Systematic design of advanced control structures

Adriana Reyes-Lúa

February 28th, 2020

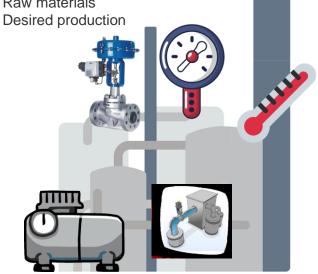
Content

- Motivation and scope
- Active constraint switching with advanced control structures (chapter 2)
 - Case study: mixing
 - Case study: distillation column
 - Case study: cooling cycle (chapter 3)
 - Case study: cooler (chapter 4)
- MV to MV constraint switching
 - Split range control
 - Design of standard split range controllers (chapter 5)
 - Generalized split range controller (chapter 6)
 - Multiple controllers with different setpoints (chapter 7)
- Improved PI control for tank level (chapter 8)
- Conclusions

DV: disturbance variable (d)

Ambient temperature

Raw materials

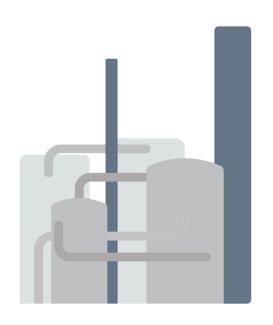


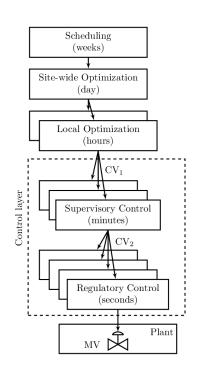
CV: controlled variable (output, y)

- Temperature
- Pressure
- Concentration

MV: manipulated variable (input, u)

- Valve opening
- Compressor rotational speed





Top-down analysis:

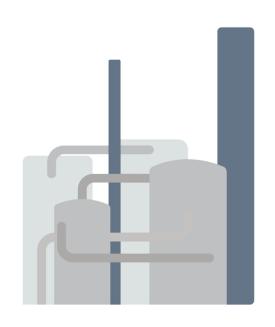
S1-S4: Identify steady-state

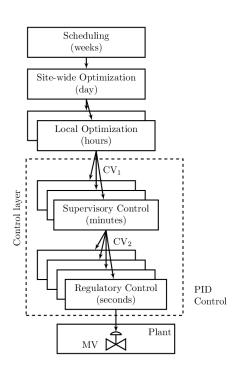
optimal operation

Bottom-up analysis:

S5-S7: Design control

structure



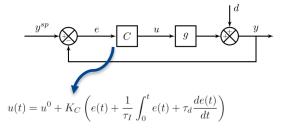


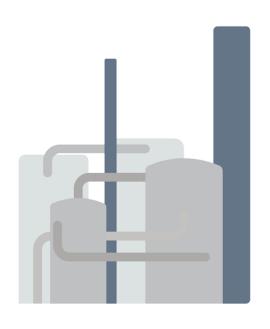
Bottom-up analysis:

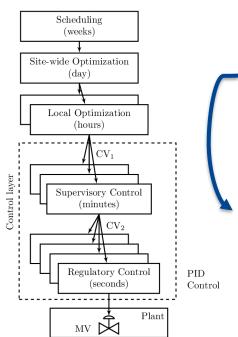
S5: regulatory control layer

S6: supervisory control layer

S7: online optimization layer







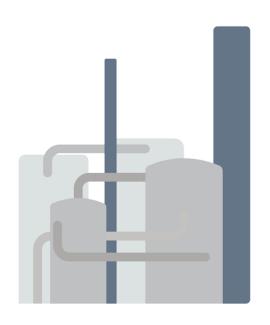
Bottom-up analysis:

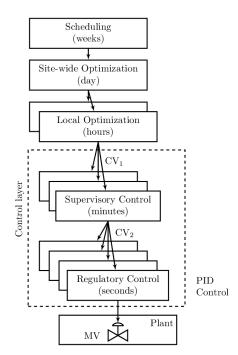
S5: regulatory control layer

S6: supervisory control layer

S7: online optimization layer

Keeps operation in the right active constraint region

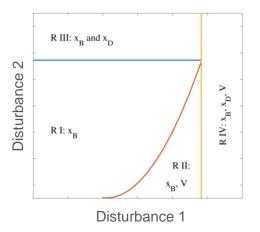




S6: supervisory control layer

Constraint region

«region in the disturbance space defined by which constraints are active within it»



Jacobsen and Skogestad (2011) Active constraint regions for optimal operation of chemical processes. Industrial & Engineering Chemistry Research.

Scheduling

Supervisory Control

(minutes)

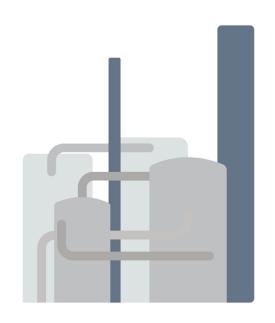
Regulatory Control

(seconds)

