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“We consider all of the work in optimal control also to be, in a sense, work in RL"”

-Sutton & Barto (2018)
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Everyone talks about it...
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but what exactly is it?
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Aim of the talk

Provide a basic understanding of RL in optimal control

(@ What is Optimal Decision-making? - Dynamic Programming

(@ Where does Machine Learning come into the picture ?

@ Why do we need them?

(® How to use them?
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Introduction - Decision making

Xt

Objective

cost £(x¢, uy)

()

U

iwt

Controller

f(Xt, Uyg, Wt)

System

Xt41

Take suitable actions u;, based on the current state x;, to control a dynamic (stochastic) system,
such that the overall cost is minimized.

These kind of problems are studied under the context of Dynamic Programming (DP).
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Dynamic programming

Dynamic programming (DP) is a mathematical framework for
solving multistage decision-making problems

Richard E. Bellman
(1920-1984)

Any optimization (deterministic/stochastic, discrete/continuous variables etc.) that involves a
sequence of decisions fits the framework

o Operations (Inventory management, routing,...)

o Control (process control, robotics, path planning,....)

o Finance (portfolio management ....)

o Manufacturing (planning, scheduling,...)
Games (Chess, Go, ....)

©
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Notations

Control community Al it
community

Xk S; state

Xk+1 Sii1 successor state

Uk A; action

£k, uge, wi) Rii1 transition cost/Reward
i (%) v(Se) cost of being in a state
Quc(xc, k) Q(S:, Ar) Q-factor

E{ZLV;(} O(xk, ug, wi) } Gt =Res1+---+ Ry Return/Cost-to-go
min(-) max —(+) Objective

p(x) =(als) policy/control law

E{O() + Jir1 G xo Ukl S p(s! rls, a)[Revt + V(5)]

I will predominantly use the notation from Bertsekas (2019)
Sometimes | also include the notation from Sutton & Barto (2018) in gray!
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Introduction - Dynamic programming

Finite Horizon Deterministic Problem

| | |
" staget Future stages ‘

Decision-making: What do | need to take into account?

min, (cost now + future costs)

Cost function:

N—1
J(xt) == Ce(x¢, ur) + Z L (Xk, uk) + En(xn)
k=t+1
Optimal cost function
N—1
Ja) = min Le(xe,u)+ D Gl ue) + n(xn)
upe € Up (k) [t

Solve using Dynamic Programming (DP)
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Principle of optimality

X; Tail subproblem

° 1 1 1 1 - 1 1 1 1 } ®
0 k N

{ug, .o uiy o upy}

o Let {uf,...uy_} denote the optimal control sequence, with the corresponding optimal
state sequence, {x{,...xJ}.

o Consider the tail subproblem at time k, starting at x,°, and minimizes over {uy,...uy_1},
the “cost-to-go” from k to N

N—1
Gl u) D> m(Xm, tm) + Ey(xn)
m=k+1
o Then the tail optimal control sequence{u;,...uy_,} is optimal for the tail subproblem.
v
Principle of Optimality - Every optimal policy consists only of optimal sub policies. J
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Exact Dynamic Programming (DP)

Idea of Exact DP - Make optimal decision in stages

° ' ' ' ' 1 1 1 1 ' } 9
0 N—-1 N
DP recursion - Produces the optimal costs J;(xx) of the xk-tail subproblems
Start with
Iy (xn) = n(xn), for all xy
and forall k=N—-1,N—2,...,0
JZ(X;(): min Kk(xk,uk)+J:+1(f(xk,uk)), for all XN
U €Uk (X ) e~ ——_————
cost now cost-to-go
Then the optimal cost J§(xp) is obtained at the last step
v
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Exact DP algorithm

Go backwards to compute the optimal costs J;(xk)

Start with
In(xn) = n(xn), for all xp

and forall k=N—-1,N—-2,...,0

Ji(xk) = min  L(xi, ug) + i g (F(xk, ug))s for all xy
Uk € Uk (k) et " ey
cost now opt. cost-to-go

Then the optimal cost J*(xp) is obtained at the last step

Go forwards to construct the optimal sequence {uf, ... uy_;}

Given xg, start with

ug €arg  min [lo(x0, uo) + Ji (fo(x0, Uo))], xi" = fo(xo, ugy)-
uo € Up(xo)

Going forward sequentially k =1,2,..., N — 1, we get

up €arg min [0 uk) + S (FCal, ui))] Xpr1 = f(xg, ug).
ug € Uge (x)
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Finite Horizon Stochastic Problem

