)71 to drive an 

unconstrained setpoint to its optimum value is quite simple. Parameters of an appropriate plant 

model are adjusted to best fit the available recent measurement data from the plant. Assuming a 

good plant-model fit, the model is then a good representation of the plant. The fitted model is 
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optimized and the calculated optimum value of the unconstrained setpoint is implemented in the 

plant. The plant is allowed to settle at the new operating condition and the fit-optimize-

implement cycle is repeated until the change in the decision variables becomes small.  

 The RTO approach is very appealing in that the plant is not perturbed unnecessarily 

simply to estimate a gradient. The feedback for driving the unconstrained setpoints close to the 

optimum occurs implicitly via changes in the fitted model parameters from one RTO cycle to 

the next. In practice, since the plant optimum is never known and also due to plant-model 

mismatch, the optimum to which the model based RTO converges can be noticeably away from 

the actual plant optimum. A good RTO model is thus required that properly accounts for the 

principal non-linear effects that influence the optimum. Forbes et al.72 formally define a model 

as point-wise "adequate" if there exists a combination of adjustable model parameters for which 

the plant optimum and the model optimum coincide. Even for "adequate" process models, the 

RTO may still converge to a suboptimal solution due to the parameter fitting strategy applied. 

Significant effort must therefore be spent on both developing and maintaining an "adequate" 

non-linear RTO model as well as an appropriate parameter fitting strategy using the large 

amount of measurement data available in today's well-instrumented plants. 

 In terms of RTO applications, some applications have been reported in the open 

literature. Many of these are on a particular unit such as a catalytic cracker73, a crude distillation 

unit in a refinery74, a fermentation process75 etc. A few applications are also reported on 

complete integrated plants such as the Tennessee Eastman process76, an acetaldehyde process77, 

a pulp mill process78. Muller et al.79 claim significant economic benefit due to RTO in an actual 

plant with multiple reactors, separators and recycle loops. The survey by Darby et al.80 notes 

that RTO applications have been very successful in ethylene plants, but much less so in 

refineries. They further state that, "Today, we find industry split in the acceptance of RTO. 

Some companies are convinced and continue to invest in applications; other companies have 

concluded that RTO, as it is currently implemented, is not viable for them." One of the polite 
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reasons offered is the absence of a modeling culture and poor management support for 

maintaining the applications. 

 The actual reasons may however be not as simple or banal. Note that the benefits of 

MPC or alternatively, an override constraint control manager are easily recognizable, as these 

push the process operation as close as possible to the optimally active constraints. Indeed, 

Downs81 clearly states that the economic benefits of MPC are largely attributable to the 

automatic execution of changes in the regulatory control strategy as the active constraint set 

changes. On the other hand, the benefits of RTO may not be as direct as it seeks a tradeoff 

between opposing effects that result in the optimum. Examples of these tradeoffs abound in the 

process industry and include the classic yield vs conversion tradeoff, throughput versus 

conversion (or recycle) tradeoff, balancing costs associated with two interacting material 

recycle loops etc. Usually, for well designed processes, the variation in the objective function 

with respect to the decision variable is quite flat near the optimum. Thus, only if the deviation in 

the decision variable away from the optimum is large does one incur a noticeable economic 

penalty. The economic benefit achieved by RTO can therefore be much harder to discern. It 

then becomes hard to justify the benefit achieved by RTO, beyond the supervisory MPC layer.  

 If one carefully examines the literature, in one of the more honest comparisons, Ricker 

and coworkers82-84 clearly show that the control performance of non-linear MPC over 

conventional decentralized control with overrides is very similar, for the celebrated Tennessee 

Eastman85 challenge process. The report clearly suggests that a simple conventional 

decentralized control system with overrides for managing constraints coupled to an RTO 

optimizing the economically dominant unconstrained setpoints should do as well as, if not 

better than, the mathematically much more complex and harder to maintain RTO-MPC 

framework 86-87, including its more recent single layer variants 88-89. The simplicity and 

understandability of such an overall economic plantwide control system, would not only help in 

clear quantification of the RTO benefit, but also come with an associated cost benefit due to the 

ease of maintainability that comes with the simple control systems. In this thesis, such a simple 
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RTO based economic plantwide control system is developed and evaluated for an integrated 

reactor-separator-recycle process. 

 

1.3.3 Self Optimizing Control 

  The third and final approach for managing unconstrained regulatory setpoints is 

referred to as self optimizing control (SOC). The basic idea is to control that "magic" variable, 

whose optimum value remains unchanged with changes in the plant operating conditions and 

disturbances. Even as several researchers have used the idea in process control research 90-92, 

Luyben93 unified them into what he referred to as the "eigenstructure", which is "that 

configuration which yields a system that is naturally self-regulating and self-optimizing". The 

paper only presented the basic concept and how it seamlessly unifies the process control 

approaches of other researchers. It was more than a decade before Skogestad provided a more 

precise definition of self-optimizing control (SOC) 94-95, including a systematic quantitative 

methodology for selecting the best possible self optimizing controlled variables (SOCVs) 96-97. 

Skogestad94 defines SOC as "when we can achieve an acceptable loss with constant setpoint 

values for the controlled variables (without the need to reoptimize when disturbances occur)." 

By definition, the optimum SOCV value remains nearly the same regardless of disturbances so 

that process operation at a constant setpoint results in near optimum operation over the 

envisaged disturbance space. A related concept is that of an "optimal invariant"98; that 

measurement combination (equivalent to the gradient) whose optimum value does not change 

with disturbances. An optimal invariant held constant at that value guarantees zero-loss 

operation regardless of disturbances. The invariant is thus the perfect SOCV. The idea behind 

SOC is very appealing in that it transforms an optimization problem into a simpler control 

problem. Quite simply, near optimal operation is achieved by holding the SOCV constant at the 

appropriate value via feedback adjustment of the unconstrained regulatory setpoint. An RTO 
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may be needed to find this appropriate setpoint value, but beyond that SOCV eliminates the 

need for RTO. 

 Since the seminal articles by Skogestad, the SOC literature has grown to be quite vast 

and it is not the intention to review it all but only highlight relevant salient aspects. Several 

applications of the SOC methodology have been demonstrated on complete integrated chemical 

plants 99-105. These include the celebrated Tennessee Eastman challenge99 and toluene 

hydrodealkylation100 processes, a reactor separator recycle process101, an air-separation unit102, a 

Fischer Tropsch gas-to-liquids process103, a refrigeration cycle104 etc. One of the major issues in 

SOC is coming up with a "good" candidate SOCV for an unconstrained dof. It usually requires 

good engineering judgment and process insight. While systematic approaches using "local" 

steady state analyses to combine measurements for SOC have been developed105-106, their 

usefulness is debatable due to the high non-linearity inherent in integrated chemical processes 

and also the fact that these measurement combinations are likely to exhibit strange open loop 

dynamics. Regardless of these limitations, the quest for the perfect SOCV (or invariant) to 

manage an unconstrained dof has its own appeal. To the best of our knowledge, there are no 

literature reports that attempt obtaining an invariant or perfect SOCV for an unconstrained dof 

in the plantwide control of an integrated process. Further, there is the need for evaluating the 

economic performance of a conventional two-step RTO and SOC for typical disturbance 

scenarios to ascertain the suitability of the approaches for specific scenarios. This thesis 

addresses these issues for an integrated reactor-separator-recycle process. 
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1.4 Thesis Motivation and Scope 

 The brief overview of plantwide control along with the relevant literature review 

highlights that tracking the optimum value of unconstrained regulatory layer setpoints is one of 

the challenging issues in economic process operation. The available options include extremum 

seeking control, real-time optimization and self-optimizing control. Of these, the application of 

extremum seeking control in the plantwide control context is not well explored in the extant 

literature. On the other hand, the application of RTO-MPC, which requires significant 

mathematical formulation, modeling, solution and maintenance effort, is quite well espoused in 

the literature. The jury however is still out on its real benefits compared to conventional 

common sense driven decentralized regulatory control with overrides for managing constraints 

and an optimizer solving the unconstrained setpoint optimization problem in the reduced 

operating space, after eliminating active constraints. In fact, the mathematical complexity of the 

RTO-MPC paradigm has driven academics to developing innovative formulations, solution 

techniques and their demonstration on simulation examples. A natural consequence is that the 

common sense driven approach, which is much more practical, easy to understand and 

appealing to operators, seems woefully neglected in the literature. Finally, while the SOC 

literature has grown to be quite vast, there are very few literature reports that provide a physical 

basis for why a particular CV is self-optimizing in nature. Further, the evaluation of when one 

technique makes sense over others is also inadequately addressed. This thesis is motivated by 

the need to address these lacunae apparent from an evaluation of the extant plantwide control 

literature.  

 In order to address these lacunae, the thesis develops and applies the techniques to a 

specific reactor-separator-recycle process used in the literature as a benchmark problem on 

robust regulatory control. The principal idea behind using this process is that while being 

simple, it has the essential feature of a material recycle stream between the reactor and the 

separator, which is the main source of non-linearity and unfavorable dynamic interaction in all 
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"reaction followed by separation" processes. At least some of the insights obtained from 

studying this process should be extendable to other more complex "reaction followed by 

separation" processes. Also, the familiarity with the process would also be helpful in 

interpreting the economic trade-offs associated with an unconstrained regulatory setpoint.  

 The scope of the thesis spans evaluation of Shinskey's hill-climber for tracking the 

optimum of an unconstrained regulatory setpoint, development and dynamic evaluation of a 

model based RTO method for tracking the unconstrained setpoint, synthesis and evaluation of a 

global optimal invariant (the perfect SOCV) for the unconstrained setpoint and evaluation of the 

performance of RTO and SOC for typical disturbance scenarios encountered in practice. 

Throughout the thesis, the engineering common sense driven approach for designing the overall 

plantwide control system is used, as it clearly brings out the thinking behind why certain control 

system design decisions are taken over other possibilities. It is emphasized that this thinking is 

at the core of good process engineering and control. 

 

1.5 Reactor-Separator-Recycle Process 

 Figure 1.8 shows a schematic of the reactor-separator-recycle process studied here. It 

consists of a continuous stirred tank reactor (CSTR) followed by a simple distillation column. 

The irreversible exothermic liquid-phase reaction A + B → C occurs in the CSTR. Fresh A and 

fresh B are mixed and fed to the cooled CSTR. The reactor effluent, which is a mixture of A, B 

and C, is distilled in the downstream column that recovers C down the bottoms, since C is 

heavy as it is formed by the addition of B to A. The unreacted A and B are recovered up the top 

of the column and recycled to the CSTR. 
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 The hypothetical components A, B and C are chosen such that A is lighter than B. The 

component relative volatilities are then in the order αA > αB > αC. The reaction chemistry is 

assumed to be perfect with no side reactions. The reaction kinetic expression varies from simple 

elementary reaction kinetics to Langmuir-Hinshelwood (LH) with non-elementary order. We 

thus have r = k xrxrA xrxrB (elementary), r = k.xrxrA
a.xrxrB

b (non-elementary), r = 

k.xrxrA.xrxrB/(1+KAxrxrA+KBxrxrB) (elementary LH) and r = k.xrxrA
a.xrxrB

b/(1+KAxrxrA+KBxrxrB) (non-

elementary LH), where r is the reaction rate, k is the reaction rate constant, xrxrA and xrxrB are the 

CSTR liquid-phase A and B mol fractions respectively, a and b are reaction order with respect 

to xrxrA and xrxrB respectively and KA and KB are component A and component B adsorption 

equilibrium constants, respectively. The particular hypothetical component properties, reaction 

kinetics used and base-case process design are noted in the relevant chapters. Aspen Hysys is 

used for steady state and dynamic modeling with the hydrocarbons method used for estimating 

the thermodynamic parameters of the hypotheticals. The SRK equation of state is used for 

modeling the thermodynamic properties. 

Figure 1.8. Schematic of reactor-separator-recycle process 
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 The process has a total of six steady state degrees of freedom, two for the two fresh 

feeds, two for the CSTR (hold-up and temperature) and two for the distillation column, 

assuming it operates at the design pressure. Optimal steady state operation is considered for two 

operating modes, namely Mode I and Mode II. In Mode I, the throughput is given and the 

remaining five dofs are optimized to minimize the column boilup or recycle rate. In Mode II, all 

six dofs are optimized to maximize production. The optimization is a constrained non-linear 

optimization problem and solved using the Matlab NLP solver, fmincon using the active set 

method with Hysys as the background steady state solver.   

 

1.6 Thesis Organization and Style 

 This thesis contains a total of seven chapters, including this one. Moving forward, the 

next chapter (Chapter 2), evaluates Shinskey's feedback hill-climber for tracking an 

unconstrained regulatory layer setpoint in the reactor-separator-recycle process with elementary 

kinetics. In the absence of disturbances, the hill-climber is shown to effectively track the 

optimum for both Mode I and Mode II operation. Chapter 3 develops a robust steady state RTO 

model with a robust parameter fitting method using available routine measurement data for the 

process. The RTO is developed for both Mode I and Mode II operation. Plant-model mismatch 

occurs in the reaction kinetics with the actual kinetics being LH type and the fitted kinetic 

model being of the power-law type. Also, a simplified ideal VLE column model is used.  It is 

shown that the developed RTO method drives the unconstrained setpoint close to the actual 

plant optimum and achieves significant economic benefit compared to constant setpoint 

operation. The suitability of the proposed approach is also demonstrated for reaction kinetics of 

the general LH type. In Chapter 4, the economic benefit of the developed RTO approach is 

demonstrated both for Mode I and Mode II operation in dynamics, where the process is never 

truly at steady state and routine process variability is omnipresent. A robust override control 

system for reconfiguring the regulatory control loops between Mode I ↔ Mode II transitions is 
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also developed and shown to work effectively. Chapter 5 develops globally optimal invariants 

for the considered reaction kinetic expressions to manage the unconstrained reactor B 

composition setpoint in Mode I and Mode II. In Mode I, the recycle rate is minimized while in 

Mode II, production is maximized subject to maximum recycle rate as the bottleneck constraint. 

The application of these invariants for minimizing boil-up or maximizing production subject to 

maximum boil-up as the bottleneck constraint shows negligible loss due to no reoptimization, 

clearly demonstrating good SOC performance. In Chapter 6, the application of SOC using 

invariants inspired inferential SOCV for optimal operation of the process is evaluated in 

dynamics for typical disturbance scenarios. Finally, the thesis concludes with a summary of the 

learnings from the various techniques for near optimal management of the unconstrained dofs 

and pointers for future work. 

 The thesis is organized as a series of self-contained chapters which are either published 

or have been submitted to reputed peer reviewed international journals. There is thus material 

that gets repeated from chapter-to-chapter, e.g. process description, degrees of freedom etc. The 

familiar reader may skip these and get to the main technical content in each chapter. Further, the 

reader may also read these chapters (excluding concluding chapter) in any order as independent 

entities. The overall context of the work has been presented in this Chapter while the last 

chapter summarizes the main findings. 
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Chapter 2 

Hill-Climbing for Plantwide Control to Economic Optimum 

 

This Chapter is based on a published paper “Hill Climbing for Plantwide Control to Economic 

Optimum” in Industrial Engineering and Chemistry Research, 2014, 53 (42), 16465-16475 

 

 

In this Chapter, the application of hill-climbing control to ‘seek’ and drive the 

unconstrained setpoint of a controlled variable (CV) to its economic optimum is proposed for 

economic plantwide control. Its application is demonstrated on a reactor-column recycle process for 

energy efficiency maximization at given throughput (Mode I) and also for maximizing process 

throughput (Mode II). In Mode I, a one degree-of-freedom (dof) hill-climbing feedback controller 

on top of the regulatory layer is shown to reduce reboiler duty by 3.7% for a 25% throughput 

increase compared to constant setpoint operation. Similarly, in Mode II, a one-dof hill-climber 

achieves 3.0% throughput increase compared to constant setpoint operation. These results highlight 

the effectiveness of hill-climbing for economic plantwide control. 
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2.1 Introduction 

 One of the key issues in economic plantwide control is driving and maintaining an 

unconstrained controlled variable (CV) setpoint at its optimum value, where the optimum value 

changes due to disturbances and operating condition changes. Ideally, the gradient of the economic 

objective function with respect to the unconstrained regulatory layer setpoint should be driven to 

zero for optimality. A possible approach is to directly apply feedback control to drive the gradient 

or its estimate to zero. The basic idea is to keep adjusting the unconstrained setpoint till the steady 

state slope of the economic objective function with respect to the unconstrained setpoint is driven to 

zero. For maximization problems, we thus attempt hill-climbing via feedback. Even as hill-climbing 

control has been applied for optimal operation of stand-alone isolated units, e.g. maximizing solar 

flux utilization in solar panels power1 or minimizing expensive buffer usage in pH control2, its 

application to the economic plantwide control of a complete chemical process with material recycle 

has not been evaluated before, at least to our knowledge. A systematic evaluation of the same for an 

example process is the major novel contribution of this work. 

 We note that in real-time optimization (RTO), the estimated gradient of the process model 

(first principles or statistical) is driven to zero whereas in hill-climbing, the estimated gradient of 

the actual process is driven to zero via feedback. Also, the feedback in the RTO/EVOP approaches 

occurs indirectly through the plant model fitting cum setpoint update exercise. Lastly in RTO, the 

plant is not perturbed and the available plant data is used to update the plant model. In contrast, hill-

climbing requires that small perturbations be made to the plant. 

 In this work, we consider Shinskey’s hill-climbing feedback controller3 for seeking and 

driving an economically significant unconstrained regulatory layer setpoint to its economic 

optimum for a reactor-separator-recycle process and quantify its economic benefit over constant 

setpoint operation. Economic optimality is sought for two operating modes. In Mode I, the reboiler 
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steam (expensive utility) consumption is minimized for a fixed throughput. In Mode II, the plant 

throughput is maximized.  

In the following, we briefly describe the process along with optimal steady state operation 

results for the two operating modes. The regulatory control structures for the two modes are then 

synthesized systematically in light of the optimally active constraints. We also present the override 

controls necessary for switching between the two structures. This is followed by a brief description 

of Shinskey’s one-dof dynamic hill-climber and its application to the example process. Closed loop 

dynamic control results for both modes are then presented and the economic benefit is compared to 

constant set-point operation. The article ends with the conclusions that can be drawn from the work. 

 

2.2 Process Description 

 The reactor-separator-recycle process flowsheet studied here is shown in Figure 1.8 . The 

salient base-case operating conditions are noted in Table 2.1. This process module has been widely 

used in the plantwide control literature to highlight and address key issues in plantwide control (see 

e.g. 4-5). Fresh A (FA) and fresh B (FB) are mixed with the recycle stream and fed to a heated CSTR. 

The irreversible exothermic reaction A + B → C occurs in the boiling reactor. The reactor effluent 

is sent to a simple distillation column to recover 99 mol% pure C as the bottoms product and 

recycle the distillate containing unreacted A and B with some C impurity, back to the CSTR. The 

hypothetical component properties, reaction kinetics and thermodynamic package used in the Hysys 

process simulation are noted in Table 2.2. 

 The process has 9 independent control valves (control dofs). Of these 2 valves would be 

used for controlling the column reflux drum and bottom sump levels, which are non-reactive liquid 

inventories with no steady state effect. Another valve would be used for column operation at given 

design pressure. This leaves 6 remaining valves that may be adjusted to move the process to a 
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particular steady state. The process steady state operating dof is then 6. These correspond to two 

dofs for the fresh feeds (FA and FB), two for reactor and two for the column. We use the following 

six specification variables to exhaust the steady state process dofs and converge the flowsheet: fresh 

B feed rate (FB), reactor level and temperature (Urxr and Trxr), column reflux to feed ratio and  

bottoms purity (L/Fcol and xC
P) and reactor B mol fraction (xrxrB). 

 

Table 2.1 Recycle process base-case operating conditions for Mode I 

Process 

Variables 

Temperature 

(°C) 

Molar Flow 

(kmol/h) 
xA xB xC 

FA 26 99 1 0 0 

FB 26 100 0 1 0 

Fcol 108 400.6 0.40 0.22 0.38 

R 94 300.6 0.53 0.29 0.17 

P 137 100 0.0 0.01 0.99 

L 94 240.6 0.53 0.29 0.17 

Other Variables  

No. of trays 18 

Feed tray 5 

Prcnd 1.4 atm 

Urxr 6 m3 

Trxr 108 °C 

Qrxr 190 kW 

Qcnd 4706 kW 

Qreb 4722 kW 

See Figure 1.8 and Nomenclature for variable descriptions 

 

Table 2.2. Modeling details of recycle process 

Kinetics A+B→C r =k.xrxrA.xrxrB 

k = 2×108.exp(-70000/RT) 

Hypotheticals# MW NBP(oC)  

A 50 70 

B 80 100 

C 130 120 

VLE Soave-Redlich-Kwong 

Reaction rate units: kmol.m-3.s-1 

#: Hydrocarbon estimation procedure used to estimate parameters for 

thermodynamic property calculations 
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2.2.1 Optimum Steady Process Operation 

The available steady state dofs should be exploited for economically optimal process 

operation. We consider two modes of process operation. In Mode I, the throughput (FB) is given, 

fixed e.g. by market demand-supply considerations, and the remaining five steady state dofs are 

optimized to maximize the process energy efficiency. Since steam is the expensive utility here, 

optimal Mode I operation corresponds to minimizing column boil-up, V. The steam consumption in 

the reactor is ignored here as it is a small fraction (<5%) of the reboiler duty. In Mode II, all the six 

dofs, including FB, are optimized to maximize the process throughput (FB). Mode II operation is 

usually desired in a seller’s market, where the product demand far exceeds supply. 

The steady state optimization must seek solutions that are within the feasible process 

operating space constrained by maximum/minimum material/energy flows, temperatures etc. For 

both Mode I and Mode II, we then have a non-linear constrained optimization problem with 

continuous variables. The optimization is performed using the Matlab fmincon routine with Hysys 

as the background steady state flowsheet solver. Object oriented protocols are used to link Matlab 

and Hysys. Table 2.3 summarizes the steady state optimization and the results obtained. Mode I 

results are presented at two process throughputs, FB = 100 kmol/h (design throughput) and FB = 125 

kmol/h (increased throughput). In both modes, the minimum product quality constraint (xC
P,MIN), the 

maximum reactor temperature (Trxr
MAX) constraint and the maximum reactor level (Urxr

MAX) 

constraint are always active. These make economic sense with the xC
P,MIN constraint minimizing 

product give-away, and the other two constraints maximizing the single pass reactor conversion.  
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Table 2.3. Process Optimization Summary 

Objective 
Mode I 

Max (-V) 

Mode II 

Max (FB) 

Constraints 

0 < Material flow < 2(base-case) 

0 < Energy flow < 2(base-case) 

0 <Urxr < 6m3 

0 < V <700kmol/h 

90oC < Trxr < 108 °C 

xC
P ≥ 0.99 

 Optimized operating condition 

Variable    

FB (kmol/h) 100* 125* 133.7 

Urxr (m3) 6 max 6 max 6 max 

Trxr (oC) 108 max 108 max 108 max 

xrxrB 0.172 .205 .218 

L/Fcol 0.55 0.55 0.55 

xC
P 0.99 min 0.99 min 0.99 min 

V# (kmol/h) 421.3 616.7 700 max 

*Specified  ;  # calculated (not a decision variable) 

 

 

For a specified Mode I throughput, the active constraints leave 2 (6 dofs – 3 active 

constraints – 1 FB specification) unconstrained steady state dofs. In Mode II, to achieve maximum 

throughput, the maximum column boil-up (VMAX) constraint corresponding to column flooding 

additionally goes active. The unconstrained Mode II steady state dof then remains 2 (6 dofs – 4 

active constraints) with FB (throughput) as an additional decision variable. Note that VMAX is a hard 

constraint and its violation is not acceptable as a flooded column represents a severe hydraulic 

problem requiring laborious manual intervention to drive the column back to its normal operation 

flow regime. The other three active constraints (Trxr
MAX, Urxr

MAX and xC
P,MIN) are soft ones with small 

short-term deviations beyond the constraint being acceptable. 
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2.3 Plantwide Regulatory Control Structure 

In this work, we synthesize the plantwide regulatory control structure that reflects industrial 

practice and has its TPM at a fresh process feed. The same is usually not the best structure from the 

perspective of handling hard equipment capacity constraint(s) on increasing throughput or 

minimizing the back-off in the economically dominant active constraint etc. In this work, since the 

objective is to quantify the economic benefit of hill climbing control, working with a conventional 

control system is considered acceptable. 

Conventionally, the plantwide regulatory control structure is designed with the TPM at a 

fresh feed with ‘local’ pairings on the individual unit operations for closing its unit specific material 

and energy balances. Such a control structure provides robust process regulation as long as an 

equipment capacity constraint is not encountered. On sufficiently increasing throughput however, 

equipment capacity constraints such as a column approaching flooding or a furnace approaching its 

maximum duty etc are encountered. A hard equipment capacity constraint going active usually 

implies loss of a control dof with consequent loss of the associated regulatory control task.  The 

conventional control structure must then be reconfigured using overrides to ensure proper process 

regulation with the bottleneck unit operating at its capacity constraint. We then naturally obtain the 

regulatory control structure for Mode I (no hard constraints) operation with the TPM at the fresh 

feed and a different regulatory structure for Mode II (hard equipment capacity constrained) 

operation, where the equipment capacity constraint sets the throughput. Conventionally, overrides 

are used to effect the control structure reconfiguration due to the equipment capacity constraint. In 

the following we synthesize the Mode I and Mode II regulatory control structures along with the 

override control structure reconfiguration scheme. 
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2.3.1 Regulatory Control Structure for Mode I 

 The process control dof is 9, corresponding to the 9 independent control valves as in Figure 

1.8. These valves must be used to set the process throughput and to regulate the unit specific 

material and energy balances as well as the overall plantwide balances. In other words the 9 valves 

must be used to regulate 9 control objectives (including throughput) that ensure the process 

inventories remain well regulated within an acceptable band and do not drift unmitigated.  

For Mode I, we use a conventional regulatory control structure with the TPM at FB, a 

process fresh feed, (objective 1). The remaining control objectives include controlling the reactor 

level (Urxr) and temperature (Trxr), which must be regulated to close the reactor total material and 

energy balances (objectives 2 and 3). The obvious ‘local’ manipulated variables (MVs) for a fast 

dynamic response are reactor exit flow rate (Fcol) for Urxr control and reactor heating duty (Qrxr) for 

Trxr control.  

On the column, the reflux drum and bottom sump levels (Urd and Ubot) must be controlled 

to close the material balance on the condenser and the reboiler (objectives 4 and 5), respectively. 

We control Urd using the distillate flow (R) and Ubot using the bottoms flow (P), which are fast 

‘local’ pairings. For a given boilup, the column pressure (Prcol) must also be controlled to close the 

column vapor balance (objective 6). This is effectively accomplished by adjusting column 

condenser duty (Qcnd).  

The other 2 column regulatory objectives are the key component balances corresponding to 

the heavy key leakage in the distillate (xC
R) and the light key leak leakage in the bottoms (xB

P). 

Since composition measurements are cumbersome, we choose to control the reflux to feed ratio, 

L/Fcol (objective 7) and a sensitive stripping tray temperature, TS
col (objective 8) instead. L/Fcol is 

maintained by directly adjusting L while TS
col is maintained by manipulating the reboiler duty (Qreb) 

for ‘local’, dynamically fast, conventional pairings. Note that by maintaining L/Fcol, the distillate 

(im)purity is loosely regulated, which is acceptable since it is a recycle stream. On the other hand, 
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regulating TS
col provides much tighter control of the bottoms purity, which is crucial since the 

bottoms is the product stream.  

The last control objective is subtler and corresponds to stoichiometric balancing of the two 

fresh feeds as dictated by the reaction chemistry (objective 9). The process topology is such that 

fresh A and fresh B are taken in and only near pure C product is discharged. Since 1 mole of A 

reacts with 1 mole of B to give 1 mole of C, for the asymptotic case of pure C being discharged 

from the process, if FB = 100 kmol/h (design throughput), FA must be exactly 100 kmol/h as 

dictated by the overall plant material balance. Even for the slightest mismatch, the component fed 

in excess (A or B) would build up unmitigated in the recycle loop. This unmitigated build-up can 

only be avoided when the fresh feeds are fed such that the reaction stoichiometry is satisfied down 

to the last molecule. The balancing must necessarily be done in a feedback arrangement by 

inferring/measuring the A or B circulating around in the recycle loop. This is because flow 

measurements are never exact and have small biases so that even with the two fresh feed flow 

setpoints fixed to equal molar flows, a slight mismatch is guaranteed. Since the recycle stream is 

mixed and contains both A and B in large amounts, inferring the recycle loop inventory of A or B 

requires a composition measurement inside the recycle loop. Here, we choose to regulate the B mol 

fraction in the reactor, xrxrB (objective 9). In addition to stoichiometric feed balancing, maintaining 

xrxrB also helps to mitigate composition variability in the reactor, the most non-linear unit operation 

in the process. To ensure FA and FB move in tandem, FA is maintained in ratio with FB and the ratio 

setpoint is manipulated by the xrxrB controller. 

The nine regulatory loops, corresponding to the 9 control dofs, complete the regulatory 

control structure for Mode I operation. The structure is shown in Figure 2.1 and is referred to as 

CS1. We note that in this conventional control structure (CS1), all the flows in the recycle loop are 

under level control. Snowballing 13, where the recycle flow increases in a significantly larger 

proportion for a small increase in the TPM setpoint, is thus possible. The same is however not an 
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issue since if the recycle rate increase is too large, the column would approach its flooding limit 

triggering overrides that reconfigure the control structure to cut the fresh feed rate. The consequent 

regulatory control structure with the column at its flooding limit (bottleneck constraint) setting the 

maximum throughput (Mode II) is described next. 

 

 

 

 

 

Figure 2.1. Conventional regulatory control structure, CS1 (for Mode I) 
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2.3.2 Regulatory Control Structure for Mode II  

 In Mode II, VMAX acts as the bottleneck equipment capacity constraint. If we use CS1 for 

maximum throughput operation, the TPM setpoint (FB
SP) will have to be adjusted so that V 

(bottleneck constraint) is maintained near its constrained value, VMAX. The bottleneck constraint 

controller thus uses the V-FB
SP pairing. The pairing is dynamically slow (long loop) so that the V 

control cannot be very tight. Since VMAX is a hard constraint that must not be violated, the bottleneck 

controller setpoint must necessarily have a large back-off from VMAX. In other words, for Mode II 

operation, VSP = VMAX – Δ, where Δ is the large back-off representing the unrecoverable production 

(economic) loss. 

 As recommended in Kanodia and Kaistha,5 the back-off can be dramatically reduced by 

shifting the TPM to the bottleneck constraint and reconfiguring the regulatory control system 

around it. Accordingly, we use Qreb to control V. With this ‘local’ pairing, V control would be very 

tight so that the back-off from VMAX would be negligibly small and we can set VSP = VMAX 

(negligible back-off) for maximum throughput (Mode II) operation. With Qreb paired for V control, 

it cannot be used for conventional TS
col control so that the column feed, Fcol is manipulated instead. 

With Fcol already paired, we need an alternative manipulated variable for reactor level (Urxr) 

control. The reactor fresh feed FB is used for the purpose.  The rest of the regulatory control 

structure remains the same as CS1. 