MV 🔀

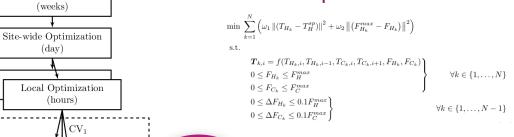
Plant

Control layer



S6: supervisory control layer

Model predictive control



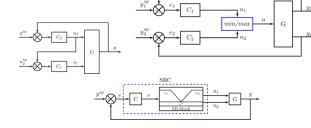
Advanced Control

Structures

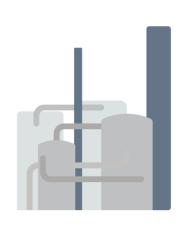
PID

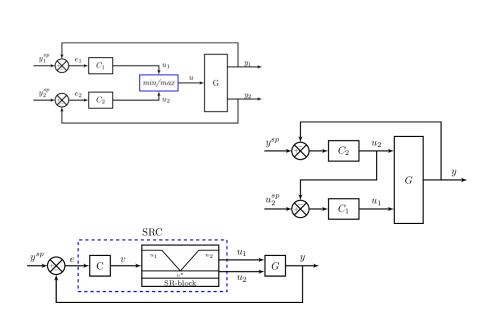
Control

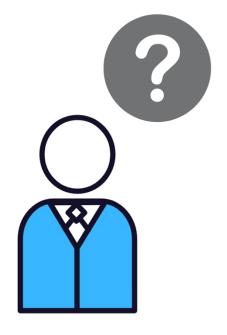
Advanced control structures



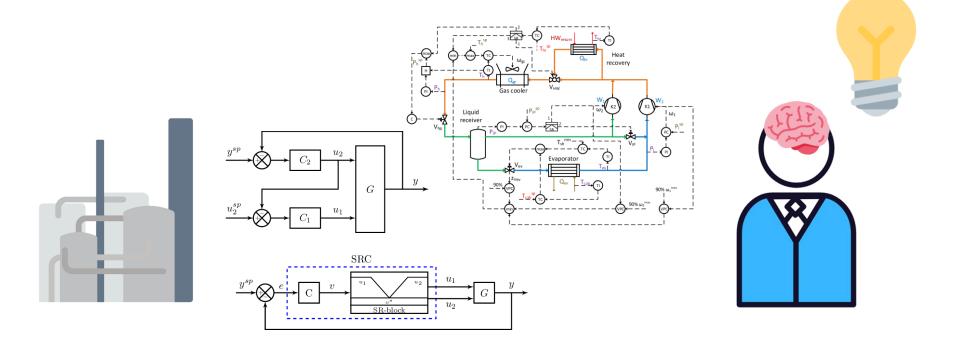
Active constraint switching with classical advanced control structures



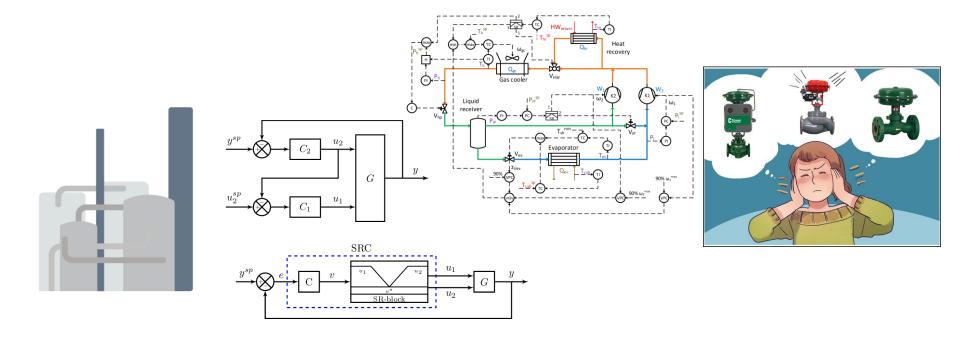




Active constraint switching with classical advanced control structures



Active constraint switching with classical advanced control structures



Design procedure for active constraint switching with classical advanced control structures

A 1

Define control objectives, CV constraints and MV constraints

. A2 Organize constraints in priority list

A3

• Identify possible and relevant active constraint switches

۹4

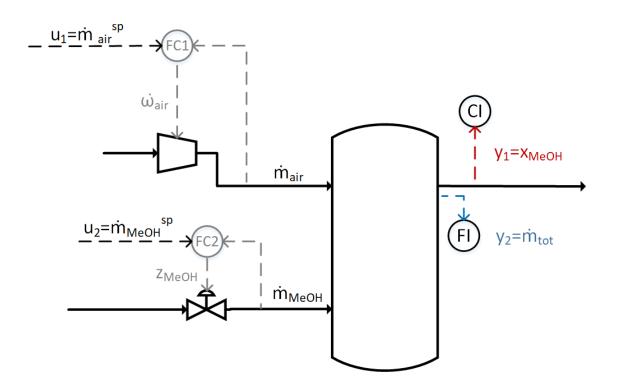
Design control structure for optimal operation

A5

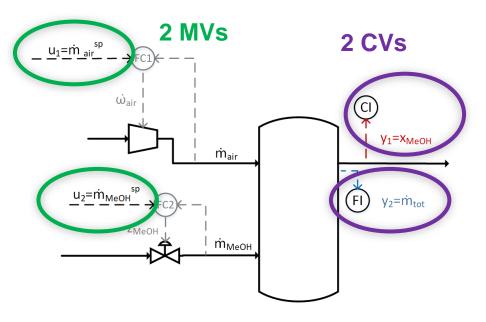
Design control structure to handle active constraint switches

Case study:

Mixing of air and MeOH



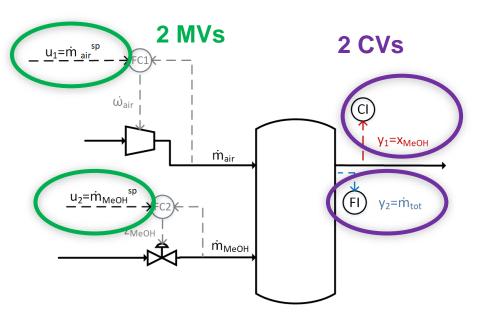
Step A1: Define control objectives, CV constraints and MV constraints



Control objectives:

- Keep $y_1 = x_{MeOH} = 0.10 \leftarrow ideal$
- Keep $y_1 = x_{MeOH} > 0.08$
- Control $y_2 = m_{tot}$ \leftarrow ideal

Step A1: Define control objectives, CV constraints and MV constraints



Control objectives:

