SELF-LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS TRIAL LECTURE

Adriana Reyes Lúa

February 28th 2020

BACKGROUND

CONTRAST

AGENDA SELF LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS

 \blacksquare

 $\begin{pmatrix} 2 \end{pmatrix}$

PROCESS PLANT

COMPENSATE FOR UNCERTAINTY

STABILIZE THE PROCESS

TRACK REFERENCE/OPTIMIZE

THE FEEDBACK LOOP

y = controlled variable u = manipulated variable

THE FEEDBACK LOOP

y = controlled variable u = manipulated variable

TYPICAL CONTROLLER DESIGN

PID-controller:

$$
u(t) = u^0 + K_C \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t) + \tau_d \frac{de(t)}{dt} \right)
$$

y = controlled variable u = manipulated variable

PID-controller:

$$
u(t) = u^0 + K_C \left(e(t) + \frac{1}{\tau_I} \int_0^t e(t) + \tau_d \frac{de(t)}{dt} \right)
$$

TYPICAL CONTROLLER DESIGN

PID-controller:

$$
u(t) = u^0 + K_C \bigg(e(t) -
$$

TYPICAL CONTROLLER DESIGN

VARIATIONS IN PARAMETERS

Grace, A., & Frawley, P. (2011). Experimental parametric equation for the prediction of valve coefficient (Cv) for choke valve trims. *International Journal of Pressure Vessels and Piping*, *88*(2–3), 109–118

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications

VARIATIONS IN PARAMETERS

Åström, K. J., Hägglund, T., Hang, C., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. *IFAC Proceedings Volumes*, *25*(4).

VARIATIONS IN PARAMETERS

An adaptive controller is a controller with

adjustable parameters and a mechanism for

adjusting the parameters

Åström and Wittenmark (1995)

The parameters of an adaptive controller are continuously adjusted

to accomodate changes in process dynamics and disturbances

Åström, K. J., Hägglund, T., Hang, C., & Ho, W. K. (1992)

An adaptive controller is a controller with

adjustable parameters and a mechanism for

adjusting the parameters

Åström and Wittenmark (1995)

The parameters of an adaptive controller are continuously adjusted

to accomodate changes in process dynamics and disturbances

Åström, K. J., Hägglund, T., Hang, C., & Ho, W. K. (1992)

An adaptive controller is a controller with

adjustable parameters and a mechanism for

adjusting the parameters

Åström and Wittenmark (1995)

The parameters of an adaptive controller are continuously adjusted

to accomodate **changes in process dynamics and disturbances**

Åström, K. J., Hägglund, T., Hang, C. , & Ho, W. K. (1992)

An adaptive controller is a controller with **adjustable parameters and a mechanism for adjusting the parameters**

Åström and Wittenmark (1995)

An adaptive controller is a combination of an online parameter estimator with a **control law that is derived from the known parameter case** *Petros and Sun (2012)*

The parameters of an adaptive controller are continuously adjusted

to accomodate **changes in process dynamics and disturbances**

Åström, K. J., Hägglund, T., Hang, C. , & Ho, W. K. (1992)

An adaptive controller is a controller with **adjustable parameters and a mechanism for adjusting the parameters**

Åström and Wittenmark (1995)

An adaptive controller is a combination of an **online parameter estimator** with a **control law that is derived from the known parameter case** *Petros and Sun (2012)*

The parameters of an adaptive controller are continuously adjusted

to accomodate **changes in process dynamics and disturbances**

Åström, K. J., Hägglund, T., Hang, C. , & Ho, W. K. (1992)

ADAPTIVE CONTROLLERS VS TYPICAL CONTROLLERS DESIGN

Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

Typical controller design

ADAPTIVE CONTROLLERS VS TYPICAL CONTROLLERS DESIGN

Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

An adaptive control system

Typical controller design

21

GAIN SCHEDULING: OPEN LOOP ADAPTATION

Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition Åström, K. J., Hägglund, T., Hang, C. , & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. *IFAC Proceedings Volumes*, *25*(4).

An adaptive control system

Gain scheduling:

- Linear controller
- Parameters are changed as a function of operating conditions in a pre-programmed way.

AUTO-TUNING: "ONE SHOT" ADAPTATION

Åström, Karl J. and Hägglund, Tore. Automatic tuning of PID controllers (1988) Åström, K. J., Hägglund, T., Hang, C. c., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. *IFAC Proceedings Volumes*, *25*(4).