The revised regulatory control structure for Mode II operation is shown in Figure 2.2 and is 

referred to as CS2. It differs from CS1 in that the inventory controllers upstream of the TPM are 

oriented in the reverse direction of process flow. On the other hand, all CS1 inventory controllers 

are oriented in the direction of process flow. Note that maintaining FA in ratio with FB helps Urxr 

control with both fresh feeds moving in tandem to bring the deviating reactor level back to its 

setpoint. Also, to reduce throughput below maximum, VSP is reduced below VMAX making VSP the 

TPM for this structure. 
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2.3.3 Overrides for Reconfiguring Regulatory Layer Loops 

 The override scheme necessary for reconfiguring the regulatory loops to transition between 

CS1 and CS2 is shown in Figure 2.3. It consists of an override temperature controller (OTC) on the 

column and an override level controller (OLC) on the reactor with three low selectors (LS1 – LS3). 

The OTC setpoint is slightly lower than the nominal temperature controller setpoint while the OLC 

setpoint is somewhat higher than the nominal reactor level controller setpoint. Consider increasing 

the throughput from its nominal value (Mode I) to the maximum achievable (Mode II). At the 

Figure 2.2. Regulatory control structure, CS2 (for Mode II) 
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nominal steady state, since V is less than VMAX, LS1 passes the nominal temperature controller output 

so that Qreb is under nominal column temperature control. Since the OTC setpoint is slightly lower 

and the fast nominal temperature controller effectively maintains the column temperature close to 

its nominal setpoint, the direct acting OTC output is high so that LS2 passes the nominal reactor 

level controller output to the column feed valve. With reactor level controlled at its nominal 

setpoint, the OLC output is high so that LS3 passes the operator input FB
SP value. Thus, at the 

nominal throughput, the low selected outputs emulate CS1. 

 

 

 

Figure 2.3. Overrides for switching between CS1 and CS2 
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Now as FB
SP is increased to transition to maximum throughput (Mode II), V eventually 

increases beyond VMAX so that LS1 passes VMAX. Nominal column temperature control is then lost 

and the column temperature starts to drop as more feed is being input than can be boiled off. As the 

temperature reduces, the OTC output decreases till it reduces below the nominal reactor level 

controller output. LS2 then passes Fcol manipulation to the OTC. Column temperature control is thus 

regained while reactor level control is lost. The unregulated reactor level then increases, since FB
SP 

is increasing while the OTC is decreasing Fcol. This causes the OLC output to decrease and 

eventually, LS3 passes the OLC output to the FB valve which cuts the fresh B feed to the process. FB 

thus floats and settles at the appropriate value corresponding to VMAX, which is the maximum 

achievable throughput. The overrides thus act to cut the process feed with V constrained at VMAX. 

Note that the low selected outputs cause emulation of CS2. A complementary logic applies to 

untriggering of the overrides as FB
SP is reduced. The overrides thus switch the control structure 

between CS1 and CS2. Purely for reasons of convenience, in this work, we evaluate the two 

regulatory control structures separately. 

 It is appropriate to note that when it is well established that the bottleneck constraint is 

always column flooding, the control system can be significantly simplified by using VSP as the TPM 

over the entire throughput range. VSP = VMAX then fixes maximum production (Mode II) while lower 

VSP values correspond to lower production (Mode I). The reconfiguration between CS1 and CS2 

using the overrides is then not necessary and CS2 provides smooth operation over the entire 

throughput range. In this work however, we consider CS1 for Mode I and CS2 for Mode II, as this 

is typical industrial practice.  
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2.3.4 Augmented Control System for Economic Operation 

 In this section we augment the regulatory control structures, CS1 and CS2, for optimal 

steady economic operation, in line with the optimization results obtained earlier. In both Mode I 

and Mode II, Urxr
MAX, Trxr

MAX and xC
P,MIN soft constraints are active. The first two constraints 

correspond to setting Urxr
SP = Urxr

MAX and Trxr
SP = Trxr

MAX in both CS1 and CS2. The product quality 

measurement, xC
P, would typically be available in industrial practice. To regulate it, an additional 

composition controller is implemented which manipulates TS
col

SP to hold xC
P. For optimality, we set 

xC
P,SP = xC

P,MIN. In Mode II, CS2 is the regulatory control structure and we set VSP = VMAX for 

achieving maximum throughput. The average process operation then is at the hard VMAX constraint 

limit with negligible back-off. 

The setpoints, xrxrB
SP and L/Fcol

 SP, correspond to the remaining 2 unconstrained steady state 

dofs in Mode I and Mode II.  The simplest operating policy is to keep these set-points constant at 

their optimized value for the base-case (design throughput) steady state. As throughput changes, the 

optimum value of these setpoints would, strictly speaking, change. If the economic loss with no re-

optimization is small, the constant setpoint policy would be deemed acceptable. If however the loss 

is large, a hill-climber should be used to drive the operation to the optimum and mitigate the loss. 

 To evaluate the economic impact of xrxrB and L/Fcol, Figure 2.4 compares the variation in V 

(Mode I objective) with xrxrB and L/Fcol at the design throughput (FB = 100 kmol/h) optimum values. 

It is observed that the optimum with respect to L/Fcol is quite flat with large changes in L/Fcol 

around its optimum value causing only a small increase in V. The optimum with respect to xrxrB, on 

the other hand, is noticeably sharper with larger increase in V as xrxrB is moved away from its 

optimum value. The optimum solution is thus significantly more sensitive to xrxrB compared to 

L/Fcol. The economic loss due to no re-optimization as e.g. the process throughput changes, is then 

expected to be significant for constant xrxrB while a constant L/Fcol is likely to result in an acceptably 
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small loss. To quantify the same, Table 2.4 compares V at an increased throughput of FB = 125 

kmol/h with both xrxrB and L/Fcol held constant at their base-case values (optimum values for FB = 

100 kmol/h), only xrxrB or L/Fcol reoptimized, and both xrxrB and L/Fcol reoptimized. The data shows 

that the increase in boilup above the optimum is primarily attributable to no reoptimization of xrxrB 

with very little increase (<0.1%) being attributable to no reoptimization of L/Fcol. 

 

Table 2.4. V at throughput of FB = 125 kmol/h 

 

xrxrB and L/Fcol 

at base-case 

Only xrxrB 

reoptimised 

Only L/Fcol 

reoptimised 

Both 

reoptimised 

V 639.5 616.7 538.9 616.7 

xrxrB 0.172 0.206 0.172 0.21 

L/Fcol 0.55 0.55 0.50 0.55 

 

 

 

Figure 2.4. Variation in V with xrxrB and L/Fcol at design throughput (FB=100 kmol/h) 
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These results suggest that a hill-climber is worthwhile for optimizing xrxrB in Mode I since 

the increase in the Mode I objective function, J = -V, over the optimum (i.e. economic penalty), due 

to constant setpoint operation, as throughput is varied, is significant. This climber adjusts the CS1 

xrxrB
 SP to maximize -V, which is equivalent to minimizing V. In Mode II, since VMAX is the 

bottleneck constraint that limits throughput and xrxrB
 SP significantly affects V, a hill-climber that 

optimizes the CS2 xrxrB
 SP is also considered worthwhile. This hill-climber adjusts xrxrB

SP to 

maximize FB with VSP = VMAX. The hill-climber, the xC
P quality control loop and the regulatory layer 

setpoint values for economic operation are shown in red in Figure 2.5 (a) for CS1 and Figure 2.5 (b) 

for CS2. Note that the simple constant setpoint operating policy for L/Fcol
SP is appropriate for both 

Mode I and Mode II as the economic objective function is quite insensitive to its choice in both 

Mode I and Mode II. 

 

 

Figure 2.5 (a). CS1 modifications for economic optimum operation 
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2.4 Shinskey’s Hill-Climber 

 The one-dof hill-climber, was originally proposed by Shinskey3 and is shown in Figure 2.6. 

In general, we want to manipulate the regulatory layer setpoint u such that the economic objective J 

is driven to its maximum. In other words, u must be adjusted to drive the steady state slope y = 

dJ/du to zero. No direct measurement is however available for y and it must be inferred from J and 

u, measurements of which are available. Process dynamics, GP, get in the way of estimating y. We 

therefore use a filter to smoothen the transients in J to obtain its long term variation post filtering, 

Jf. The long-term changes, ΔJ, is then conveniently obtained by sampling Jf. The control input u is 

maintained constant between two consecutive sampling/control time points. Dividing ΔJ by Δu then 

gives an estimate of the slope y. This estimate is driven to zero by using a feedback PI controller. 

The setpoint of the PI controller is zero, corresponding to the zero slope at the top of the hill 

(optimum). The output of the PI controller is sampled.  

Figure 2.5 (b). CS2 modifications for economic optimum operation 
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 We note that since the hill-climber has a division operation, the output of the divider is 

trimmed to be between a maximum and minimum to guard against large slope estimates due to 

division by small numbers. Also, the estimation is not self-starting and needs a perturbation that 

gives a large enough derivative for division. As insightfully noted during the review process, 

unmeasured disturbances can confuse the hill-climber and cause it to move the manipulated 

regulatory setpoint in the wrong (suboptimal) direction. In the presence of the disturbance, the 

change ΔJf in the objective function gets wrongly attributed to Δu so that the hill slope estimate 

becomes erroneous causing the hill climber to move the setpoint in the wrong direction (i.e. away 

from the actual optimum). However, as the unmeasured disturbance is rejected by the regulatory 

control system, the slope estimates improve and the hill-climber would then move the process 

towards the optimum. To mitigate performance deterioration due to disturbanes, it is important that 

the filtering parameters and sampling period are chosen such that the fast transients due to 

Figure 2.6. Block-diagram of the one-dof hill-climber 
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disturbances are smoothened out so that the ΔJf used for estimating the hill slope is largely 

attributable to Δu. Alternatively, one can turn on the hill-climber during relatively calm operation 

periods and turn it off during periods with severe transients. 

 We believe that the confusion due to unmeasured disturbances is unavoidable and all 

approaches seeking to drive a setpoint to its unconstrained optimum (RTO, EVOP or hill climbing) 

suffer from the flaw, to a greater or lesser degree, perhaps. The confusion may be significantly 

mitigated by using a model and available process measurements to estimate the disturbances and 

partition the total change ΔJf into that attributable to Δd (disturbance change) and that attributable to 

Δu (regulatory layer setpoint change). We would then likely get better hill slope estimates and avoid 

movement away from the optimum due to disturbances. In the current work, we evaluate simple hill 

climbing with no modeling of disturbance effects and intend to explore model based hill climbing 

in follow-up work. 

 

2.5 Dynamic Simulation and Controller Tuning 

 A rigorous dynamic simulation of CS1 and CS2 along with the respective hill-climbers as 

described above is built in Hysys. The column drum and sump levels are set for 5 min liquid 

residence time at the design steady state at 50% level. A consistent tuning procedure is followed for 

both CS1 and CS2. The column pressure controller is PI and tuned for tight pressure control. All 

flow controllers are PI and use a reset time of 0.5 mins and a controller gain of 0.3. All non-reactive 

liquid level controllers are P only and use a gain of 2. The reactor level controller is PI and is tuned 

for a slightly oscillatory servo response. The reactor temperature and column temperature controller 

gain is adjusted for a slightly oscillatory servo response with the reset time set to the time it takes 

for 2/3rd completion of the open loop step response. For realism, all temperature sensor readings are 

lagged by 2 mins. Also, a lag of 2 mins is applied to all ‘direct Q’ energy duty valves to account for 

heat transfer dynamics. 
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 In the economic layer, the xC
P PI controller is tuned by hit-and-trial for a slightly 

underdamped servo response. The composition sensor uses a sampling time of 5 mins and a dead-

time of 5 mins. In our work, the one dof PI hill-climber is implemented in Matlab and linked with 

Hysys dynamics using object oriented protocols. Both the Mode I and Mode II hill-climbers are 

tuned by hit-and-trial. Two 2 hr first order lags are applied in series to J to filter out fast transients 

and obtain their long-term trends. We also apply a 5 hour sampling on the xC
P,SP adjustments by the 

hill-climber as well as to Jf. The salient parameters of the regulatory / economic loops in CS1 and 

CS2 simulations are noted in Table 2.5. 

 

2.5.1 Closed Loop Results 

 The closed loop performance of the economic plantwide control system with the one-dof 

hill-climber for updating xrxrB
SP is now obtained. In Mode I (CS1) operation, the throughput (FB

SP) 

is changed as a ±25kmol/h step around the design throughput (FB = 100 kmol/h) and simultaneously 

the hill-climber is switched on. The plantwide dynamic response of salient process variables is 

shown in Figure 2.7. The product quality control is observed to be quite tight for the entire duration 

of the transient response. The hill-climber readjusts xrxrB
SP towards its optimum value and in 

response, V reaches its optimum value in 8 moves. It thus takes about 40 hrs for the minimum V to 

be closely approached. For a +25kmol/h throughput change, the action of the hill-climber causes V 

to reduce to 616.7 kmol/h compared to 639.5 kmol/h at constant xrxrB
SP operation. This corresponds 

to~3.7% energy saving, which is not negligible. For a -25kmol/h throughput change, the energy 

saving is somewhat lower at ~2.6%. These savings are significant enough to justify the additional 

cost of the hill-climber. 
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Table 2.5. Salient controller parameters for CS1/CS2*, #, $ 

CV 
CS1/CS2 

PV Range& MV Range& 
KC τi(min) 

[A/B]rxr 1.2/1.2 80/80 0.05-0.40 0.5-1.5 

Trxr 3/3 30/30 100-120oC 2x106kJ/h 

Urxr 2/2 20/20 10-100% 0-100% 

TS
col 0.5/0.5 30/40 110-140oC 4x107kJ/h 

xC
P 0.35/0.35 40/40 0.98-0.995 110-140oC 

*All level loops use KC = 2 unless otherwise specified. #Pressure/flow controllers tuned for tight 

control. & Minimum value is 0, unless specified otherwise. $ All compositions have a 5 min dead 

time and sampling time. All temperature measurements are lagged by 2 min.  

 

 

 

Figure 2.7. Dynamic response for boilup minimization 
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 For Mode II (CS2) operation, the xrxrB
SP is kept fixed at its optimum value at the design 

throughput and the CS2 VSP is set at its constraint value of VMAX. The plant is then allowed to settle 

to steady state. This initial steady state corresponds to the maximum throughput with constant 

xrxrB
SP (no reoptimization). At this steady state, FB = 129.9 kmol/h. The one-dof hill-climber is then 

switched on and it adjusts xrxrB
SP to seek the value of xrxrB

SP that maximizes FB. The transient 

response of salient process variables in Figure 2.8 shows that tight product quality control is 

achieved during the transient period. The xrxrB
SP hill-climber causes FB to increase towards the 

maximum achievable throughput value of 133.7 kmol/h. In about 40 hrs (8 control moves), this 

maximum value is approached quite closely. The hill-climber thus achieves a substantial ~3.0% 

increase in the maximum throughput. For a product-raw material price differential of $30 per kmol, 

the increased throughput translates to ~$1.0x106 additional yearly sales revenue, which is 

significant. This shows that a hill-climber to optimize an economically important unconstrained 

regulatory setpoint results in substantial economic benefit compared to constant setpoint operation. 

 
Figure 2.8. Dynamic response for throughput maximization 
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 We also tested the performance of the hill-climber in response to unmeasured feed 

composition disturbances for both Mode I (given FB) and Mode II (given VMAX) operation. Two step 

disturbances are tested; 10% A in FB and 10% B in FA. The initial steady state corresponds to xrxrB at 

its base-case Mode I optimum value. Further, for Mode II, VSP is set equal to VMAX and the process 

allowed to settle at the steady state. With this initial steady state, the fresh feed composition change 

step disturbance is introduced with the hill-climber enabled. The corresponding dynamic responses 

for Mode I or Mode II operation for the two feed composition disturbances are shown in Figure 2.9. 

In all cases a stable response is obtained with xrxrB settling at its final optimum value in 8-10 moves 

(40-50 hrs). Also the product quality control is acceptability tight during the transients, as before. 

 

 

Figure 2.9. (a) 10% A impurity in FB 

Mode II 

Mode I 
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Note that for Mode I, since FB
SP is fixed, the feed composition disturbances are equivalent 

to a 10% increase/decrease in throughput. The hill-climber then seeks out the optimum xrxrB
SP for 

the altered throughput. In Mode II, on the other hand, since VMAX sets the throughput, the optimum 

xrxrB
SP remains fixed at 0.218 and the hill-climber seeks it out via feedback. The maximum 

production rate thus remains constant at 133.7 kmol/h with FB adjusting appropriately to 

compensate for the feed composition change. 

 

 

 

Figure 2.9. (b) 10% B impurity in FA 

Mode II 

 Mode I 
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2.6 Discussion 

 During the review process, it was pointed out that the column pressure may be an 

additional dof for further increasing the maximum achievable throughput (Mode II). Since the 

flooding boilup (VMAX) is proportional to the vapor density (ρ) times the flooding velocity (uMAX), we 

have at column pressures P1 and P2, 

   V2
MAX = (ρ2/ ρ1).(u2

MAX/u1
MAX).V1

MAX 

Assuming constant F factor at flooding (ρ uMAX 0.5) we have 

   u2
MAX/u1

MAX = (ρ1/ ρ2)0.5 

Therefore we get 

   V2
MAX = (ρ2/ ρ1)

0.5.V1
MAX 

Thus, if P2 < P1, we will have ρ2 < ρ1 so that V2
MAX < V1

MAX. In other words, the flooding boilup 

decreases with pressure.  As the pressure is decreased, the relative volatility increases and the 

separation becomes easier so that the boilup for the same split decreases. If this decrease in boilup 

is greater than the decrease in VMAX at lower pressures, the column pressure should be minimized so 

that the column is away from its flooding limit, which may then be exploited for further increase in 

throughput. However for the system studied, it turns out that the decrease in boilup due to improved 

relative volatility is only marginal and is much smaller than the decrease in VMAX at lower pressures. 

There is then no incentive for minimum pressure column operation with the condenser duty valve 

fully open. Column operation at increased pressures is not considered as equipment are typically 

designed for a certain design pressure and sustained operation above the design pressure would 

normally not be allowed. At least for this system, column operation at design pressure is the 

recommended operation policy. 

A note on proper tuning of the hill-climber is in order. One may argue that it be tuned as 

aggressively as possible for the quickest possible approach to the optimum. Aggressive tuning can 
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however lead to a large limit cycle with the hill-climber overshooting the optimum and then back-

tracking, repeatedly. Moreover, the hill-climber causes adjustments in a regulatory setpoint, which 

results in additional servo transients. In the plantwide control context, if these additional servo 

transients are too severe due to aggressive tuning, operating issues such as more severe and 

undesirable variability in the product quality, can result. Thus e.g., the higher maximum throughput 

using the hill-climber may come at the expense of poorer product quality control. The higher 

variability in the product quality (compared to constant setpoint operation with no hill-climber) may 

or may not be acceptable depending on the specific process. For example, many a times the final 

product quality guarantee to the customer is achieved via blending of different streams from a 

product-tank farm to achieve very specific quality targets. An aggressive hill-climber even to the 

extent of causing a small limit cycle may then be acceptable, since the plant product would anyway 

be blended to achieve specific quality targets for the customer. On the other hand, if the product is 

directly sold to the customer, the quality give-away due to the higher variability may negate the 

production/energy saving benefit. The point is that the tuning of the hill-climber must duly consider 

and respect the plantwide context of the specific process. 

 In this work, a one-dof hill-climber was sufficient, since the optimum was quite flat and 

insensitive with respect to the other unconstrained controlled variable (CV), L/Fcol. It is possible 

that two or more unconstrained CVs require reoptimization with changes in operating conditions as 

the economic objective surface with respect to the CVs is not flat but much sharper. We then need a 

higher order hill-climber. The simplest approach is to use decentralized multiple one-dof hill-

climbers. Alternatively, a multivariable MPC hill-climber may be applied for a faster approach to 

the optimum with smoother (not too severe) transients in the regulatory setpoints. In further 

research, we hope to evaluate higher order hill-climbers in economic plantwide control 

applications. 
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2.7 Conclusions 

 In conclusion, this work has demonstrated the design and dynamic evaluation of an 

economic plantwide control system that optimizes unconstrained regulatory setpoints via hill-

climbing control for a simple recycle process. For the specific example, even as there are two 

unconstrained CVs, xrxrB and L/Fcol, economic incentive exists only for reoptimizing xrxrB via 

feedback as the optimum is quite flat with respect to L/Fcol. Closed loop results show that 

Shinskey’s one-dof hill-climber effectively drives the process operation towards minimum energy 

consumption at given throughput (Mode I) and maximum achievable throughput (Mode II) for a 

given bottleneck constraint (VMAX). Hill-climbing control causes the Mode I reboiler steam 

consumption to reduce by ~3.7% for a 25% throughput increase.  Also, the Mode II maximum 

achievable throughput increases by ~3% compared to constant setpoint operation. Overall, these 

results demonstrate hill-climbing control to be a simple and effective tool for seeking and driving 

the economically important unconstrained regulatory setpoint(s) to the economic optimum steady 

state for realizing significant economic/sustainability benefit. 
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Chapter 3 

Real Time Optimization of a Reactor-Separator-Recycle Process 

I: Steady State Modelling 

 

This Chapter is based on the published paper “Real Time Optimization of a Reactor-Separator-

Recycle Process I: Steady State Modelling” in Industrial Engineering and Chemistry Research, 

2018, 57 (37), 12429-12443 

 

In this Chapter, steady state real time optimization (RTO) of the reactor-separator-recycle 

process is studied. The reaction A + B → C occurs in the reactor with the separator recycling 

unreacted A and B and recovering nearly pure C bottoms product. Two operating scenarios, Mode I 

(fixed throughput) and Mode II (maximum throughput), are considered. In Mode I, the column boil-

up is minimized using available degrees-of-freedom (dofs). In Mode II, the dofs are optimized for 

maximizing throughput. It is shown that the reactor B composition setpoint is unconstrained and 

economically dominant in both Mode I and Mode II. Its optimum value is efficiently obtained by 

fitting a simple reaction kinetic model to the available plant flow and reactor composition data 

(current and past) and adjusting the separator tray section efficiencies to best fit the current 

temperature profile. Results show that RTO improves economic benefit by up to 10% over constant 

setpoint operation. 
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3.1 Introduction 

Proper adjustment of an economically important unconstrained controlled variable (CV) 

setpoint so that the steady state process operation is (near) optimal with respect to the setpoint is 

one of the key issues to be addressed in the economic plantwide control of integrated chemical 

processes. In direct optimization approaches, the optimum value of the unconstrained setpoint is 

sought by directly perturbing the unconstrained setpoint to estimate the gradient of the economic 

objective and applying feedback to drive the estimate to zero (extremum seeking or hill-climbing 

control1-2). The perturbation must be large enough to reliably estimate the gradient, unconfounded 

by plant noise/disturbances. A major criticism of the approach is that disturbances can easily 

confuse it to move the setpoint away from optimum. 

Instead of perturbing the plant to estimate gradients, a steady state plant model may be 

fitted to recent plant data and the fitted model optimized with respect to the unconstrained setpoint, 

which then is updated to the regulatory layer. This fit-optimize-update real-time optimization 

(RTO)3 cycle is repeated after the plant settles at the new operating condition. RTO is appealing in 

that deliberate plant perturbation is avoided. The optimum however is only as good as the model 

and for large plant-model mismatch, may differ significantly from the actual optimum. Model 

fidelity4 and adequacy5 considerations for convergence of the model optimum to (near) the actual 

optimum are then crucial. Naturally, significant effort is necessary to ensure that the model properly 

accounts for the principal phenomena that affect the plant economics. Process understanding and 

insights then are key to successful RTO applications. 

In the literature, several RTO applications have been reported. Many of these are on stand-

alone units (see e.g.6-8) while others, apply RTO to integrated chemical plants (see e.g.9-12). Given 

the unique non-linear characteristics of each process, each application develops and evaluates 

customized modelling and optimization algorithms. Here, we develop and evaluate RTO for the 

benchmark A + B → C reactor-separator-recycle process13-14. The novel contribution of the work is 
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in (a) the specific approach for updating model parameters using steady state plant material 

balances; and (b) quantitative evaluation of the role of reaction kinetics and column model on the 

RTO benefit. 

In the following, the plantwide process module and its base-case design are first described. 

Two common plant operating modes are then considered. In Mode I, the throughput is below 

maximum and the RTO must optimize the unconstrained setpoint(s) to minimize the reboiler steam 

consumption. In Mode II, the unconstrained setpoint(s) is adjusted to maximize throughput subject 

to column flooding as the bottleneck constraint limiting production. An appropriate process model 

and parameter fitting technique that converges to near the actual plant optimum is then developed. 

Three distinct reaction kinetic models and distillation column models are explored. Quantitative 

results are then presented on the economic benefit of RTO using the different models for common 

disturbances. The article ends with a summary of the main findings. 

 

3.2 Plantwide Process Module 

The reactor-separator-recycle process shown in Figure 1.8 is studied here. The salient base-

case process operating conditions are noted in the Table 3.1. The process produces C via the 

irreversible exothermic addition of A to B as A + B → C. Fresh A and fresh B are mixed with the 

recycle stream and sent to a CSTR. The reactor effluent is distilled to obtain near pure C product as 

the bottoms with unreacted A and B leaving as distillate, which is recycled to the CSTR. Aspen 

Hysys is used for steady state and dynamic process modelling. The hypothetical component 

properties are as in Table 3.2. The SRK equation of state is used for thermodynamic property 

modelling. The Langmuir-Hinshelwood reaction rate kinetic parameters are as in Table 3.2. For a 

more realistic distillation column, a Murphree tray efficiency (η) curve is imposed with η nominally 

varying with respect to the vapour rate into the tray as in Figure 3.1.  
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Table 3.1 The salient base-case process operating conditions  

Material 

Streams 

Temperature 

(°C) 

Molar Flow 

(kmol/h) 
xA xB xC 

FA 26 99 1 0 0 

FB 26 100 0 1 0 

Frxr 58.2 365.8 0.522 0.473 0.005 

Fcol 110 266.8 0.345 0.278 0.377 

R 92 166.8 0.55 0.44 0.01 

P 137 100 0.0 0.01 0.99 

L 92 394.9 0.55 0.44 0.01 

Other Variables  

No. of Trays 33 

Feed tray 15 

Prcnd 140 kPa 

Urxr 6 m3 

Trxr 110 °C 

Qrxr 176.2 kW 

Qcnd 4760 kW 

Qreb 4826 kW 

See Figure 1.8 and Nomenclature for variable descriptions 

 

 

 

Table 3.2. Modeling details of recycle process 

Kinetics A+B→C r =k.xrxrA.xrxrB/(1+K.xrxrA) 

k = 2.7×108.exp(-70000/RT) 

K= 2.2×104.exp(-30000/RT) 

Hypotheticals# MW NBP(oC)  

A 50 70 

B 80 100 

C 130 120 

VLE Soave-Redlich-Kwong 

Reaction rate units: kmol.m-3.s-1 

#: Aspen Hysys hydrocarbon estimation procedure used to estimate parameters 

for thermodynamic property calculations 
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3.2.1 Economic Optimum Steady State Operation 

The process has 6 steady state degrees of freedom (dofs), two corresponding to the fresh 

feeds, two for the reactor (hold-up and temperature) and two for the column. Convenient steady 

state plant specifications corresponding to the six dofs used here are the fresh B feed rate (FB), 

reactor temperature (Trxr) and hold-up (Urxr), C mol fraction in the recycled distillate xC
R, product C 

purity xC
P and the reactor feed A/B mol ratio, ([A/B]Frxr). Let s = [FB, Trxr, Urxr, xC

R, xC
P [A/B]Frxr] 

represent the plant specification variables. For a chosen value s = s0, the converged plant material 

and energy flows are obtained by solving the Aspen Hysys plant, represented here by the square set 

of non-linear equations g(x, s0) = 0, where x represents the plant internal state variables.   

The specifications are to be adjusted for economic optimum steady process operation for 

two commonly encountered modes of operation. In Mode I, the process throughput (FB) is fixed e.g. 

by market demand-supply considerations and the remaining five specifications are to be adjusted to 

minimize column boilup, V, for minimum steam consumption. In Mode II, the market conditions 

are extremely favourable and all the available six specifications are to be used for maximizing 

throughput (FB). The optimization is subject to process inequality constraints such as 

Figure 3.1. Variation of plant column tray efficiency (η) with Ffactor 
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maximum/minimum process flows, temperatures, product quality etc. These constraint variables are 

a function of the converged plant state, x, so that all the described inequality constraints may be 

conveniently represented as c(x, s) ≤ 0. Specifically, we constrain maximum feasible material flows 

(Fi; i indexes all material streams) and energy flows (Qj; j indexes all energy streams) to twice the 

base-case flows in Table 3.1 so that 0 ≤ Fi ≤ Fi
MAX and 0 ≤ Qj ≤ Qj

MAX, respectively. We also have 

constraints on the maximum reactor temperature (Trxr
MAX = 110 °C), maximum column boil-up 

(VMAX = 800 kmol/h), minimum product C mol fraction (xC
P,MIN = 99 mol%) and distillate maximum 

C mol fraction leakage (xC
R,MAX = 1 mol%). The need for the former 3 constraints is self-evident. 

The last constraint reflects the often encountered practical consideration of not letting too much 

heavy product into the recycle to mitigate e.g. catalyst deactivation or equipment fouling.  

Given this background, the plant Mode II constrained optimization is conveniently stated as 

  minimizes (-FB) 

subject to the converged plant equality constraints 

   g(x, s) = 0 

and the process inequality constraints 

   c(x, s) ≤ 0  

In Mode I, since FB is specified, the optimization decision variable d = s(2 to 6) (excludes FB) and 

the optimization problem is   

  minimized (V) 

subject to the converged plant and specified throughput equality constraints 

   g(x, s) = 0 FB = FB,spec 

as well as the process inequality constraints 

   c(x, s) ≤ 0 
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The Mode I / Mode II constrained steady state plant optimization is performed using the Matlab 

function fmincon with Aspen Hysys as the background steady state solver. The results of the 

constrained optimization are summarized in Table 3.3. Note that Mode I optimization results are 

reported for two specified throughput values, FB = 100 kmol/h and FB = 120 kmol/h. For both 

throughputs, Trxr
MAX, Urxr

MAX (maximum reactor level), xC
P,MIN and xC

R,MAX constraints are active. The 

four active constraints and given throughput specification leave one unconstrained steady state dof 

(6 dofs – 4 active constraints – 1 specification = 1 unconstrained dof). In Mode II, the VMAX 

constraint is additionally active with throughput being a dependent (calculated) variable. This again 

leaves one unconstrained steady state dof (6 dofs – 5 active constraints = 1 unconstrained dof).  

We note that even as the actual plant has been optimized above, one expects the same set of 

constraints to be active when optimizing a plant model that well fits the available plant data. 