• Keep $y_1 = x_{MeOH} = 0.10$

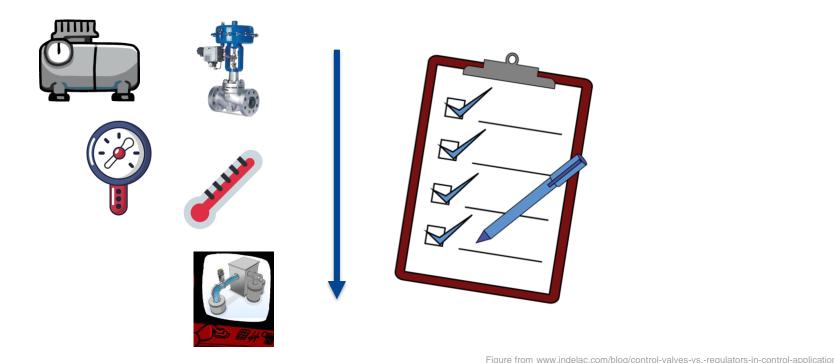
• Keep $y_1 = x_{MeOH} > 0.08$

• Control $y_2 = m_{tot}$

Variable	Units	Maximum	Nominal
$y_1 = x_{MeOH}$	$\rm kmol/kmol$	0.10	0.10
$y_2 = \dot{m}_{tot}$	kg/h		26860
$u_1 = \dot{m}_{air}$	kg/h	25800	23920
$u_2 = \dot{m}_{MeOH}$	$\mathrm{kg/h}$		2940

u₁ is has a maximum value

Step A2: Organize constraints in priority list



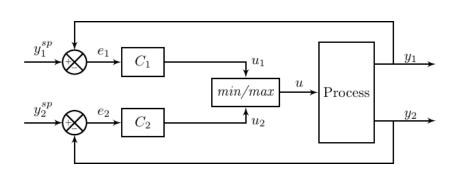
Step A2: Organize constraints in priority list

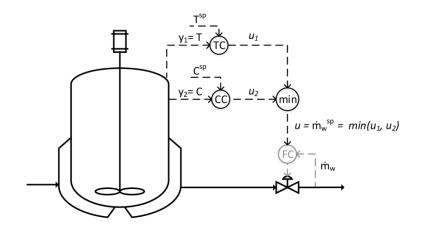
(P1) Physical MV inequality constraints	 Constraint on air flow (u₁) Constraint on MeOH flow (u₂) 	$\dot{m}_{air}^{min} \leq \dot{m}_{air} \leq \dot{m}_{air}^{max}$ $\dot{m}_{MeOH}^{min} \leq \dot{m}_{MeOH} \leq \dot{m}_{MeOH}^{max}$
(P2) Critical CV inequality constraints	 Constraint (max and min) on x_{MeOH} (y₁) 	$x_{MeOH}^{min} \le x_{MeOH} \le x_{MeOH}^{max}$
(P3) Less critical CV and MV constraints	• Setpoint on x _{MeOH} (y ₁)	$x_{MeOH} = x_{MeOH}^{sp}$
(P4) Desired throughput	• Setpoint on m _{tot} (y ₂)	$\dot{m}_{tot} = \dot{m}_{tot}^{sp}$
(P5) Self-optimizing variables	No unconstrained degrees of freedom	

Step A3: Identify possible and relevant active constraint switches

Case 1: CV to CV constraint switching

One MV switching between two alternative CVs.

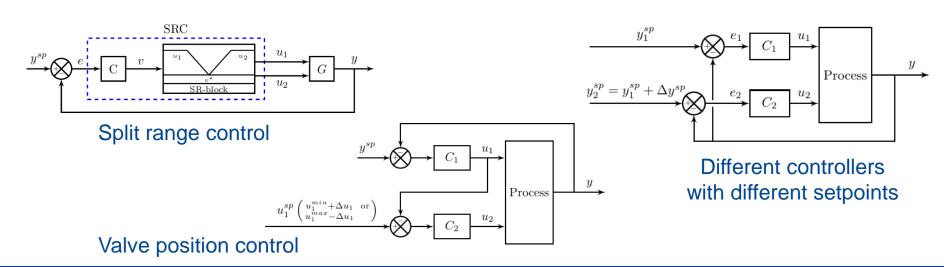




Step A3: Identify possible and relevant active constraint switches

Case 2: MV to MV constraint switching

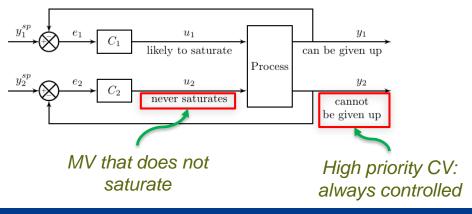
More than one MV for one CV.



Step A3: Identify possible and relevant active constraint switches

Case 3: MV to CV constraint switching

MV controlling a CV that may saturate; no extra MVs



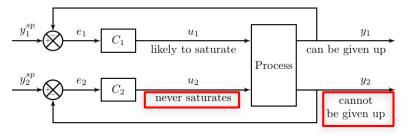
Input saturation pairing rule

«an MV that is likely to saturate at steady-state should be paired with a CV that can be given up»

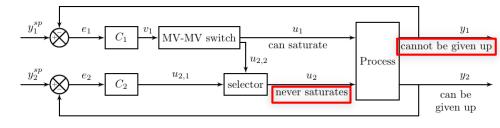
Step A3: Identify possible and relevant active constraint switches

Case 3: MV to CV constraint switching

MV controlling a CV that may saturate; no extra MVs



Following input saturation pairing rule

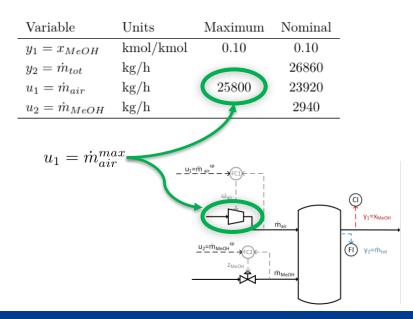


NOT following input saturation pairing rule

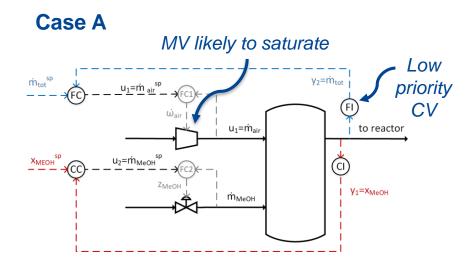
Step A3: Identify possible and relevant active constraint switches

