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Abstract

In the face of growing competition, and increased necessity to focus on sustainabil-
ity and energy efficiency, there is a clear need to optimize the day-to-day operation
of many industrial processes. One strategy for online process optimization is to
use model-based real-time optimization (RTO). Despite the motivation and the
potential, real-time optimization is not as commonly used in practice as one would
expect. This thesis takes a detailed look at the different challenges that impede
practical implementation of real-time optimization and aims to address some of
these challenges. In brief, this thesis presents novel algorithms and methods rang-
ing from simple control structures, to model-free and model-based optimization
and more complex scenario-based economic model predictive control.

One of the fundamental limiting factors of traditional steady-state RTO is the
steady-state wait time. This essentially discards transient measurements, which
otherwise contains useful information. In part I of this thesis, we propose different
approaches to use transient measurements for steady-state optimization, with the
goal of minimizing the steady-state wait time. Moreover, different algorithms to
real-time optimization that do not require the need to solve numerical optimiza-
tion problems are proposed, thus alleviating many of the computational challenges
which impede practical application of traditional RTO approaches.

First, we propose a “hybrid” approach, where the model adaptation is done with
transient measurements and dynamic models, and the optimization is performed
using steady-state models. To further simplify the steady-state optimization, we
then convert the hybrid RTO approach into a feedback RTO approach. Here, the
transient measurements are used to estimate the steady-state gradient, which is
controlled to a constant setpoint of zero using feedback controllers. The steady-
state gradient is estimated using a novel method based on linearizing the nonlinear
dynamic model around the current operating point.

To address the cost of developing models, we demonstrate the use of classical
controllers where the economic objectives are translated into control objectives. We
also provide a systematic approach to switch between different active constraint
regions using selectors. For the unconstrained degrees of freedom, we then pro-
pose a novel extremum seeking scheme using transient measurements for a class of
Hammerstein systems, where the linear dynamics are fixed. We show that the pro-
posed approach converges significantly faster than the classical extremum seeking
scheme, and provide robust stability margins. Part I concludes by showing that the
different methods work in different time scales, and by hierarchically combining the
different approaches, one can handle a wider class of uncertainties.
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Abstract

In the second part of the thesis, we take a different approach, and focus on
addressing the computational cost of solving dynamic optimization problems un-
der uncertainty. Part II begins with discussing what is a good optimization prob-
lem formulation in the presence of uncertainty. We then consider the multistage
scenario-based formulation, where the evolution of uncertainty in the prediction
horizon is represented via a discrete scenario tree. We show that the resulting
large-scale optimization problem can be decomposed into several smaller subprob-
lems, and argue in favor of using primal decomposition over dual decomposition.
Since the different scenarios differ only in the uncertain parameters, we show that
the distributed multistage scenario optimization problem can be cast as a para-
metric nonlinear programming (NLP) problem. By using the NLP sensitivity, we
can reduce the number of NLPs required to to be solved. By doing so, we show
that the computational cost of solving the multistage scenario-based problem can
be significantly reduced. Finally, the thesis is concluded by providing an overall
understanding of the different approaches to online process optimization in terms
of the degree of complexity and flexibility, the different timescales they work in and
the different kinds of uncertainty each method can handle, which are summarized
in Table 10.2.

To summarize, this thesis shows that there is no one single approach to RTO
that addresses all the challenges. The different approaches to RTO have their own
advantages and disadvantages. The key to addressing the limiting factors of current
industrial practice is to have a clear overview and understanding of the different
RTO approaches in order to select the “right” tool for the problem at hand.
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Preface

The main motivation behind the past three years of my research, culminating in
this thesis, is the realization that real-time optimization is not used as much in
practice as one would expect.

After completing my masters degree in Control Systems from Imperial College
London in 2012, I switched to process control field when I started working at
Statoil Research Center® in Porsgrunn, Norway. This experience gave me valuable
insight into the research-to-practice workflow and the human aspects involved in
successful industrial use of control and optimization. During my time at Statoil, I
noticed that a huge chunk of production data containing valuable information is
often discarded in practice. Naturally, one of the research questions that became
apparent was "how can we use this data efficiently to incorporate this information
in the decision-making process and improve production optimization?"
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Sigurd Skogestad (Department of Chemical Engineering, NTNU) and Prof. Bjarne
Foss (Department of Engineering Cybernetics, NTNU) were eager to take me on
as their PhD Student. Finally, in late July 2016, I started my PhD studies. Over
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Chapter 1

Introduction

The safe and optimal operation of large and complex industrial processes requires
meeting goals and objectives in different time scales ranging from long-term plan-
ning and scheduling to fast corrective actions for stable operation. Realizing all the
goals and constraints as a whole can be a very challenging and unrealistic task,
especially if formulated as a single centralized optimization and control problem.
Thus, the operation of any process is typically decomposed into various decision
making layers [168, Ch.10], [46]. Such a hierarchical implementation is a widely ac-
cepted industry standard [34] and is also well studied in academic literature under
the context of plantwide control, see for e.g. [165], [167],[110] and [141] to name a
few.

A typical control system hierarchy is shown in Fig.1.1, where the time horizon
for the decisions are clearly shown for each layer. The information flow in this
control hierarchy is such that the upper layers provide setpoints to the layer below,
which reports back any problems in achieving this [165].

The long term decisions involve selecting an investment strategy, operation
model, infrastructure etc., which is typically known as Asset management. Then
there are decisions taken on a horizon of days such as plantwide scheduling. This
is followed by decisions that have to be taken on decision horizon in the timescale
of hours known as Real-time Optimization (RTO). This decision making step is
the main focus of this thesis. It aims to maximize the revenue and minimize the
operational costs of hour-by-hour operations, thereby optimizing the economics
of the process. This is followed by a faster control and automation layer that
accounts for fast corrective actions. The control layer could be broadly divided
into supervisory and regulatory layers, where the objective of the supervisory layer
(such as model predictive control) is to track the reference trajectory provided by
the RTO layer and to look after other variables and constraints. On the other hand,
the primary objective of the regulatory layer is to stabilize and avoid drift in the
variables.

The upper three layers in Fig.1.1 explicitly deals with the optimal economic
operation of the process. Generally, there is more multivariable coordination as we
move upwards in the hierarchy [168]. The economic optimization of any process
performance in the context of real-time optimization is becoming more crucial in
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Figure 1.1: Typical control hierarchy in process control

the face of growing competition, increasing demands, and the necessity to focus
on sustainability and energy efficiency. Process optimization directly enables safe
operation, cost reduction, improving product quality and meeting environmental
regulations and this is the main focus of the RTO layer.

A widely accepted definition of real-time optimization is that it is a work flow
where the decision variables are optimized using the system model and the economic
model along with the process constraints by solving some kind of mathematical
optimization [63]. In order to account for process disturbances and plant-model
mismatch, there has been advancements in measurement-based optimization that
adjust the optimal inputs in real-time, hence defining RTO as a workflow that
optimizes process performance by iteratively adjusting the decision variables using
measurement data [28]. A good overview and classification of the different RTO
methods can be found in [28] and [170].

In many process control applications, real-time optimization uses nonlinear
steady-state process models to compute the optimal setpoint at steady-state opera-
tion [158]. The justification for using steady-state models is twofold; 1) the economic
operation of the plant often occurs at steady-state operation, 2) steady-state mod-
els are more easily available and can be much simpler [158]. RTO is also provided
with constraints such as process and equipment constraints, storage and capacity
constraints, product quality constraints etc. In addition, RTO uses an economic
model that constitutes the cost of raw material, value of the products, operational
costs, environmental regulations etc. to evaluate the economics of operation.

Traditionally, RTO implementation is based on steady-state nonlinear models
that are parameterized by a set of unknown or uncertain parameters, which are
updated using measurement data. The updated model is then used to compute the
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optimal set of decision variables by solving a numerical optimization problem. The
repeated identification and optimization scheme using steady-state models is used
in many commercial RTO software packages [22].

Despite the economic benefits and promises, traditional real-time optimization
is not used commonly in practice. Consequently, the full potential of RTO is not
exploited in process industries. Therefore, the main research question that this
thesis deals with is,

“Why s traditional real-time optimization not commonly used in
industry, and how can these challenges be addressed?”

1.1 Challenges with traditional RTO

The main challenges which limits the industrial use of RTO include:

e Challenge 1 - Cost of developing the model (offline).

e Challenge 2 - Model uncertainty, including wrong values of disturbances
and parameters (online update of the model).

e Challenge 3 - Numerical robustness, including computational issues of solv-
ing optimization problems.

e Challenge 4 - Frequent grade changes, which makes steady-state optimiza-
tion less relevant.

e Challenge 5 - Dynamic limitations, including infeasibility due to (dynamic)
constraint violation.

e Challenge 6 - Problem formulation - choosing the right formulation for the
right problem.

The different challenges, along with the solutions proposed in this thesis for
each challenge is described below.

Challenge 1: Cost of developing model

The cost of developing a model is the biggest bottleneck in the traditional RTO
paradigm. Developing good first principle-based models is often challenging and
expensive, especially for new application areas with limited domain knowledge. In
addition, lack of knowledge or model simplification lead to mismatch between the
physical models used in the optimizer and the real system. With increasing com-
plexity of many industrial processes, simplified first-principle models are insufficient
to accurately capture the system behavior.

Proposed solution: Model-free optimization approaches such as extremum seek-
ing control as proposed in Chapter 5 may be used to circumvent the need for devel-
oping complex models. In addition, Chapter 4 proposes a systematic approach to
using classical feedback controllers and simple logic structures to switch between
active constraint regions. Machine learning approaches may also be used to address
this challenge as briefly discussed in Appendix M.
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Challenge 2: Online update of the model

Since traditional RTO uses steady-state models, the model adaptation step must
be carried out using measurements that corresponds to steady-state operation.
A steady-state detection algorithm is used to detect if the process is operating
at steady-state conditions. This is known as steady-state wait time. In a recent
review paper on current practices of RTO, Darby et al. [34] concludes that a fun-
damental limiting factor of RTO implementation is the steady-state wait-time as-
sociated with the online update of the model. If the process is frequently subject
to disturbances, or if the settling times are rather long, this can lead to the plant
being operated in transients for significant periods of time. With the inadequacy
of steady-state conditions, the model is not updated frequently, leading to wrong
values of disturbances and parameters in the model. Consequently the plant is
operated suboptimally for long periods of time.

Proposed solution: To address the problem of steady-state wait time, several
different approaches are proposed in this thesis. In Chapter 2, we propose a “hy-
brid” combination of steady-state and dynamic RTO approach, where transient
measurements are used in the traditional two-step steady-state RTO paradigm. In
addition, this thesis also proposes different alternative approaches to RTO that
use transient measurements. For example, a novel model-based gradient estima-
tion scheme using transient measurements is proposed in Chapter 3, that does not
require the steady-state wait time. Chapter 5 proposes a novel dynamic extremum
seeking scheme using transient measurements that results in a significantly faster
convergence to the optimum, since it does not require the static map assumption
(unlike most extremum seeking schemes). Additionally, the different methods pro-
posed in Chapters 4 and 6 also use transient measurements, hence eliminating the
need for steady-state wait time.

Challenge 3: Computational issues and numerical robustness

Solving numerical optimization problem to compute the optimal setpoints, leads
to high computational effort. Although the computational cost is considerably less
for solving steady-state optimization problems than dynamic optimization prob-
lems, the optimization problem may still fail to converge for large-scale processes
(numerical robustness). Therefore, there is a clear need to develop alternative ap-
proaches to RTO that does not require solving numerical optimization problems
online.

Proposed solution: To avoid solving numerical optimization problems online,
we propose to convert the steady-state optimization problem in to a feedback con-
trol problem, where the inputs are directly manipulated based on the feedback
measurements. The Hybrid RTO approach in Chapter 2 is converted to a feed-
back problem in Chapter 3. A systematic approach for using classical feedback
controllers along with advanced control elements such as selectors is proposed in
Chapter 4, which avoids the need for a separate optimization layer. Extremum

4
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seeking control proposed in Chapter 5 and the combination of extremum seeking
control and self-optimizing control in Chapter 6 are also based on feedback control.

Challenge 4: Frequent grade changes, which make steady-state
optimization less relevant

Processes with frequent changes in feed, product specifications, market distur-
bances, frequent grade transitions, cyclic operations and batch processes etc. make
traditional steady-state RTO less relevant. Such cases require dynamic optimiza-
tion methods (e.g. Dynamic RTO or economic NMPC). However, solving dynamic
optimization problems are computationally intensive, even with today’s comput-
ing power (cf. Challenge 3). This challenge grows even more in the presence of
uncertainty. In this case, one cannot avoid solving numerical optimization prob-
lems. Hence, there is a need to address the computational cost of solving dynamic
optimization problems [25, 49].

Proposed solution: In the presence of uncertainty, this thesis considers the
multistage scenario-based formulation in the context of economic NMPC. Algo-
rithms proposed in Chapters 9 and 10 deals with addressing the computation time
of multistage economic NMPC by using decomposition methods and parametric
optimization concepts.

Challenge 5: Dynamic limitations, including infeasibility due to
(dynamic) constraint violation

The optimal solutions computed by the optimization layer is often provided as set-
points to the controllers in the automation layer. It may happen that the setpoints
are not feasible for the lower level controllers, and may violate the constraints dy-
namically. This may be due to the unmodeled effects in the optimization layer or
due to the multivariable coupling between the different control loops that are not
taken into account in the optimization layer.

Proposed solution : This challenge can be addressed by using a setpoint track-
ing NMPC in the supervisory control layer for multivariable constrained control as
shown in Chapter 2.

Challenge 6: Problem formulation - choosing the right
formulation for the right problem

Problem formulation is probably one of the most important, and conceptual chal-
lenges with online process optimization. With developments in different alternative
approaches to process optimization, ranging from traditional model-based formu-
lation, to economic MPC, extremum seeking control, classical feedback control,
modifier adaptation etc., a proper understanding of the advantages and disadvan-
tages of the different approaches is lacking. Often, the different approaches are
seen as competing to one another. There is no single available formulation that
addresses all the challenges above.
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Industrial processes differ in their infrastructure (available sensors and manip-
ulators, computational platforms etc.), value chain (which affects the objective
function) and safety criticality (robustness vs. performance) to name a few. For
example, in many applications, the economic gain by using dynamic optimization
may be negligible, while in others it may not be. In general, there is a lack of
consensus in the literature on the use of steady-state versus dynamic problem for-
mulation. Some applications may call for fast disturbance rejection, while some
other applications can tolerate disturbances for a longer period of time. In the
presence of uncertainty, some applications may require hard robust constraint sat-
isfaction at the cost of conservativeness (safety criticality), while it may not be
the case in some other applications. Understanding the needs of the application
at hand, and choosing the right formulation is therefore a key factor in successful
industrial application of real-time optimization.

Proposed solution: The different approaches to RT'O are not contradictory, but
indeed complementary. This is demonstrated in Chapter 6 using self-optimizing
control and extremum seeking control. Furthermore, in the conclusion section
(page 185), we attempt to provide an overview of the different approaches, com-
paring the advantages and disadvantages of the different approaches, in the hope
that this might serve as a guideline/cheat-sheet in choosing the right problem for-
mulation. Chapter 7 particularly considers the problem formulation of economic
NMPC under uncertainty and proposes the multistage scenario-based formulation
as one of the promising alternatives, that provide a certain degree of flexibility in
the problem formulation.

Challenges related to human aspects

When considering our research question “ Why is traditional real-time optimization
not commonly used in industry?”, one cannot ignore the human aspects. Besides
the different technological challenges discussed above, one of the main bottlenecks
to widespread application of real-time optimization, arises from human aspects that
include the end-user’s ability to learn, understand, and use the technology over a
prolonged period of time. A recent industrial survey published in the International
Federation of Automatic Control (IFAC) newsletter [153] aptly identifies people
and human aspects as one of the major components when addressing challenges
related to adopting new technology. This is also pointed out by several researchers
in the field of process control and optimization, see for e.g. [49, 126, 129] to name
a few. Indeed, most practitioners will also point to challenges related to human
aspects as the most important among all the challenges listed here. The human
aspects can be broadly divided into corporate culture and technical competence.

Corporate culture : Corporate culture forms the foundation of how an organi-
zation works, and plays a vital role in adopting a new technology. The corporate
culture in some organizations may be such that, major changes such as deployment
of new technology are resisted. Instead, one prefers “trusted” technology in order to
minimize liability [129]. “Operator confidence” is another important aspect, as they

6
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are the end users. Failure to gain operator confidence will lead to an unsuccessful
implementation of the technology.

Technical competence : Lack of competence and training is another major
issue when adopting advanced optimization tools. Models and optimization tools
require regular maintenance and re-tuning, in order to sustain the performance
improvements. For example, changes in feed conditions, instrument and equipment
degradation and changes in process equipment leads to performance degradation
over time. The expected benefits from using online optimization tools are at a risk,
without regular monitoring and maintenance [49]. This was also pointed out on a
special report on process control in the Oil and Gas Journal [163].

Since the optimization layer is generally a multivariable and large-scale prob-
lem, the complexity and the understanding of the optimization concepts presents
key challenges for the end users, as also previously pointed out by Qin and Badg-
well [139] and Mayne [125]. Often, expert knowledge is required to perform the
maintenance, which may be limited in the organization'. With increasing number
of applications, there is a paucity of skilled engineers to provide maintenance and
support, to sustain the benefits. As noted by Forbes et al. [49], skilled engineers
involved in the initial implementation are often not available for maintenance, re-
sulting in performance degradation, and the application being turned off by the
operators.

Therefore, when addressing the different challenges listed in Section 1.1, it is im-
perative to take into account the human aspects. The different methods proposed in
thesis are also influenced by the challenges related to human aspects. The method
proposed in Chapter 4 is the perfect example of this, since it is based on classical
control tools and simple logic blocks that have been in use for several decades in the
process industry. In Chapter 7, we again consider the human aspects when justify-
ing the multistage formulation as a promising approach to dynamic optimization
under uncertainty.

1.2 Main contributions of the thesis

The main contributions of this thesis are the novel methods and algorithms that
are proposed in the different chapters to address the challenges listed above. The
key contributions? are now listed chapter-wise:

Chapter 2

e Hybrid RTO approach with dynamic model update and steady-
state optimization to avoid steady-state wait time.

o Application - Demonstrated using an oil and gas production optimization
problem with 2 wells in the chapter and 6 wells in [105].

1This is also my first-hand experience from Statoil.
2theory in bold and application in italics
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Chapter 3
e A novel gradient estimation algorithm using nonlinear models and
transient measurements (Theorem 3.1).

o Application - Demonstrated using a CSTR process with 2 components in the
chapter. This method was also successfully tested on a 3-bed ammonia reactor
example [18], oil and gas production optimization with 2 wells [96] and 6
wells [100], evaporator process [103], isothermal CSTR with 4 components
[89], which are all appended to this thesis.

Chapter 4
e Linear gradient combination (4.9) as optimal controlled variables
(Theorem 4.1).

e Systematic approach to designing selectors for CV-CV switching
(Theorem 4.2).

o Application - Demonstrated using a CSTR process with 2 components and an
oil and gas production optimization problem with 6 wells, and an isothermal
CSTR process with 4 components in the chapter. The appendix includes an
experimental evaluation of this approach for optimal operation of an electrical
submersible pump lifted well.

Chapter 5

e Novel dynamic extremum seeking scheme with fixed linear dynam-
ics for Hammerstein systems.

¢ Bounds on neglected linear dynamics for robust stability.

e Application - Demonstrated using a pressure oscillation damper in lean burn
combustors.

Chapter 6

e Hierarchical combination of extremum seeking control and self-
optimizing control for improved performance.

o Application - Demonstrated using a 3-bed ammonia reactor example.

Chapter 8

o Application - Application of multistage scenario-based MPC' to an oil and
gas production optimization problem.

Chapter 9

e A Distributed multistage scenario MPC framework using primal
decomposition to ensure feasibility of the non-anticipativity con-
straints (Algorithm 9.2).

e A backtracking algorithm to choose the step-length in the master
problem (Algorithm 9.1).
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o Application - Demonstrated using a CSTR process with 2 components in the
chapter, in addition to an oil and gas production optimization problem [9/],
which is appended to the thesis.

Chapter 10

e A sensitivity-based distributed multistage scenario MPC to reduce
the number of NLPs that needs to be solved (Corollary 10.2 and
Algorithm 10.1).

o Application - Demonstrated using a CSTR process with 2 components.

In addition to the different methods and algorithms proposed, perhaps one of the
important contributions of this thesis is that it aims to provide an overview and
a clear understanding of the different approaches to online process optimization,
which is summarized in Table 10.2. Although chapter 7 does not present any novel
material, it presents interesting discussions on optimization problem formulation
under uncertainty.

Some other minor contributions include:

e A systematic approach to select the discrete scenarios for multistage NMPC
from historical process data using principal component analysis (see Ap-
pendix K).

e Algorithm to shrink the uncertainty set online using recursive Bayesian weight-
ing for time-invariant parametric uncertainty in the context of multistage
scenario MPC (See Appendix L)

1.3 Structure of the thesis

Part I - The first part of the thesis deals with optimal steady-state opera-
tion and looks into how transient measurements can be used in order to address
the steady-state wait time problem. In addition, it also presents some algorithms
to achieve optimal operation without the need to explicitly solve numerical op-
timization problems online. To address the challenge of developing models, some
model-free optimization tools are also presented in Part I. In general, Part I of this
thesis deals with the use of “simple” tools for RTO, that are motivated by industrial
needs.

Part IT - The second part of the thesis deals with dynamic optimization prob-
lem, and in particular addresses the problem of computation cost of solving the
economic NMPC problem. To handle uncertainty in the economic NMPC problem,
we consider the multistage scenario-based problem formulation, which we propose
to solve using primal decomposition, in order to ensure close-loop implementation.

9
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Finally, an overview of the different RTO approaches are summarized in Ta-
ble 10.2. The thesis concludes with some useful discussions and preliminary ideas
that paves the way for future research directions.

Chapters 1-11, that presents the main contributions, are all based on journal
publications. All other peer-reviewed publications that are not included in Chapters
1-11, are appended to this thesis.

1.4 Industrial relevance and impact

As mentioned earlier, the main research focus of this thesis is motivated by the
realization that real-time optimization is not used as much in practice as one would
expect. We consider the different challenges in detail and provide various solutions
to address the different challenges listed above. Furthermore, the method proposed
in Chapter 4 may be immediately applicable in practice, since this is based on
classical feedback controllers and simple logic blocks that are used widely in process
industries.

The different approaches and algorithms proposed in this thesis are based on
control technologies that have a high impact on industry. In April 2019, the in-
dustrial committee of the International Federation of Automatic Control (IFAC)
published a list of control technologies along with its current and future impact
[153] (A survey article with very similar conclusion was also published in the IEEE
Control Systems Magazine [152]). Comparing the survey results in [152, 153], it can
be seen that the different methods and algorithms proposed in this thesis are in
fact based on the top five control technologies listed in this survey. This is shown in
Table. 1.1, which is indicative of the industrial relevance and impact of this thesis,
now and in the future.

Table 1.1: Control technologies used in this thesis, along with its impact based on
the industrial survey from the 2019 IFAC newsletter[153]

Control Current  Future  Used in
Technology Impact Impact  Chapter
PID control 91% 78% 3,4,6
System Identification 65% 72% 5
Estimation and filtering 64% 63% 2,3,8
Model Predictive Control 62% 85% 2,7-10
Process Data Analytics 51% 70% App K,L
Fault detection 48% 8% -
Decentralized /coordinated control | 29% 54% 9,10
Robust Control 26% 42% -
Intelligent Control 24% 59% -
Nonlinear Control 21% 42% -
Discrete-event systems 24% 39% -
Adaptive Control 18% 44% -
Repetitive Control 12% 17% -

Other advanced control 11% 25% -
hybrid dynamical systems 11% 33% -

Game theory 5% 17% -

10
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Chapter 2

Steady-State Real-Time
Optimization using Transient
Measurements

In order to address the steady-state wait time, this chapter proposes a
“hybrid” approach where the model adaptation is done using dynamic
models and transient measurements and the optimization is performed
using steady-state models. The proposed Hybrid RTO provides similar
performance to dynamic RTO, at computation times similar to steady-
state RTO.

Based on the article published in Computers and Chemical Engineering [95].

2.1 Introduction

Although there have been recent developments in different approaches to RTO
[28], the most common approach to commercial RTO implementation is the so-
called two-step model-adaptation approach [29], [123] as shown in Fig. 2.1. The
steady-state model used in this approach is parameterized by a set of unknown
or uncertain parameters, which are updated using measurement data in the first
step. In the second step, the updated model is used to compute the optimal set
of decision variables by solving a numerical optimization problem. The repeated
identification and optimization scheme using steady-state models is used in many
commercial RTO software packages [22].

However, traditional steady-state RTO faces some challenges, which limits its
industrial use as described in Chapter 1. In a recent review paper on current prac-
tices of RTO [34], the authors conclude that a fundamental limiting factor of RTO
implementation is the steady-state wait-time associated with the online update of
the model. Since only steady-state models are used, the model adaptation step
must be carried out using measurements that correspond to steady-state opera-
tion. If the process is frequently subject to disturbances or, if the settling times are
rather long, this can lead to the plant being operated in transients for significant
periods of time. With the inadequacy of steady-state measurements, the model is
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not updated frequently. Consequently the plant is operated suboptimally for long
periods of time.

Darby et al. [34] briefly suggest the approach of using dynamic terms that would
impact only the model adaptation step as a potential research direction to address
this issue. In this chapter, we further analyze the approach of using dynamic model
adaptation and transient measurements. We show that by using a hybrid approach
with dynamic models for estimation together with steady-state models for opti-
mization, the problems with steady-state detection (SSD) and model adaptation
can be handled more efficiently, hence leading to an efficient RTO implementation.

The main contribution of this chapter is the hybrid RTO approach (i.e. steady-
state optimization with dynamic model adaptation) that directly addresses the
issue of steady-state wait-time.

The rest of the chapter is structured as follows: A brief review of traditional
RTO structures and the implementation issues are provided in section 2.2. Mod-
ifications to the traditional RTO approach are proposed in section 2.3 which are
illustrated using an application example in section 2.4. Discussions on the use of
steady-state versus dynamic problem formulation is provided in section 2.5 before
concluding the chapter.

2.2 Traditional RTO

2.2.1 Steady-state RTO (SRTO)

The traditional steady-state RTO implementation in Fig. 2.1, based on the two-step
approach, is briefly summarized below:

e Steady-state detection and data pre-processing - This initial step detects if the
plant is operating close enough to steady-state, to start the RTO sequence.

e Steady-state parameter estimation (Step 1) - The model parameters are ad-
justed to match the current data, using regression techniques. The parameter
estimation step usually consists of data reconciliation and model adaptation.
The measurement data is screened for unreasonable data such as gross er-
rors, for example based on material and energy balances. Suitable actions are
taken to rectify or eliminate any erroneous data before it is used to update
the model. Considerable process knowledge may be required to decide which
model parameters needs to be updated as noted by Seborg et al. [158, Ch.19]
and Quelhas et al. [140].

e Steady-state Optimization (Step 2) - Given an objective function, process
constraints and an updated model, the optimum setpoints are computed using
mathematical optimization methods.

The setpoints computed by the RTO are then provided to the lower layer super-
visory control, where a dynamic optimization problem may be solved online, typi-
cally using simplified linear models with constraints (in the framework of NMPC)
to minimize the deviation of the measurements from the setpoint over a period of
time. Fig. 2.1 shows a typical RTO structure, where the steady-state process data
is used for adapting the steady-state model which is used in the steady-state RTO.
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Figure 2.1: Traditional RTO with steady-state model adaptation and steady-state
optimization.

Consider a process described by a discrete-time nonlinear model,

X1 = f(xg, ug, di) (2.1)
Vi = h(xg, ug)

where x; € R™ u; € R™ and y;, € R™ are the states, process inputs and process
measurements at time step k respectively. The model is parameterized by a set of
time-varying parameters and disturbances jointly represented by dy € R"<. The
model equations are represented by f : R"» x R"» xR™ — R™* and h : R"* xR —
R™v.

Let the steady-state counterpart for this model be described by,

y = fis(u,d) (2.2)

where fgs : R"* x R™ — R™ describes the steady-state input-output equilibrium
map.

Once the plant is operating at steady-state, the model parameters are updated
using the steady-state measurements (step 1 of 2). The model parameter adaptation
scheme is based on minimizing the error between the model predicted value and
the measurement data.

