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PROCESS PLANT
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CONTROL OBJECTIVES

COMPENSATE FOR UNCERTAINTY

REJECT DISTURBANCES AND ATTENUATE NOISE

STABILIZE THE PROCESS 

TRACK REFERENCE/OPTIMIZE
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Process

Process
model

PID-controller:

TYPICAL CONTROLLER DESIGN

y = controlled variable
u = manipulated variable
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VARIATIONS IN PARAMETERS 

Grace, A., & Frawley, P. (2011). Experimental parametric equation for the prediction of valve coefficient (Cv) for choke valve trims. International Journal of Pressure Vessels and Piping, 
88(2–3), 109–118

𝜏 =
𝑉

𝑞(𝑡)
g(s)=

𝑒−𝜃𝑠

𝜏𝑠+1
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VARIATIONS IN PARAMETERS 

Åström, Karl J. and Wittenmark, Björn. (1995)  Adaptive Control. Second Edition 
Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications
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VARIATIONS IN PARAMETERS 
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Åström, K. J., Hägglund, T., Hang, C., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. IFAC Proceedings Volumes, 25(4). 

VARIATIONS IN PARAMETERS

Short-term changes:

Fast adaptation

Long term changes:

Slow adaptation
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ADAPTIVE CONTROLLERS

An adaptive controller is a controller with

adjustable parameters and a mechanism

for adjusting the parameters

Åström and Wittenmark (1995)

An adaptive controller is a combination of

an online parameter estimator with a 

control law that is derived from the known

parameter case
Petros and Sun (2012)

The parameters of an adaptive controller are continuously adjusted

to accomodate changes in process dynamics and disturbances

Åström, K. J., Hägglund, T., Hang, C. , & Ho, W. K. (1992) 

Åström, K. J., Hägglund, T., Hang, C. c., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. IFAC Proceedings Volumes, 25(4). 
Åström, Karl J. and Wittenmark, Björn. Adaptive Control. Second Edition (1995)
Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012)
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ADAPTIVE CONTROLLERS VS TYPICAL CONTROLLERS

Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer 

An adaptive
control system

DESIGN

Typical
controller design
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GAIN SCHEDULING: OPEN LOOP ADAPTATION

Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer 
Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Åström, K. J., Hägglund, T., Hang, C. , & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. IFAC Proceedings Volumes, 25(4). 

An adaptive
control system

Gain scheduling: 
• Linear controller
• Parameters are changed as a function of

operating conditions in a pre-programmed way. 

Feedforward
compensation

Measurement, 
controller output, 

external signal
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AUTO-TUNING: “ONE SHOT” ADAPTATION

Åström, Karl J. and Hägglund, Tore. Automatic tuning of PID controllers (1988)
Åström, K. J., Hägglund, T., Hang, C. c., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. IFAC Proceedings Volumes, 25(4). 

Auto-tuning

Controller parameters are

tuned automatically on

demand from an operator 

or external signal

Adaptation

The parameters of a 

controller are continuously

updated
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IDENTIFICATION

Åström, Karl J. and Hägglund, Tore. Automatic tuning of PID controllers (1988)
Åström, K. J., Hägglund, T., Hang, C. c., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. IFAC Proceedings Volumes, 25(4). 

Open loop

Step or pulse

Closed loop (online)

Known disturbance (e.g. relay feedback) to get
frequency response information used to tune. 



15ADAPTIVE CONTROLLERS
S O M E  C O M M O N  C H A R A C T E R I S T I C S

1. Controller with fixed structure and complexity

2. A priori information about structure of plant model

3. Specified performances can be achieved with 
appropriate values of controller parameters

4. Closed loop control of a certain performance index

Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer 



17

ADAPTIVE CONTROLLERS

Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer 

Åström, Karl J. and Wittenmark, Björn. Adaptive Control. Second Edition (1995)
Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012)
Anderson, B. (2005). Failures of adaptive control theory and their resolution. Communications in Information and Systems, 5(1), 1–20. 