- At nominal operation point all constraints are satisfied
- Constraint switch:
 - Reach maximum air flow (u₁)

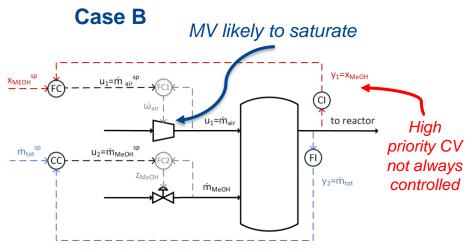
- Lose a degree of freedom (case 3)
 - Must give up controlling the constraint with the lowest priority (desired throughput)



Step A4: Design control structure for optimal operation



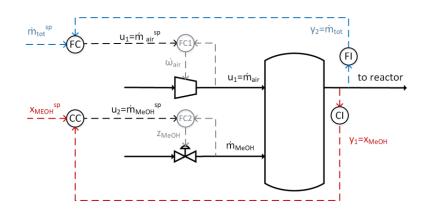
Following input saturation pairing rule



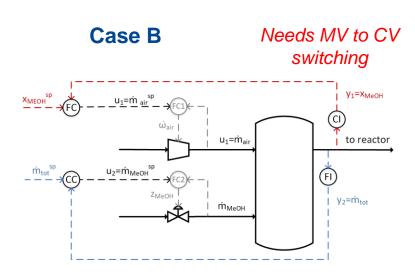
NOT following input saturation pairing rule

Step A4: Design control structure for optimal operation

Case A



Following input saturation pairing rule

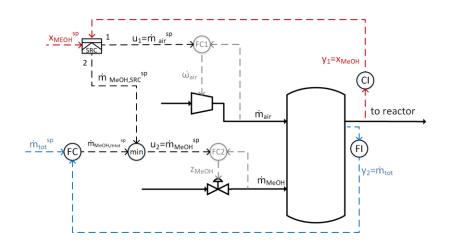


NOT following input saturation pairing rule

Step A5: Design control structure to handle active constraint switches

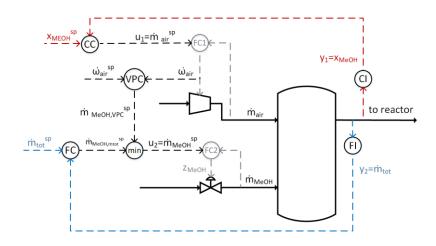
Case B-SRC

Split range control+selector



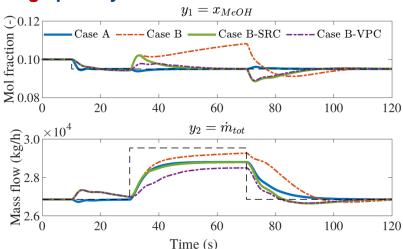
Case B-VPC

Valve position control + selector

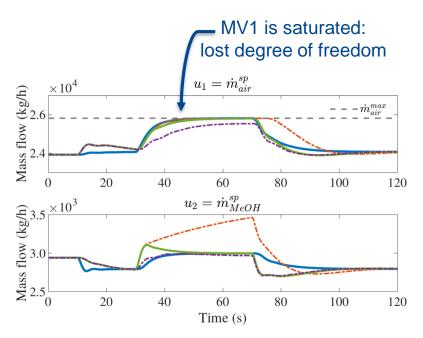


Case study: Mixing of air and MeOH

High priority CV: concentration



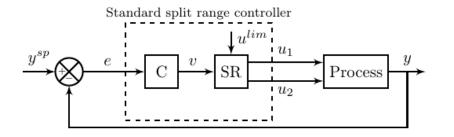
Low priority CV (throughput)



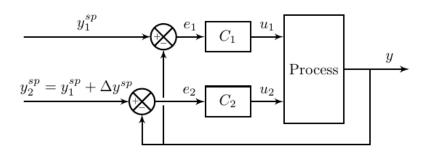
MV2 is not saturated: It should be used to control the high priority CV

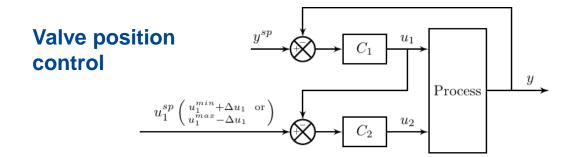
MV to MV constraint switching

Split range control



Different controllers with different setpoints





INSTRUMENTS AND PROCESS CONTROL

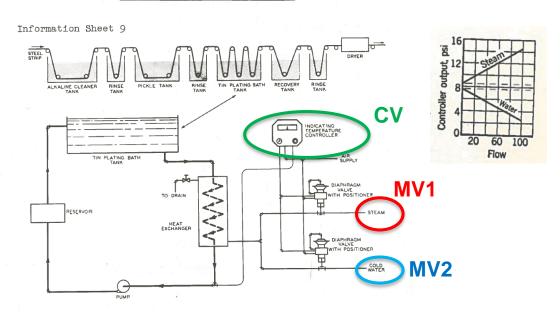
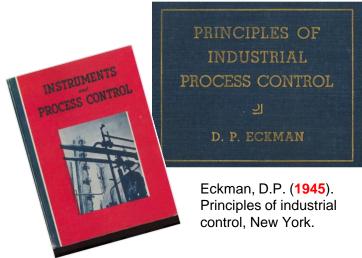
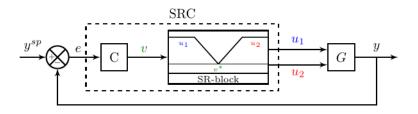


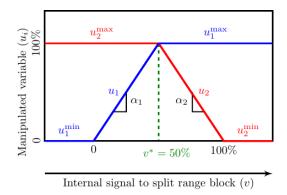
Fig. 125 - Temperature Control for a Tin Plating Path