Assuming regulatory layer pairings that achieve tight active constraint control, the RTO must seek 

optimum values for regulatory layer controlled variables (CVs) corresponding to any remaining 

unconstrained dofs. In this example, we have Trxr
MAX, Urxr

MAX (maximum reactor level), xC
P,MIN and 

xC
R,MAX as the active constraints common to both Mode I and Mode II. These four active constraints 

fix the setpoints on the control loops corresponding to the four steady state dofs for the reactor and 

the column. This leaves the two dofs corresponding to the two fresh feeds. Of these, one dof gets 

used to fix throughput at the desired value in Mode I. In Mode II, instead of the throughput 

specification, the VMAX constraint becomes active, which indirectly fixes the throughput to the 

maximum achievable. Thus in both Mode I and Mode II, the dof corresponding to the second feed 

remains unconstrained. This dof must get used to bring in the second feed as a make-up stream for 

perfect stoichiometric feed balancing (overall plant material balance closure). One of the most 

common stoichiometric feed balancing strategies is maintaining the mol fraction of a reactant (A or 

B) in the CSTR by manipulating the corresponding fresh feed ratio setpoint15. Without loss of 

generality, assume that the reactor B mol fraction (xrxrB) is maintained by manipulating the fresh B 
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to fresh A feed ratio. We then have the reactor composition loop setpoint (xrxrB
SP) as the decision 

variable corresponding to the one unconstrained dof in both Mode I and Mode II.  It then follows 

that the RTO must drive xrxrB
SP to its optimum in both Mode I and Mode II. 

 

3.3 Steady State RTO Modelling 

 Before delving into the RTO modelling details, a brief note on the nomenclature is in order. 

When no subscript is used, the symbol denotes the actual PV in the plant (e.g. R denotes the plant 

recycle mol flow rate). The use of a component subscript (A, B or C) on a material stream symbol 

denotes the corresponding component mol flow rate (e.g. RA denotes A component mol flow rate in 

the plant recycle). Mol fraction of a component (e.g. B) in a particular stream (e.g. product stream, 

P) is denoted by the symbol 'x' with the particular component as subscript and particular stream as 

superscript (e.g. xB
P). Other process variables use self explanatory symbols, e.g. Trxr denotes reactor 

temperature etc. Further, the superscript '*' is used on a PV symbol to explicitly highlight that a 

plant measurement is available for the PV (e.g. Tcol
* denotes the array of column tray temperature 

measurements). In case a PV is calculated using plant balances in conjunction with a model, the 

superscript 'e' is added to the PV symbol to explicitly highlight the PV is estimated. The superscript 

'm' on a PV symbol is used to explicitly indicate that it refers to the plant model and not the actual 

plant. The reader is referred to the nomenclature for clarity on the symbols used here.      

 The Mode I RTO problem is to adjust the unconstrained setpoint xrxrB
SP to minimize the 

column boil-up, V. In Mode II, xrxrB
SP is to be adjusted to maximize FB with the maximum column 

boil-up, VMAX, as the bottleneck capacity constraint. Note that the limit VMAX is not known in 

practice and can vary with time. Further, V itself is seldom measured and must be estimated. 
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Table 3.3. Plant Optimization Summary 

PV 
Mode I 

Min (V) 

Mode II 

Min (−FB) 

FB (kmol/h) 100* 120* 127.2 

Urxr (m3) 6max 6max 6max 

Trxr (oC) 110max 110max 110max 

xrxrB 0.278** 0.337** 0.358** 

xC
R 0.01max 0.01max 0.01max 

xC
P

 0.99min 0.99min 0.99min 

V# (kmol/h) 531.6 719.1 800max 

*Specified;   **: Unconstrained optimum;  # calculated (not a decision 

variable) 

 

 Physically speaking, the column boil-up prevents B leakage down the bottoms and sends all 

of the unreacted A and B up the top for recycle to the reactor. The cause-and-effect relationships 

relating a change in xrxrB
SP to column boil-up are as follows. At given Trxr, Urxr (reactor hold-up) and 

fixed FB (production) (Mode I), changing xrxrB
SP changes the steady state recycle rate required to 

close the overall plant material balance. The column boil-up also correspondingly changes. In Mode 

II, xrxrB
SP is changed so that the boil-up reduces allowing a throughput to push the boil-up to the 

bottleneck constraint, VMAX. Since the boil-up is seldom measured, the RTO model must estimate of 

the same in both Mode I (optimized objective) and Mode II (bottleneck constraint). 

 The RTO plant model consists of a model reactor and a model column connected as in the 

actual plant. Here we use a standard CSTR model with alternative parameter adjustable reaction 

kinetic models and a standard ideal VLE column model with adjustable Murphree stage efficiency 

for the stripping section and the rectifying section. The unknown parameters for the model reactor 

and the model column are estimated from the available recent plant data. The model itself requires a 

good estimate of the input stream state. Usually stream temperature and pressure can be reliably 

inferred from available routine process instrumentation. This leaves the stream component flow 

rates to be reliably estimated for fully fixing a stream state. In the absence of direct measurements, 

appropriate plant material balances must be performed for this estimation. Given material stream 
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component flows (measured or estimated), the model parameters may be appropriately adjusted to 

best fit the most recent plant data. Post parameter estimation, the fitted model is optimized with 

respect to xrxrB to obtain its optimum value for implementation in the plant. There are thus four main 

components to the entire RTO exercise, namely, (a) Estimation of plant stream component flows; 

(b) Estimation of model reaction kinetic parameters; (c) Estimation of column model parameters; 

and finally (d) Fitted model optimization. Each of these aspects is now elaborated upon. 

 

3.3.1 Estimation of Material Stream Component Flows 

 Available plant measurements are used to estimate the material stream component flows 

using appropriate unit or plantwide material balances. Particularly note the availability of accurate 

measurements of the product rate (P*), its B impurity (xB
P*), the recycle rate (R*) and the reactor B 

mol fraction (xrxrB
*). Further the column tray temperatures (Tcol

*), reflux rate (L*), reactor and 

column feed temperatures (TFrxr
* and TFcol

*), reactor pressure (Prrxr
*), column condenser pressure 

(Prcnd
*) and column pressure drop (ΔPrcol

*) are measured. We first consider the simpler case of a 

measured recycle stream C impurity mol fraction (xC
R*). 

Assuming steady plant operation and negligible A leakage in the product stream (xA
P = 0), 

an overall plant material balance estimates the fresh feed stream rates as 

   FA
e = P* (1 – xB

P*)    1(a) 

   FB
e = P*     1(b) 

A column component balance estimates the reactor effluent component rates, Ei
e (i = A, B, C) as  

   EA
e = RA

e     2(a) 

   EB
e = RB

e + P*xB
P*    2(b) 
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   EC
e = R*xC

R * + P* (1 – xB
P*)   2(c) 

We also have  R* = RA
e + RB

e + R* xC
R *    3(a) 

and   xrxrB
* = EB

e/(EA
e + EB

e + EC
e)   3(b) 

Combining Equation 3(b) with Equation 2, we get 

   xrxrB
* = (RB

e + P*xB
P*)/(RA

e + RB
e + R*xC

R * + P*) 3(c) 

Simultaneous solution of Equation 3(a) and Equation 3(c) provides the estimates RA
e and RB

e, as 

   RA
e = R* – xrxrB

* (R* + P*) + P*xB
P*– R*xC

R * 4(a) 

   RB
e = xrxrB

* (R* + P*) – P*xB
P*   4(b) 

Further, we have RC
e  = R*xC

R *     4(c) 

All material stream component flows in the plant are thus known (measured or estimated). 

 For the case where xC
R is not measured, a simple procedure requiring iterative solution of 

the column model (described later) gives a reasonable estimate, xC
R,e. Initially, xC

R,e is guessed to a 

small value (xC
R,e = 0.5 to 2 mol%) and RB

e and RA
e are obtained from Equation 4 with xC

R* replaced 

by xC
R,e. Equation 2 then fixes the feed component flows to the column. The model column is then 

converged with xB
P* and the measured reflux rate (L*) as the two specification variables. When 

converging the model column, one may also choose to adjust the tray section efficiencies, ηR and ηS, 

to best match the measured column temperature profile, Tcol
*.  The converged column model gives a 

revised estimate of xC
R,e and the calculation cycle is repeated to refine xC

R,e till the change in xC
R,e 

from one iteration to the next becomes negligible, indicating convergence. Equations 1-4 for the 

converged xC
R,e give estimates of the plant stream component flows. 
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3.3.2 Estimation of Reaction Kinetic Model Parameters    

 The standard CSTR model16 is used with three of the simplest kinetic models as below: 

Kinetic Model I (KM I):  rm = kmxrxrAxrxrB 

Kinetic Model II (KM II): rm = km xrxrA
αxrxrB 

Kinetic Model III (KM III): rm = km xrxrA
αxrxrB

β 

Given that the actual plant reaction rate expression is 

   𝑟 =
𝑘𝑥𝑟𝑥𝑟𝐴𝑥𝑟𝑥𝑟𝐵

1+𝐾𝑥𝑟𝑥𝑟𝐴
 

with the KxrxrA term in the denominator being of the order of 1, there is an inherent plant-model 

mismatch in the reaction kinetics. KM I, KM II and KM III have, respectively, 1 (km), 2 (km, α) and 

3 (km, α, β) unknown parameters. For known reactor feed and effluent component flow estimates for 

the current and if necessary, previous steady states, the unknown kinetic parameters are adjusted to 

ensure the model reactor product C generation rate matches the difference between the estimated 

reactor effluent and feed C rate. This difference must equal the C product rate so that at steady state 

   rm .Urxr
* =   P*.(1 – xB

P*)    5(a) 

We use Urxr
* = Urxr

MAX at a steady state assuming optimal operation since maximizing hold up 

minimizes the unreacted reactant recycle load and is therefore always optimal. The model specific 

reaction rate rm depends on the estimated reactor A and B mol fractions, xrxrA
e and xrxrB

e, easily 

obtained from the estimated reactor effluent component flows as 

  xrxrA
e = EA

e/(EA
e + EB

e + EC
e)   5(b) 

  xrxrB
e = EB

e/(EA
e + EB

e + EC
e) = xrxrB

*   5(c) 
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In KM I, since there is only one unknown parameter (rate constant km) application of Equation 5(a) 

to the current steady state (subscript '0') estimates it as  

   km,e = P* (1 – xB
P*)/( xrxrA

e xrxrB
e Urxr

MAX)   6(a) 

 In KM II, km and α, are the two unknown reaction kinetic parameters. Plant data for two 

most recent steady states, the current steady state (subscript 0) and the previous steady state 

(subscript 1), are then used. Applying Equation 5(a) for both these steady states, 

   km (xrxrA
e
0)

α (xrxrB
e
0) Urxr

MAX
0 = P*

0 (1 – xB
P*

0) 

   km (xrxrA
e
1)

α (xrxrB
e
1) Urxr

MAX
1 = P*

1 (1 – xB
P*

1) 

Simultaneous solution provides estimates of the unknown parameters km,e and αe for KM II as  

    𝛼𝑒 =

log{
𝑃0

∗(1−𝑥𝐵 0
𝑃∗

)( 𝑈𝑟𝑥𝑟
𝑀𝐴𝑋

1)(𝑥𝑟𝑥𝑟𝐵
𝑒
1)

𝑃1
∗(1−𝑥𝐵 1

𝑃∗
)(𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
0) (𝑥𝑟𝑥𝑟𝐵

𝑒
0)

}

log(
𝑥𝑟𝑥𝑟𝐴

𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
1
)

   7(a) 

    𝑘𝑚,𝑒 =
𝑃0

∗(1−𝑥𝐵 0
𝑃∗

)

𝑈𝑟𝑥𝑟
𝑀𝐴𝑋

0( 𝑥𝑟𝑥𝑟𝐵
𝑒
0)(𝑥𝑟𝑥𝑟𝐴

𝑒
0)

𝛼𝑒   7(b)  

Note that it is possible to use more than 2 steady states to obtain more robust estimates km,e and αe. 

A simple method for doing the same is described later in the "Discussion" section. 

 In KM III, km, α and β are the three unknown reaction kinetic parameters so that data for 

three most recent steady states, is needed. The overall material balance for the three latest steady 

states (subscripts '0' for current, '1' for previous and '2' for one before previous) requires that 

   km (xrxrA
e
0)

α (xrxrB
e
0)

β Urxr
MAX

0 = P*
0 (1 – xB

P*
0) 

   km (xrxrA
e
1)

α (xrxrB
e
1)

β Urxr
MAX

1 = P*
1 (1 – xB

P*
1) 

   km (xrxrA
e
2)

α (xrxrB
e
2)

β Urxr
MAX

2 = P*
2 (1 – xB

P*
2) 
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For the case where P*
0 = P*

1 = P*
2 i.e. production rate is the same at all the three steady states (this 

is possible in Mode I operation), we get an indeterminate system of equations and km, α and β 

cannot be uniquely determined. We therefore adjust km, α and β to minimize the squared sum of the 

difference between the LHS and RHS of the plantwide material balances above. For the case where 

any one of the steady state production rates are different (this is usually the case in Mode II 

operation), one can show that the simultaneous solution of the above equations provides estimates 

of km,e, αe, and βe for KM III as  

𝛼𝑒 =

log{
𝑃0

∗(1−𝑥𝐵 0
𝑃∗

) 𝑈𝑟𝑥𝑟
𝑀𝐴𝑋

1

𝑃1
∗(1−𝑥𝐵 1

𝑃∗
) 𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
0

} log(
𝑥𝑟𝑥𝑟𝐵

𝑒
0

𝑥𝑟𝑥𝑟𝐵
𝑒
2
)−log{

𝑃0
∗(1−𝑥𝐵 0

𝑃∗
) 𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
2

𝑃2
∗(1−𝑥𝐵 2

𝑃∗
) 𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
0

} log(
𝑥𝑟𝑥𝑟𝐵

𝑒
0

𝑥𝑟𝑥𝑟𝐵
𝑒
1
)

log(
𝑥𝑟𝑥𝑟𝐴

𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
1
) log(

𝑥𝑟𝑥𝑟𝐵
𝑒
0

𝑥𝑟𝑥𝑟𝐵
𝑒
2
)−log(

𝑥𝑟𝑥𝑟𝐴
𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
2
) log(

𝑥𝑟𝑥𝑟𝐵
𝑒
0

𝑥𝑟𝑥𝑟𝐵
𝑒
1
)

  8(a) 

𝛽𝑒 =

log{
𝑃0

∗(1−𝑥𝐵 0
𝑃∗

) 𝑈𝑟𝑥𝑟
𝑀𝐴𝑋

1

𝑃1
∗(1−𝑥𝐵 1

𝑃∗
) 𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
0

} log(
𝑥𝑟𝑥𝑟𝐴

𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
2
)−log{

𝑃0
∗(1−𝑥𝐵 0

𝑃∗
) 𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
2

𝑃2
∗(1−𝑥𝐵 2

𝑃∗
) 𝑈𝑟𝑥𝑟

𝑀𝐴𝑋
0

} log(
[𝑥𝑟𝑥𝑟𝐴

𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
1
)

log(
𝑥𝑟𝑥𝑟𝐴

𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
2
) log(

𝑥𝑟𝑥𝑟𝐵
𝑒
0

𝑥𝑟𝑥𝑟𝐵
𝑒
1
)−log(

𝑥𝑟𝑥𝑟𝐴
𝑒
0

𝑥𝑟𝑥𝑟𝐴
𝑒
1
) log(

𝑥𝑟𝑥𝑟𝐵
𝑒
0

𝑥𝑟𝑥𝑟𝐵
𝑒
2
)

  8(b) 

𝑘𝑚,𝑒 =
𝑃0

∗(1−𝑥𝐵 0
𝑃∗

)

𝑈𝑟𝑥𝑟
𝑀𝐴𝑋

0( 𝑥𝑟𝑥𝑟𝐴
𝑒
0)

𝛼𝑒
(𝑥𝑟𝑥𝑟𝐵

𝑒
0)

𝛽𝑒      8(c) 

In this way, the unknown parameters are estimated for KM I, KM II and KM III. 

 

3.3.3 Estimation of Column Model Parameters 

 The standard Aspen Hysys column model with ideal liquid and vapor phases is applied 

here. This is a standard equilibrium stage model with a Murphree tray efficiency which is described 

in detail in textbooks17 and therefore not repeated here for brevity. The standard Murphree tray 

efficiency definition based on the vapour composition is used34.  We consider three model variants - 

(a) All trays are ideal (ƞi = 1 for all i); (b) All trays have a constant non-ideal stage efficiency (ƞi ≤ 

1 for all i); and (c) The rectifying and stripping section trays have separate non-ideal stage 

efficiencies, ƞR and ƞS, respectively (ƞR ≤ 1 and ƞS ≤ 1). The modelling is described for variant (c) 



 

69 
 

here, since variants (a) and (b) are simplifications to variant (c). Note that mismatch occurs between 

the column model and the actual plant column since the column uses the SRK equation of state 

whereas the ideal solution is used in the model. Further, the actual plant column uses flow 

dependent Murphree stage efficiency for each tray, as shown in Figure 3.1. Thus, at any given plant 

steady state, the efficiency of the trays in the column varies over a range, e.g. 0.75 – 0.90. In 

contrast, all stripping and rectifying trays use a constant tray efficiency (ηS ≤ 1 and ηR ≤ 1).   

 The model column is simulated as follows. The measured column condenser pressure 

(Prcnd
*) and the column pressure drop (ΔPrcol

*) fixes the model column tray section pressure profile 

via linear interpolation. The column feed component flowrates are taken as Ei
e (i = A, B, C). The 

feed temperature is fixed at the measured column feed temperature (TFcol
*) and its pressure is fixed 

at interpolated feed tray pressure. The column feed state is thus fully specified. For the case when 

xC
R is accurately measured, the simple column model is converged for the measured C leakage up 

the top (xC
R*) and the measured B impurity down the bottoms (xB

P*) as the two specifications. The 

converged column model gives the estimated column temperature profile (Tcol
e). Since the plant 

column temperature profile is measured (Tcol
*), we adjust the rectifying section Murphree tray 

efficiency (ηR) and the stripping section Murphree tray efficiency (ηS) to best fit the predicted 

rectifying and stripping section temperature profiles, respectively, to the corresponding plant 

temperature profiles. This provides the best fitted estimates, ƞR
e and ƞS

e. The temperature profile 

fitted converged column model provides an estimate of the column boil-up, Ve. For greater clarity, 

Figure 3.2(a) shows the step-by-step algorithm for obtaining Ve when xC
R = xC

R*. 

For the case where xC
R is not known, the simple iterative procedure of refining the xC

R,e 

guess by repeatedly converging the column model for the column feed state estimated from 

material balances with L* and xB
P* as the specifications has been described previously.  The column 

boil-up at convergence (xC
R,e guess stops changing between iterations) is then taken as the model 

estimated boil-up, Ve. For clarity, Figure 3.2(b) shows the step-by-step algorithm. 
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Figure 3.2. Column model fitting (a) xC
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3.3.4 Fitted Model Optimization 

 The plant steady state model with the estimated kinetic parameters and column tray section 

efficiencies ηR
e and ηS

e (if applicable) is optimized for Mode I or Mode II operation with xrxrB
m as 

the decision variable. The Matlab NLP constrained optimizer fmincon is used here with Hysys as 

the back ground steady state solver for the plant / model with Matlab – Hysys data exchange. The 

active-set algorithm applying forward finite difference for gradient/Hessian estimation is applied. 

Since the J vs xrxrB curve is quite flat near the optimum, a tight convergence tolerance (10-4) is used 

for a close approach to optimum. The Hysys steady state model uses FrxrA
m and reactor feed B to A 

ratio, [B/A]Frxr
m, as the two specifications corresponding to the two fresh feeds.  In Mode I, FrxrA

m is 

adjusted to hold the throughput, FB
m = P*. On the other hand, in Mode II, FrxrA

m gets adjusted to 

hold the model column boil-up Vm = Ve, where Ve is the boil-up estimate for the current steady state. 

A Newton-Raphson Matlab loop is used to converge this adjustment. Note that for the plant column 

operating at its flooding limit (Mode II), the estimated boil-up at the current steady state, Ve, is a 

good estimate of VMAX, the bottleneck constraint. For a particular value of FrxrA
m, the other 

specification, [B/A]Frxr
m, fixes the total B going into the reactor as  

   FrxrB
m = FrxrA

m . [B/A]Frxr
m 

The two specifications for the reactor are Trxr
m = Trxr

* and Urxr
m = Urxr

* = Urxr
MAX. Finally on the 

column, the model specifications are xB
P,m = xB

P* and xC
R,m = xC

R* or xC
R,e. The latter assumes that 

reflux is adjusted to ensure the C impurity in the recycle stream is kept small, possibly using a 

temperature control loop. Further, the model tray efficiencies are kept fixed at the fitted estimates, 

i.e., ηR
m = ηR

e and ηS
m = ηS

e. With these plant model specifications, optimum value of the decision 

variable [B/A]Frxr
m,opt is sought using fmincon. The model optimum reactor B mol fraction, xrxrB

m,opt 

is obtained from the optimum steady state to which the optimizer converges (see Figure 3.3). This 

fitted model optimum is implemented in the plant post smoothing to avoid large changes in xrxrB
SP 

as 
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   xrxrB
SP,new = a xrxrB

SP,curr + (1-a) xrxrB
m,opt 

where xrxrB
SP,curr is the current reactor B mol fraction setpoint. The fit-optimize-update cycle is then 

repeated again after the plant settles at the new steady state corresponding to xrxrB
SP,new. The major 

steps of the entire RTO cycle for the reactor-separator-recycle process are shown in Figure 3.4. 

 

Figure 3.3. Optimization of xrxrB
m for fitted plant model 
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Figure 3.4. Real time optimization cycle 

Estimate column model parameters 

and PV’s (See Fig. 4) 

xrxrB
SP,new = a xrxrB

SP,curr + (1-a) xrxr
m,opt 

xrxrB
m,opt 

Implement xrxrB
SP,new to plant 

Estimate  reaction kinetic parameters: 

KM I:  rm = kmxrxrA
e
 xrxrB

e 

km
 estimation: See eqn 6(a) 

KM II:  rm = km(xrxrA
e)α xrxrB

e 

km, α estimation: See eqn 7(a), 7(b) 

KM III:  rm = km(xrxrA
e)α(xrxrB

e)β 

km, α, β estimation: See eqn 8(a), 8(b), 8(c) 

Read relevant plant steady state data 

xrxrA
e, xrxrB

e 

km,e, αe, βe 

η
R

e ,
 η

S
e ,

 V
e ,

 

x C
R

,e
 (

if
 u

n
m

ea
su

re
d

) 

Allow plant to settle to steady state 

x r
xr

B
S
P

,n
ew

 

Solve  

Mode I:   Jm = Vm 

Mode II:  Jm = −FB
m 

Use fmincon 

min
[𝐵/𝐴]

𝐹𝑟𝑥𝑟
𝑚

𝐽𝑚 

Update 

Optimise 

Fit 

Read 



 

74 
 

 RTO as described above is implemented on a 3.4 GHz Intel Core i7 processor, 32 GB 

RAM PC. Each RTO iteration takes about 2-3 mins to execute with the fmincon NLP optimizer 

taking 5-6 iterations to converge. This is acceptable as the plant takes a few hours to settle to the 

new steady state post implementation of the RTO move, before the next RTO calculation is done. 

 

3.4 Steady State RTO Performance Evaluation 

The performance of the developed scheme above for steady state RTO of xrxrB for Mode I 

and Mode II operation is now evaluated. Here, we limit ourselves to a purely steady state analysis 

to get an idea of the possible steady state enhancement in plant profitability using RTO. Significant 

enhancement would then merit further evaluation using rigorous dynamic simulations. 

The first and foremost question is if the developed modelling approach pushes the plant 

operation sufficiently close to the actual plant optimum? A related issue is the role of the model 

variants in determining how closely the actual plant optimum is approached. Specifically, we have 

three alternative reaction kinetic models and associated kinetic parameters. We also have the 

column model variants. To quantify the role of these models (and associated parameters) in closely 

approaching the actual optimum, we performed the fit-optimize-update RTO cycle for the 

following:  

(a) The three different kinetic models, with fitted rectifying and stripping section efficiencies. 

(b) For KM II, a separate tray efficiency is fitted to the rectifying and stripping sections each; or a 

single tray efficiency is fitted to the entire column; or all model trays are treated as ideal (i.e. all 

model tray efficiencies = 1). 

Each model in (a) or (b) above is tested for the following cases in both Mode I and Mode II 

(i) The plant is at steady state with xrxrB at a suboptimal value and the RTO cycle is switched on. 
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(ii) The plant is at steady state with xrxrB at the optimum value and a step disturbance occurs. RTO 

is switched on to seek the new optimum for xrxrB.  

 For Case (i) above, an initial suboptimal xrxrB value on either side of the optimum is 

considered for Mode I. In Mode II, it is assumed that xrxrB remains fixed at its Mode I optimum 

(xrxrB = 0.278 for a product rate of 100 kmol/h) and the RTO cycle is switched on with the column 

operating at its flooding limit (bottleneck constraint). For Case (ii), three step disturbances are 

considered. The first one, applicable to Mode I only, is a ±20% throughput change. The second one 

is the plant Langmuir Hinshelwood kinetic rate constant decreasing to 90% of its nominal value due 

to catalyst deactivation. The third one is the fresh B (fresh A) feed composition changing from pure 

B (A) to 90 mol% B (A) and 10 mol% A (B). The latter two disturbances are applicable to both 

operation modes. 

 The RTO cycles as detailed above were run and the converged optimum xrxrB
m,opt and scalar 

objective function value for each mode of operation (Mode I or Mode II) noted. Since this is a 

simulation study, the actual plant optimum (xrxrB
opt) and the corresponding scalar objective function 

value (Jopt) is known and is therefore compared with the corresponding RTO converged values, 

xrxrB
m,opt and Jm,opt. The impact of the chosen model (a or b above) on RTO performance can thus be 

quantified. The % deviation of the converged decision variable (xrxrB) from the actual plant 

optimum 

   Ddv% = 100 . (xrxrB
m,opt – xrxrB

opt)/xrxrB
opt 

and the % loss in the economic objective due to the deviation in the economic objective 

   LossJ% = 100 . (Jm,opt - Jopt)/Jopt 

are convenient quantitative metrics used here.  
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3.4.1 Impact of Kinetic Model on RTO Performance 

 In general, for the different reaction kinetic models, both KM II (rm = km xrxrA
α xrxrB) and 

KM III (rm = km xrxrA
α xrxrB

β) approach the actual plant optimum closely in Mode I and Mode II. KM 

I, on the other hand, results in poor performance with Ddv% being substantial. Consequently LossJ% 

too then is noticeable. This is clearly evidenced in the bar chart in Figure 3.5. It shows Ddv% and 

LossJ% for suboptimal initial xrxrB and other disturbances noted above. Mode I, LossJ% varies in the 

range 1.1 - 6% when using KM I. With KM II and KM III on the other hand, LossJ% is at most 

0.2%. Similarly in Mode II, KM I results in a 2.5-3.2% loss in the maximum achievable throughput. 

With KM II or KM III, the % loss is much smaller at < 0.1%. A closer scrutiny of Figure 3.5 

reveals that the performance of KM II and KM III is comparable. The simpler two parameter KM II 

is thus recommended for RTO.  

  As an illustration of RTO driving xrxrB towards optimum for the three considered kinetic 

models, Figure 3.6 plots the variation in xrxrB
 SP and the plant economic objective (J) with RTO 

iterations for both Mode I and Model II. The disturbance case of a 10% loss in catalyst activity 

(plant kinetic constant k reduces to 90% of its base-case value) is considered. Initially xrxrB
SP is at its 

base-case optimum value of 0.278. As RTO is turned on, xrxrB gets driven to its converged value in 

~5 iterations for all the three considered kinetic models. While the actual plant optimum is closely 

approached using KM II and KM III, the converged xrxrB for KM I remains noticeably away from 

the actual optimum with consequent sub-optimality in the converged economic objective J. For all 

other disturbance cases, very similar trends are observed (data not shown for brevity). 
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Figure 3.5. Deviation in RTO# converged steady state from actual plant optimum for various 

disturbance scenarios using alternative kinetic models 

(a) Decision variable  (b) Economic Objective 

IC: Suboptimal initial xrxrB TP: Throughput  CC: Feed composition change      k90%: 90% catalyst activity 

+: Above optimum  −: Below optimum  ↑: Increase ↓: Decrease 

#: Unmeasured xC
R; ηR and ηS fitted on column; Similar results for other model variants. 

 

(b) 

(a) 



 

78 
 

 

 

 In practice, higher losses are expected due to imperfect measurements as well as ever-

present transient variability. Nevertheless, the results clearly illustrate that the choice of the reaction 

kinetic model significantly impacts how close an unconstrained plant setpoint can be driven to its 

actual optimum. Indeed, for perfect measurements and steady state operation, both KM II and KM 

III drive xrxrB close enough to its actual optimum for a negligibly small economic loss. 

 

  

 

Figure 3.6. Evolution of xrxrB
SP and J with RTO iterations for 10% loss in catalyst activity using 

alternative reaction kinetic models# (a) KM I (b) KM II and (c) KM III 

#: Unmeasured xC
R; ηR and ηS fitted on column; Similar results for other model variants. 

 

(a) (b) (c) 
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3.4.2 Impact of Column Model on RTO Performance 

 The impact of column model on RTO performance is shown in Figure 3.7. It plots Ddv% and 

LossJ% for the three possible column models with KM II for the various disturbance scenarios and 

suboptimal initial conditions. The bar chart clearly shows that when xC
R is not measured and is 

therefore estimated, all three column models approach the plant optimum closely with the 

maximum loss being < 0.15% for all the considered disturbance scenarios. On the other hand, when 

xC
R is measured, a distinct trend is noticed with the ideal trays model performance being noticeably 

inferior to the other two models. The % loss for the former varies in the range 0.04 – 1% whereas 

for the latter, the corresponding range is much smaller at 0.00 – 0.13%. This is likely because when 

xC
R is estimated, the column model specifies Lm = L*. The curvature in the actual J vs xrxrB curve is 

then better captured since reflux rate is directly related to the column boil-up via the energy 

balance. 

 As an illustration of the convergence of RTO for the case when xC
R is not measured, Figure 

3.8 plots the variation in xrxrB and J with respect to RTO iterations for Mode II operation for the 

three column models. Initially, xrxrB is at a suboptimal value of 0.278. As RTO is switched on, the 

actual optimum xrxrB of 0.358 is closely approached for all the three column models in ~5 iterations. 

These results suggest that for this system, the simplest of column models is appropriate for 

capturing the curvature in J vs xrxrB curve and thus driving the decision variable, xrxrB, to the actual 

optimum. 
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Figure 3.7. Deviation in RTO# converged steady state from actual plant optimum for various disturbance scenarios for different 

column model 

(a) Decision variable  (b) Economic Objective 

IC: Suboptimal initial xrxrB TP: Throughput      CC: Feed composition change  k90%: 90% catalyst activity 

+: Above optimum  −: Below optimum  ↑: Increase ↓: Decrease 

#: KM II; Similar results for other kinetic models. 

(a) 

(b) 

xC
R unmeasured xC

R measured 
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Figure 3.8. Evolution of xrxrB
SP and J with RTO# iterations for 10% loss in catalyst activity in Mode II using alternate column model 

#: Unmeasured xC
R; KM II; Similar results for other kinetic model. 
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3.4.3 Impact of Measurement Bias on RTO Performance 

The plant model fitting exercise requires plant measurements and a sustained bias in the 

measurement(s) can result in deterioration of RTO performance. To quantify the same, Table 3.4 

reports Ddv% and LossJ% using the proposed RTO scheme for a ±5% bias in the key plant 

measurements, namely, xrxrB
*, R*, L* and P*. The % economic loss is no more than 0.2% in all the 

cases. This suggests that the proposed RTO scheme is inherently robust to measurement errors. 