The updated parameter vector d,, is then used in the optimization problem
(step 2 of 2). The optimization problem then computes the optimal setpoints y*P
that optimizes the process performance, while satisfying process and operating
constraints. The steady-state optimization problem using the two-step approach
for this system can thus be stated mathematically as follows,

Step 1: Steady-state Estimation
ak = arg Il’éln Hy"was - fss(uka dk:) ||§ (23)
k
Step 2: Steady-state Optimization
u;; = arg min J(y,u) (2.4)
u
s.t.y = fis(u, dk)
gly,u) <0
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Figure 2.2: Dynamic RTO with dynamic model adaptation and dynamic optimiza-
tion.

where yeqs € R™ denotes the measurements from the plant, J : R™ x R"v — R
describes the objective function, g : R™* x R™ — R"e describes vector of non-
linear constraints that may be imposed such as process and operating constraints
including bounds on the process inputs and outputs. Note that J and g are not
directly dependent on the disturbances d, but implicitly via the process outputs y
governed by the model (2.2).

Challenges with steady-state detection Many commercial RTO software
uses either statistical methods or heuristic methods or a combination of both to
verify the stationarity of the data for a fixed window length in the past. A detailed
description of the different steady-state detection routines used in commercial RTO
systems can be found in [22]. Tolerances are specified by the user to determine if
the process is “close enough” to steady-state and, the process is said to have reached
steady-state when all the measurements are within the specified tolerances [26]. If
the tolerances are specified without proper evaluation of the data window length,
then the steady-state detection might erroneously accept transient data as station-
ary data. Using transient data to update steady-state models results in estimation
errors, which are then propagated to the optimization routine. Camara et al. [22]
demonstrated this issue using data from a real industrial application.

Another challenge in many processes is that, it may be frequently subject to
disturbances. This results in the process being operated mostly at transients, thus
hindering model adaptation. This is further worsened if the process has long settling
times. In such processes, the model parameters are not updated frequently due to
inadequate availability of steady-state measurements. Consequently, the process
may be operated suboptimally for long periods of time, until the model parameters
are updated again.

2.2.2 Dynamic RTO (DRTO)

In the recent past, there has also been many developments in the use of Dynamic
RTO (DRTO) and the closely related economic nonlinear model predictive control
(economic NMPC), that provides an optimal input trajectory using a dynamic
model instead of a steady-state model. Consider the dynamic system (2.1), the
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two-step approach to dynamic RTO at each time step k can be given by,

Step 1: Dynamic Estimation
ak = arg Hcllin ||Y'meas,k - h(xka uk)H (25)
k

st xp = f(xp—1,up—1,dg—1)
Step 2: Dynamic Optimization
N-1
u; = argmin Z J(yk,u) (2.6)

=0

St X1 = f(Xk, ug, &k)
yr = h(xp, ug)
g(yr,ug) <0
Xy = &t Vke{0,...,N -1}

where the subscript (-); represents each sample in the optimization horizon of
length N and, &; represents the state estimate at the current time step.

Although the use of dynamic models for model adaptation and optimization
may eliminate the requirements of steady-state detection, solving dynamic non-
linear optimization problem for large-scale systems may be challenging, even with
today’s computing power. Campos et al. [25] points out that, many numerical is-
sues associated with DRTO must be addressed before it can be widely implemented
in industrial applications. In addition, the dynamic model requires additional pa-
rameters, including a model of the lower-layer control system. Steady-state RTO
is therefore still more prevalent in many industrial applications.

Steady-state RTO uses the same steady-state model in both the steps of the
two-step approach. Similarly, dynamic RTO uses the same dynamic model in both
the steps of the two-step approach. To address the computational challenges in
dynamic optimization and to address the steady-state wait-time issue in steady-
state RTO, a “hybrid RTO” structure can be considered, where dynamic models
are used in the model adaptation step and steady-state models are used in the
optimization step.

2.3 Hybrid RTO (HRTO)

If the primary objective is to optimize the steady-state performance of the process,
then dynamic terms in the model needs to be introduced only in the model adap-
tation step. When dynamic models are used in the model adaptation, transient
data can be used to update the model, without the need to discard big chunks of
data. The updated model parameters can then be used in the steady-state model
used in the optimizer, as shown in Fig. 2.3. To illustrate this, consider the discrete
dynamic model (2.1) and the corresponding steady-state model (2.2). The model
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Figure 2.3: Hybrid RTO with dynamic model adaptation and steady-state opti-
mization.

adaptation via the two-step approach would then be given by,

Step 1: Dynamic Estimation
dy = arg min [[Yomeas & — B(xk, u)]| (2.7)
k

st xp = f(xp_1,up—1,dr—1)
Step 2: Steady-state Optimization
uy,, = arg m&n J(y,u) (2.8)

sty = fis(u,dy)
g(y,u) <0

At every time step k, the dynamic model estimator provides the estimate of the
uncertain variables ak and, the steady-state optimization problem is solved with
the updated model to find the new optimal steady-state operating point. There-
fore, as opposed to the traditional steady-state RTO, the steady-state optimization
problem in the hybrid RTO approach is solved at each time step k and the resulting
optimal setpoints are provided to the setpoint tracking control.

Development of model-based control design around 1960s, together with sem-
inal works such as the Kalman filter [78], led to the development of identification
theory in control literature. Different methods exists today that can be used to
estimate the unknown variables in a dynamic model. Some of the methods that are
commonly used include, but are not restricted to, recursive least squares estima-
tion, nonlinear Kalman filter variants such as extended Kalman filter (EKF) and
unscented Kalman Filter (UKF), optimization-based methods such as the moving
horizon estimator (MHE) etc. In the reminder of this chapter, we consider the
Hybrid RTO approach using an extended Kalman filter for online parameter esti-
mation. The use of EKF where parameter estimation is the focus can be found in
several examples in literature [164]. The framework of using an extended Kalman
filter for combined state and parameter estimation can be found in Appendix B.

Modeling effort - In most chemical processes, the so-called first principle mod-
els used in RTO applications are based on the conservation of mass, energy and
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momentum, which naturally gives rise to ordinary differential equations (ODE).
Additional algebraic equations may be specified to model unknown variables, such
as flow through an orifice, hydrostatic and frictional pressure drop, reaction stoi-
chiometry, equation of state etc. Once the mathematical models have been defined
for a single control volume, multi-staged models such as distillation columns or
models with many control volumes can be easily modeled by joining up the same
number of mathematical models. A good overview of mathematical modeling for
many typical chemical processes can be found in [52].

Often, a chemical engineer starts out the modeling task using dynamic equa-
tions. The dynamic models developed using physical principles are converted to
steady-state models by setting all the derivative terms to zero, [52]. In many cases,
the development of models for dynamic estimation may require little extra model-
ing effort. However, dynamic models require additional parameters including mass
and energy holdups. In addition, the dynamic model used for dynamic optimization
(DRTO) needs a model of the lower-layer control system. In the hybrid RTO case
(HRTO), where the dynamic model is only used for parameter estimation, a sim-
pler representation of the lower level control system may be sufficient, for example,
by not including the control system or assuming perfect control.

Developing and maintaining a dynamic model for the model adaptation step can
be justified, if the performance improvement is significant when using the hybrid
RTO approach, since this enables better RTO implementation.

2.4 Illustrative example - Oil production optimization

We now demonstrate the use of the hybrid RTO (HRTO) approach and compare it
to traditional steady-state RTO (SRTO) and dynamic RTO (DRTO). We consider
a gas lifted well network consisting of n,, = 2 gas lifted wells connected to a
common riser manifold, as shown in Fig. A.1. In oil production wells, when the
reservoir pressure is not sufficient to lift the fluids to the surface economically,
artificial lift methods are used to boost the production from the wells. Gas lift is
one such widely used artificial lift method where compressed gas is injected at the
bottom of the well to reduce the density of the fluid column inside the well, thus
reducing the pressure drop in the well tubing. The fluids from the reservoir enters
the well tubing and mixes with the lift gas. The mixture then flows through the
common riser manifold and finally enters the topside processing facility such as a
separator where the oil and gas phases are separated. The production network may
be constrained by total gas processing capacity or the total gas that is available
for gas lift injection. The objective of the production optimization problem is to
compute the gas lift injection rate for each well such that the total oil production
is maximized while satisfying operational constraints.

Production from a cluster of N = {1, -+ ,n,} gas lifted wells is modeled (see
Appendix A). The process is described as semi-explicit index-1 DAE system of the
form.

x =F(x,z,u,d) (2.9)
G(x,z,u,d) =0 (2.10)
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where x € R™ and z € R"= represent the differential and algebraic states respec-
tively, u € R™ represents the degrees of freedom, which are the gas lift injection
rates for each well wy,. d € R™¢ represents the vector of uncertain variables. In
this work, we consider the gas-oil ratio (GOR) from the reservoir for each well to
be the disturbance.

The steady-state optimization problem for such a system can be written as

max J = <$o Z Wpo, — $g1 Z wgli> (2.11a)

wgli

ieN ieN
s.t.
F(x,z,u,d) =0 (2.11b)
G(x,z,u,d) =0 (2.11c)
Z Wpg; < We, 0, (2.11d)
ieN

where $, and $; prices are the value of oil and cost of gas compression respectively.
Wpo, and wyg, are the produced oil and gas rates from each well ¢. The steady-state
process model is enforced as equality constraint in (2.11b)-(2.11c). w,,,,. is the
total capacity constraint which is enforced in (2.11d). Hence from a process control
point of view, this is equivalent to real-time optimization. For each of the RTO case
shown in this chapter (SRTO, DRTO and HRTO), a setpoint tracking NMPC layer
was used below, to track the setpoints of the gas lift injection rates provided by
the RTO layer above. In this chapter, we use a nonlinear MPC, but similar results
would be achievable with a more traditional linear MPC. The sampling time of
the setpoint tracking controller was set to 5 min and a prediction horizon of 24
samples. A sufficiently long prediction horizon of 2 hours was chosen to ensure
stability [119].

Any produced gas rate that exceeds the maximum capacity of wy,, . in (2.11d)
is flared to avoid pressure build-up in the topside processes. Gas flaring is often
very expensive due to environmental costs in the form of carbon tax. To reflect
this, the gas capacity constraint (2.11d) was implemented as soft constraints using
exact penalty functions and slack variables, where the slack variables are penalized
in the cost function [82] as shown below,

max J' = <$0 Z Wpo, — $g1 Z wSﬂi) = Spllwsll

Wy, : ‘
iEN iEN

s.t. Z Wpg, < Wy, 0w + Whi (2.12)
€N
(2.11b) — (2.11c)
where the flared gas rate wy; > 0 is the slack variable and $; is the cost associated
with gas flaring that is penalized in the cost function. Note that, the exact penalty

function for soft constraint would typically not have any physical meaning. How-
ever, in this example, the slack variable is the flared gas and the corresponding
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Table 2.1: The optimal gas lift injection rates for different GOR combinations used
in the simulations.

GOR well 1 GOR well2 | wy, wy,
0.1 0.12 1.606  0.781
0.1033 0.115 1.497  0.956
0.0817 0.1127 2217 1.042
0.1198 0.1278 0.9437 0.5013
0.0757 0.1197 2414 0.799
0.0864 0.1176 2.06 1.26
0.1104 0.1176 1.26 0.8626
0.0854 0.1295 2.091  0.4516

penalty function would be the cost of gas flaring. An alternate equivalent formula-
tion would be to compute the flared gas as a part of the system model and minimize
the gas flaring in the cost function.

The NLP problem (2.12) was developed in CasADi v3.0.1 [4] using the MATLAB
R2017a programming environment and solved using IPOPT version 3.12.2 [184]
running with mumps linear solver on a 2.6GHz workstation with 16GB memory.
The plant (simulator) was implemented using IDAS integrator [68].

In case of Dynamic RTO and for setpoint tracking NMPC, the system (2.9) is
discretized using a third order direct collocation scheme. The dynamic optimization
problem is similar to (2.11) with the steady-state model (2.11b)-(2.11c) replaced
with the discretized dynamic process model. The resulting NLP was solved using
IPOPT as described above.

In all the simulations shown in this chapter, the parameter GOR varies in
the simulator as shown in Fig. 2.4 (solid lines). We simulate the system for a
total simulation time of 12 hours. The gas processing capacity is assumed to be
constrained at wy,,,. = 10kg/s. The optimal steady-state gas lift injection rates for
the different GOR combinations simulated in Fig. 2.4 are summarized in Table. 2.1.
It is evident that the optimal gas lift injection rates are sensitive to changes in GOR.
If the GOR used in the optimizer is not updated, then the plant will be operated
suboptimally.

2.4.1 Steady-state RTO (SRTO)

We consider the traditional steady-state RTO approach in Fig. 2.1, where the
steady-state RT'O provides the optimal setpoints to the lower setpoint tracking
layer. In this case, the steady-state detection was based on the comparison of total
variance of a signal in the recent data window of fixed length as described in [22].
When steady-state operation is detected, GOR is estimated from the measurement
data. Fig. 2.4 compares the true value of the GOR used in the simulator (solid
lines) and the estimated GOR value used by the RTO (dashed lines). There is
a significant delay before the models are updated and re-optimized due to the
steady-state wait-time. This results in suboptimal operation for significant periods
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Figure 2.4: True GOR parameters used in the simulator (solid lines) and the esti-
mated GOR using steady-state measurements used in SRTO (dashed lines). The
steady-state wait time varies from about 30 minutes to several hours.
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Figure 2.5: True GOR parameters used in the simulator (solid lines) and the almost
identical estimated GOR using EKF used in HRTO and DRTO (dashed lines).

of time. In this simulation, the steady-state RTO updated the setpoints 10 times.
The performance of the steady-state RTO approach is compared with dynamic
RTO and the proposed hybrid RTO approach in Section 2.4.4

2.4.2 Hybrid RTO (HRTO)

With the proposed hybrid RTO as shown in Fig. 2.3, we estimate the uncertain
parameters and disturbances using the dynamic model and optimize using the
steady-state model. For the dynamic model adaptation, we use a discrete time
extended Kalman filter to estimate the uncertain parameters (GOR of each well)
as shown in Appendix B. The annulus pressure, wellhead pressure and bottomhole
pressure for each well, manifold pressure, riser-head pressure, total oil and gas flow
rates at the separator are commonly available measurements in an oil production
network, and are here used for state and parameter estimation in the EKF.

The EKF updates the GOR estimate with the same sampling time as the op-
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timizer, which is every 5 minutes. The estimated GOR using the EKF is shown in
Fig. 2.5. The optimizer uses the updated GOR to compute the steady-state opti-
mal gas lift rates, which are given as setpoints to the lower level setpoint-tracking
NMPC layer. Some measurements such as bottom hole pressure and wellhead pres-
sure measurements are plotted in the Fig. 2.6. It can be clearly seen that the system
is in a transient phase for significant amount of time due to the frequent changes
in GOR. Nevertheless, with dynamic estimation, the GOR is constantly adapted,
as opposed to the steady-state wait time in the SRTO case. As a result, the hybrid
RTO is able to compute the new optimal steady-state gas lift rates as the GOR
changes, without having to wait for the system to settle to steady-state.
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Figure 2.6: Plot showing some of the measurements used in EKF to estimate GOR.

2.4.3 Dynamic RTO (DRTO)

Here, we use a dynamic RTO approach as shown in Fig. 2.2, instead of a steady-
state optimizer. But otherwise, the setup was the same as for the hybrid RTO
described in Section 2.4.2. The simulation results are compared with SRTO and
HRTO in the next subsection.

29



2. Hybrid RTO - Steady-state RTO with Transient Measurements

2.4.4 Comparison of SRTO, HRTO and DRTO

Table 2.2: Comparison of average computation time, maximum computation time
and the total integrated oil production over a simulation time of 12 hours for the
different RTO approaches.

avg. max | Integrated | Total | Flared
time time Profit oil gas
[s] [s] [x10°$] [ton] [ton]
SRTO | 0.0184 | 0.0223 1.8256 2969.5 | 10.93
HRTO | 0.0199 | 0.0282 2.7019 2980.2 2.25
DRTO | 0.9025 | 3.3631 2.7509 2980.9 1.77

The objective function (2.12) along with the oil and gas production rates ob-
tained with the SRTO, HRTO and DRTO are compared in Fig. 2.7a, Fig. 2.7b and
Fig. 2.7c respectively. As expected, SRTO (shown in thin blue lines) leads to sub-
optimal operation and the total produced gas also violates the capacity constraint
of 10kg/s in (2.11d) for significant periods of time. The hybrid RTO (red solid
lines) and dynamic RTO (black dashed lines) have similar performance in terms
of optimality. We see that the process is maintained at optimal operation and,
disturbances are swiftly counteracted. The integrated profit (2.12), oil production,
and the total gas flared over a period of 12 hours obtained with the three methods
are summarized in Table.2.2 and Fig. 2.8.

The average computation times for the steady-state RTO, hybrid RTO and
dynamic RTO are also shown in Table 2.2 and Fig. 2.8. From the simulation results
and the computation times, it can be seen that the Hybrid RTO provides a similar
performance to the dynamic RTO in terms of convergence to the optimal point,
but the computation time of the hybrid approach is about two orders of magnitude
less than DRTO, and about the same as SRTO. Additionally, for the HRTO and
DRTO case, the average computation time for the EKF is 0.0026s, which is small
compared to the computation time for the optimization problems.

The decision variables (setpoints) provided by the HRTO and DRTO are shown
in Fig. 2.9, whereas the gas lift rates actually implemented by the respective set-
point tracking controller are shown in Fig. 2.10. It can be seen that, when the
disturbance causes the total gas rate to exceed its limit, the dynamic RTO ma-
nipulates the setpoints to quickly come out of constraint violations, whereas the
hybrid RTO simply provides the steady-state optimal setpoints. However, since the
gas rate constraint of 10kg/s is included in the control layer below as a dynamic
constraint, the actual gas lift rates provided by the setpoint tracking controllers
are more similar. For example, consider the time between 4 and 5 hours in Fig. 2.9
and Fig. 2.10. This shows that dynamic limitations (cf. Challenge 5 in Section 1.1)
in many cases can be handled by the control layer below, which partly explains
why the hybrid RTO scheme works well.
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Figure 2.7: Comparison of (a) objective function (2.11), (b) oil production rate and
(c) gas production rate. SRTO is shown in thin blue lines, HRTO is shown in solid
red lines and DRTO is shown in black dashed lines.
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Figure 2.8: Comparison of average computation time and the total integrated oil
production the different RTO approaches shows that HRTO provides similar per-
formance as DRTO as computation times similar to SRTO.

2.5 Discussion

2.5.1 On steady-state versus dynamic optimization

In the previous section, we discussed the Hybrid RTO structure, where both dy-
namic and steady-state models are used. One question that naturally arises is that
when dynamic models are used for model adaptation, why not use the dynamic
models also in the optimizer. Indeed, there is a clear trend and extensive research
towards dynamic RTO and the closely related economic NMPC, see for example
[76], [42] and [49]. In the face of this current trend, there is a lack of clear under-
standing on when steady-state optimization is sufficient or under what conditions
the use of dynamic optimization may be justified. Recently, some good discus-
sions using case examples on appropriate problem formulations were provided by
Foss et al. [50] for the petroleum production optimization problem, where the au-
thors conclude that most production optimization problems can be solved using
steady-state optimization. On the other hand, batch processes, cyclic operations,
operations that involves frequent grade changes, start-up and shut-down etc. that
involves transient operation would benefit from the use of dynamic optimization.

One of the main challenges with dynamic RTO, however, is computing power
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Figure 2.9: Optimal gas lift rate setpoint computed by SRTO (blue lines), HRTO
(solid red lines) and DRTO (black dashed lines). These are the manipulated vari-
ables (decision variables) computed by the optimizers.

[25]. RTO often involves optimization of large-scale systems with large number of
variables. This results in large nonlinear programming (NLP) problems. Addition-
ally in dynamic optimization problems, the size of the problem increases signifi-
cantly due to the additional dimension of time. As a result, dynamic optimization
problems may be significantly more computationally demanding to solve than their
steady-state counterpart. For example, in our case study, the dynamic RTO had
3056 optimization variables as opposed to 22 optimization variables in SRTO and
HRTO. The computational delay may impose limitations on how often the optimal
setpoints can be updated. In some cases, the computational delay may even lead
to performance degradation or closed-loop instabilities [45]. This challenge will be
considered later in Part IT of this thesis, in the context of economic NMPC.

The challenge with computational power is even more pronounced in the case
where RTO has discrete integer decision variables. Mixed-integer problems may be
required if 1)the problem has discrete integer variables such as on-off switching,
binary logic etc. or 2) if the nonlinear process model is modeled using piece-wise-
affine (PWA) models or surrogate models or 3) if the problem has non-convex cost
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Figure 2.10: Optimal gas lift rates provided by respective setpoint tracking con-
trollers for HRTO (solid red lines) and DRTO (black dashed lines). These are the
implemented manipulated variables.

or constraints. Such problem are often reformulated and solved efficiently using the
mixed-integer framework. See for example [10], [61], [69], [77] and the references
therein . Mixed-integer solvers employ methods such as branch-and-bound and
cutting-plane methods combined with some heuristics and significant research in
developing mixed-integer solvers directed towards steady-state optimization prob-
lems [59, 181]. Hence steady-state RTO remains the preferred formulation in many
industrial applications. In such cases, the proposed hybrid RTO approach can help
tackle the steady-state wait-time issue, which is one of the fundamental limiting
factor in traditional steady-state RTO and at the same time circumvent the com-
putational issues of dynamic RTO.

I Mixed-integer formulations are out of scope of this thesis.
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2.5.2 Advantages of steady-state optimization (SRTO and
HRTO)

However, computation cost is not the only reason steady-state optimization is
prevalent in industrial applications. A fundamental advantage of steady-state op-
timization (in SRTO and HRTO) is that it does not have time as a variable. This
avoids the causality issue, and allows for optimizing on decision variables other
than the manipulated variables (MVs). For example, these decision variables may
be pressure, level, composition and temperature. Consequently, this can 1) simplify
the optimization and 2) allow the optimization to run on a much slower time scale
because we can choose slow-varying variables as decision variables. This is also the
principle behind self-optimizing control [165], where the goal is to choose the right
decision variables y*P in Fig. 2.1.

This advantage is not seen in our example because in all simulation cases,
the decision variables are the gas lift injection rates (MVs). However, as a simple
example, consider a small tank with one inflow (disturbance) and one outflow
(MV). The setpoint for the level is assumed fixed. A dynamic RTO or economic
NMPC would have the outflow as the decision variable, and it would need to be
updated with the same frequency as the inflow disturbance. Essentially, the DRTO
(or economic NMPC) is doing the job of the base layer PID controller, and needs
to run at the speed of the base layer control system. However, with a steady-
state RTO, the decision variable could be the level setpoint, which would remain
constant, irrespective of the disturbance. Of course, optimizing on other decision
variables assumes that we have a lower layer level controller, which takes care of
disturbances on a fast time scale. In steady-state RTO, the decision variables are
setpoints to CVs of the lower-layer control system and the only assumption one
needs to make about the control system is that it has integral action.

2.5.3 Dynamic estimation methods

As mentioned earlier, in the hybrid RTO approach, the model adaptation step is
performed using dynamic models. Although we used an extended Kalman filter in
this chapter, we now provide a very brief discussion on the different dynamic esti-
mation methods that can be used. Very simple methods such as filtered bias update
or Implicit Dynamic Feedback (IDF) method may be used for simple parameter
estimation problems. Implicit dynamic feedback is analogous to a PI controller as
explained by Hedengren and Eaton [66] and may be used when a one-to-one pairing
of measurements to the parameter is known.

For more complex multivariable systems, weighted least squares estimation or
family of Kalman filters such as the extended Kalman filter (EKF) or unscented
Kalman filter (UKF) may be used. Other recently developed Kalman filter based
methods include sequential Monte Carlo methods and expectation maximization
methods for parameter estimation [177]. It was noted by Leibman et al. [112] that
extended Kalman filter is the most widely used tool for nonlinear weighted least
square estimation in chemical engineering. In the presence of uncorrelated Gaus-
sian white noise, this also corresponds to the maximum likelihood estimator (MLE)
[112]. In terms of computational requirements, EKF for parameter estimation is
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known to be simple to implement and computationally fast compared to other
methods [177]. The solution provided by EKF is accomplished through matrix
multiplications and does not need to solve nonlinear optimization problems online.
Additionally, there has also been some research in faster implementation of EKF
for some applications, see for example [142], where the authors analyze the EKF
matrices and reduce the number of computations by exploiting the sparsity and
structure of the EKF matrices. The confidence interval provided by the covariance
estimates may also be useful. One of the challenges with practical implementa-
tion of Kalman filter is the tuning which include the measurement and process
noise covariance matrix elements and a forgetting factor, if included in the formu-
lation [112]. Often these tuning parameters are chosen arbitrarily. Recent works
introduced a computationally efficient approach to identify the noise covariance
for nonlinear systems [55].

Optimization-based estimation methods such as the moving horizon estimation
(MHE) has been receiving more attention recently, where a numerical optimization
problem is solved to reduce the error between the estimates and the measurement.
MHE is especially favorable in the case of constrained estimation. However, this
method is more computationally expensive due to the dynamic optimization prob-
lem that has to be solved at each sampling instant. This may not be favorable
if one of the motivations of using steady-state optimization is to avoid solving
dynamic optimization problems. MHE also often require additional observers in
parallel such as EKF for estimating the arrival cost. For more detailed review of
dynamic estimation methods, the reader is referred to [66], [112] and the references
therein.

2.6 Chapter Summary

In this chapter, we presented a Hybrid RTO framework to address Challenge 2.
By using a hybrid RTO with dynamic models for model adaptation, we are able to
efficiently use transient data for updating the models. Hence the optimization does
not need to wait for the process to settle, before the model parameters are updated.
Additionally, by adopting a Hybrid RTO structure, with steady-state models for
optimization, numerical and computational issues associated with dynamic opti-
mization can be avoided. This leads to better utilization of the potential of RTO
in many industrial applications. The use of hybrid RTO was demonstrated using
an oil production network as case study, where similar performance to dynamic
RTO was achieved at computation times similar to the traditional steady-state
RTO. This method was also applied to a larger case example with n,, = 6 wells
connected to a common riser manifold (20 differential states, 78 algebraic states
and 6 inputs), see [105].

Additionally, we also showed in Fig. 2.10, that by using a setpoint tracking
NMPC layer below, one can address the dynamic limitations (Challenge 5).
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Chapter 3

A Feedback Real-time Optimization
Strategy using a Novel Steady-state
Gradient Estimate and Transient
Measurements

This chapter presents a new feedback real-time optimization (RTO) strat-
egy for steady-state optimization that directly uses transient measure-
ments. The proposed RTO scheme is based on controlling the estimated
steady-state gradient of the cost function using feedback. The steady-
state gradient is estimated using a novel method, based on linearizing a
nonlinear dynamic model around the current operating point. The gradi-
ent is controlled to zero using standard feedback controllers, for example,
a Pl-controller.

Based on the article published in Industrial and Engineering Chemistry Research
[102].

3.1 Introduction

As we have seen in the previous chapters, real-time optimization is traditionally
based on rigorous steady-state process models that are used by a numerical op-
timization solver to compute the optimal inputs and setpoints. The optimization
problem needs to be re-solved every time a disturbance occurs. Since steady-state
process models are used, it is necessary to wait, so the plant has settled to a
new steady-state before updating the model parameters and estimating the distur-
bances. This steady-state wait-time is one of the fundamental limitations of the
traditional RTO approach, and was also the main motivation in Chapter 2.

To address the problem of the steady-state wait-time associated with the tra-
ditional steady-state RT'O, a hybrid RTO approach was proposed in Chapter 2,
where the model adaptation is done using a dynamic model and transient mea-
surements, whereas the optimization is performed using a static model. The hybrid
RTO approach, thus requires solving a numerical optimization problem in order to
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compute the optimal setpoints. As mentioned in the introduction (cf. Section 1.1),
one of the challenges with traditional RTO is the numerical robustness and com-
putational issues associated with solving numerical optimization problems. It also
requires regular maintenance of both the dynamic model and its static counterpart.

In order to address the steady-state wait time and the numerical issues, in this
chapter, we propose to convert the hybrid RTO strategy from Chapter 2 into a
feedback steady-state RTO strategy. This is based on the principle that optimal
operation can be achieved by controlling the estimated steady-state gradient from
the inputs to the cost at a constant setpoint of zero, thereby achieving the neces-
sary conditions of optimality. The proposed method involves a novel non-obvious
method for estimating the steady-state gradient by linearizing a nonlinear dynamic
model which is updated using transient measurements. To be more specific, the
nonlinear dynamic model is used to estimate the states and parameters by means
of a dynamic estimation scheme in the same fashion as in the hybrid and dynamic
RTO approaches. However, instead of using the updated model in an optimization
problem, the state and the parameter estimates are used to linearize the updated
dynamic model from the inputs to the cost. This linearized dynamic model is then
used to obtain the mentioned non-obvious estimate of the steady-state gradient at
the current operating point (cf. Theorem 3.1). Optimal operation is achieved by
controlling the estimated steady-state gradient to constant setpoint of zero by any
feedback controller.

