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“We consider all of the work in optimal control also to be, in a sense, work in RL”

-Sutton & Barto (2018)
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Everyone talks about it...

Source: Uber

Source: Forbes

Source: DeepMind

Source: Boston Dynamics
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... but what exactly is it?

Source: jungle.princeton.edu
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Aim of the talk

Provide a basic understanding of RL in optimal control

1 What is Optimal Decision-making? - Dynamic Programming

2 Where does Machine Learning come into the picture ?

3 Why do we need them?

4 How to use them?
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Introduction - Decision making

µ(·)

Controller
(agent)

xt ut

(state st) (action at)

cost ℓ(xt , ut)

f (xt , ut ,wt)

(environment)

wt

xt+1

System

(next state)

Objective

Take suitable actions ut , based on the current state xt , to control a dynamic (stochastic) system,
such that the overall cost is minimized.

These kind of problems are studied under the context of Dynamic Programming (DP).
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Dynamic programming

Dynamic programming (DP) is a mathematical framework for
solving multistage decision-making problems

.

Richard E. Bellman
(1920-1984)

Any optimization (deterministic/stochastic, discrete/continuous variables etc.) that involves a
sequence of decisions fits the framework

Operations (Inventory management, routing,...)

Control (process control, robotics, path planning,....)

Finance (portfolio management ....)

Manufacturing (planning, scheduling,...)

Games (Chess, Go, ....)
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Notations

Control community

xk
xk+1

uk
`(xk , uk ,wk )
Jk (xk )
Qk (xk , uk )

E{
∑N−1

k=0 `(xk , uk ,wk )}
min(·)
µ(x)
E{`(·) + Jk+1(xk+1)|xk , uk}

AI community

St
St+1

At

Rt+1

v(St)
Q(St ,At)
Gt = Rt+1 + · · ·+ RN

max−(·)
π(a|s)∑

p(s′, r |s, a)[Rt+1 + V (s′)]

AI

state
successor state
action
transition cost/Reward
cost of being in a state
Q-factor
Return/Cost-to-go
Objective
policy/control law
finite action-state space

I will predominantly use the notation from Bertsekas (2019)
Sometimes I also include the notation from Sutton & Barto (2018) in gray!
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Introduction - Dynamic programming

Finite Horizon Deterministic Problem

x0 ...... ut

ℓ(xt , ut)
xt xt+1 xN

stage t Future stages

Decision-making: What do I need to take into account?

minu (cost now + future costs)

Cost function:

J(xt) := `t(xt , ut) +

N−1∑
k=t+1

`k (xk , uk ) + `N(xN)

Optimal cost function

J∗(xt) = min
uk∈Uk (xk )

`t(xt , ut) +

N−1∑
k=t+1

`k (xk , uk ) + `N(xN)

Solve using Dynamic Programming (DP)
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Principle of optimality

0 k N

Tail subproblemx
∗

k

{u∗
0
, ... , u∗

k
, ... , u∗

N
}

Let {u∗0 , . . . u∗N−1} denote the optimal control sequence, with the corresponding optimal

state sequence, {x∗1 , . . . x∗N}.
Consider the tail subproblem at time k, starting at x∗k , and minimizes over {uk , . . . uN−1},
the “cost-to-go” from k to N

`k (x∗k , uk ) +

N−1∑
m=k+1

`m(xm, um) + `N(xN)

Then the tail optimal control sequence{u∗k , . . . u
∗
N−1} is optimal for the tail subproblem.

Principle of Optimality - Every optimal policy consists only of optimal sub policies.
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Exact Dynamic Programming (DP)

Idea of Exact DP - Make optimal decision in stages

0 N − 1 N

DP recursion - Produces the optimal costs J∗k (xk) of the xk -tail subproblems

Start with
J∗N(xN) = `N(xN), for all xN

and for all k = N − 1,N − 2, . . . , 0

J∗k (xk ) = min
uk∈Uk (xk )

`k (xk , uk )︸ ︷︷ ︸
cost now

+ J∗k+1(f (xk , uk ))︸ ︷︷ ︸
cost-to-go

, for all xN

Then the optimal cost J∗0 (x0) is obtained at the last step
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Exact DP algorithm

Go backwards to compute the optimal costs J∗k (xk)

Start with
J∗N(xN) = `N(xN), for all xN

and for all k = N − 1,N − 2, . . . , 0

J∗k (xk ) = min
uk∈Uk (xk )

`k (xk , uk )︸ ︷︷ ︸
cost now

+ J∗k+1(f (xk , uk ))︸ ︷︷ ︸
opt. cost-to-go

, for all xN

Then the optimal cost J∗(x0) is obtained at the last step

Go forwards to construct the optimal sequence {u∗0 , . . . u∗N−1}
Given x0, start with

u∗0 ∈ arg min
u0∈U0(x0)

[`0(x0, u0) + J∗1 (f0(x0, u0))] , x∗1 = f0(x0, u
∗
0 ).