 

3.4.4 Quantitative Benefit of RTO Over Constant Setpoint Operation 

 To appreciate the RTO benefit, Table 3.5 compares the Mode I and Mode II steady state 

economic objectives using RTO versus constant setpoint operation (i.e. xrxrB
SP = 0.278, its Mode I 

optimum value) for the various disturbance / operating scenarios evaluated. The data in the Table 

3.5 clearly shows that the recommended RTO approach brings in Mode I energy savings in the 

range of 1.3-10% and an increase in the maximum production rate in the range 5.5-7.6%. There 

thus exists significant economic incentive to implement the proposed RTO scheme. Further 

dynamic analysis will be taken up in Part II of this article series. 

 

Table 3.4. RTO# performance with ±5% bias in key measurements 

 

Mode I  J = min(V) Mode II  J = min(-FB) 

TP+20%  CCFB TPMAX 

Ddv% LossJ% Ddv% LossJ% Ddv% LossJ% 

xrxrB
* + 0.000 0.014 0.134 0.022 0.000 0.000 

- 0.009 0.042 0.139 0.022 0.006 0.008 

P* + 0.003 0.014 0.148 0.000 0.006 0.008 

- 0.003 0.014 0.139 0.022 0.006 0.000 

R* + 0.012 0.028 0.148 0.000 0.011 0.016 

- 0.009 0.028 0.111 0.132 0.011 0.016 

L* 
+ 0.003 0.014 0.120 0.066 0.008 0.008 

- 0.015 0.042 0.162 0.022 0.000 0.000 

#: Unmeasured xC
R; ηR and ηS fitted on column; KM II; Similar results for other model variants.  
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Table 3.5. Quantitative comparison of RTO# with constant setpoint operation for different 

disturbance scenarios 

 
Mode I J = min(V) Mode II J = min(-FB) 

TP+20% TP-20% CCFB CCFA k90% TPMax CCFB CCFA k90% 

Constant SP 791.4 410.7 461.8 661.2 590.3 120.4 120.4 120.4 111.2 

With RTO# 719.1 393.3 455.9 641.2 577.3 127.2 127.2 127.2 119.7 

% Benefits 10.1% 4.4% 1.3% 3.1% 2.2% 5.6% 5.6% 5.6% 7.6% 

#: Unmeasured xC
R; ηR and ηS fitted on column; KM II. 

TP: Throughput change k90%: 90% catalyst activity CCFA or CCFB: FA or FB composition change 

 

 Overall, the results indicate that the simple modelling approach using KM II and a tray 

efficiency each for the rectifying and stripping sections gets the plant very close to the actual xrxrB 

optimum with negligible (<0.1%) economic loss. In particular, KM I is found to be inadequate with 

large offset from the actual optimum and consequent economic loss (up to 6%). 

 

3.5 Discussion 

 In the following, we further try to understand understand why KM I works so poorly 

compared to KM II or KM III. We also evaluate the suitability of the proposed model for other 

reaction kinetic scenarios and the minimum excitation required in xrxrB due to measurement noise. 

Other miscellaneous aspects worth highlighting are also briefly discussed. 

 

3.5.1 Adequacy of Kinetic Models 

 In one of the first works on point-wise model adequacy for RTO applications, Forbes et al.5 

state that, "a process model is considered adequate if there is a set of adjustable parameters which 

allow the model based problem to have an extremum which coincides with that of the plant, in the 

reduced operating space". In our case, the reduced operating space is a simple one degree of 

freedom optimization problem, i.e. to seek the optimum value of xrxrB. For simplicity, let us assume 
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the model column is ideal so that only the kinetic parameters are to be fitted. In KM I, the 

parameter km gets fixed to match the production at the current steady state. No adjustable parameter 

is then left so that the model predicted optimum, xrxrB
m,opt, cannot in general be exactly matched with 

the plant optimum, xrxrB
opt. KM I is then clearly inadequate for RTO. In KM II, if we assume that km 

is fixed to match the current production rate, then α can be adjusted to ensure the xrxrB
m,opt exactly 

matches xrxrB
opt. This is illustrated in Figure 3.9 that shows the model predicted and actual plant ΔJ 

vs xrxrB curves for fitted KM I and KM II parameter values at a particular current Mode I/ Mode II 

steady state. It is easy to see that in KM II, there is a unique value of α that forces xrxrB
m,opt = xrxrB

opt. 

KM II is thus "strongly point-wise adequate", as defined in Forbes et al.5. In KM III, both α and β 

can be adjusted so that there are multiple values for which xrxrB
m,opt = xrxrB

opt. KM III is thus only 

point-wise adequate. Between the three considered kinetic models, recommending KM II for RTO 

thus has a sound rational basis. Note that even for an adequate model, a poor parameter fitting 

methodology can always cause the RTO to converge to a model optimum that is not close enough 

to the actual plant optimum. That both the adequate kinetic models, KM II and KM III, approach 

the optimum closely implies that the suggested RTO methodology using available plant data is 

reasonable. 

 

Figure 3.9. Contrasting point-wise adequacy of KM II vs inadequacy of KM I for  

(a) Mode I (b) Mode II 

k is in kmol m-3 s-1 

(a) (b) 
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 A related issue concerns the suitability of the recommended RTO methodology using KM 

II for the same process but different plant kinetics. Given that the plant optimum is not known in 

practice, one cannot conclude that the suggested methodology will work well for different reaction 

kinetics. In order to address this issue, we considered a more general kinetic expression 

   𝑟 = 𝑘
𝑥𝐴

𝑎𝑥𝐵
𝑏

(1+𝐾𝐴𝑥𝐴+𝐾𝐵𝑥𝐵)
 

Since our RTO problem in the reduced operating space is the simplest possible one dof problem, it 

is easy to see that for all reasonable values of plant reaction kinetic parameters (k, a, b, KA and KB), 

KM II is adequate since with km fixed to match production, α can be appropriately adjusted to force 

xrxrB
m,opt = xrxrB

opt. Clearly, KM II is then point-wise adequate. Now to evaluate if the specific 

proposed RTO parameter fitting method converges close to the actual plant optimum, we 

considered 9 different parameter combinations with a > b, a = b, a < b, KAxrxrA ≈ O(1) or 0 and 

KBxrxrB ≈ O(1) or 0 (KA and KB = 0 is redundant)  and applied the proposed RTO method. The 

results summarized in Table 3.6 for a Mode I ±20% throughput change clearly suggest that for all 

considered kinetics, the recommended RTO method approaches the actual plant optimum quite 

closely with the loss from optimum being small at less than 0.02%. Similar results have also been 

verified for other Mode I/ Mode II disturbance scenarios (data not shown for brevity). The 

suggested RTO method may therefore be considered suitable for plant reaction kinetic scenarios of 

the general form above. 
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Table 3.6. RTO# performance with different LHHW models 

Models xrxrB
opt Vopt xrxrB

m,opt Vm,opt Ddv% LossJ% 

r = 0.0766xrxrAxrxrB/(1+1.78xrxrA) 0.337 719.1 0.338 719.13 0.267 0.004 

r = 0.1701xrxrA
2xrxrB/(1+1.78xrxrA) 0.23 742.29 0.229 742.3 0.435 0.001 

r = 0.2127xrxrAxrxrB
2//(1+1.78xrxrA) 0.392 707.97 0.39 708.02 0.510 0.006 

r = 0.0827xrxrAxrxrB/(1+2.73xrxrB) 0.204 678.22 0.205 678.23 0.343 0.001 

r = 0.1601xrxrA
2xrxrB/(1+2.73xrxrB) 0.151 718.445 0.151 718.44 0.331 0.00 

r = 0.131xrxrAxrxrB
2/(1+3.04xrxrB) 0.322 710.8 0.321 710.79 0.311 0.001 

r = 0.105xrxrAxrxrB/(1+1.78xrxrA+3.79xrxrB) 0.292 725.12 0.293 725.12 0.548 0.00 

r = 0.2728xrxrA
2xrxrB/(1+1.78xrxrA+3.79xrxrB) 0.164 643.84 0.163 643.89 0.793 0.008 

r = 0.341xrxrAxrxrB
2/(1+1.78xrxrA+2.02xrxrB) 0.396 812.07 0.395 812.07 0.177 0.00 

#: For +20% TP change; Unmeasured xC
R; ηR and ηS fitted on column 

r units: kmol.m-3.s-1 

 

3.5.2 Minimum Excitation Due to Measurement Uncertainty 

 In the quantitative RTO analysis, we have assumed perfect measurements, within the tight 

simulator numerical error tolerance. In practice, there exists uncertainty in the plant steady state 

measurements. The noisy measurements can cause amplification in the uncertainty associated with 

parameter estimates. In particular, notice that for the recommended KM II model fitting equations, 

the expression for α (Equation 7a) tends to 0 by 0 as the two steady states approach each other. To 

keep the uncertainty in the parameter estimates small, the two steady states must be minimally 

separated i.e. a minimum excitation is required in xrxrB for reliable kinetic parameter estimation. 

 To analyze for the minimum excitation in the recommended kinetic model, KM II, we 

consider the case where xC
R is measured. Random normal noise is added to the steady state 

measurements needed in the calculation of km and αm, namely, P, xC
R, xB

P, R, xrxrB and Urxr. For 

convenience, the percentage random error due to noise, Δe%, at 99% confidence level (3-sigma 

limit) in all the measurements is taken to be the same. Adding noise to the true plant steady state 

PV values, a total of 1000 noisy steady state measurements are generated for plant steady states 

(current + up to 3 previous steady states). These plant steady states differ from each other in the 

implemented xrxrB values with the difference between two adjacent steady states being a constant, 
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ΔxrxrB. The KM II parameters are then fitted using the noisy data for a total of 2, 3, or 4 steady 

states. Equation 7 is applicable for fitting 2 steady states. The fitting for more than 2 steady states is 

done quite simply as follows. At each of these i steady states, we have 

   km (xrxrA
e
i)

α (xrxrB
e
i) Urxr

MAX
0 = P*

0 (1 – xB
P*

i) 

Taking log of both sides, rearranging and writing the equations in matrix form, we get  
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we get    Xβ = y 

The unknown kinetic parameters are then easily obtained from the normal equations as 

β = (XTX)
-1

XTy 

By fitting using the 1000 data with reandom noise, an approximate distribution of the parameter 

estimates and their 95% confidence limits are obtained. Due to the 0 by 0 form of the α expression 

(Equation 7a) for nearly equal values of xrxrB, the 95% confidence limit in the α estimate blows up 

so that it sets the minimum ΔxrxrB excitation required. Figure 3.10 plots the variation in the Δα/α 

(95% confidence limit) with ΔxrxrB for 3-sigma uncertainty levels of 0.01%, 0.05%, 0.1% and 1% in 
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the steady state measurements. Given that the steady state measurement estimates will be obtained 

by averaging several hours of past data, we expect the uncertainty in the various measurements to 

be no more the 1%. From the Figure, for Δα/α to be within 20%, ΔxrxrB is ~0.01 when data for 4 

most recent steady states is fitted. Using steady state data for 4 most recent steady states, The RTO 

converge xrxrB close to the plant optimum. To confirm, we performed RTO with 1% added 

measurement noise to the steady state plant data for the disturbance scenarios considered. The 

results summarized in Table 3.7 clearly suggest that the RTO method approaches the true optimum 

to within 3% for Mode I and 8% for Mode II. The corresponding economic loss is within 0.15% 

and 0.9% respectively. The method is therefore robust to small levels of uncertainty in the 

measurements. 

 

 

Figure 3.10. Variation in ∆α/α with ∆xrxrB for various measurement uncertainty levels using 

up to 4 recent steady states (SS) for parameter fitting 
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Table 3.7. RTO# performance with 1% measurement uncertainty 

 
Mode I J = min(V) Mode II J = min(-FB) 

TP+20% TP-20% CCFB CCFA k90% TPMax CCFB CCFA k90% 

xrxrB
opt 0.337 0.216 0.248 0.314 0.31 0.358 0.358 0.358 0.37 

Jopt 719.1 393.3 455.9 641.2 577.3 127.23 127.23 127.23 119.71 

xrxrB
m,opt 0.344 0.215 0.241 0.317 0.315 0.333 0.329 0.334 0.340 

Jm,opt 719.6 393.4 456.4 641.3 577.6 126.65 126.48 126.66 118.7 

Ddv% 2.07 0.46 2.82 0.96 1.61 6.98 8.10 6.70 8.11 

LossJ% 0.07 0.02 0.11 0.02 0.05 0.46 0.59 0.45 0.84 

#: Unmeasured xC
R; ηR and ηS fitted on column; KM II.  

TP: Throughput change k90%: 90% catalyst activity   CCFA or CCFB: FA or FB composition change  

 

 

3.5.3 Miscellaneous Comments  

 Here we have demonstrated RTO for a single decision variable. This may be a limitation in 

that many practical RTO problems are multivariable in nature. It is however our experience that in 

many multivariable scenarios, the economic sensitivity with respect to a particular decision variable 

is significantly more than the other decision variables. The problem then reduces to a single 

variable problem. Nevertheless, extension of the work to multivariable RTO is envisaged as future 

work.  

 Lastly, we note that what has been presented here is the conventional two-step fit and 

optimize model approach for RTO, which is very appealing and is the norm in industry. This 

approach always suffers from some sub-optimality due to plant-model mismatch. Its major 

limitation is that the presented parameter adaptation strategy has not been systematically designed 

for converging to (or near) the plant optimum, in the presence of plant-model mismatch. Even as 

the sub-optimality in the presented case study is small (< 1% with measurement noise), it is 

possible that the sub-optimality is large due to model inadequacy (e.g. RTO performance with KM I 
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in this work). To guarantee convergence to optimum, Bonvin and co-workers18-22 have formalized 

the concept of modifier adaptation. The key idea is to take the difference in the optimality condition 

predicted by the model and that estimated from plant data, and use this information in modifiers 

that are added to the constraints and to the cost function of a modified optimization problem. The 

modifiers are adapted iteratively and upon convergence the difference in the model predicted and 

the plant estimated optimality condition is driven to zero. Thus, the scheme converges to the actual 

plant optimum. Applications of the modifier adaptation RTO method have been reported recently23-

24. We are now actively engaged in researching modifier adaptation based RTO of reactor-

separator-recycle processes and hope to report the findings in the near future. 

 

 

3.6 Conclusion 

 In conclusion, this work has demonstrated RTO of the dominant unconstrained economic 

decision variable for a complete plantwide process module with material recycle. RTO using simple 

reaction kinetic and distillation column models is shown to approach to actual plant optimum very 

closely with negligible economic loss. A key modelling requirement is the ability of the model to 

appropriately capture the curvature in the plant response curve with respect to the decision variable. 

For the various disturbance scenarios considered, the proposed RTO scheme is shown to result in 

up to 10% energy savings (Mode I) and up to 7.6% higher maximum throughput (Mode II) 

compared to constant setpoint operation. Further work will evaluate the dynamic performance of 

the proposed RTO scheme. 
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Chapter 4 

Real Time Optimization of a Reactor-Separator-Recycle Process 

II: Dynamic Evaluation 

 

This Chapter is based on the published paper “Real Time Optimization of a Reactor-Separator-

Recycle Process II: Dynamic Evaluation” in Industrial Engineering and Chemistry Research, doi: 

10.1021/acs.iecr.8b04274. 

 

In this Chapter dynamic performance of a fully automatic real time optimization (RTO) 

scheme is evaluated for a reactor-separator-recycle process in Mode I (minimize column boilup at 

given throughput) and Mode II (maximize production) operation. In both modes, the reactor 

composition setpoint is the optimized unconstrained degree of freedom. The RTO requires a simple 

override control scheme to reconfigure the inventory loops as the active constraint set changes 

between Mode I and Mode II. The overrides reorient inventory loops from in the direction of 

process flow (CS I) in Mode I to opposite the process flow (CS II) upstream of the bottleneck 

constraint (column maximum boilup) limiting Mode II production. The set of selected signals in the 

override scheme allows automatic distinction between Mode I and Mode II optimization. Closed 

loop results are reported for realistic sustained disturbance scenarios that include sudden fast 

changes as well as gradual equipment degradation. The RTO scheme significantly improves 

economic performance with up to 9% and 7% benefit over constant setpoint operation in Mode I 

and Mode II, respectively. Also, economic loss compared to the optimum gold standard is within 

1%, implying excellent performance even as the plant is never truly at steady state. 
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4.1 Introduction 

 Real time optimization (RTO) is a promising approach for driving plant operation close to 

the actual economic optimum steady state in the face of large disturbances1-2. Typically, at the 

optimum steady state, several constraints are active with a few remaining unconstrained degrees of 

freedom. The optimally active constraints are usually fairly obvious. Examples include operation at 

minimum product quality (to minimize product giveaway) or at maximum reactor hold-up (to 

minimize unconverted reactant recycle load) etc. If we assume that the regulatory layer control loop 

pairings are configured (or can be reconfigured, if required) to drive the process operation as close 

as possible to the optimally active constraint limits, optimal operation then boils down to obtaining 

the optimum values of any remaining unconstrained degrees of freedom. These decision variables 

correspond to unconstrained setpoints in the regulatory layer. The basic RTO cycle thus consists of 

using recent plant measurement data to best-fit parameters to a steady state model of the plant, 

optimizing the fitted steady state model to estimate the optimum values of the unconstrained 

regulatory layer setpoints and implementing the updated setpoints in the plant. The plant is allowed 

to settle at the new steady state and the fit-optimize-update cycle is then repeated. With an adequate 

process model that accounts for the major process non-linearities and a proper parameter fitting 

strategy, this standard model based RTO improves process operation economics and is the state-of-

the-art in the process industry3-6. 

 In the recent work of our group7, a simple steady state modeling approach was developed 

for real time optimization (RTO) of the unconstrained degree of freedom of a reactor-separator-

recycle process for Mode I (reboiler duty minimization at given throughput) and Mode II 

(throughput maximization) plant operation. The steady state results showed that the proposed 

approach drives the unconstrained setpoint very close to the actual plant optimum in the presence of 

large disturbances (plant-model mismatch) with potential economic benefit up to 10% over constant 

setpoint operation for the considered disturbances. It was also shown that the approach works well 
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for a class of reaction kinetics so that the conventional fit-optimize RTO method is appropriate. In 

view of the promising steady state economic benefit results from the conventional RTO approach, 

further dynamic evaluation is merited. 

 There are two major reasons why such a dynamic evaluation is required. Firstly, the 

process never really settles at a steady state due to ever present transient variability/disturbances. 

Further, many-a-times the disturbance itself is a slow transient, e.g. decline in catalyst activity over 

months of reactor operation, implying quasi-steady operation. There is also the economic loss 

during the RTO iterations till the optimum steady state is closely approached. The economic benefit 

achieved in an actual operating plant is thus likely to be less than the estimates from a purely steady 

state analysis, making dynamic evaluation necessary. 

 The second major reason for dynamic evaluation is the need to change the regulatory layer 

pairings as the optimally active constraint set changes. A common example of a change in the 

active constraint set is the transition from Mode I (given throughput) to Mode II (maximum 

throughput) operation and vice versa8-9. Typically in Mode I, none of the equipment capacity 

constraints are active and the process operates at the desired throughput, as dictated by market 

considerations. A transition to Mode II may be desired when product demand is exceedingly high 

(seller's market) and maximizing production maximizes profit. The maximum production is 

constrained by the bottleneck equipment capacity constraint, which is typically a hard constraint. 

Alternatively, a transition to Mode II becomes necessary when an equipment hits a capacity 

constraint (bottleneck) due to process degradation. The process throughput then must be reduced 

appropriately to ensure the bottleneck capacity constraint hard limit is not violated. In either case, 

the bottleneck capacity constraint is a new optimally active constraint that sets the throughput. To 

ensure the back-off from the hard constraint limit is as small as possible, appropriate reconfiguring 

of regulatory layer loops is usually required. 
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 For the primary reasons enumerated above, this work addresses the dynamic evaluation of 

the RTO approach developed in previous chapter (Part I) for the reactor-separator-recycle process. 

In the following, the main results from Part I are first summarized. We then present the Mode I and 

Mode II regulatory control structures along with an override control system for reconfiguring the 

loops in Mode I ↔ Mode II transition. Dynamic simulation results for the developed control system 

(including overrides) with RTO updated unconstrained regulatory setpoint are then presented to 

quantify economic benefit over constant setpoint for various disturbance scenarios. Results are also 

presented for scenarios where the process operation must transition between Mode I and Mode II 

and vice versa. Post a brief discussion of outstanding issues, the article ends with a summary of the 

main findings from the work. 

 

4.2 Summary of Part I Results 

 The plantwide reactor-separator-recycle process is shown in Figure 1.8. The liquid-phase, 

exothermic, irreversible reaction A + B → C occurs in the reactor. The reactor effluent is distilled to 

recover nearly pure C as the bottoms product and unreacted A and B as the distillate. The distillate 

is recycled back to the reactor. The process has six steady state operating degrees of freedom (dofs); 

2 for the two fresh feeds, 2 for the reactor (hold up and temperature) and 2 for the column 

(assuming given column pressure). These dofs are to be optimized for two modes of process 

operation. In Mode I, the throughput fixed and the remaining five dofs are to be optimized to 

minimize the column boilup (V). In Mode II, all six dofs are to be optimized to maximize 

throughput. 

 Of the available dofs, maximum reactor temperature (Trxr
MAX) and level (Urxr

MAX) as well as 

minimum product purity (xC
P,MIN) constraints are always optimally active i.e. three strictly active 

constraints in both Mode I and Mode II. Further, it is optimal to maintain the C leakage up the 

column distillate at the maximum limit of 1 mol%. This is treated as a soft constraint with slight 
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deviations being acceptable. A higher C leakage in the recycle stream is not permissible for long 

durations due to practical considerations of accelerated equipment fouling or catalyst deactivation 

in the presence of too much heavy C. Thus in Mode I (minimize boilup at given throughput), the 

four active constraints as well as the given throughput specification leave one unconstrained dof. In 

Mode II (maximize throughput), the maximum column boilup (VMAX) is the bottleneck capacity 

constraint that becomes additionally active to limit throughput. The unconstrained dof in Mode II 

then remains one as the throughput is no longer specified and gets set indirectly by the VMAX 

constraint. We take the B reactor mol fraction (xrxrB) as the regulatory layer setpoint corresponding 

to this unconstrained dof in both Mode I and Mode II. For completeness, Table 4.1 lists the salient 

optimum operating conditions for Mode I and Mode II. At the Mode I optimum, where the 

throughput is noticeably lower than the maximum throughput (Mode II), the optimum reactor B mol 

fraction is lower than A. At the Mode II optimum, the reactor A and B mol fractions are comparable 

with B being in slight excess. It appears that at lower throughputs (Mode I), the optimum reactor B 

mol fraction is noticeably lower than A as B is heavier than A so that B is more expensive to 

recycle. This gap decreases as throughput is increased and at maximum throughput (Mode II) the 

reactor B mol fraction is slightly higher than the A mol fraction. 

 The optimum value of xrxrB is obtained by RTO on a simple plant model. The recommended 

model uses two parameter reaction kinetics with the reaction rate given by 

   rm = km xrxrA
α xrxrB  

and an ideal VLE column model with adjustable rectifying section and stripping section tray 

efficiencies, ƞR and ƞS. The unknown parameters (km, α, ƞR and ƞS) are fitted using available recent 

plant measurements. Plant model mismatch occurs with the actual plant reaction kinetics being 

Langmuir-Hinshelwood and the actual column having vapor rate dependent tray efficiencies and 

SRK equation-of-state based thermodynamic properties. These details are available in previous 

chapter. Here we limit ourselves to the case of the recycle stream C mol fraction (xC
R) being 
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measured. The measurement is necessitated as temperature control of a sensitive rectifying tray 

temperature results in significant deviation in the recycle stream C leakage above to maximum 1 

mol% limit. Distillate composition based update of the tray temperature setpoint then becomes 

necessary. The RTO proceeds as follows. 

1. The plant internal stream component flow rates are estimated for the measured value of xC
R 

using material balances and available measurements.  

2. For the column feed obtained in Step 1, the ideal VLE column model is converged with plant 

measured bottoms product purity and distillate C impurity as the specifications. Further ƞR
 and 

ƞS are adjusted to minimize the sum of absolute deviation in the measured and column model 

predicted tray temperature profiles. Good estimates of ƞR
 and ƞS are thus obtained. 

3. Good estimates of the kinetic parameters, km and α, are obtained by adjusting them so that the 

throughput at the current and the previous steady state exactly match the plant throughput for 

the corresponding (estimated) total A and total B (recycle + fresh) component flow rates to the 

reactor. An algebraic estimation method is given in Part I. 

4. With all the model parameters thus estimated (km, α, ƞR
 and ƞS), the fitted model is optimized to 

obtain the model estimated optimum xrxrB
m,opt. Note that in Mode II, the model estimated boilup, 

Ve, is considered the VMAX constraint (i.e. VMAX = Ve) in the optimization. 

5. The estimated optimum xrxrB
m,opt is used to revise the xrxrB setpoint  to the plant. 

6. Plant is allowed to settle at new steady state and steps 1 - 6 are repeated. 

The Part I steady state results show that the above fit-optimize-update RTO cycle results in up to 

10% and 6% additional economic benefit in Mode I and Mode II, respectively, over constant 

setpoint operation. 
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Table 4.1. Salient optimum operating conditions for Mode I/Mode II  

 Mode I Mode II 

Material 

Streams 

Molar 

Flow 

(kmol/h) 

T (˚C) xA xB xC 

Molar 

Flow 

(kmol/h) 

T (˚C) xA xB xC 

FA 99 25 1 0 0 126 25 1 0 0 

FB 100 25 0 1 0 127.2 25 0 1 0 

E 266.4 110 0.337 0.285 0.378 431.6 110 0.339 0.362 0.299 

R 166.4 92.4 0.54 0.45 0.01 304.3 94.1 0.48 0.51 0.01 

P 100 137.8 0.0 0.01 0.99 127.2 140.3 0.0 0.01 0.99 

L 378.3 92.4 0.54 0.45 0.01 555.3 94.1 0.48 0.51 0.01 

Other Variables 

V 518.2 kmol/h 822 kmol/h 

Urxr 6 m3 6 m3 

See Figure 1.8 and Nomenclature for variable descriptions 

 

  

The active constraint set changes between Mode I and Mode II with four common active 

constraints (Trxr
MAX, Urxr

MAX, xC
P,MIN and xC

R,MAX = 1%). The given production rate constraint in Mode 

I is replaced by the VMAX bottleneck constraint in Mode II. For as close an approach to the optimum 

as possible, the dynamically fastest regulatory layer pairings should be used for tight active 

constraint control. It is likely that the best regulatory layer pairings are different between Mode I 

and Mode II since the active constraint set changes. We thus need to synthesize appropriate best 

pairings for Mode I and Mode II operation and also a mechanism for reconfiguring the loops, if 

any, for a transition between Mode I and Mode II and vice versa. Given such a control system, the 

regulatory layer setpoint xrxrB
SP may then be updated using the RTO approach summarized above. 
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4.3 Regulatory Layer Pairings for Mode I and Mode II 

4.3.1 Mode I 

 In Mode I, we have the following soft constraints in addition to the specified throughput 

  Trxr = Trxr
MAX, Urxr = Urxr

MAX, xC
P = xC

P,MIN and xC
R,MAX = 1 mol%. 

These constraints are treated as soft in the sense that small short-term constraint violation is 

acceptable and do not require any operator intervention or alternatively, invoking of overrides. The 

throughput manipulator (TPM) is conventionally located at a process fresh feed. Of the two fresh 

feeds, we choose the reactant B fresh feed flow setpoint as the TPM. The inventory control system 

is then oriented in the direction of process flow. We thus have reactor level control by manipulating 

the reactor outflow and a conventional dual ended composition control system on the column. Dual 

ended control is needed as a constant feed-to-reflux ratio policy requires significant over-refluxing 

to ensure the C leakage in the recycle stream remains small at ≤ 1 mol% over the envisaged 

disturbance space. The over-refluxing causes the boilup to be noticeably higher than minimum for 

nominal conditions implying noticeable suboptimality. Further, the distillate composition must be 

controlled as rectifying tray temperature control results in unacceptably large variability in the 

distillate impurity levels. The specific pairings on the column are as follows. The reflux drum and 

bottom sump levels are maintained by manipulating the distillate rate and bottoms rate, 

respectively. The column pressure is maintained by manipulating the condenser duty. A sensitive 

stripping tray temperature is controlled by manipulating the reboiler duty. Since regular product 

quality measurements are usually available, a composition controller holds xC
P by manipulating the 

stripping tray temperature control loop setpoint. Further, a distillate C impurity controller adjusts 

the reflux rate to ensure xC
R is maintained at its 1 mol% limit. On the reactor, the energy balance is 

closed by manipulating reactor cooling duty to hold Trxr. Lastly, the fresh A feed (FA) is maintained 

in ratio with the fresh B feed (FB) so that FA moves in tandem with FB for stoichiometric balance. 

Any minor imbalance in the fresh feeds due to sensor bias will result in the excess component 
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accumulating in the recycle loop. This slow drift in the recycle loop reactant inventory is prevented 

by holding xrxrB via adjustments to the FA/FB ratio setpoint.  

 The Mode I regulatory control structure, as described above is shown in Figure 4.1 and is 

referred to as CS I. Note that the Trxr, Urxr and xC
P loop pairings are the fastest possible and 

therefore would achieve tight control of the respective CVs. Simply setting Trxr
SP = Trxr

MAX, Urxr
SP = 

Urxr
MAX and xC

P,SP = xC
P,MIN, on the corresponding loops, would tightly control these soft active 

constraints around their constraint limits. Further, by setting xC
R,SP = 1 mol%, the C leakage in the 

recycle gets regulated around its 1 mol% limit. 

 

 

Figure 4.1. Conventional control structure, CS1 for Mode I 
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4.3.2 Mode II 

 In Mode II, the maximum achievable throughput is limited by the column flooding limit, 

where the boilup exceeding VMAX results in excessive liquid entrainment into the rising vapor, 

severely compromising the column separation efficiency. VMAX is then a hard equipment capacity 

limit that must not be breached. For maximizing throughput, the column operation must be pushed 

as close as possible to the VMAX limit without violating it (hard constraint). The average process 

operation must have sufficient back-off from the VMAX limit so that the constraint is not breached. 

