SELF-LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS

TRIAL LECTURE

Adriana Reyes Lúa

AGENDA

SELF LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS

PROCESS PLANT

CONTROL OBJECTIVES

5

THE FEEDBACK LOOP

y = controlled variableu = manipulated variable

THE FEEDBACK LOOP

y = controlled variable u = manipulated variable

TYPICAL CONTROLLER DESIGN

y = controlled variable u = manipulated variable

PID-controller:

$$u(t) = u^0 + K_C \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t) + \frac{de(t)}{dt} \right)$$

TYPICAL CONTROLLER DESIGN

PID-controller:

$$u(t) = u^0 + K_C \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t) + \frac{de(t)}{dt} \right)$$

tangent line

slope=f'(x)

TYPICAL CONTROLLER DESIGN

PID-controller:

$$u(t) = u^0 + K_C \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t) + \frac{de(t)}{dt} \right)$$

$$\tau = \frac{V}{q(t)} \qquad g(s) = \frac{e^{-\theta s}}{\tau s + 1}$$

Grace, A., & Frawley, P. (2011). Experimental parametric equation for the prediction of valve coefficient (Cv) for choke valve trims. *International Journal of Pressure Vessels and Piping*, 88(2–3), 109–118

An adaptive controller is a controller with adjustable parameters and a mechanism for adjusting the parameters

Åström and Wittenmark (1995)

An adaptive controller is a combination of an online parameter estimator with a control law that is derived from the known parameter case

Petros and Sun (2012)

The parameters of an adaptive controller are continuously adjusted to accomodate changes in process dynamics and disturbances

An adaptive controller is a controller with adjustable parameters and a mechanism for adjusting the parameters

Åström and Wittenmark (1995)

An adaptive controller is a combination of an online parameter estimator with a control law that is derived from the known parameter case

Petros and Sun (2012)

The parameters of an adaptive controller are continuously adjusted to accomodate changes in process dynamics and disturbances

An adaptive controller is a controller with adjustable parameters and a mechanism for adjusting the parameters

Åström and Wittenmark (1995)

An adaptive controller is a combination of an online parameter estimator with a control law that is derived from the known parameter case

Petros and Sun (2012)

The parameters of an adaptive controller are continuously adjusted to accomodate changes in process dynamics and disturbances

An adaptive controller is a controller with adjustable parameters and a mechanism for adjusting the parameters

Åström and Wittenmark (1995)

An adaptive controller is a combination of an online parameter estimator with a control law that is derived from the known parameter case

Petros and Sun (2012)

The parameters of an adaptive controller are continuously adjusted to accomodate changes in process dynamics and disturbances

An adaptive controller is a controller with adjustable parameters and a mechanism for adjusting the parameters

Åström and Wittenmark (1995)

An adaptive controller is a combination of an online parameter estimator with a control law that is derived from the known parameter case

Petros and Sun (2012)

The parameters of an adaptive controller are continuously adjusted to accomodate changes in process dynamics and disturbances

ADAPTIVE CONTROLLERS VS TYPICAL CONTROLLERS

DESIGN

Typical controller design

ADAPTIVE CONTROLLERS VS TYPICAL CONTROLLERS

DESIGN

GAIN SCHEDULING: OPEN LOOP ADAPTATION

Gain scheduling:

- Linear controller
- Parameters are changed as a function of operating conditions in a pre-programmed way.

An adaptive control system

AUTO-TUNING: "ONE SHOT" ADAPTATION

Auto-tuning

Controller parameters are tuned automatically on demand from an operator or external signal

Adaptation

The parameters of a controller are continuously updated

IDENTIFICATION

Open loop

Step or pulse

IDENTIFICATION

Open loop

Step or pulse

Closed loop (online)

Known disturbance (e.g. relay feedback) to get frequency response information used to tune.

SOME COMMON CHARACTERISTICS

- 1. Controller with fixed structure and complexity
- 2. A priori information about structure of plant model
- 3. Specified performances can be achieved with appropriate values of controller parameters
- 4. Closed loop control of a certain performance index

- Adaptation scheme
- Parmeter estimator
- Adaptive law
- Update law
- Adjustment mechanism

DIRECT AND INDIRECT IMPLEMENTATIONS

INDIRECT or EXPLICIT

Performance specified in terms of the desired plant model

DIRECT AND INDIRECT IMPLEMENTATIONS

INDIRECT or EXPLICIT

DIRECT or IMPLICIT

Performance specified in terms of the desired plant model

Performance specified in terms of realizing the desired behaviour of the closed loop system

SELF-TUNING REGULATORS

Kalman (1958): self tuning controller: "optimal LQR with explicit identification of parameters"

- Controller parameters converge to the controller that was designed if the process was known.
- Estimates of parameter uncertainties not used in control design.
- Certainty equivalence principle: estimated parameters treated as if they were true in designing the controller; additive disturbances.