The concept of achieving optimal operation by keeping a particular variable
at a constant setpoint is also the idea behind self-optimizing control, which is
another direct input adaptation method, see [165] and [75]. It was also noted by
Skogestad [165] that the ideal self-optimizing variable is the steady-state gradient
from the input to the cost, which when kept constant at a setpoint of zero, leads
to optimal operation (thereby satisfying the necessary condition for optimality),
which complements the idea behind our proposed method.

The concept of estimating and driving the steady-state cost gradients to zero is
also the same used in methods such as extremum seeking control [5, 107], necessary-
conditions of optimality (NCO) tracking controllers [51], and “hill-climbing” con-
trollers [108]. However, these methods are model-free and hence requires additional
perturbations for accurate gradient estimation. The main disadvantages of such
methods are that they require the cost to be measured directly, and generally give
prohibitively slow convergence to the optimum?! [180, 182].

The main contribution of this chapter is a novel gradient estimation method
(Theorem 3.1), which is used in a feedback-based RTO strategy using transient
measurements. The proposed method is demonstrated using a CSTR case study.
The proposed method is compared with the traditional static RTO, dynamic RTO
and the newer hybrid RTO approach. It is also compared with two direct input
adaptation methods, namely self-optimizing control and extremum seeking control.

1This issue will be addressed later in Chapter 5.
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3.2 Proposed method

In this section, we present the feedback steady-state RTO strategy. Consider a
continuous-time nonlinear process,

% = F(x(t),u(t),d(t)) (3.1)
y(t) = H(x(1), u(t))

where x € R", u € R™ and y € R™ are the states, process inputs and process
measurements respectively. d € R™¢ is the set of process disturbances. F : R™"* x
R™ x R™ — R™ describes the differential equations, and the measurement model
is given by H : R"» x R™» — R™v,

Let the cost that has to be optimized J : R™* x R™ — R be given by,

J(t) = G(x(t),u(t)) (3.2)

Note that the measurement model and the cost function are not directly affected by
the disturbances, but are affected via the states. According to the plantwide control
procedure [165], we also assume that any active constraints are tightly regulated,
and the n, degrees of freedom considered here are the remaining unconstrained de-
grees of freedom available for optimization. A more general treatment with change
in active constraint regions will be provided in Chapter 4.

Assumption 3.1: (3.2) is sufficiently continuous and twice differentiable such that
for any d, (3.2) has a minimum at u = u*. According to the Karush-Kuhn- Tucker
(KKT) conditions, the following then holds:

0w ) = 3o ) = 0 (3:3)
2
%(u*, d) = Juu(u',d) > 0 (3.4)

Without loss of generality, we can assume that the optimization problem is a min-
imization problem.

The optimization problem can be converted to a feedback control problem by
controlling the steady-state gradient J, to a constant setpoint of J,*” = 0. The
main challenge is then to estimate the steady-state gradient efficiently. There are
many different data-based gradient estimation algorithms that estimate the steady-
state gradient using steady-state measurements, see [173]. In this chapter, we pro-
pose to estimate the steady-state gradient using a nonlinear dynamic model and
the process measurements ¥,,cqs by means of a combined state and parameter es-
timation framework. In this way, we can estimate the exact gradients around the
current operating point.

Any state estimation scheme may be used to estimate the states x and the un-
measured disturbances d using the dynamic model of the plant and the measure-
ments Ymeas- In this chapter, for the sake of demonstration, we use an augmented
extended Kalman filter (EKF) for combined state and parameter estimation, see
[164] for detailed description of the extended Kalman filter.
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Once the states and unmeasured disturbances are estimated, (3.2) is linearized
to obtain a local linear dynamic model from the inputs u to the objective function
J. Let %(t), @(t) and d(t) denote the original dynamic trajectory that would result
if we keep u unchanged (i.e. no control). Let Au(t) represent the additional control
input and Ax(t) the resulting change in the states,

x(t) = %(t) + Ax(t)
u(t) = (t) + Au(t) (3.5)
d(t) = d(t) + Ad(t)

where we assume @(t) = w(ty) (constant) and d(t) = d(to) (constant) and to
denotes the current time. Note that Ad(¢) = 0 because the control input does not
affect the disturbances. For control purposes, the local linear dynamic model from
the inputs to the cost in terms of deviation variables is then be given by,

Ax = AAx(t) + BAu(t) (3.6)
AJ(t) = CAx(t) + DAu(t)

where A € R > B ¢ R*% X"« (C € RYX" and D e R*™«  The system matrices
are evaluated around the current estimates x and d,

OF(x,u,d)

A= ox

x=%(to),d=d(to)
OF(x,u,d)

B:
ou

x=%(to),d=d(to)

o 0G(x,u)

x=%(to),d=d (o)

x=%(to),d=d(to)

Note that, since we do not assume full state feedback, we need some nonlinear
observer to estimate the states X in order to evaluate the aforementioned Jacobians.
Nonlinear observers may not be required if we have full state feedback information
to compute the Jacobians, but this is seldom the case.

Theorem 3.1. Given a nonlinear dynamic system (3.1) and (3.2) and assump-
tion 3.1 holds, the model from the decision variables u to the cost J can be linearized
around the current operating point using any nonlinear observer to get (3.6) and
assuming that A is invertible, the corresponding steady-state gradient is then

Ju=-CA™'B+D (3.7)

The process can be driven to its optimum by controlling the estimated steady-state
gradient to constant setpoint of zero using any feedback control law u = K(Jy).
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Figure 3.1: Block diagram of the proposed method

Proof. In (3.6), Ax(t), Au(t) and AJ(t) are deviation variables. Let Au(t) = du
be a small step change in the input occurring at ¢ = 0, which will result in a
steady-state change for the system as ¢ — oo. This will occur when Ax = 0 and by
eliminating Ax(t) it follows from (3.6) that the steady-state change in the cost is

— 1 — (_ -1
5J_t15£10AJ(t)_( CA™'B+ D) bu (3.8)

Here, the steady-state gradient is defined as J, = g—i and (3.7) follows. Driving the
estimated steady-state gradients to a constant setpoint of zero ensures satisfying
the necessary condition of optimality. O

The proposed method is schematically represented in Fig. 3.1. It can be seen
that steady-state gradient is obtained from the dynamic model and not from the
steady-state model as would be the conventional approach. With a dynamic model
we are able to use the transient measurements to estimate the steady-state gradient.

The combined state and parameter estimation framework using extended Kalman
filter is discussed in detail in [164]. Note that, although we use an extended Kalman
filter to demonstrate the proposed method in the example, any observer may be
used to estimate the states and the parameters. Using the estimated states, the
dynamic model may be linearized and the steady-state gradient estimated using
equations (3.6) - (3.7), which is the key point in the proposed method.

Note that we have used the dynamic model from u to J. To tune the controller,
another dynamic model from the inputs u to the gradient Ju is required. The
steady-state gain of this model is the Hessian Jy, which is constant if the optimal
surface is quadratic.

Remark 3.1. For a multi-input system, it is natural to pair u; with .J,, (diagonal
pairing). In this case, for the PID controllers to be stable, the determinant of the
Hessian det(Jyy) must not change sign [168].

More discussions on controller tuning are provided in Section 3.4.4.
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3. Feedback RTO using Steady-state Gradient Estimation

3.3 Illustrative example

In this section, we test the proposed method using a continuous stirred tank re-
actor (CSTR) process from [41] (Fig. 3.2). This case study has been widely used
in academic research [1, 72, 187]. The proposed method is compared to traditional
steady-state RTO, hybrid RTO and dynamic RTO. It also benchmark against two
existing direct-adaptation-based method, namely self-optimizing control and ex-
tremum seeking control.

3.3.1 Exothermic Reactor

The CSTR case study consists of a reversible exothermic reaction where component
A is converted to component B (A = B). The reaction rate is given as r = k1C4 —

koCpg, where the reaction constants follow the Arrhenius law: ki = CleiRiET1 and

ko = Cge%. The dynamic model consists of mass balances for components A and
B and an energy balance:

dCs 1
= 2(Cai=Ca) = (3.9a)
dCp 1
%5 _ oy, - 9b
o= =(Cpi—Cp)+r (3.9b)
ar 1 ~AH,,
=TT :
o T( )+ o r (3.9¢)

Here, C'4 and Cpg are concentrations of the two components in the reactor whereas
Ca,; and Cp,; are the concentration in the inflow. T} is the inlet temperature and
T is the reaction temperature. Other model parameters for the process are given
in Table 3.1.

Ca,iCBy

T;
/\

v

Figure 3.2: Process flowsheet of the CSTR.

The cost function to be minimize is defined as [1]
J = —[2.009Cp — (1.657 x 107°T;)?]. (3.10)

The manipulated variable is u = T;, the temperature in the inlet stream. The state
variables are the concentrations and reactor temperature x7 = [C4 Cp T, the
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Table 3.1: Nominal values for CSTR process

Description Value  Unit
F* Feed rate 1 mol min—1
Cq Constant 5000 st
Cs Constant 106 s—1
Cp Heat capacity 1000 cal kg P K1
Er Activation energy 10* cal mol 1
Eo Activation energy 15000 cal mol~!
ij. Inlet A concentration 1 mol L~1
C]*37 i Inlet B concentration 0 mol L1
Universal Gas Constant  1.987 calmol "' K1
AH,; Heat of reaction -5000  cal mol~1
p Density 1 kgL—1
T Time constant 1 min

disturbances are assumed to be the feed concentrations d' = [C4,; Cp ], and the
available measurements are y' = [Ca Cp T T;].

Feedback steady-state RTO

The proposed feedback RTO strategy described in Section 3.2 is now implemented
for the CSTR case study. For the state estimation, we use an extended Kalman
filter as described by Simon [164]. The disturbances dT = [Ca ; C5 ;] are assumed
to be unmeasured, and are estimated together with the states in the extended
Kalman filter. A simple PI controller is used to control the estimated steady-state
gradient to a constant setpoint of J,** = 0. The PI controller gains are tuned
using SIMC tuning rules [166] with the proportional gain K, = 4317.6 and integral
time 77 = 60s. The process is simulated with a total simulation time of 2400s with
disturbances in C'4; from 1 molL~1 to 2 molL~! at time t = 400s and Cp,; from
0 molL~" to 2 molL ="' at time t = 1409s. The measurements are assumed to be
available with a sampling rate of 1s.

Optimization-based approaches

In this subsection, the simulation results of the proposed method are compared
with other optimization-based approaches, namely traditional static RTO (SRTO),
dynamic RTO (DRTO) and hybrid RTO (HRTO) for the same disturbances as
mentioned above. The traditional static RTO, dynamic RTO and the hybrid RTO
structures were used to compute the optimal input temperature. Note that, in
practice, this could correspond to a setpoint under the assumption of tight control
at the lower regulatory control level.

Traditional static RTO (SRTO) In this approach, before we can estimate the
disturbances and update the model, we need to ensure that the system is operating
in steady-state. This is done using a steady-state detection (SSD) algorithm that is
commonly used in industrial RTO system [22]. The resulting steady-state wait time
is a fundamental limitation in many processes, where the plant may be operated
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3. Feedback RTO using Steady-state Gradient Estimation

suboptimally for significant periods of time before the model can be updated and
the new optimal operation re-computed.

Hybrid RTO (HRTO) As mentioned earlier, in order to address the steady-
state wait time issue of traditional RTO approach, a hybrid RTO approach was
proposed in Chapter 2, where a dynamic nonlinear model is used online to esti-
mate the parameters and disturbances. The updated static model is then used by
a static optimizer to compute the optimal inlet temperature as shown in Fig. 2.3.
In this case study, we use the same extended Kalman filter as the one used in
the proposed feedback RTO method for the dynamic model adaptation. We then
compare the performance of the proposed feedback RTO to the hybrid RTO ap-
proach. These two approaches only differ in the fact that in hybrid RTO, a static
optimization problem is solved to compute the optimal inlet temperature, whereas
in the proposed method optimization is done via feedback.

Dynamic RTO (DRTO) Recently there has been a surge of research activity
towards dynamic optimization and centralized integrated optimization and con-
trol such as economic nonlinear model predictive control (ENMPC), which is also
closely related to dynamic RTO. Since the proposed method uses a nonlinear dy-
namic model online, a natural question that may arise is why not use the same
dynamic models also for optimization. For the sake of completeness, we therefore
compare the performance of the proposed method with dynamic RTO.

For the dynamic RTO, the same extended Kalman filter as in the proposed feed-
back RTO method and hybrid RTO is used to update the dynamic model online.
The updated nonlinear dynamic model is then used in the dynamic optimization
problem with a prediction horizon of 20min and a sampling time of 10s.

Comparison of RTO methods

The cost J and the optimal control input u provided by the proposed feedback
RTO method, static RTO, hybrid RTO and dynamic RTO are shown in Fig. 3.3a
and Fig. 3.3b, respectively.

It can be clearly seen that for the static RTO (black dash-dotted lines), the
steady-state wait time delays the model adaptation. Hence, the system operates
suboptimally for significant time periods. Once the process reaches steady-state
and the model is updated, we see that the steady-state RT'O brings the system to
the ideal optimal operation. For example, in this simulation case, it takes around
400s after each disturbances for the SRTO to update the optimal operating point.
The change in the cost observed during the transients, before the new optimum
point is re-computed, is due to the natural drift in the system. This is more clearly
seen after the second disturbance at time ¢ = 1409s.

Hybrid RTO (cyan solid lines) and dynamic RTO (green solid lines) provide
similar performance as the new proposed feedback RTO strategy (red solid lines),
due to the fact that all these three approaches use transient measurements and a
nonlinear dynamic model online. These three methods however differ in the way the
optimization is performed. As mentioned earlier, dynamic RTO solves a dynamic
optimization problem using the updated nonlinear dynamic model, hybrid RTO
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Figure 3.3: Simulation results of the proposed feedback RTO method (red solid
lines) compared to traditional static RTO (black dash-dotted lines), hybrid RTO
(cyan solid lines) and dynamic RTO (green solid lines) for disturbance in C4; at
time t = 400s and Cp; at time t = 1409s. (a) Plot comparing the cost function.
(b) Plot comparing the input usage. (c) Plot comparing the integrated loss (3.11).
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3. Feedback RTO using Steady-state Gradient Estimation

solves a static optimization problem using the updated static counterpart of the
model, whereas feedback RTO estimates the steady-state gradient by linearizing
the nonlinear dynamic model and controls the estimated steady-state gradients to
a constant setpoint of zero.

The integrated loss is given by

Lo (t) = /0 Toss(t) — J() dt. (3.11)

To compare the different approaches further, the integrated loss for the different
RTO approaches are shown in Fig. 3.3c and also noted in Table. 3.2 for t = 2400s.

We note here that until time ¢t = 1409s, the new feedback RTO method has
the lowest loss of 73.73$, closely followed by DRTO and hybrid RTO with a loss of
73.81% and 74.77$, respectively. Following the second disturbance, the integrated
loss for the interval ¢ = 1409s to t = 2400s is the lowest for the DRTO with
247.69%. The new feedback RTO has a very similar loss of 248.07$ followed by
hybrid RTO with an integrated loss of 257.97%. The static RTO is much worse
with a loss of 355.788$. This is mainly because of the fact that in the new feedback
RTO approach, optimization is done via feedback, and hence can be implemented
at higher sampling rate. The static, dynamic and hybrid RTO approaches requires
additional computation time to solve the optimization problem online, and hence
may be implemented at slower sampling rates. As mentioned earlier, in our case
study, the feedback RTO approach is implemented every 1s as opposed to static,
dynamic and hybrid RTO approaches which are solved every 10s. This is clearly
shown in Fig. 3.4a, where the control input from Fig. 3.3b is magnified between
time 350s to 550s. Following the disturbance at ¢ = 400s, the static, dynamic
and hybrid RTO updates the setpoint at time step ¢ = 410s unlike the feedback
RTO, which updates the new control input already at time ¢t = 401s giving it an
advantage over other RTO methods. As a result, the new feedback RTO method
has the lowest integrated loss up to time ¢t = 1409s. The control input between time
1300s to 1500s is shown in Fig. 3.4b, where following the disturbance at ¢t = 1409s,
new proposed feedback RTO, the static, dynamic and hybrid RTO, all update the
optimal control input at time step ¢ = 1410s simultaneously. Therefore, the DRTO
has the best integrated loss as expected. This example clearly shows the importance
of being able to implement a controller at higher sampling rates.

The simulations are performed on a workstation with the Intel Core i7-6600U
CPU (dual-core with the base clock of 2.60GHz and turbo-boost of 3.40GHz ), and
16GB memory. The average computation times for the different RTO approaches
are also compared in Table 3.2. The proposed feedback RTO method is the least
computationally expensive method due to the fact the optimization is done via
feedback, and as expected, dynamic RTO is the most computationally intensive.

Comparison with direct-input adaptation methods

For the sake of completeness, we also compare the proposed method with two
feedback-based direct-input adaptation methods, namely, self-optimizing control
and extremum seeking control, where the optimization problem is converted into
a feedback control problem,.
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Figure 3.4: Magnified plot of the control input from Fig. 3.3b between time (a)
350s to 550s and (b) 1300s to 1500s.

Table 3.2: Average computation time and integrated loss at the end of simulation
time for the proposed method compared with traditional static RTO, hybrid RTO

and DRTO.
Computation Integrated Integrated
time loss t = 1409s  loss t = 2400s
[s] [$] [$]
New method 0.004 73.73 248.07
SRTO 0.007 75.75 355.78
HRTO 0.01 74.77 257.97
DRTO 0.14 73.81 247.69
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Figure 3.5: Simulation results of the proposed feedback RTO method (red solid
lines) compared to self-optimizing control (blue solid lines) for disturbance in C4 ;
at time t = 400s and Cp,; at time t = 1409s. (a) Plot comparing the cost function.
(b) Plot comparing the input usage.

Self-optimizing control (SOC) Self-optimizing control, is about finding the
right controlled variable, which when controlled to a constant setpoint, leads to ac-
ceptable loss [165]. In general, the idea is to find a linear measurement combination
that can be used as a self-optimizing variable [2]. Self-optimizing control will be
formally introduced later in Chapter 6. At this point, the reader is simply referred
to [2, 75, 165].

Since we have 3 measurements, 2 disturbances and 1 control input, the nullspace
method can be used to identify the self-optimizing variable. For the case study
considered here, the optimal selection matrix computed using nullspace method
(around the nominal optimal point when d' = [Ca,; Cp;] = [1.0 0.0]) is given
by H = [-0.7688 0.6394 0.0046], see [1]. The resulting self-optimizing variable
c = —0.7688C 4 + 0.6394C'g + 0.00467T is controlled to a constant setpoint of ¢, =
1.9012. The PI controller used in the self-optimizing control structure were tuned
using SIMC rules with proportional gain K, = 188.65 and integral time 7; = 75s.

The simulations were performed with the same disturbances as in the previous
case. The objective function for the two methods are shown in Fig. 3.5a and the
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corresponding control input usage is shown in Fig. 3.5b. When compared to self-
optimizing control, we can see that there is an optimality gap when the disturbances
occur. This is because self-optimizing control is based on linearization around the
nominal optimal point, as opposed to linearization around the current operating
point in the proposed feedback RTO approach. Because of the nonlinear nature
of the processes, the economic performance degrades for operating points far from
the nominal optimal point hence leading to steady-state losses.

Extremum seeking control (ESC) The concept of estimating and driving
the steady-state gradient to zero in the proposed feedback RTO strategy is also
used in data-driven methods such as extremum seeking control [107] and NCO-
tracking [51]. However, the gradient estimation scheme is fundamentally different,
i.e. the steady-state gradient in the proposed approach is estimated using a dynamic
nonlinear model, whereas the steady-state gradient in extremum seeking control
and NCO tracking are estimated directly from the cost measurement. For the sake
of brevity, we restrict our comparison to extremum seeking control. Extremum
seeking control will be studied in more detail in Chapters 5 and 6. At this point,
the reader is simply referred to [70, 107, 180].

In this subsection, we consider the least-square based extremum seeking control
proposed by Hunnekens et al. [70] because it has been shown to provide better
performance than classical extremum seeking control [32, 70]. The least square
based extremum seeking controller also estimates the gradient rather than just
the sign of the gradient [31]. The least-square based extremum seeking controller
estimates the steady-state gradient using the measured cost and input data with
the moving window of fixed length in the past. The gradient estimated by the least
square method is then driven to zero using a simple integral action. The integral
gain was chosen to be Kgso = 2.

Due to the slow convergence of the extremum seeking controller, the process
with simulated with a total simulation time of 36000s (600min) with disturbances
in Cy,; from 1 molL~" to 2 molL~! at time t = 10800s and Cp,; from 0 mol L1
to 2 molL~! at time t = 21600s. The results using extremum seeking control are
compared with those of the proposed method in Fig. 3.6a. It can be seen that
the extremum seeking controller reaches the optimal point, however, the conver-
gence to the optimum point is very slow compared to the proposed method. The
proposed method has a fast action to the disturbances, and hence reaches the opti-
mum significantly faster than the extremum seeking controller. The integrated loss
compared to the ideal steady-state optimum (3.11) shown in Fig. 3.6c reflects this.

It should be added this is a simulation example, because strictly speaking it
may not be possible to directly measure an economic cost J with several terms. The
simple cost in (3.10) may be computed by measuring individually the composition
Cp and the inlet temperature T;, but more generally for process systems, direct
measurement of all the terms and adding them together is not accurate. This is
discussed further in the discussions section.
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Figure 3.6: Comparison of the proposed feedback RTO method (red solid lines)
with extremum seeking control (black dashed lines) for disturbance in C4 ; at time
t = 10800s and Cp; at time t = 21600s. (a) Plot comparing the cost function. (b)
Plot comparing the input usage. (c¢) Plot comparing the integrated loss. (d) Plot
comparing the estimated gradients.
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3.4 Discussion

3.4.1 Comparison with optimization-based approaches

With the traditional steady-state RTO approach, it was seen clearly that the
steady-state wait time resulted in suboptimal operation, clearly motivating the
need for alternative RTO strategies that can use transient measurements. Dynamic
RTO framework that use transient measurements, provide the most optimal solu-
tion, but it comes at the cost of solving computationally expensive optimization
problems as noted in Table 3.2. This is even worse for large-scale systems where
the sample time will be restricted by the computational time. Indeed, the compu-
tational delay has also been shown to result in performance degradation or even
instability [45].

The feedback RTO strategy proposed in this chapter is closely related to the
hybrid RTO scheme proposed in Chapter 2 and has similar performance (see
Fig. 3.3a). The main difference is that in the new strategy, the steady-state gradient
is obtained as part of the solution to the estimation problem, and the optimization
is then solved by feedback control rather than numerically solving a steady-state
optimization problem. Thus, we avoid maintaining the steady-state models in ad-
dition to the dynamic model.( i.e. avoids duplication of models in addition to the
numerical optimization).

3.4.2 Comparison with self-optimizing control

Self-optimizing control is based on linearization around the nominal optimal point
[2]. The economic performance degrades for operating points far from the nominal
optimal point due to the nonlinear nature of the process. This is the reason for
sustained steady-state loss of self-optimizing control seen in the simulation results.
The proposed method however, is based on linearization around the current op-
erating point, and hence does not lead to steady-state losses. The price for this
performance improvement is the use of the model online instead of offline. In other
words, the proposed method requires computational power for the nonlinear ob-
servers, which are not required in the standard self-optimizing control. However,
nonlinear observers such as extended Kalman filters can be used, as demonstrated
in the simulations, which are known to be simple to implement and computation-
ally fast [177]. The EKF used in the simulations had an average computation time
of 0.0036s.

3.4.3 Comparison with extremum seeking control

Extremum seeking control estimates the steady-state gradient by fitting a local
linear static model using the cost measurements [107]. Therefore, transient mea-
surements cannot be used for the gradient estimation. On the other hand, since
our proposed method linearizes the nonlinear dynamic system to get a local linear
dynamic model, it does not require a timescale separation for the gradient estima-
tion. Hence the convergence to the optimum is significantly faster compared to the
extremum seeking control, as demonstrated in our simulation results.
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3. Feedback RTO using Steady-state Gradient Estimation

In practice, extremum seeking methods may also not be completely model-free,
and may then suffer from structural errors, although it will be different from when
using model-based optimization. The reason is that a direct measurement of the
cost J is often not possible, especially if J is an economic cost with many terms,
and it may then be necessary to use model-based methods to estimate one or more
terms in the cost J. Typically the cost function for a process plant is of the form,

J=cqQ+csF —cpi P — cpoPo (3.12)

where Q, F, P, and P2 are flows in [kg/s| of utility, feed and products 1 and 2
respectively, and ¢g, ¢y, ¢p1, cp2 are the corresponding prices in [$/kg|. Extremum
seeking control requires all the flow terms in (3.12) to be accurately measured. In
practice, even if one of the flow terms is not accurately measured (e.g. to due to
sensor failure), then the best way to get accurate flows is to estimate them us-
ing a nonlinear process model, e.g., using data reconciliation. This means that for
optimization of larger process systems, a extremum seeking or NCO tracking con-
troller will not be truly model-free, because a model is needed to get an acceptable
measurement (estimate) of the cost.

However, it is also important to note that extremum seeking (and NCO-tracking)
approaches can handle structural uncertainty. The method proposed in this chap-
ter, as any other model-based method, works well only when the model is struc-
turally correct. We do note that, in the presence of plant-model mismatch, the pro-
posed method may lead to an optimality gap, leading to some steady-state loss, un-
like the model-free approaches, which would perform better. Therefore, extremum
seeking or NCO-tracking methods (including modifier adaptation) methods should
be considered to handle structural mismatch.

3.4.4 Tuning

As mentioned earlier, the steady-state gradient is controlled to a constant setpoint
of zero using feedback controllers. The controller tuning is briefly discussed in this
section. For the CSTR case study, PI controllers were used. The PI controllers were
tuned using the SIMC PID tuning rules [166]. For each input, let the process model
from the corresponding gradient y = J, to the input u be approximated by a first
order process. For a scalar case,

k —6s

Jo=——
(115 + 1)6

(3.13)
where, 71 is the dominant time constant, 6 is the effective time delay and k is the
is the steady-state gain. These three parameters can be found experimentally or
from the dynamic model [166]. Note that the process dynamics include both the
effect of the process itself and the estimator, see Figure 1. In our case we found
experimentally by simulations that k = 2.25 x 1074, 7y = 60s, # = 1s. The time
delay for the process is very small, and mainly caused by the sampling time of 1 s.

In general, the steady-state gain is equal to the Hessian, K = Jy,, which ac-
cording to Assumption 3.1 should not change sign. The Hessian Jy, was computed
for the CSTR case study and it was verified that this assumptions holds. In par-
ticular, the value of K = Jyy for the three steady-states shown in Fig. 3.3 were
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Juu = 2.25 x 107* (nominal), Jyy = 3.89 x 107% and Jyu = 6.33 x 107, respec-
tively. The gain increases by a factor of 3, which may lead to instability, but if
robust PID tuning is used, tuning the controller at the nominal point should be
sufficient. For a PI-controller,

c(s) =Ko+ % (3.14)

the SIMC-rules give the proportional and integral gain [166]

1 T1 K—KC
= —

Koe=———
© kt.+60 I

(3.15)
where the integral time is 77 = min(m,4(7. + 6)) and 7. is the desired closed-loop
time response, which is the sole tuning parameter [166].
It is generally recommended to select 7. > 6 [166] to avoid instability and
a larger 7, gives less aggressive control and more robustness. In our case, the
controlled variable is J,, (the gradient), but there is little need to control J,, tightly
because it is not an important variable in itself. Therefore, to get better robustness
we recommend selecting a larger value for 7. (assuming that 71 > 6, which is usually
the case):
Te > T1 (3.16)

Selecting 7. > 7 means that the closed-loop response is slower than the open-
loop response. This avoids excessive use of the input u and the system is more
robust with respect to gain variations. This is confirmed by the simulations in
Fig. 3.7b for three different choices of 7.. With 7. = 10s <« 7 = 60s, we get
aggressive input changes with large overshoots in u = Tj, for both disturbances.
The control of gradient is good (Fig. 3.7¢), but this in itself is not important, and
the improvement in profit J is fairly small compared to the choice 7. = 71 = 60s,
which is the nominal value used previously. The integrated loss when 7, = 10s was
245.99% as opposed to 248.07$ when 7. = 7, = 60s. With 7. = 47 the input change
is even smoother, but the performance in terms of the profit (J) is almost the same
(with an integrated loss of 259.07%).

3.4.5 Stability Robustness

The stability of the system is determined by the closed-loop stability involving the
plant input u (manipulated variable) and the estimated gradient J,, as the plant
output y. Thus, the overall plant for this analysis includes the real process, the
estimator (extended Kalman Filter in our case) and the “measurement” y = J,, =
CA~'B+ D. In this case we use a simple PI-controller and the conventional linear
measures for analyzing robustness are to compute the gain margin, phase margin
or delay margin, or H., measures such as the peak of the sensitivity function, Mg.