Xey1 = f(Xe, Ur, we)

u
Xt t @ ‘ 4’@

(X, ur, we)

| | |
" stage t Future stages ‘

Decision-making: What do | need to take into account?

min E {cost now +~future cost}

Policies m = {0, - .., un—1}, sequence of control law that specifies what uy to apply, when at x,
i.e. ug = pg(xx)- The cost is then,

N—1

I (xe) 1= B Le(xe, pue(xe), we) + > 7 7 kO k() + 7w (xn)
k=t+1

Optimal cost
J*(x¢t) := min Jr(x¢)
s

0 < v <1 - Discount factor
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Exact DP solution
Go backwards to compute the optimal costs J; (x)

Start with Jy(xn) = n(xn), for all xy and forall k=N—-1,N—2,...,0

Ji(xk) = min B {l(xi, up, wie) + i (F O, uk)) 3 for all xy
uk € Uk (xk)

Then the optimal cost J*(xp) is obtained at the last step, and the optimal control law p is
constructed alongside J;

Go forwards to construct the optimal sequence {ug,...uxn_4}

Going forward sequentially k =0,..., N — 1, observe xx and apply

up €arg min [E {€(xq, uk, wi) + iy (5 u)) H Xjp1 = f(xg, uge).
uk € Uk (xk)

Bellman Equation

J*(xx) = min )]E {LO(xks up, wi) + I (Xe+1)|xe, Uk }
K

u€ Ug(x

v‘(S):mgxi{Rr 1+ v (5¢41)|St = s, Ar = a}
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Exact DP - lllustrative Example

o Consider a system
Xk+1 = Xk + Uk — Wi

with xx € R, ux € R and wy ~ N(0, 0?)

o OCP:
N—1
min Z(xf + ) + X3
k=0
with N =3

Rawlings & Mayne (2009)
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Exact DP - lllustrative Example
o Consider a system x; 11 = xx + ux — wy with xx € R, ug € R and wy ~ N(0,0?)
o OCP: min ZLV:_OI(X,E + u?) 4+ x3, with N =3

Ik (%) = miny E{0(xic, uk, wic) + S (xk41)}

at stage k = 2
= uj = —0.5x, 3 () = 1.5x3
v
at stage k =1
= uj = —3/5x1, Ji(x1) = 8/5x2
v
at stage k =0
= uf = —8/13xo, I (x0) = 21/26x¢
v
Go backward to compute the optimal cost, go forward to construct the optimal sequence
07 November 2019 13/29

Do 0 AA__.__ (Ano0)
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Issues with Exact DP

o For linear quadratic (LQ) problems optimal control policy: ux = —Kj(xk)
o As N — oo, K=(R+BTPB)"1BTPA

o P is a solution to the Discrete Algebraic Riccati Equation.

But in general, it is difficult to provide such closed-form representations

Curse of dimensionality

"?,ikn E{(xks uks i) + i1 (Xk41)}

o Need to compute (and store) Ji, ; (xk+1)

o compute expectation for each wuy

o minimize over all uy !

Intractable and high dimensional? — Approximate ! J

Bertsekas (2019)
Recht, Annual Review of Control, Robotics, and Autonomous Systems (2019)
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Function ApprOX| mations Functional Approximations and

Dynamic Programming

Richard Bellman and Stuart Dreyfus

Mathematical Tables and Other
Aids to Computation

Vol. 13, No. 68 (Oct., 1959), pp.
247-251 (5 pages)

Polynomial Approximation—A New Computa-
tional Technique in Dynamic Programming:
Allocation Processes

Published by: American

By Richard Bellman, Robert Kalaba, and Bella Kotkin Mathematical Society.

Approximate a complicated/unknown function 7(-) with something simpler!
o Assume access to noisy values of 8% := f(x°), s =1,2,...
o Introduce a parametric architechture - a desirable functional form f(x, 0)
o find  such that f(x,8) & f(x), for all (or most) x

n__ . r I _ps
0—argm9|n2$:f(x,6’) B8

Supervised Learning

o Linear feature-based architecture f(x,0) = 67 ¢(x)

o Nonlinear architecture, e.g. Neural networks?

