Systematic design of advanced control structures

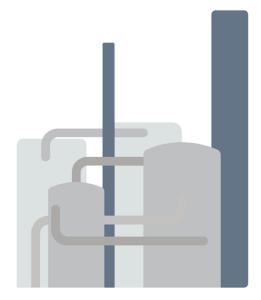
Adriana Reyes-Lúa

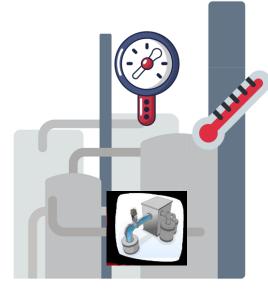
February 28th, 2020

NTNU

Content

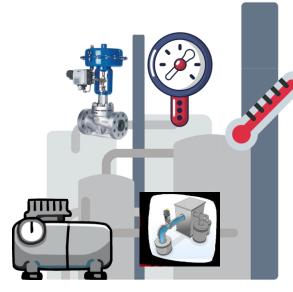
- Motivation and scope
- Active constraint switching with advanced control structures (chapter 2)
 - Case study: mixing
 - Case study: distillation column
 - Case study: cooling cycle (chapter 3)
 - Case study: cooler (chapter 4)
- MV to MV constraint switching
 - Split range control
 - Design of standard split range controllers (chapter 5)
 - Generalized split range controller (chapter 6)
 - Multiple controllers with different setpoints (chapter 7)
- Improved PI control for tank level (chapter 8)
- Conclusions





CV: controlled variable (output, *y*)

- Temperature
- Pressure
- Concentration



CV: controlled variable (output, *y*)

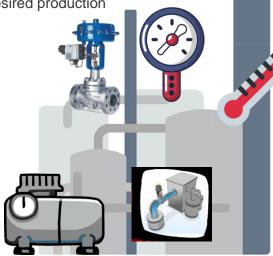
- Temperature
- Pressure
- Concentration

MV: manipulated variable (input, *u*)

- Valve opening
- Compressor rotational speed

DV: disturbance variable (d)

- Ambient temperature
- Raw materials
- Desired production



CV: controlled variable (output, *y*)

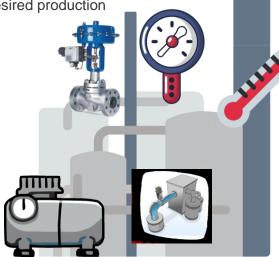
- Temperature
- Pressure
- Concentration

MV: manipulated variable (input, *u*)

- Valve opening
- Compressor rotational speed

DV: disturbance variable (d)

- Ambient temperature
- Raw materials ٠
- Desired production

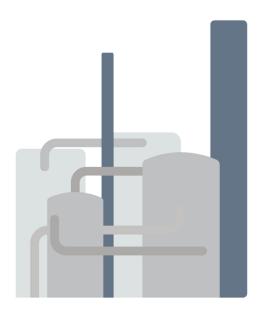


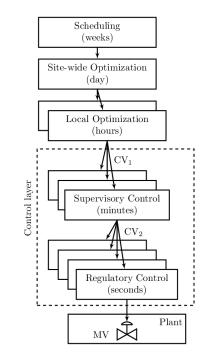
CV: controlled variable (output, y)

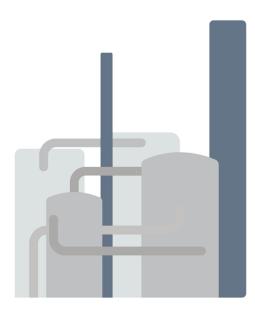
- Temperature •
- Pressure •
- Concentration

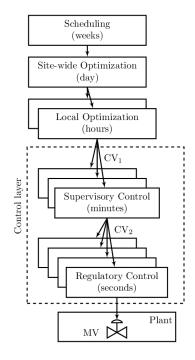
MV: manipulated variable (input, u)

- Valve opening •
- Compressor rotational ۰ speed





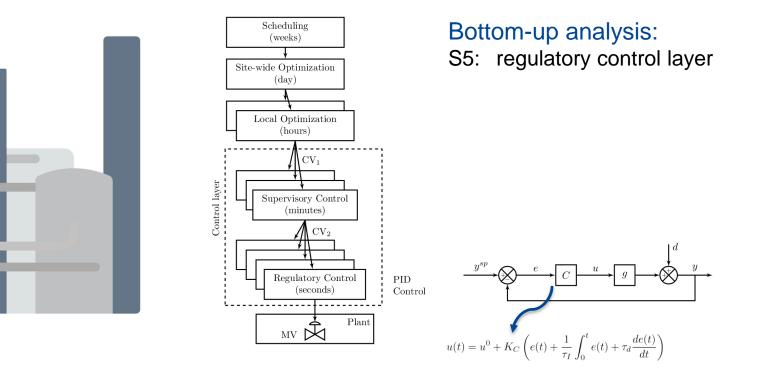


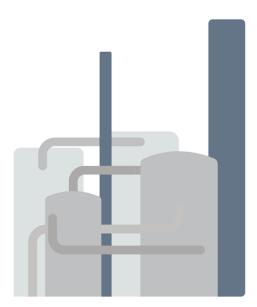


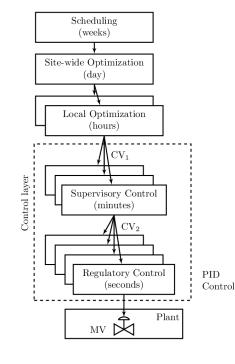
Top-down analysis:

S1-S4: Identify steady-state optimal operation

Bottom-up analysis: S5-S7: Design control structure



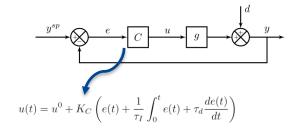


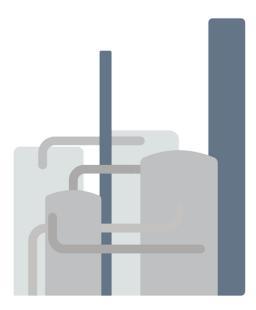


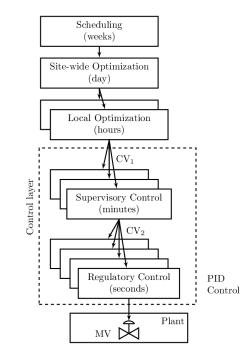
Bottom-up analysis:

S5: regulatory control layer

- S6: supervisory control layer
- S7: online optimization layer





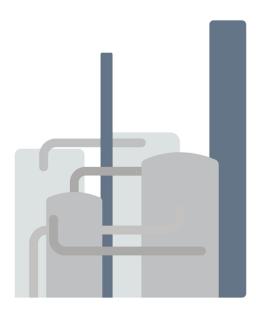


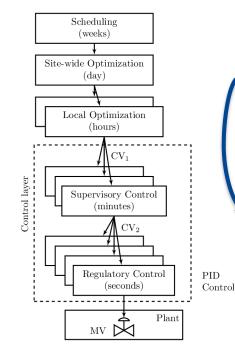
Bottom-up analysis:

S5: regulatory control layer

S6: supervisory control layer

S7: online optimization layer

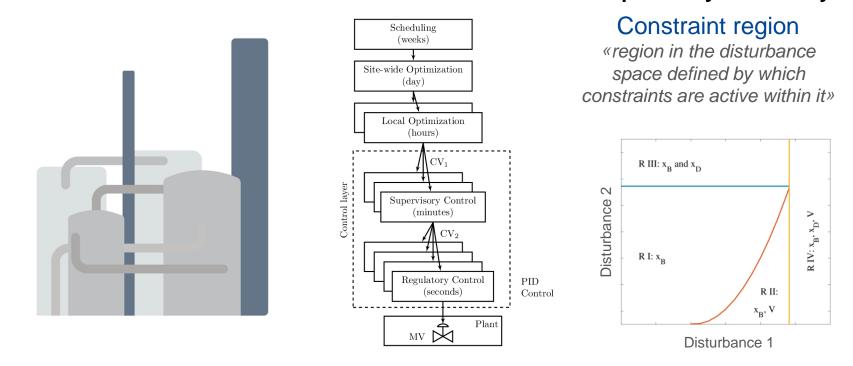




Bottom-up analysis:

S5: regulatory control layerS6: supervisory control layerS7: online optimization layer

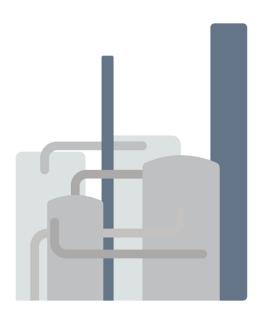
Keeps operation in the right active constraint region

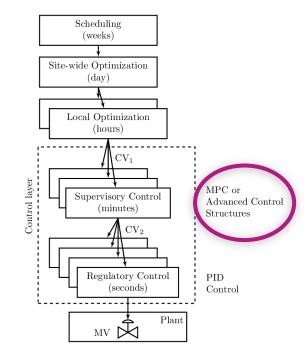


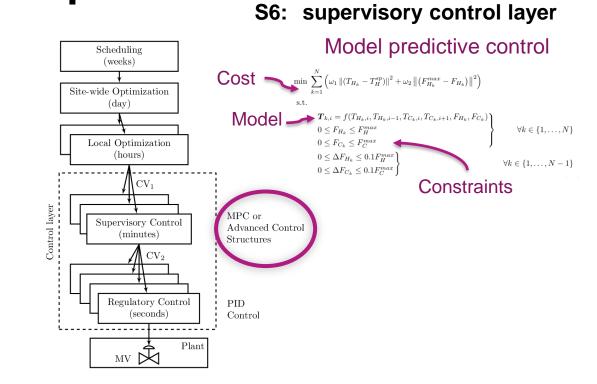
Jacobsen and Skogestad (2011) Active constraint regions for optimal operation of chemical processes. Industrial & Engineering Chemistry Research.

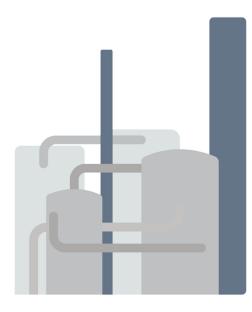
S6: supervisory control layer

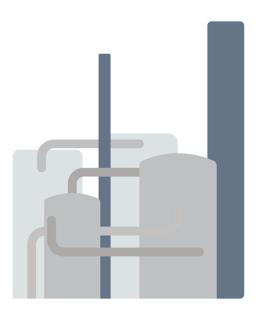
S6: supervisory control layer

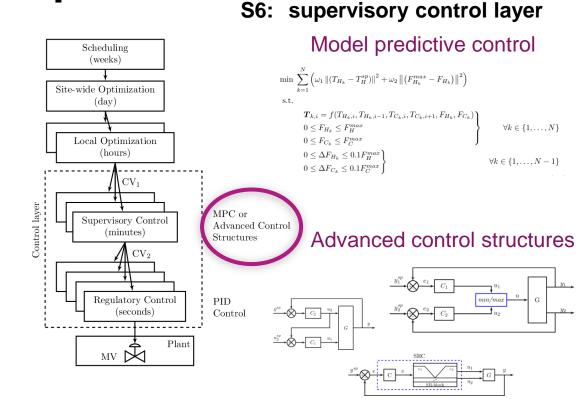




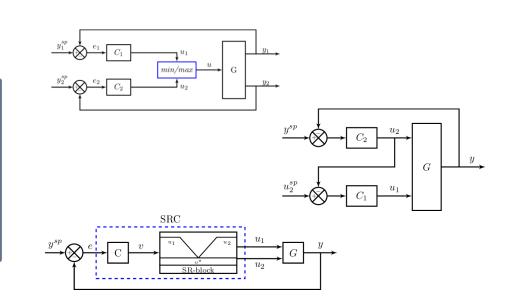








Active constraint switching with classical advanced control structures



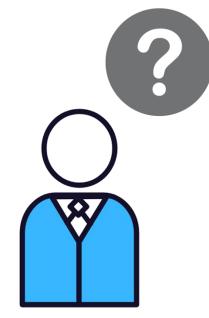
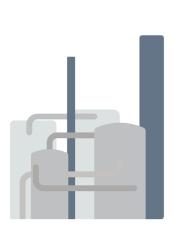


Figure taken from www.transmittershop.com/blog/causes-solutions-annoying-noise-control-valves

Active constraint switching with classical advanced control structures



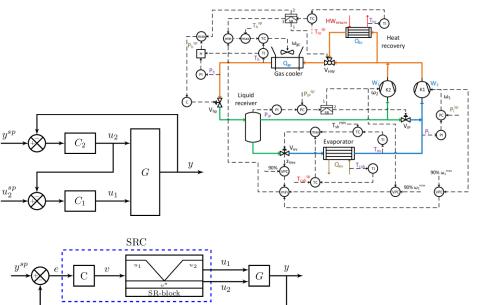
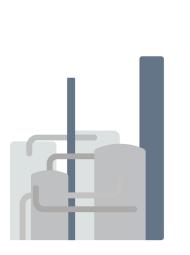
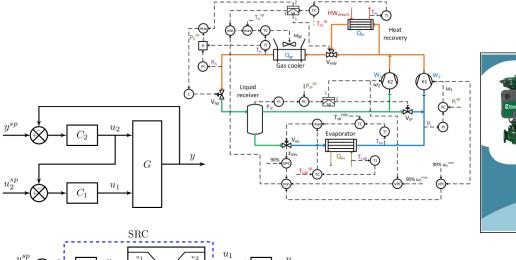


Figure taken from www.transmittershop.com/blog/causes-solutions-annoying-noise-control-valves

Active constraint switching with classical advanced control structures

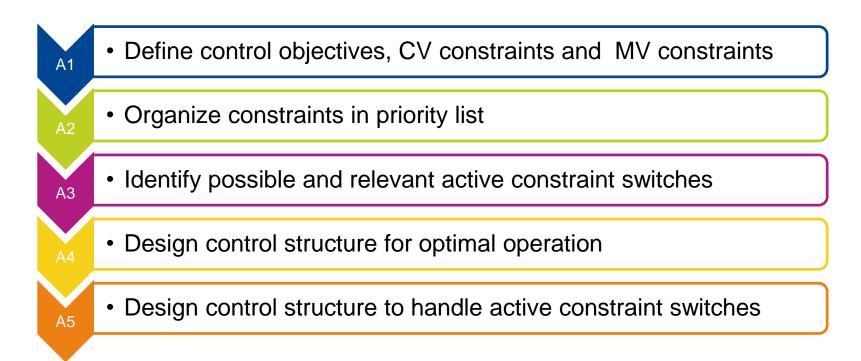


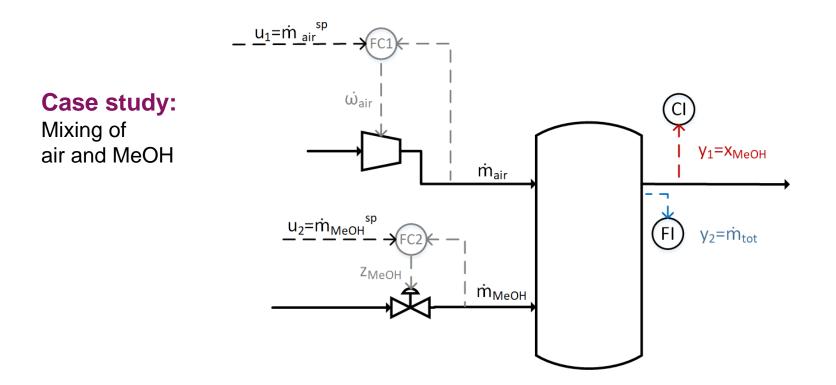


U2

Figure taken from www.transmittershop.com/blog/causes-solutions-annoying-noise-control-valves