Clearly, the magnitude of the back-off is dependent on the severity of the transients in V. The lower 

the severity, the lower the back-off. In the limiting case of no transients in V, the average column 

operation boilup can be pushed to be at the VMAX constraint (see Figure 4.2) with no back-off. These 

simple arguments suggest that the tightest possible control of V is desired so that the column can be 

operated at the hard bottleneck VMAX constraint with negligible back-off. Such tightest possible 

control may be achieved by pairing boilup with the reboiler duty valve. With the reboiler duty valve 

thus paired for bottleneck constraint control, an alternative manipulation handle is needed for 

regulating the stripping tray temperature. The dynamically fastest manipulation handle, excluding 

reboiler duty (already paired), is the column feed and it is paired for stripping tray temperature 

control. Now, with the column feed already paired for stripping tray temperature control, an 

alternate pairing is needed for reactor level control. The appropriate "close-by" manipulation handle 

is the fresh B feed rate. With this pairing, as reactor level changes, both fresh feeds change since FA 

is maintained in ratio with FB. Thus, in Mode II, we have reboiler duty tightly regulating boilup for 

tight bottleneck constraint control and upstream regulatory pairings in the reverse direction of 

process flow. All other loop pairings are the same as the pairings in CS I. Figure 4.3 shows the 

Mode II regulatory control structure, also conveniently referred to as CS II. 
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Figure 4.3. Control structure, CS2 for Mode II 
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4.4 Overrides for Mode I ↔ Mode II Transition 

 The conventional control structure, CS I, functions when the plant is away from the 

bottleneck capacity constraint, VMAX, i.e. unconstrained operation. When the constraint VMAX is hit, 

CS I must be reconfigured to CS II to minimize loss due to back-off from the VMAX limit (Mode I to 

Mode II transition). Similarly, should the process operation move away from VMAX, CS II loops 

must be reconfigured back to CS I (Mode II to Mode I transition). This CS I ↔ CS II 

reconfiguration of loops can be accomplished quite simply using overrides. The complete control 

system with the overrides is shown in Figure 4.4. It consists of three low selector blocks (LS1, LS2 

and LS3), a low stripping tray override temperature controller (OTC) on the column and a high 

reactor level override controller (OLC) on the reactor. The OTC setpoint is slightly below the 

nominal stripping tray temperature controller setpoint while the OLC setpoint is slightly above the 

nominal reactor level controller setpoint.  

 

Figure 4.4. Override control structure for Mode I ↔ Mode II transition 
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 To understand the functioning of the override control system, consider nominal Mode I 

process operation below VMAX. Since V < VMAX, LS1 passes the nominal stripping tray temperature 

controller signal to the boilup controller. The reboiler duty thus changes to hold the stripping 

control tray temperature at its nominal setpoint. The OTC output then is high since its setpoint is 

slightly below nominal so that the column feed rate (OTC output) must be increased to decrease the 

tray temperature. The low selector, LS2, then passes the nominal reactor level controller output to 

the column feed valve and column feed valve is under reactor level control (nominal operation). 

With the reactor level regulated around its nominal setpoint, the reverse acting high reactor level 

override controller output is high since level is below the OLC setpoint. The low selector, LS3, then 

passes the operator desired FB as the setpoint to the FB controller. Thus under nominal conditions, 

FB is the TPM with column feed and reboiler duty under nominal reactor level control and nominal 

tray temperature control respectively. 

 Now consider the situation where the operator slowly increases FB to increase production. 

In consequence, the boilup will increase under nominal stripping tray temperature control. At some 

stage, the nominal temperature controller demanded boilup will exceed VMAX and LS1 will pass VMAX 

as the setpoint to the boilup controller. Since the boilup is now fixed at VMAX and not increasing as 

demanded, the stripping tray temperature will naturally start decreasing. In response, the OTC 

output will start decreasing and eventually become less than the nominal reactor level controller 

output. The manipulation of the column feed valve then passes to OTC which acts to cut the 

column feed rate. The decrease in the column feed rate would cause the reactor level to increase. In 

response, the OLC output will decrease to eventually reduce below the operator demanded FB. LS3 

then passes the OLC output which acts to cut FB. Thus when VMAX goes active (Mode I to Mode II 

transition), the nominal CS I pairings are appropriately reconfigured to CS II with column feed 

under stripping tray temperature control and FB under reactor level control. The CS II pairings act 

to appropriately reduce throughput. 
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 Now consider Mode II to Mode I transition. As operator reduces FB setpoint sufficiently to 

transition back to Mode I, LS3 causes the operator input reduced FB signal to be passed as the 

setpoint to the FB controller. The reduced FB causes the reactor level to decrease and the nominal 

reactor level controller output decreases sufficiently to eventually take up column feed valve 

manipulation. The reduction in column feed rate (at fixed boilup) causes the stripping tray 

temperature to increase and the nominal stripping tray temperature controller output decreases to 

eventually take up boilup manipulation through LS1. The control structure configuration thus 

seamlessly transitions from CS II to CS I to effect the Mode II to Mode I transition. 

 Note that the OTC and OLC setpoints are, respectively biased slightly below and slightly 

above the respective nominal controller setpoints. A ramp in the setpoints is triggered to ensure the 

override setpoints become the same as the nominal setpoints whenever control passes from the 

nominal controller to the override controller. Similarly a complementary ramp is triggered 

whenever control passes from the override controller to the nominal controller. The implemented 

setpoint (override or nominal) then remains the same. 

 

4.5 Mode I ↔ Mode II Switching in RTO Layer 

 In the RTO layer, the optimizer must switch optimization objectives for a Mode I ↔ Mode 

II transition in process operation. This switching should be automatic and independent of the 

operator.  Consider process operation in Mode I at a high operator demanded throughput. Since the 

bottleneck constraint limit itself can change due to equipment degradation, it is entirely conceivable 

that while operating in Mode I, the bottleneck constraint goes active and the overrides then act to 

cut the throughput. The process operation has then transitioned from Mode I to Mode II. Even as 

the operator may believe the process is operating in Mode I, the RTO layer must automatically 

detect the transition from Mode I to Mode II and appropriately switch the optimization. On the 

other hand, it is also possible that the overrides get triggered for a short duration due to a transient 
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disturbance and then the nominal controllers take back control as the disturbance subsides. In such 

cases, what optimization, Mode I or Mode II, should the RTO perform? Should RTO be allowed to 

make a setpoint update when the distinction between Mode I / Mode II operation is unclear? These 

simple arguments suggest the need for an algorithm to determine the current operating mode based 

on the current plant state and relevant immediate plant history. Given a clear indication of the 

operating mode, the RTO can then perform the appropriate optimization and regulatory layer 

setpoint update. 

 In this work, we follow the simplest of procedures for determining which optimization, 

Mode I or Mode II, is to be performed, based on the selected signal in LS1, LS2 and LS3. In Mode I, 

LS1, LS2 and LS3 should select, respectively, the nominal column temperature controller output, the 

nominal reactor level controller output and the operator input nominal throughput setpoint. In Mode 

II, LS1, LS2 and LS3 should select, respectively, the VMAX constraint signal, column override 

temperature controller output, and the reactor override level controller output.  The current 

sampling period, is categorized as Mode I or Mode II if the LSi (i = 1 to 3) selected signals for more 

than half the sampling period is as per the respective template. The appropriate optimization thus 

determined is performed by the optimizer. 

 

4.6 Control System Tuning 

 The control loops are tuned as follows. The column pressure controller is PI and tuned 

aggressively for tight pressure control. Both the reflux drum and bottom sump level controllers are 

P only and use a gain of 2 (%/%) for effective filtering of flow transients. All flow controllers are 

PI and use a gain of 0.5 (%/%) and an integral time of 0.3 mins for a fast and snappy servo 

response. Similarly, the column boilup controller is PI and is tuned for a fast servo response. The 

controller output is lagged by 2 mins to account for reboiler heating dynamics. The nominal reactor 

level controller is PI and tuned for a slightly underdamped servo response. The override level 
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controller is deliberately detuned slightly so that as far as possible, the nominal level controller is 

active. The override level setpoint is biased to be 5% above the nominal setpoint. On the column, 

the nominal stripping tray temperature controller is tuned for slightly underdamped response. The 

temperature measurement is lagged by 2 mins to account for sensor dynamics. The product purity 

and recycle impurity measurements have a dead time of 5 mins each and a sampling time of 5 mins 

each. The corresponding composition controllers are tuned for a slightly underdamped servo 

response. Similar to the reactor override level controller, the override temperature controller is 

deliberately detuned slightly. Its setpoint is biased to be 4°C below the nominal temperature 

setpoint. Appropriate triggered ramps are applied to the override/nominal reactor level or column 

temperature controllers so that the setpoint of the controller that is moving the control valve 

remains constant (except for the brief duration of the ramp) and there is no unnecessary back-off in 

the implemented level/temperature setpoint. The ramps get triggered whenever the selector block 

switches the selected control signal. Note that all controllers that are PI and compete for control 

through a low select block use external reset feedback 10-11 for bumpless taking over and giving up 

of control. Table 4.2 reports the salient regulatory layer controller parameters used to generate 

dynamic results. 

 

Table 4.2. Salient controller parameters for CS1/CS2*, #, $ 

CV 
CS1/CS2 

PV Range& MV Range& 
KC τi(min) 

xrxrB 1.5/1.5 100/100 0.05-0.44 0.5-1.5 

Trxr 3/3 10/10 100-120oC 2x106kJ/h 

Urxr 2/2 15/30 100% 100% 

Tcol
S 1/1 5/10 120-150oC 200-900kmol/h 

xC
R 0.1/0.1 60/60 0.005-0.03 100-800kmol/h 

xC
P 0.08/0.08 80/80 0.98-0.999 120-150oC 

* All level loops use KC = 2 unless otherwise specified. #Pressure/flow controllers tuned for tight control. 
$ All compositions use 5 min dead time and sampling time. All temperature measurements are lagged by 2 min. 
& Minimum value is 0, unless specified otherwise. 
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As discussed earlier, the plant is inherently dynamic in nature and is never truly at steady 

state. The inherently transient measurement data must therefore be appropriately processed to infer 

near steady values of process variables that are required in the steady state model fitting exercise 

for RTO. Here, we take the simplest possible approach of averaging out the measurement over an 

appropriate time window and simply setting the steady value to this average value. The time 

window duration is then a parameter that must be chosen appropriately. If it is too small, the 

process variable steady state estimate will be poor and the RTO moves are likely to be erratic. On 

the other hand, if the duration is too long, the RTO moves get unnecessarily delayed implying a 

slower approach to optimum. We tested the RTO scheme using time window durations of 6, 8, 10 

and 12 hrs and found an 8 hr window to be a reasonable choice. Thus the average of the process 

variable measurement data over the past 8 hours is used as an estimate of its current steady state 

value and the unknown model parameters are adjusted to best fit this current steady state. The 

details of the fitting exercise have already been presented in previous chapter and therefore not 

repeated here for brevity. 

 

4.7 Dynamic Results 

 A crucial requirement for success of the RTO scheme is a robust regulatory layer control 

system that properly reconfigures regulatory control loops between Mode I and Mode II transitions. 

Note that the transition may be deliberate, e.g. management instructs maximum production due to 

favorable market conditions, or inadvertent, e.g. VMAX bottleneck limit reduces below nominal 

temperature controller requested boilup due to slow clogging of trays. We therefore first test the 

regulatory layer control system (including overrides) closed loop performance (no RTO) to confirm 

robustness and follow it up with RTO performance evaluation.   
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4.7.1 Regulatory Layer Performance 

 Consider steady process operation in Mode I with FB
SP = 100 kmol/h. To effect a transition 

to Mode II (maximum throughput operation), FB
SP is ramped up at the rate of 10 kmol/h/h from 100 

kmol/h to 140 kmol/h. The process is allowed to settle at the new steady state corresponding to 

VMAX as the bottleneck constraint. Post settling at the new steady state, FB
SP is ramped back down to 

100 kmol/h. The closed loop response to this Mode I → Mode II → Mode I transition sequence is 

shown in Figure 4.5. As FB
SP is ramped up, nominal column temperature controller output increases 

beyond VMAX so that LS1 implements VMAX. The tray temperature then dips and the override 

temperature controller output reduces to take over column feed manipulation and cut the column 

feed. Simultaneously, the override and nominal temperature controller setpoints are ramped up so 

that the override setpoint is the same as the nominal setpoint when the nominal controller has 

control of the boilup. The reduced column feed rate causes the reactor level to increase and the 

override reactor level controller output decreases to take over FB valve manipulation. 

Simultaneously, the nominal and override level controller outputs are ramped down so that the 

override setpoint remains the same as the nominal level controller setpoint when it has control of 

the column feed. In this way the regulatory layer pairings are reconfigured from CS I to CS II with 

nominal setpoint values. The time points where the override takes over manipulation of a 

valve/setpoint are clearly shown in the Figure. The process flows settle down smoothly at the new 

steady state (throughput: 121.2 kmol/h) in about 8 hours.  

 Post initiation of the FB
SP rampdown back to 100 kmol/h, the nominal reactor level 

controller and the nominal column temperature controller take over manipulation of the column 

feed and boil-up respectively to reconfigure the control system back to CS I. The time points where 

the nominal controller takes up valve/setpoint manipulation is clearly shown in the Figure. An 

appropriate ramp in the nominal and override setpoints immediately post taking over of control 

ensures the implemented setpoints remain the same between CS I and CS II. The process flows 
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smoothly settle down at the Mode I steady state in ~ 15 hours. Notice that during the entire period, 

the product quality remains tightly controlled with ±0.1% of its 99 mol% base-case value. These 

results clearly show that the regulatory control system is robust with smooth plantwide transients 

over a large operating window and should respond well to xrxrB
SP changes demanded by the RTO 

layer. 

 

 

 

Figure 4.5. Mode I ↔ Mode II transition without RTO 
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4.7.2 RTO Performance 

 Dynamic RTO results are now presented for Mode I and Mode II operation for various 

disturbance scenarios. These disturbance scenarios include a ±20% change in throughput (Mode I 

only), a ramped decrease in the purity of the fresh A feed by 10 mol%, a slow ramped decrease of 

30% in the plant reaction rate constant and a ramped 30% decrease in the column VMAX limit to 

effect an unforeseen Mode I to Mode II transition. 

 For each of the enumerated disturbance scenarios, we performed rigorous Aspen Hysys 

dynamic simulations to obtain (a) the plant optimum value, xrxrB
opt, and final steady state plant 

economic objective function Jopt
SS; (b) the RTO model converged value of xrxrB

m,opt and 

corresponding final steady state plant economic objective function JSS. The number of RTO 

iterations taken to reach within 5% of xrxrB
m,opt are also noted. A simple dynamic simulation is also 

performed where the disturbance occurs as a step at t = 0 and xrxrB
SP is immediately set equal to the 

plant optimum value (i.e. xrxrB
SP = xrxrB

opt at t = 0). This corresponds to perfect reoptimization of the 

unconstrained regulatory layer setpoint, xrxrB
SP. If the RTO iterations take T hrs to converge to 

within 5% of xrxrB
m,opt, then the metric 

   𝐿𝑜𝑠𝑠% =
|[∫ 𝐽𝑑𝑡

𝑇

0
]
𝑜𝑝𝑡

−[∫ 𝐽𝑑𝑡
𝑇

0
]
𝑅𝑇𝑂

|

[∫ 𝐽𝑑𝑡
𝑇

0
]
𝑜𝑝𝑡 × 100 

where the superscripts 'opt' and 'RTO' denote perfect reoptimization and real time optimization of 

xrxrB
SP, respectively, quantifies the % loss from perfect reoptimization in the transient period T. 

 Table 4.3 reports xrxrB
opt, xrxrB

m,opt, Jopt
SS, JSS and Loss% for the different disturbance 

scenarios. As observed in Part I, the RTO converged xrxrB is driven quite close to the actual plant 

optimum so that the steady state economic loss (JSS - Jopt
SS) is quite small (<0.1%). Further the 

economic loss during the transient period is also acceptably small with Loss% being < 1% for all the 

considered disturbances. These results reconfirm the main finding from Part I, that the proposed 
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RTO method drives the plant operation very close to the economic optimum. In particular notice 

that even as 8 hr transient average data are used as estimates for the plant steady state, the RTO still 

drives xrxrB very close to the actual plant optimum. Further, the loss during the transient period is 

also acceptably small. As an example, Figure 4.6 contrasts the transient approach to optimum using 

RTO with perfect reoptimization of xrxrB for a 10% decrease in reaction rate constant in Mode I and 

Mode II operation. 

Table 4.3. Quantitative comparison of RTO with optimal operation for different 

disturbance (step change) scenarios 

 Disturbances xrxrB
opt xrxrB

m,opt Jopt
SS Jm,opt

SS Loss% 

M
o
d
e 

I 

TP+20% 0.340 0.34 729.08 729.08 0.00 

TP-20% 0.222 0.223 361.18 361.39 0.06 

CCFA 0.252 0.251 433.33 433.44 0.03 

CCFB 0.318 0.316 642.03 642.10 0.01 

k90% 0.314 0.308 569.61 570.02 0.07 

M
o
d
e 

II
 TPMAX 0.362 0.361 127.35 127.35 0.00 

CCFA 0.362 0.355 127.35 127.30 0.04 

CCFB 0.362 0.36 127.35 127.35 0.00 

k90% 0.376 0.372 119.71 119.69 0.02 

TP: Throughput change    CCFA or CCFB: FA or FB composition change    k90%: 90% catalyst activity 

 

 

Figure 4.6. Transient approach to optimum for k90% for (a) Mode I (b) Mode II  

(b) (a) 
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 For a more realistic evaluation of the proposed RTO scheme, we consider process operation 

in the presence of routine variability along with sustained disturbances. Process variability in the 

form of transient time-series variation in the fresh B feed composition is simulated. The fresh B 

feed mol fraction is varied as a random walk between 90-100 mol% B. In response, all internal 

plant flows will exhibit transient variability and the plant will operate around a steady state without 

ever being truly steady. We distinguish between two types of disturbances. In the first type, the 

disturbance is a fast ramp from one value to another value. An example would be a change in 

throughput or in a fresh feed composition. In the second type, the disturbance is a very slow ramp 

implying quasi-steady process operation. Slow equipment degradation such as catalyst deactivation 

is an example. Table 4.4 tabulates the specific disturbances evaluated with time series variability in 

the fresh B feed composition. 

 

Table 4.4. Disturbance scenarios evaluated 

 Disturbances Period (days) Type Step Length/ Ramp Rate 

M
o
d
e 

I TP 10 Step ±20% 

CCFB or CCFA 10 Step -10% 

k100→70% 180 Slow Ramp -18750 kmol.m-3.s-1/h 

M
o
d
e 

II
 

TPMAX 10 - - 

CCFB or CCFA 10 Step -10% 

VMAX
70→100% 10 Fast Ramp +100 kmol/h/h 

VMAX
100→70% 30/30 Ramp/Constant -0.3425 kmol/h/h 

k100→40% 360 Slow Ramp -18750 kmol.m-3.s-1/h 

Mode I → Mode II → Mode I 5→10→5 Ramp ±10 kmol/h/h 

 VMAX
100% = 822 kmol/h ; k100% = 2.7×108 kmol.m-3.s-1 

TP: Throughput change;  CCFA
 or CCFB

: FA or FB composition change;  kX→Y%: X to Y% catalyst activity change 
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 For the fast ramp disturbance from one value to the other, we simulated the plant for 10 

days continuous operation in Mode I or Mode II post disturbance with RTO and without RTO (i.e. 

no change in xrxrB setpoint). The pre-disturbance xrxrB setpoint is at its pre-disturbance optimum 

value. As the gold standard of optimal operation for the fast disturbance, we also simulated process 

operation with xrxrB at its actual optimum value corresponding to the new mean operating condition. 

Note that since the feed composition exhibits variability over time, strictly speaking, optimal 

operation would require xrxrB to vary over time. However, since the feed composition variability is 

short term (small time constant compared to RTO time scale) and around a mean value, a revised 

constant xrxrB value corresponding to new mean operating condition of the plant is considered a very 

good approximation of the optimum xrxrB time trajectory. On the other hand, for a very slow ramped 

disturbance, the optimal operation gold standard would require xrxrB to vary as an appropriate time 

trajectory. This gold standard is obtained from a look-up table that tabulates the plant optimum xrxrB 

over the range of the slow ramped disturbance. In the dynamic simulation, the revised optimum xrxrB 

from the look-up table is input to the plant every 5 mins. 

 A quantitative comparison of the economic performance of RTO with the gold standard and 

constant xrxrB setpoint operation is provided in Table 4.5 for both the fast and slow disturbances.  

For all the fast disturbances in Mode I, namely, a ± 20% throughput change and a 10 mol% 

additional A (B) impurity in the fresh B (A) feed, the average boilup over 10 days of operation using 

RTO is only very slightly (<1%) above the gold standard. On the other hand, for process operation 

with no change in xrxrB setpoint, the average boilup over 10 days of operation is noticeably (up to 

~9%) higher than the corresponding average boilup using RTO. The difference is significant 

particularly in the direction of a production increase due to steady state process nonlinearity 

(snowball effect12).  

The data in the Table also shows that for the fast disturbance of a fresh feed composition 

change in Mode II, assuming that xrxrB is at its optimum value before the occurrence of the 
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disturbance, the maximum achieved throughput with and without RTO is the same. This is expected 

as the regulatory control system, CS II, pulls in the appropriate amount of fresh feeds to maintain V 

= VMAX. The achieved production thus remains the same with the fresh A and fresh B rates 

readjusting appropriately under CS II inventory control. Even so, the RTO is useful in Mode II to 

adjust xrxrB to the appropriate value that maximizes production. The value is not known apriori. 

Indeed, if the process is operated at the base-case Mode I optimum value of xrxrB and transitioned to 

Mode II, the loss in production due to no reoptimization of xrxrB is ~7%, which is significant. 

 The other fast Mode II disturbance is a quick increase in the VMAX capacity constraint e.g. 

due to injection of cleaning agents into the column that quickly unclog choked tray valves. The data 

in the Table shows that the maximum achieved production over 10 days of operation post 

disturbance using RTO is only 0.5% less than the gold standard. For constant xrxrB setpoint 

operation, on the other hand, the maximum production is a noticeable 2.2% lower than RTO. 

 For the very slow disturbance of a 30% ramped decrease in the reaction rate constant over 6 

months with Mode I plant operation, the average column boilup using RTO is <0.3% higher than 

the corresponding gold standard value. On the other hand, if the xrxrB setpoint is maintained at its 

base-case optimum value, the boil-up continues to increase over time with the column approaching 

its flooding limit at ~4.7 months. At this point, the overrides switch the control system from CS I to 

CS II to cut the fresh feed rate and reduce production such that the column operates at VMAX. The 

total production over 6 months is therefore lower compared to RTO operation by ~6%. Also, the 

per kg product reboiler duty is higher by about 12%. By adjusting xrxrB to reduce the boilup to near 

minimum, RTO helps maintain the desired production over 6 months of continuous operation 

without the column breaching its flooding limit. Compared to constant setpoint operation, RTO 

achieves both higher total production and lower reboiler steam consumption. Figure 4.7 compares 

the transient response of salient PVs over 6 months operation using RTO xrxrB updates and constant 

xrxrB setpoint operation for the very slow reaction rate constant decrease disturbance. Expectedly, 
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for both with and without RTO, the boilup exhibits an increasing trend since maintaining 

production for a lower kinetic rate constant requires higher recycle. Also, the boilup with RTO 

updates for xrxrB is consistently lower than for constant xrxrB operation. Further, notice the slow 

decrease in production post boilup hitting the VMAX constraint for constant xrxrB operation. 

In Mode II, quantitative results for the same very slow kinetic rate constant decrease 

disturbance suggest that the average maximum achieved production using RTO is only 0.07% less 

than the gold standard (see Table 4.5). On the other hand, for constant setpoint operation with xrxrB 

= 0.362 (initial plant optimum value), the average achieved maximum production is ~2% lower 

than for RTO. The transient response of salient PVs for this disturbance scenario is shown in Figure 

4.8. Expectedly, the production rate decreases slowly due to the reduction in the rate constant for 

process operation both with and without RTO. The rate of decrease in production with RTO is 

however slower as the RTO slowly increases the xrxrB setpoint in response to the slowing reaction 

rate. 

Table 4.5. Economic comparison for disturbance scenarios 

 Disturbances JRTO Jopt JNoRTO 

M
o
d
e 

I 

TP+20% 664.81 658.88 723.60 

TP-20% 338.38 336.07 350.40 

CCFB 400.04 398.91 403.08 

CCFA 579.89 576.28 592.52 

k100→70% 559.86 558.27 627.00 

M
o

d
e 

II
 

TPMAX 126.62 127.31 118.18 

CCFB 126.58 127.30 118.11 

CCFA 126.20 127.29 118.18 

VMAX
70→100% 126.61 127.26 123.88 

VMAX
100→70% 111.3 111.6 109.2 

k100→40% 101.30 101.37 99.39 

Mode I → Mode II → Mode I 
V=486.41 

P=125.99 

V=483.20 

P=126.80 

V=482.57 

P=117.88 

VMAX
100% = 822 kmol/h ; k100% = 2.7×108 kmol.m-3.s-1 

TP: Throughput change;  CCFA or CCFB: FA or FB composition change;  kX→Y%: X to Y% catalyst activity change 
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Figure 4.7. Mode I operation for slow decay in catalyst activity over 6 months 

─── RTO  ─── Gold standard  ─── Constant SP  
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Figure 4.8. Mode II operation for slow decay in catalyst activity over one year 

─── RTO  ─── Gold standard  ─── Constant SP  
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 The other very slow disturbance considered, applicable to Mode II operation, is a decrease 

in the bottleneck constraint, VMAX, due to gradual clogging of trays. Specifically, the VMAX constraint 

is ramped down by 30% from 822 kmol/h to 575 kmol/h over a month with constant VMAX 

thereafter. The data in Table 4.5 clearly shows that the maximum achieved throughput over a month 

of operation using RTO is 0.3% lower than the gold standard. On the other hand, if xrxrB is not 

changed from its initially optimum value of 0.362, the achieved maximum throughput is 1.9% 

lower than RTO, which again is noticeable. 

 The final closed loop performance evaluation here is of a transition from Mode I to Mode II 

and then back to Mode I. Specifically, the process is operated in Mode I (average throughput ≈ 95 

kmol/h; due to average 5% A impurity in FB) for 5 days at which point the CS I fresh B feed rate 

setpoint (TPM) is increased from 100 kmol/h to 145 kmol/h as a fast ramp at the rate of 10 

kmol/h/h to transition to Mode II. In response, the column maximum boilup constraint is hit 

(maximum production) and the overrides reconfigure the regulatory control system to CS II to 

appropriately cut the fresh feeds. The process is operated in Mode II for 10 days and then the FB 

setpoint is ramped down back to 100 kmol/h to transition back to Mode I operation with the 

nominal controllers taking back manipulation of control valves from the overrides (CS I). The gold 

standard xrxrB trajectory here is the Mode I optimum value for the first 5 days followed by an FB 

ramp-up synchronized ramp up the Mode II optimum value for the next 10 days and finally an FB 

ramp down synchronized ramp down back to the Mode I optimum value for the final 5 days. Figure 

4.9 contrasts transient response of salient PVs for the gold standard with RTO based xrxrB updates. 

The RTO decision logic to distinguish between Mode I vs Mode II optimization remains active 

throughout. Notice from the Figure that the RTO automatically updates xrxrB to keep it close to the 

Mode I and Mode II optimum values so that the Mode I operation boilup and the Mode II operation 

production remain very close to the corresponding gold standard values. Indeed, the average boilup 

using RTO for the first five days and the last five days is only 0.7% higher than the gold standard. 
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Similarly, the average production achieved using RTO from day 6 to day 15 is only 0.6% lower 

than the gold standard. These results highlight the RTO scheme automatically distinguishes 

between Mode I and Mode II operation and closely tracks the Mode I and Mode II xrxrB optimum. 

 

4.8 Discussion 

 We note that the TPM in Mode I is at the fresh B feed rate. When the VMAX bottleneck 

constraint is encountered, the inventory control loops upstream of the bottleneck need to be 

reconfigured to be in the opposite direction of flow. This reconfiguration can be avoided if the TPM 

is moved to the bottleneck constraint itself, i.e., the boilup, V, is used as the TPM. This idea has 

been explored in the literature13-14. To understand the same, consider Mode II process operation 

with V = VMAX with the control structure in Figure 4.3 being operational. To reduce throughput, we 

reduce VSP below VMAX. This would cause the column temperature to decrease, which would cause 

the column temperature controller to reduce the column feed rate. The reactor level would then 

increase and the reactor level controller would in turn reduce the fresh feed intake to reduce 

throughput. A complementary argument holds for increasing throughput till VMAX. This has the 

advantage that the same basic regulatory control structure holds in both Mode I and Mode II and 

there is no need for reconfiguring inventory loops using overrides or alternatively, a split range 

controller. We have chosen to take the Mode I TPM at a fresh feed only to reflect prevalent 

industrial practice, which complicates constraint handling.  
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 The RTO approach evaluated here consists of the basic regulatory layer loops with 

overrides for reconfiguring appropriate loops due to the loss in a control degree of freedom as the 

process hits a capacity constraint. In devising the complete control system with the overrides, one 

has to necessarily think through the "taking over" and "giving up" of control by the overrides to 

ensure the reconfigured control strategy moves the process operation appropriately as the constraint 

is encountered. This is the conventional way of handling constraints. Instead, one may choose to 

apply MPC where handling constraints is so much easier and natural. Indeed modern practitioners 

are likely to prefer MPC, a technology that is now well matured, over the conventional approach 

presented here. The proper formulation of the MPC problem, including prioritization of control 

objectives in light of a constraint(s) going active, however would still require the control system 

design engineer to think through the direction in which the process needs to be moved and the 

appropriate strategy (loop reconfiguration) in order to achieve it. Indeed, in his perspective paper, 

Downs15 strongly recommends viewing MPC systems as a "control strategy change agent instead of 

Figure 4.9. Mode I → Mode II → Mode I transition 

─── RTO  ─── Gold standard  ─── Constant SP 
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an algorithm for improved high performance control". The need for control strategy changes is 

much more persistent to deal with the various operating modes of a plant. A fair comparison 

between conventional and MPC control systems are quite rare. In their seminal work on comparing 

the performance of non-linear MPC with a conventional decentralized override control system for 

the Tennessee Eastman challenge process16, Ricker and co-workers17-18 found that the performance 

of the two systems is very similar. They also found that tuning the overrides and the MPC for 

handling the constraints was equally important and time consuming in both approaches. In other 

words, regardless of the approach, MPC or conventional overrides, there is no short cut to carefully 

thinking through and figuring out the appropriate control strategy to be deployed on encountering a 

constraint. Thus, in a sense, what this article does is walk the reader through the control strategy 

design thinking in light of active constraints that must accompany the synthesis of an economic 

plantwide control system encompassing the lower regulatory and higher supervisory and optimizing 

layers, regardless of whether conventional overrides or MPC is used for handling constraints. 

 An issue with the standard two step RTO approach considered here is that the converged 

RTO optimum and the actual plant optimum may be substantially different in the presence of plant-

model mismatch due to model inadequacy or inappropriate parameter fitting strategy. Recent work 

by Bonvin and coworkers19-22 has shown that the model optimum can be forced to converge to the 

plant optimum by solving a modified optimization problem. The so called modifiers are obtained 

from the difference between the optimality condition for the model and estimated for the plant. The 

modifiers are added to the constraints and cost objective and the modified optimization problem is 

solved, which is formulated in a manner that drives the difference between the plant and model 

optimality conditions to zero via adaptation of the modifiers. The RTO thus converges to the actual 

plant optimum. We hope to evaluate modifier adaptation based RTO in a future study. 

 The other popular approach for managing an economically important unconstrained dof is 

the notion of a self optimizing controlled variable (SOCV)23-26. By definition, an SOCV when held 



 

124 
 

constant results in acceptably small loss in the face of expected disturbances24. Process operation 

with the SOCV at constant setpoint thus achieves near optimal management of the unconstrained 

dof. An optimization problem thus gets transformed into a control problem. We are currently in the 

process of quantitatively evaluating promising self-optimizing control strategies for the considered 

process and hope to report the same as a separate article in the near future. 