?Neuro DP, Bertsekas & Tsitsiklis (1996)
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Neural networks

Input Output
layer layer

o Universal function approximators (with a sufficiently rich parameterization)
o Deep NN a key factor in recent RL success stories

o First several layers extract features, and last layers engage in correlating the features

Silver et al, Nature (2016)
Shin et al, Comput. & Chem. Eng (2019)
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Reinforcement learning - High level mind map

1. Value space approximation
o Approximate optimal cost-to-go Jiy1(Xi41)
o Alternatively, approximate the “Q-function” Qk+1(xk+1, Uk+1)

2. Policy space approximation
o optimal policy is complicated

o Use a parametric form for the policies fi(x, 0)

3. Actor-critic
o Given fi, learn J

o Using J improve [i

Approximate DP <  Reinforcement learning < Neuro DP

Powell (2007) Barto & Sutton (1998) Bertsekas & Tsitsikilis (1996)
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Approximation in value space (one-step look ahead)

Consider the DP problem

Approximate min

Discretizati\cin Now cost-to-go

min E {K(Xk, Uy, Wk) + jk+1(Xk+1)}

N

Approximate IE{} Approximate cost-to-go
Certainty equivalence Parametric approximations
Monte Carlo tree search Rollout / MPC

Aggregation

Use ]k+1 instead of J:H and one-step look ahead minimization to construct a suboptimal control
law ﬁk

Bertsekas (2019)
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Sequential DP approximation - Fitted Value lteration

How do we use NN in finite horizon DP?

Start with Jy = ¢y and sequentially train going backwards until k = 0

o Using the cost-to-go approximation from the preceding stage J~k+1(xk+1, 0k), and one-step
look ahead,

o Construct a large number of sample state-cost pairs (Xi, Bi) s=1,2,--- M

B = min E{Zk(x,f,u,Wk)—l—JNkH(f(Xf,u,Wk),GkH)} s=1....M
u€ U (xx)

o Train a parametric architecture ]k(xk, 0x) on the training set (x¢,5;), s =1,2,--- , M

M
n_ . T (oS _ns
0 = arg nglkn ;(Jk(xk,ek) Br)

©

One neural network at each stage !

©

Generate data using the NN trained at the preceding stage (NB! Bias)

But requires a lot of computation! — Use Q-factors!

Bertsekas (2019)
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Q-factors

Cost functions of state-action pairs

Optimal Q-factors are given by,
Qi (x> uge) = E {lie(xie, e, wie) + 1 (xis1) }
which defines the optimal policy and cost-to-go functions as

* . * * . *
pr(xk) € arg min  QF (xk, k), Ji() = min Qg (xk, uk)
, uk € Uy (xk) , . uk € Uy (xx) k

DP algorithm for Q-factors

Qi (xk,u) =E {ék(xk, Uy, wg) + ka"fI Qi1 (F (x> Uk, wi), Uk+1)}
Ujey

o NB! Order of E{-} and min has been reversed!

o R.H.S can be approximated by sampling and simulation

Approximate optimal Q-factors Q} (xx, ux) with Qx (Xks k)
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Sequential Q-factor approximation

Qi (x, uk) =E {fk(xlm g, wi) + ]k+1(xk+1)}

Assuming J~k+1 is available, how to compute the Q-factors “model-free”?

XS
kK,
Simulator or
Training
S .
Ye environment

S
Xk+1

k11

Bi =4 + 3k+1ixi+1)

+

o Train a parametric architecture @k(xk, ug, 0y) on the training set ((xg, u;), 57),

s=12,--- M

M
é\: . A s S 0 __ RS
argrrélkn E (Qr(xz, ug, 0k) — BE)

s=1

After tuning 0, the one-step lookahead control can be obtained online as

fik(xc) € arg min  Qu(x, uk, Ox)
u€ Up (xx)

....all this is done model-free

Bertsekas (2019)
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Q-learning

On policy (SARSA)

Qu %k, k) = L1 (Xiy g, wie) 4 @ry1 (X1, Ukr1)

uk and ug derived from the same policy (on-policy)

Q(St, At) < Q(St, At) + a[Rer1 + Q(St41,Aet1) — Q(St, Ar)]