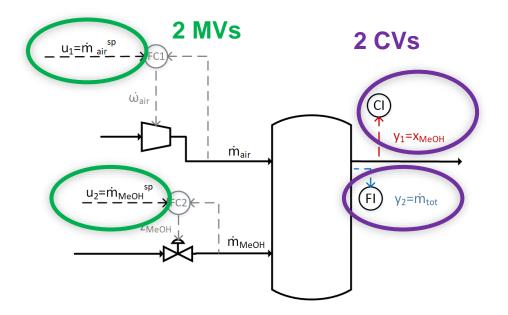
Design procedure for active constraint switching with classical advanced control structures



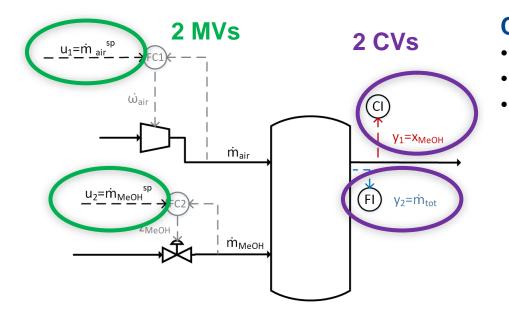


Step A1: Define control objectives, CV constraints and MV constraints

Step A1: Define control objectives, CV constraints and MV constraints



Step A1: Define control objectives, CV constraints and MV constraints



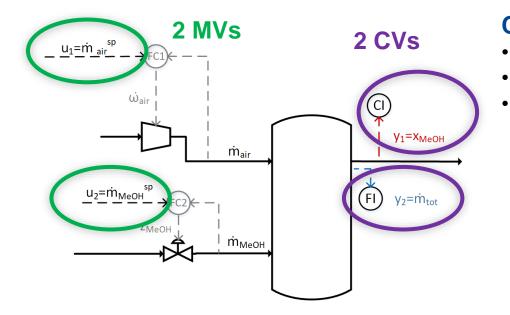
Control objectives:

- Keep $y_1 = x_{MeOH} = 0.10 \leftarrow ideal$
- Keep $y_1 = x_{MeOH} > 0.08$

• Control $y_2 = m_{tot}$

← ideal

Step A1: Define control objectives, CV constraints and MV constraints



Control objectives:

- Keep $y_1 = x_{MeOH} = 0.10$
- Keep y₁

$$y_1 = x_{MeOH} > 0.08$$

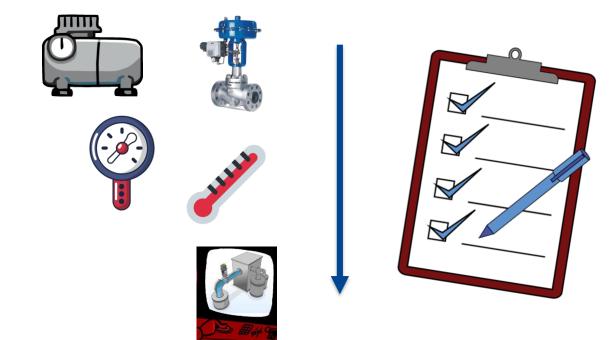
Control y₂ =

 $y_2 = m_{tot}$

Variable	Units	Maximum	Nominal
$y_1 = x_{MeOH}$	kmol/kmol	0.10	0.10
$y_2 = \dot{m}_{tot}$	kg/h		26860
$u_1 = \dot{m}_{air}$	$\rm kg/h$	25800	23920
$u_2 = \dot{m}_{MeOH}$	$\rm kg/h$	-	2940

u_1 is has a maximum value

Step A2: Organize constraints in priority list



Step A2: Organize constraints in priority list

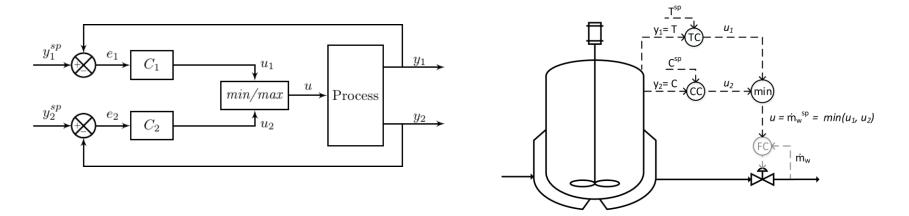
(P1) Physical MV inequality constraints	 Constraint on air flow (u₁) Constraint on MeOH flow (u₂) 	$\dot{m}_{air}^{min} \leq \dot{m}_{air} \leq \dot{m}_{air}^{max}$ $\dot{m}_{MeOH}^{min} \leq \dot{m}_{MeOH} \leq \dot{m}_{MeOH}^{max}$
(P2) Critical CV inequality constraints	- Constraint (max and min) on $x_{\mbox{\scriptsize MeOH}}$ (y_1)	$x_{MeOH}^{min} \le x_{MeOH} \le x_{MeOH}^{max}$
(P3) Less critical CV and MV constraints	• Setpoint on x_{MeOH} (y ₁)	$x_{MeOH} = x_{MeOH}^{sp}$
(P4) Desired throughput	 Setpoint on m_{tot} (y₂) 	$\dot{m}_{tot} = \dot{m}_{tot}^{sp}$
(P5) Self-optimizing variables	 No unconstrained degrees of freedom 	

Step A3: Identify possible and relevant active constraint switches

Step A3: Identify possible and relevant active constraint switches

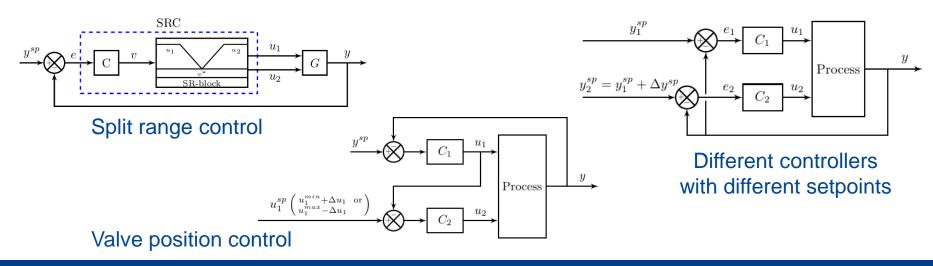
• Case 1: CV to CV constraint switching

One MV switching between two alternative CVs.



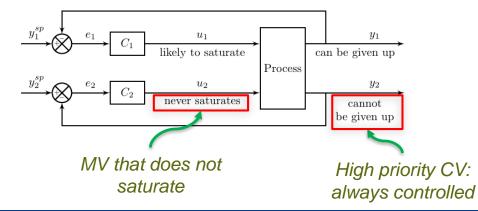
Step A3: Identify possible and relevant active constraint switches

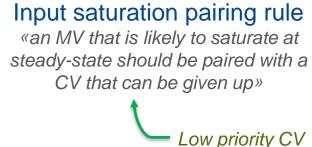
 Case 2: MV to MV constraint switching More than one MV for one CV.