 

4.9 Conclusions 

 The dynamic evaluation of the RTO approach shows that even as the plant is never truly at 

steady state, the developed steady state modeling approach along with bottleneck capacity 

constraint handling using overrides, drives the unconstrained regulatory layer setpoint very close to 

the actual plant optimum. The results show that the economic benefit over continuous operation in 

Mode I (energy minimization) and Mode II (throughput maximization) can be as much as 2-9% 

over constant setpoint operation for the various fast/slow sustained disturbance scenarios. The 

proper design of the overrides for control strategy redesign in Mode I ↔ Mode II transitions is 

particularly important to the success of the approach.  
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Chapter 5 

Invariants for Optimal Operation of a Reactor-Separator-

Recycle Process 

 

 

This Chapter is based on the paper “Invariants for Optimal Operation of a Reactor-Separator-

Recycle Process” submitted to the Journal of Process Control. 

 

In this Chapter, globally optimal invariants for the one unconstrained degree of freedom in 

an A + B → C reactor-separator-recycle process are derived for four alternative reaction kinetic 

expressions from an analysis of the overall plant material balance. The derivation is performed for 

the simplified economic objective of minimizing recycle rate (Mode I) at given production and 

maximizing production (Mode II) with maximum recycle rate as the capacity bottleneck. For power 

law kinetics, holding the reactor A/B ratio constant is obtained as the invariant while a more 

complex non-linear expression is obtained for Langmuir-Hinshelwood kinetics. For the more 

rigorous economic objective of minimizing separation column boilup or maximum column boilup 

as the capacity bottleneck, the invariant as the controlled variable (CV) achieves near optimal 

operation with the loss being <0.1% over the envisaged operating space in all cases. The invariants 

are thus good self-optimizing CVs (SOCVs). The work provides a physical basis for using reactant 

ratio as an SOCV in plantwide control. 
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5.1 Introduction 

Self optimizing control (SOC) is a practical alternative for near optimal management of an 

unconstrained controlled variable (CV) setpoint for economic plantwide control of integrated 

chemical processes. The main idea in SOC is to adjust the unconstrained CV setpoint to hold an 

appropriately chosen/designed self-optimizing controlled variable (SOCV). An SOCV, when held 

at an appropriate constant value, results in near optimum steady state operation over the envisaged 

operating space1-2. In other words, SOC assures acceptably small loss from the plant optimum due 

to no re-optimization of the SOCV setpoint(s) mitigating the need for reoptimization due to 

sustained disturbances. Figuring out good SOCVs corresponding to unconstrained degrees of 

freedom (dofs) is however not straightforward and requires process understanding and insight. 

Several articles in the literature demonstrate the application and economic benefit of SOC in 

complex chemical plants (see e.g. 3-6). 

SOC is a very appealing concept in that it simplifies an optimization problem to a control 

problem and thus eliminates/mitigates the need for the optimization layer. A very typical approach 

to SOC has been to tabulate candidate SOC process variables (PVs), ySOC, obtain the nominal 

optimum for each and then quantify the loss for the disturbances keeping the candidate PV at its 

nominal optimum. The one that gives the least economic loss is then deemed the best SOCV from 

amongst the evaluated candidate CVs. It is also possible to linearly combine available 

measurements, ySOC, to achieve locally optimal operation using the null-space method 7-8. Its 

applicability to integrated chemical processes may however be limited due to high non-linearity 

such as the snowball effect9 and infeasibility due to steady state multiplicity10. In the absence of a 

global exact SOCV method, one must resort to proposing candidate SOCVs, usually from process 

insights, and ranking them in terms of the least economic loss at constant setpoint over the 

envisaged disturbance space. 
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Notwithstanding the vast SOC literature where some economic loss is usually accepted due 

to no setpoint re-optimization, one always wonders if it is possible to fully eliminate the economic 

loss using a well designed SOCV or alternatively, a globally optimal control law. In other words, 

find that "magic" CV (or alternatively, control law), which when held constant at the nominal 

optimum, guarantees optimality over the envisaged disturbance space. Such a globally optimal 

control policy, which must necessarily correspond to driving the gradient of the economic objective 

with respect to the unconstrained regulatory CV to zero, is the gold standard for transforming an 

optimization problem into an equivalent control problem that guarantees zero-loss steady state 

operation regardless of disturbances. It constitutes the "ideal" management of a regulatory layer 

unconstrained setpoint. 

The idea of optimally invariant variable combinations for non-linear systems has been 

briefly explored in the extant literature, albeit for simple systems such as an isolated CSTR11. To 

the best of our knowledge, however, globally optimal unconstrained CVs or invariants have not 

been explored in any depth for a complete plant with recycle. This article does so for a reactor-

separator-recycle process that has been the subject of plantwide control system design studies12-14. 

When an optimal operating policy for an unconstrained regulatory setpoint is to be applied 

in practice, a key requirement is convincing the plant operators on why the recommended solution 

is preferable over their current way of managing the unconstrained setpoint. Even as quantitative 

evidence on superior economics is due justification, natural emergence of the globally optimal 

policy from a direct analysis of the non-linear behaviour of the plant material and energy balances 

is much more compelling. Such compelling justification is quite rare for complete plants. To 

provide the same for a reactor-separator-recycle process is the principal motivation behind this 

work.  

In the following, the reactor-separator-recycle process studied is briefly described. 

Alternative reaction kinetic scenarios are considered for two modes of operation. In Mode I, the 
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recycle rate is minimized at given throughput and in Mode II, the throughput is maximized subject 

to maximum recycle rate as the bottleneck constraint. A steady state degrees of freedom (dof) 

analysis with economic optimum operation considerations is then used to show that there is one 

unconstrained dof that must be optimized for economic optimum operation in both modes. A simple 

and elegant globally optimal operating policy for this unconstrained dof is obtained via an analysis 

of the overall plant material balance and the associated optimality condition for both Mode I and 

Mode II operation. We then consider the practical case of column boil-up (expensive utility) as the 

rigorous Mode I economic objective and maximum boil-up corresponding to column flooding as 

the Mode II bottleneck constraint. It is shown that the simplified analysis optimal invariants 

obtained previously, result near zero loss operation for the practical case in each of the considered 

reaction kinetic scenarios. The article ends with the customary summary of the main findings from 

the work. 

 

5.2 Process Description and Optimal Operation 

 The process flowsheet is shown in Figure 1.8. The irreversible exothermic reaction A + B 

→ C occurs in a cooled liquid phase CSTR. The reactor effluent is distilled to take out nearly pure 

C product down the bottoms and unreacted A and B up the top. The distillate is recycled to the 

reactor along with the fresh A and fresh B streams. The hypothetical component properties and four 

alternative reaction kinetics (including kinetic parameters) are tabulated in Table 5.1 for ready 

reference. We note that all the considered reaction kinetics are of the general form 

   𝑟 = 𝑘
𝑥𝑟𝑥𝑟𝐴

𝑎𝑥𝑟𝑥𝑟𝐵
𝑏

(1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵)
 

Thus e.g., a, b = 1, and KA, KB = 0, gives the elementary reaction kinetic expression r = k xrxrA xrxrB. 

Similarly, for a, b ≠ 1, and KA, KB = 0, the popular power law kinetic expression r = k xrxrA
α xrxrB

β is 
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obtained. For a, b = 1, and KA, KB ≠ 0 the Langmuir-Hinshelwood (LH) kinetic expression is 

obtained. 

 Assuming the column is operated at a given design pressure, the process has six steady 

state operating degrees of freedom (dofs); two for the fresh feeds, two for the reactor (hold-up and 

temperature) and two for the column. These dofs are to be adjusted for economically optimum 

operation. We consider two operation modes, Mode I and Mode II.  

 In Mode I, the production rate is given and the remaining five dofs are to be adjusted to 

optimize an economic objective function. We consider two alternative Mode I economic objectives, 

namely, minimize the recycle rate or minimize the column boil-up (expensive utility). Even as the 

latter is the more usual economic objective, in many processing situations, the simpler objective of 

minimizing the recycle rate, is equivalent to minimizing the plant operating cost. As will be shown 

later, elegant globally optimal operating policies can be obtained for this simpler objective. 

 

Table 5.1. Hypothetical component properties and kinetic parameters 

Kinetics A + B → C r =k xrxrA
a xrxrB

b/(1+KA xrxrA+KB xrxrB) 

Hypotheticals# MW NBP(oC) 

VLE: 

Soave-Redlich-Kwong 

A 50 70 

B 70 80 

C 120 110 

KM I a = 1; b = 1; k = 2.2×108.e(-70000/RT) ; KA = KB = 0 

KM II a = 1; b = 2; k = 7.2×108.e(-70000/RT) ; KA = KB = 0 

KM III* a = 1; b = 1; k = 4.0×108.e(-70000/RT) ; KA ≠ KB ≠ 0 

KM IV* a = 1; b = 2; k = 12×108.e(-70000/RT) ; KA ≠ KB ≠ 0 

Reaction rate units: kmol.m-3.s-1 

*: KA=2.2×104.e(-30000/RT) , KB=1.6×104.e(-30000/RT) 

#: Aspen-Hysys hydrocarbon estimation procedure used to estimate parameters 

for thermodynamic property calculations. 
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 In Mode II, the process is to be operated to maximize production subject to a bottleneck 

constraint. All six dofs are then to be adjusted for the purpose. Two alternative bottleneck 

constraints are considered, maximum recycle rate or maximum column boil-up. The latter 

corresponds to column flooding as the bottleneck, a common occurrence in practice. As shown 

later, the maximum recycle rate constraint gives an elegant globally optimal operating policy. 

 Both the Mode I and Mode II optimizations are subject to process constraints such as 

maximum/minimum material/energy flows, equipment capacity and product quality constraints etc. 

At the optimum, multiple constraints are likely to be active with a few remaining unconstrained 

dofs. Engineering common sense is applied to figure out the optimally active constraints. 

 We consider the fresh B feed rate (FB), the reactor hold-up (Urxr) and temperature (Trxr), the 

product C mol fraction (xC
P), the recycle C impurity mol fraction (xC

R) and the reactor B mol 

fraction (xrxrB) as the six specification variables corresponding to the six dofs. In Mode I, FB is 

specified and this leaves the other five specifications to be chosen for minimum recycle rate or 

boilup. Clearly, Urxr and Trxr should be specified at their maximum allowed values, Urxr
MAX and 

Trxr
MAX, respectively, to maximize single pass conversion and thus minimize the recycle load/boilup. 

Further xC
P = xC

P,MIN for as sloppy a split as possible to minimize boilup and also to minimize 

product give-away. In most processing situations where a heavy product is produced in an addition 

reaction, too much of the heavy product in the reactant recycle stream is undesirable due to 

considerations such as accelerated catalyst deactivation, equipment fouling and product side 

reaction to undesired by-products. Accordingly, we consider xC
R,MAX = 1 mol% as an optimally 

active constraint. This then leaves xrxrB as the only remaining unconstrained dof to be chosen 

appropriately for optimality.  

 In Mode II, FB is an additional dof since FB is not specified anymore and is to be 

maximized. The four Mode I active constraints, Urxr
MAX, Trxr

MAX, xC
P,MIN and xC

R,MAX are likely be 

active in Mode II also. Further, as FB is increased to increase production to the maximum 
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achievable, some equipment will hit its maximum processing capacity limit, thus determining the 

maximum production. This bottleneck capacity constraint then becomes an additional active 

constraint at maximum production. Due to the high sensitivity of recycle rate to throughput 

changes, the bottleneck constraint typically corresponds to an equipment in the recycle loop hitting 

its maximum processing limit. The maximum recycle rate (RMAX) is then a reasonable bottleneck 

constraint. Alternatively, we consider maximum vapor boilup limit, VMAX, as a bottleneck constraint 

for this specific process. This would correspond to the onset of entrainment flooding, where 

significant liquid gets carried along with the vapor, severely compromising column separation 

efficiency. With RMAX or VMAX as an additional optimally active hard capacity constraint and FB as 

an additional dof, xrxrB remains the one unconstrained dof in Mode II (6 dofs - 4 Mode I constraints 

- 1 bottleneck constraint = 1 unconstrained dof). Thus, in both Mode I and Mode II, B mol fraction 

in the reactor, xrxrB, is an unconstrained dof with a hill / valley shaped optimum. The above 

conjectures on optimally active Mode I/Mode II active constraints were confirmed via rigorous 

optimization using Matlab's NLP optimizer, fmincon, using the active set method with Aspen Hysys 

as the background plant steady state solver. The optimization results for the four reaction kinetic 

systems are summarized in Table 5.2. Mode I results are presented for both recycle rate 

minimization and boilup minimization. For a nominal throughput of 100 kmol/h and an increased 

throughput of 120 kmol/h. Mode II results are presented for both RMAX and VMAX as the bottleneck 

capacity constraint limiting production. 

 Assuming tight active constraint control in both Mode I and Mode II and xrxrB as the one 

unconstrained dof, an appropriate control policy that adjusts xrxrB to keep the operation (near) 

optimal is sought. We first perform steady state analyses to obtain a globally optimal policy for the 

simpler Mode I objective (minimize recycle rate) and the simpler Mode II bottleneck constraint 

(RMAX). The performance of these operating policies from the simplified analyses is then evaluated 

for the rigorous Mode I objective (minimize boil-up) and Mode II bottleneck constraint (VMAX). 
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Table 5.2. Salient base-case steady state conditions for Mode I/Mode II 

Variables 
KM I KM II KM III KM IV 

I II I II I II I II 

No. of Trays 15 

7 

6 

110 

15 

7 

6 

110 

15 

7 

6 

110 

15 

7 

6 

110 

Feed Tray 

Urxr (m3) 

Trxr (oC) 

V (kmol/h) 390.0 800MAX 432.0 850MAX 402.4 800MAX 451.7 900MAX 

R (kmol/h) 130.5 318.3 126.1 282.2 129.0 315.5 129.9 304.1 

L (kmol/h) 303.5 585.6 350.3 664.0 317.5 587.7 367.7 699.0 

Fcol (kmol/h) 230.6 469.5 226.2 442.3 229.1 456.5 230 459.9 

P (kmol/h) 100.1 151.1 100.1 160.0 100.1 141.1 100.0 155.9 

xrxrA 0.3652 0.3989 0.2689 0.2772 0.3361 0.3734 0.2476 0.2591 

xrxrB 0.1994 0.2756 0.2876 0.3582 0.2258 0.3138 0.3161 0.3988 

[A/B] 1.8315 1.4474 0.9350 0.7739 1.4885 1.190 0.7833 0.6497 

x
B

R 0.3455 0.4021 0.5083 0.5559 0.3939 0.45 0.5522 0.5983 

x
C

R 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

x
B

P 0.0089 0.0091 0.0094 0.0095 0.0091 0.0092 0.0095 0.0096 

x
C

P 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Qrxr (kW) 106.5 288.3 97.3 236.3 103.6 285.5 99.8 256.7 

Qcnd (kW) 3483 7269 3845 7647 3590 7275 4021 8116 

Qreb (kW) 3447 7069 3817 7509 3556 7068 3990 7951 

See Figure 1.8 and Nomenclature for variable descriptions 

 

5.3 Globally Optimal Invariants from Simplified Analysis  

 The simplified analysis refers to minimizing the recycle rate (R) in Mode I and maximizing 

the product rate (P) in Mode II with maximum recycle rate (RMAX) as the bottleneck constraint. For 

convenience, we work with xrxrB and P as the two specifications corresponding to dofs associated 

with the two fresh feeds. The overall plant balance then requires that the reactor product generation 

rate equals the product C rate from the column bottoms, i.e. 

   𝑘𝑀𝐴𝑋 𝑥𝑟𝑥𝑟𝐴
𝑎𝑥𝑟𝑥𝑟𝐵

𝑏

(1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵)
𝑈𝑟𝑥𝑟

𝑀𝐴𝑋 = 𝑃𝑥𝐶
𝑃    (1) 
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The rate constant is the maximum possible, kMAX, corresponding to Trxr
MAX. Similarly, the reactor 

hold-up is the maximum allowed, Urxr
MAX. Both Trxr

MAX and Urxr
MAX are optimally active constraints. 

 Since the Mode I objective and Mode II bottleneck constraint are both related to the recycle 

rate, R, an explicit expression for R is required in terms of xrxrA, xrxrB and P plus other specified 

conditions, xC
P or xC

R. The expression is obtained as follows. An overall material balance on the 

column gives the reactor effluent rate (E) as 

   E = P + R       (2) 

The column component balances give the A and B component rates, EA and EB, respectively, as 

   EA = PxA
P + RA       (3a) 

and   EB = PxB
P + RB       (3b) 

The reactor reactant mol fractions are thus 

   𝑥𝑟𝑥𝑟𝐴 =
𝑃𝑥𝐴

𝑃+𝑅𝐴

𝑃+𝑅
       (4a) 

and   𝑥𝑟𝑥𝑟𝐵 =
𝑃𝑥𝐵

𝑃+𝑅𝐵

𝑃+𝑅
       (4b) 

Adding (4a) and (4b) and rearranging 

   𝑅𝐴 + 𝑅𝐵 = (𝑥𝑟𝑥𝑟𝐴 + 𝑥𝑟𝑥𝑟𝐵)(𝑃 + 𝑅) − 𝑃(𝑥𝐴
𝑃 + 𝑥𝐵

𝑃)  (5) 

Since   𝑅 = 𝑅𝐴 + 𝑅𝐵 + 𝑅𝑥𝐶
𝑅      (6) 

we have  𝑅(1 − 𝑥𝐶
𝑅) = (𝑅𝐴 + 𝑅𝐵)     (7) 

Substituting for (RA + RB) in Equation 5 and rearranging, the desired expression for recycle rate is 

   𝑅 = 𝑃
(𝑥𝑟𝑥𝑟𝐴+𝑥𝑟𝑥𝑟𝐵+𝑥𝐶

𝑃−1)

(1−𝑥𝐶
𝑅−𝑥𝑟𝑥𝑟𝐴−𝑥𝑟𝑥𝑟𝐵)

 

where    𝑥𝐴
𝑃 + 𝑥𝐵

𝑃 = 1 − 𝑥𝐶
𝑃 

The constrained optimization for both Mode I and Mode II operation can now be solved. 
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5.3.1 Mode I Globally Optimal Invariant 

 In Mode I, the objective is to minimize the recycle rate, R, by adjusting the unconstrained 

dof, xrxrB. The Mode I optimization problem thus is 

   min
𝑥𝑟𝑥𝑟𝐵

𝑅        (8) 

subject to the rearranged overall material balance constraint (1) 

   
𝑥𝑟𝑥𝑟𝐴

𝑎𝑥𝑟𝑥𝑟𝐵
𝑏

(1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵)
=

𝑃𝑥𝐶
𝑃

𝑘𝑀𝐴𝑋𝑈𝑟𝑥𝑟
𝑀𝐴𝑋    (9) 

and the rearranged recycle rate constraint (7) 

   𝑅(1 − 𝑥𝐶
𝑅 − 𝑥𝑟𝑥𝑟𝐴 − 𝑥𝑟𝑥𝑟𝐵) = 𝑃(𝑥𝑟𝑥𝑟𝐴 + 𝑥𝑟𝑥𝑟𝐵 + 𝑥𝐶

𝑃 − 1) (10) 

Since the production rate P is given (or known), we have three unknowns, xrxrA, xrxrB and R. At a 

given xrxrB, both xrxrA and R get calculated by the two constraints, (9) and (10) above. The particular 

value of xrxrB that minimizes R is thus obtained by setting    

   
𝑑𝑅

𝑑𝑥𝑟𝑥𝑟𝐵
= 0       (11) 

subject to constraints (9) and (10) above.  

 Differentiation and rearrangement of (10) gives 

   (1 − 𝑥𝐶
𝑅 − 𝑥𝑟𝑥𝑟𝐴 − 𝑥𝑟𝑥𝑟𝐵)𝑑𝑅 = (𝑃 + 𝑅)(𝑑𝑥𝑟𝑥𝑟𝐴 + 𝑑𝑥𝑟𝑥𝑟𝐵) 

Dividing by dxrxrB and setting dR/dxrxrB to zero for optimality, we get 

   dxrxrA = -dxrxrB       (12) 

Differentiation and rearrangement of (9) at constant P (Mode I) gives 

 𝑥𝑟𝑥𝑟𝐴
𝑎𝑥𝑟𝑥𝑟𝐵

𝑏 (
𝑎

𝑥𝑟𝑥𝑟𝐴
𝑑𝑥𝑟𝑥𝑟𝐴 +

𝑏

𝑥𝑟𝑥𝑟𝐵
𝑑𝑥𝑟𝑥𝑟𝐵) = 𝜇(𝐾𝐴𝑑𝑥𝑟𝑥𝑟𝐴 + 𝐾𝐵𝑑𝑥𝑟𝑥𝑟𝐵) (13) 

where, μ is the RHS of Equation (9) and is a constant for Mode I (fixed P). Substituting dxrxrA = -

dxrxrB and dividing both sides by dxrxrB, we get the global optimality condition as 
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  𝑥𝑟𝑥𝑟𝐴
𝑎𝑥𝑟𝑥𝑟𝐵

𝑏 (
𝑎

𝑥𝑟𝑥𝑟𝐴
−

𝑏

𝑥𝑟𝑥𝑟𝐵
) = 𝜇(𝐾𝐴 − 𝐾𝐵)    (14) 

For a given P (Mode I) and specified xC
P and xC

R, solving (9), (10) and (14) simultaneously gives 

the values of the three unknowns, xrxrA, xrxrB and R, at the optimum solution. 

It is instructive to analyze the form of the global optimality condition in (14) for the simpler 

reaction kinetics cases considered. For KA = KB = 0 and a = b = 1 (KM I), (14) simplifies to 

   xrxrB = xrxrA       (15) 

This implies that minimum recycle is achieved by holding A and B in equal proportion in the 

reactor. This is a very simple and elegant optimal operating policy for managing the reactor B mol 

fraction. For KA = KB = 0 and a ≠ b (KM II), the global optimality condition is 

   𝑥𝑟𝑥𝑟𝐵 =
𝑏

𝑎
𝑥𝑟𝑥𝑟𝐴       (16) 

Again, the elegant policy of holding the reactor B to A ratio at b/a. minimizes the recycle rate. For 

the standard LH model, the global optimality condition is 

   𝑥𝑟𝑥𝑟𝐵 = 𝑥𝑟𝑥𝑟𝐴 + 𝜇(𝐾𝐴 − 𝐾𝐵)     (17) 

This simply requires offesetting xrxrB from xrxrA, the offset being a constant at fixed production rate. 

 For the most general form of the kinetic expression, the optimal Mode I control policy is a 

more complicated non-linear expression. Replacing μ in (14) by the LHS of (9) and simplifying, the 

global optimality condition may be rewritten as 

   (
𝑎

𝑥𝑟𝑥𝑟𝐴
−

𝑏

𝑥𝑟𝑥𝑟𝐵
) = (

𝐾𝐴−𝐾𝐵

1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵
)    (18) 

This is a quadratic in xrxrB that can be solved for xrxrB for a measured value of xrxrA. The calculated 

root in the range 0 < xrxrB < 1 is implemented in the plant. Eventually, once xrxrA stops changing and 

the plant settles at steady state, (18) must hold implying minimum recycle operation. In passing we 

note that between the two alternative control law forms in Equation (18) and Equation (14), the 
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former is preferred since the latter expression contains the reaction rate constant which is known to 

change slowly due to catalyst deactivation. Repeated estimation of the rate constant will then be 

required. On the other hand, the adsorption equilibrium constants KA and KB are thermodynamic 

entities that remain fixed at a given temperature, significantly mitigating the need for parameter re-

estimation. This also applies to the standard LH kinetics invariant. 

 

5.3.2 Mode II Globally Optimal Invariant 

 We now consider maximizing production (P) subject to maximum recycle rate (RMAX) as 

the bottleneck constraint. The optimization problem then is 

   max
𝑥𝑟𝑥𝑟𝐵

𝑃        (19) 

subject to the constraints 

   
𝑥𝑟𝑥𝑟𝐴

𝑎𝑥𝑟𝑥𝑟𝐵
𝑏

(1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵)
=

𝑃𝑥𝐶
𝑃

𝑘𝑀𝐴𝑋𝑈𝑟𝑥𝑟
𝑀𝐴𝑋    (20) 

   𝑅𝑀𝐴𝑋(1 − 𝑥𝐶
𝑅 − 𝑥𝑟𝑥𝑟𝐴 − 𝑥𝑟𝑥𝑟𝐵) = 𝑃(𝑥𝑟𝑥𝑟𝐴 + 𝑥𝑟𝑥𝑟𝐵 + 𝑥𝐶

𝑃 − 1) (21) 

Note that instead of P being constant and recycle rate being variable as in Mode I, we now have 

recycle rate constant at RMAX with P being variable. There are again three unknowns (P, xrxrA and 

xrxrB) and two constraints. Enforcing the condition for optimality gives the third constraint that 

allows the calculation of all three unknowns at the optimum. Without loss of generality, xrxrB is 

taken as the independent decision variable so that optimality requires 

   
𝑑𝑃

𝑑𝑥𝑟𝑥𝑟𝐵
= 0       (22) 

Analogous to Mode I analysis, differentiating (21) with respect to xrxrB and setting dP/dxrxrB = 0, we 

get   dxrxrA = -dxrxrB 
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Further, differentiating (20) with respect to xrxrB and substituting dxrxrA = -dxrxrB, we get exactly the 

same global optimality condition as for Mode I, i.e. 

   𝑥𝑟𝑥𝑟𝐴
𝑎𝑥𝑟𝑥𝑟𝐵

𝑏 (
𝑎

𝑥𝑟𝑥𝑟𝐴
−

𝑏

𝑥𝑟𝑥𝑟𝐵
) = 𝜇(𝑃)(𝐾𝐴 − 𝐾𝐵)   (23) 

The only difference is that μ is now no longer a constant but a function of P, as highlighted in (23). 

 For KM I (a = b = 1; KA = KB = 0), the globally optimal operating policy for maximizing 

production (Mode II) is to hold xrxrB = xrxrA, i.e., ensuring equal proportion of A and B in the reactor. 

This policy is the same as for minimizing recycle rate at given production (Mode I).  Similarly, for 

KM II (a ≠ b; KA = KB = 0), the globally optimal operating policy is again the same as for Mode I, 

i.e. 

   𝑥𝑟𝑥𝑟𝐵 =
𝑏

𝑎
𝑥𝑟𝑥𝑟𝐴  

In other words, holding B to A in the ratio b/a in the reactor maximizes production.  

For KM III the global optimality condition is 

  𝑥𝑟𝑥𝑟𝐵 = 𝑥𝑟𝑥𝑟𝐴 + 𝜇(𝑃)(𝐾𝐴 − 𝐾𝐵)     (24) 

By offsetting xrxrB from xrxrA by a production rate dependent offset, production is maximized. If P 

and xrxrA are accurately measured, then by setting xrxrB from the above relation and letting the 

process settle to the eventual steady state, production gets maximized. 

 For KM IV, the global optimality condition is the same as for Mode I, i.e. 

    (
𝑎

𝑥𝑟𝑥𝑟𝐴
−

𝑏

𝑥𝑟𝑥𝑟𝐵
) = (

𝐾𝐴−𝐾𝐵

1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵
) 

For accurately measured xrxrA, the quadratic in xrxrB can be solved. Of the two roots, only the one for 

which 0 < xrxrB < 1 is accepted. Continually implementing this calculated xrxrB and letting the 

process settle to the eventual steady state maximizes production. As before, the somewhat 

complicated expression above should be preferred as the unknown parameters (KA, KB, a and b) are 
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likely to remain constant over time, unlike the reaction rate constant, which decreases due to 

catalyst deactivation in the expression for μ. This comment also applies to the invariant for LH 

kinetics. 

 The results for the globally optimal invariants from the simplified analysis of the reactor-

separator-recycle process are summarized in Table 5.3. In the Table, we also provide simple 

expressions, where possible, for the Mode I minimum recycle rate and the Mode II maximum 

production rate. For the specific reaction kinetic parameters (Table 5.1) and process design 

considered (Figure 1.8) , the values of xrxrB, xrxrA, reactor A/B ratio ([A/B]) and the economic 

objective at the Mode I / Mode II optimum have already been noted in Table 5.2. 

 Before closing this section on the simplified optimal operation analysis, we apply 

engineering common sense to better understand the optimality conditions derived rigorously. The 

optimal operation argument based on the physics of the process goes as follows. In Mode I, the 

recycle rate is to be minimized at given production rate. At minimum recycle, the amount of A and 

B going around the plant is the least possible. This implies that the concentration of C in the reactor, 

xrxrC, is maximum. In other words, minimizing recycle at given production corresponds to 

maximizing xrxrC. Since xrxrC = 1 – xrxrA – xrxrB, maximizing xrxrC is equivalent to minimizing (xrxrA + 

xrxrB). Taking xrxrB as the independent decision variable, the optimality condition for minimum 

recycle is 

      
𝑑(𝑥𝑟𝑥𝑟𝐴+𝑥𝑟𝑥𝑟𝐵)

𝑑𝑥𝑟𝑥𝑟𝐵
= 0 

which directly gives dxrxrB = -dxrxrA 

Differentiating the overall plant material balance constraint (1) and substituting dxrxrA = -dxrxrB 

results in the Mode I global optimality invariant in (18). 
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Table 5.3. Plant globally optimal invariants 

Reaction 

Model 
Optimality Condition 

Mode I Min (R) Mode II Min (−P) 

FB =100* kmol/h FB =120* kmol/h RMAX=300 kmol/h 

xrxrB
opt Ropt xrxrB

opt Ropt xrxrB
opt PMAX 

KM I   𝑥𝑟𝑥𝑟𝐵 = 𝑥𝑟𝑥𝑟𝐴  0.2698 117.65 0.2955 174.92 0.3311 150.73 

KM II   𝑥𝑟𝑥𝑟𝐵 = 2𝑥𝑟𝑥𝑟𝐴 0.3543 113.74 0.3765 156.58 0.4232 170.52 

KM III  (
1

𝑥𝑟𝑥𝑟𝐴
−

1

𝑥𝑟𝑥𝑟𝐵
) = (

𝐾𝐴 − 𝐾𝐵

1 + 𝐾𝐴𝑥𝑟𝑥𝑟𝐴 + 𝐾𝐵𝑥𝑟𝑥𝑟𝐵
) 0.2808 118.85 0.317 190.10 0.3524 140.39 

KM IV (
1

𝑥𝑟𝑥𝑟𝐴
−

2

𝑥𝑟𝑥𝑟𝐵
) = (

𝐾𝐴 − 𝐾𝐵

1 + 𝐾𝐴𝑥𝑟𝑥𝑟𝐴 + 𝐾𝐵𝑥𝑟𝑥𝑟𝐵
) 0.3691 120.17 0.3967 170.58 0.4425 157.82 

 

 In Mode II, production rate P is to be maximized at given recycle rate, RMAX. Maximum 

production implies the reactor C generation rate is the highest possible. Thus maximum production 

corresponds to maximum xrxrC and again the dxrxrB = -dxrxrA condition is directly recovered. 

Deriving the Mode II global optimality invariant from the overall plant material balance is then 

straightforward. Indeed, it was these simple physical arguments that lead us to the globally optimal 

invariants for Mode I and Mode II. We then confirmed from process simulations that these 

invariants were indeed true and then finally proceeded with the rigorous derivations presented 

above. Throughout, the simplicity and elegance of the invariant that we initially chanced upon for 

KM I, was the key motivational driver behind extension of the result to the more complex reaction 

kinetics reported. 