*C*ontroller parameters are

tuned automatically on

demand from an operator

or external signal

Adaptation

The parameters of a

controller are continuously

updated

IDENTIFICATION

Åström, Karl J. and Hägglund, Tore. Automatic tuning of PID controllers (1988) Åström, K. J., Hägglund, T., Hang, C. c., & Ho, W. K. (1992). Automatic Tuning and Adaptation for PID Controllers - A Survey. *IFAC Proceedings Volumes*, *25*(4).

Open loop Step or pulse

IDENTIFICATION

Open loop Step or pulse

Closed loop (online)

Known disturbance (e.g. relay feedback) to get frequency response information used to tune.

SOME COMMON CHARACTERISTICS

²⁵ **ADAPTIVE CONTROLLERS**

Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer Åström, Karl J. and Wittenmark, Björn. Adaptive Control. Second Edition (1995) Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012) Anderson, B. (2005). Failures of adaptive control theory and their resolution. *Communications in Information and Systems*, *5*(1), 1–20.

- Adaptation scheme
- Parmeter estimator
- Adaptive law
- Update law
- Adjustment mechanism

INDIRECT or EXPLICIT

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design

²⁸ **ADAPTIVE CONTROLLERS** D I R E CT AND INDIRECT IMPLEMENTATIONS

Performance specified in terms of the desired plant model

INDIRECT or EXPLICIT THE REFORECT OF IMPLICIT

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design

²⁹ **ADAPTIVE CONTROLLERS** D I R E CT AND INDIRE CT IMPLEMENTATIONS

Performance specified in terms of the desired plant model

Performance specified in terms of realizing the desired behaviour of the closed loop system

SELF-TUNING REGULATORS

Kalman (1958): self tuning controller: "optimal LQR with explicit identification of parameters"

- Controller parameters converge to the controller that was designed if the process was known.
- Estimates of parameter uncertainties not used in control design.
- **Certainty equivalence principle:** estimated parameters treated as if they were true in designing the controller; additive disturbances.

STOCHASTIC SELF-TUNING REGULATORS

DUAL CONRTROL

- When the input starts decreasing (less excitation) less information is gained about the process and the parameter uncertainties increase.
- Control law as function of **parameter estimates** and the **uncertainties of estimates**.
- The control attempts to drive the output to the desired value but also may introduce perturbations whtn estimates are uncertain \rightarrow dual control (active learning)

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer Mahmoud, M, Xia, Y. (2012) Applied Control Sytems Design

³³ **MRAC: MODEL REFERENCE ADAPTIVE CONTROLLERS**

Åström, Karl J. and Wittenmark, Björn. (1995) Adaptive Control. Second Edition Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications

³⁴ **MRAC: MODEL REFERENCE ADAPTIVE CONTROLLERS**

Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., & Engstrom, E. (2015). Certification considerations for adaptive systems. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 270-279). IEEE.

D I R E CT AND IN DIRECT

INDIRECT DIRECT

³⁵ **MRAC: MODEL REFERENCE ADAPTIVE CONTROLLERS**

• Minimize ε²

 $d\theta$ \overline{dt} $= \gamma \varphi \varepsilon$ $\varphi = -\frac{1}{d\theta}$ θ $\varphi =$ $d\varepsilon$ $d\theta$

GRADIENT METHOD FOR ADAPTIVE LAW

- φ sensitivity derivative \rightarrow estimations required
	- φ can be a regression vector (filtered)
- ε is the prediction error
- γ is the adaptation gain

³⁶ **MRAC: MODEL REFERENCE ADAPTIVE CONTROLLERS** LYAPUNOV-BASED ADAPTIVE LAW

- The design of the adaptive law is formulated as a stability problem.
- *State* is the error $(\epsilon = y-y_m)$ and the parameters $(\theta) \rightarrow$ should be bounded
- Basic steps:
	- Find controller structure
	- Derive error equation
	- –Find Lyapunov function
	- Derive a *parameter updating law* such that error will go to zero.
- Error converges to zero.
- Parameters may not converge to their correct values

³⁷ **ADAPTIVE CONTROL**

STABILITY and CONVERGENCE

Åström, Karl J. and Wittenmark, Björn. Adaptive Control. Second Edition (1995) Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012) Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

• Adaptive law \rightarrow multiplicative nonlinearity \rightarrow non-linear closed-loop plant, often time-varying • Proofs of global closed-loop stability and asymptotic convergence of the tracking error to zero

-
- - Not when approximate sensitivity functions are used

³⁸ **ADAPTIVE CONTROL**

STABILITY and CONVERGENCE

Åström, Karl J. and Wittenmark, Björn. Adaptive Control. Second Edition (1995)

The stable error dynamics and adaptive laws are derived using the structure of the control signal

Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012) Landau, I.D. , Lozano, R. , M'Saad, M. and Karimi, A. (2011) Adaptive Control. Communications and Control Engineering. Springer

Direct method

• Adaptive law \rightarrow multiplicative nonlinearity \rightarrow non-linear closed-loop plant, often time-varying • Proofs of global closed-loop stability and asymptotic convergence of the tracking error to zero

Indirect method

• The stable error dynamics and adaptive laws are derived independent of the control signal

-
- - Not when approximate sensitivity functions are used

³⁹ **ADAPTIVE CONTROL STABILITY**

- Adaptive control theorems:
	- If A, B and C hold, then all the signals in the loop are bounded and convergence occurs.
- Unknowness of the plant and a performance index that should be minimized.
	- But if plant is unknown, can performance index be minimized?