Step A3: Identify possible and relevant active constraint switches

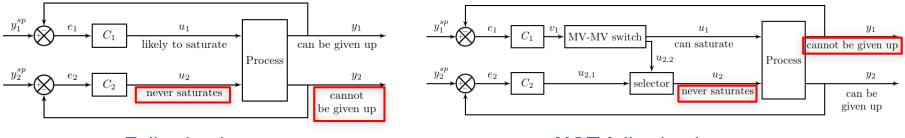
 Case 3: MV to CV constraint switching MV controlling a CV that may saturate; no extra MVs





Step A3: Identify possible and relevant active constraint switches

 Case 3: MV to CV constraint switching MV controlling a CV that may saturate; no extra MVs

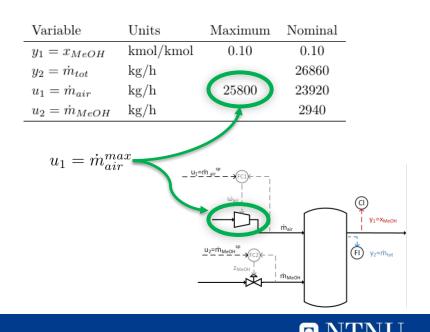


Following input saturation pairing rule

NOT following input saturation pairing rule

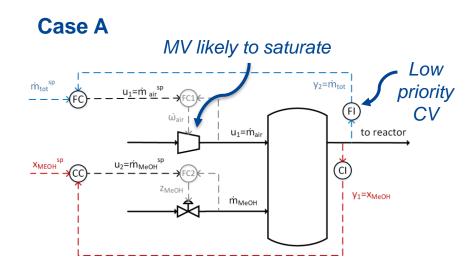
Step A3: Identify possible and relevant active constraint switches

- At nominal operation point all constraints are satisfied
- Constraint switch:
 - Reach maximum air flow (u₁)
 - Lose a degree of freedom (case 3)
 - Must give up controlling the constraint with the lowest priority (desired throughput)



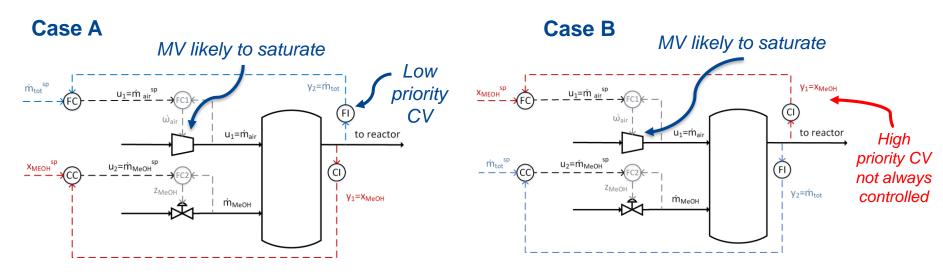
Step A4: Design control structure for optimal operation

Step A4: Design control structure for optimal operation



Following input saturation pairing rule

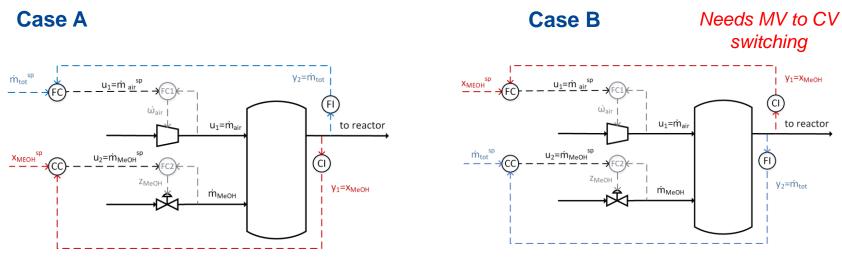
Step A4: Design control structure for optimal operation



Following input saturation pairing rule

NOT following input saturation pairing rule

Step A4: Design control structure for optimal operation



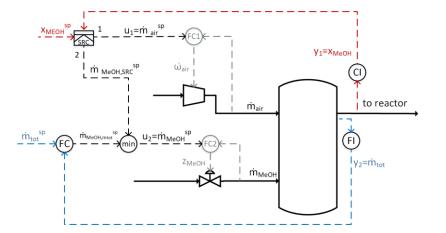
Following input saturation pairing rule

NOT following input saturation pairing rule

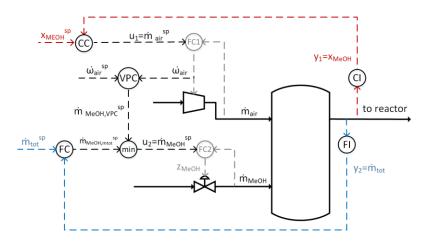
Step A5: Design control structure to handle active constraint switches

Step A5: Design control structure to handle active constraint switches

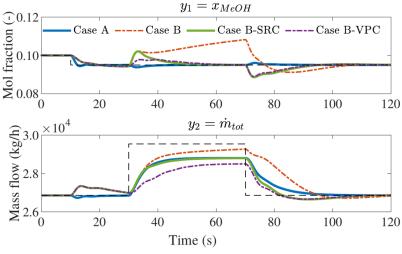
Case B-SRC Split range control+selector



Case B-VPC Valve position control + selector

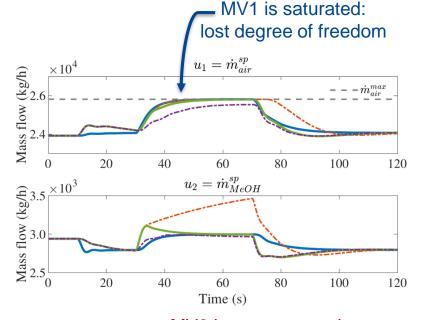


Case study: Mixing of air and MeOH



High priority CV: concentration

Low priority CV (throughput)

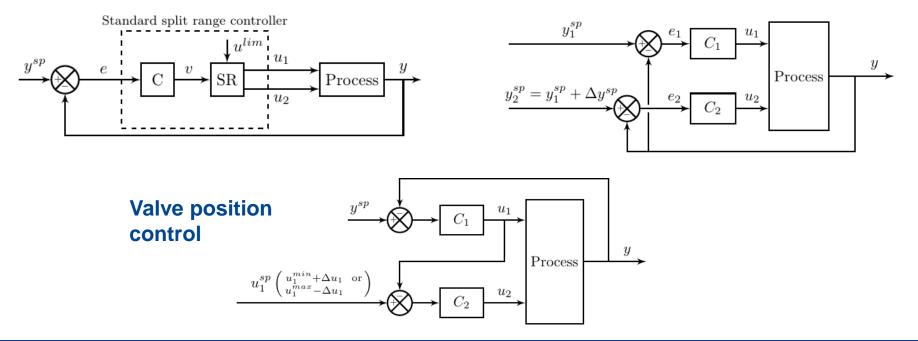


MV2 is not saturated: It should be used to control the high priority CV

MV to MV constraint switching

Split range control

Different controllers with different setpoints



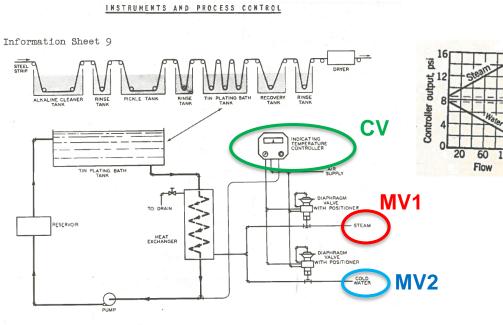
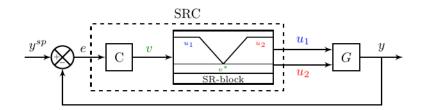


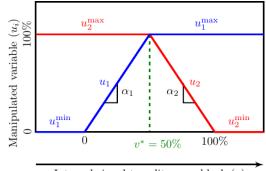
Fig. 125 - Temperature Control for a Tin Plating Bath Courtesy of Taylor Instrument Companies INSTRUMENTS PROCESS CONTROL

PRINCIPLES OF INDUSTRIAL PROCESS CONTROL یا D. P. ECKMAN

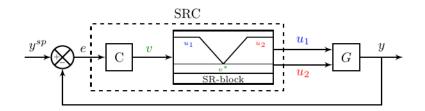
> Eckman, D.P. (**1945**). Principles of industrial control, New York.