.
Off policy (Q-learning)
Qe (ki k) = i (i, i, wie) + i Qus1 (Xkr15 Uky1)
Uk+
uy derived from the current policy , but vy is from a different policy (off-policy)
Q(St, At) « Q(St, At) + o[Re1 + TER Q(St+1,a) — Q(St, Ar)]
v

o o - learning rate for incremental learning

Sutton & Barto (2018)
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Value lteration - Infinite horizon

i stages to go

I I I I I I ® I I I

;: 0 T T T T T T ; N _ I_\ T T k ; N
i=N i=0
Fix horizon N and let terminal cost = 0
At k = N — i, we have /i stages to-go and
In—i(x) = min E{l(x,u,w) +vIn—it1(f(x,u,w))}
ueU(x)
Reverse the time index and define Vj(x) = Jy_;(x)
Vi(x) = min E {&(x, u, w) + 1Vi_1(F(x, 1, w))}
ueU(x)
Vkt1(s) = mJaxE{Rﬂl + Yk (Se4+1)|St = s, Ar = a}
VI algorithm : Start at some V and iterate until convergence!
v
Convergence of VI
V*(x) = lim Vy(x) - under some conditions, see Bertsekas (2019)
N— oo )
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Exact Policy Iteration (PI)

1. Policy Evaluation

o Evaluate the cost for a given policy j(x)

Vi(x) = E{l(x, pu(x), w) + v Vi—1(f(x, u(x),w))}
Vir1(s) = E{Rep1 + Yk (Se41)|Se = 5, A = 7(s)}

2. Policy Improvement

n(x) = arg min E{€(x, u, w) +yVi1(Ff(x, u(x), w))}
ueU(x)

Vkt1(s) = arg m?x,\;i {Ret1 + Yvk(Se+1)|S: = s, Ar = a}

h ey e B B e B

Monotonically decreasing (Policy improvement theorem)

Sutton & Barto (2018)
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Approximate Policy Iteration (API)

b g ey B B e B

©

Run the policy for different initial states x° for some number of stages

Accumulate the corresponding discounted cost 3°

©

o Train a parametric architecture V(u(x%),0) using state-cost pairs (x°, 8%)

o Policy improvement

W(x) = arg min E {06, u.w) + Vi1 (Fx 1), w), 0) }

Bertsekas (2019)
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Approximation in policy space

p(x, 7)

Plant

cost

Figure:

o Parameterize the control law u = fi(x, r)
o tune the parameters r to approximate the optimal policy
°

E.g. PID controller with three control parameters !

©

Also similar to extremum seeking control

©

Expert supervisory learning (Surrogate Optimizer)

Bertekas (2018)
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Policy gradient

Direct policy search

min F(z)
F(z) :== 32, v4(xt, ut)
z = (x1,u1,x2, Up,...)

Express as an approx. stochastic
optimization problem

mrin IF:p(z,r){l:(z)}

4= a9 sy )

Policy gradient algorithm

log-likelihood trick

v (3 p(zr)F(2))
=Y Vp(z,r')F(2)
=S p(z.r V’(’izr,')) F(2)
=" p(z,r')Vlog, p(z,r')F(z)

= Epz,n) {V log, p(z, ri)F(z)}

o At r obtain a sample z' according to the distribution p(z, r)

o Compute E,(, i {Vlog. p(z', r)F(z")}
oer. iy ()}

o lterate ritl = ri — aV (IEZ

Note! There are also other (gradient-free) random search approaches, e.g. cross entropy.

Bertsekas (2019)
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Actor-critic

Approximation in value space and approximation in policy space in Pl

Agent
Cn.uc Cost
Policy
Evaluation

Act.or action Dynamic
Policy

. system

improvement

state

Actor-critic
Critic

o Learn the approximate policy evaluation J
Actor

o Given J, improve the approximate policy fi
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Some thoughts

Training Environment
o Need a high-fidelity simulator - Usually not a problem for games...
o Robotics and autonomous driving - laboratory training ($$)...
o What about process & manufacturing industries !?
Training
o Tolerate failure - Learn from mistakes!
o Are we ready to trust it?
PSE - Where in the decision-making hierarchy?
o Does not make sense to replace PID control.
o MPC (a specific case of Rollout approximation!)
o Perhaps more useful in planning & scheduling - integrated decision-making?
o Can assist with optimal tuning? - need to tune hyper-parameters instead !
Look ahead...
o At present, RL is an art.
o DeepMind, Google Brain, facebook, Uber, ....

o |Is academic research following/competing with them?

Thank you !
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What is a “good” approximation?

Good approximation

100 - :
— Qi (k, wr)
— Qi ur
- ( ) |
60
20 P
0
-20 -
3 2 1 0 1 2 3

Q

100

80

60

40

)

-20

Poor approximation

‘ _Qi(zk« uy,)
— Qu(@p, uk)




	What is Optimal Decision-making? - Dynamic Programming
	Where does Machine Learning come into the picture ? 
	Why do we need them? 
	How to use them?