Courtesy of Taylor Instrument Companies

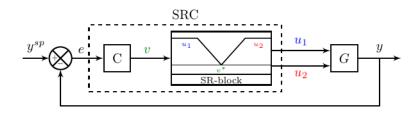


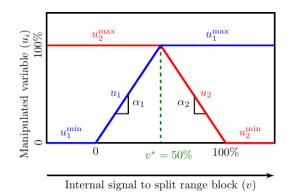
Monogram of Instruments and Process Control prepared at Cornell, NY, in 1945





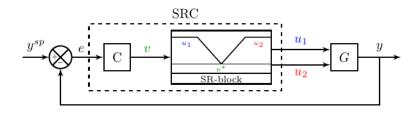
- v internal signal to split range block→ limited physical meaning
- v* split value
- u_i controller output → physical meaning
- α_i gain from v to ui \rightarrow slope

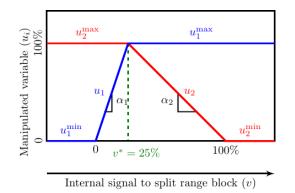




- v internal signal to split range block→ limited physical meaning
- v* split value → degree of freedom
- u_i controller output → physical meaning
- α_i gain from v to ui \rightarrow slope

$$u_i = u_{i,0} + \alpha_i \ v \ \forall i \in \{1, \dots, N\}$$





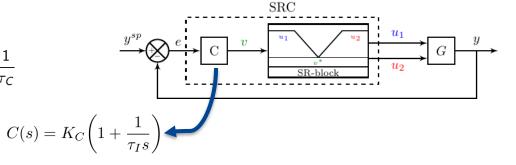
- v internal signal to split range block→ limited physical meaning
- v* split value → degree of freedom
- u_i controller output → physical meaning
- α_i gain from v to ui \rightarrow slope

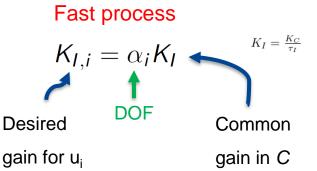
$$u_i = u_{i,0} + \alpha_i \ v \ \forall i \in \{1, \dots, N\}$$

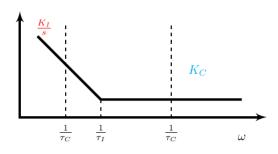
Design of split range control: select slopes

Goal: get desired loop gain at crossover frequency

|g C| $\omega_c = \frac{1}{\tau_c}$







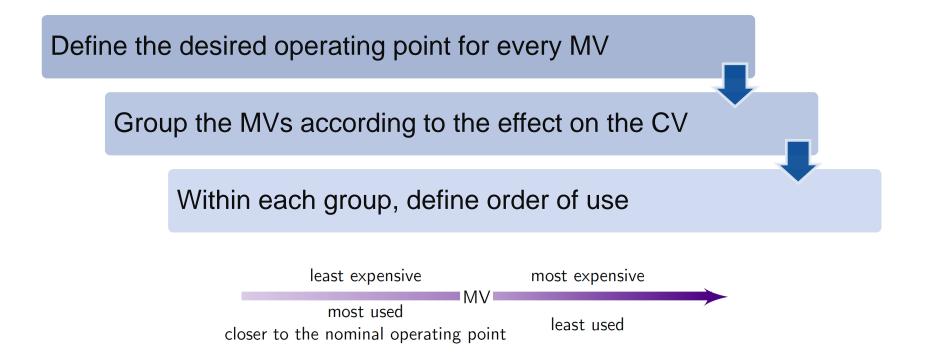
$K_{C,i} = \alpha_i K_C$ ed DOF Common

Slow process

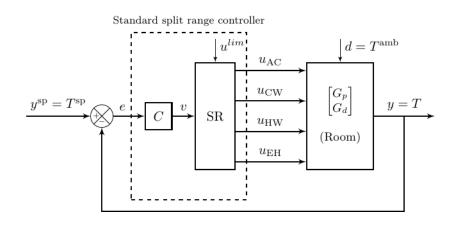
Desired gain for u_i

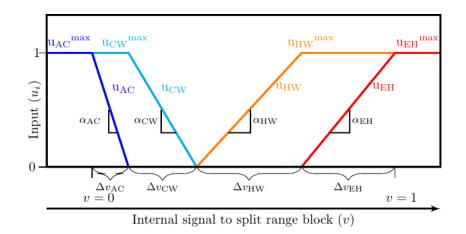
gain in C

Design of split range control: order of MVs



Design of split range control





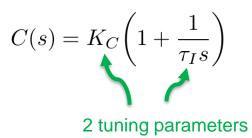
 $\mathbf{u_1} = \mathbf{u_{AC}}$: air conditioning (AC)

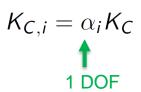
 $u_2 = u_{CW}$: cooling water (CW)

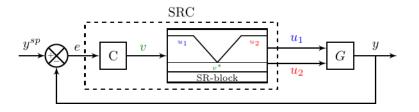
 $u_3 = u_{HW}$: heating water (HW)

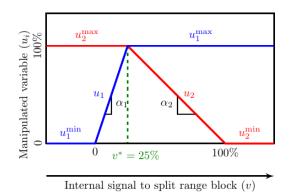
 $u_4 = u_{EH}$: electrical heating (EH)

Classical split range control: a compromise

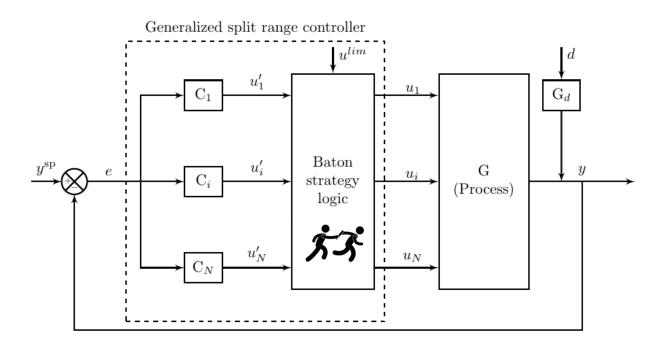




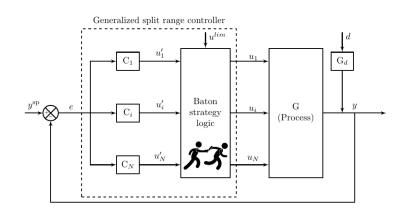




Generalized split range controller



Generalized split range controller



Preliminary step:

- Define order of use of MVs (j=1,...,N)
- Tune controllers

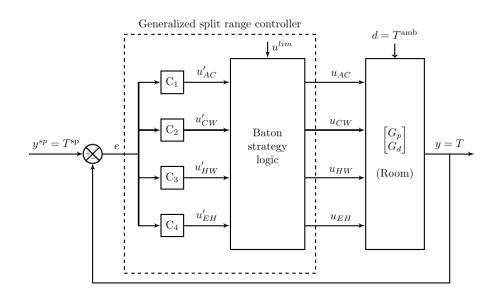
«Baton strategy» logic

k is the active input

- C_k computes u_k' (suggested value for u_k)
- If $u_k^{min} < u_k' < u_k^{max}$
 - Keep u_k active and u_k ← u_k'
 - Keep remaining u_i at limiting value
- else
 - Set $u_k = u_k^{min}$ or $u_k < u_k^{max}$, depending on the reached limit
 - New active input selected according to predefined sequence
 (j= k-1 or j=k+1)

The active input will *decide* when to switch and will remain active as long as it is not saturated.

Generalized split range controller



	Active input (input with $baton, u_k$)			
Value of u'_k	$u_1 = u_{\rm AC}$	$u_2 = u_{\rm CW}$	$u_3 = u_{\mathrm{HW}}$	$u_4 = u_{\mathrm{EH}}$
$u_k^{min} < u_k' < u_k^{max}$	keep u_1 active $u_1 \leftarrow u'_1$ $u_2 \leftarrow u_2^{max}$ $u_3 \leftarrow u_3^{min}$ $u_4 \leftarrow u_4^{min}$	$\begin{aligned} & \text{keep } u_2 \text{ active} \\ & u_1 \leftarrow u_1^{min} \\ & u_2 \leftarrow u_2' \\ & u_3 \leftarrow u_3^{min} \\ & u_4 \leftarrow u_4^{min} \end{aligned}$	keep u_3 active $u_1 \leftarrow u_1^{min}$ $u_2 \leftarrow u_2^{min}$ $u_3 \leftarrow u_3'$ $u_4 \leftarrow u_4^{min}$	keep u_4 active $u_1 \leftarrow u_2^{min}$ $u_2 \leftarrow u_1^{min}$ $u_3 \leftarrow u_3^{max}$ $u_4 \leftarrow u_4'$
$u_k' \ge u_k^{max}$	keep u_1 active (max. cooling)	baton to u_1 $u_1^0 = u_1^{min}$	baton to u_4 $u_4^0 = u_4^{min}$	keep u_4 active (max. heating)
$u_k' \le u_k^{min}$	baton to u_2 $u_2^0 = u_2^{max}$	baton to u_3 $u_3^0 = u_3^{min}$	baton to u_2 $u_2^0 = u_2^{min}$	baton to u_3 $u_3^0 = u_3^{max}$

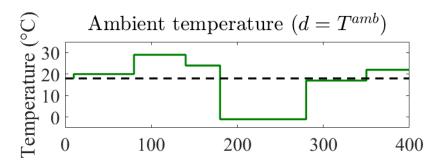
 $\mathbf{u_1} = \mathbf{u_{AC}}$: air conditioning (AC)

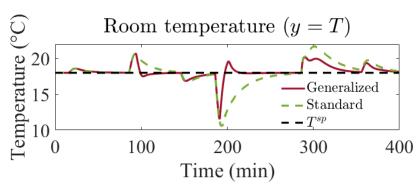
 $u_2 = u_{CW}$: cooling water (CW)

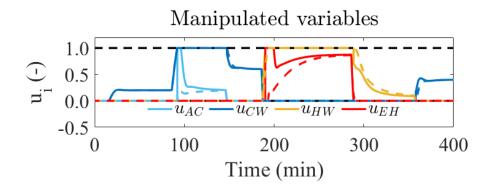
 $u_3 = u_{HW}$: heating water (HW)

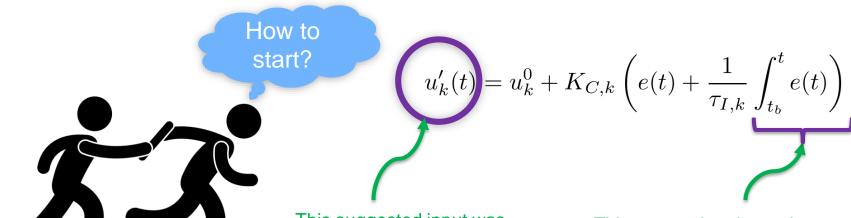
 $u_4 = u_{EH}$: electrical heating (EH)

Generalized vs standard split range controller







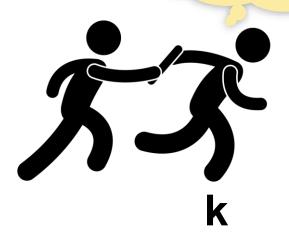


k

This suggested input was not being applied while input k was not in use

This accumulated error is not due to the previous actions of input k

Only use error when I receive the baton



Resetting:

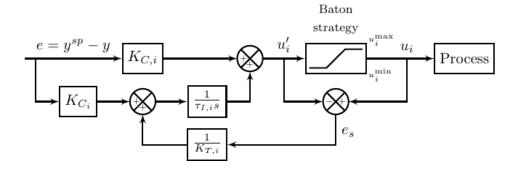
$$u'_{k}(t) = u_{k}^{0} + K_{C,k} \left(e(t) + \frac{1}{\tau_{I,k}} \int_{t_{b}}^{t} e(t) \right)$$