Monogram of Instruments and Process Control prepared at Cornell, NY, in **1945**





Internal signal to split range block (v)





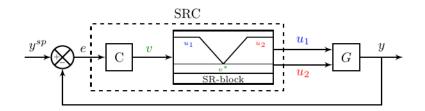
Internal signal to split range block (v)

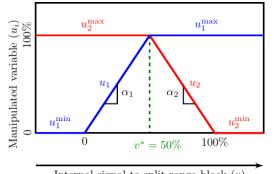
- internal signal to split range block \rightarrow limited physical meaning
- v* split value

V

- u_i controller output \rightarrow physical meaning
- α_i gain from v to ui \rightarrow slope

V



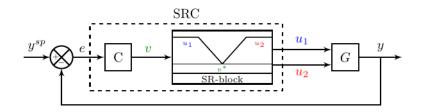


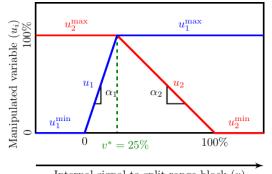
Internal signal to split range block (v)

- internal signal to split range block \rightarrow limited physical meaning
- v^* split value \rightarrow degree of freedom
- u_i controller output \rightarrow physical meaning
- α_i gain from v to ui \rightarrow slope

$$u_i = u_{i,0} + \alpha_i \ v \ \forall i \in \{1, \dots, N\}$$

V



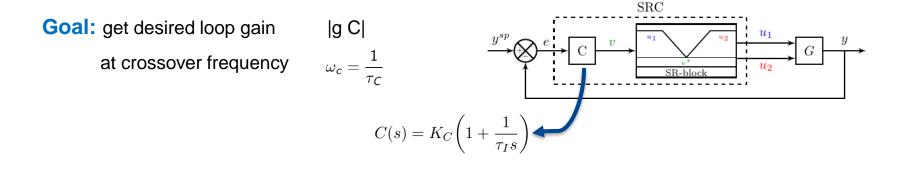


Internal signal to split range block (v)

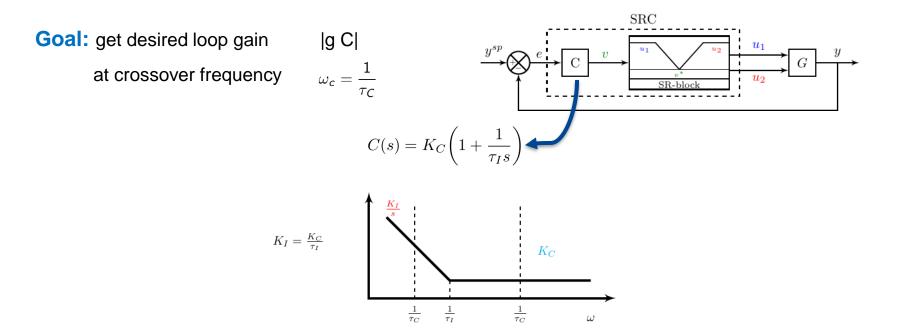
- internal signal to split range block \rightarrow limited physical meaning
- v^* split value \rightarrow degree of freedom
- u_i controller output \rightarrow physical meaning
- α_i gain from v to ui \rightarrow slope

$$u_i = u_{i,0} + \alpha_i \ v \ \forall i \in \{1, \dots, N\}$$

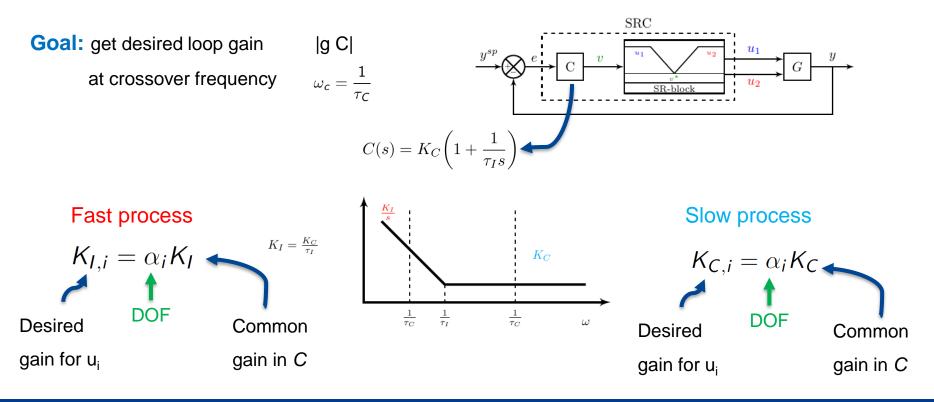
Design of split range control: select slopes



Design of split range control: select slopes



Design of split range control: select slopes

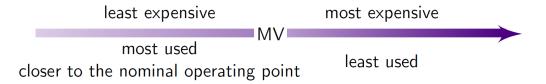


Design of split range control: order of MVs

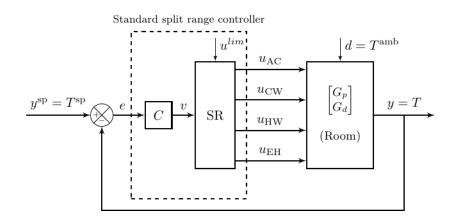
Define the desired operating point for every MV

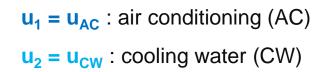
Group the MVs according to the effect on the CV

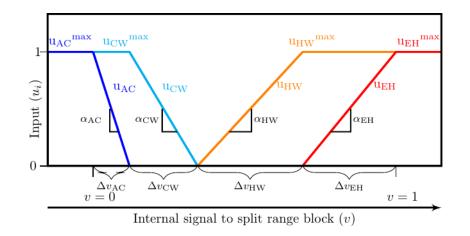
Within each group, define order of use



Design of split range control



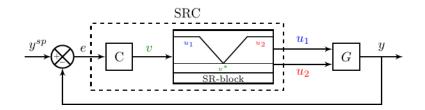


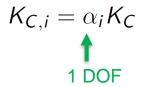


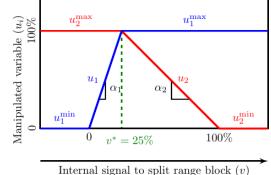
 $u_3 = u_{HW}$: heating water (HW) $u_4 = u_{EH}$: electrical heating (EH)

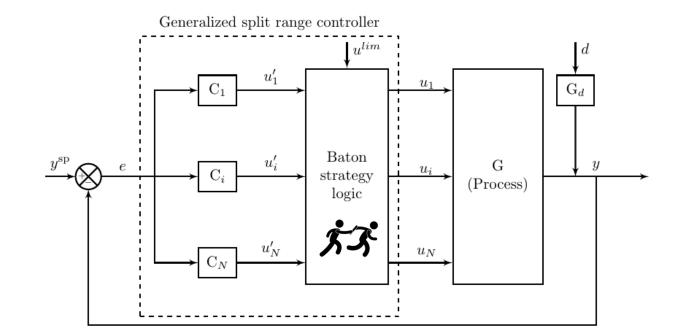
Classical split range control: a compromise

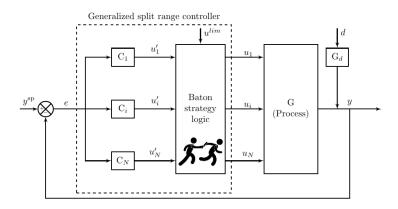
$$C(s) = K_C \left(1 + \frac{1}{\tau_I s} \right)$$
2 tuning parameters





