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Overview: Scope

| Optimal operation and control for steam cycles — plantwide
perspective
[l Input transformations for linearization, decoupling and feedforward
disturbance rejection
Industry  nonlinear static model based calculation block, but little
theory
Academia heavy mathematical treatment of linearizing nonlinear
dynamic systems, but few applications

[l Handling constraints on manipulated used for inventory control to
balance supply and demand
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1. Overview: operation and control
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1. Overview: thermal energy systems
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2. Optimal operation and control of steam cycles
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2. Optimal operation and control of steam cycles
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2. Optimal operation and control of steam cycles

Turbine-Generator

Condenser

Pump

Control objectives: Operational objectives:

| Long time scale: | Produce energy:

» achieve optimal economic
operation

» electric power
» steam

. > electric power and steam
Il Short time scale:

» grid frequency regulation
> stabilize the plant
> reject local disturbances

[l Process a given amount of
by-product:

» waste gases
» biomass residues
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2. Optimal operation and control of steam cycles:
steady-state analysis
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2. Optimal operation and control of steam cycles: dynamic
analysis

Operation modes — industrial standards

Floating pressure
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2. Optimal operation and control of steam cycles: dynamic
analysis

Operation modes — parallel control

Valve position control 2 controllers: P and Pl
PI- control P control i
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2. Optimal operation and control of steam cycles:
simulation results
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3.Input transformations for linearization, decoupling and
feedforward disturbance rejection
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3.Input transformations for linearization, decoupling and
feedforward disturbance rejection

The main idea

Transformed system (linear) d
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What? Powerful and simple approach for control of nonlinear systems to
achieve decoupling, linear response and disturbance rejection.

Why? Existing theories (e.g. feedback linearization) are (seemingly) very
complex and not widely used in industrial settings.

How? Simple manipulated variable (MV) transformations derived from
nonlinear model equations
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3.Input transformations for linearization, decoupling and
feedforward disturbance rejection

The main idea

Transformed system (linear) d
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Example: static process

Model: y =u—d

) = Transformed system: y = v
Transformed input: v =u—

Find u: v = v+ d, given v and d.
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3.Input transformations for linearization, decoupling and
feedforward disturbance rejection

The main idea

Transformed system (linear) d
.‘llllllllllllllllllllllllllllllllll.

|

*@

Y e Controller C'
(dynamic)

aiEEEEENEERERERD

L

Other examples:

v=u+d v =
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V=u — U

V=w
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3. Input transformation

Transformed system (linear) d
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3. Input transformation

Transformed system (linear) d
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Vd

Controller C'
(dynamic)
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vy € R™ outputs y® € R setpoint
w € R™ additional measurements d €& R disturbances
u € R™ original inputs v € R™ transformed inputs
Assumptions
@ as many outputs as inputs (1, = n,)
o disturbances (d) can be measured

@ some variables (w) can be measured (e.g. flows, or additional states)
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3. Derivation of transformed inputs
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3. Derivation of transformed inputs
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3. Derivation of transformed inputs
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va =B (f(y,u,d) - Ay) v = By Hfo(u, d)
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3. Derivation of transformed inputs

Transformed system (linear)
NN

ye

Controller C' | v
(dynamic)

avEEEEENERERREEE
AMCIRTERRRI RRRRRT NN

Dynamic Static
Model: f—% = f(y,u,d) y = fo(u, d)

Define the transformed input (v) as:
va=B""(f(y.u,d) = Ay) vo = By 'fo(u, d)

A, B and By are tuning parameters.
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3. Derivation of transformed inputs

Transformed system (line
CEEEEEEEEEEEEEEEEEEEES NI

ye

Controller C' | v
(dynamic)

avEEEEENERERREEE
AMCIRTERRRI RRRRRT NN

Dynamic Static
Model: f—% = f(y,u,d) y = fo(u, d)

Define the transformed input (v) as:
va=B""(f(y.u,d) = Ay) vo = By 'fo(u, d)