⁴⁰ **ADAPTIVE CONTROL STABILITY**

- Adaptive control theorems:
	- If A, B and C hold, then all the signals in the loop are bounded and convergence occurs.
- Unknowness of the plant and a performance index that should be minimized.
	- But if plant is unknown, can performance index be minimized?
- Time-scale of identification step needs to be faster than plant variation timescale.

⁴¹ **ADAPTIVE CONTROL STABILITY**

- Adaptive control theorems:
	- If A, B and C hold, then all the signals in the loop are bounded and convergence occurs.
- Unknowness of the plant and a performance index that should be minimized.
	- But if plant is unknown, can performance index be minimized?
- Time-scale of identification step needs to be faster than plant variation timescale.
- Interaction between two processes can generate instability

⁴² **ADAPTIVE CONTROL** STABILITY and CONVERGENCE

Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., & Engstrom, E. (2015). Certification considerations for adaptive systems. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 270-279). IEEE. *Ioannou, Petros, A. and Sun, Jing. Robust Adaptive Control. (2012) Lavretsky, E. and Wise, K. (2013) Robust and adaptive control with aeropsace appllications*

• Robust adaptive controller:

• Guarantees signal boundedness in the presence of «reasonable» classes of unmodeled dynamics and bounded disturbances as well as performance error bounds within the modeling error.

EXTREMUM-SEEKING CONTROL PRINCIPLE

- Single objective on-line (local) optimization.
- Data driven adaptive control (model-free)
- opposed to known setpoints or reference trajectories
- Proof of stability exists

• Setpoint selected to achieve a maximum of an uncertain *reference-to-output equilibrium map*

Krstić, M., & Wang, H.-H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems. *Automatica*, *36*(4), 595–601. Reghenzani, F., Formentin, S., Massari, G., & Fornaciari, W. (2018). A constrained extremum-seeking control for CPU thermal management. In Proceedings of the 15th ACM International Conference on Computing Frontiers - CF '1 (pp. 320–325). New York, New York, USA: ACM Press.

Atta, K. T., Johansson, A., & Gustafsson, T. (2015). Extremum seeking control based on phasor estimation. *Systems & Control Letters*, *85*, 37–45.

EXTREMUM-SEEKING CONTROL

DIFFERRENT IMPLEMENTATIONS

Krstić, M., & Wang, H.-H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems. *Automatica*, *36*(4), 595–601. Krishnamoorthy, D., Ryu, J., & Skogestad, S. (2019). A Dynamic Extremum Seeking Scheme Applied to Gas Lift Optimization. *IFAC-PapersOnLine*, *52*(1), 802–807. Ou, Y., Xu, C., Schuster, E., Luce, T. C., Ferron, J. R., Walker, M. L., & Humphreys, D. A. (2008). Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak. Plasma Physi *Controlled Fusion*, *50*(11), 115001.

- Single objective (local) on-line optimization.
- Data driven adaptive control (model-free)
- opposed to known setpoints or reference trajectories
- Proof of stability exists

• Setpoint selected to achieve a maximum of an uncertain *reference-to-output equilibrium map*

SELF-LEARNING CONTROL MAIN IDEA

Dynamics Controller Cost function

Measurements

SELF-LEARNING CONTROL MAIN IDEA

SELF-LEARNING CONTROL MAIN IDEA

⁴⁹ **MACHINE LEARNING FOR CONTROL**

Control ML

Optimization based on data without having *a priori* **models of the dynamics**

Optimization constrained by dynamics

MAIN IDEA

⁵⁰ **GENETIC ALGORITHMS IN CONTROL**

MAIN IDEA

Brunton, Steven and Kutz, Nathan. (2017) *Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control*

• Parameter estimation/

MAIN IDEA

GENETIC PROGRAMMING

- Simultaneously learns structure and parameters of the controller.
- Similar operations as genetic algorithms
- Functions can also include transfer functions (e.g. integration of error).
- Control law defined by tree
- Requires a large number of experiments
	- The effect of the changed control law and parameters should be measured fast