• Adaptation scheme
• Parmeter estimator
• Adaptive law
• Update law
• Adjustment mechanism

𝜃𝑐
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D I R E C T  A N D  I N D I R E C T  I M P L E M E N TAT I O N S

INDIRECT or EXPLICIT DIRECT or IMPLICIT

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer
Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design 

Performance specified in terms of the
desired plant model

Performance specified in terms of
realizing the desired behaviour of the

closed loop system



19SELF-TUNING REGULATORS

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design 

Kalman (1958): self tuning controller: 
“optimal LQR with explicit identification of
parameters” 

• Controller parameters converge to the
controller that was designed if the process was
known. 

• Estimates of parameter uncertainties not used in 
control design. 

• Certainty equivalence principle: estimated
parameters treated as if they were true in designing 
the controller; additive disturbances. 

𝜽𝒑 Estimate process 
parameters

Estimate 
controller 

parameters

𝜽𝒄



20STOCHASTIC SELF-TUNING REGULATORS
DUAL CONRTROL

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer
Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design 

• When the input starts decreasing (less excitation) less information is gained about the 

process and the parameter uncertainties increase. 

• Control law as function of parameter estimates and the uncertainties of estimates. 

• The control attempts to drive the output to the desired value but also may introduce 

perturbations whtn estimates are uncertain  dual control (active learning)

Non-linear 
control law

Hyperstate
calculation

Hyperstate



21MRAC: 
MODEL REFERENCE ADAPTIVE CONTROLLERS

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer
Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications



22MRAC: 
MODEL REFERENCE ADAPTIVE CONTROLLERS

Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications
Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., & Engstrom, E. (2015). Certification considerations for adaptive systems. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 270–279). IEEE. 

D I R E C T  A N D  I N D I R E C T

INDIRECT DIRECT
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MODEL REFERENCE ADAPTIVE CONTROLLERS

GRADIENT METHOD FOR ADAPTIVE  LAW

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

• φ sensitivity derivative  estimations required

– φ can be a regression vector (filtered)

• ε is the prediction error

• γ  is the adaptation gain

𝑑𝜃

𝑑𝑡
= 𝛾𝜑𝜀

θ

ε
𝜑 = −

𝑑𝜀

𝑑𝜃

• Minimize ε²
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MODEL REFERENCE ADAPTIVE CONTROLLERS

LYAPUNOV -BASED ADAPTIVE  LAW

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer
Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design 

• The design of the adaptive law is formulated as a stability

problem.

• State is the error (ε=y-ym) and the parameters (θ)  should be bounded

• Basic steps: 

– Find controller structure

– Derive error equation

– Find Lyapunov function

– Derive a parameter updating law such that error will go to zero.

• Error converges to zero.

• Parameters may not converge to their correct values

θ

ε
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STABILITY and CONVERGENCE

Åström, Karl J. and Wittenmark, Björn. Adaptive Control. Second Edition (1995)

Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012)

Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

Direct method

• The stable error dynamics and adaptive 
laws are derived using the structure of
the control signal

Indirect method

• The stable error dynamics and 
adaptive laws are derived independent
of the control signal  

• Adaptive lawmultiplicative nonlinearity non-linear closed-loop plant, often time-varying
• Proofs of global closed-loop stability and asymptotic convergence of the tracking error to zero

• Not when approximate sensitivity functions are used



26ADAPTIVE CONTROL
STABILITY

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition
Landau, I.D. , Lozano, R. , M’Saad, M.  and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer
Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design 

• Adaptive control theorems:

• If A, B and C hold, then all the signals in the loop are bounded and convergence occurs. 

• Unknowness of the plant and a performance index that should be minimized. 

• But if plant is unknown, can performance index be minimized?

• Time-scale of identification step needs to be faster than plant variation timescale.

• Interaction between two processes can generate instability

X-15-3 flight accident. 