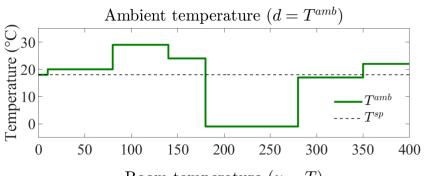
$$u_k(t_b) = u_k^0 + K_{C,k}e(t_b)$$

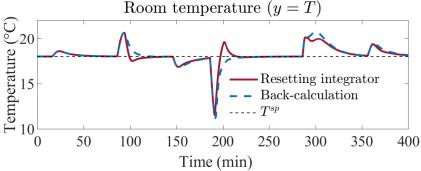
Initial action proportional to error at t_h

I was keeping track of the applied input

Back-calculation:

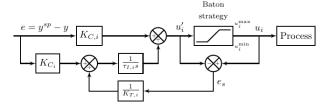


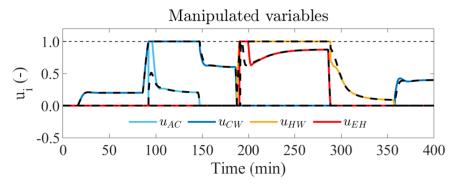




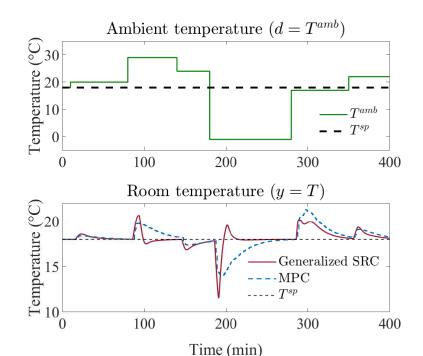
Resetting: $u_k(t_b) = u_k^0 + K_{C,k}e(t_b)$

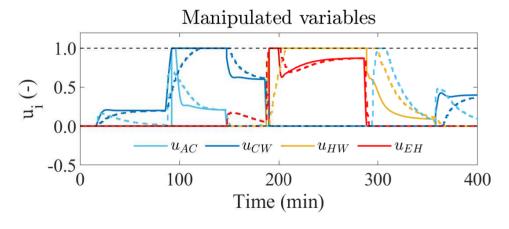
Back-calculation:





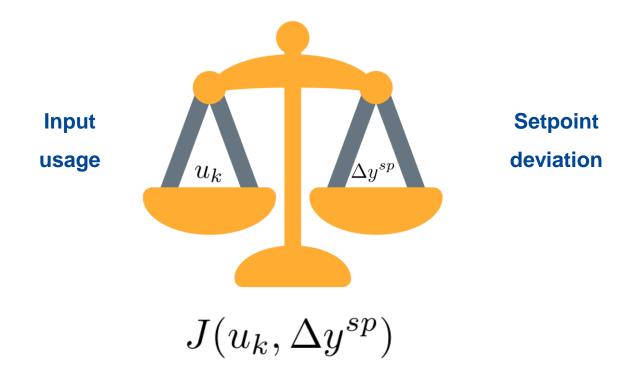
Generalized split range controller vs MPC





Does this make sense at any point?





Multiple controllers with different setpoints: Optimal setpoint deviation

Linear for u and quadratic for Δy

$$J = p_{u_k} u_k + p_y (y - y^{sp})^2 + c$$

Inputs are a linear function of output

$$u_i = k_i \ y + u_{i,0}$$

Multiple controllers with different setpoints: Optimal setpoint deviation

Linear for u and quadratic for Δy

$$J = p_{u_k} u_k + p_y (y - y^{sp})^2 + c$$

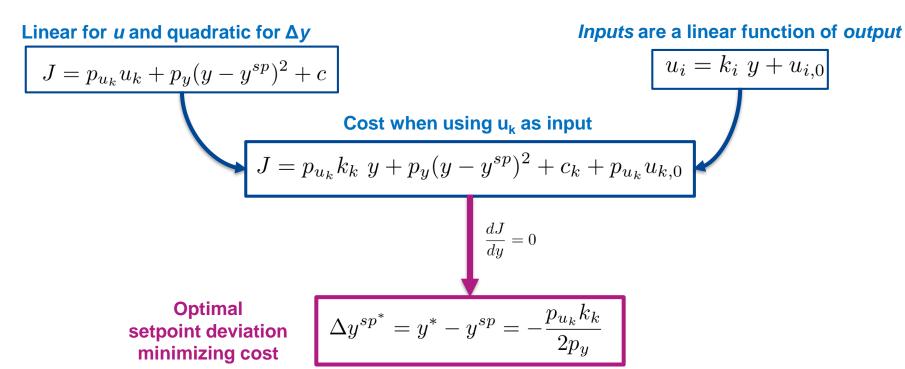
Inputs are a linear function of output

$$u_i = k_i \ y + u_{i,0}$$

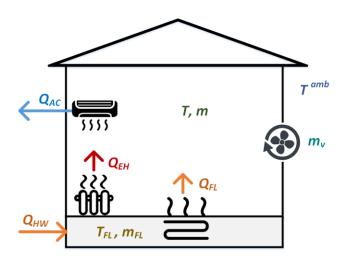
Cost when using uk as input

$$J = p_{u_k} k_k \ y + p_y (y - y^{sp})^2 + c_k + p_{u_k} u_{k,0}$$

Multiple controllers with different setpoints: Optimal setpoint deviation



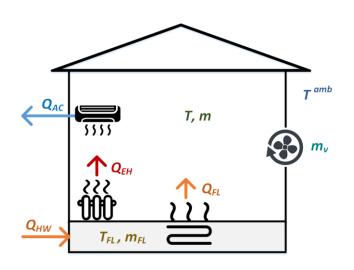
Multiple controllers with different setpoints: Case study