The gain and phase margins at the three different steady-states are shown for
the three alternative PI-controllers in Table 3.3. Note that the gain margin varies
from 17.3-6.14 for the least robust controller with 7. = 10s, which is still much
larger than the expected variations in the process gain (which is about a factor
3 from 2.25x107% to 6.33x107% ). This is of course a nonlinear plant and the
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Figure 3.7: Effect of controller tuning (7.) for the new method. (a) Objective func-

tion J. (b) Control input u. (c¢) Estimated gradient Jy,.
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Table 3.3: Gain and Phase Margins at the different steady-states for the three PI
controllers with varying ..

‘ ‘ Gain Margin  Phase Margin

Steady- T.=10s 17.3 84.8°
state Te=60s 95.8 89.1°
1 Tc=240s 379 89.8°
Steady- Tc—10s 9.99 81.0°
state Te=60s 55.4 88.4°
2 Te=240s 219 89.6°
Steady- Te=10s 6.14 75.3°
state Te=60s 34.1 87.4°
3 T.=240s 135 89.3°

conventional linear analysis of closed-loop stability will have the same limitations
as it has for any nonlinear plant. It is also possible to consider nonlinear controllers
for the plant, but it does not seem necessary because of the large robustness margins
for the linear controllers.

In summary, stability is not an important concern for the tuning of the con-
trollers in our case. The important issue is the trade-off between input usage and
the speed of response. This was also observed in the other case studies [18, 96].

3.4.6 Other multivariable case studies

In addition to the CSTR case study presented here, the new proposed feedback
RTO method has been successfully applied to the following processes:

1. a 3-bed ammonia reactor with 3 inputs [18]

2. an oil and gas production optimization problem with n,, inputs - [96] with
Ny = 2 wells and in [100] with n,, = 6 wells

3. an evaporator process with 1 input in [103]

4. an isothermal CSTR process with 4 components and 2 inputs in [89]

5. a benchmark William-Otto reactor with 6 components and 2 inputs, shown

in Appendix D

These application examples are appended to this thesis and can be found in Ap-
pendix C. In all these case studies, the new feedback RTO method was compared
with other optimization methods and was shown to provide consistent results as in
the CSTR case study shown in this chapter. It is worth noting that, the ammonia
reactor process studied in [18] and the gas-lift optimization problem studied in
[96, 100] are examples of coupled multivariable process.

3.5 Chapter Summary

To conclude, in this chapter, we proposed a novel model-based direct input adapta-
tion approach, where the steady-state gradient J,, is estimated as J, = —CA~' B+

95



3. Feedback RTO using Steady-state Gradient Estimation

D Dby linearizing the nonlinear model around the current operating point. The
steady-state gradient is thus estimated using transient measurements as shown in
Fig. 3.1.
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Chapter 4

Online Process Optimization with
Active Constraint Set Changes using
Simple Control Structures

The objective of this chapter is to show that online process optimization
can be achieved using simple control structures. In particular, we show
that changes in active constraint regions can be handled using simple
logics such as selectors, without needing to identify the exact location of
the active constraint regions a priori, nor using a detailed model online.

Based on the articles published in Industrial and Engineering Chemistry Re-
search [89] and Control Engineering practice [100].

4.1 Introduction

In Chapter 2 and 3, hybrid RTO and feedback RTO approaches were presented,
where we used a nonlinear dynamic model and a dynamic state and parameter
estimator to optimize the process. The model adaptation step mostly works un-
der the assumption that any plant-model mismatch observed in the measurements
arises from the set of uncertain parameters d. Although this may reduce the er-
ror between the model predictions and the plant observations, this may not result
in optimal operation if the model has the wrong structure. Updating the model
parameters may not be sufficient to alleviate the effects of model structural mis-
match. For example, Roberts and Williams [147], Marchetti et al. [120] and several
others show that it is difficult to achieve the model-adequacy conditions[48] using
the two-step model adaptation approach.

The RTO layer generally has as degrees of freedom, the setpoints for the con-
trolled variables (C'V*P), which is given to the control layer as illustrated in Fig. 4.1.
The control layer has degrees of freedom u, which are the physical manipulated
variables (MV), and in addition to achieving feasible operation, its main objective
is to keep the outputs y or controlled variables (CV) at the optimal values com-
puted by the RTO layer. The main purpose of this chapter is to study how we can
eliminate the RTO layer, even for the case when the set of constraints that are
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4. Feedback Optimizing Control using Simple Control Structures

Optimization
layer (RTO)

ysp = CVsp

Control layer (42——

u=MV

——»  Process

Figure 4.1: Typical hierarchical decomposition into optimization and control layer.

active changes with changing operating conditions. In other words, the objective
is to indirectly move the optimization into the control layer.

The idea of achieving optimal operation using feedback control structure dates
back to the 80s, where Morari et al. [130] attempted to synthesize a feedback opti-
mizing control structure by translating the economic objectives into process con-
trol objectives. However, this idea of “feedback optimizing control” from Morari
et al. [130] received very little attention, until Skogestad [165] presented the self-
optimizing control structure, where the objective is to find a simple feedback control
strategy with near-optimal cost, subject to constraints using feedback controllers.
Here, Skogestad [165] advocates that, it is important to tightly control the con-
straints that are at its limit at the optimum. In this case, there is no loss by keeping
the constraint at its limit (active constraint control). Next, if there are remaining
unconstrained degrees of freedom, one should identify suitable controlled variables
which translates to the economic objectives. In other words, one should identify
the so-called “self-optimizing” control variables. The idea is that, controlling the
self-optimizing variables at constant setpoints give an acceptable loss compared
to the true optimum, when disturbances occur. Offline optimization is typically
needed to find good self-optimizing variables. The ideal self-optimizing variable is
the gradient of the cost function, J,, which should then be controlled to a constant
setpoint of zero [62], thereby satisfying the necessary conditions of optimality.

To summarize, if the optimization problem at hand is an unconstrained prob-
lem, then to drive the process to its optimum, we need good models. However,
if the problem is constrained such that the optimal operation happens when the
constraints are active, then the simplest and most effective approach is to control
the active constraints tightly using feedback controllers (active constraint control),
without the need for a model.

In many cases, the active constraint set changes as a function of disturbances.
For example, when a disturbance changes, some of the active constraints may no
longer be active and some other constraints may become active. When using sim-
ple feedback controllers, a different active constraint set requires reconfiguration
of the control loops and also possible identify different self-optimizing variables for
the new operating conditions. This is schematically shown in Fig. 4.2, where the
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4.1. Introduction

feasible region

Figure 4.2: Schematic representation showing the change in the active constraint
set for two different disturbances, where for disturbance d; the optimum occurs at
the constraint, whereas, for disturbance ds, the optimum is unconstrained.

cost function is shown for two different disturbance values d; and ds. The infeasi-
ble region is shown in gray shaded area. For disturbance d;, the optimum occurs
when the constraint (shown in red line) is active, whereas, when the disturbance
changes to ds, the constraint is no longer active and a new self-optimizing variable
is required, since the problem is an unconstrained optimization problem. This re-
quires the need to change the controlled variables. This chapter focuses on the use
of simple control structures to achieve optimal operation, even in the case where
the active constraint set changes. Using different example cases, we will show that,
often simple control logics are sufficient to handle changes in the active constraint
sets without needing to use a model online.

When we have one manipulated variable (MV) controlling two controlled vari-
able (CV), i.e. CV-CV switching, then minimum/maximum selectors can be used.
Alternatively, when we have more than one candidate MV to control one controlled
variable (CV), then other advanced control structures such as split range, or input
resetting can be used. Split range control may also be used when MV-CV pairings
need to be changed, e.g. when a MV saturates. However, this chapter focuses on
CV-CV switching and the reader is referred to Appendix F and [146] for more
detailed description on MV-MV switching.

The main contribution of this chapter is to show that, for many simple processes
and unit operations, online steady-state process optimization with changes in active
CV constraint regions can indeed be achieved by using simple feedback control
structures, without having a separate online optimization layer. Some well known
case studies are presented that demonstrate the effectiveness of the proposed control
structures and how changes in the active constraint regions can be handled using
selector logic.

Remark 4.1. It is important to note that the objective of this chapter is not to
convince that simple PID control structures are superior to advanced control and
model-based optimization routines such as model predictive control, but rather
to demonstrate that systematic control structure design using classical feedback
controllers may be useful in some processes to achieve optimal operation.
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4. Feedback Optimizing Control using Simple Control Structures

One main advantage of using simple feedback controllers is that it addresses
the challenges related to human aspects, since this is by far, the most trusted and
used technology in practice [152, 153]. However, for many large-scale multivariable
processes with complex interconnections and constraints, this approach can quickly
become messy with several SISO loops and logic blocks.

4.2  Control structure design for online process
optimization
Consider a steady-state optimization problem,
min J(u,d)
u
s.t. (4.1)
g(u,d) <0
where u € R denotes the vector of manipulated variables (MV) and d € R™
denotes the vector of disturbances, J : R"» x R™ — R is the scalar cost function
and g : R™ x R™ — R™s denotes the vector of constraints and let n, < ny denote

the number of active constraints ga(u,d) at the optimum for a given disturbance
d. The Lagrangian of (4.1) is written as,

L(u,d) = J(u,d) + A'g(u,d) (4.2)

where A € R" is the vector of Lagrangian multipliers for the constraints. The
Karush-Kuhn-Tucker (KKT) optimality conditions for (4.1) state that the neces-
sary condition of optimality is when,

VoL(u,d) =V, J(u,d) + \TVug(u,d) =0 (4.3a)
g(u,d) <0 (4.3b)
Ag(u,d) =0 (4.3¢c)
A >0 (4.3d)

where (4.3b) is the primal feasibility, (4.3d) is the dual feasibility and (4.3c) is the
complementary slackness condition.

Typically, the optimal solution for (4.1) is computed by solving the KKT condi-
tions (4.3), either analytically or using numerical methods. However, the objective
in this section is to translate the KKT conditions into control objectives, and
thereby move the optimization layer into the control layer.

In order to achieve this, the first question one needs to answer is what are
the potential combination of active constraints that may be encountered during
operation. For a process with n, constraints, we have a maximum of 2"s possible
combinations of operating regions [165]. To be systematic, we can start our by
writing all the possible constraint combinations. But in practice there are often
only a few of these combinations that are applicable for a given set of disturbances.
Often with good process understanding and “engineering intuition”, one can tell a-
priori which active constraint combinations that may be encountered. Hence we
eliminate the constraint combinations that are not feasible or not likely.
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Figure 4.3: Control structure design for (a) Fully constrained case (n, = ny), (b)
Fully unconstrained case (n, = 0) and (c) Partially constrained case (0 < n, < ny,)

By “active constraints”, we mean the set of constraints g5 C g, which optimally
should be at the limiting value, i.e., ga(u,d) = 0. For each active constraint, we
need to find an associated controlled variable, usually simply the constraint itself,
i.,e. CV = gu. In some cases, the constraint is on a manipulated variable (MV); in
this case one can simply select CV = MV, so actually no controller is needed to
control an MV-constraint. Disturbances may cause the active constraints to change,
meaning that we get different operating regions, as motivated in Fig. 4.2.

A more rigourous alternative is to identify using offline optimization (requires
good models), the possible active constraint regions for known disturbances. Once
the relevant combination of active constraints are identified, control structures can
be designed to handle the different combinations of active constraints.

4.2.1 Selection of controlled variables

Selecting the right controlled variable is important to achieve optimal operation
using simple feedback control structures. Depending on the number of active con-
straints ng, relative to the number of manipulated variables (MV) n,,, we have four
different cases.

Case 1: Fully constrained case (n, = n,) When the number of active con-
straints at the optimum is equal to the number of MVs (i.e. n, = n,), then the
simplest and easiest approach to achieve optimal operation is to select CV = g,
and simply maintain the active constraints at their limits using measurement feed-
back (active constraint control) [118, 165]. Therefore, in this case, we have n,,
feedback controllers that controls the n, = n, active constraints y = gs(u,d) =0
as shown in Fig. 4.3a.
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4. Feedback Optimizing Control using Simple Control Structures

If a constraint is on the MV, then we do not need any controller at all for this
constraint, since the MV can simply be held constant at its limit. More generally,
for other constraints, we need to control an associated CV, e.g. CV = gy (active
constraint control). Active constraint control approach is an old idea and has been
used in many examples [6, 47, 71, 118, 130, 145]. In fact, the example used by Morari
et al. [130] in one of the earliest works on feedback optimizing control happened
to result in an implementation with controlling the constraints at its limit. Note
that in the case of fully constrained optimum, we can achieve optimal operation
without using a model for optimization, since the process constraints are usually
measured and can be maintained at its limit using feedback.

Case 2: Fully unconstrained case (n, = 0) When there are no active con-
straints at the optimum (i.e. n, = 0), we have n,, unconstrained MVs which can be
used to drive the process to its optimum. The optimization problem (4.1) reduces
to

min  J(u,d) (4.4)

u

since ga = ¢ and the necessary condition of optimality (4.3) is given by,
VaJ(u,d) =0 (4.5)

Optimal operation can then be achieved by driving the steady-state gradient VJ
of the cost J from the inputs u to a constant setpoint of zero by n, feedback
controllers, thereby fulfilling the necessary conditions of optimality. Therefore. we
have n,, feedback controllers, each controlling the steady-state gradient to a con-
stant setpoint of 0, i.e. the controlled variables (CV) y = V,J are controlled to a
constant setpoint of ys, = 0 as shown in Fig. 4.3b.

There are different ways that can be used to estimate the steady-state gradient
Vud. One approach is to use a dynamic model of the process along with the
measurements as described in Chapter 3. Alternatively, the plant gradients can
be estimated directly from the cost measurements (if available) as done in NCO-
tracking control[51] and several variants of extremum seeking control[36, 70, 107].
The reader is referred to [173| for a comprehensive review of several model-based
and model-free gradient estimation techniques that can be employed.

Case 3: Partially constrained case (0 < n, < n,) When the number of active
constraints at the optimum is less than the number of MVs, we have a partially
constrained case. In this case, we first use the n, available MVs to control the
active constraints. For the remaining (n, — n,) uncontrolled M Vs, we ideally want
to control the steady-state cost gradient J,, to a constant setpoint such that the
KKT conditions in (4.3) are satisfied.

As mentioned in case 2, in the fully unconstrained case, the steady-state gra-
dients are controlled to a constant setpoint of zero in order to fulfill the necessary
condition of optimality as shown in (4.1). However, in the partially constrained
case, the steady-state gradients V,J(u,d) may have to be controlled to a non-
zero value in order to satisfy the KKT conditions. To further explain this, the

62



4.2.  Control structure design for online process optimization

Lagrangian function (4.2) of the optimization problem for this particular case re-
duces down to

L(u,d) = J(u,d) + ga(u,d)") (4.6)

where, A € R" represents the Lagrange multipliers of the n, active constraints
ga(u,d). Note that the Lagrange multipliers corresponding to the active constraints
ga(u,d) are non-zero due to the complementary slackness condition (4.3c), i.e.
A > 0. The necessary condition of optimality is then given by,

Vul(u,d) = VoJ(u,d) + Vaga(u,d)"TA =0 (4.7)
Vu‘j(u, d) = 7vugA(ua d)T)‘

Therefore, the steady-state gradients must be controlled to a constant value
equivalent to —V,gs (u,d) T\ in order to fulfill the necessary conditions of optimal-
ity. However, the expression in (4.8) cannot be used directly for feedback control,
because it still contains the Lagrange multiplier, which is an unknown variable. In
order to achieve necessary condition of optimality using feedback controllers, we
eliminate the Lagrange multiplier by looking into the nullspace N of the active
constraint gradients Vyga(u,d).

A shown by Jischke and Skogestad [73], N is defined as the nullspace of
Vuga(u,d) if NTV,ga(u,d) = 0. Since the number of active constraints n, <
n,, Linear inequality constraint qualification (LICQ) is satisfied and therefore,
Vuga(u,d) has full row rank. Consequently, the nullspace N is well defined. We
then have the following theorem:

Theorem 4.1 (Linear combination of gradients as self-optimizing variables). Given
a steady-state optimization problem (4.1) with n, manipulated variables u, ng inde-
pendent disturbances d and n, active constraints gs(u,d). Let N € R7*(mu=na) pe
the nullspace of the active constraint gradients Vaga (u, d), such that NTV ,gs (u,d) =
0. Then the necessary conditions of optimality can be achieved by controlling the
linear combination of the gradients

c=N'V,J(u,d) (4.9)

to a constant setpoint of zero.

Proof. To eliminate the Lagrange multiplier, we pre-multiply (4.8) by NT to get
N'V.J(u,d) = —-N"V,gs(u,d)T) (4.10)
Since N is in the nullspace of Vyuga(u,d), NTV,ga(u,d)T = 0.
NV, J(u,d) = -0\ (4.11)
By construction, c is a vector with (n, —n,) elements. Hence, to achieve optimal

operation, we can then control the (n, —n,) elements of the gradient combinations
¢ to a constant setpoint of zero using (n, — n,) feedback controllers. O
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To summarize, in the case with 0 < n, < n,, we use n, MVs to control the
active constraints, and for the remaining (n, — n,) MVs, we control the linear
gradient combination ¢ = NTV,.J(u,d) to a constant setpoint of zero as shown in
Fig. 4.3c.

This is similar to null-space method proposed by Alstad and Skogestad [2], but
instead of choosing a linear combination of measurements ¢ = Hy, we propose to
choose a linear combination of the cost gradients as the self-optimizing variables.
Using a linear combination of gradients as proposed here, leads to zero steady-
state loss, since Theorem 4.1 is based on the KKT conditions. Whereas, the linear
measurement combination proposed by Alstad and Skogestad [2], only leads to
acceptable loss (non-zero steady-state loss). Moreover, the linear combination of
the gradients is always controlled to a constant setpoint of zero, hence eliminating
the need to adjust the setpoint online, unlike the linear measurement combination.

It is important to note that, since this self-optimizing variable is computed
based on gu(u,d) = 0, it is only valid in this particular active constraint region.
Therefore, the control loops tracking the gradient combinations ¢ = NTV,J(u,d)
using the unconstrained MVs must not be used in the regions other than where it
is designed for and the neighboring regions (A neighboring region is an operating
region where only one controlled variable (constraint) has changed). Therefore, it
is not necessary (and in fact it will be incorrect) to track the unconstrained CVs
in all other regions. It is only necessary (and correct) to track the variable ¢ in the
regions where they are active and its neighboring regions.

Case 4: Over-constrained case (n, > n,) If the number of active constraints
becomes larger than the number of M Vs, then the problem becomes infeasible, since
we do not have sufficient MVs to control all the active constraints. In this case, the
only possible solution would be to give up controlling less important constraints.
This is analogous to using soft constraints on less important constraints to avoid
infeasibility issues in numerical optimization problems. In this case, a priority list
can be used to determine the less important constraints and only the first n,
important constraints are controlled at their limit using feedback controllers. The
remaining (n, — n,) constraints are given up. The control structure in this case
would remain the same as shown in Fig. 4.3a. The reader is referred to [146] for
a typical priority list that is commonly used. Note that MV hard constraints, for
example due to physical limitations of the actuator cannot be given up and are
therefore typically high up in the priority list.

4.2.2 Use of selector logic to switch between active constraint
regions

So far, we considered the choice of controlled variables for four different cases. In
practice, depending on the operating point (disturbances), the active constraint
set may change within one of the cases, or from one case to another. One way to
handle this is to use simple controller logics.

Selectors are commonly used as logic elements when one MV w is used to con-
trol several controlled variables (CV) y, i.e to handle CV-CV switching. In this
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4.2.  Control structure design for online process optimization

approach, there is a controller for each CV and the MV-value is selected among
the controller outputs using a minimum or maximum selector, depending on the
process gains. The following theorem summarizes the systematic design of selectors
for CV-CV switching.

Theorem 4.2. (CV-CV switching using selectors) Consider a process with one
MYV and

e at most 1 CV equality constraint that can be given up (setpoint control),
denoted by yo

e any number of C'V inequality constraints that may be optimally active, denoted
by yi, i ={1,....,n}
For each output y; design a SISO controller which computes u;, and let the actual
input u used to control the system be determined by a maz- or min-selector

U = MaX;e[o,n] (wi) O U = Min;ec(g ) (u;)

Further, let a logic variable y“™ be defined for each CV inequality constraint
(i=1,...,n)

yém = 1 for a max-constraint
yﬁ“" = —1 for a min-constraint

Then the CV-CV switching is feasible only if

lim lim

sgn(Gi)sgn(y;"™) = sgn(Gy)sgn(y;"™) Vi, j € {l,...,n}

where G; is the steady state process gain for the ith CV 1.
Furthermore, if sgn(G;)z; = 1, use a minimum selector block, and if sgn(G;)z; =
—1 use a maximum selector block.

Proof. When a CV inequality constraint y; is active for any i € {1,...,n}, all the
other CV constraints must be satisfied for the system to be feasible. Assume now
that y; is controlled but there is a disturbance that brings another output y; to
exceed its constraint. Then to remain feasible, we need to change the input u to
avoid that y; exceeds its constraint value. However, this input change will also
effect the other outputs, so to guarantee feasibility, we must require that all the
constrained outputs y; Vi = {1,...,n} move in the same direction relative to their
constraints. This proves the CV-CV feasibility condition.

Next, if sgn(G;)sgn(yl™) = 1, then increasing u moves output y; closer to
its constraint, so to maintain feasibility we must use a min-selector. Similarly, if
sgn(G;)sgn(yli™) = —1, then decreasing u moves output y; closer to its constraint,
S0 to maintain feasibility we must use a max-selector. This proves the last part of
the theorem.

O
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Figure 4.4: Schematic representation of a process with n CVs and 1 MV using a
selector logic block with scaled variables.
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Figure 4.5: Flow line with a valve as MV and flow and inlet pressure as CVs. (a)
Example of bad pairing. Theorem 4.2 is not satisfied and the selector logic does
not work. (b) Theorem 4.2 is satisfied and the selector logic works.

For example, consider a flow line with a valve as the MV. Suppose we have two
potential CV constraints, namely, flow ¢ with its maximum limit scaled to ¢™**
(yk™ = 1) and the inlet pressure p with its maximum limit scaled to p™* (yhi™ =
1). The process gain from the valve to the flow is positive (sgn(G,) = 1), whereas
the process gain from the valve to the inlet pressure is negative (sgn(G,) = —1).
One can clearly, see that, with both the CVs being controlled to the max limit,
sgn(Gq)sgn(yf;m) # sgn(Gp)sgn(ygm). In this case, the flow controller would want
to open the valve, whereas the pressure controller would want to close the valve
(opposing MV change direction), as shown in Fig. 4.5a. the constraint feasibility is
not guaranteed in this case.

However, if we instead want to control the pressure at its minimum limit p

(ygm = —1), and the flow at its maximum limit as before, sgn(Gq)sgn(yf;m) =

sgn(Gp)sgn(y™) = 1 (see Fig. 4.5b). Therefore, using a minimum selector, the
valve will be opened until either the minimum pressure limit is reached or the
maximum flow limit is reached, thereby providing the desired response and ensuring

feasibility of all the constraints .

min

When using selectors, it is important to note that there will be integral “windup”
in any deselected/inactive controller [162]. A simple remedy to this problem is to

1Note that the possible CV equality constraint is not included in the evaluation
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4.2.  Control structure design for online process optimization

use anti-windup logic or bumpless transfer logic [58, 65] to avoid any undesired
transients when switching between different controllers and controller modes.

4.2.3 MYV-CV Pairing

When designing simple feedback controllers to achieve optimal operation, another
important question that arises is what MVs must be used to control the active
constraints and /or the gradient combinations. In other words how to pair the MV
and CVs to achieve optimal operation and enable switching between the active
constraint regions. As for any decentralized control structure design, useful tools
such as the relative gain array (RGA) can be used to decide on the CV-MV pairing.
Once the different active constraint regions are identified, the corresponding MV-
CV pairing must be chosen to design the control loops such that the necessary
CVs in each operating regions is controlled by an MV. Hence the active constraint
regions play a very important role in choosing the MV-CV pairings. As a rule of
thumb, in each active constraint region, the MV-CV pairings must be chosen based
on the following:

1. Pair-close rule [168] - In order to avoid large time delays and sluggish control,
it would also be wise to control a CV using an MV that is physically close to
one another.

2. Non-negative RGA - CV-MV pairing must be chosen such that the steady-
state RGA of the resulting transfer matrix is non-negative and close to iden-
tity matrix at crossover frequencies [168].

3. One must also try to avoid pairing important CVs with MVs that quickly
saturate [167], and instead pair such MVs with less important CVs that may
be given up. Moreover, if we want to switch between two active constraint
regions, where the switching is between a CV and MV constraint, then by
following this rule, we do not need any additional logics to switch between the
CV and MV constraint. In this case, the MV would saturate automatically
by giving up on the CV that is no longer active in the new operating region.
If this rule is not followed, more logic blocks such as split-range control would
be required to re-pair the MV and CV to achieve the same objective, making
the control structure unnecessarily complicated.

4. Same MV change sign when using selectors (Theorem 4.2) - Another impor-
tant consideration, when choosing the CV-MYV pairing is the different combi-
nation of the active constraints that must be considered. Once the different
possible CV combinations that may be encountered, are identified, selector
blocks can be used to switch between two or more CVs using the same MV.
When grouping the CVs together that needs to be controlled by the same
MYV, one must not switch between different CVs using the same MV, with
opposing MV change according to Theorem 4.2.

Note that there may be several different possible MV-CV pairings to achieve the
same objectives, and the pairing rules listed above can guide in selecting a good
control structure design that would help reduce the number of logic blocks required
to reconfigure the control loops.
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Figure 4.6: Example 1 - Optimal constraint values as a function of disturbance. (a)
de[3,4 (b)de|[7,9]
4.3 Example 1 - Toy example

To illustrate this, consider a simple toy example with n, = 1 degree of freedom.
The optimization problem is given by,

min J = (u—d)? (4.12)
s.t.
g :(48-04d)u—12<0 (4.13)
gr:hu+d—49<0 (4.14)

For this problem, we have n, = 2 potential constraints, and therefore, we can
have a maximum of 2" = 4 active constraint regions. These correspond to;

1. Fully unconstrained (R-I)
2. Only g; active (R-II)
3. Only gy active(R-III)

4. Both g; and g» active (infeasible)

Since we only have one MV, we can control at most one CV at any given time.
Therefore, the last combination with both constraints active is infeasible, and we
only need to design controllers for regions R-I, R-II and R-III.

To understand better the optimal solution (and not because it is necessary for
the subsequent controller design), we show the optimal active constraint values for
d € [3,4] and d € [7,9] in Fig. 4.6, which was computed by solving the numerical
optimization problem offline. It can be seen that, for d < 3.55 the problem is
unconstrained (R-I) and for 3.55 < d < 8.3, constraint g; is active (R-II). At
d = 8.3 the optimal active constraint switches from g¢; to go (R-III).

The unconstrained optimum for d < 3.55 is achieved when the cost gradient
Ju = 0, which from (4.12) corresponds to u = d. We therefore propose a control
structure with three controllers; one to control the unconstrained optimum (u = d),
and two other to control the constraints g; and go, respectively. Since in this
example, sgn(G1)sgn(yi™) = sgn(Ga)sgn(yy™) = 1 for g; and gy respectively,
to switch between the three controllers, we use a minimum selector logic based on
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Figure 4.7: Example 1 - Block diagram of the control structure to handle changes
in the active constraint set.
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Figure 4.8: Example 1 - Simulation results showing the switching between the active
constraint regions using a minimum selector block.

Theorem 4.2. The resulting control structure is shown in Fig. 4.7. The simulation
results using this control structure are shown in Fig. 4.8.

4.4 Example 2 - Exothermic reactor

In this section, we consider optimal operation of a continuously stirred tank reactor
(CSTR) from [41] which has been widely studied in academic research [1, 72, 187].
The CSTR process has a heater to adjust the feed temperature u; = T; and also
the feed rate can be manipulated, up = F. The dynamic model of the CSTR is
given by (3.9) and the nominal values for the CSTR process are given in Table. 3.1.