Duriez, Thomas, Brunton, Steven, Noack, Bernd R. (2017) *Machine Learning Control – Taming Nonlinear Dynamics and Turbulence* Springer Brunton, Steven and Kutz, Nathan. (2017) *Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control*

REINFORCEMENT LEARNING MAIN IDEA

REINFORCEMENT LEARNING MAIN IDEA

Image taken from www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html

Markov Decision Processes

REINFORCEMENT LEARNING BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. *Computers & Chemical Engineering*, *127*, 282–294.

environment

REINFORCEMENT LEARNING BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. *Computers & Chemical Engineering*, *127*, 282–294.

environment

56

REINFORCEMENT LEARNING BASIC SETTING

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. *Computers & Chemical Engineering*, *127*, 282–294.

environment

GOAL:

To learn a policy that maximizes the value function

VALUE FUNCTION: Long term sum of (expected) future rewards

REINFORCEMENT LEARNING BASIC SETTING

environment

 $v_{\pi}(s) = E\left\{R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \cdots | S_t = s\right\}$

GOAL:

To learn a policy that maximizes the value function

VALUE FUNCTION: Long term sum of (expected) future rewards

REINFORCEMENT LEARNING BASIC SETTING

$$
\mathbf{n}^{\parallel}
$$

$$
\nu_{\pi}(s) = E\Big\{R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \cdots | S_t = s \Big\}
$$

$$
\nu_*(s) = \frac{max}{a} \sum p(s', r|s, a) [r + \gamma v_*(s')]
$$

GOAL:

To learn a policy that maximizes the value function

VALUE FUNCTION: Long term sum of (expected) future rewards

 S', r

Bellman's optimality equation

REINFORCEMENT LEARNING

LIMITATIONS OF BASIC SETTING

- Model is unknown
- State dimension is large

$v_*(s) = \frac{max}{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$

- Model-based
- Value-based (model-free)
- Policy-gradient (model-free)
- Actor-critic (model-free)

SOLUTION APPROACH

Convergence is achieved.

REINFORCEMENT LEARNING CHALLENGES

• **Stability:**

- learning requires data, might bring process to unstable regions
- choice of meta-parameters to get reliable convergence
- **Sample efficiency:**
	- iterations required to achieve convergence.
	- if policy brings the process to a poor space, it might not recover.
- **Causality**
- **Assignation of rewards**
- **Exploitation vs exploration:** online performance vs information aquisition
- **Types of state variables:** physical? interpretation
- **Value function approximation:** for parameter estimation
- **Episodic vs infinite horizon:** choice of algorithm
- **Continuous vs discrete:** choice of algorithm
- **Stochastic vs deterministic:** policies, environments

⁶¹ **DEEP REINFORCEMENT LEARNING** MAIN CONCEPT

Brunton, Steven and Kutz, Nathan. (2017) *Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control* Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. *Computers & Chemical Engineering*, *127*, 282–294.

• The use of Deep Neural Networks (DNNs) to approximate the value (e.g. probabilities)

and policy functions

⁶² **DEEP REINFORCEMENT LEARNING**

NEURAL NETWORKS

Brunton, Steven and Kutz, Nathan. (2017) *Data Driven Science & Engineering. Machine Learning, Dynamical Systems and Control* Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. *Computers & Chemical Engineering*, *127*, 282–294.

Shallow neural network

Hand-designed feature extraction

Learn a feature hierarchy all the way from input to output data

Deep neural network

⁶³ **DEEP REINFORCEMENT LEARNING** CHALLENGES FOR USE OF NEURAL NETWORKS IN RL

- Overfitting:
	- There may be too many available degrees of freedom
	- Need to crossvalidate data.
- NN rely on exploration
- NN are in general not generalizable
- States and behavior may not be interpretable
- Estimates may be noisy
- How to incorporate physical knowledge?
	- Do not disregard what we (partially) know about the system.

SELF-LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS

Shin, J., Badgwell, T. A., Liu, K.-H., & Lee, J. H. (2019). Reinforcement Learning – Overview of recent progress and implications for process control. *Computers & Chemical Engineering*, *127*, 282–294.

With focus on Model-Free Reinforcement Learning and Model Reference Adaptive Control

FINAL COMMENT WHAT DRIVES IMPLEMENTATION?

REQUIRED EFFORT

CONFIDENCE IN THE CONTROLLER

- Implementation
	-
- Maintenance

• Does it fulfill the control objectives?

SELF-LEARNING CONTROLLERS IN CONTRAST TO ADAPTIVE CONTROLLERS TRIAL LECTURE

Thank you for your attention!