STOCHASTIC SELF-TUNING REGULATORS

DUAL CONRTROL

- When the input starts decreasing (less excitation) less information is gained about the process and the parameter uncertainties increase.
- Control law as function of parameter estimates and the uncertainties of estimates.
- The control attempts to drive the output to the desired value but also may introduce perturbations when estimates are uncertain \rightarrow dual control (active learning)

MODEL REFERENCE ADAPTIVE CONTROLLERS

MODEL REFERENCE ADAPTIVE CONTROLLERS

DIRECT AND INDIRECT

INDIRECT

DIRECT

MODEL REFERENCE ADAPTIVE CONTROLLERS

GRADIENT METHOD FOR ADAPTIVE LAW

• Minimize ε²

$$\frac{d\theta}{dt} = \gamma \varphi \varepsilon$$

$$\varphi = -\frac{d\varepsilon}{d\theta}$$

- φ sensitivity derivative → estimations required
 - φ can be a regression vector (filtered)
- ε is the prediction error
- γ is the adaptation gain

MODEL REFERENCE ADAPTIVE CONTROLLERS

LYAPUNOV-BASED ADAPTIVE LAW

- The design of the adaptive law is formulated as a stability problem.
- State is the error $(\varepsilon = y y_m)$ and the parameters $(\theta) \rightarrow$ should be bounded
- Basic steps:
 - Find controller structure
 - Derive error equation
 - Find Lyapunov function
 - Derive a parameter updating law such that error will go to zero.
- Error converges to zero.
- Parameters may not converge to their correct values

ADAPTIVE CONTROL

STABILITY and CONVERGENCE

- Adaptive law \rightarrow multiplicative nonlinearity \rightarrow non-linear closed-loop plant, often time-varying
- Proofs of global closed-loop stability and asymptotic convergence of the tracking error to zero
 - Not when approximate sensitivity functions are used

ADAPTIVE CONTROL

STABILITY and CONVERGENCE

- Adaptive law \rightarrow multiplicative nonlinearity \rightarrow non-linear closed-loop plant, often time-varying
- Proofs of global closed-loop stability and asymptotic convergence of the tracking error to zero
 - Not when approximate sensitivity functions are used

Direct method

 The stable error dynamics and adaptive laws are derived using the structure of the control signal

Indirect method

 The stable error dynamics and adaptive laws are derived independent of the control signal

STABILITY

- Adaptive control theorems:
 - If A, B and C hold, then all the signals in the loop are bounded and convergence occurs.
- Unknowness of the plant and a performance index that should be minimized.
 - But if plant is unknown, can performance index be minimized?

STABILITY

- Adaptive control theorems:
 - If A, B and C hold, then all the signals in the loop are bounded and convergence occurs.
- Unknowness of the plant and a performance index that should be minimized.
 - But if plant is unknown, can performance index be minimized?
- Time-scale of identification step needs to be faster than plant variation timescale.

STABILITY

- Adaptive control theorems:
 - If A, B and C hold, then all the signals in the loop are bounded and convergence occurs.
- Unknowness of the plant and a performance index that should be minimized.
 - But if plant is unknown, can performance index be minimized?
- Time-scale of identification step needs to be faster than plant variation timescale.
- Interaction between two processes can generate instability

Limit cycle (1967)

STABILITY and CONVERGENCE

Robust adaptive controller:

• Guarantees signal boundedness in the presence of «reasonable» classes of unmodeled dynamics and bounded disturbances as well as performance error bounds within the modeling error.