For this CSTR process, the two degrees of freedom are u = [T; F]T and
the objective is to maximize a weighted sum of the throughput rate F' and the
product concentration C'p, while penalizing utility costs associated with a high feed
temperature T;. This is subject to maximum feed rate F, maximum temperature
T, and maximum impurity C4 constraint in the outflow. The optimization problem
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4. Feedback Optimizing Control using Simple Control Structures

is formulated as,

min - — F —2.009Cp + (1.657 x 1073T;)?

s.t.
g F/Fme® —1<0 (4.15)
g : T/T™* —1<0
g3 : Ca/CH —1<0
The concentration of component A in the feed stream Cj4 ; is a disturbance and
varies in the range from 0.7 to 1.1mol/l.
For this system, we have n, = 3 constraints and 2% = 8 potential active con-
straint regions, namely,
1. Fully unconstrained (never)

only g; active (R-I)
only gy active (never)
only g3 active (never)
g1 and g» active (R-II)
g2 and g3 active (R-III)

NS e W

g1 and g3 active (unlikely)

8. g1, g2 and g3 active (infeasible)

Since we only have two MVs, we can only control at most 2 constraints active
at any time. Therefore the potential constraint region 8 listed above is infeasible
and can be eliminated. Also, from the cost function in (4.15), the feed rate F' will
be maximized (i.e. g1 is active) as long as there are any unconstrained degrees of
freedom. This eliminates the fully unconstrained region, the region where only gs
is active and region where only g3 are active. Furthermore, based on engineering
insight and for the given range of disturbance and activation energy, the reactor
temperature constraint (gz) will become active before the impurity constraint (g3)
becomes active. This eliminates region 7 as unlikely and leaves us with active
constraint regions R-I, R-IT and R-III. Solving the numerical optimization problem
offline for the expected disturbances confirms that we need to consider the three
regions. This is illustrated in Fig. 4.9 which shows the three constraint variables
as a function of Cy ;.

In R-I, when Cy4; < 0.85mol/l, only the feed rate constraint (gp) is active,
leaving one MV unconstrained. This belongs to the partially constrained case (case
3). Here, we can use the feed rate u; = F to maintain the throughput at its
constraint value of F™%" and use the inlet temperature us = T; to control the
gradient J, = Vr,J (the steady-state gradient from 7; to J) at a constant setpoint
of zero.

This follows from (4.7) which gives,

Vo L =V, J + AV, (F — F7M9%) =
SV J4+A-0=0 (4.16)
:>VT1J =0
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Figure 4.9: Example 2 - Optimal constraint values as a function of the disturbance.
The three active constraint regions R-I, R-II and R-III are clearly marked.

In this case, we estimate the steady-state gradient J,, = Vg, J by linearizing a
nonlinear dynamic model around the current operating point, as proposed by Kr-
ishnamoorthy et al. [102]. Note that any gradient estimation method may be used
here to estimate the steady-state cost gradient[173].

In R-II, when 0.85 < C4; < 1mol/l, there are two active constraints, namely,
the feed rate (g1) and the reactor temperature (go). This is a fully constrained
case (case 2) and we use the feed rate F' to maintain the throughput at F™%* as in
region R-I, and use the inlet temperature 7T; to maintain the reactor temperature
at its maximum limit.

In R-IIT, when Cy4,; > 1mol/l, we also have a fully constrained case with the
reactor temperature constraint (gs) and the product concentration constraint (gs)
being active. The feed rate is no longer at its maximum and is instead used to
control the concentration of component A in the outlet less than the maximum
limit of 0.5mol/l in order to meet the product requirement. As in region R-1I, the
inlet temperature is used to control the reactor temperature at its maximum limit.

To switch between the different active constraint regions, minimum selector
blocks are used. The control structure including the selectors to handle changes
in the active constraint is shown in Fig. 4.10. The proposed control structure was
tested in simulations with varying values of the disturbance C4 ; and the results
are shown in Fig. 4.11. All the controllers are PI controllers and are tuned using
the SIMC tuning rules [166]. The proportional gain K¢ and integral gain K are
shown in Table. 4.1.

Table 4.1: Controller Tunings used for example 2 (Fig. 4.10)

‘ TC GC CC FC
Kc | 0.0167 4167 3.3661 0O
Ky | 0.0167 64.1149 0.2805 1
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Figure 4.10: Example 2 - Proposed control structure design for optimal operation
over Regions R-I, R-II and R-III

The simulation starts with C4,; = 0.75mol/l and we can see that the flow
controller (denoted FC in Fig. 4.10) maintains the feed rate its setpoint of F™** =
1mol/min and the gradient controller (denoted by GC in Fig. 4.10) drives the
system to its optimum. At time ¢ = 20min, the feed concentration changes to C4 ; =
0.9mol/l. In this case the temperature controller (denoted by TC in Fig. 4.10)
takes over from the gradient controller and maintains the reactor temperature at
its setpoint of T™** = 425K. Finally, at time ¢ = 40min, the feed concentration
further increases to Ca; = 1.1mol/l. In order to meet the purity requirement on
the product, the concentration controller (denoted by CC in Fig. 4.10) takes over
the feed rate control to maintain the concentration of component A at its maximum
limit of C1** = 0.5mol/l by reducing the feed rate.

The true optimal steady-state solution computed by solving a steady-state nu-
merical optimization problem is used as a base case and is compared with the con-
verged solution in Table. 4.2. By comparing these simulation results with the true
optimal solution, we find as expected that the simple feedback control structure
provides optimal operation without needing to solve online numerical optimization
problems. The simulation results also demonstrate that simple logics are sufficient
to handle changes in active constraint sets without using the model online to detect
change in active constraint regions.

As mentioned earlier, the gradient controller (GC) that controls the steady-
state gradient must be inactive in region R-III, since it is not a neighboring region
to region R-I. Therefore, one should only to track the gradient in R-I and its neigh-
boring region R-II. One way to do this is by turning off the GC controller when the
concentration controller CC that controls C'4 becomes active, indicating operation
in region 3. Fig. 4.11 also shows as dashed lines, the simulation results when the

72



4.4. Example 2 - Exothermic reactor

0.55
| oo gs active g active g active /e
0.5 b A Iy
-
S I
| 0.45 s
= I 0.8
0.4 s
D
0.35 0.6 ==
0 20 40 60 0 20 40 60
425
Tmaz gs active  g» active
495k, ~ :
o \\ T; 120 l
|
2 420 \ S |
\
\ - \
~—— 415 \
415 -
0 20 40 60 0 20 40 60
-3
210 11
R-IIT
1
'*C‘
O oo R-1I
[
=
08t py
0.7
0 20 40 60 0 20 40 60
time [min] time [min]

Figure 4.11: Example 2 - Simulation results using the proposed control structure
(solid thick lines). The thin dashed lines show the simulation results if the GC
controller is incorrectly activated in R-III as a motivating example.

gradient controller GC incorrectly controls the gradient from R-I also in R-III. This
motivates the need for the switch in Fig. 4.10 which automatically deselects the
gradient controller in region R-ITI, when the concentration C'4 becomes active. As
shown in the simulation results, if the gradient controlled is not turned off in region
R-III, we get non-optimal operation with T" < T™%® (g5 not active as it should
be).

Comment: Although the case with g; and g3 active was not relevant for the
considered disturbance (and listed as unlikely), it may occur if, for example the
activation energy also changes. However, switching to a case where the constraints
g1 and g3 are active will require a re-pairing of MVs and CVs, since controllers
CC and FC are the two controllers that need to be used in this region and they
now both use us = F. Additional logics such as split range control logic would be
needed to handle this.
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4. Feedback Optimizing Control using Simple Control Structures

Table 4.2: Comparison of the true optimal steady-state solution and the converged
solution.

Cai =075 Cu; =09 Cy,; =11
True uy = F 1.000 1.000 0.6408
optimum up =1T;  421.7 422.7 422.0
Converged | u3 = F 1.000 1.000 0.6408
solution ug =Ty  421.7 422.7 422.0
up = Fa uz = Fp
Ca Cp.
\%4
A+B—C
Q . 282D Fa+ Fp
] EEEEEEE—

Figure 4.12: Example 3 - Isothermal CSTR [27, 171]

4.5 Example 3 - Isothermal CSTR

In this section, we consider the optimal operation of another CSTR, as studied by
Srinivasan et al. [171] and Chachuat et al. [27]. It consists of an isothermal CSTR
with two exothermic reactions, namely,

A+B—C (4.17a)
2B — D (4.17b)

The desired product is C, while D is an undesired by-product. The CSTR has two
feed streams u; = F4 and up = Fg with corresponding known inlet concentrations
Cy, and Cp, respectively (see Fig. 4.12).

We modify the steady-state model from Chachuat et al. [27] to get a dynamic
model. Assuming perfect temperature control (isothermal) and level control (con-
stant V'), the dynamic model of the process is given by the following component
mass balances:

dTLA

F:FAC& — (Fa+ Fp)Ca — k1CACBV (4.18a)
%’3 = FpCp, — (Fao+ F)Cp — kyCACBV — 2k O3V (4.18b)
dg—tc = —(F4 + Fp)Co + k1CACBV (4.18¢)

where n4, ng and ng are the number of moles of components A, B and C re-
spectively. Ca = na/V, Cp = ng/V and Cc = ng/V are the concentration of
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4.5. Example 3 - Isothermal CSTR

components A, B and C in the product stream.
The heat produced by the chemical reaction is given by,

Q = (—AH)k;C4CBV + (—AH3)ko CEV (4.19)

where AH; and AHy denotes the enthalpy of the reactions 1 and 2, respectively.
The nominal model parameters are the same as the one used in [27], and are shown
in Table. 4.3.

Table 4.3: Nominal values for CSTR process from Case study 2[27].

Description Value Unit
Chs Inlet A concentration 2 mol
Cgs, Inlet B concentration 1.5 mol

AH;  Enthalpy of reaction 1 -7x10*  J/mol
AH> Enthalpy of reaction 2 -1x10%  J/mol

\% Tank Volume 500 l

k1 Reaction rate 1 1.5 l/mol/h
ko Reaction rate 2 0.014 l/mol/h
Fmar  Maximum flow rate 22 l/h
Q™M Maximum heat 1000 kJ/h

The objective is to use feed streams u = [F4  F] to maximize the production
of component C, which is expressed as the amount of product C, given by the
expression, (F4 + Fp)Ce multiplied by the yield factor (Fa + Fg)Cco/FaCly, [27].
In addition there are constraints on the cooling @ and the total outflow (Fs + Fg).
The optimization problem is then expressed as,

F F 212
min J = ——( A+ Fp) Co
Fa,Fp FyCy,

s.t (4.20)
g :Q/Qm —1<0 (4.21)
go ! (FA—FFB)/FmaT—l SO

Since we have n, = 2 constraints, we have a maximum of 22 = 4 potential
active constraint regions, namely,

1. Fully unconstrained (unlikely)
2. Only g; active (R-I)

3. Ouly g active (R-III)

4. Both gy and gy active (R-1I)

The reaction rate d = k; is a disturbance and varies in the range from 0.3 to
1.5 /mol h. In this range, the active constraints at the optimum changes with k;.

For the purpose of verification of the potential active constraints listed above,
and not for the subsequent control structure design, we solve the numerical op-
timization problem offline for the expected disturbances, which verifies that we
only need to consider three different combinations of active constraints; only g
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Figure 4.13: Example 3 - Optimal values of the normalized constraint variables
Q/Q™** (solid blue lines) and (Fa + Fg)/F™** (solid red lines) as a function of
the reaction rate k1. The three active constraint regions are clearly marked.

active (R-I), both g; and go active (R-II) and only go active (R-III). The active
constraint regions as a function of the k; is shown in Fig. 4.13. It can be seen that
there are three active constraint regions, which are marked with R-I, R-IT and R-IIIT
respectively.

In region R-I, when k; < 0.69, only the outlet flow constraint is active (g2).
This belongs to the partially constrained case (case 3), where we use feed stream
u; = F4 to control the feed flow (Fa+Fp) at its maximum limit. We use uy = Fp to
drive the system to its optimum using a gradient controller. Following Theorem 4.1,
expression (4.8) in this region looks like,

VuL(u,d) = Vo J(u,d) + Vyu(Fa + Fp — F™*)TA =0

-]

OFp

To eliminate the Lagrange multiplier, we pre-multiply (4.22) by the nullspace of
the active constraint gradients, which in this case is given by [1 1]T and the cor-
responding nullspace N = [—0.7071 0.7071]. This gives the gradient combination

clza—J—ﬂ:O (4.23)
0Fy OFp
Therefore, we use the second degree of freedom to maintain gradient combination
c1 to a constant setpoint of zero. In this simulation study, we estimate the steady-
state gradients V,J by linearizing a nonlinear dynamic model around the current
operating point as described in Chapter 3.

In region R-II, when 0.69 < k < 0.82, both constraints g; and go are active.
This belongs to the fully constrained case (case 2), where optimal operation can
be achieved by simply controlling the heat produced to its maximum limit using
Fp and the outlet flowrate at its maximum limit using F4.

In region R-III, when k£ > 0.82, the outlet flowrate constraint is no longer active
and only the maximum cooling constraint is active (g;). This again corresponds the
partially constrained case. Following Theorem 4.1, expression (4.8) in this region
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A+B—C
2B — D Fa+ Fp
=

Figure 4.14: Example 3 - Proposed control structure design for optimal operation
over Regions R-I, R-IT and R-III
looks like,

Val(u,d) = VyJ(u,d) + Vo (Q — QM)A =0

a
= [‘9{4 =-A

OFp

Q.
9F (4.24)
oFp

To eliminate the Lagrange multiplier, we pre-multiply (4.24) by the nullspace of
the active constraint gradients, which in this case is denoted by N = [n;  ng]. This
gives the gradient combination of

c3 = nl% + ng% =0 (4.25)
Therefore, we use the second degree of freedom us = Fp to maintain gradient
combination c3 to a constant setpoint of zero.

To switch between the different active constraint regions, minimum selector
blocks, as shown in Fig. 4.14. The proposed control structure was tested in simula-
tions with varying values of k1 and shown in Fig. 4.15. All the controllers used in
this simulation are PI controllers and are tuned using SIMC tuning rules[166]. The
proportional gain K¢ and the integral gain K; for the PI controllers are shown
in Table. 4.4. As mentioned earlier, the GC1 controller need not be tracked in R-
IIT and similarly GC3 controller need not be tracked in R-I. In other words, GC1
controller can be turned off when GC3 controller is active and vice versa.

The simulation starts in R-IIT with k; = 1.5 [/mol h. In this case, the cooling
is maintained at its maximum limit using v; = F4 (QC in Fig. 4.14) and the
gradient combination c3 is controlled using us = Fp (GC3 in Fig. 4.14). At time
t = 20min, k; is ramping down to k1 = 0.75 [/mol h at time ¢ = 40min, possibly
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Table 4.4: Controller Tunings used in the controllers shown in Fig. 4.14

‘ QC GC1 GC3 FC
Kce | 3.1807  2.1191  2.6647 O
Kr 1.2723 0.0706 0.1665 1
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Figure 4.15: Example 3 - Simulation results using the proposed control structure.

caused by deactivation of the catalyst. When this happens, the maximum limit on
F4 + Fg is reached and the flow control FC takes over from the GC3 controller.
The cooling is still maintained at its maximum limit by the QC controller. At time
t = 60min, k; further ramps down to k1 = 0.3 [/mol h at time ¢ = 80min. When
this happens, the constraint on the cooling is no longer active and the gradient
controller GC1 takes over to maintain the gradient combination c; at a constant
setpoint of 0.

The true optimal steady-state solution computed by solving a steady-state nu-
merical optimization problem is used as a base case and is compared with the con-
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4.6. Example 4- Oil production optimization

Table 4.5: Comparison of the true optimal steady-state solution and the converged
solution.

ki =15 k1 =075 k3 =0.3
True up = Fau 7.615 8.171 8.211
optimum uz = Fp  13.05 13.83 13.79
Converged | u1 = Fa 7.615 8.171 8.211
solution uz = Fp  13.05 13.83 13.79

verged solution in Table. 4.5. This simulation example shows that simple feedback
control structures provide optimal operation without needing to solve online nu-
merical optimization problem. The simulation results also demonstrate that simple
logics are sufficient to handle changes in active CV constraint regions. As mentioned
earlier, the GC1 controller that controls the unconstrained optimum in region R-I
is turned off in region R-III and similarly, the GC3 controller that controls the
unconstrained optimum in region R-III is turned off in region R-I.

Although the fully unconstrained case was not relevant active constraint region
for the considered disturbance, this can be easily included in the proposed control
structure by adding one more control loop for each MV that controls the steady-
state gradients Vg, J and Vg, J using u; = F4 and us = Fp to a constant setpoint
of zero. The minimum selector box implemented for each MV will then select the
minimum of the three controller outputs to be implemented on the process.

4.6 Example 4- Oil production optimization

In this section, we show how we can achieve optimal operation of a gas-lifted
well network using simple feedback control structures. We consider a production
network with n,, gas-lifted wells, producing to a common riser manifold (See Ap-
pendix A). The optimization problem can be stated as:

Ny Ny
min J= -8, E Wpo, + 841 E Wl
Wali i=1 i—1

Nw

s.t. prgi < wpg” (4.26)
i=1

Ny

max
E :wgli < Wy
i=1

where §, and $,; are the oil price and the cost of gas compression respectively. wpo,
and w,y, are the produced oil and gas from from well ¢ respectively. The gas-lift
rate is denoted by wy,, which are the manipulated variables. w;** and wgy** are
the maximum gas processing capacity, and the maximum gas available for gas-lift
respectively.

A gas-lifted production network with n,, wells connected to a riser has 2n,, + 1

degrees of freedom, namely, n,, gas-lift injection rates, n,, production valves on
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the wells and 1 valve on the riser. Typically, the gas-lifted wells are predominantly
controlled by the gas-lift injection rate only. The production valves on the wells
and the riser are kept at its maximum limit (which is either constrained by the
physical opening or other effects such as casing-heading etc.), since decreasing the
valve position reduces the flow from the reservoir. Thus, the production valves are
all kept at a constant opening and only n,, gas-lift injection rates are the degrees
of freedom in this work [96].

4.6.1 Control structure design - Unconstrained case

In the unconstrained case, the ideal self-optimizing variable would be the cost
gradient with respect to the inputs, which must be equal to zero at the optimum.
From (4.26), this would be given by the expression,

oJ OWpo,
=_ d =0 Viel,. 4.27
Doy, $o 3wg . +8,=0 Vie ( )

In order to achieve the necessary condition of optimality, rearranging (4.27) gives,

OWpo, %
8ng1 o $o

Viel,. .. n, (4.28)

The term Z L is commonly known as marginal gaslift-oil-ratio (often abbreviated

as marginal GOR) which is defined as the change in oil rate per unit change in
the gas-lift injection rate. In the rest of the chapter, we denote marginal GOR by

OWpo,
vy = TLpoi
awgli

Therefore, in the unconstrained case, the marginal GOR for all the wells v; must
be controlled to constant setpoint of %i’ [96]. That is, the controlled variables are

CVl =V — % (429)
C‘/z =Vj—1 —V; — 0, Vi = 2, e Ny (430)

4.6.2 Control structure design - Produced gas capacity
constraint active

If the total gas processing capacity is low, then the optimum occurs when all the
available gas processing capacity is fully utilized. Hence the total gas processing
capacity constraint becomes active. We use one well to control this active constraint
tightly. For the remaining (n,, — 1) well’s gas-lift, the optimum happens when the
marginal GOR is equal for all the wells. This is because, for any parallel unit, the
optimum happens when the marginal cost is equal as shown by [37]. One can also
easily prove this again using Theorem 4.1. This concept has been used in gas-lift
optimization in several works such as [79, 96, 161, 183] to name a few.
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When it comes to selecting which well to use to control the active constraint
tightly, the well with the largest MV (flow) should be used to control the ac-
tive constraint. This gives better control of the active constraint (high gain and
higher controllability range). Controlling the active constraint with a small MV
may quickly saturate, leading to constraint violation or suboptimal operation. In
this case, we assume that the wells are numbered in decreasing order in terms of
the flow, with well 1 having the largest flow. Therefore well 1 is used to control the
active constraint.

Therefore, in this case, the (n,, — 1) self-optimizing CVs are given by,

CVi=viq1—vi, Vi=2,... 1y (4.31)

which are controlled to a constant setpoint of zero, thereby achieving equal marginal
GOR. We note that (4.31) is the same as (4.30). For well 1, the controlled variable
is given by

CVi=> 1wy, (4.32)
1=1

max

which is controlled at its maximum limit of Wpo

straint control.

, thereby achieving active con-

4.6.3 Control structure design - Gas-lift constraint active

When the total available gas-lift is limited such that each of the wells cannot be
operated at its local optimum, then the optimum occurs when all the available gas
is used for gas-lift. Therefore the total gas-lift constraint is active, and one of the
well’s gas-lift (or more precisely, one degree of freedom related to gas-lift) must be
used to control the total gas-lift rate at its maximum limit of (CHES Again we use
the well with the largest MV (flow) for active constraint control as mentioned in
Section 4.6.2. For the remaining (n,, — 1) well’s gas-lift rate, the optimum happens
when the marginal GOR is equal. Therefore, in this case, the (n,,—1) self-optimizing
CVs are given by (4.31). For active constraint control, the total gas-lift rate must
be at its constraint. So,

CVi=> wy, (4.33)
=1

which should be controlled to a constant setpoint of wy;**. This may be viewed
as an MV constraint, because we can simply keep MV; at a constant value of

— max Naw
Wyl, = Wy — D it Wl
4.6.4 Control structure design - Summary of cases

A comparison of the three cases shows that, in all the cases, we must control (n,,—1)
self-optimizing CVs given by (4.31), whereas C'V; changes:

Case 4.6.1:  CVy = vy with CV;F = %gol

Case 4.6.2: OV} = Y 1™ wyg, with CVP = w/o®

Case 4.6.3:  OVi = Y21 wy, with CV;¥ = wlj*
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Figure 4.16: Example 4: Schematic representation of the proposed control structure
design for optimal operation of a gas-lifted well network.

For all the three cases, CV; is given by v;_1—v;, Vi =2,...,n, Thus, with the
chosen pairings, the CV only changes for well 1 depending on the three operating
regions. Since this is a CV-CV switching, we use a minimum selector block to select
between (4.29), (4.32) and (4.33). The proposed control structure is schematically
represented in Fig. 4.16.

4.6.5 Simulation results

In this simulation study, we consider a network of n,, = 6, as such we have 6 MVs.
For the last 5 MVs, we control the CVs (4.31) to a constant setpoint of zero, thereby
ensuring equal marginal GOR for all the wells. For the first well, we design three
controllers to control (4.29), (4.33) and (4.32), and use a minimum selector block to
select between the three controllers as shown in Fig. 4.16. Simple PI controllers are
used for all the controllers, and the controller gains were tuned using SIMC rules
[166]. The controller tuning parameters are shown in Table 4.6. For this simulation
case example, the model is the same as the one shown in AppendixA with n,, = 6.
The model parameters are shown in Table 4.7.

We use the following data: The ratio of the oil price to cost of compression
% = 0.25. The total available gas-lift is limited to wy** = 10kg/s, and the
nominal gas processing capacity is constrained at wy;** = 30kg/s. The production
network is simulated for a total of 10 hours. There are different methods to estimate
the steady-state gradient, which is the marginal GOR in this case. In this chapter,
the marginal GOR is estimated using a nonlinear process model and measurements
as described in Chapter 3 (see also [96]). Initially, we simulate a case where, the
GOR of the different wells are such that the optimum occurs when all the available
gas is used for gas-lift. We see that the proposed control structure design achieves
this by automatically selecting (4.33) as C'V;. The difference in the marginal GOR
for the wells is also controlled to zero, implying that the wells are operated at
equal marginal GOR, as shown in Fig. 4.17. At time ¢t = 3hrs, a disturbance causes
the GOR of well 3 to increase from 0.09 kg/kg to 0.11 kg/kg. The total gas-lift
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Figure 4.17: Simulation results showing the optimal operation of a production
network with 6 gas-lifted wells for the three different cases.
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Table 4.6: Controller parameters used in the gas-lift case study

well CvV CcVvsp Kp K
well2 v —vg O 13.79 0.0173
well 3 vo — 3 0 9.12 0.0114
well 4 w3 —1y 0 13 0.016
well 5 vy — vy 0 12.5 0.015
well6 w5 —vg O 7.07 0.0089
> wpg; wgz‘“” 0.267 3.3e-4
well 1 14 $5/% 9.302 0.0116
Z wgr, w;rlzax _ _1

I No controller is needed for the maximum gas-lift rate > wgy, . This is achieved by having a

max Nw
constant MV wgy;, = wyy = Do W,

constraint is still active, and the gas-lift injection rates for the different wells are
adjusted automatically to optimally allocate the total available gas-lift to reflect
the new operating conditions.

At time ¢t = 4hrs, another disturbance causes the GOR of well 4 to increase from
0.108 kg/kg to 0.138 kg/ke. In this case, neither the total gas-lift constraint, nor
the gas capacity constraint is active (unconstrained case). When this disturbance
happens, the min selector block automatically chooses (4.29) as CV;, and we see
that the marginal GOR of all the wells are now controlled to a constant value of

gl = 0.25.

* At time t = Thrs, the total topside gas processing capacity reduces from
wpe® = 30kg/s to wp,** = 25kg/s. The optimum is then when all the available
gas processing capamty is fully utilized. In this case, the min selector automatically
switches CV; to (4.32), and we see that the total gas produced is controlled at its
maximum limit of wy;** = 25kg/s. At the same time, the marginal GOR for all
wells are kept equal by the proposed controller structure, thus leading to optimal
operation for the new operating condition.

From the simulation results, it can be clearly seen that optimal operation under
varying operating conditions can be achieved using simple feedback controllers,
without the need for advanced optimization tools. Experimental study of optimal
control of electrical submersible pump (ESP) lifted oil wells using such simple PID
controllers with logics were also tested on a large-scale experimental test facility
with a full scale ESP and live viscous crude oil, which shows that classical feedback
controllers with simple logic blocks are sufficient to achieve optimal operation of
small-scale processes [100] 2

4.7 Chapter Summary

In this chapter, we formalized a framework for optimal control structure design for
four different operating cases, namely

2The experimental test results are published in [100] which is appended to this thesis in
Appendix E
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4.7. Chapter Summary

e Case 1 - fully constrained (active constraint control)
e Case 2 - fully unconstrained (control cost gradient to zero)

e Case 3 - partially constrained (active constraint control and control linear
gradient combination to zero for unconstrained DOF)

e Case 4 - over constrained (give up less important constraints *)

In the partially constrained case, we also proposed to control a linear combina-
tion of cost gradients as the self-optimizing variable for the unconstrained degrees
of freedom. Further, we showed that simple controller logics such as selectors can
be used to handle changes in the active constraint regions. Using four different
examples, we showed that optimal operation of processes can be achieved using
simple feedback control structures, without needing to solve computationally ex-
pensive optimization problems online. In all the examples, it was shown that true
optimal solution can be obtained using simple feedback controllers despite changes
in the active constraint regions, without the need to use models online to detect
changes in active constraint regions.

3analogous to soft constraints
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Table 4.7: Model parameters used in the gas lift well model equations from Appendix A

parameter  description unit well 1 well 2 well 3 well 4 well 5 well 6 riser
Ly length of well tubing m 1500 1500 1500 1500 1500 1500 -
Hy, height of well tubing m 1000 1000 1000 1000 1000 1000 -
Dy diameter of well tubing m 0.121 0.121 0.121 0.121 0.121 0.121 -
Lyn length of well below injection m 500 500 500 500 500 500 -
Hyp, height of well below injection m 500 500 500 500 500 500 -
Dy, diameter of well below injection m 0.121 0.121 0.121 0.121 0.121 0.121 -
La length of well annulus m 1500 1500 1500 1500 1500 1500 -
H, height of well annulus m 1000 1000 1000 1000 1000 1000 -
Dg diameter of well annulus m 0.189 0.189 0.189 0.189 0.189 0.189 -
L, length of riser m - - - - - - 500
H, height of riser m - - - - - - 500
D, diameter of riser m - - - - - - 0.121
Po oil density kg/m? 800 800 790 800 820 805 -
GORy nominal gas-oil-ratio kg/kg 0.1 0.12 0.09 0.108 0.115  0.102 -
Pres reservoir pressure bar 150 155 155 160 155 155 -
PI Productivity index kg/s/bar 7 7 7 7 7 7 -
Civ injection valve characteristics m? 0.1E-3 0.1E-3 0.1E-3 0.1E-3 0.1E-3 0.1E-3 -
Cpe production valve characteristics ~ m? 2E-3 2E-3 2E-3 2E-3 2E-3 2E-3 -
Chpr riser valve characteristics m2v 10E-3  10E-3 10E-3  10E-3 10E-3  10E-3 -
Ta Annulus temperature °C 28 28 28 28 28 28 -
Tw well tubing temperature °C 32 32 32 32 32 32 -
T, riser temperature °C - - - - - - 30
My, molecular weight of gas g 20 20 20 20 20 20 20

seInjong joryuoy) ojduwirg Suisn joryuoy) Surznurd() yovqpood F



Chapter 5

A Fast Robust Extremum Seeking
Scheme using Transient
Measurements

In this chapter, we propose a novel robust extremum seeking scheme,
where existing domain knowledge in the form of plant dynamics is fixed
in the extremum seeking scheme without the need for rigorous nonlinear
models. By fixing the linear dynamics, we can use real-time transient
measurements to robustly estimate the local steady-state gradient from
the input to the cost, even in the presence of neglected plant dynamics
and non-minimum phase elements.

Based on the article submitted to Automatica [87].