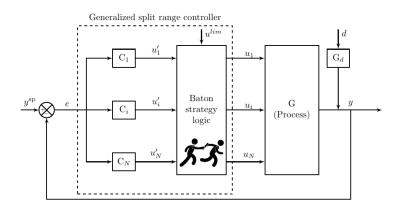






Preliminary step:

- Define order of use of MVs (j=1,...,N)
- Tune controllers



Preliminary step:

- Define order of use of MVs (j=1,...,N)
- Tune controllers

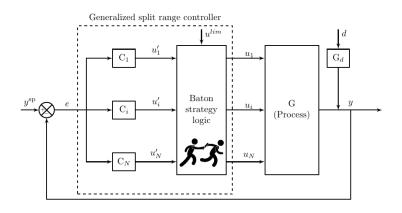
«Baton strategy» logic

k is the active input

- C_k computes u_k ' (suggested value for u_k)
- If $u_k^{min} < u_k^{\prime} < u_k^{max}$
 - Keep u_k active and $u_k \leftarrow u_k$ '
 - Keep remaining u_i at limiting value
- else

•

- Set $u_k = u_k^{min}$ or $u_k < u_k^{max}$, depending on the reached limit
- New active input selected according to predefined sequence
 (*j*= *k*-1 or *j*=*k*+1)



Preliminary step:

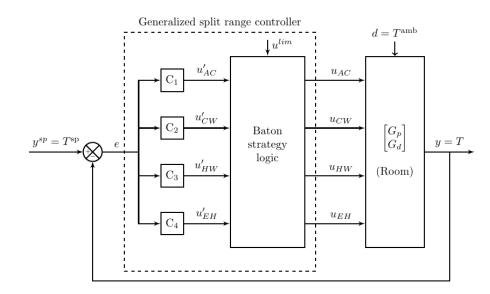
- Define order of use of MVs (*j*=1,...,N)
- Tune controllers

«Baton strategy» logic

k is the active input

- C_k computes u_k ' (suggested value for u_k)
- If $u_k^{min} < u_k^{i} < u_k^{max}$
 - Keep u_k active and $u_k \leftarrow u_k$
 - Keep remaining u_i at limiting value
- else
 - Set $u_k = u_k^{min}$ or $u_k < u_k^{max}$, depending on the reached limit
 - New active input selected according to predefined sequence
 (*j*= *k*-1 or *j*=*k*+1)

The active input will *decide* when to switch and will remain active as long as it is not saturated.

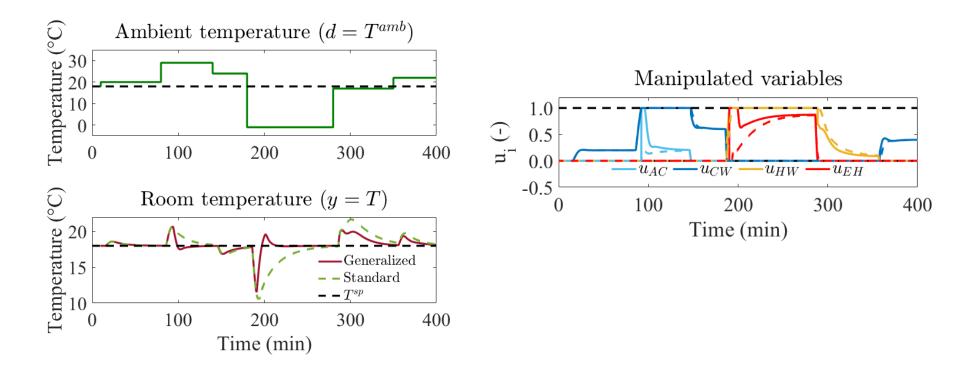


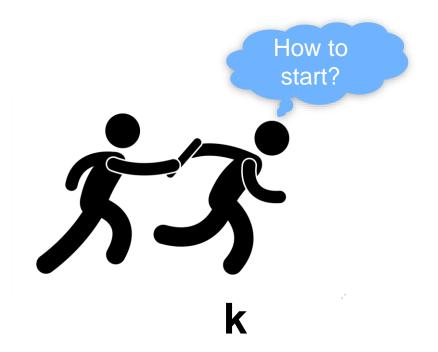
 $u_1 = u_{AC}$: air conditioning (AC) $u_2 = u_{CW}$: cooling water (CW)

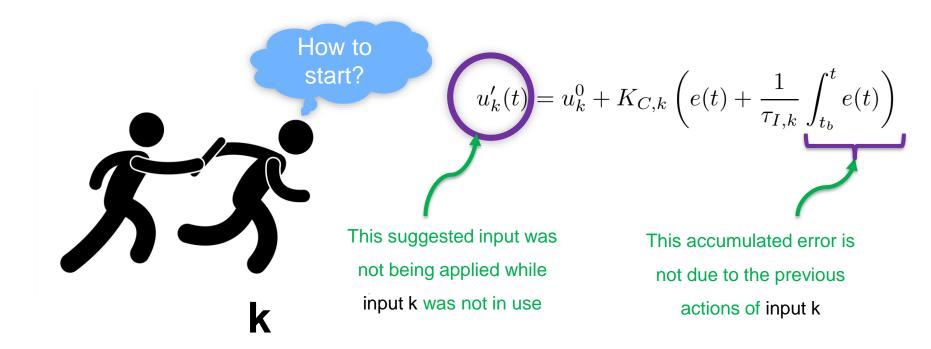
	Active input (input with <i>baton</i> , u_k)			
Value of u_k^\prime	$u_1 = u_{\rm AC}$	$u_2 = u_{\rm CW}$	$u_3 = u_{\rm HW}$	$u_4 = u_{\rm EH}$
$u_k^{min} < u_k^\prime < u_k^{max}$	keep u_1 active $u_1 \leftarrow u'_1$	keep u_2 active $u_1 \leftarrow u_1^{min}$	keep u_3 active $u_1 \leftarrow u_1^{min}$	keep u_4 active $u_1 \leftarrow u_2^{min}$
	$u_2 \leftarrow u_2^{max}$	$u_2 \leftarrow u'_2$	$u_2 \leftarrow u_2^{min}$	$u_2 \leftarrow u_1^{\min}$
	$\begin{array}{l} u_3 \leftarrow u_3^{min} \\ u_4 \leftarrow u_4^{min} \end{array}$	$\begin{array}{l} u_3 \leftarrow u_3^{min} \\ u_4 \leftarrow u_4^{min} \end{array}$	$u_3 \leftarrow u_3' \ u_4 \leftarrow u_4^{min}$	$u_3 \leftarrow u_3^{max} \\ u_4 \leftarrow u_4'$
$u_k' \geq u_k^{max}$	keep u_1 active (max. cooling)	baton to u_1 $u_1^0 = u_1^{min}$	baton to u_4 $u_4^0 = u_4^{min}$	keep u_4 active (max. heating)
$u_k' \leq u_k^{min}$	baton to u_2 $u_2^0 = u_2^{max}$	baton to u_3 $u_3^0 = u_3^{min}$	baton to u_2 $u_2^0 = u_2^{min}$	baton to u_3 $u_3^0 = u_3^{max}$
		5 5		0

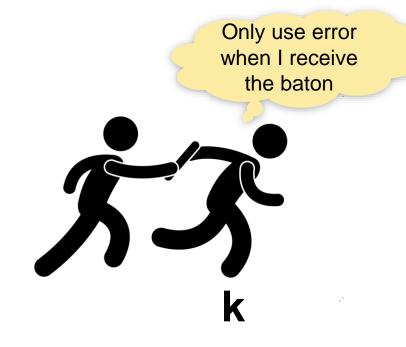
 $u_3 = u_{HW}$: heating water (HW) $u_4 = u_{EH}$: electrical heating (EH)