EXTREMUM-SEEKING CONTROL

PRINCIPLE

- Single objective on-line (local) optimization.
- Data driven adaptive control (model-free)
- Setpoint selected to achieve a maximum of an uncertain reference-to-output equilibrium map opposed to known setpoints or reference trajectories
- Proof of stability exists

EXTREMUM-SEEKING CONTROL

DIFFERRENT IMPLEMENTATIONS

- Single objective (local) on-line optimization.
- Data driven adaptive control (model-free)
- Setpoint selected to achieve a maximum of an uncertain reference-to-output equilibrium map opposed to known setpoints or reference trajectories
- Proof of stability exists

SELF-LEARNING CONTROL

SELF-LEARNING CONTROL

SELF-LEARNING CONTROL

49

MACHINE LEARNING FOR CONTROL

MAIN IDEA

Optimization constrained by dynamics

Optimization based on data

→ without having *a priori* models of the dynamics

GENETIC ALGORITHMS IN CONTROL

MAIN IDEA

 Parameter estimation/ Model identification

GENETIC PROGRAMMING

- Simultaneously learns structure and parameters of the controller.
- Similar operations as genetic algorithms
- Functions can also include transfer functions (e.g. integration of error).
- Control law defined by tree
- Requires a large number of experiments
 - The effect of the changed control law and parameters should be measured fast

Markov Decision Processes

environment

environment

BASIC SETTING

POLICY π Mapping from states to actions

56

BASIC SETTING

POLICY π Mapping from states to actions

GOAL:

To learn a policy that maximizes the value function

VALUE FUNCTION:

Long term sum of (expected) future rewards

BASIC SETTING

environment

actions

POLICY π Mapping from states to actions

GOAL:

To learn a policy that maximizes the value function

VALUE FUNCTION:

Long term sum of (expected) future rewards

$$v_{\pi}(s) = E\{R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \cdots | S_t = s\}$$

58

environment

BASIC SETTING

POLICY π Mapping from states to actions

GOAL:

To learn a policy that maximizes the value function

VALUE FUNCTION:

Long term sum of (expected) future rewards

$$v_{\pi}(s) = E\{R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \cdots | S_t = s\}$$

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Bellman's optimality equation

LIMITATIONS OF BASIC SETTING

- Model is unknown
- State dimension is large

SOLUTION APPROACH

- Model-based
- Value-based (model-free)
- Policy-gradient (model-free)
- Actor-critic (model-free)

Convergence is achieved.

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

CHALLENGES

• Stability:

- learning requires data, might bring process to unstable regions
- choice of meta-parameters to get reliable convergence

Sample efficiency:

- iterations required to achieve convergence.
- if policy brings the process to a poor space, it might not recover.

Causality

- Assignation of rewards
- Exploitation vs exploration: online performance vs information aquisition
- Types of state variables: physical? interpretation
- Value function approximation: for parameter estimation
- Episodic vs infinite horizon: choice of algorithm
- Continuous vs discrete: choice of algorithm
- Stochastic vs deterministic: policies, environments

DEEP REINFORCEMENT LEARNING

MAIN CONCEPT

• The use of Deep Neural Networks (DNNs) to approximate the value (e.g. probabilities) and policy functions

62

DEEP REINFORCEMENT LEARNING

NEURAL NETWORKS

DEEP REINFORCEMENT LEARNING

CHALLENGES FOR USE OF NEURAL NETWORKS IN RL

- Overfitting:
 - There may be too many available degrees of freedom
 - Need to crossvalidate data.
- NN rely on exploration
- NN are in general not generalizable
- States and behavior may not be interpretable
- Estimates may be noisy
- How to incorporate physical knowledge?
 - Do not disregard what we (partially) know about the system.

SELF-LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS

With focus on Model-Free Reinforcement Learning and Model Reference Adaptive Control

	SELF-LEARNING CONTROLLERS (RL)	ADAPTIVE CONTROLLERS (MRAC)
Underlying system assumption	Markov decision process	Fixed structure of the process (transfer function, state-space)
Goal(s)	Win reward	Adapt parameters of controller, minimize error
Modeled component	Value function or policy	Process and/or controller
Model learning paradigm	Model learned from trial and error (simulation or real process)	Given structure, calculation of parameters given system response
Exploration/exploitation	Simultaneous	Exploration to get model, exploitaton thereafter
Feedback	Value function or policy	Error, y _{model} -y _{system}
Stability	Closed-loop stability not considered	Stability analysis; proofs
Failure tolerance	Failure is necessary for learning	Failure is not tolerated

FINAL COMMENT

WHAT DRIVES IMPLEMENTATION?

REQUIRED EFFORT

- Implementation
- Use
- Maintenance

CONFIDENCE IN THE CONTROLLER

• Does it fulfill the control objectives?

♦ COST

SELF-LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS

TRIAL LECTURE

Thank you for your attention!