Going forward sequentially k = 1, 2, . . . ,N − 1, we get

u∗k ∈ arg min
uk∈Uk (xk )

[
`k (x∗k , uk ) + J∗k+1(fk (x∗k , uk ))

]
, x∗k+1 = fk (x∗k , u

∗
k ).
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Finite Horizon Stochastic Problem

x0 ...... ut

ℓ(xt , ut ,wt)

xt xt+1 xN

stage t Future stages

xt+1 = f (xt , ut ,wt)

Decision-making: What do I need to take into account?

minE {cost now +γfuture cost}

Policies π = {µ0, . . . , µN−1}, sequence of control law that specifies what uk to apply, when at xk ,
i.e. uk = µk (xk ). The cost is then,

Jπ(xt) := E

`t(xt , µt(xt),wt) +

N−1∑
k=t+1

γk−t`k (xk , µk (xk )) + γN−t`N(xN)


Optimal cost

J∗(xt) := min
π

Jπ(xt)

0 < γ ≤ 1 - Discount factor
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Exact DP solution

Go backwards to compute the optimal costs J∗k (xk)

Start with J∗N(xN) = `N(xN), for all xN and for all k = N − 1,N − 2, . . . , 0

J∗k (xk ) = min
uk∈Uk (xk )

E
{
`k (xk , uk ,wk ) + J∗k+1(f (xk , uk ))

}
, for all xN

Then the optimal cost J∗(x0) is obtained at the last step, and the optimal control law µ∗k is
constructed alongside J∗k

Go forwards to construct the optimal sequence {u∗0 , . . . u∗N−1}
Going forward sequentially k = 0, . . . ,N − 1, observe xk and apply

u∗k ∈ arg min
uk∈Uk (xk )

[
E
{
`k (x∗k , uk ,wk ) + J∗k+1(fk (x∗k , uk ))

}]
, x∗k+1 = fk (x∗k , u

∗
k ).

Bellman Equation

J∗(xk ) = min
u∈Uk (xk )

E {`(xk , uk ,wk ) + J∗(xt+1)|xt , uk}

v∗(s) = max
a

E{Rt+1 + v∗(St+1)|St = s,At = a}
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Exact DP - Illustrative Example

Consider a system
xk+1 = xk + uk − wk

with xk ∈ R, uk ∈ R and wk ∼ N (0, σ2)

OCP:

min

N−1∑
k=0

(x2
k + u2

k ) + x2
N

with N = 3

Rawlings & Mayne (2009)
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Exact DP - Illustrative Example
Consider a system xk+1 = xk + uk − wk with xk ∈ R, uk ∈ R and wk ∼ N (0, σ2)

OCP: min
∑N−1

k=0 (x2
k + u2

k ) + x2
N , with N = 3

J∗k (xk ) = minukE{`(xk , uk ,wk ) + J∗k+1(xk+1)}

at stage k = 2

⇒ u∗2 = −0.5x2, J∗2 (x2) = 1.5x2
2

at stage k = 1

⇒ u∗1 = −3/5x1, J∗1 (x1) = 8/5x2
1

at stage k = 0

⇒ u∗0 = −8/13x0, J∗0 (x0) = 21/26x2
0

Go backward to compute the optimal cost, go forward to construct the optimal sequence
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Issues with Exact DP

For linear quadratic (LQ) problems optimal control policy: uk = −Kk (xk )

As N →∞, K = (R + BTPB)−1BTPA

P is a solution to the Discrete Algebraic Riccati Equation.

But in general, it is difficult to provide such closed-form representations

Curse of dimensionality

min
uk

E{`(xk , uk ,wk ) + J∗k+1(xk+1)}

Need to compute (and store) J∗k+1(xk+1)

compute expectation for each uk

minimize over all uk !

Intractable and high dimensional? → Approximate !

Bertsekas (2019)

Recht, Annual Review of Control, Robotics, and Autonomous Systems (2019)
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Function Approximations

Approximate a complicated/unknown function f (·) with something simpler!

Assume access to noisy values of βs := f (xs), s = 1, 2, . . .

Introduce a parametric architechture - a desirable functional form f̃ (x , θ)

find θ̂ such that f̃ (x , θ) ≈ f (x), for all (or most) x

θ̂ = arg min
θ

∑
s

f̃ (xs , θ)− βs

Supervised Learning

Linear feature-based architecture f̃ (x , θ) = θTφ(x)

Nonlinear architecture, e.g. Neural networksa

aNeuro DP, Bertsekas & Tsitsiklis (1996)
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Neural networks

...

