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• MV to MV constraint switching

– Split range control 

• Design of standard split range controllers (chapter 5)

• Generalized split range controller (chapter 6)

– Multiple controllers with different setpoints (chapter 7)
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Motivation and scope

CV: controlled

variable (output, y)
• Temperature

• Pressure

• Concentration

MV: manipulated

variable (input, u)
• Valve opening

• Compressor rotational

speed

DV: disturbance variable (d)
• Ambient temperature

• Raw materials

• Desired production
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Motivation and scope

Top-down analysis:
S1-S4: Identify steady-state

optimal operation

Bottom-up analysis:
S5-S7: Design control

structure
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Motivation and scope

Bottom-up analysis:
S5: regulatory control layer

S6: supervisory control layer

S7: online optimization layer
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Motivation and scope

Bottom-up analysis:
S5: regulatory control layer

S6: supervisory control layer

S7: online optimization layer

Keeps operation

in the right 

active constraint region
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Motivation and scope

Constraint region
«region in the disturbance

space defined by which

constraints are active within it»

Disturbance 1

D
is

tu
rb

a
n

c
e

2

Jacobsen and Skogestad (2011) Active constraint regions for optimal operation of chemical processes. Industrial & Engineering Chemistry Research.

S6: supervisory control layer
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Motivation and scope

Model predictive control

Advanced control structures

S6: supervisory control layer
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Active constraint switching with classical advanced

control structures

Figure taken from www.transmittershop.com/blog/causes-solutions-annoying-noise-control-valves
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Active constraint switching with classical advanced

control structures

Figure taken from www.transmittershop.com/blog/causes-solutions-annoying-noise-control-valves
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Active constraint switching with classical advanced

control structures

Figure taken from www.transmittershop.com/blog/causes-solutions-annoying-noise-control-valves
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Design procedure for active constraint switching with

classical advanced control structures

A1
• Define control objectives, CV constraints and  MV constraints

A2
• Organize constraints in priority list

A3
• Identify possible and relevant active constraint switches

A4
• Design control structure for optimal operation

A5
• Design control structure to handle active constraint switches
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Design procedure for active constraint switching

Case study:
Mixing of

air and MeOH
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Design procedure for active constraint switching

Step A1: Define control objectives, CV constraints and  MV constraints

Control objectives:
• Keep y1 = xMeOH = 0.10  ideal

• Keep y1 =xMeOH > 0.08

• Control y2 = mtot  ideal

2 CVs2 MVs
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Design procedure for active constraint switching

Control objectives:
• Keep y1 = xMeOH = 0.10

• Keep y1 =xMeOH > 0.08

• Control y2 = mtot

2 CVs2 MVs

u1 is has a maximum value

Step A1: Define control objectives, CV constraints and  MV constraints
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Design procedure for active constraint switching

Step A2: Organize constraints in priority list

Figure from www.indelac.com/blog/control-valves-vs.-regulators-in-control-applications
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Design procedure for active constraint switching

Step A2: Organize constraints in priority list

• Constraint on air flow (u1)

• Constraint on MeOH flow (u2)
(P1) Physical MV inequality constraints

• Constraint (max and min) on xMeOH (y1)(P2) Critical CV inequality constraints

• Setpoint on xMeOH (y1)(P3) Less critical CV and MV constraints

• Setpoint on mtot (y2)(P4) Desired throughput

• No unconstrained degrees of freedom(P5) Self-optimizing variables
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Design procedure for active constraint switching

Step A3: Identify possible and relevant active constraint switches

• Case 1: CV to CV constraint switching

One MV switching between two alternative CVs.
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Design procedure for active constraint switching

Step A3: Identify possible and relevant active constraint switches

Split range control

Valve position control

Different controllers

with different setpoints

• Case 2: MV to MV constraint switching

More than one MV for one CV.
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Design procedure for active constraint switching

Step A3: Identify possible and relevant active constraint switches

• Case 3: MV to CV constraint switching

MV controlling a CV that may saturate; no extra MVs

Input saturation pairing rule
«an MV that is likely to saturate at 

steady-state should be paired with a 

CV that can be given up»

Low priority CVHigh priority CV: 

always controlled

MV that does not 

saturate
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Design procedure for active constraint switching

Step A3: Identify possible and relevant active constraint switches

• Case 3: MV to CV constraint switching

MV controlling a CV that may saturate; no extra MVs

Following input 

saturation pairing rule

NOT following input 

saturation pairing rule
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Design procedure for active constraint switching

Step A3: Identify possible and relevant active constraint switches

• At nominal operation point all 

constraints are satisfied

• Constraint switch:

• Reach maximum air flow (u1)

• Lose a degree of freedom (case 3)
• Must give up controlling the

constraint with the lowest priority

(desired throughput)
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Design procedure for active constraint switching

Step A4: Design control structure for optimal operation

Case A Case B

NOT following input 

saturation pairing rule

Following input 

saturation pairing rule

Low

priority

CV

MV likely to saturate

High 

priority CV 

not always

controlled

MV likely to saturate
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Design procedure for active constraint switching

Step A4: Design control structure for optimal operation

Case A Case B

NOT following input 

saturation pairing rule

Following input 

saturation pairing rule

Needs MV to CV 

switching
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Design procedure for active constraint switching

Step A5: Design control structure to handle active constraint switches

Case B-SRC 

Split range control+selector

Case B-VPC 

Valve position control + selector
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Design procedure for active constraint switching

Case study: Mixing of air and MeOH
MV1 is saturated: 

lost degree of freedom
High priority CV: concentration

Low priority CV (throughput) MV2 is not saturated: 

It should be used to control the high priority CV
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MV to MV constraint switching

Split range control Different controllers with

different setpoints

Valve position

control
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Classical split range control

Monogram of Instruments and Process Control 

prepared at Cornell, NY, in 1945

CV

MV1

MV2

Eckman, D.P. (1945). 