5.1 Introduction

This chapter primarily focuses on online optimization methods where the steady-
state gradient is directly estimated from the cost measurement without the need
for rigorous nonlinear models. Here, the idea is to constantly perturb the system
in order to estimate the steady-state gradient. The estimated steady-state cost
gradient is then driven to a constant setpoint of zero, thereby satisfying the neces-
sary condition of optimality. One of the attractive properties of extremum seeking
methods is that they do not require the development of rigorous nonlinear models
(Challenge 1).

The use of extremum seeking control dates back to 1951, with the work of
Draper and Li [39]. However it started gaining popularity in the academic commu-
nity only recently, following the work of Krsti¢ and Wang [107]. Since then, there
has been several advancements in extremum seeking (ES) methods including, least
square-based ES [70], sliding-mode ES [53, 133], greedy ES [182], discrete-time
ES[33], newton-based ES [56], Lie-bracket approximation based ES [40] to name a
few. In addition there are other similar methods such as NCO-tracking [51], hill-
climing control [108] etc. A common trait among all these approaches is that it
involves estimating the cost gradient directly from the measurements and driving
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5. Robust Extremum Seeking Control using Transient Measurements

the estimated gradient to zero using a control law (most commonly simple integral
action).

However, implementation of these methods are typically based on the assump-
tion that the dynamic plant acts likes a static map between the input and the
cost. In order to estimate the steady-state cost gradient, the perturbation signal
must be much slower than the plant dynamics (typically a factor of 10), such that
the dynamic plant can be approximated as a static map. Furthermore, the integral
gain to drive the steady-state gradient to zero must be small enough such that the
convergence to the optimum is much slower than the perturbation signal (typically,
another factor of 10). In summary, this means that the overall convergence rate is
about two orders of magnitude slower than the original plant dynamics [106, 180].
For many dynamic processes, this may lead to prohibitively slow convergence.

Therefore, the main disadvantage of extremum seeking control, is often the
slow convergence to the optimum. Despite the very appealing characteristic of not
requiring a detailed model, this makes extremum seeking control impractical for
real-time optimization of most processes. The concept of extremum seeking control
was briefly introduced in Chapter 3 to compare the performance with the feedback
RTO approach, where we showed that slow convergence was one of the main issue
of the classical extremum seeking approach.

The main reason for the slow convergence of the extremum seeking algorithm
is the steady-state wait time, because of the local linear static map assumption
used in almost all variants of extremum seeking control. Naively using transient
measurements, leads to erroneous steady-state gradient estimation. In order to
address this issue, one potential solution is to explicitly include the plant dynamics
in the ES scheme. In this chapter, we will focus on using transient measurements
with extremum seeking control.

The use of measurements to repeatedly identify a local linear dynamic model
around the current operating point for online optimization of slow chemical pro-
cesses was first proposed by Bamberger and Isermann [7] in 1978. We will refer to
this as the Bl-approach. Here, ARX models were repeatedly identified online for
Hammerstein plants, and the input was updated using an adaptation law in the
same fashion as in most extremum seeking approaches. This approach was further
analyzed by Garcia and Morari [54], where local linear dynamic models were re-
cursively identified to estimate the steady-state gradient, and drive the process to
its optimum using a gradient descent algorithm. Later in 1989, McFarlane and Ba-
con [127] presented an empirical strategy for open-loop online optimization using
black-box ARX models similar to the one proposed by Bamberger and Isermann
[7] and Garcia and Morari [54].

The Bl-approach proposed by Bamberger and Isermann [7] and further studied
by Garcia and Morari [54], Golden and Ydstie [57] and McFarlane and Bacon
[127] can in fact be seen as a dynamic variant of extremum seeking control for
Hammerstein plants, where the cost measurements are directly used to estimate
the steady-state gradients, which is then driven to zero using integral action. In
simulations, local linear dynamic models such as ARX models were shown to be an
effective way of taking into account the plant dynamics, enabling fast convergence
to the optimum for slow dynamic processes. Incorporating the plant dynamics in
the gradient estimation problem, effectively removes the assumption that the plant
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5.1. Introduction

behaves like a static map. Therefore, one does not need a time scale separation
between the plant dynamics and the excitation frequency, unlike the classical ES
control [180]. This leads to significantly faster convergence to the optimum. Local
linear dynamic model in the context of extremum seeking control was recently
used for Hammerstein plants (see Appendix O), where we showed that local linear
dynamic models lead to more than one order of magnitude faster convergence,
compared to classical extremum seeking control.

Using transient measurements to experimentally optimize slow dynamic process
was proposed even earlier by Sawaragi et al. [155], however this differs from the
concept of extremum seeking in the sense that it does not estimate the steady-
state gradient from the measurements. Sawaragi et al. [155] evaluates the profit
value directly based on online experiments, and use an if-else logic to decide on
how to update the inputs, as opposed to using the gradient. Besides, the method
presented by Sawaragi et al. [155] is very particular to a distillation column, and
does not present a generic method, unlike the method proposed by Bamberger
and Isermann [7] and Garcia and Morari [54], where the authors present a generic
method to estimate the steady-state gradient using an ARX model, and use the
gradient to update the control input.

Following the introduction of ARX-based local linear dynamic model to esti-
mate the gradient in the 1980s [7], this approach has remained dormant, despite
the recent surge of interest in extremum seeking control'. This is probably because
of the robustness problems of these methods that impede practical applicability,
which will be motivated using a simple example in this chapter.

However, identifying an ARX model online, as opposed to estimating only the
steady-state gradient as in classical extremum seeking control, involves fitting ad-
ditional parameters. Consequently,there is a need for sufficient excitation to accu-
rately estimate all the parameters of the ARX model. As the system approaches
its optimum, the steady-state relation between the input and the cost is flat, and
there is not sufficient excitation in the measured cost to accurately estimate all the
parameters of the ARX model. This may lead to numerical robustness problems
in the gradient estimation, causing the control action to respond erratically close
to the optimum. Therefore, when identifying ARX models online in [7] and [127],
the optimizer was turned off once the plant reached its optimum. Consequently,
robustness problems were not reported in these early works. However, in practice,
with disturbances and noise, it is very difficult to know when to turn off the identifi-
cation, and when to activate it again. Indeed, Garcia and Morari [54] acknowledged
this problem and suggested to stop estimating the auto-regressive part of the ARX
model as the system converges. However, this was not studied in any detail. Also,
this method still requires the ARX model orders to be chosen offline.

Estimating all the parameters of the ARX model also leads to robustness prob-
lems due to the unmodeled /neglected plant dynamics, that are not captured by the
chosen ARX model. In other words, the method proposed by Bamberger and Iser-
mann [7],Garcia and Morari [54] and McFarlane and Bacon [127], may only work
when the ARX model structure is able to capture the plant dynamics with suffi-

1This may also be partially because control researchers are largely uninformed of developments
outside of their own interest areas [153].
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cient accuracy. If the plant dynamics are quite different from the chosen ARX model
structure, then the steady-state gradient estimated using the ARX model may not
be correct, and can lead to stability robustness issues. For example, this may be the
case when there are time delays or when there are unstable zeros (inverse response).
This makes the problem sensitive to the chosen ARX model structure, which has
not been previously studied. Using illustrative counter-examples, we demonstrate
the robustness problems of the approach proposed by Bamberger and Isermann 7]
(BI-approach).

Hammerstein systems are also popular when studying extremum seeking con-
trol, see for e.g. [7, 104, 113, 127, 136, 137, 160] to name a few. However, all these
works assume perfect knowledge of the linear dynamics, and none of these works
explicitly considers the impact of neglected dynamics on the closed-loop system,
such as time delays and inverse responses, which could potentially lead to insta-
bilities and performance degradation. There are also some papers on Hammerstein
models, e.g. [160], but from a process control point of view, these are closer to
parameter estimation based real-time optimization (RTO) than extremum seeking
control.

Hammerstein plants consist of a nonlinear steady-state mapping between the
inputs and the cost h(u), followed by linear dynamics G(s), as shown in Fig. 5.1. As
opposed to earlier ARX approaches, we propose to fix the linear dynamics based
on prior knowledge. We can then use transient measurements to estimate only the
unknown nonlinear steady-state component of the process. Note that the proposed
method does not require any knowledge of the nonlinear steady-state map, but
knowledge of the plant dynamics is required. Since the linear dynamics is assumed
to be known and fixed, we use classical robust control theory to provide stability
robustness bounds for any neglected or varying plant dynamics.

To this end, the main contribution of this chapter is a novel dynamic extremum
seeking scheme, where the plant dynamics are fixed using a linear model in order
to efficiently use the transient measurements for the gradient estimation. For prac-
tical implementation, this leads to an improved and robust formulation compared
to the method proposed by Bamberger and Isermann [7]. In addition, we also pro-
vide robust stability bounds on any neglected or varying plant dynamics, which
has not been previously studied in the context of extremum seeking control for
Hammerstein plants.

The remainder of the chapter is organized as follows. We introduce some pre-
liminaries in Section 5.2. In Section 5.3, we revisit the Bl-approach proposed by
Bamberger and Isermann [7] and use an illustrative example to motivate the robust-
ness problems of the Bl-approach. Our robust dynamic extremum seeking scheme
is then introduced in Section 5.5 followed by a stability robustness analysis in Sec-
tion 5.6. Simulation examples in section 5.7 show the effectiveness of the proposed
approach, before concluding the chapter.

5.2 Preliminaries

Consider a nonlinear single-input-single output (SISO) plant, where the objective
is to drive the cost J to its minimum by using the input u.
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5.3. ARX-based dynamic extremum seeking control: Bl-approach

—»  h(u) —» G(s) —»

Figure 5.1: Hammerstein process

Assumption 5.1: The plant cost J can be measured.

Assumption 5.2: The effect of the input u on the plant cost J, can be represented
as a Hammerstein model, with a combination of a nonlinear time invariant map h(u) :
R — R, and a proper, stable, finite-dimensional, linear, time-invariant (FDLTI) dynamic
system G(s) at its output, see Fig.5.1.

This assumption is often justified, since Hammerstein models are shown to be
good model representation for many engineering systems, particularly those where
the dominating dynamics are due to slow sensor response [43, 84] or slow input
dynamics.

Assumption 5.3: The nonlinear map h(u) is sufficiently smooth and continuously
differentiable such that it has a unique minimizer at u = u*

%(u*) =0 (5.1)
%(u*) >0 (5.2)

Assumption 5.3 ensures that h(u) has a unique minimizer at v = u* and the
goal is to drive u to the neighborhood of u*.

Assumption 5.4: A nominal linear model for the plant dynamics Gy(s) is assumed
to be known.

It is reasonable to assume that the user often has information about the nominal
plant dynamics Gg(s), for example, obtained using step response tests around some
nominal operating conditions.? We do not need any a priori knowledge of the
nonlinear steady-state map h(u). Note that we only need to know the nominal
plant dynamics Go(s) and not the exact plant dynamics G(s). We will later show
that, as long as the unmodeled dynamics are bounded, robust stability of the
closed-loop system can be ensured.

5.3 ARX-based dynamic extremum seeking control:
Bl-approach
5.3.1 Controller design used in the Bl-approach

In order to use the transient measurements, we use the method proposed by Bam-
berger and Isermann [7] (Bl-approach) in the context of dynamic extremum seek-

2 Often, a good operator may also be able to guess the dominant time constants of the process
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ing scheme, which is based on identifying a local linear dynamic model around the
current operating point, using transient measurements. The core idea of the BI-
approach is that, by repeatedly identifying a locally linear ARX model online, one
can essentially use the transient measurement data to estimate the cost gradient.
The cost and input measurements from a fixed moving window containing the last
N data samples are used to continuously fit an ARX model of the form,

Jt)=—arJ(t—1)— - —ap, J(t —ng)

F Ut — 1)+ - b, u(t — )+ elt) (5.3)

Remark 5.1. The input and cost measurements in (5.3) are assumed to be pre-
processed, such that they are mean-centered [114].

Remark 5.2. If J, is the local linear approximation of the steady-state map h(u),
then the local linear dynamic system (5.3) along with the nonlinear steady-state
effect can be written with b} := J,b; for all i =1,...,n,.

Given N data samples of the cost [J(N), J(N—1),...,J(1)] and the input [u(N), u(N—
1),...,u(1)], such that J(N) is the latest sample and J(1) is the oldest sample, we
estimate the ARX polynomials,

O0=[ar - an, O - b,]" (5.4)
using linear least squares estimation

0 = arg ngnHl/}*(I)@H% (5.5)

where 1) is given by the expression?®

p=[J(N) JIN=1) ... Jn+1)]" (5.6)

and ® is given by the expression

—J(N=-1) ... =JN—=-1—nq) |u(N=1) ... u(N—-1-—mny)
—J(N—=2) ... =JN—=-2—n4) |u(N—-=2) ... u(N-—-2-—mny)

o | | | : (5.7)
—J(n) oo =J(n+1-n4) u(n) oo un+1—mny)

Introducing the notation
Apoty(q) =1+ a1q™" + -+ an, g "™

and
Bpoy(q) =g~ -+ 4 b, g™

with ¢~! being the unit delay operator, we get a local linear dynamic model of the

form,
Bpoly (Q)

) = Apoty(q)

u(t) (5.8)

3n = max(ng, ny)
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The steady-state gradient around the current operating point can then be estimated
by,
JU = APOIy(Q)_proly(Q) (59)

Alternatively, the identified ARX polynomials A, (q) and By, (g) can be con-
verted to continuous time state-space system* as shown below,

T = Az + Bu

5.10
J=Cx+ Du ( )

The steady-state gain is then given by setting £ = 0 and eliminating the states x
in (5.10),
J=(-CA'B+D)u (5.11)
—_——
ju

which yields the same expression as in the feedback RTO approach in Chapter 3
(cf. equation (3.7)).

Once the steady-state gradient J,, is estimated, a simple integral action can be
used to drive the system to its extremum

K
uw= ?IJu (5.12)

where K is the integral gain, and T is the sample time. Additional perturbation
w, such as a pseudo random binary sequence (PRBS) signal is added to the input
to provide sufficient excitation.

u(t+1)=at+1)+w

5.4 Motivating example

Consider the Hammerstein system with G(s) = m, h(u) = —0.1u?+4u+5 with
u € R and 7, = 174s. This has an optimum at u* = 20. We consider a simulation

case with no uncertainty in the ARX model structure, where we repeatedly identify
a first-order ARX model of the form

J(t) = —arJ(t —1) + biu(t — 1)

with sampling time 7. Note that, in this case, we need to estimate two ARX model
parameters, corresponding to the time constant and the steady-state gain, given
by,

bl *Ts

Jy =77, =i
1+ay 4 In(—a1)

which is just one more than for the classical extremum seeking control.

4for example using idss and d2c command in MATLAB. Although one does not need the state-
space formulation, we simply show this here to correlate with the gradient estimation scheme
from Chapter 3.
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— Krstic & Wang, 2000
44 ——— Bl-approach .
~
42 1 1 1 1 1
0 4 8 12 16 20 24

time [h]

Figure 5.2: Example 1: Simulation results comparing the performance of the BI-
approach [7] with classical extremum seeking control from [107].

Fig. 5.2 shows the Bl-approach compared to classical extremum seeking control,
which shows that by identifying a local linear dynamic model, the problem con-
verges significantly faster than the classical extremum seeking scheme from [107].
Using the classical extremum seeking approach, a process with a settling time of
approximately 3 min, takes about 12 to 16 hours to converge, whereas by using
the Bl-approach, the process converges within 1 hour. This significant performance
improvement is possible due to the inclusion of the process dynamics.

However, the Bl-approach has robustness problems, and may work only under
specific conditions. Before presenting our proposed robust approach, we first mo-
tivate the robustness problems when using the Bl-approach. Identifying an ARX
model online involves estimating all the parameters of A,y and Bpsy. If the exci-
tation of the process is not sufficient, then all the (n, +mn;) ARX model parameters
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may not be estimated accurately. In the context of extremum seeking control, this is
especially a problem as the system approaches its optimum, where the steady-state
relation between the input and the cost h(u) is typically flat.

Fig. 5.3 shows the same simulation results as in Fig. 5.2, for a period of two
hours. The first subplot shows the cost function, the second subplot shows the
control input, the third subplot shows the estimated steady-state cost gradient
and the last subplot shows the estimated time constant of the identified ARX
model. From the first three subplots, it seems like the Bl-approach is working well
and the system converges to the optimum, similar to the results by Bamberger and
Isermann [7], McFarlane and Bacon [127]. However, from the last subplot we see
that the estimated time constant is converging to zero, whereas the true value is
174s. This is due to the steady-state gain from input to the cost approaching zero,
which leads to rank deficiency of the information matrix close to the optimum, as
pointed out by Garcia and Morari [54]. This may also lead to numerical bursting
and instability.

As mentioned earlier, when identifying ARX models online in [7, 127], the
optimizer was simply turned off once the plant reached its optimum. However, in
practice, it is desirable to keep estimating the gradient even after reaching the
optimum. This is to ensure that the system is driven to its new optimum if there
are disturbances. As suggested in [54], the problem may be partially solved by not
estimating the autoregressive part (as in our case) as the system converges to the
optimum. However, it still would not resolve the issue of unmodeled plant dynamics
not considered in the chosen ARX model.

This is demonstrated using the same example as above, where we repeatedly
identify the same first order ARX model of the form J(t) = —a; J(t—1)+bu(t—1)
based on the nominal dynamics of Go(s) = 1/(174s + 1). However, we now add
additional inverse response dynamics, such that the plant is given by

(=bs+1)

G(s) = Go(s) 105+ 1) (5.13)
The ARX model structure is first order, which cannot include the inverse response
dynamics in (5.13). Thus, the ARX identification leads to erroneous gradient esti-
mation. This is shown in Fig. 5.4, where we see also from the first three subplots
that the closed-loop system behaves erratically due to the neglected inverse re-
sponse, leading to poor performance.

To summarize, the Bl-approach proposed by Bamberger and Isermann [7] may
fail when,

e the process approaches its optimum and the excitation is not sufficient to

estimate all the ARX model parameters accurately,

e the process includes neglected dynamics not captured by the chosen ARX
model.

5.5 Proposed approach

In order to address the robustness problems motivated above, we propose to fix the
parameters of plant dynamics Gy(s) in the estimation problem. This is illustrated
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Figure 5.3: Example 1: First 2 hours from Fig. 5.2 showing the robustness issues
with the Bl-approach when identifying a first order ARX model from [7] even with
no uncertainty in the plant dynamics Go(s).
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Figure 5.4: Example 1: Bl-approach with neglected RHP-zero. Simulation results
showing the robustness issues when identifying a first order ARX model from [7]
with neglected inverse response dynamics in the process.
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5. Robust Extremum Seeking Control using Transient Measurements

below in Fig. 5.6 and Fig. 5.7, which show a large improvement compared to the
simulations in Fig. 5.3 and Fig. 5.4, respectively.

In our proposed approach, the online measured data is used to estimate only
the local steady-state gain. In other words, if domain knowledge in the form of
nominal process dynamics Gg(s) is known a-priori (e.g. from step response tests),
we can incorporate this knowledge in the online identification problem to estimate
the steady-state effect of the process h(u), around the current operating point.
This way, we can incorporate the “known” system dynamics in the online identi-
fication problem, which enables us to use the transient measurements to estimate
the steady-state gradient more accurately. Since the nominal linear dynamics G (s)
is known and fixed, we can then provide robustness margins for the neglected dy-
namics in G(s) using classical robust control theory.

We first transform the nominal linear dynamics Go(s) (with unit gain) along
with the local steady-state gain J,, into discrete-time of the form,

big '+ bag ™
J=G h =J, b 5.14
o(ahn) = o (Pt (5.14)

fixed

Note that, here the ARX model is written with b := b'/J, (cf. Remark 5.2). For
the known nominal ARX model of the form (5.14), we can then fix the parameters
[a1,...,an,,b1,...,bpy,] and estimate only the steady-state gain .J,, of the system
around the current operating point. Thus, in our proposed method, we solve the
least square estimation problem

0 = arg mgin||¢—‘1>9\|§ (5.15)
with
0=J, (5.16)
JN)+ a1 J(N=1)+ -+ an, J(N —ng)
JIN=-1)+aJ(N=-2)+ - +a,, JIN—1—n,)
Y= , (5.17)
Jn+1)+aJn+2)+---+a,, J(n+1—n,)
and

biu(N — 1)+ -+ + by, u(N — nyp)
biu(N —2)+ -+ by, u(N — 1 —np)

(5.18)

biu(n) 4+ -+ bp,u(n — 1 — ny)
over a fixed moving window of the past N samples®, the solution to which is given
by 6 = (®T®)"1®T+. Notice that # is now a scalar as opposed to (5.4).
The control input is then updated using a simple integral action with gain K7
to drive the estimated cost gradient J, to zero.
K
uw= =17, (5.19)

S
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QU /f- - -"—-"-"-"-" - - - - - - - =
w ! : J
+ L h(u) L G(s) %
|
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,,,,,,,,,,,,,,,,,, |
i K; Ju Gradient estimator AJ
s (5.15)

TGO(S)

Figure 5.5: Schematic representation of the proposed robust dynamic extremum
seeking approach.

For the persistence of excitation, a pseudo random binary sequence (PRBS), w
is added as in Fig. 5.5, which shows the schematic representation of the proposed
approach, where we fix the plant dynamics Go(s) and only estimate the steady-
state gradient J, using the transient measurements. By incorporating the domain
knowledge in terms of the process dynamics, we can reduce the number of param-
eters to be estimated to one (i.e J, € R), which makes the estimation problem
more numerically robust. Note that, here we have used a fixed moving window of
the past N samples in the same fashion as a in [70]. Alternate formulations using
recursive least square may also be used.

The proposed method is an improvement of the approach suggested by Garcia

and Morari [54], where the autoregressive part of the ARX model [ay,...,a,,]
was fixed, as the system converges, and only the parameters [J,by, ..., J,by,| were
estimated online. In our proposed approach, however, we fix also [by,...,b,,] at all

times and estimate only J,, online.

Consider, the same motivating example as in Section 5.4, where we fix Gy(s) =
1/(174s + 1), which is equivalent to a; = —0.9943 and b; = 0.005731. Fig. 5.6
shows the simulation results obtained with no model error, i.e. with Go(s) = G(s).
The simulation results show that by fixing the plant dynamics and estimating only
the local steady-state gain, the process converges to the optimum with the same
speed of convergence as the Bl-approach.

In the case of additional inverse response dynamics, Fig. 5.7 shows simulation
results using the proposed approach, compared to the Bl-approach. It can be seen
clearly that the proposed approach is robust to neglected plant dynamics.

5.6 Robust stability

We saw in the simulation example in Fig. 5.7 that the proposed approach is ro-
bust to neglected plant dynamics. In this section, we explain this using robust

5n = max(ng,ny). J(N) is the latest sample and J(1) is the oldest sample.
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— Bl-approach
proposed approach
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Figure 5.6: Example 1: Proposed method with no uncertainty. Simulation results for
the dynamic extremum seeking scheme (black) compared with the Bl-approach|7]

(red).
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Figure 5.7: Example 1: Proposed method with neglected RHP-zero: Simulation

results using a nominal dynamics of Go(s) = (174715+1) for a process with dynamics
Gp(s) = Go(s)% using the proposed method (black) compared with the BI-
approach [7] from Fig. 5.4 (red).
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A
u\ yA A
u Y > M
K e4—

Figure 5.8: Generalized M A structure.

control theory, and provide robust stability margins for neglected dynamics for a
generalized case.

In practice, the actual plant dynamics G(s) are not the same as Go(s) fixed
in the steady-state gain estimator (5.14) and (5.15). There could be many reasons
for this, including neglected dynamics and changes due to nonlinearities. In this
section, we will show that robust stability of the proposed gray-box approach can
be ensured (at least locally), as long as the neglected dynamics are bounded.

To analyze the robust stability, let us consider the general method for formu-
lating control problems [38] as shown in Fig. 5.8, where

Py Pro
P =
[P21 P22]

denotes the generalized plant and K (s) is the controller, which in our case is selected
as an integral controller K(s) := % A represents the uncertainty, which should
be less than 1 in magnitude at all frequencies. The plant dynamics G(s) is given
by upper linear fractional transformation (LFT)

G := Py + leA(I - PHA)_IPH (520)

It can be seen that when there is no uncertainty, A = 0 and hence Py = Gy.
Using the proposed dynamic extremum seeking scheme, the nominal loop transfer
function around the current operating point can be represented as,

where J, represents the local steady-state gain of the system.
To analyze the effect of the uncertainty on the stability, we consider a generic
MA structure as shown in Fig. 5.8 [168], where M is given by the lower LFT,

M := Py + PioK(I — Pyy K) "' Py (5.22)
The robust stability in the generalized case is given by the following theorem.

Theorem 5.1 (Bounds on neglected dynamics). [168] Consider the dynamic ex-
tremum seeking scheme using the fived nominal linear dynamics Go(s) and an
integral control action K(s). Assuming the nominal closed-loop system and the
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5.6. Robust stability

dynamic plant

et W

Figure 5.9: Unmodeled dynamics represented as multiplicative uncertainty.

perturbation A are stable, the closed-loop system including the unmodeled plant dy-
namics is then robustly stable in the neighborhood of the current operating point
for any plant dynamics with ||Allec < 1, as long as the unmodeled dynamics are
bounded by

M| <1, Yw (5.23)

Proof. The proof is obtained by applying the Nyquist stability condition, which
says that M A must not encircle -1 for all A. Thus,
RS<e|l1+ MA| >0, VA <1, Vw (5.24)

The worst-case scenario for violating this condition is when |A| = 1, and the terms
|[MA| and 1, point in the opposite direction. Thus,

RS &1 —|M| >0 (5.25)
SIM| <1, Yw (5.26)
O

The exact structure of M depends on how the uncertainty is modeled [168]. For
example, in the case of additive uncertainty,

10 1] . 1
P:= |:'UJA Go) M :=wasK(1+ GoK) (5.27)
for multiplicative uncertainty
1 0 1] . 1
P .= |:le0 Go_ ; M = ’w]GoK(l + G()K) (528)
and for inverse multiplicative uncertainty
| w1 — —1
P .= |:wiIGO G0:| , M = U)Z[(l + G()K) (529)

In general, various sources of dynamic uncertainty and neglected dynamics can
often be represented as multiplicative uncertainty. Therefore, we choose to use this

form with G(s) = Go(s)G(s), and the neglected dynamics can be written as
G(s) = (1 +wr(s)Ar(s)) (5.30)
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Figure 5.10: Example 1: Checking robust stability condition (5.31) with neglected
RHP zero. Tj is based on Go and wy represents the multiplicative (relative) differ-
ence between Gy and G in (5.13).

where |Ar(jw)| < 1Vw, represents complex perturbations, and w; represents the
multiplicative weights. The local linear system with multiplicative uncertainty is
shown in Fig. 5.9.

For multiplicative uncertainty, we get M = w;Ty, which leads to the following
corollary of Theorem 5.1.

Corollary 5.2 (Bounds on multiplicative uncertainty). Consider the dynamic
extremum seeking scheme using the nominal linear dynamics Go(s) and an integral
control action K(s) = % The closed-loop system is then robustly stable in the
neighborhood of the current operating point for any plant dynamics, as long as the
unmodeled dynamics are bounded by

1

[To| <
lwy|

. Vw (5.31)

where Ty = (1 + Lo)~'Lg is the complementary sensitivity function of the locally
linear nominal system and |wy| := |1 — G.

Proof. Substituting M in Theorem 5.1 with (5.28) yields |Tp| < ﬁ O

5.6.1 Simulation 1 revisited

This explains why our proposed approach is able to converge despite the neglected
unstable zero in Fig. 5.7. The neglected dynamics can be represented by multi-
plicative uncertainty with weight

Gjw) = Go(jw)

wiliw) = | =50

_ | Ghjwt )
N (10jw + 1)
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5.7. Simulation example 2

With the same integral controller as before, the magnitude of the nominal com-
plementary sensitivity function |Tp| is shown in Fig. 5.10, together with the mag-
nitude of ﬁ The figure confirms that the bound |Tp| < ﬁ according to The-
orem 5.1 holds for all frequencies with good margins. Hence the closed-loop re-
sponse of the proposed extremum seeking scheme by fixing the dynamics with
Go(s) = 1/(174s + 1) is locally robustly stable. The simulation results in Fig. 5.7

confirms this.

5.7 Simulation example 2

In this section, we further demonstrate the proposed ES scheme using another
simulation example from [160], which is based on the application of extremum
seeking to dampen large pressure oscillations in a lean burn combustor [8]. In this
example, we see clearly the robustness problems like numerical bursting with the
Bl-approach, which coincidentally, was not seen in example 1. In addition, we will
also see the effect of pole uncertainty, neglected time delay uncertainty and the case
where neglected inverse response leads to divergence from the optimum when using
the Bl-approach and how these can be addressed using the proposed approach.