 

5.4 Evaluation of Optimal Operation Policies for the Rigorous Case 

 The globally optimal invariants for the four kinetic models have been obtained from the 

analysis of a simplified problem, where the Mode I objective is minimizing recycle rate while the 

Mode II objective of maximizing production is limited by a maximum recycle rate bottleneck 

constraint. In practice, the rigorous optimization objective and constraints can be more complex. 

Here, we consider the typical case of minimizing reboiler duty (or boilup), which is the expensive 
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utility, as the Mode I objective. For Mode II, the objective remains maximizing production. 

However, the bottleneck constraint is the commonly encountered case of column entrainment 

flooding with the boilup hitting a maximum limit, VMAX. Due to the complexity of the 

multicomponent distillation column model, the existence of an elegant gobally optimal operating 

policy for managing xrxrB seems very unlikely to us. The next best thing is to quantify the 

suboptimality resulting from the implementation of operating policies obtained earlier from the 

simplified analysis. Given that these policies guarantee global optimality for the simplified 

problem, the expectation is that for the rigorous case, the suboptimality (or economic loss) maybe 

small enough resulting in near optimal operation over the envisaged operating space. 

 In both Mode I and Mode II, the simplified analysis optimal operating policy for KM I and 

KM II corresponds to holding the reactor A to B ratio ([A/B]) constant. In other words, the 

presented simplified analysis provides a physical basis for considering [A/B] as a candidate SOCV 

for managing the unconstrained setpoint xrxrB. We consider a ±20% change in production as the 

principal Mode I disturbance and a ±30% change in reaction rate constant as the principal Mode II 

disturbance. The plant economic performance is now compared for the candidate CVs, [A/B] or 

xrxrB, held constant at their nominal optimum value. From the regulatory perspective, both these 

CVs maintain the stoichiometric feed balance; xrxrB is most commonly applied in the literature (see 

e.g. 15-16).   

 For the economic comparison, Figure 5.1 plots the variation in % economic loss, L%, 

defined as    𝐿% =
𝐽−𝐽𝑜𝑝𝑡

𝐽𝑜𝑝𝑡
× 100 

with respect to the Mode I / Mode II principal disturbance with [A/B] or xrxrB maintained at its 

nominal optimum value, for all the four kinetic models considered. The plot has been obtained with 

the candidate SOCV held constant at its nominal optimum value so that L% is zero at the nominal 

condition. Note that the SOCV nominal optimum value for [A/B] for the rigorous Mode I objective 

and Mode II constraint is not the same as for the simplified analysis case. From the plots, it is 
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clearly evident that [A/B] is an acceptable SOCV with L% being less than 0.5% in all cases 

considered. On the other hand, with xrxrB as the CV, for the largest disturbance magnitude, L% is 

consistently above 1% for the different kinetic models. In particular, for KM III, the Mode I L% is 

more than 5% for a production rate increase of 20% with xrxrB as the CV. The corresponding figure 

for [A/B] is a very respectable 0.2%. Similarly, in Mode II, the KM IV L% is 1.8% and 0.1% with 

xrxrB and [A/B], respectively, as the CVs. These results clearly bring out the self optimizing nature 

of [A/B] as a CV. It is also pertinent to note that even as [A/B] is the global optimum invariant for 

the simplified analysis of only KM I and KM II and not KM III and KM IV, it still behaves as a 

good SOCV for the rigorous case for all the kinetic models considered. There then may be merit in 

considering the A/B proportion circulating in the recycle loop as an SOCV for more complex 

reaction kinetics and other similar processes that have two unreacted reactants that are recycled. 

 

Figure 5.1. % Economic loss with principal disturbance for (a) Mode I (b) Mode II 

── :  Nominal optimum [A/B]    - - -   :  Nominal optimum xrxrB 

KM I 

KM II 

KM III 

KM IV 

(a) (b) 
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 Often, processes are required to transition from Mode I to Mode II and vice versa due to 

anticipated changes in the demand-supply gap. Consider a constant setpoint operating policy with 

[A/B] or xrxrB as the candidate CV. Assume the process is operating at the nominal Mode I optimum 

when management requests a transition to Mode II (maximize production). The operator would 

then slowly increase the TPM setpoint until the bottleneck constraint (VMAX) is approached closely 

from below. Conversely, we may have the process operating at maximum production with [A/B] or 

xrxrB at the Mode II optimum value when the management requests a transition to a much lower 

Mode II production rate. In response, the operator would slowly decrease the TPM setpoint till the 

desired lower production rate is achieved. In both cases, for constant setpoint operation, unless the 

self-optimizing characteristics of the unconstrained CV are good, the suboptimality at the final 

steady state can be substantial. This is quantified in Table 5.4 for [A/B] or xrxrB as the candidate 

unconstrained CV. The data clearly shows that for both Mode I to Mode II and Mode II to Mode I 

transition, the economic loss L% at the final steady state is no more than 1.1% with [A/B] as the CV. 

On the other hand, with xrxrB as the CV, the corresponding loss can be as high as 8.2% in a Mode I 

to Mode II transition and 9.4% in a Mode II to Mode I transition. This again highlights that [A/B] is 

an excellent SOCV for near optimal operation over a large operating window. 

 

Table 5.4. Quantitative evaluation of candidate unconstrained CV 

Mode 

Transition 
Variable 

KM I KM II KM III KM IV 

J L% J L% J L% J L% 

I → II 
[A/B] 149.99 0.76 159.25 0.48 139.97 0.77 155.05 0.53 

xrxrB 143.63 4.96 151.26 5.48 131.54 6.75 143.13 8.17 

II →  I 
[A/B] 393.71 0.94 434.24 0.52 406.61 1.04 454.29 0.58 

xrxrB 415.87 6.62 455.47 5.43 440.06 9.35 486.52 7.72 

 

 



 

144 
 

 Given the good self-optimizing performance of [A/B] for KM III and KM IV, for which 

[A/B] is not the global invariant from the simplified analysis, it is pertinent to ask if the economic 

loss can be further reduced for KM III and KM IV by using the simplified analysis global invariant 

as the candidate SOCV. We analyzed for the performance of both KM III and KM IV simplified 

analysis global invariants and found that the economic performance is indeed noticeably better than 

when holding [A/B] constant. For quantitative illustration, Figure 5.2 shows the variation in L% in 

Mode I and Mode II, with respect to the corresponding principal disturbance, for KM III with the 

invariant and [A/B] as the candidate CVs. When the global invariant is used, L% is no more than 

0.13% over the considered disturbance space, which is much lower than the 0.5% maximum loss 

when holding [A/B] constant. Similar results were also observed for KM IV but are not shown here 

for brevity. Thus even as the global invariant has been obtained using simplified analysis for KM 

III and KM IV, its self-optimizing performance over the envisaged operating space for the rigorous 

case is outstanding with negligible loss. Overall, these results clearly show that the global invariants 

obtained from the simplified analysis for all the kinetic models considered are excellent SOCVs for 

the more rigorous Mode I economic objective and Mode II bottleneck constraint.  

 

Figure 5.2. Loss% for global invariant and [A/B] for KM III for (a) Mode I (b) Mode II 

(a) (b) 
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5.5 Discussion 

 Given the excellent performance of the simplified analysis invariant for the rigorous case 

for KM III and KM IV, it is tempting to consider controlling a non-linear SOCV which has the 

same form as the simplified analysis invariant. The problem is identifying the unknown parameters 

in this nonlinear SOCV. In KM IV, for example, the SOCV will have four unknown parameters, 

corresponding to a, b, KA and KB in the simplified analysis invariant (see Equation 18). Note that 

since the economic objective or bottleneck constraint are not the same as for the simplified analysis, 

we expect the "best" value for these parameters to be different than that obtained using the actual 

reaction kinetic parameter values. This is similar to the "best" value of [A/B], which is the 

simplified analysis invariant for KM II, being different from a/b, for a rigorous economic objective 

and bottleneck constraint (see Table 5.2). A well fitted kinetic model is then of little avail in 

obtaining the best value of the SOCV, regardless of whether we are using [A/B] or the simplified 

analysis invariant based process variable as the SOCV.     

 When using [A/B] as the SOCV for any of the kinetic models, including KM III or KM IV, 

it is quite straight forward to find the optimum value of [A/B] at a given production, using for 

example, hill-climbing17 or modifier adapted RTO18. This optimum value is then applied to all 

operating conditions with the assurance that the economic loss would remain acceptably small. On 

the other hand, for the SOCV based on the KM IV invariant, obtaining the four unknown 

parameters requires driving the process to the economic optimum for at least four different 

production rates, which is so much more cumbersome and impractical. Nevertheless, purely for 

illustration purposes, we performed the KM IV invariant parameter fitting using Mode I optimum 

steady state data at four different production rates of 94, 96, 98 and 100 kmol/h. We have 

deliberately taken a narrow range of production rates to see the extrapolation ability of the control 

law. For comparison, we also fitted a third order polynomial, which has four unknown parameters 

(xrxrB
opt = α + βxrxrA + γxrxrA

2 + δxrxrA
3) for these same production rates. Figure 5.3a shows the 
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variation in L% over a much wider Mode I production rate range of 60 to 125 kmol/h using the 

invariant based control law and the polynomial control law. For comparison, the curve with [A/B] 

fixed at the nominal optimum is also shown. Notice that the invariant based SOCV further reduces 

the loss compared to constant [A/B] operation to values that are negligible. Given that this SOCV 

has a physical basis and has been obtained from an analysis of the overall plant material balance, its 

extrapolation ability far away from the narrow Mode I operating range over which unknown 

parameters were fitted is reassuring and not surprising. On the other hand, the polynomial control 

law has very poor extrapolation ability and gives near optimal operation only over the narrow 

throughput range over which the parameters were fitted. This is again to be expected as the 

polynomial control law has no physical basis. 

 Figure 5.3b shows the variation in L% if the same invariant based fitted SOCV is applied for 

Mode II operation. The corresponding variation with [A/B] fixed at its nominal Mode I optimum 

(throughput 100 kmol/h) is also shown in the Figure. Again, the excellent extrapolation ability of 

the invariant based SOCV is self evident. Overall these results highlight that an SOCV with a 

physical basis provides, by far, the most convincing argument for implementation in industrial 

settings. 

 

Figure 5.3. Loss% for invariant control law, polynomial control law and constant ER 

operation for (a) Mode I (b) Mode II 

(a) (b) 
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5.6 Conclusion 

 In conclusion, simplified analysis of the overall plant material balance for a two feed A + B 

→ C reactor-separator-recycle process shows that for elementary or power law reaction kinetics, 

holding the reactor A/B ratio constant at an appropriate value minimizes recycle rate at given 

production (Mode I) or alternatively, maximizes production with maximum recycle rate as the 

bottleneck constraint. The reactor A/B ratio is thus an ideal CV corresponding to the unconstrained 

dof for the second fresh feed into the process (first fresh feed sets production). A more complex 

global invariant is obtained for the Langmuir Hinshelwood reaction kinetic expressions. For the 

more rigorous case of Mode I minimization of column boilup (expensive utility) or Mode II 

throughput maximization with maximum boilup as the bottleneck constraint, rigorous steady state 

analysis shows the reactor A/B ratio is a good self-optimizing controlled variable (maximum loss % 

< 0.5%) for all the considered reaction kinetic models. Additionally, if the simplified analysis 

invariant is used as the CV, the economic loss over the envisaged operating space can be further 

reduced to <0.13%. Overall, the work highlights the role of the non-linear overall plant material 

balance as the key determinant of the form of the optimal operating policy corresponding to the 

unconstrained dof associated with the second fresh feed to the process. 
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Chapter 6 

Inferential Self Optimizing Control of a Reactor-Separator-

Recycle Process 

 

This Chapter is based on the paper “Inferential Self Optimizing Control of a Reactor-Separator-

Recycle Process” submitted to Industrial Engineering and Chemistry Research. 

 

In this Chapter, self optimizing control of a reactor-separator-recycle process with A + B → 

C reaction chemistry is evaluated for Mode I (minimize recycle rate or boilup at given production) 

and Mode II (maximize throughput with maximum recycle or boilup as the bottleneck). In both 

operation modes one unconstrained degree of freedom (dof) remains after accounting for the active 

constraints. Through an analysis of the overall plant material balance, it is shown that the reactor A 

to B ratio is a good self-optimizing variable for the unconstrained dof. The separator distillation 

column top temperature (Ttop) is directly correlated to this ratio and is a good inferential self-

optimizing controlled variable (SOCV) that avoids cumbersome reactor composition 

measurements. A plantwide control system with column boilup as the throughput manipulator 

(TPM) is synthesized with two candidate CVs for stoichiometric feed balancing, namely, reactant 

composition in the reactor (CS1) and separator top temperature (CS2). Steady state and closed loop 

dynamic results demonstrate that both CS1 and CS2 provide effective process regulation in the face 

of principal disturbances with CS2 achieving significant economic benefit up to 7% and 0.8% in 

Mode I and Mode II, respectively. The work emphasizes the substantial economic impact of the CV 

corresponding to an unconstrained dof. 
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6.1 Introduction 

 One of the more appealing approaches for near optimal management of unconstrained 

regulatory layer setpoints is the self-optimizing control paradigm 1-3. Here, the unconstrained 

setpoint is manipulated to hold a self-optimizing CV (SOCV). An SOCV is defined as one which 

when held constant at an appropriate value, results in acceptably small economic loss in the face of 

disturbances 3. The "small economic loss" criteria implies that a constant SOCV setpoint operating 

policy gives near optimal process operation. An unconstrained optimization problem gets simplified 

into a control problem. A good SOCV obviates/mitigates the need for reoptimization via real-time 

optimization (RTO). Since its formalization by Skogestad and coworkers, the SOC approach has 

been demonstrated on several plantwide control problems (see e.g. 4-8). 

 Even as the SOC concept is appealing, obtaining a good SOCV for potentially highly non-

linear integrated chemical processes is not straightforward and requires process understanding and 

insights. Many reported applications simply quantify the economic loss due to no reoptimization for 

a list of candidate controlled variables (CVs) and then choose the one with the least loss for 

implementation (see e.g. 4-5). The null space method 9 gives the best possible combination of 

measurements for SOC. The combination however is only a local optimum invariant and not a 

global one. Its usefulness for highly non-linear processes with material and energy integration is not 

clear. The other issue is the practicality of the SOCV. Not all SOCVs are practical. For example, 

the costs and delays associated with cumbersome analytical composition measurement based 

SOCVs may make their implementation infeasible. Also, an SOCV based on several measurement 

combinations may exhibit strange dynamics requiring significant filtering and controller detuning. 

Thus, similar to the quest for good models for RTO, the quest for a good SOCV can be an 

interesting research problem for specific processes. 
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 In this work, we consider self-optimizing control (SOC) of a reactor-separator-recycle 

process that has been used as a case-study in the PWCS design literature 10-12. In the previous 

Chapter, steady state analysis of a reactor-separator-recycle process with the reaction A + B → C, 

resulted in a globally invariant control law for minimizing recycle rate at given production or 

maximizing production with maximum recycle rate as the bottleneck constraint. Here, we extend 

the work to show that the simplified analysis invariant for power law reaction kinetics, namely 

reactor A/B ratio, is self optimizing for the more complex Langmuir-Hinshelwood kinetics and the 

rigorous objective of minimizing separator reboiler duty at given production or maximizing 

production with maximum boilup as the bottleneck constraint, corresponding to onset of column 

flooding. We further extend the work to consider the dynamic implementation of the self-

optimizing control (SOC) policy. Since the policy is based on reactor composition measurements, 

the scope of the work includes inferring the reactor compositions from available routine online 

measurements for industrial practicality. The novel contribution is in providing a physical basis for 

the SOCV and also a practical method for inferential SOC from routine measurements. 

 In the following, the reactor-separator-recycle process is briefly described. Optimal steady 

state operation for two common operating modes, Mode I and Mode II is then considered. In Mode 

Ia, the production rate is given and the steady state dofs are adjusted to minimize the recycle rate. In 

Mode Ib, the reboiler duty is minimized at given production. In Mode IIa, all degrees of freedom 

(dofs) are adjusted to maximize production with maximum recycle rate as the bottleneck constraint. 

In Mode IIb, maximum boilup is taken as the bottleneck constraint. In all cases, after accounting for 

the optimally active constraints, one unconstrained dof remains. The steady state analysis is then 

briefly presented to derive the globally optimum invariant for Mode Ia and Mode IIa. We also show 

that for Mode Ib and Mode IIb, the power law kinetics invariant, which reactor A/B ratio is, gives 

acceptably small loss at a constant value and is therefore self-optimizing. The dynamic 

implementation of the self-optimizing control policy for realistic Mode Ib and Mode IIb objectives 
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is then considered. An economic PWCS with the TPM at the column boilup (capacity bottleneck) is 

then synthesized. Two control system variants, CS1 and CS2, are considered. In CS1, the limiting 

reactant B mol fraction (xrxrB) is used as the CV for the ucnonstrained dof. In CS2, the reactor A/B 

ratio ([A/B]), inferred from the column top tray temperature, is used as the CV for the 

unconstrained dof. The column top tray temperature measurement avoids cumbersome reactor 

composition measurements. The dynamic economic performance of CS1 and CS2 is then evaluated 

for Mode Ib and Mode IIb for realistic disturbance scenarios. Post a brief discussion of the results 

and outstanding issues, the article ends with a summary of the main findings. 

 

6.2 Process Description  

 A schematic of the reactor-separator-recycle process is shown in Figure 1.8 and base-case 

operating conditions are noted in Table 6.1. The exothermic, irreversible, liquid-phase reaction A + 

B → C occurs in a cooled continuous stirred tank reactor (CSTR). The reactor effluent is distilled to 

recover the heavy C product down the bottoms and recycle the unreacted reactants up the top. The 

hypothetical component properties and Langmuir-Hinshelwood reaction kinetics are noted in Table 

6.2. The SRK equation of state is used to model the thermodynamic properties. The hypothetical 

component properties used are also noted in Table 6.2. The base-case salient design and operating 

conditions are shown in the Figure. These correspond to optimal operating conditions for Mode Ib, 

as described later. 
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Table 6.1 The salient base-case process operating conditions  

Process 

Variables 

Temperature 

(°C) 

Molar Flow 

(kmol/h) 
xA xB xC 

FA 25 99.1 1 0 0 

FB 25 99.9 0 1 0 

Fcol 96.9 264.8 0.356 0.264 0.38 

R 85 164.8 0.571 0.419 0.01 

P 124 100 0.001 0.009 0.99 

L 85 347.4 0.571 0.419 0.01 

Other Variables 

No. of Trays 15 

Feed tray 7 

Prcnd 140 kPa 

Urxr 6 m3 

Trxr 110 °C 

Qrxr 129.3 kW 

Qcnd  2705 kW 

Qreb 4016 kW 

See Figure 1.8 and Nomenclature for variable descriptions 

 

 

Table 6.2. Hypothetical component properties and reaction kinetics 

Kinetics A + B → C 

r =k.xrxrA.xrxrB/(1+KA.xrxrA+KB.xrxrB) 

k = 3.4×108.exp(-70000/RT) 

KA= 2.2×104.exp(-30000/RT) 

KB= 1.6×104.exp(-30000/RT) 

Hypotheticals# MW NBP(oC) VLE 

A 50 70 

Soave-Redlich-Kwong B 70 80 

C 120 110 

Reaction rate units: kmol.m-3.s-1 

 #: Hydrocarbon estimation procedure used to estimate parameters for thermodynamic 

property calculations 
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6.3 Optimal Operation 

 Optimal steady process operation is considered for two common operating modes. In Mode 

I, the throughput is given (for example, target fixed by management) and an economic objective is 

to be optimized, while in Mode II, the throughput is to be maximized subject to a capacity 

bottleneck. To facilitate insight into the physics behind the self-optimizing nature of the candidate 

SOCV that is used here, we first consider the economic objective of minimizing recycle rate at 

given production (Mode Ia) and maximizing production with maximum recycle rate as the capacity 

bottleneck (Mode IIa). The more realistic economic objective of minimizing reboiler duty (Mode 

Ib) and maximizing throughput with maximum boilup as the capacity bottleneck (Mode IIb) are 

considered subsequently. 

 The process has 6 steady state degrees of freedom (dofs); two for the fresh feeds, two for 

the CSTR (hold up and temperature) and two for the column, assuming its operating pressure is 

fixed. From the operating standpoint, it is always optimal to hold the product purity, xC
P, at the 

minimum guarantee given to the customer, xC
P,MIN, to avoid free product giveaway13. Further, 

maximizing the reaction rate minimizes the Mode I recycle load so that the reactor should be 

operated at the maximum allowed temperature Trxr
MAX and hold up (Urxr

MAX). Thus in Mode I, the 

given production rate, xC
P,MIN, Trxr

MAX and Urxr
MAX constraints take away four dofs. We also assume 

that the heavy C leakage in the distillate should not exceed 1 mol% due to operating considerations 

such as accelerated catalyst deactivation due to the heavy component or accelerated equipment 

fouling etc. If this constraint is relaxed, large C leakage in the distillate may be optimal, equivalent 

to the column operating as a simple stripper (no reflux)14. However, in view of practical 

considerations noted above, it is optimal to hold the C leakage in the distillate, xC
R, at the maximum 

allowed limit, xC
R,MAX, of 1 mol%. In Mode I, the five constraints of given production, xC

P,MIN, 

xC
R,MAX, Trxr

MAX and Urxr
MAX leave only one unconstrained dof. Assuming a fresh feed is used to set 

production, the unconstrained dof corresponds to the remaining second fresh feed. 
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 In Mode II, the production is to be maximized and is not fixed. It is therefore a dof. The 

maximum production gets limited by the capacity bottleneck constraint. This capacity bottleneck is 

considered as maximum recycle rate, RMAX, in Mode IIa or maximum boilup, VMAX, in Mode IIb. All 

the Mode I active constraints remain active in Mode II so that we again have 5 active constraints, 

namely, VMAX (or RMAX), xC
P,MIN, xC

R,MAX, Trxr
MAX and Urxr

MAX. Thus, in both Mode I and Mode II, we 

have one unconstrained dof corresponding to the second fresh feed. 

 Typically, the dof corresponding to one fresh feed gets used to fix the specified production 

rate in Mode I or to drive the capacity bottleneck to its constraint limit in Mode II. The 

unconstrained dof corresponding to the other fresh feed gets used for stoichiometric feed balancing 

for overall plant material balance closure. This is accomplished by holding an appropriate process 

variable (PV) that is sensitive to stoichiometric imbalance. The most common arrangement is to 

hold a reactant composition in the reactor by manipulating the flow ratio between the two fresh 

feeds15. There are other possibilities for stoichiometric feed balancing, which shall be discussed 

later. 

 Now let us consider the Mode Ia optimal operating policy for the one unconstrained dof 

corresponding to the second fresh feed. The overall plant material balance closes when the C 

generation rate in the CSTR exactly matches the specified production rate. In other words, we have 

   𝑘𝑀𝐴𝑋 𝑥𝑟𝑥𝑟𝐴𝑥𝑟𝑥𝑟𝐵

(1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵)
𝑈𝑟𝑥𝑟

𝑀𝐴𝑋 = 𝑃𝑥𝐶
𝑃    (1) 

Assuming Urxr
MAX, P and xC

P are reliably known and good estimates of the reaction kinetic 

parameters are available, the equation has only xrxrA and xrxrB as unknowns. Since the recycle is 

essentially unreacted A and B, for the recycle rate to be minimum, the total reactant mol fraction in 

the reactor, xrxrA + xrxrB, must be minimum. Without loss of generality, let us assume that at a given 

xrxrB, the overall material balance constraint fixes xrxrA. The optimum xrxrB then is obtained by setting  

    
𝑑(𝑥𝑟𝑥𝑟𝐴+𝑥𝑟𝑥𝑟𝐵)

𝑑𝑥𝑟𝑥𝑟𝐵
= 0 
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   dxrxrA = -dxrxrB 

Differentiating Equation 1 treating k, KA, KB, U, P and xC
P as constants, then substituting dxrxrA = -

dxrxrB and performing necessary algebraic manipulations gives the globally optimal control law as 

   𝑥𝑟𝑥𝑟𝐵 = 𝑥𝑟𝑥𝑟𝐴 +
𝑃𝑥𝐶

𝑃

𝑘𝑀𝐴𝑋 𝑈𝑟𝑥𝑟
𝑀𝐴𝑋 (𝐾𝐴 − 𝐾𝐵)    (3) 

This is equivalent to 

    𝑥𝑟𝑥𝑟𝐵 = 𝑥𝑟𝑥𝑟𝐴 + 𝛼𝑃  

Note that for tightly regulated xC
P and U (reactor level), which is true in practice, α depends only on 

the reaction kinetic parameters. Usually, at fixed temperature, the adsorption equilibrium constants, 

KA and KB, will remain fixed. The reaction rate constant, k, however is very likely to decrease 

significantly over time due to catalyst deactivation. The globally optimal control law above is then 

problematic in that α cannot be treated as a constant and will require re-estimation. An alternative 

reaction rate constant independent globally optimal control law may be obtained by substituting of 

Equation 1 into Equation 3, which gives 

   𝑥𝑟𝑥𝑟𝐵 − 𝑥𝑟𝑥𝑟𝐴 =
𝑥𝑟𝑥𝑟𝐴𝑥𝑟𝑥𝑟𝐵(𝐾𝐴−𝐾𝐵)

1+𝐾𝐴𝑥𝑟𝑥𝑟𝐴+𝐾𝐵𝑥𝑟𝑥𝑟𝐵
    (4) 

Even as the above is a somewhat more complicated expression, it is independent of the reaction rate 

constant and contains only two unknown parameters, KA and KB. Since the CSTR is operated at the 

maximum allowed temperature constraint, TMAX, and reactor temperature is tightly regulated, KB and 

KA can be treated as constants so that the globally optimal control law above does not contain any 

parameters that require re-identification. The two unknown parameters need to be identified only 

once. This may be done, for example, using data from two optimal steady states at different 

production rates. 

 For Mode IIa, the derivation of the globally optimal control law is very similar. At 

maximum production with R = RMAX (bottleneck), the C mol fraction in the reactor should be as 

large as possible. This is equivalent to having the total reactant concentration in the reactor, xrxrA + 

xrxrB, as small as possible. We therefore have dxrxrA = -dxrxrB for optimality, as before. Further, 
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differentiation of the overall material balance results in the same globally optimal invariant as in 

Equation 3 and Equation 4. 

 Note that for both Mode Ia and Mode IIa, process insight/intuition has been applied to 

directly derive the optimality condition requiring dxrxrA = -dxrxrB. A rigorous proof is provided in 

chapter 5. We also highlight that for simpler conventional reaction kinetics with r = k xrxrA
a xrxrB

b, 

using the procedure above, the globally optimal invariant is 

   
𝑥𝑟𝑥𝑟𝐵

𝑥𝑟𝑥𝑟𝐴
=

𝑏

𝑎
 

This simply requires holding the reactor A/B ratio at the appropriate value. Even as this invariant is 

for the simpler power law kinetics, it provides a physical basis for reactor A/B ratio as a potential 

SOCV. 

 Armed with the globally optimal invariants from Mode Ia and Mode IIa, we now consider 

process operation for the more realistic objective of minimizing boilup at given production (Mode 

Ib) and maximizing production with maximum boilup corresponding to column flooding as the 

capacity bottleneck. The globally optimal invariant derived previously can no longer be the 

invariant (zero loss) since the objective function and capacity bottleneck are now different. It is 

however reasonable to expect that the implementation of the same control law in Mode Ib and 

Mode IIb gives acceptably small economic loss so that the control law is self-optimizing. 

 For quantitative evaluation, we consider a change in Mode Ib production rate by up to 

±20% and a 40% decrease in catalyst activity in Mode IIb operation as typical disturbances. Figure 

6.1 plots the % loss from the actual optimum using candidate self optimizing operating policy of 

Equation 4, reactor A/B ratio, reactor limiting reactant composition (xrxrB). The Figure also shows 

the % loss for top rectifying tray temperature (Ttop) as the CV in lieu of xrxrB. As described later, Ttop 

is an inferential measure of reactor A/B ratio. Note that the difference between the LHS and RHS of 

Equation 4 is the CV based on the derived invariant from the simplified analysis (Mode Ia and 

Mode IIa). Its setpoint value then is zero. 
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 The Mode IIb data in Figure 6.1 is plotted assuming that the CV is at its optimum value for 

the nominal reaction rate constant k. The economic loss is then calculated for no redjustment in the 

CV setpoint from this Mode II nominal optimum. Usually, a Mode I to Mode II transition is 

effected by increasing the TPM setpoint till the bottleneck constraint goes active. It is very likely 

that the CV setpoint is maintained at its nominal Mode I optimum value. In such a case, the 

economic loss is from the Mode I nominal optimum, which is likely to be greater than the loss from 

the Mode II nominal optimum shown in Figure 6.1. Table 6.3 quantifies this greater loss for the 

four candidate CVs. The data in Figure 6.1 and Table 6.3 clearly suggest that both the invariant 

(Equation 4) reactor A/B ratio and Ttop are self-optimizing control policies with the Mode Ib loss 

being within 0.7% and the Mode IIb loss being within 0.2% of the actual optimum. It is quite 

surprising that the very simple constant reactor A/B ratio policy is only slightly worse than the 

Equation 4 invariant. We therefore consider this simple constant reactor A/B ratio self-optimizing 

control policy, or equivalently, Ttop, which is a good inferential measure of reactor A/B ratio, as 

described in the following, for implementation. 

Figure 6.1. % economic loss for four alternative CVs (a) Mode Ib (b) Mode IIb 

(a) (b) 
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Table 6.3. % Loss for the four candidate SOCVs 

Disturbance Mode Ib Disturbance Mode IIb 

P kmol/h Invariant [A/B] xrxrB Ttop k% Invariants [A/B] xrxrB Ttop 

120 0.463 0.665 7.659 0.690 60 0.150 0.136 1.663 0.146 

115 0.252 0.365 4.128 0.395 65 0.117 0.104 1.253 0.111 

110 0.150 0.216 1.844 0.225 70 0.088 0.078 0.907 0.083 

105 0.043 0.066 0.432 0.068 75 0.075 0.066 0.629 0.069 

100 0.005 0.010 0.000 0.006 80 0.049 0.049 0.404 0.051 

95 0.020 0.003 0.181 0.006 85 0.035 0.022 0.215 0.023 

90 0.039 0.056 0.924 0.068 90 0.025 0.011 0.094 0.012 

85 0.125 0.185 2.140 0.199 95 0.019 0.005 0.025 0.007 

80 0.211 0.348 3.772 0.389 100 0.001 0.001 0.000 0.001 

 

 

6.4 Inferential SOCV 

 One of the major issues with the reactor A/B ratio as an SOCV is that it requires two 

analytical composition measurements, namely xrxrA and xrxrB. Given that analytical composition 

measurements can be quite expensive, cumbersome, unreliable and with potentially large 

measurement delays, it is worthwhile investigating if routine online measurements can be used to 

infer/estimate xrxrA and xrxrB. We note that since xrxrA/xrxrB is an SOCV and the product stream is 

nearly pure with negligible A and B impurities, essentially all of the unreacted A and B leaving the 

reactor ends up in the column distillate stream. In other words,  

   
𝑥𝑟𝑥𝑟𝐴

𝑥𝑟𝑥𝑟𝐵
≈

𝑥𝐴
𝑅

𝑥𝐵
𝑅 

Since the unreacted A and B end up at the top of the column, assuming xC
R is held constant at its 

active constrained value, then the column top tray temperature, Ttop, is directly correlated with 

xA
R/xB

R. Thus if xrxrA/xrxrB increases, implying more A circulating around the plant (relative to B), Ttop 

would decrease since A is lighter than B. Conversely, if xrxrA/xrxrB decreases, the relative proportion 

of B circulating around the plant is higher and Ttop would increase. This direct correlation between 

Ttop and the xrxrA/xrxrB, a good SOCV, implies that Ttop is also a candidate SOCV. Its advantage is that 

it obviates the need for cumbersome analytical reactor composition measurements for optimal 
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management of the unconstrained dof. Also, given its correlation with the relative A/B proportion 

circulating around the plant, it will stoichiometrically balance the fresh feeds. Controlling Ttop thus 

serves two purposes, the regulatory objective of stoichiometric feed balancing and the economic 

objective of self-optimizing process operation corresponding to the one unconstrained dof in both 

Mode Ib and Mode IIb. Note that the most common control strategy in the literature for 

stoichiometric feed balancing is to hold a reactant composition in the reactor by manipulating the 

fresh reactant feed ratio15-17.  