The transformed system is:
& = Ay + Bva y = Bow

First-order (dynamic case), linear, decoupled system and with no effect

from disturbances.
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Use of extra measurements

Transformed system (linear)
YEEEEEEEEENEEEEREEERREEEREEERRRERRE W

y* e Controller C' | v
(dynamic)

;n:*

NEET]

Model: % =f(y,u,w,d)

Transformed input (v): va = B(;l (f(y,u,w,d) — Ay

Extra variables w that depend on u
@ may replace measurements of disturbances
@ may be used for unmodelled dynamics or uncertainties
@ should be stable (i.e. no RHP-zeros).
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Tuning parameters A and B
Transformed input (v): va = B ' (f(y,u, w,d) — Ay)

How to select A? = Design decision

*
QO A=diag (%};W’d)‘ ) i.e. diagonal elements of the Jacobian
= small positive feedback from y to v nominally
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How to select A? = Design decision

— A 6f(y,u,w,d) * 1 1 H
QO A=diag —5, | ) ie diagonal elements of the Jacobian

= small positive feedback from y to v nominally

© larger A to speed-up the response
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feedback linearization methods).
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Tuning parameters A and B

Transformed input (v): va = B ' (f(y,u, w,d) — Ay)

How to select A? = Design decision

QO A=diag (%};W’d)r), i.e. diagonal elements of the Jacobian
= small positive feedback from y to v nominally

© larger A to speed-up the response

© smaller A to slow-down the response

© A =0 for integrating processes, e.g., level control (i.e., similarly to
feedback linearization methods).

How to select B? = Design decision

(*] B = /
o keep kvy = kuy = B = diag(é) dlag(af(y,u w, d))*
o B = —A
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Implementation of transformed inputs

Solves v = f(y,u,w, ) — Ay w.r.t u, given v, y, <, and in some cases w.

Nonlinear feedforward controller

Transformed system (linear) |
i &

1 |

Controller C'
(dynamic)

-

snNERE
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Implementation of transformed inputs

Solves v = f(y,u,w, ) — Ay w.r.t u, given v, y, <, and in some cases w.

Nonlinear feedforward controller

Implementations

@ exact model based inversion = explicit solution u =g~ 1y, v, w,

Transformed system (linear) |
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Implementation of transformed inputs

Solves v = f(y,u,w, ) — Ay w.r.t u, given v, y, <, and in some cases w.

Nonlinear feedforward controller

Implementations
@ exact model based inversion = explicit solution u =g~ 1y, v, w,

o feedback based using an I-controller (cascade).

Transformed system (linear) |
SR &

1 |

Controller C'
(dynamic)

-

snNERE
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Feedback based implementation

Advantages

@ safer implementation = does not invert the input transformation eq.
to solve for u

o handles = RHP-zeros, measurement delays, plant-model mismatch
@ more robust
Drawback

@ does not give perfect disturbance rejection

d
[y w]

y® e Controller Cy Controller Cy
? (slow) (fast)
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Linear controller

@ perfect model and measurements = do not need the outer feedback
loop because the transformation = nonlinear feedforward controller

d
_—
0 Time
Transformed system (linear) d
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Linear controller

@ perfect model and measurements = do not need the outer feedback
loop because the transformation = nonlinear feedforward controller

@ setpoint changes can be handled by directly changing v*®

Transformed system (linear) d
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Linear controller

@ perfect model and measurements = do not need the outer feedback
loop because the transformation = nonlinear feedforward controller

@ setpoint changes can be handled by directly changing v*®

@ real plant = unmeasured disturbances and unmodelled dynamics
= use decentralized SISO controllers for controlling y using v as
inputs.

d

Transformed system (linear)
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‘ Controller C h
‘ (dynamic) '
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Example: control of heat exchanger hot outlet temperature