Generalized vs standard split range controller









Resetting:

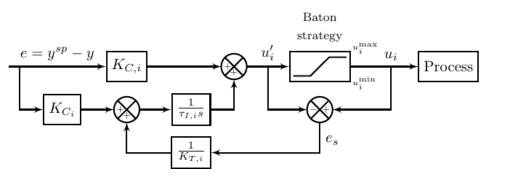
$$u_{k}'(t) = u_{k}^{0} + K_{C,k} \left(e(t) + \frac{1}{\tau_{I,k}} \int_{t_{b}}^{t} e(t) \right)$$

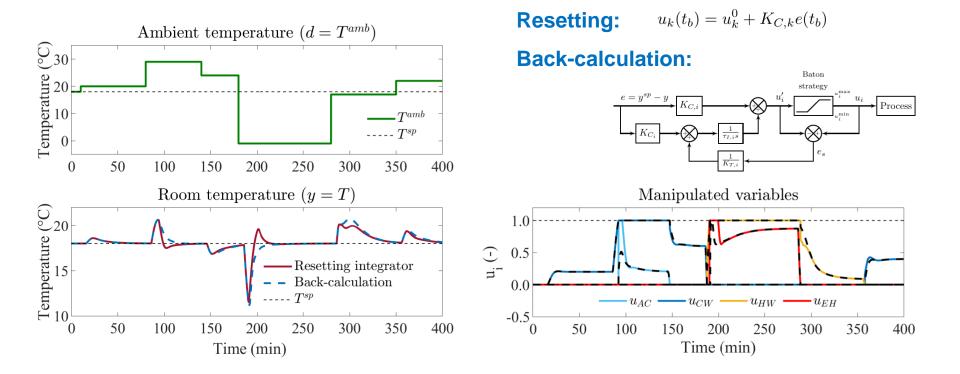
 $u_k(t_b) = u_k^0 + K_{C,k}e(t_b)$

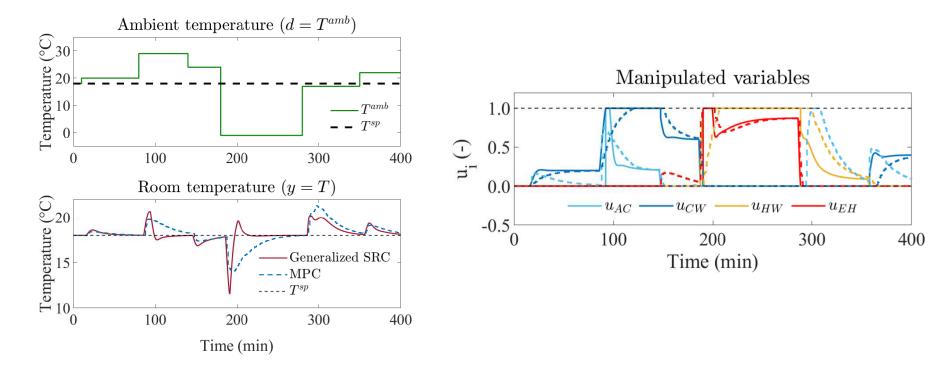
Initial action proportional to error at t_b

I was keeping track of the applied input

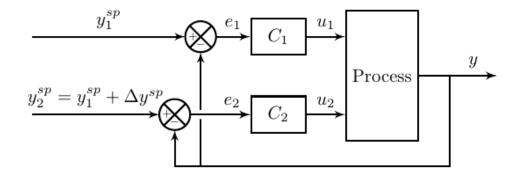
Back-calculation:

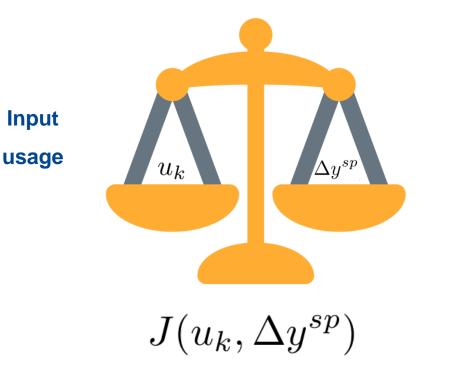






Does this make sense at any point?





Setpoint deviation

Multiple controllers with different setpoints: Optimal setpoint deviation

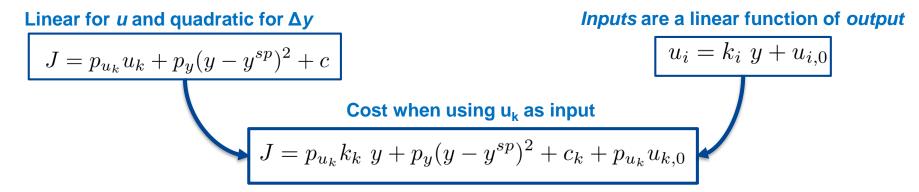
Linear for u and quadratic for Δy

$$J = p_{u_k} u_k + p_y (y - y^{sp})^2 + c$$

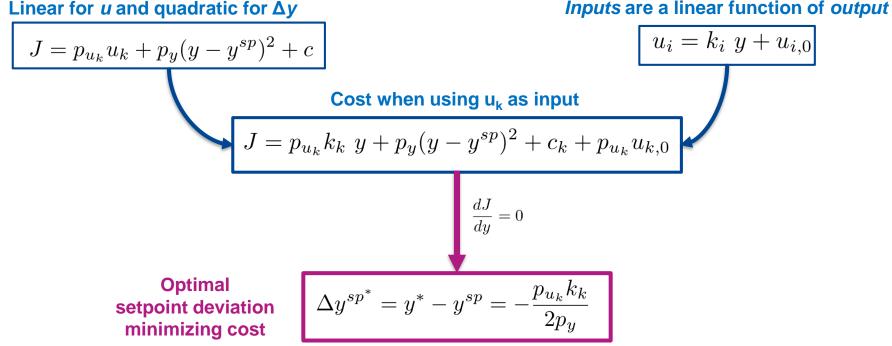
Inputs are a linear function of output

$$u_i = k_i \ y + u_{i,0}$$

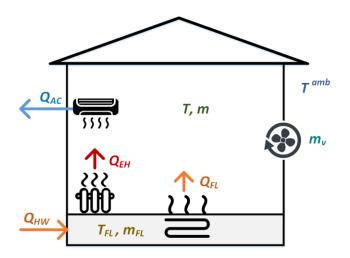
Multiple controllers with different setpoints: Optimal setpoint deviation



Multiple controllers with different setpoints: **Optimal setpoint deviation**

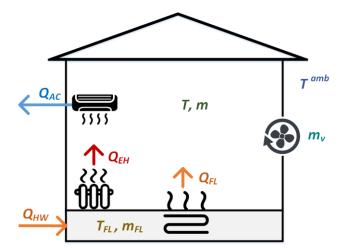


Multiple controllers with different setpoints: Case study



- Q_{AC} : air conditioning Q_{HW} : heating water
- **Q_{EH}** : electrical heating

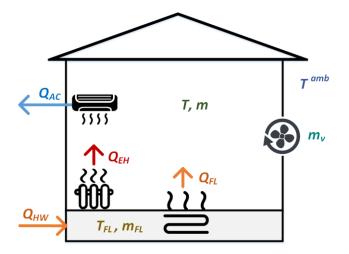
Multiple controllers with different setpoints: Case study



Cost: linear for u and quadratic for Δy

- Q_{AC} : air conditioning Q_{HW} : heating water
- **Q_{EH}** : electrical heating