 The self optimizing nature of Ttop can again be verified from Figure 6.1, which shows the 

variation in the economic objective when Ttop is held constant at the nominal optimum. The 

corresponding variation when xrxrA/xrxrB or xrxrB is held constant at the nominal optimum, is also 

shown. The plot clearly suggests that Ttop is a good SOCV with its performance being almost as 

good as when xrxrA/xrxrB is held constant. On the other hand, xrxrB is a markedly inferior SOCV with 

noticeably higher economic loss over the envisaged disturbance range. 

 

6.5 Plantwide Control Systems 

 The plantwide control system is now synthesized. Since the capacity bottleneck is the 

maximum boilup constraint, boilup is used as the TPM, in line with the heuristic of locating the 

TPM at the bottleneck constraint13,18-19. To hold the boilup constant, the reboiler duty is 

manipulated. Since the boilup vs production rate relationship is not known apriori, a "loose" 

production rate controller manipulates the boilup controller setpoint in order to hold the product 

rate at the desired value. Standard level and pressure loops are applied on the column with the sump 

level regulated by manipulating the bottoms and the reflux drum level regulated by manipulating 

the distillate rate. The column pressure is regulated by manipulating the condenser duty. A sensitive 

stripping tray temperature is regulated by manipulating the column feed rate, since the reboiler duty 

is already paired for throughput regulation. The stripping tray temperature controller setpoint is 

updated by a product purity controller. On the CSTR, the level is controlled by manipulating the 
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fresh B feed rate (FB) since the reactor effluent is already paired for stripping temperature control. 

The fresh A feed rate (FA) is maintained in ratio with FB and the ratio setpoint is manipulated for 

stoichiometric feed balancing, for which two alternative CVs are considered. The first one holds the 

reactor B mol fraction, xrxrB, which is the conventional practice15-17, while the second one holds the 

column top tray temperature, Ttop, which is also a good SOCV. 

 The only remaining loop now is the CV to be held constant to hold the recycle stream C 

leakage, xC
R. We first considered using rectifying section tray temperature control to inferentially 

hold xC
R. However, since all three components are present in the rectification section, xC

R was found 

to vary between 0.5 to 5 mol% over the envisaged operating space, when the most sensitive 

rectifying tray temperature is controlled. If the tray temperature setpoint is backed-off so that xC
R 

remains below its maximum limit of 1% over the envisaged operating space, the resulting economic 

loss is very large (>10%). In view of this, we apply the most straightforward method of directly 

measuring xC
R and manipulating the reflux rate to hold it constant. Later on, we discuss the 

possibility of using the difference between two appropriately chosen tray temperatures, ΔT, as an 

inferential measure of xC
R. The regulatory control structure as explained above is shown in Figure 

6.2. For ease of reference, the control structure with xrxrB as the CV for stoichiometric balancing is 

referred to as CS1 while the control structure with Ttop as the CV for the same is referred to as CS2. 

 For optimal operation, the optimally active constraint setpoints are simply set to the 

constraint values, i.e., Urxr
SP = Urxr

MAX, Trxr
SP = Trxr

MAX
, xC

P = xC
P,MIN and xC

R,SP = xC
R,MIN. In Mode Ib, 

the production regulator fixes VSP such that the production rate is the desired value. In Mode IIb, we 

have VSP = VMAX with the desired production rate setpoint being too high so that the low selector 

(see Figure 6.3) passes VMAX as the setpoint to the boilup controller. 
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Figure 6.3. Plantwide control structure, CS2 
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Figure 6.2. Plantwide control structure, CS1 
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6.6 Closed Loop Dynamic Results 

 A pressure driven dynamic simulation is built for the PWCS described above. The reflux 

drum and bottom sump are sized for 5-10 min holdup at the Mode Ib nominal condition at 50% 

level. The control valves are sized for the nominal flow at 50% opening. The column diameter is 

sized for nominal operation at 50% flooding velocity. The tray resistance to vapor flow is 

calculated for the nominal vapor rate and column pressure profile. A 0.5 min lag is applied to all 

temperature measurements to account for temperature sensor dynamics. Also, a 2 min lag is applied 

to all direct Q control valves to account for heat exchange equipment dynamics. A 5 minute dead 

time and sampling time is applied to any composition measurements. All flow controllers are PI 

and use a gain of 1 and integral time of 0.5 mins for a fast servo response. The column reflux drum 

and bottom sump level controllers are P only and use a gain between 1-2 (%/%). The column 

pressure controller is PI and tuned aggressively for tight pressure control. The reactor level 

controller is PI and uses a gain of 2 (%/%) with the integral time adjusted for a slightly oscillatory 

servo response. The reactor temperature and column stripping tray temperature controllers are PI 

and tuned for a slightly underdamped servo response. For stoichiometric feed balancing, the Ttop or 

xrxrB controller is tuned by hit and trial for a smooth not-too-oscillatory plantwide response. Lastly, 

the PI product purity controller is tuned with all other controllers on automatic for a slightly 

underdamped servo response. The salient parameters of the regulatory loops in CS1 and CS2 

simulations are noted in Table 6.4.  

 The PWCS described above is evaluated for routine disturbances for Mode Ib and Mode IIb 

operation. Both step changes and sinusoids of varying frequency are considered. The Mode Ib step 

disturbances are a ±20% change in the production rate, a 10 mol% change in the composition of 

fresh B feed with A as impurity and a 20% decrease in the reaction rate constant. The Mode IIb step 

disturbances are a 30% decrease in reaction rate constant and a 30% decrease in VMAX (bottleneck 

constraint). The sinusoid disturbances considered are a ±20% production rate sinusoid around the 
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nominal in Mode Ib and in Mode IIb, a reaction rate constant sinusoid between 70% of nominal to 

100% of nominal as well as a VMAX sinusoid from 900 kmol/h to 630 kmol/h in Mode IIb. For 

clarity, these disturbances are explicitly noted in Table 6.5. 

 

Table 6.4. Salient controller parameters for CS1/CS2*, #, $ 

CV 
CS1/CS2 

PV Range& MV Range& 
KC τi(min) 

xrxrB/Ttop 2.2/3.5 150/150 0.05-0.50/75-95°C 0.5-1.5 

P& 0.09 5 200kmol/h 250-1000kmol/h 

Trxr 2.5 25 90-130°C 3x106 kJ/h 

Urxr 2 30 0-100% 0-100% 

x
C

R 0.2 60 0.005-0.03 100-800kmol/h 

TCol
S 0.5 20 110-135oC 0-100% 

V 0.5 1 100-1100 4x107 kJ/h 

x
C

P 0.1 80 0.98-0.999 110-135oC 
&τ

D
=10 min for both. * Values for both CS1 and CS2 are same unless otherwise specified. #All 

level loops use KC = 1 unless otherwise specified. $ Pressure/flow controllers tuned for tight 

control. $ All compositions have a 5 min dead time and sampling time. All temperature 

measurements are lagged by 2 min.  

 

 

Table 6.5. Evaluation of disturbances 

 Disturbances 
Period/Frequency 

(h) 
Type 

Step Length/ 

Amplitude 

M
o

d
e 

I 

TP 30 Step +20% 

TP 30 Step -20% 

CCFB 30 Step -10% 

k 30 Step -20% 

TP 96/48/24/12/6 Sinosoid ±20% 

k 96/48/24/12/6 Sinosoid ±20% 

M
o

d
e 

II
 VMax 30 Step -20% 

k 30 Step -30% 

VMax 96/48/24/12/6 Sinosoid ±30% 

k 96/48/24/12/6 Sinosoid ±30% 

Mode I → Mode II → Mode I 120 (60+60) Ramp ±6 kmol/h 
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We present the closed loop response of the two plantwide control systems, CS1 and CS2, 

where in CS1, xrxrB is held constant, and in CS2, Ttop is held constant. All other loops are as in 

Figure 6.2. Figure 6.4 contrasts the Mode Ib CS1 and CS2 responses to a ±20% production rate 

change. In both cases, tight product quality control is achieved in the transient period with the 

maximum purity deviation being no more than 0.5 mol%. Also the fresh feed, recycle and product 

stream rates exhibit a smooth response with more oscillatoriness in the direction of a production 

rate decrease. The response for both CS1 and CS2 completes in about 25 hrs. Notice that the CS1 

final steady state boilup is noticeably higher than CS2. Specifically, the final CS1 boilup is 7% and 

3.4% higher than CS2 for, respectively, a production rate increase and a production rate decrease. 

The Mode Ib transient response of CS1 and CS2 to 10 mol% A in fresh B feed is shown in 

Figure 6.5. Overall, the response is smooth with gradual transients in the fresh feeds, boilup, 

product rate and recycle rate and takes about 20 hrs to complete for both CS1 and CS2. Tight 

product quality control is observed during the transient period. Since the product rate is the same as 

the initial steady state (100 kmol/h), the final boilup and recycle rate is the same as the initial steady 

state. Also, since now A is entering the process as an impurity in FB, the final steady state FA is 

lower while the final FB is higher. Between CS1 and CS2, the transient swing in the boilup, recycle 

rate and product rate is lower for CS1. This is because CS1 directly regulates xrxrB so that the 

sudden initial decrease in xrxrB is compensated by a quick decrease in FA. The action of the 

corresponding Ttop controller in CS2 is naturally slower so that the CS2 transients are larger. 
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Figure 6.4. Transient response for a ±20% Mode Ib throughput change (a) CS1 (b) CS2 

(a) 

(b) 
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 The Mode Ib transient response to a 20% step decrease in reaction rate constant is shown in 

Figure 6.6. As before, tight product quality control is achieved in the transient period. The decrease 

in rate constant causes the product rate to decrease initially with the recycle rate increasing due to 

build-up of unreacted reactants. In response to the decrease in production, the product controller 

appropriately increases the boilup to drive the production rate back to the desired value (100 

kmol/h). Overall, the transient response completes in about 25 hrs for both CS1 and CS2. Notice 

that the final steady state boilup for CS1 is 12% higher than for CS2 implying significant economic 

benefit of controlling Ttop. 

 The Mode IIb reaction rate constant step decrease response is shown in Figure 6.7. As 

before, tight product purity control is observed during the transient period with the smooth 

plantwide response completing in 25 hrs for both CS1 and CS2. Here, since VMAX is the active 

constraint and the catalyst activity decreases by 30%, the final steady state product rate decreases 

and settles at a lower value. The CS1 Mode IIb final product rate is 0.75% lower than the 

corresponding value for CS2. 

We also tested CS1 and CS2 for a 20% VMAX step decrease in Mode IIb to obtain smooth 

plantwide transient response with tight product purity control. Expectedly, the final CS1 product 

rate is 0.4% lower than CS2. The Mode IIb results suggest that the economic benefit difference 

between CS1 and CS2 is only marginal. This is probably because the variation in product rate with 

xrxrB is quite flat so that the economic penalty for not reoptimizing xrxrB is not severe. 
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Figure 6.5. Mode Ib transient response for 10 mol% A in FB (a) CS1 (b) CS2 

(a) 

(b) 
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Figure 6.6. Mode Ib transient response for 20% catalyst activity decay (a) CS1 (b) CS2 

(a) 

(b) 
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Figure 6.7. 30% activity decay for Mode IIb (a) CS1 (b) CS2 

(a) 

(b) 
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 In line with the step change disturbance results, our closed dynamic simulations showed 

that for sufficiently slow sinusoidal disturbances, CS2 achieves noticeably superior economic 

performance compared to CS1 in Mode Ib with only a marginal benefit in Mode IIb for all the 

considered disturbances. However, as the sinusoid becomes fast enough, it is possible that the CS2 

outperforms CS1 for specific disturbances. To quantify the economic performance, we simulated 30 

days of process operation with the sinusoid disturbance time period being halved from a maximum 

of 96 hrs (i.e. sinusoid time periods of 96, 48, 24, 12 and 6 h). For Mode Ib, we calculate the 

average boilup per kg product over the 30 day period defined as 

   [𝑉/𝑃]𝑎𝑣 =
∫𝑉(𝑡)𝑑𝑡

∫𝑃(𝑡)𝑑𝑡
 

For Mode IIb, the average production, Pav, over the 30 day period is calculated. To compare 

between CS1 and CS2 performance at the different sinusoid frequencies, the percentage difference 

between the two, defined as 

   Mode Ib: ∆[𝑉/𝑃]𝑎𝑣% =
[𝑉/𝑃]𝑎𝑣

𝐶𝑆1−[𝑉/𝑃]𝑎𝑣
𝐶𝑆2

[𝑉/𝑃]𝑎𝑣
𝐶𝑆2 × 100 

   Mode IIb: ∆𝑃𝑎𝑣% =
𝑃𝑎𝑣

𝐶𝑆2−𝑃𝑎𝑣
𝐶𝑆1

𝑃𝑎𝑣
𝐶𝑆2 × 100 

is obtained. 

 Figure 6.8 shows the variation in Δ[V/P]av% and ΔPav% with sinusoid time period for the 

considered sinusoid disturbances, namely, a Mode Ib ±20% production rate sinusoid, a Mode IIb 

reaction constant sinusoid and a Mode IIb VMAX sinusoid. In all cases, notice that for sinusoids of 

period 12 hrs or more, the economic performance of CS2 is consistently superior to CS1 by a few 

percentage points (2-4%) in Mode Ib and marginally (0.2-0.4%) in Mode IIb.  For the fast sinusoid 

of 6 hr period however, CS1 outperforms CS2 in both Mode Ib and Mode IIb for the considered 

disturbances. It appears that this difference is caused by the non-linearity between boilup (TPM/ 

bottleneck constraint) and production rate. A change in boilup required per unit production increase 

is significantly larger than the corresponding value for a production rate decrease. 
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 As the final illustration of the dynamic performance of the alternative control policies, we 

consider a tranision from Mode Ib to Mode IIb and then back to Mode Ib. Initially the process is at 

its nominal production (100 kmol/h; Mode Ib). The product rate regulator setpoint is then ramped 

up at till 135 kmol/h and held constant there. In response, the column boilup increases and the VMAX 

constraint goes active (Mode IIb). The process is operated in Mode IIb for 45 hrs and then the 

production regulator setpoint is ramped back down to nominal. The dynamic responses are obtained 

for CS1 and CS2 and are shown in Figure 6.9. As expected, holding Ttop (CS2) gives a Mode IIb 

product rate that is higher than CS2 by 5.1%. Throughout, xrxrB (CS1) and Ttop (CS2) are maintained 

Figure 6.8. Variation in Δ[V/P]av% and ΔPav% for different sinusoid time periods for 

considered sinusoid disturbances for (a) Mode Ib (b) Mode IIb 

(b) 

(a) 
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at their Mode Ib nominal optimum values. Since Ttop is a good SOCV, maintaining it at the nominal 

value naturally causes xrxrB to increase in proportion to the increase in xrxrA at increased proportion. 

On the other hand, in CS1, xrxrB is maintained at its nominal value so that xrxrA must increase 

substantially to achieve higher production. CS1 thus drifts the process significantly away from the 

optimum reactor A/B ratio whereas CS2 maintains it close to the optimum A/B ratio. This difference 

causes the substantial 5% benefit in the achieved maximum product rate in CS2 over CS1 for the 

same VMAX bottleneck. 

Overall, the presented closed loop dynamic results clearly illustrate that Ttop is a good 

SOCV that gives substantial economic benefit compared to conventional process operation holding 

a reactant composition in the reactor. One of the unaddressed questions here is how well would 

SOC compare with conventional RTO. We intend to take this up in a future study. 

 

 

Figure 6.9. Mode Ib → Mode IIb → Mode Ib transition for constant x
C

R 
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6.7 Discussion 

 In the presented closed loop results, xC
R is held constant, which requires a cumbersome 

analytic composition measurement. Direct rectifying tray temperature control gave unacceptably 

loose regulation of xC
R, which is what necessitated direct xC

R control. In the literature, tray 

temperature combinations have been used for tighter inferential composition control 20-22. One of 

the most commonly applied combinations is the difference between tray temperatures (ΔT) 23. We 

explored the possibility of using ΔT as a CV in lieu of direct xC
R control. Upon trying several 

combinations, we found that when holding ΔT = T13 – T3, where the column feed is on the seventh 

tray (top-down numbering), the variation in xC
R is between 0.6 to 1.5 mol% when throughput is 

varied from 80 to 120 kmol/h. This range is much smaller than when the most sensitive rectifying 

tray temperature is controlled at its nominal value, where the corresponding range is 0.5 to 5 mol%. 

By holding ΔT = T13 – T3 at an appropriate backed-off value, we can ensure that the worst-case xC
R 

is at the optimally active constraint limit (xC
R,MIN) of 1 mol%. This backed-off ΔT setpoint will 

create some suboptimality at all other operating conditions. 

 To analyze for the suboptimality due to backed off ΔT for the alternative operating policies, 

namely, constant Ttop and constant xrxrB (CS1∆T and CS2∆T), Figure 6.10 compares the variation in 

the economic objective with respect to the principal Mode Ib/Mode IIb disturbance using these two 

policies. The rigorous economic optimum curves are also shown in the Figure. The curves have 

been obtained for constant ΔT with sufficient back-off such that the worst-case xC
R does not exceed 

1 mol% (xC
R,MAX). For comparison, we also plot the curves with xC

R = 1 mol%. It is clearly evident 

that the constant ΔT operating policy entails significant economic lost of ~29% compared to 

constant xC
R of 1 mol%. The moot question then is if this loss is large enough to justify an 

expensive xC
R measurement. It is also evident that the constant Ttop operating policy gives near 

optimal operation and its benefit over the conventional constant xrxrB operating policy remains 

substantial regardless of whether ΔT or xC
R is held constant. Ttop is thus a good SOCV for managing 

the unconstrained dof corresponding to the second fresh feed. 
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 For argument's sake, let us assume that the xC
R measurement is expensive enough to justify 

controlling ΔT with an appropriate back-off in its setpoint. We tuned such a ΔT controller and tested 

it for Mode Ib and Mode IIb disturbances. Overall, we observed that when ΔT is controlled instead 

of xC
R, the throughput controller requires significant detuning to avoid a highly oscillatory 

plantwide response.  As an illustration, Figure 6.11 compares the response of salient PVs to a ±20% 

throughput change response in Mode Ib for CS1ΔT and CS2ΔT. Notice that the response completion 

time is now noticeably higher at 40 hrs. It is particularly sluggish for a throughput increase. It 

appears that this may be due to input multiplicity in the ΔT vs L (reflux rate) input-output relation, 

which is well documented in the literature (see e.g. 24-25). The sluggish response will naturally 

reduce the overall economic advantage of CS2 over CS1 in the face of transient disturbances. Given 

that the back-off required in ΔT itself causes a substantial economic loss (up to 28%), directly 

regulating xC
R may be preferred over temperature inferential control, for the specific process 

evaluated. 

Figure 6.10. Economic objective at backed-off ∆T (a) Mode Ib (b) Mode IIb 

(a) (b) 
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Figure 6.11. Transient response to a ±20% Mode Ib throughput change at backed-off ΔT for 

(a) CS1∆T (b) CS2∆T 

(a) 

(b) 
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6.8 Conclusions 

 In conclusion, the presented work on the optimal operation of a reactor-separator-recycle 

process shows that the ratio of A to B circulating around the recycle loop is an unconstrained degree 

of freedom that significantly affects the process economic performance. Through an analysis of the 

overall plant material balance, a globally optimal control law relating the reactor A and B mol 

fractions has been obtained for minimizing the recycle rate (Mode Ia) or maximizing production 

(Mode IIa) with maximum recycle rate as the bottleneck constraint. The control law is self-

optimizing for the more rigorous economic objectives of minimizing column boilup (Mode Ib) and 

maximizing production with maximum column boilup as the bottleneck (Mode IIb). We have also 

shown that for the studied process, the reactor A/B ratio is a good SOCV. The separator top tray 

temperature (Ttop) has a direct correlation with the reactor A/B ratio and is recommended both for 

stoichiometric feed balancing and as an equivalent SOCV as it avoids cumbersome analytical 

reactor composition measurements. Lastly the proposed economic plantwide control system (CS2), 

that holds Ttop, is shown to provide robust process regulation with noticeably superior economic 

performance compared to the conventional practice of holding xrxrB constant, for the considered 

principal disturbances when they are much slower than the plantwide response time. For the 

considered disturbances, the steady state economic benefit of CS2 over CS1 is up to 7% and 0.8% 

for Mode Ib and Mode IIb, respectively. Overall, the work demonstrates how systematically 

addressing the "what to control" question can achieve significant economic benefit. 
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Chapter 7 

Summary and Future Work 

 

 

Overall, the work presented in this thesis suggests that (near) optimal management of an 

unconstrained degree of freedom (dof) can result in significant economic benefit. The application of 

three techniques for (near) optimal management of a controlled variable (CV) corresponding to an 

unconstrained dof, namely, hill-climbing, real-time optimization (RTO) and invariant inspired self-

optimizing control (SOC), has been considered here. These techniques have been applied to the 

benchmark A + B → C reactor-separator-recycle process for different reaction kinetics. Overall, the 

results show that the economic benefit can be as high as a few percentage points (up to 10%) 

compared to constant setpoint operation using conventional CVs. In what follows, the main 

findings based on the experience with these techniques, particularly emphasizing the suitability of 

each technique in a specific scenario, are summarized along with pointers for future work. 

 

7.1 Hill Climbing 

 In the context of plantwide control of continuous integrated chemical processes, hill-

climbing control may be used for driving an unconstrained CV setpoint to its optimum value. The 

case-study results clearly show that the hill-climber drives the unconstrained reactor composition 

setpoint to its actual optimum in about 6-8 moves with significant economic benefit over the 

conventional constant setpoint operating policy. The method is however effective only in the 
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absence of unmeasured disturbances that can confound the economic objective gradient estimate 

with respect to the unconstrained CV and move the CV in the wrong direction. It should therefore 

be applied to obtain the optimum CV setpoint value during relatively calm and undisturbed periods 

of process operation.  

 Given that the open loop plantwide response times can be quite large in recycle systems, 

the 6-8 hill climber moves and also the reduction in the hill-climber open loop gain as the process 

gets closer to the optimum (gradient approaches zero near optimum), the hill climber takes a long 

time to reach close to the CV setpoint optimum. Also, in the first few iterations where the gradient 

is not known, it can move the CV setpoint in the wrong direction before reliable gradient estimates 

cause the setpoint to move in the right direction. Since the hill-climber obtains gradient estimates 

through explicit plant perturbations, it guarantees approach to the actual optimum in the presence of 

a static disturbance.  

 In view of all of the above, the hill-climber appears to be an ideal tool for application in 

conjunction with self-optimizing control. Since the appropriate SOCV setpoint value is not known 

apriori, the hill-climber may be used for obtaining it during relatively calm periods of operation. 

Once the value is obtained, the hill-climber can be switched off with self-optimizing control 

ensuring near optimal operation at constant SOCV setpoint. 

 One of the limitations of the current work is the use of a one dof hill-climber. Future work 

may consider its extension to multivariable optimization problems, where there are more than one 

economically important unconstrained CVs. The hill climber may also be tested for other more 

complex integrated chemical processes with multiple material recycle loops as well as energy 

recycle loops. 
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7.2 Real Time Optimization 

 Real time optimization remains the preferred method for optimizing an unconstrained CV 

setpoint in the industry as it does not require perturbing the plant to estimate the economic objective 

gradient and approaches the plant optimum by repeatedly fitting a model to recent plant data, 

calculating the model optimum and implementing the model calculated optimum setpoints in the 

plant. The feedback is through the repeated parameter fitting and model reoptimization. The 

problem however is that the RTO converged optimum is only as good as the plant model. Thus, an 

inadequate process model or an inappropriate parameter fitting strategy can result in the converged 

RTO optimum being significantly away from the actual plant optimum. In the presented case-study, 

the inability of the elementary reaction kinetic model (KM I) to converge close to the actual plant 

optimum is a compelling illustration of this.  

 Given an adequate process model and appropriate parameter fitting strategy, the case-study 

results show that RTO converges very close to the actual plant optimum in about 4-5 RTO 

iterations but not the exact plant optimum. Very simple time averages over a sufficiently large time 

window of transient process data are appropriate for estimating the process variables required in the 

model fitting exercise. Even in the presence of large variability in the process feed composition, the 

developed RTO approach for the reactor-separator recycle process effectively compensates for slow 

disturbances. The approach however may not be useful for compensating fast disturbances. 

 Given the possibility of large offset in the RTO converged optimum from the actual plant 

optimum, combining model based RTO with hill-climbing so that the offset gets driven to zero via 

feedback, is a promising avenue for further research. It appears that the modifier adaptation method 

recently developed by Bonvin and coworkers1-4, that ensures RTO convergence to the actual plant 

optimum is one such method combining model based RTO with feedback. Its application to 

plantwide control problems needs immediate further investigation. 
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7.3 Invariants and Self Optimizing Control 

 The ideal way of managing an economically dominant unconstrained CV setpoint is by 

holding a globally optimal invariant. The invariant corresponds to the economic optimality 

condition with respect to the CV. In this work, it was possible to derive an elegant invariant for the 

one unconstrained dof corresponding to the second fresh feed in the reactor-separator-recycle 

process. The derivation was made possible by directly solving the plant overall material balance 

constraint and the optimality condition. For power law kinetics, holding the reactor A/B ratio 

constant at an appropriate value minimizes the recycle rate (Mode I) or maximizes production 

(Mode II) with maximum recycle rate as the capacity bottleneck. Somewhat more complicated 

invariants are obtained for Langmuir Hinshelwood kinetics. Results show that regardless of the 

kinetic expression, holding the reactor A/B ratio constant is a good self-optimizing policy for the 

unconstrained dof for the rigorous objective of minimizing column boilup and maximizing 

production with maximum boilup as the capacity bottleneck. The work thus provides a sound 

physical basis for using reactor A/B ratio as a SOCV.  

 For the reactor-separator-recycle process, the A/B ratio can be directly inferred from the 

column top temperature (Ttop) to avoid cumbersome analytical composition measurements. 

Dynamic results not only confirm the economic benefit of Ttop control over constant reactor 

composition operation, but also show that for not-too-slow sinusoidal disturbances with time 

periods of 12hrs or more, controlling Ttop achieves economic benefit of a few percentage points over 

conventional reactor composition control. From the practical standpoint, invariant inspired SOCVs 

seem like the best bet for achieving better plant economics in the face of not-too-slow disturbances. 

 Overall, a combination of SOC and RTO/hill-climbing appears to be the most prudent way 

of managing an economically important unconstrained CV. Given the appropriate SOCV setpoint 

value, holding it constant ensures an acceptably small loss for moderate disturbances. A hill-

climber or RTO may be used to obtain the appropriate SOCV setpoint value. In case of a significant 
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change in the plant characteristics, the hill-climber/RTO may be invoked again to readjust the 

SOCV setpoint. 

 

 7.4 Concluding Remarks 

 Optimal operation of chemical plants has been researched for over four decades now. In 

addition to the techniques evaluated here, other variants such as evolutionary operation (EVOP)5-6 

and response surface methods too exist but have not been explored here. In addition, recent 

literature proposes direct economic model predictive control7-9. An evaluation of these other 

techniques may be explored in the future. It is however worth noting the economic MPC is 

mathematically very complex and the computations may not be tractable for typically large 

plantwide control problems. 

 In terms of the research imperatives based on the current work, it is highlighted that the 

three techniques have been evaluated in isolation here and no effort has been made directly 

compare their performance for typical disturbance scenarios. Such an evaluation would be of much 

interest to the academic and industrial community and should be taken up on priority. Additionally, 

it would be desirable to explore economic plantwide control problems with multiple unconstrained 

CVs that are economically dominant. 

 In the end, it is pertinent to highlight that regardless of the technique used for economic 

plantwide control, it is essential to understand the reasons as to why a particular CV is 

economically dominant based on the physics of the process and also why/how the proposed method 

for managing the CV ensures (near) optimality. In the absence of such physical insights and 

understanding, all of the economic plantwide control work risks being only a fancy number 

crunching game with little/no practical utility. In the pursuit of better plant economics, it is 

important to guard against the temptation of fancy number crunching replacing solid process 

engineering based on insights and understanding of the physics of the process. 
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Nomenclature 

 

E  Reactor effluent flow rate, kmol/h 

FA  Fresh A feed flow rate, kmol/h 

FB  Fresh B feed flow rate, kmol/h 

Fcol  Column feed rate, kmol/h 

Frxr  Reactor feed rate, kmol/h 

J  Economic objective function 

k  Reaction rate constant, kmol/s.m3 

K  Absorption equilibrium constant  

L  Column reflux rate, kmol/h 

P  Column bottom product rate, kmol/h 

Pr  Pressure, kPa 

Q  Heating or cooling duty, kW 

r  Specific reaction rate, kmol/s.m3 

R  Recycle rate, kmol/h 

T  Temperature, °C 

u  Regulatory layer setpoint manipulated by hill-climber 

U  Hold-up, m3 

V  Column boilup, kmol/h 

vS  Column vapor superficial velocity, m/s  

xi
j  Component i (i: A, B, C) mol fraction in stream j (j: P, R, E, Fcol, Frxr etc) 

xrxri  Component i (i: A, B, C) mol fraction in reactor 

yestimated  Estimated hill slope 

ySOC  Self optimizing control process variables 

ΔPrcol  Column pressure drop, kPa 

 

Greek Symbols 

α  Kinetic model reaction order with respect to component A  mol fraction 

β  Kinetic model reaction order with respect to component B  mol fraction 

ηR   Rectifying section tray Murphree efficiency 

ηS  Stripping section tray Murphree efficiency 

ρ  Column vapor density, kg/m3 
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Superscripts 

*  Plant process variable (PV) measurement 

e  Estimated PV/parameter 

m  Model PV/parameter  

MIN  Minimum constraint value 

MAX  Maximum constraint value 

opt  optimum 

S  Column stripping tray 

SP  Controller setpoint 

 

Subscripts 

A, B, C  For components A, B or C 

bot  PV for bottom sump 

cnd  PV for condensor 

col  PV for column 

rxr  PV for reactor 

reb  PV for reboiler 

rd  PV for reflux drum 
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