Principles of industrial 

control, New York.
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Classical split range control

v internal signal to split range block limited physical meaning

v* split value

ui controller output  physical meaning

αi gain from v to ui slope
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Classical split range control

v internal signal to split range block limited physical meaning

v* split value degree of freedom

ui controller output  physical meaning

αi gain from v to ui slope



31

Classical split range control

v internal signal to split range block limited physical meaning

v* split value degree of freedom

ui controller output  physical meaning

αi gain from v to ui slope
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Design of split range control: select slopes

Goal: get desired loop gain |g C| 

at crossover frequency

Fast process Slow process

Desired

gain for ui

Common

gain in C

DOF
Desired

gain for ui

Common

gain in C

DOF
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Design of split range control: order of MVs

Define the desired operating point for every MV

Group the MVs according to the effect on the CV 

Within each group, define order of use
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Design of split range control

u1 = uAC : air conditioning (AC)

u2 = uCW : cooling water (CW)

u3 = uHW : heating water (HW)

u4 = uEH : electrical heating (EH)
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Classical split range control: a compromise

1 DOF

2 tuning parameters
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Generalized split range controller
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Generalized split range controller

«Baton strategy» logic

k is the active input 

• Ck computes uk’ (suggested value for uk)

• If uk
min< uk’< uk

max

• Keep uk active and uk uk’

• Keep remaining ui at limiting value

• else

• Set uk= uk
min or uk< uk

max, depending on the reached limit

• New active input selected according to predefined sequence

(j= k-1 or j=k+1)
Preliminary step:

• Define order of use of MVs ( j=1,…,N)

• Tune controllers The active input will decide when to switch and 

will remain active as long as it is not saturated.
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Generalized split range controller

u1 = uAC : air conditioning (AC)

u2 = uCW : cooling water (CW)

u3 = uHW : heating water (HW)

u4 = uEH : electrical heating (EH)
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Generalized vs standard split range controller
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Generalized split range controller: initialization

How to 

start?

This suggested input was

not being applied while

input k was not in use

This accumulated error is 

not due to the previous

actions of input kk
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Generalized split range controller: initialization

Resetting:Only use error

when I receive

the baton

Initial action proportional to error at tb

k
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Generalized split range controller: initialization

Back-calculation:

I was keeping

track of the

applied input
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Generalized split range controller: initialization

Resetting:

Back-calculation:
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Generalized split range controller vs MPC
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Multiple controllers with different setpoints

Does this make sense at any point?
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Multiple controllers with different setpoints

Setpoint

deviation

Input 

usage
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Multiple controllers with different setpoints:

Optimal setpoint deviation

Linear for u and quadratic for Δy Inputs are a linear function of output
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Multiple controllers with different setpoints:

Optimal setpoint deviation

Linear for u and quadratic for Δy Inputs are a linear function of output

Cost when using uk as input
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Multiple controllers with different setpoints:

Optimal setpoint deviation

Linear for u and quadratic for Δy

Optimal 

setpoint deviation

minimizing cost

Inputs are a linear function of output

Cost when using uk as input
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Multiple controllers with different setpoints: Case study

QAC : air conditioning

QHW : heating water

QEH : electrical heating
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Multiple controllers with different setpoints: Room T

Cost: linear for u and quadratic for Δy

QAC : air conditioning

QHW : heating water

QEH : electrical heating

Inputs (Qi) are a linear function of output (T)

Optimal setpoint deviation minimizing cost
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Multiple controllers with different setpoints: Room T

QAC : air conditioning

QHW : heating water

QEH : electrical heating

Optimal setpoint

deviation

minimizing cost
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Multiple controllers with different setpoints: Room T
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Multiple controllers with different setpoints: Room T

Lower accumulated

cost with minimum 

setpoint deviation

Constant setpoint
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Final comments

• Steady-state optimal operation may be easily achieved using PID-based

control structures
– Chapters 2,3,4: active constraint switching

– Chapter 7: optimal setpoints

• Useful to systematically define control objectives, feasibility and tools
– Priority list of constraints

– Control structures available for each type of switch (CV-CV, MV-MV, MV-CV)

• Possible to improve performance of PID-based advanced control
– Chapters 5, 6: design of split range controllers

– Chapter 8: improved level control
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One final comment

• The “gap” between theory and practice can be in both directions

Åström, K. J., & Kumar, P. R. (2014). Control: A perspective. Automatica, 50(1), 3–43.

Centrifugal governor used in steam 

engines in the 1780’s: 

Proportionally controls fuel flow to 

maintain engine speed.

Theoretical investigation started about

a century later.
speed

fuel



Systematic design of

advanced control structures

Thank you for your attention!
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