Q_{AC}: air conditioning

Q_{HW}: heating water

Q_{FH}: electrical heating



Q_{AC}: air conditioning

Q_{HW}: heating water

Q_{EH}: electrical heating

Cost: linear for u and quadratic for Δy

$$J = \underbrace{p_{AC}Q_{AC} + p_{HW}Q_{HW}}_{p_{2}u_{2}} + \underbrace{p_{EH}Q_{EH}}_{p_{3}u_{3}} + \underbrace{p_{T}(T - T^{sp})^{2}}_{p_{y}(y - y^{sp})^{2}} \quad [\$/s]$$

Inputs (Q_i) are a linear function of output (T)

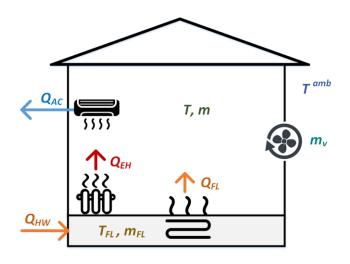
$$0 = \alpha (T^{amb} - T) + Q_{HW} + Q_{EH} - Q_{AC} [W]$$

Optimal setpoint deviation minimizing cost

$$\Delta y^{sp,1} = T_{AC}^{sp} - T^{sp} = + \frac{\alpha p_{ac}}{2p_T}$$

$$\Delta y^{sp,2} = T_{HW}^{sp} - T^{sp} = -\frac{\alpha p_{hw}}{2p_T}$$

$$\Delta y^{sp,3} = T_{EH}^{sp} - T^{sp} = -\frac{\alpha p_{el}}{2p_T}$$



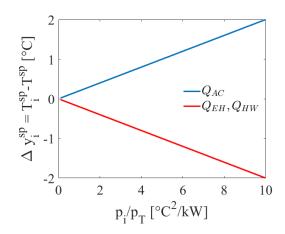
Q_{AC}: air conditioning

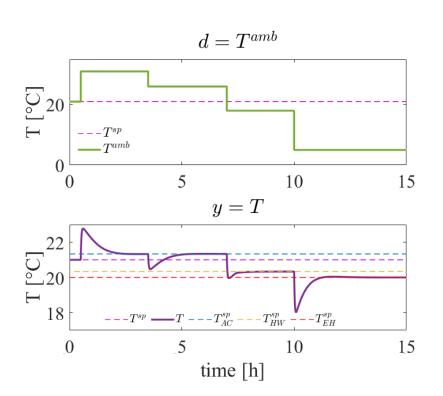
Q_{HW}: heating water

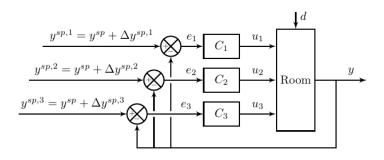
Q_{EH}: electrical heating

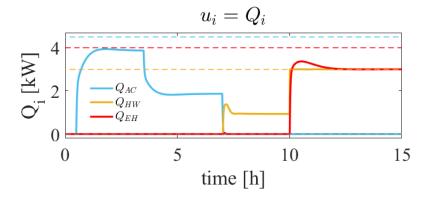
Optimal setpoint deviation minimizing cost

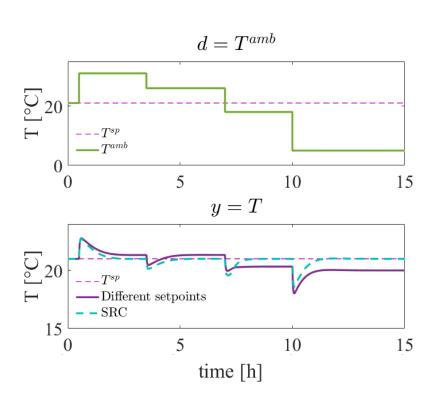
$$\begin{split} \Delta y^{sp,1} &= T_{AC}^{sp} - T^{sp} = + \frac{\alpha p_{ac}}{2p_T} \\ \Delta y^{sp,2} &= T_{HW}^{sp} - T^{sp} = - \frac{\alpha p_{hw}}{2p_T} \\ \Delta y^{sp,3} &= T_{EH}^{sp} - T^{sp} = - \frac{\alpha p_{el}}{2p_T} \end{split}$$

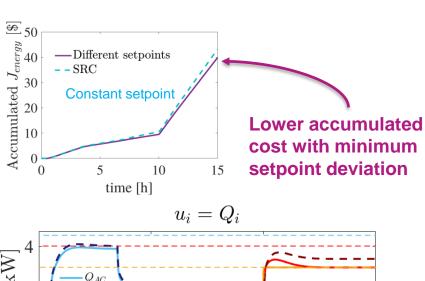


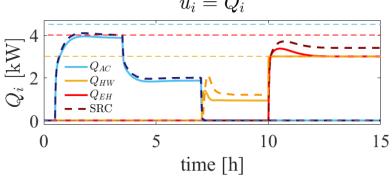












Final comments

Steady-state optimal operation may be easily achieved using PID-based control structures

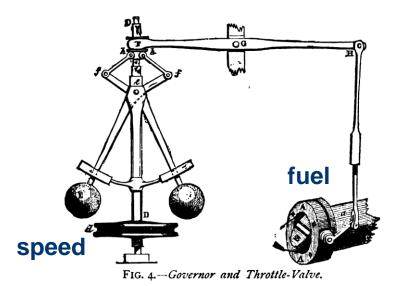
Chapters 2,3,4: active constraint switching

Chapter 7: optimal setpoints

- Useful to systematically define control objectives, feasibility and tools
 - Priority list of constraints
 - Control structures available for each type of switch (CV-CV, MV-MV, MV-CV)
- Possible to improve performance of PID-based advanced control
 - Chapters 5, 6: design of split range controllers
 - Chapter 8: improved level control

One final comment

The "gap" between theory and practice can be in both directions



Centrifugal governor used in steam engines in the 1780's:

Proportionally controls fuel flow to maintain engine speed.

Theoretical investigation started about a century later.

Åström, K. J., & Kumar, P. R. (2014). Control: A perspective. Automatica, 50(1), 3–43.

Systematic design of advanced control structures

Thank you for your attention!