MVs (original inputs):

u = Fe [kg/s]
CVs (outputs):

y =Ty [°C]
DVs (disturbances):

d = T2 [°C]

d = TP [°C]

ds = Fp [ke/s]
dy = UA (unmeasured)

w  -variables:
w = T [°C]

C. Zotica (NTNU) PhD Defence February 2023 20/27



Example: control of heat exchanger hot outlet temperature

Objective: find transformed input (vg) = disturbance rejection.
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Example: control of heat exchanger hot outlet temperature

Objective: find transformed input (vg) = disturbance rejection.
Static energy balance using e — NTU

y = Th = (1—6h)T/;n+6hTén

Vo

with €Ep = Eh(U, d17 d27 d3)
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Example: control of heat exchanger hot outlet temperature

Objective: find transformed input (vg) = disturbance rejection.
Static energy balance using e — NTU

y = Th = (1 — Gh)T/;n + 6hTén
vo
with e = ep(u, di, da, d3)

Static energy balance using w— measurements ( T)

F.c
y = Th: T,?—I——FC Pc(-,—é)_ TC)
hCpy,

& J/
~~

Vo, w
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Example: control of heat exchanger hot outlet temperature
Objective: find transformed input (vg) = disturbance rejection.
Static energy balance using e — NTU

y = Th = (1—6h)T/;n+6hTén

Vo

with €Ep = Eh(U, d17 d27 d3)

Static energy balance using w— measurements (T¢)

Fecp,
y=Th=Th+ = 2(T2-T.)
FhCPh
Vo w
Transformed system: y = vy or y = vy, Tuning parameter: By =/
Actual process is dynamic, but we use an input transformation derived

from a static model
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Example: control of heat exchanger hot outlet
temperature. Open loop responses

Feedback-based implementation without the outer controller
88— 248
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Example: control of heat exchanger hot outlet
temperature. Open loop responses

Feedback-based implementation without the outer controller

248 248
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Example: control of heat exchanger hot outlet
temperature. Closed loop responses
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Handling constraints on manipulated variables (MVs) used
to balance supply and demand

d; = variable supply

adjustable
supply U2

_ flexible

MV, == " demand

MVy:

do = variable demand

Inventory m: measure of demand-supply balance

Control objective: design decentralized control structure that sets the
values of MV and MVy to control m

Use MV when d> > di Use MVy4 when di > d»
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Handling constraints on (MVs) used to balance supply and
demand

How to handle MV saturation?
MVs = MV™® = use MVy
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Handling constraints on (MVs) used to balance supply and
demand

How to handle MV saturation?
MVs = MVm2* = use MVy Implementation:
o split-range control

Split range controller

TTTTTTT T Splitrange
block

—
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Handling constraints on (MVs) used to balance supply and
demand

How to handle MV saturation?
MVs = MVm2* = use MVy Implementation:
o split-range control

o controllers with different setpoints

uy

Process —>
U2

aje

@ Y
)

yS—nyrAy%
S
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Handling constraints on (MVs) used to balance supply and
demand

How to handle MV saturation?
MVs = MVm2* = use MVy Implementation:
o split-range control

o controllers with different setpoints

o selectors

Y5 2
=
Selector
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Bidirectional inventory control with optimal use of storage
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100 —
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Bidirectional inventory control with optimal use of storage
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Bidirectional inventory control with optimal use of storage
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Bidirectional inventory control with optimal use of storage
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Conclusion

Optimal operation and control of heat to power cycles

o steady-state and dynamic analysis
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Conclusion

Optimal operation and control of heat to power cycles
o steady-state and dynamic analysis

@ turbine drive is faster, floating pressure has minimal throttling losses

Transformed inputs

@ control structures with embedded knowledge through input and
output transformations

@ resulting transformed system from v to y = linear, independent of
disturbances, decoupled

Handling MVs saturation for balancing supply and demand

o MV-MV switching: split-range control, controllers with different
setpoints

o CV-CV switching: selectors

@ bidirectional inventory control with high and low setpoints for each
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