Input

layer

Hidden

layers

Output

layer

Universal function approximators (with a sufficiently rich parameterization)

Deep NN a key factor in recent RL success stories

First several layers extract features, and last layers engage in correlating the features

Silver et al, Nature (2016)

Shin et al, Comput. & Chem. Eng (2019)
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Reinforcement learning - High level mind map

1. Value space approximation

Approximate optimal cost-to-go J̃k+1(xk+1)

Alternatively, approximate the “Q-function” Q̃k+1(xk+1, uk+1)

2. Policy space approximation

optimal policy is complicated

Use a parametric form for the policies µ̃(x , θ)

3. Actor-critic

Given µ̃, learn J̃

Using J̃, improve µ̃

Approximate DP

Powell (2007)

⇔

Barto

Reinforcement learning

Barto & Sutton (1998)

⇔

Barto

Neuro DP

Bertsekas & Tsitsikilis (1996)
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Approximation in value space (one-step look ahead)

Consider the DP problem

min E

{

ℓ(xk , uk ,wk) + J̃k+1(xk+1)
}

uk

Now cost-to-go

Approximate cost-to-go

Parametric approximations

Rollout / MPC

Aggregation...

Approximate E{·}

Certainty equivalence

Monte Carlo tree search

...

Approximate min

Discretization

Use J̃k+1 instead of J∗k+1 and one-step look ahead minimization to construct a suboptimal control
law µ̃k

Bertsekas (2019)
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Sequential DP approximation - Fitted Value Iteration

How do we use NN in finite horizon DP?

Start with J̃N = `N and sequentially train going backwards until k = 0

Using the cost-to-go approximation from the preceding stage J̃k+1(xk+1, θk ), and one-step
look ahead,

Construct a large number of sample state-cost pairs (xsk , β
s
k ), s = 1, 2, · · · ,M

βs
k = min

u∈Uk (xk )
E
{
`k (xsk , u,wk ) + J̃k+1(f (xsk , u,wk ), θk+1)

}
s = 1, . . . ,M

Train a parametric architecture J̃k (xk , θk ) on the training set (xsk , β
s
k ), s = 1, 2, · · · ,M

θ̂ = arg min
θk

M∑
s=1

(J̃k (xsk , θk )− βs
k )

One neural network at each stage !

Generate data using the NN trained at the preceding stage (NB! Bias)

But requires a lot of computation! → Use Q-factors!

Bertsekas (2019)

Krishnamoorthy, Dinesh (NTNU) PhD Defense - Trial lecture 07 November 2019 19 / 29



Q-factors

Cost functions of state-action pairs

Optimal Q-factors are given by,

Q∗k (xk , uk ) = E
{
`k (xk , uk ,wk ) + J∗k+1(xk+1)

}
which defines the optimal policy and cost-to-go functions as

µ∗k (xk ) ∈ arg min
uk∈Uk (xk )

Q∗k (xk , uk ), J∗k (xk ) = min
uk∈Uk (xk )

Q∗k (xk , uk )

DP algorithm for Q-factors

Q∗k (xk , uk ) = E
{
`k (xk , uk ,wk ) + min

uk+1
Q∗k+1(f (xk , uk ,wk ), uk+1)

}

NB! Order of E{·} and min has been reversed!

R.H.S can be approximated by sampling and simulation

Approximate optimal Q-factors Q∗k (xk , uk ) with Q̃k (xk , uk )
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Sequential Q-factor approximation

Q̃∗
k (xk , uk ) = E

{
`k (xk , uk ,wk ) + J̃k+1(xk+1)

}
Assuming J̃k+1 is available, how to compute the Q-factors “model-free”?

Simulator or
Training

environment

x
s

k

u
s

k

x
s

k+1
βs

k
= ℓs

k
+ J̃k+1(x

s

k+1)
J̃k+1

ℓs
k

Transition cost

next statestate

action

sample Q-factor+

Train a parametric architecture Q̃k (xk , uk , θk ) on the training set ((xsk , u
s
k ), βs

k ),
s = 1, 2, · · · ,M

θ̂ = arg min
θk

M∑
s=1

(Q̃k (xsk , u
s
k , θk )− βs

k )

After tuning θk , the one-step lookahead control can be obtained online as

µ̃k (xk ) ∈ arg min
u∈Uk (xk )

Q̃k (xk , uk , θ̂k )

....all this is done model-free

Bertsekas (2019)
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Q-learning

On policy (SARSA)

Q̃k (xk , uk ) = `k (xk , uk ,wk ) + Q̃k+1(xk+1, uk+1)

uk and uk+1 derived from the same policy (on-policy)

Q(St ,At)← Q(St ,At) + α[Rt+1 + Q(St+1,At+1)− Q(St ,At)]

Off policy (Q-learning)

Q̃k (xk , uk ) = `k (xk , uk ,wk ) + min
uk+1

Q̃k+1(xk+1, uk+1)

uk derived from the current policy , but uk+1 is from a different policy (off-policy)