The plant is described as a Hammerstein system with the nonlinear steady-state
effect described by,

3
h(u) =d+ Zpgi_l sin(iu) + pa; cos(iu) (5.32)
i=1

and the nominal dynamics given by,

1

Go(s) = GHhTD (5.33)
The parameter vector p = [p1,...,pe] is equal to
[14.16, —20.29, 8.214, —3.017,2.992, 0.787] x 1073
and b = 4. At steady-state, minimum cost occurs when u* = —0.61rad [160]. Note

that in [160], the authors assumed that the model structure h(u) and the nominal
dynamics (5.33) were known, and only the parameters p were unknown. However,
in this chapter, we assume that we have no knowledge about h(u) and only the
nominal dynamics (5.33) is known. The system was perturbed with a PRBS signal
every 0.04s with amplitude a = 0.2 (as opposed to 0.4 in [160]).

5.7.1 No uncertainty

In the first simulation, we assume the plant dynamics and the nominal dynamics
are the same (i.e. no neglected plant dynamics). Fig. 5.11 shows the simulation
results using the Bl-approach and the proposed robust dynamic extremum seeking
approach. It can be clearly seen that the proposed scheme is able to quickly drive
the process to its optimum, and stay there without causing numerical bursting.
The Bl-approach identifies the full ARX as proposed in |7, 127]. We see that both
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Figure 5.11: Example 2 with no uncertainty: Optimizer output using the proposed
scheme (black), compared to the Bl-approach [7] (red)

our proposed approach and the Bl-approach converges to the optimum. However,
unlike in our proposed approach, the estimated gradient in the BI approach has
numerical bursting after the process has converges, which leads to unnecessary
changes in the control input.

5.7.2 Pole uncertainty

In [160], the authors assumed that the decay rate b was constant. However, to
demonstrate the robustness of the proposed method, we now simulate the case
where the decay rate changes from b = 4 to b = 4.45. The robust stability condition
in Theorem 5.1 is verified as shown in Fig. 5.12a for the pole uncertainty. Fig. 5.12b
shows the simulation results of the proposed method which are compared to the
Bl-approach. Again, it can be clearly seen that, despite the pole uncertainty, the
proposed robust dynamics extremum scheme behaves much better than the BI-
approach.

5.7.3 Time delay uncertainty

We then simulate a case where we add a time delay, that is not considered in the
nominal dynamics (in our approach and in the Bl-approach). The plant dynamics
in this case is given by

G(s) = Go(s)e 0-01s
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Figure 5.12: Example 2 with pole uncertainty: (a) Checking robust stability with
pole uncertainty. (b) Optimizer output using the proposed scheme (black), com-
pared to the Bl-approach [7] (red) for pole uncertainty.
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Figure 5.13: Example 2 with time delay uncertainty: (a) Checking robust stabil-
ity with time delay uncertainty. (b)Optimizer output using the proposed scheme
(black), compared to the Bl-approach [7] (red) for neglected time delay.
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Figure 5.14: Example 2 with neglected RHP-zero and lag: (a) Checking robust
stability with neglected RHP zero and lag. (b)Optimizer output using the proposed
scheme (black), compared to the Bl-approach [7] (red) in the presence of neglected
inverse response due to RHP-zero.
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5. Robust Extremum Seeking Control using Transient Measurements

The robust stability condition in Theorem 5.1 is verified again, as shown in Fig. 5.13a.
The simulation results using our proposed method and the Bl-approach are shown
in Fig. 5.13b. It can be clearly seen that our proposed method is able to drive
the process to its optimum in a stable manner depsite the neglected time delay.
Whereas in the Bl-approach, the performance degrades drastically around the op-
timum due to the neglected time delay.

5.7.4 RHP-zero uncertainty

We then simulate a case, where we add a neglected RHP-zero, that is not considered
in the nominal dynamics (in our approach and in the Bl-approach). The plant
dynamics in this case is given by,

—0.05s +1

Gp(s) = Go(5) G001 11

The robust stability condition in Theorem 5.1 is verified again, as shown in Fig. 5.14a.
The simulation results using our proposed method and the Bl-approach are shown
in Fig.5.14b. It can be clearly seen that our proposed extremum scheme is able to
drive the process to its optimum robustly despite the neglected inverse response.
On the other hand, the Bl-approach further deviates away from the optimum,
clearly failing to reach the optimum.

5.8 Chapter summary

In this chapter, we proposed a novel robust dynamic extremum seeking scheme for
Hammerstein plants, where we proposed to fix the plant dynamics in the gradient
estimation problem. This removes the need for the assumption, that the plant
behaves like a static map. This enables us to use the transient measurements for
the gradient estimation.

Using a motivating example, we showed that identifying ARX models in order
to use the transient measurements as proposed by Bamberger and Isermann [7],
may lead to robustness problems as the process converges, or due to neglected plant
dynamics.

To address the robustness problems, we presented an improved approach to
incorporate the plant dynamics. Furthermore, we also provided bounds on any ne-
glected dynamics to ensure robust stability of the closed-loop system. The proposed
scheme was demonstrated using two examples. Compared to the classical extremum
seeking [107], the proposed approach was shown to converge significantly faster to
the optimum, and compared to the Bl-approach, the proposed scheme was shown
to be robust to neglected plant dynamics, such as time delay and inverse responses
induced by unstable zeros.
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Chapter 6

On Combining Self-optimizing
Control and Extremum Seeking
Control in the context of Real-time
Optimization

This chapter presents a hierarchical combination of self-optimizing con-
trol (SOC) and extremum seeking control (ESC) that utilize the advan-
tages of ESC and SOC to handle disturbances in both slow and fast
time scales. This chapter shows that extremum seeking control and self-
optimizing control are complementary rather than competing.

Based on the article published in the Journal of Process Control [176].

6.1 Introduction

We have so far considered the use the steady-state gradient as the ideal self-
optimizing variable in the presence of unconstrained degrees of freedom. In this
chapter we will consider the linear measurement combination as a self-optimizing
control variable [165] and show how this can be combined with model-free meth-
ods such as extremum seeking control. The different methods work in different
timescales and handle different types of uncertainty. In this chapter we will show
that the two approaches are in fact complimentary and not contradictory.

Self-optimizing control deals with using the model offline to find an appropriate
set of controlled variables. The objective is to translate economic objectives into
control objectives [165]. This may eliminate the need for an expensive online opti-
mizer to re-optimize when disturbances occur or at least the re-optimization may
be performed less frequently. One of the main advantages of self-optimizing control
is that it moves the slower economic optimization into the faster control layer. It
can also handle unmeasured disturbances as long as they have been modeled. This
is achieved by selecting an optimal combination of measurements, which when held
at a constant setpoint, gives acceptable loss in the presence of varying disturbances.
However, unmodeled disturbances will generally result in a loss.
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6. Combining Self-optimizing Control and Extremum Seeking Control

The self-optimizing control and extremum seeking control methods have been
developed relatively independently since 2000. Jaschke and Skogestad [72] success-
fully combined self-optimizing control with NCO-tracking in a hierarchical struc-
ture and demonstrated that the measurement based optimization techniques and
the model based self-optimizing concepts are complementary. However, the gradi-
ent was estimated using finite differences which gave relatively poor NCO-tracking.
The authors suggested that more advanced gradient estimation and input adapta-
tion methods may give a better overall performance as a future research direction.
The use of extremum seeking control on top of self-optimizing control was briefly
discussed in [81] using the classical extremum seeking method. However, the au-
thors only considered measured disturbances for a single-input single output sys-
tem. Additionally, based on the simulation results presented, Keating and Alleyne
[81] did not consider a clear time scale separation between the extremum seeking
and self-optimizing controllers.

In this chapter, we extend the work from [72] and [81] and provide a detailed
description on the combination of the model-free extremum seeking controller with
model-based self-optimizing control. We propose to use an improved gradient es-
timation method using least squares estimation and provide a framework for a
multivariable system. We then apply the proposed control structure to a multivari-
able ammonia reactor case study with 3 control inputs and consider both unmea-
sured and unmodeled disturbances. We compare the performance of the proposed
method with just the self-optimizing control and just the extremum seeking con-
trol implemented independently and demonstrate clear performance improvements
due to the time-scale separation between the extremum seeking and self-optimizing
controllers.

6.2 Background

Consider the process where the steady-state optimal operation of the process can
be formulated as (4.1), along with Assumptions 5.1 and 5.2.

6.2.1 Self-optimizing control

Self-optimizing control is a strategy for selecting optimal measurement combina-
tion ¢ as controlled variables, such that the impact of known but unmeasured
disturbances d on the optimal operation is minimized. This is achieved by using
the system model offline to compute an optimal measurement combination. The
ideal self-optimizing variable would be the gradient J,, which should be controlled
to a constant setpoint of 0. However, in most applications, the gradient cannot be
measured. An alternative is to identify a controlled variable ¢ € R™ (with n, = n,,)
as a function of the available measurements y € R™. The simplest approach to
select a linear combination of measurements is given by,

c = Hy,, (6.1)

where, y,, = y + n¥ is the vector of available measurements, which generally is
corrupted by measurement noise n¥, and H € R™<*"v is the measurement combi-
nation or selection matrix. In addition to finding H, we must also decide on the
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6.2. Background

setpoint ¢, which is typically chosen as the nominal optimal value, ¢, = Hyg” '

where the subscript 0 denotes the nominal operation point with d = dg.

Several approaches can be used to calculate the optimal measurement combi-
nation ¢ = Hy. The reader is referred to the recent review paper by Jéschke et al.
[75] for a comprehensive review on this subject. Most approaches are based on local
linearization around the nominal optimal point. In this chapter, we consider the
exact local method as introduced by Halvorsen et al. [62] and further developed by
Alstad et al. [3] and Yelchuru and Skogestad [188]. In this method, the optimiza-
tion problem (4.1) is approximated by a quadratic approximation and a linearized
measurement model. Let the linearized measurement model be represented by,

y = GYu+ GY%d (6.2)

where GY € R™*"™ and G¥ € R™*" are the gain matrices from u to y and d
to y respectively. The optimal selection matrix H, in terms of minimizing the loss
for J,s with respect to the expected disturbances and measurement noise, is then
given by, [3]

H = (YY" lGY (6.3)
where,
Y = [FWq Wy (6.4)
and Wq and W,y are diagonal scaling matrices for the expected magnitudes of
opt
the disturbance and the measurement noise, respectively. F = 8% dp is the optimal

sensitivity matrix which describes how the measurement vector that correspond
to the optimal operation y°P!, change with unit change in the disturbance. The
optimal sensitivity matrix may be determined analytically using

F=—(G¥Jyu 'Jua— GY) (6.5)

or it may also be determined numerically by perturbing the disturbances and re-
solving the optimization problem as described by Alstad and Skogestad [2]. Note
that the optimal H in (6.3) is not unique, but the non-uniqueness may be absorbed
into the controller.

As seen from the equations above, the optimal selection matrix H in (6.3) is
based on the plant model GY and the optimal sensitivity matrix F for the ex-
pected disturbances. Due to the linearization around the nominal optimal point,
the controlled variables combination is only locally valid around this nominal opti-
mal point. If a disturbance moves the process far from the nominal optimal point,
the local model approximation may be poor, resulting in higher steady-state loss.
Over time, as the plant-model mismatch increases, the increase in the loss may no
longer be acceptable. This requires re-optimization and computation of new opti-
mal setpoints cs. Additionally, any unmodeled disturbances that are not accounted
for in the optimal sensitivity matrix cannot be handled efficiently.

6.2.2 Extremum seeking control

Unlike self-optimizing control, which is based on local linearization of the model
around the nominal operating point, extremum seeking control is based on local
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Figure 6.1: Block diagram of the least-square based extremum seeking controller.

linearization of the measured cost around the current operating point as explained
in Chapter 5. We only considered a single-input-single-output (SISO) system in
Chapter 5, however, in this chapter, we will consider a multivariable system.

There are different ways of estimating the gradient based on the input and cost
measurements. In this chapter we will consider the linear least square estimation
method to estimate the steady-state gradient [70]. The least squares approach
also provides a natural platform extending to multivariable systems. Improved
performance using a recursive least squares approach was also reported in [32].

The goal is to estimate the gradient from the inputs t to the measured cost J.
In the least squares based extremum seeking control , the last N samples of data
are used to fit a local linear cost model of the form,

J=Jg"a+m (6.6)

where Jg € R™ is the vector of gradients from i to J and m € R is the bias.

At the current sample time k, let J= [Je -+ Jrk_n+1]T € RY be the vector of
the last N samples of the measured cost and U= [ -+ Op_ny1]" € RVXMu be
the vector of the last IV samples of the input. A moving window of fixed length N
is then used to estimate the gradient using the linear least squares method [114]

~ ~ 2
0 = arg moinHJ—@Ton (6.7)

where 8 € R(*«*1) is the vector of parameters to be estimated and is given by

0=[37 m] (6.8)

a1
a1

o= " — [0 1] (6.9)
CHESCIPI
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The analytical solution to the least squares problem is given by, [114]
6=[070] 7] (6.10)

The application of ordinary least squares requires that N > n,. Note that in
theory, it is not necessary to use a dither signal when this approach is used, but
for practical purposes it is recommended, and in our case study we use a sinusoidal
dither signal with an appropriately chosen amplitude.

Once the gradient vector Jg is estimated, n, integral controllers can be used
to drive the gradients to zero using as degrees of freedom 1 (setpoints to the lower
level controllers). The integral controller in general can be written as,

Upy1 = Uy + TSK[jﬁ (6.11)

where Kj € R "« is the gain matrix and T is the sample time. In this chapter,
we use decentralized control where K; is diagonal. A schematic representation of
the least squares-based extremum seeking control is shown in Fig. 6.1

An additional dither signal is added to the control input to provide sufficient
excitation in the input and cost measurements for accurate gradient estimation.
For a multi-input system, each input should have a unique perturbation frequency
in order to estimate the gradient of the cost measurement with respect to each
input. Since the linear model assumption is valid only locally around the current
operating point, the gradient is estimated using only recent samples of data (i.e. a
moving window of fixed length N). It was shown in [70] that the least squares based
extremum seeking control is stable and that the error is small for a sufficiently small
product of the adaptation gain and sample size K;N.

6.3 Proposed method

In this chapter, we propose a hierarchical implementation with separate optimiza-
tion and control layers as proposed by Halvorsen et al. [62] and shown in Fig. 6.2.

Due to the timescale separation required between the optimization and control
layers [165], the extremum seeking controller is in the slow optimization layer, and
thus replaces the conventional RTO. Self-optimizing control is in the faster setpoint
control layer below and tracks the updated setpoint given by the extremum seeking
controller. In other words, the extremum seeking controller uses the measured cost
J to compute the setpoint c; which is provided to the self-optimizing control. The
controller output from the extremum seeking controller is @ = ¢ in (6.6)-(6.10)".

It may be argued that the self-optimizing control layer is redundant since an
extremum seeking scheme can directly manipulate the process to optimize the ob-
jective function. However, by using a purely data-driven approach, we ignore any
a-priori knowledge about the system and the effect of disturbances. In addition,
the extremum seeking controller does not make use of measurements besides the
cost measurements. Finally, the convergence to the optimum is slow. The proposed

n the case where extremum seeking controller controls the plant directly, @t = u

115



6. Combining Self-optimizing Control and Extremum Seeking Control

Extremum J
seeking J(y)

controller

dither o= c,
SOC Setpoint

Controller H
(e.g. PID or

MPC)

I "

— > Process Y
f o

Figure 6.2: Hierarchical implementation of combined self-optimizing control and
extremum seeking control . The extremum seeking controller used in this chapter
is shown in Fig. 6.1.

Table 6.1: Properties of self-optimizing control and extremum seeking control .

Self-optimizing control extremum seeking control
offline model required model-free
fast rejection of disturbances slow rejection of disturbances

local linearization around nom-  local linearization around cur-
inal optimal point rent operating point

handles unmeasured but ex- handles unmeasured and unex-
pected disturbances pected disturbances

needs no cost measurement requires measurement of cost

hierarchical combination of extremum seeking control and self-optimizing control
avoids the shortcomings of the extremum seeking scheme and improves the con-
vergence to the optimum. This is primarily due to a faster initial reaction of the
self-optimizing layer to known (modeled) disturbances. Following a disturbance,
the self-optimizing control quickly brings the operation point close to the optimal
region, and on a slower timescale, the extremum seeking control fine-tunes the
setpoint and removes any loss associated with the self-optimizing control.

The extremum seeking layer handles the plant-model mismatch and unmodeled
disturbances and removes any steady-state loss by adjusting the setpoint cs. This
also avoids re-optimization e.g. using real-time optimization.

In summary, we use the knowledge about the system to stay in the near-optimal
region using self-optimizing control in the presence of disturbances. The extremum
seeking control helps to remove, or at least reduce the losses due to plant-model
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mismatch, it handles any unexpected disturbances, and it fine-tunes the optimal
operating point. The key properties of the two methods are summarized and com-
pared in Table 6.1, which shows that the self-optimizing control and extremum
seeking control are complementary rather than competing.

Note that, the proposed method is not just restricted to the least squares-based
extremum seeking control , and other extremum seeking control methods, such
as classical extremum seeking control , or recursive least squares based extremum
seeking control ete. [32, 107, 180] may be used instead on top of the self-optimizing
control layer in Fig. 6.2.

6.3.1 Stability issues

In this section, we provide some discussions on the stability of the combined self-
optimizing control and extremum seeking control layout presented in Fig. 6.2. As
mentioned earlier, extremum seeking controller has three timescales, namely,

e fast - controlled plant dynamics
e medium - dither frequency

e slow - convergence to the optimum

A good extremum seeking controller is tuned such that there is a clear timescale sep-
aration between these three timescales. The self-optimizing controller is included
in the controlled plant and belongs to the fast timescale [107]. By introducing
the self-optimizing control below the extremum seeking control , the perturba-
tion frequency and the adaptation (integral) gain K; must be chosen such that
the timescale separation enables the static map assumption. Therefore, when seen
from the slow timescale of the extremum seeking controller, the closed-loop system
comprising of the self-optimizing controller and plant is a static map J = h(cy).

The stability results for the classical extremum seeking controller provided by
Krsti¢ and Wang [107] and the least squares based extremum seeking controller
provided by Hunnekens et al. [70], both assume a smooth stabilizing control law
parameterized by a “performance parameter”. This performance parameter is used
as the handle by the extremum seeking controller. In our paper, the control law
is given by the self-optimizing control layer and the “performance parameter” is
equivalent to the setpoint for the self-optimizing variable c.

To summarize, existing stability results from [107] for the classical extremum
seeking control and [70] for the least squares based extremum seeking control also
hold for the combined hierarchical structure in Fig. 6.2, if the following two condi-
tions are met:

1. The self-optimizing setpoint control layer is closed-loop stable.
2. The perturbation frequency of the ESC is sufficiently small compared to the

timescale of the controlled plant which includes the stabilizing self-optimizing
controller.

Choice of tuning parameters According to the stability analysis results by
Hunnekens et al. [70], the product KN is the only important quantity that must
be chosen small enough. This is a reasonable measure, since a small product of the
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adaptation gain K; and the time window N intuitively means that the measure-
ments used for gradient estimation are in the small neighborhood of the current
operating point u. As for the choice of the window length for the past measure-
ments, N must be sufficiently small such that the error in the gradient estimate is
bounded as described in detail in [70]. Alternatively, instead of using a fixed moving
window of the past N samples, a forgetting factor may be used in a recursive least
squares estimation framework, as adopted in [32]. As for any extremum seeking
control framework, the adaptation gain K; must be chosen sufficiently small, such
that there is a clear time scale separation between the dither and the convergence
to the optimum. This is required in order to validate the assumption of the plant
being a static map, which is required for the extremum seeking control . For more
detailed guidelines on tuning the adaptation gain, the reader is referred to [180].

6.3.2 Effect of disturbances

Very little of the literature on extremum seeking control consider explicitly the
effect of disturbances. Disturbances typically trigger fast dynamics, which may in-
validate the assumption of the plant operating close to a static map. Consequently,
the introduction of the fast dynamics leads to erroneous gradient estimation, es-
pecially with the least squares gradient estimation method used in this chapter.
In other words, if the cost measurement in the gradient estimation time window is
in transients due to the disturbances, then the least squares method fits a wrong
gradient Ju. The effect of abrupt disturbances on the extremum seeking scheme
has been well motivated by Krishnamoorthy et al. [92], Marinkov et al. [122], and
Marinkov et al. [121], along with some modifications to improve disturbance re-
jection. However, all these modifications require the disturbances to be measured.
Measured disturbances may also be handled by the least squares-based extremum
seeking scheme described in Section 6.2.2, by explicitly including the measured
disturbances as a part of the regressor ® in (6.10) and replacing (6.6) with

J=Jg'a+Jg'd +m (6.12)

where Jg- € R is the vector of gradients from the measured disturbances d’ to
the cost J.

Unfortunately, unmeasured disturbances may still result in erroneous gradient
estimation. Given that the extremum seeking control problem at hand is essen-
tially a static optimization problem, the only way to avoid this problem is to use a
steady-state detection, as used in the traditional steady-state RTO. The extremum
seeking scheme can be triggered only if the cost measurement in the gradient es-
timation window is close to steady-state operation. Dynamic changes in the cost
measurement resulting from a disturbance will be flagged by the steady-state de-
tection routine and the extremum seeking scheme is temporarily halted until the
cost measurement in the gradient estimation time window comes close to steady-
state operation. By doing so, the static map assumption used by the extremum
seeking scheme is always valid. This halt is typically known as the steady-state
wait time and is commonly used in the traditional steady-state RTO paradigm. In
fact, the method proposed by Marinkov et al. [121] is precisely a steady-state wait
time routine implemented using a supervisory state machine.
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In many processes with long settling times, the steady-state wait time can lead
to a very slow convergence to the optimum. Alternatively, in some process systems,
one can make use of some heuristics to avoid the steady-state wait time, such as to

bound the magnitude of the individual gradients (Jg,) in (6.11) to a value Jy; maz

Jai| < Jusman (6.13)

The bounding limits aggressive input usage. Based on (6.11), we propose to in-
troduce a maximum change in the input between samples, AQ; 1,42, and choose,

Aui7maaj

T maw = ——amaz 6.14
v TSKI ( )

Note that although this approach is used in our case study, this additional
heuristic of bounding the gradient is not part of the core methodology presented in
this chapter, but should be viewed as an alternative approach to the steady-state
wait time.

6.4 Case study - Ammonia synthesis reactor

In this chapter, we apply the proposed hierarchical combination of extremum seek-
ing control and self-optimizing control to a three-bed ammonia reactor with heat
integration. A flowsheet, including the control structure for the proposed method,
can be found in Fig. 6.3. The model was first described in [131]. The model consists
of three sequential reactor beds and one heat exchanger. The inlet stream to the
reactor system (denoted by subscript in) is split into four streams; one quench flow
to each bed and a preheated flow to the first reactor bed. The quench split ra-
tios correspond to the three manipulated variables uy = [u071 Ug,2 ’U,O,3]T. The
three reactor beds are discretized into a cascade of continously stirred tank reactors
(CSTR). A detailed model description can be found in [174].
The objective is to maximize the extent of reaction £ for a given feed, that is

J=¢ (6.15)
= Min (WNH5,30 — WNHs,in) 6.16)

The disturbances are the inlet conditions;
. T
d= [min Din T’zn wNHg,in] (617)

6.4.1 Controller design

The potential instability in case of disturbances as described by Morud and Skoges-
tad [131] requires a stabilizing “slave” control layer below the self-optimizing control
layer. Straus and Skogestad [174] showed that if the reactor is operated close to
the nominal optimum and without control, reactor extinction may result even from
small disturbances compared to the large disturbances investigated by Morud and
Skogestad [131]. Hence, also for the case when extremum seeking control is utilized
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Figure 6.3: Flowsheet of the reactor, modified from [131] to include the proposed
control structure.

without self-optimizing control, a stabilizing “slave” control layer is required result-
ing in a cascade control structure in all investigated control structures. The chosen
“slave” controllers are temperature controllers and more detailed explanation can
be found in [176]. In our case, the SOC controllers give the setpoints to the respec-
tive slave temperature controllers. The measurements y for self-optimizing control
are selected to be the inlet and outlet temperature of each reactor bed; i.e.

yi = [T;‘} Vi=1,2,3 (6.18)
i0
Hence, only two measurements were used for the calculation of H; in (6.3). The
slave temperature loops as well as the master self-optimizing control loops were
tuned using the SIMC rules [166], which can be found in [176]. The extremum seek-
ing controllers were implemented in discrete time resulting in a discrete-continuous
representation. The tuning parameters for the extremum seeking control were cho-
sen based on trial and error to achieve satisfactory performance and can be found
in [176]. These slow integral controllers give the setpoints to either the base layer
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temperature (T, denoted T+ESC) or the self-optimizing controllers (cs, denoted
T-+SOC+ESC). The estimation of the gradient 8 according to (6.10) is performed
using @ as the setpoint of the respective slave controller (T or SOC). It is assumed
that the disturbances are unmeasured.

6.4.2 Results

In order to compare the proposed methods, two disturbances were investigated; a
disturbance in the inlet mass flow rate i;,,, corresponding to a modeled disturbance
in self-optimizing control, and an unmodeled disturbance in the reaction rate r.
These disturbances were chosen as they correspond to the largest losses for the self-
optimizing control structure (not shown). Hence, the improvement using extremum
seeking control is most pronounced. In addition, both disturbances would result in
reactor extinction, if the stabilizing temperature controllers would not be present.
The integrated loss (cost difference),

.
Jint (t):/o [Eopt,ss (') — € (¢")] A’ (6.19)

is used to compare the proposed methods.

The first considered disturbance is a +20 % step change in the inlet mass flow
rate as this disturbance results in the highest steady-state loss for self-optimizing
variables [175]. This disturbance is considered in the calculation of the SOC vari-
ables. The cost J = £ and the integrated loss (6.19) are shown in Fig. 6.4. The cases
with extremum seeking control (solid lines) settle to the new optimum in contrast to
pure self-optimizing control (dashed red line). The combination of self-optimizing
control and extremum seeking control gives a large reduced loss in produced tons
of ammonia. As seen in Fig. 6.4, this reduction corresponds to 4.95 t ammonia in
the investigated time-frame of 18 hours. One could argue that this is caused by
suboptimal tuning parameters in the pure extremum seeking control . By taking
a look at the time the disturbance is occurring, we claim that this is not the case.
Fig. 6.5 shows a close-up of the response in the cost function for the first 1.2 hours
after the disturbance occurs. From this figure, it can be clearly seen that both ESCs
(solid lines) initially follow their respective slave controllers, before deviating when
the ESCs start changing the setpoints to the slave controllers. Both ESC control
structures are in fact moving initially in the wrong direction, that is, to a reduced
extent of reaction. This can be explained by the past measurements, before the
disturbance, which are still used at this point. One approach to circumvent this
behavior is to use a smaller time horizon (smaller N). This results on the other
hand in a drift away from the optimal setpoint on a long time scale. Hence, it is
preferable to have a slightly suboptimal initial performance.

A disturbance in the reaction rate r is an unmodeled disturbance which is not
considered in the calculation of the optimal selection matrices according to (6.3).
It can be considered a plant-model mismatch. The simulation results for a —20 %
step change in the reaction rate r are shown in Fig. 6.6. Similarly to a disturbance
in the inlet mass flow 7h;,, the control structure based on the proposed method
with both self-optimizing and extremum seeking control settles to the new optimum
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Figure 6.4: Response of a) extent of reaction £ and b) integrated loss to a +20 %
disturbance in inlet mass flow rate, Ar;, = +54 t/h, at t = 3 h.

after 7 hours whereas extremum seeking control alone requires around 13 hours.
During the time the controllers require to settle to the new optimum, the loss is
reduced in the proposed control structure with SOC. Over 18 hours, the proposed
control structure has a reduced loss of 6.71 tons of produced ammonia. Here it has
to be noted, that despite this disturbance was not included in the design phase,
the self-optimizing control structure has a reduced loss. This can be explained by
general favorable properties of self-optimizing feedback with regard to disturbances
and plant-model mismatch.

6.5 Chapter Summary

In this chapter, we have shown that extremum-seeking control and self-optimizing
control are complementary rather than competing. This is caused by the differ-
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Figure 6.5: Closeup of Fig. 6.4 a) at the time when the disturbance occurs.

ent timescale at which the control strategies are operating. By combining self-
optimizing control and extremum-seeking control, we are able to utilize the ad-
vantages of each method and improve the convergence to the optimum. Using a
three-bed ammonia reactor case study, we demonstrate that the combined system
can handle unmeasured disturbances and at the same time correct for plant-model
mismatch.
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Figure 6.6: Response of a) extent of reaction £ and b) integrated loss to a —20 %
disturbance in pre-exponential factors of the Arrhenius equations at ¢t = 3 h.
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Chapter 7

Dynamic Online Process
Optimization under Uncertainty

This chapter serves as an introduction to part II, and provides useful
discussions on problem formulation under uncertainty. More importantly
this chapter aims to provide a clear understanding of open-loop and
closed-loop optimization.