Multiple controllers with different setpoints: Case study



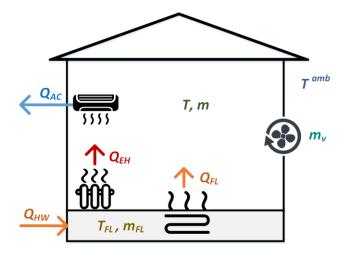
- Q_{AC} : air conditioning Q_{HW} : heating water
- **Q**_{EH} : electrical heating

Cost: linear for u and quadratic for Δy

$$J = \underbrace{p_{AC}Q_{AC}}_{p_1u_1} + \underbrace{p_{HW}Q_{HW}}_{p_2u_2} + \underbrace{p_{EH}Q_{EH}}_{p_3u_3} + \underbrace{p_T(T - T^{sp})^2}_{p_y(y - y^{sp})^2} \quad [\$/s]$$

Inputs (Q_i) are a linear function of output (T)

$$0 = \alpha (T^{amb} - T) + Q_{HW} + Q_{EH} - Q_{AC} \ [W]$$



Q_{AC} : air conditioning Q_{HW} : heating water

Q_{EH} : electrical heating

Cost: linear for u and quadratic for Δy

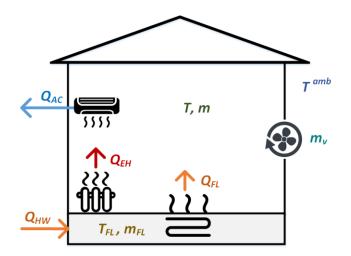
$$J = \underbrace{\underbrace{p_{AC}Q_{AC}}_{p_1u_1} + \underbrace{p_{HW}Q_{HW}}_{p_2u_2} + \underbrace{p_{EH}Q_{EH}}_{p_3u_3} + \underbrace{p_T(T - T^{sp})^2}_{p_y(y - y^{sp})^2} \quad [\$/s]$$

Inputs (Q_i) are a linear function of output (T)

$$0 = \alpha (T^{amb} - T) + Q_{HW} + Q_{EH} - Q_{AC} \ [W]$$

Optimal setpoint deviation minimizing cost

$$\begin{split} \Delta y^{sp,1} &= T^{sp}_{AC} - T^{sp} = + \frac{\alpha p_{ac}}{2p_T} \\ \Delta y^{sp,2} &= T^{sp}_{HW} - T^{sp} = - \frac{\alpha p_{hw}}{2p_T} \\ \Delta y^{sp,3} &= T^{sp}_{EH} - T^{sp} = - \frac{\alpha p_{el}}{2p_T} \end{split}$$

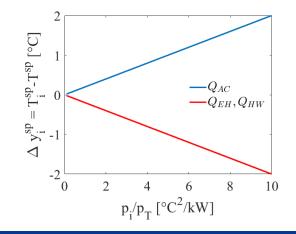


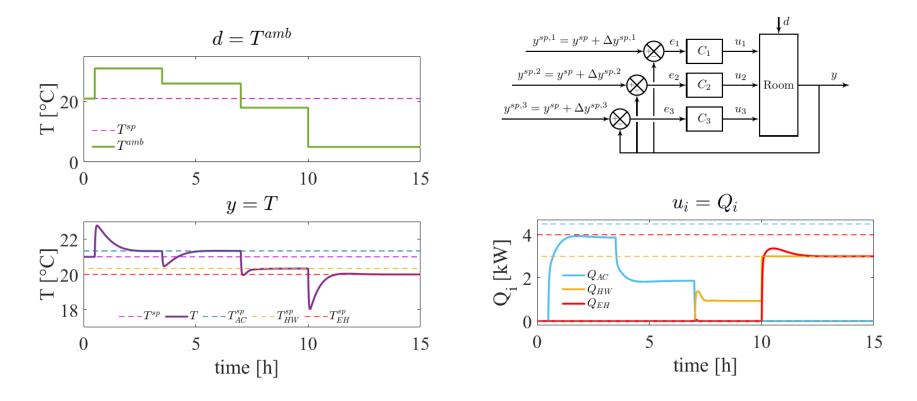
Q_{AC} : air conditioning Q_{HW} : heating water

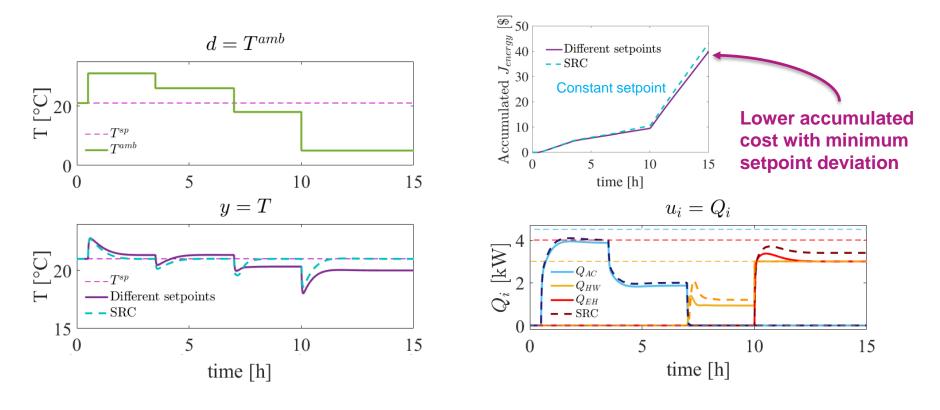
Q_{EH} : electrical heating

Optimal setpoint deviation minimizing cost

$$\Delta y^{sp,1} = T^{sp}_{AC} - T^{sp} = +\frac{\alpha p_{ac}}{2p_T}$$
$$\Delta y^{sp,2} = T^{sp}_{HW} - T^{sp} = -\frac{\alpha p_{hw}}{2p_T}$$
$$\Delta y^{sp,3} = T^{sp}_{EH} - T^{sp} = -\frac{\alpha p_{el}}{2p_T}$$







Final comments

- Steady-state optimal operation may be easily achieved using PID-based control structures
 - Chapters 2,3,4: active constraint switching
 - Chapter 7: optimal setpoints

Final comments

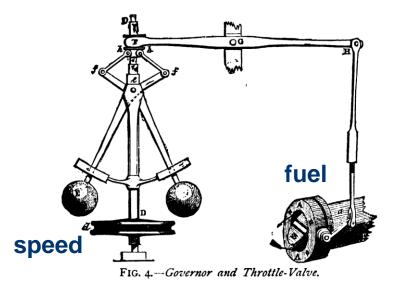
- Steady-state optimal operation may be easily achieved using PID-based control structures
 - Chapters 2,3,4: active constraint switching
 - Chapter 7: optimal setpoints
- Useful to systematically define control objectives, feasibility and tools
 - Priority list of constraints
 - Control structures available for each type of switch (CV-CV, MV-MV, MV-CV)

Final comments

- Steady-state optimal operation may be easily achieved using PID-based control structures
 - Chapters 2,3,4: active constraint switching
 - Chapter 7: optimal setpoints
- Useful to systematically define control objectives, feasibility and tools
 - Priority list of constraints
 - Control structures available for each type of switch (CV-CV, MV-MV, MV-CV)
- Possible to improve performance of PID-based advanced control
 - Chapters 5, 6: design of split range controllers
 - Chapter 8: improved level control

One final comment

• The "gap" between theory and practice can be in both directions



Centrifugal governor used in steam engines in the 1780's: Proportionally controls fuel flow to maintain engine speed.

Theoretical investigation started about a century later.

Åström, K. J., & Kumar, P. R. (2014). Control: A perspective. Automatica, 50(1), 3–43.

Systematic design of advanced control structures

Thank you for your attention!

NTNU