Q(St ,At)← Q(St ,At) + α[Rt+1 + max
a

Q(St+1, a)− Q(St ,At)]

α - learning rate for incremental learning

Sutton & Barto (2018)
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Value Iteration - Infinite horizon

k = 0 k = Nk = N − i

i stages to go

i = 0i = N

Fix horizon N and let terminal cost = 0

At k = N − i , we have i stages to-go and

JN−i (x) = min
u∈U(x)

E {`(x , u,w) + γJN−i+1(f (x , u,w))}

Reverse the time index and define Vi (x) = JN−i (x)

Vi (x) = min
u∈U(x)

E {`(x , u,w) + γVi−1(f (x , u,w))}

vk+1(s) = max
a

E {Rt+1 + γvk (St+1)|St = s,At = a}

VI algorithm : Start at some V0 and iterate until convergence!

Convergence of VI

V ∗(x) = lim
N→∞

VN(x) - under some conditions, see Bertsekas (2019)
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Exact Policy Iteration (PI)

1. Policy Evaluation

Evaluate the cost for a given policy µ(x)

Vi (x) = E {`(x , µ(x),w) + γVi−1(f (x , µ(x),w))}

vk+1(s) = E {Rt+1 + γvk (St+1)|St = s,At = π(s)}

2. Policy Improvement

µ(x) = arg min
u∈U(x)

E {`(x , u,w) + γVi−1(f (x , µ(x),w))}

vk+1(s) = arg max
a

E {Rt+1 + γvk (St+1)|St = s,At = a}

E I
µ V

E I

µ
′

V
′

E I

µ
′′

· · ·

E
µ
∗

V
∗

Monotonically decreasing (Policy improvement theorem)

Sutton & Barto (2018)
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Approximate Policy Iteration (API)

E I
µ Ṽ

E I

µ
′

Ṽ
′

E I

µ
′′

· · ·

E
µ
∗

Ṽ
∗

Run the policy for different initial states xs for some number of stages

Accumulate the corresponding discounted cost βs

Train a parametric architecture Ṽ (µ(xs), θ) using state-cost pairs (xs , βs)

Policy improvement

µ′(x) = arg min
u∈U(x)

E
{
`(x , u,w) + γṼi−1(f (x , µ(x),w), θ)

}

Bertsekas (2019)
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Approximation in policy space

Plant

cost

ux

µ(x , r̂)

Figure:

Parameterize the control law u = µ̃(x , r)

tune the parameters r to approximate the optimal policy

E.g. PID controller with three control parameters !

Also similar to extremum seeking control

Expert supervisory learning (Surrogate Optimizer)

Bertekas (2018)
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Policy gradient

Direct policy search

min
z

F (z)

F (z) :=
∑

t γ`(xt , ut)
z = (x1, u1, x2, u2, . . . )

Express as an approx. stochastic
optimization problem

min
r

Ep(z,r){F (z)}

r i+1 = r i − α∇
(
Ep(z,r i ){F (z)}

)

log-likelihood trick

∇
(∑

p(z, r i )F (z)
)

=
∑
∇p(z, r i )F (z)

=
∑

p(z, r i )
∇p(z, r i )

p(z, r i )
F (z)

=
∑

p(z, r i )∇ loge p(z, r i )F (z)

⇒ Ep(z,r)

{
∇ loge p(z, r i )F (z)

}

Policy gradient algorithm

At r i obtain a sample z i according to the distribution p(z, r i )

Compute Ep(z,r i )

{
∇ loge p(z i , r i )F (z i )

}
Iterate r i+1 = r i − α∇

(
Ep(z i ,r i ){F (z i )}

)
Note! There are also other (gradient-free) random search approaches, e.g. cross entropy.

Bertsekas (2019)
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Actor-critic

Approximation in value space and approximation in policy space in PI

Cost
Critic

Policy

Evaluation

Actor

Policy

improvement

Dynamic

system

action

state

Agent

Actor-critic

Critic

Learn the approximate policy evaluation J̃

Actor

Given J̃, improve the approximate policy µ̃
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Some thoughts

Training Environment

Need a high-fidelity simulator - Usually not a problem for games...

Robotics and autonomous driving - laboratory training ($$)...

What about process & manufacturing industries !?

Training

Tolerate failure - Learn from mistakes!

Are we ready to trust it?

PSE - Where in the decision-making hierarchy?

Does not make sense to replace PID control.

MPC (a specific case of Rollout approximation!)

Perhaps more useful in planning & scheduling - integrated decision-making?

Can assist with optimal tuning? - need to tune hyper-parameters instead !

Look ahead...

At present, RL is an art.

DeepMind, Google Brain, facebook, Uber, ....

Is academic research following/competing with them?

Thank you !
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What is a “good” approximation?

Good approximation
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