Limit cycle (1967)
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STABILITY and CONVERGENCE

Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., & Engstrom, E. (2015). Certification considerations for adaptive systems. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 270–279). IEEE. 
Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012)
Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications

• Robust adaptive controller: 
• Guarantees signal boundedness in the presence of «reasonable» classes of unmodeled dynamics

and bounded disturbances as well as performance error bounds within the modeling error.



28EXTREMUM-SEEKING CONTROL
PRINCIPLE

• Single objective on-line (local) optimization.

• Data driven adaptive control (model-free)

• Setpoint selected to achieve a maximum of an uncertain reference-to-output equilibrium map
opposed to known setpoints or reference trajectories

• Proof of stability exists

Krstić, M., & Wang, H.-H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica, 36(4), 595–601.
Reghenzani, F., Formentin, S., Massari, G., & Fornaciari, W. (2018). A constrained extremum-seeking control for CPU thermal management. In Proceedings of the 15th ACM International Conference on Computing Frontiers - CF ’18
(pp. 320–325). New York, New York, USA: ACM Press. 
Atta, K. T., Johansson, A., & Gustafsson, T. (2015). Extremum seeking control based on phasor estimation. Systems & Control Letters, 85, 37–45.



29EXTREMUM-SEEKING CONTROL
DIFFERRENT IMPLEMENTATIONS

Krstić, M., & Wang, H.-H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica, 36(4), 595–601.
Krishnamoorthy, D., Ryu, J., & Skogestad, S. (2019). A Dynamic Extremum Seeking Scheme Applied to Gas Lift Optimization. IFAC-PapersOnLine, 52(1), 802–807.
Ou, Y., Xu, C., Schuster, E., Luce, T. C., Ferron, J. R., Walker, M. L., & Humphreys, D. A. (2008). Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak. Plasma Physics and 
Controlled Fusion, 50(11), 115001. 

• Single objective (local) on-line optimization.

• Data driven adaptive control (model-free)

• Setpoint selected to achieve a maximum of an uncertain reference-to-output equilibrium map
opposed to known setpoints or reference trajectories

• Proof of stability exists
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MAIN IDEA

Dynamics

Controller

Cost function

Measurements

Disturbances

Actuation
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MAIN IDEA

Dynamics

Controller

Cost function

Measurements

Disturbances

Actuation



32SELF-LEARNING CONTROL
MAIN IDEA

Dynamics

Controller

Cost function

Measurements

Disturbances

Actuation



33MACHINE LEARNING FOR CONTROL

Optimization based on data 
 without having a priori models
of the dynamics

Optimization constrained
by dynamics

Control ML

MAIN IDEA



34GENETIC ALGORITHMS IN CONTROL
MAIN IDEA

Brunton, Steven and Kutz, Nathan. (2017) Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control

• Parameter estimation/ 
Model identification



35GENETIC PROGRAMMING
MAIN IDEA

• Simultaneously learns structure and parameters 
of the controller. 

• Similar operations as genetic algorithms

• Functions can also include transfer functions
(e.g. integration of error). 

• Control law defined by tree

• Requires a large number of experiments
• The effect of the changed control law and 

parameters should be measured fast

Duriez, Thomas, Brunton, Steven, Noack, Bernd R. (2017) Machine Learning Control – Taming Nonlinear Dynamics and Turbulence Springer
Brunton, Steven and Kutz, Nathan. (2017) Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control



36REINFORCEMENT LEARNING
MAIN IDEA

Image taken from www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html
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MAIN IDEA

Image taken from www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html

Markov Decision Processes



38REINFORCEMENT LEARNING
BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

The Agent takes 

an action At that 

affects the 

environment

Environment 

transitions from 

state St to St+1

The Agent takes 

an action At+1

that affects the 

environment

An immediate 

reward Rt+1 is 

generated

Time t Time t+1
State  

informat ion

Reward 
informat ion

Time t+2Time t-1



39REINFORCEMENT LEARNING
BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

The Agent takes 

an action At that 

affects the 

environment

Environment 

transitions from 

state St to St+1

The Agent takes 

an action At+1

that affects the 

environment

An immediate 

reward Rt+1 is 

generated

Time t Time t+1
State  

informat ion

Reward 
informat ion

Time t+2Time t-1

POLICY
Mapping from states 

to actions

𝜋



40REINFORCEMENT LEARNING
BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

POLICY
Mapping from states 

to actions

𝜋

GOAL:
To learn a policy that maximizes the value function

VALUE FUNCTION:
Long term sum of (expected) future rewards 
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BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

POLICY
Mapping from states 

to actions

𝜋

GOAL:
To learn a policy that maximizes the value function

VALUE FUNCTION:
Long term sum of (expected) future rewards 

S

R

A



42REINFORCEMENT LEARNING
BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

POLICY
Mapping from states 

to actions

𝜋

GOAL:
To learn a policy that maximizes the value function

VALUE FUNCTION:
Long term sum of (expected) future rewards 

S

R

A

Bellman’s optimality equation
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LIMITATIONS OF BASIC SETTING

• Model is unknown
• State dimension is large

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

• Model-based
• Value-based (model-free)
• Policy-gradient (model-free)
• Actor-critic (model-free)

SOLUTION APPROACH

Convergence is achieved.
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CHALLENGES

• Stability: 

• learning requires data, might bring process to unstable regions

• choice of meta-parameters to get reliable convergence

• Sample efficiency: 

• iterations required to achieve convergence. 

• if policy brings the process to a poor space, it might not recover.

• Causality

• Assignation of rewards

• Exploitation vs exploration: online performance vs information aquisition

• Types of state variables: physical? interpretation

• Value function approximation:  for parameter estimation

• Episodic vs infinite horizon: choice of algorithm

• Continuous vs discrete: choice of algorithm

• Stochastic vs deterministic: policies, environments

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 



45DEEP REINFORCEMENT LEARNING
MAIN CONCEPT

Brunton, Steven and Kutz, Nathan. (2017) Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control
Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

• The use of Deep Neural Networks (DNNs) to approximate the value (e.g. probabilities) 
and policy functions 
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NEURAL NETWORKS

Brunton, Steven and Kutz, Nathan. (2017) Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control
Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 
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CHALLENGES FOR USE OF NEURAL NETWORKS IN RL

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

• Overfitting: 

• There may be too many available degrees of freedom

• Need to crossvalidate data. 

• NN rely on exploration

• NN are in general not generalizable

• States and behavior may not be interpretable

• Estimates may be noisy

• How to incorporate physical knowledge? 

• Do not disregard what we (partially) know about the system.



48SELF-LEARNING CONTROLLERS
IN CONTRAST TO ADAPTIVE CONTROLLERS

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. Computers & Chemical Engineering, 127, 282–294. 

With focus on Model -Free Reinforcement Learning and Model Reference Adaptive Control

SELF-LEARNING CONTROLLERS (RL) ADAPTIVE CONTROLLERS (MRAC)

Underlying system assumption Markov decision process Fixed structure of the process (transfer 
function, state-space)

Goal(s) Win reward Adapt parameters of controller, 
minimize error

Modeled component Value function or policy Process and/or controller

Model learning paradigm Model learned from trial and error
(simulation or real process)

Given structure, calculation of
parameters given system response

Exploration/exploitation Simultaneous Exploration to get model, exploitaton
thereafter

Feedback Value function or policy Error, ymodel-ysystem

Stability Closed-loop stability not considered Stability analysis; proofs

Failure tolerance Failure is necessary for learning Failure is not tolerated



49FINAL COMMENT
WHAT DRIVES IMPLEMENTATION?

REQUIRED EFFORT

CONFIDENCE IN THE CONTROLLER

• Implementation

• Use

• Maintenance

• Does it fulfill the control objectives?

COST
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SELF-LEARNING CONTROLLERS
IN CONTRAST TO ADAPTIVE CONTROLLERS

Thank you for your
attention!

TRIAL LECTURE