7.1 Introduction

In part I of the thesis, we considered the steady-state optimal operation of a pro-
cess. The main focus of the different approaches studied in Part I of this thesis, was
to drive the process to its optimal steady-state operating point. Optimizing during
the transients were not considered in Part I. But for some processes, optimizing
the transients becomes important, such as processes with frequent changes in feed,
product specifications, market disturbances, grade transitions, cyclic operations,
batch processes etc., which makes steady-state optimization less relevant. Opti-
mal operation of such processes requires solving dynamic optimization problems.
This is done under the context of dynamic real-time optimization (DRTO) [158],
where dynamic process models are used to solve a dynamic optimization prob-
lem. The optimal setpoint trajectories are then given to a setpoint tracking layer
below(commonly, model predictive control). To this end, dynamic real-time opti-
mization (DRTO) and model predictive control (NMPC) have emerged as crucial
technologies in achieving this. More recently, the DRTO and NMPC layers have
been tightly integrated into a single layer approach, known as economic NMPC
[143], where there is no time scale separation such as in the conventional two-layer
approach, as shown in Fig. 7.1.

Among different application areas, process industries are probably the most
suited for centralized optimizing control structures like economic NMPC, since in-
formation from different parts of the plant are typically gathered into one platform
(traditionally the control room) for processing and decision-making. Throughout
this thesis, we solve dynamic optimization problems in the context of economic
NMPC as shown in Fig. 7.1b.
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Figure 7.1: (a) Dynamic RTO (b) Economic NMPC

7.2 Problem formulation

Suppose we want to solve a dynamic optimal control problem (OCP),

min / " o(x(t), u(t))dt (7.1a)

X(t) 7u(t) to

s.t. (7.1b)
x(t) = F(x(t),u(t),p(t)) (7.1¢)
g(x(t),u(t),p(t)) <0 (7.1d)
x(to) = @ (7.1e)
xeX, ueld (7.1f)

where x(t) € R™ denotes the states, u(t) € R™ denotes the control inputs and
p(t) € R" denote the model parameters and disturbances, which are considered
to be uncertain and the continuous time ODE process model is described by the
function F : R™* x R™ x R™ — R™=, . The states and the inputs are constrained
to lie in the compact sets x € X C R"™ and u € U C R"™ respectively, ¢ :
R™ x R™ — R denotes the stage cost that is integrated over the decision horizon
[to,tf], g : R™ x R™ x R™ — R"™ denotes the nonlinear inequality constraints
and &, is the state measured/estimated at the current time.

Before this can be posed as a standard optimization problem, the infinite di-
mensional optimal control problem (7.1) is first discretized into a finite dimensional
nonlinear programming problem (NLP), divided into N equally spaced sampling
intervals in K = {0,---, N — 1}. Discretization can be performed using different
approaches such as single shooting, multiple shooting or direct collocation as de-
scribed in [15]. Once the system has been discretized, the OCP can be posed as a
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standard NLP problem,

N-1
Jnin kzzo 0(xp, up) (7.2a)
s.t.
Xp+1 = £(xx, ur, pr) Vke K (7.2b)
g(xx, ux,p;p) <0 vk e K (7.2¢)
Xo = & (7.2d)
xp €EX, w €U VE e K (7.2¢

where, the discretized process model is described by the function f : R™= x R™= x
R — R"=.

Since dynamic RTO and economic NMPC are based on using a dynamic model
of the process, solving (7.2) in real-time requires fast optimization algorithms.
As many industrial applications call for increasingly complex, detailed and large-
scale process models [9], a major concern is the computational resources needed to
solve the resulting large-scale optimization problem. While advances in numerical
optimization strategies have enabled us to solve increasingly larger optimal control
problems (OCPs), real-time implementation is still challenging, even with today’s
computing power [14, 25]. The non-negligible amount of time taken to solve the
numerical optimization problem online leads to computational delays, that are
known to degrade the control performance [154], and can also destabilize the system
[30, 45].

One of the main bottlenecks in solving dynamic optimization problems is there-
fore, the online computation time. To address this issue, several sensitivity-based
methods were proposed, see [35], [186], [189], [74] and [178] to name a few. All
these sensitivity-based methods exploit the fact that the OCP is parametric in the
initial condition &;. Here, the computationally expensive NLP problem is solved
offline, and the NLP sensitivities are used to obtain fast approximate solutions
when new measurements of the state become available. The application of one such
sensitivity-based economic NMPC for a gas-lift optimization problem is provided
in Appendix N. The reader is referred to [13] for an overview of the recent devel-
opments in fast sensitivity-based NMPC. In this thesis, we will focus on solving
dynamic optimization problems under uncertainty.

In the presence of uncertainty, the online computation time may increase tremen-
dously, depending on the problem formulation and how the uncertainty is handled.
The problem formulation not only affects the complexity and computation time,
but also the performance (e.g. robustness vs. conservativeness). For this reason,
choosing an appropriate problem formulation is an important aspect to enable suc-
cessful implementation of dynamic RTO and economic NMPC (Challenge 6 from
Section 1.1).

7.3 Robust vs. adaptive problem formulation

Optimization problem formulation under uncertainty can be broadly divided into
two categories, based on how and “where” the uncertainty is handled, namely,
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e Adaptive formulation: measurement from the process is used to update
the process model using a parameter estimator.

e Robust and stochastic formulation: A-priori information about the un-
certainty is used to explicitly account for the uncertainty in the optimization
problem.

The aim of this section is not to provide a comprehensive review of the two solution
strategies, but rather to state the key differences in the two strategies, and provide
a guideline on when to use which formulation. The discussion is also restricted to
dynamic optimization problems, in the context of economic NMPC.

Adaptive formulation: In the adaptive approach, the idea is to estimate the
uncertain variables from the process measurements, and use the updated value of
the parameters in the optimization problem as shown in Fig. 7.1. In the adap-
tive approach, the uncertainty is handled “outside” the optimization problem, i.e.
the optimization problem is supplemented with an external parameter estimation
block, and the optimization problem itself, is deterministic. For example, the dy-
namic RTO formulation used in Chapters 2 and 3 use an adaptive approach, where
a parameter estimator iteratively updates the model that is used to solve the dy-
namic optimization problem in a deterministic fashion.

Ideally, the adaptive mechanism used should asymptotically converge to the
true system, thereby improving the performance over time. However, since the
model adaptation is based on observed measurements, this is a reactive strategy,
and the transient effects of the parameter estimation error have proven problem-
atic in the context of predictive control. This was also observed in the simulation
example used in Chapter 2, where it was seen, that the process constraints are vi-
olated dynamically, due to the lag in the parameter estimation step (cf. Fig. 2.7¢).
The parameters that are sensitive to the cost and the constraints, must also be ob-
servable. In addition, it is also difficult to guarantee closed-loop stability when the
dynamic optimization problem is combined with an adaptation algorithm. There-
fore, the development of adaptive problem formulation in the context of model
predictive control, has received very little attention, and still remains an open
problem [85, 126].

The goal of the parameter estimation is to minimize the error between the model
predictions and the measurements. However, this does not always coincide with the
optimization objective. A good prediction model may still be a bad optimization
model, if the gradient of the process model used in the optimization problem does
not accurately predict the plant gradients.

In general, an adaptive formulation may be preferred if,

e there are no hard constraints on the states or measurements, that may need
to be satisfied in the future

e significant performance improvement can be achieved by updating the model
using a suitable parameter estimator.

Robust and stochastic formulation: If the uncertainty characteristics of the
uncertain parameters (i.e. p € P) are known a-priori, for example in the form of a
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compact set-membership or a probability density function, then the uncertainty can
be explicitly handled in the optimization problem. Unlike the adaptive formulation,
this is an anticipative approach, where the uncertainty is explicitly handled inside
the optimization problem, i.e. the optimization problem formulation is no longer
deterministic, but depends on the uncertainty characteristics.

To ensure robust constraint feasibility for any realization of the parameter from
the compact set p € P, the uncertain parameters may be assumed to take their
worst-case realization in the optimization problem. This was first introduced in
1973 by Soyster, where every uncertain parameter in convex programming was
taken equal to its worst-case value within a set [169]. Since then, optimization for
the worst-case value of the parameters within a set has become effectively known as
Robust Optimization. In the context of dynamic optimization and model predictive
control, the min-max NMPC formulation was proposed by Campo and Morari [24],
which computes an optimal input trajectory that minimizes the cost of the worst-
case uncertainty realization. Although this ensures robust constraint satisfaction,
this often leads to overly conservative and hence suboptimal solutions. This is
because the optimization is performed for the worst-case scenario in an open-loop
fashion.

Alternatively, in the stochastic approach, the cost and the constraints are de-
fined as expectations using a probability density function. In its simplest form, if
the system is linear, and the uncertainty is represented by a Gaussian distribution,
then the expectations of the cost and the constraints can be computed [128]. How-
ever, when dealing with economic objectives, linear models are seldom used and
the use of a Gaussian distribution may be too restrictive. In such cases, computa-
tionally expensive Monte Carlo simulations will have to be performed to solve the
stochastic optimization problem [125].

In general, robust/stochastic formulations may be preferred if,

e there are not sufficient measurements available to update the model in a

meaningful way

e a-priori information about the uncertainty in the form of probability density
function or compact set membership is available,

e there are hard constraints that needs to be satisfied (requires robust formu-

lation)

In the robust and stochastic formulations, the resulting optimal control frame-
work is significantly more complex than deterministic optimization. This is espe-
cially true for nonlinear systems, where the problem can be too complex to be
solved exactly [125].

Another major concern with the conventional robust and stochastic framework
is that, the optimization problem formulation is highly dependent on the accu-
rate knowledge of the uncertainty characteristics. For example, if the uncertainty
characteristics change, then this requires the optimal control problem to be rebuilt
again (which requires skilled engineers).

Moreover, in many real applications, the probability density function (PDF)
or the uncertainty set for the uncertain parameters is not readily available, but
only a finite number of data samples may be available. Classical stochastic NMPC
frameworks make use of such data indirectly to infer the probability distribution of
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the uncertain problem parameters by means of statistical estimation methods. The
estimated probability density function is then subsequently used in the optimiza-
tion problem [134]. The classical stochastic NMPC problem is based on a two-step
approach:

1. estimate the PDF or the compact set from the finite data samples

2. use the estimated PDF or the compact set in the optimization problem.
The main issue with this two-step approach is that the estimation step often aims
to achieve maximum prediction accuracy without tailoring it to the optimization
problem. Hence, the estimated probability density function or the compact set,
itself may be uncertain as noted by Parys et al. [134] (leading to recent develop-
ments in so-called distributionally robust optimization). Given finite data samples,
the uncertainty representations may be chosen directly from this data set, thus
releasing the assumption of the uncertainty having any particular distribution.
Thus, in such cases, scenario-based optimization techniques may be used to get
a sampled-average approximation of the optimization problem, as suggested by
Calafiore and Fagiano [21], Campi et al. [23], Fagiano et al. [44] to name a few. It
is also worth noting that handling model structural uncertainty in this framework
is still an open challenge.

Recently, there has been some interest in combining the two approaches to
formulate adaptive-robust optimization problems. This approach differs from typi-
cal certainty-equivalence adaptive formulations, in that the adaptation mechanism
does not aim to directly estimate the parameter itself. Instead, the set-valued de-
scription of the uncertain parameter is adapted online by eliminating values from
the compact set that do not explain the observed trajectories with sufficient like-
lihood [60]. We explore a similar idea in [97] (see Appendix L). In this part of the
thesis, we will consider the robust formulation in more detail.

Notational remark: At this point, we make a clarifying remark on the nota-
tion of the uncertain variable. In part I of this thesis, we had used d to denote
the uncertain parameter/disturbance in the model, that are updated using a suit-
able parameter estimator. The estimated value d is then used in the optimization
problem. In this part of the thesis, we will use p to denote the uncertain param-
eters/disturbances in the model that are not updated, but are instead known to
belong to a compact set denoted by P.

7.4 Dynamic optimization under uncertainty

Research on dynamic RTO and model predictive control (NMPC) under uncer-
tainty has been steadily gaining more interest, and several different optimization
problem formulations have been studied in the literature. However, robust and
stochastic problem formulations seems to be the most popular in the academic
community, although the same level of interest and enthusiasm is not reflected in
industrial practice [25, 49].

Motivated by the requirements in process industries, Mayne [125] questions if
research on robust and stochastic NMPC is going in the right direction, particularly
pointing out the complexity, ease of maintenance, and the potential objections to
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using robust and stochastic NMPC formulations. Forbes et al. [49] also noted that
robust and stochastic approaches are currently not commercially exploited in the
process industry owing to its complexity. This chapter deals with the research
question:

“What is the most appropriate problem formulation to handle uncertainty in
dynamic RTO and economic NMPC? 7

A good problem formulation must ideally have the following properties®.

o P1. Easy to understand - Being able to understand the control actions is
important to gain operator confidence. As mentioned in Section 1.1, if the
operators do not understand the control actions, then it will most likely not
be used in practice [49].

e P2. Low complexity - The problem formulation must be easy to maintain
and make changes by process engineers without the need for skilled experts.
Without regular maintenance and service, the benefits of using MPC will
diminish [49, 125].

e P3. Not too conservative - Since the goal of the optimization problem is
to minimize some economic objective, an overly conservative problem formu-
lation is not desirable.

o P4. Low computational effort - Since the optimization problem is solved
online, the computational effort must be low (cf. Challenge 3 in section 1.1).
The computation delay can lead to performance degradation as motivated in
[45].

e P5. Feedback - It is a well known fact that feedback is required when
uncertainty is present. As Mayne [126] pointed out, in order to introduce
the notion of feedback, one must optimize over control policies as done in
Dynamic programming, instead of optimizing over control actions.

Before continuing further, we first broadly categorize the different formulation
strategies, based on whether the optimization and implementation are done in
open-loop or closed-loop. This is also schematically represented in Fig. 7.2.

e Open-loop optimization with open-loop implementation - In the first category,
both the optimization and the implementation are performed in open-loop.
Using the model, the optimizer computes an optimal input trajectory, which
is then implemented on the system without any notion of feedback. This is
an open-loop dynamic optimization problem.

e Open-loop optimization with closed-loop implementation- In this category,
the optimization is performed in open-loop using a model, but the optimal
solution is implemented in a closed-loop fashion. Using the model, the op-
timizer computes an optimal input trajectory over the prediction horizon
[0,...,N —1]. Only the optimal control input at the first sample is imple-
mented on the system. When new measurements are available, the optimiza-
tion problem is solved again to re-compute a new optimal input trajectory

INote that this is not an exhaustive list, but only some of the key properties inspired from
[125] and [49], and my personal industrial experience.
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Open loop Closed loop
implementation implementation

Standard MPC /
Receding horizon control
L Multistage MPC
Closed loop optimization — /Feedback min-max MPQ

Open loop optimization | Dynamic optimization

Figure 7.2: Classification of optimization problem formulations

at each sample time to account for the feedback information. This is carried
out in a receding horizon fashion. Dynamic matrix control (DMC)/Model
predictive control (MPC) falls under this category.

e (Closed-loop optimization with closed-loop implementation - In this category,
both the optimization and the implementation are performed in a closed-loop
fashion. By “Closed-loop optimization”, we mean, the optimization problem
explicitly takes into account the fact that new measurements will be available
in the future and that a new optimal input trajectory will be recomputed in
the future. By doing so, we optimize over different control policies, rather
than a single control trajectory [126]. This introduces the notion of recourse,
which is an attractive property in handling uncertainty in the optimization
problem.

To explain this better, first let us consider that the model in (7.2) is perfect,
and p is known accurately. Then for an optimal input trajectory uﬁ) N the

I[’ttJrN] (see Fig. 7.3a). However, in the
p

presence of uncertainty, described by p € P, an optimal input trajectory LI

ﬁ,tJrN]}P depending on the value of
the uncertain parameter p € P (see Fig. 7.3b). Optimizing over a single control
trajectory uz[; £+ N] ignores the fact, that new information will be made available
at the next time step, and a new optimal input trajectory will be re-computed.
In other words, the optimization is performed in an open-loop fashion (although
the implementation may be in closed-loop as in predictive control, where if the
optimal control problem is re-solved at each sampling time with only the first
control input move implemented on the process). Closed-loop optimization, on the
other hand, involves computing a set of possible control trajectories {u’[’ty . N]}p
’[17 N thereby introducing recourse action
(see Fig. 7.3¢). To provide a simple analogy, consider the uncertain optimal control
problem as a decision-making process in an evolutionary strategic game (like chess).
In order to make the best decision, even a moderately skilled player would prepare
a strategy consisting of several back-up moves based on the expected evolution of
the game (analogous to several control trajectories {uﬁ . N]}P ), instead of only a

predicted state trajectory is given by x

would give rise to a set of state trajectories {x

instead of a single control trajectory u

single sequence of moves (analogous to single control trajectory uﬁ . N]).

To illustrate this, consider the example of driving the Van der Pol oscillator to
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Figure 7.3: Van der Pol oscillator example: (a) Open-loop optimization with perfect

model with single control trajectory uﬁ t4+N] and corresponding state trajectory

xﬁ’t e (b) Open-loop optimization with single control trajectory uﬁ’ 1+N] and

corresponding set of state trajectories {xﬁ

with set of possible control trajectories {uﬁs o N]}P and corresponding set of state

t+N]}7,. (c) Closed-loop optimization

trajectories {Xﬁt_._N] .

its origin with a quadratic integral cost.

10
min / (22 + 23 +u?)dt
0
s.t.
i1 = (p—a3)r) — 29 +u
fEQ =X
p €10.8,1.2]

Fig. 7.3a shows the case with ideal case with perfect information, as a benchmark.
Fig. 7.3b shows the open-loop optimization case, where a single control trajec-
tory uﬁ, N is computed to optimize over different realizations of uncertainty.
Fig. 7.3c shows the closed-loop optimization case, where different control trajecto-
ries {uﬁ_ . N]}p are computed to optimize over different scenarios.

In the context of the classification in Fig. 7.2, traditional deterministic NMPC,
min-max NMPC, stochastic NMPC etc. belongs the category of Open-loop opti-
mization with closed-loop implementation. In a recent review paper, Mayne [126]
argues that in the presence of uncertainty, a better strategy would be to optimize
over control policies (closed-loop optimization), as done in dynamic programming,
rather than over a sequence of control actions (open-loop optimization).

One such closed-loop optimization approach is the multistage scenario-based
NMPC formulation, which will be considered in this thesis. In this approach, the
uncertainty is discretized to get a finite number of realizations, and the future
evolution of the uncertainty is propagated via a discrete scenario tree. The idea
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of using a scenario tree for solving linear NMPC problems was first introduced
by Scokaert and Mayne [157], with some initial results reported by Kerrigan and
Maciejowski [83] and Bernardini and Bemporad [11]. This was later extended to
nonlinear systems by Lucia et al. [116] in the context of multistage robust economic
NMPC.

Remark 7.1. At this stage, it is important to note that the multistage scenario-
based formulation considered in this work must not be confused with other scenario-
based MPC approaches proposed by Calafiore and Fagiano [21]|, Fagiano et al.
[44], Schildbach et al. [156] etc. One of the main difference between multistage
scenario approach used in this work and the other scenario-based approaches is
that, they compute a single control trajectory uy to optimize the expected value
over all the scenarios. Hence, there is no notion of feedback in the optimization
problem (i.e. open-loop optimization with closed-loop implementation). Fig. 7.3b
belongs to category. In contrast, the multistage scenario-based NMPC approach
computes different control trajectories uy ; for different scenarios, subject to the
non-anticipativity constraints (i.e. closed-loop optimization with closed-loop im-
plementation) [116, 157]. Fig. 7.3c belongs to this category.

Multistage scenario-based formulation as a promising alternative Based
on the discussions, we now consider the multistage NMPC as one of the possible
problem formulations and briefly analyze the method in light of the desirable prop-
erties listed above
e P1. Easy to understand - One of the most common reasons as to why
NMPC under uncertainty is not used in practice is the fact that the operators
often do not understand the rationale behind the control actions, due to its
complexity and simply do not trust the controllers (human aspect described
in Chapter 1). Forbes et al. [49] and Mayne [125] suggests that providing the
predicted trajectories of key variables together with the constraints, can help
operators understand the controller. The multistage scenario-based formula-
tion makes it easier to implement this suggestion, since the use of a discrete
scenario tree is easy and intuitive to understand.

e P2. Easy to implement and maintain - By representing the uncertainty
as a scenario tree with finite number of discrete scenarios, the problem for-
mulation does not assume any particular uncertainty distribution. One can
design and implement the problem based on historical data [99](see Ap-
pendix K). Considering only a finite number of scenarios also leads to a
tractable formulation. The scenario approach also provides flexibility in the
problem formulation, making it easy to maintain and service. For example,
scenarios that are no longer relevant (based on new information) can be eas-
ily discarded/updated, and similarly, new scenarios can be added/updated
easily.

e P3. Not too conservative - The multistage scenario-based MPC was also
shown to be less conservative than min-max MPC [116], which we will also
demonstrate in the next chapter.

e P5. Feedback - The multistage scenario tree formulation explicitly intro-
duces the notion of feedback in the optimization problem, which can be seen
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as an effective implementation of an optimization problem over different con-
trol policies. This is also clearly demonstrated in Appendix H.

For the aforementioned reasons, the multistage scenario-based formulation can
be considered a promising alternative for dynamic optimization under uncertainty,
that particularly addresses some of the challenges discussed by Mayne [125]. There-
fore, this thesis will focus on the multistage scenario-based economic NMPC for-
mulation proposed by Scokaert and Mayne [157] and Lucia et al. [116].

The key issue that is yet to be addressed is the online computation time. A
major drawback of the multistage scenario-based approach is that it leads to large
optimization problems. The multistage optimization problem grows exponentially
leading to very large optimization problems.

The next, and a very important research question that we answer in the subse-
quent chapters is:

“How can we reduce the online computation time of the multistage scenario-based
formulation?”

In Chapter 9, we show that the multistage NMPC problem can be decomposed into
smaller subproblems, to facilitate parallelization of the online computation. Addi-
tionally, by exploiting the NLP sensitivities, we show that the online computation
time can be further reduced in Chapter 10.

7.5 Chapter summary

To summarize, in this thesis, we consider the multistage scenario-based optimiza-
tion problem as an effective way of handling uncertainty in the dynamic optimiza-
tion problem for the following reasons:
1. Tt is a closed-loop optimization approach that computes several different con-
trol trajectories instead of a single control trajectory, thereby introducing
recourse action.

2. The resulting problem formulation remains tractable and does not assume
any particular uncertainty characteristics, as opposed to conventional robust
and stochastic NMPC, where the uncertainty characteristics heavily influence
the problem formulation.

3. The problem formulation is easy to maintain (e.g. add/remove scenarios) and
the use of discrete scenario tree is intuitive to understand, making it easier
for practitioners to adopt this approach (human aspects).

It is important to note that there are several possible alternative formulations

to economic NMPC problems under uncertainty and the multistage scenario-based
formulation must be viewed as one of the several alternatives.
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Chapter 8

Multistage Scenario-based Economic
NMPC

The objective of this chapter is to formalize the multistage scenario-based
economic NMPC problem, and show that it provides less conservative
solution than the worst-case optimization approach using a gas-lift opti-
mization problem.

Based on the articles published in Processes [91] and Computer Aided Chemical
Engineering [95].

8.1 Problem formulation

In the multistage scenario-based problem formulation, the uncertainty space P
is discretized to get M finite realizations of the uncertain parameter. The future
evolution of the uncertainty in the prediction horizon is then represented by a
scenario tree as shown in Fig.8.1, where a “scenario” is represented by the path
from the root node to a leaf node [116]. In order to curb the exponential growth of
the problem size by repeated branching at each time step, the branching is stopped
after a certain number of time samples, known as robust horizon N,., after which the
uncertain parameters are treated as constants, as justified in [116]. Consequently,
the number of scenarios in the NMPC! problem to be solved, is given by S = M~r,
Let the set of scenarios be denoted as S := {1,...,S}. Allowing for the different
cost weights w; to represent the likeliness of the different scenarios j, the resulting

1Remark: It should be understood that the problems considered in this thesis are economic
optimization problems with nonlinear process models. However, for the sake of simplicity, with a
slight abuse of notation, we use the term “NMPC” to broadly denote economic NMPC problems.
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dynamic optimization problem can be formulated as,

s N-1
i Z%‘ [ f(xk,jﬂuk,j)] (8.1a)
T =1 k=0

s.t Xk41,j = f(XkJ‘, ukJ,ka) VjieS Vkek (81b)
g(Xk,j, Uk 5, Py ;) <0 VieS,Vke K (8.1c)
X0,j = & VjesS (8.1d)
Xp; €EX, w,; €U VieSVkek (8.1e)

g
ZEjuj =0 (81f)

j=1

where the subscript (+)j ; represents the j'* scenario at time sample k. The cost
function is given by £(xy j, ur;), and g(Xy j, Uk j, Py ;) represents the nonlinear
inequality constraints. Initial condition are enforced in (8.1d) for all the scenarios,
where &; denotes the state measurements or estimates at the current time step t.

Note that we compute different control trajectories for different scenarios, which
introduces the notion of feedback in the optimization problem. However, the control
inputs are subject to certain restrictions which are required to capture the decision-
making process accurately. These constraints are known as non-anticipativity con-
straints (also known as causality constraints). During the decision-making process,
the control actions cannot anticipate the future evolution of the uncertainty. The
control inputs predicted for time step k, must only depend only on the state tra-
jectory for time step k. Therefore, every time a state branches, the corresponding
control input is the same, i.e.

Xk,j1 = Xk,jo < Ukj; = Uk j,

Eq.(8.1f) enforces the non-anticipativity constraints, which ensures that the
states that branch at the same parent node, have the same control input. Note
that u; here represents the sequence of optimal control input for the 4t scenario,

. _ T T T N T . .
ie.u; = [uo,j e uNij] € R™" and E; is given by

Eio| —Ei2

_ Eys | —Ea3

B = . (2)
Es 15| —Es_1,s
= [E1[Ex| - [Es |
where,
In, 0 0

Ejj = Do (8.3)

140



8.2. Methods and tools

If n (j,j4+1) denotes the number of common nodes between two consecutive scenar-
ios j and j + 1, then Ej ;11 € R™™Y and E; € R?*™N where,

S

q4 =Ty Z No,(jj+1)  and 1= nyne (1)
j=1

as described in [86]. Formulating the non-anticipativity constraints using this chain
structure also results in sparse structures, which may be exploited by many solvers
[86].

It is important to note that, the non-anticipativity constraint ensures that the
control input computed at the first time step is identical for all the scenarios, i.e.

Uy =Upo=:""=Upg (8.4)

This is a very important property, since this enables closed-loop implementation
of the multistage NMPC formulation in a receding horizon fashion.

The scenario tree with M = 3 discrete realization of parameters, and a robust
horizon of N, = 2 samples, resulting in a tree with S = 9 scenarios is schemati-
cally represented in Fig. 8.1, for both the state and control trajectories. This also
clearly shows the concept of non-anticipativity constraints, where the control input
corresponding to the states that branch at the same node are equal.

To this end, the first step to designing a multistage scenario-based NMPC is to
select the discrete realizations of the uncertainty from the uncertainty set. Common
practice is to select a combination of maximum, minimum and nominal values of
the different uncertain parameters [116]. It is important to note that, in order to
ensure robust constraint satisfaction, the worst-case scenario must be included as
one of the scenarios. For now, we assume that the M discrete realizations of the
uncertainty are given. The scenario selection problem will be considered in more
detail in Chapter K, where we propose a novel approach to generate the scenario
tree based on principal component analysis (PCA), that exploits the hidden data
structures.

8.2 Methods and tools

In the rest of the thesis, the multistage scenario-based optimization problem is
discretized using third order direct collocation unless otherwise stated explicitly.
This gives a polynomial approximation of the system model. The set of three
collocation points and the initial state in each interval [k, k + 1] is denoted by the
index ¢ € C :={0,1,2,3}, and the location of these points are computed using the
Radau scheme (see [15]). The discretized states are simply denoted by xj, £ x3
and the states at the other collocation points (known as helper states) are given
by x§ € R" for all ¢ € {1,2,3}. To ensure continuity of the states between two
consecutive time intervals, the final state variables x} and the initial conditions
of the next time interval x;,; £ X}, must be equal. This is commonly referred
to as shooting gap constraints, and are additional constraints appended to the
NLP problem (7.2). The control inputs uy which are discretized at each sampling
interval, are assumed to be piece-wise constant over each interval and hence are not
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Figure 8.1: Schematic representation of a scenario tree for M = 3 discrete realiza-
tion of parameters and a robust horizon of N, = 2 samples.

discretized at the collocation points. The parameters p are also treated as piece-
wise constant over each interval [k, k+ 1]. For the sake of generality, the collocation
points, and the shooting gap constraints will not be shown explicitly in any of the
OCP formulations in this thesis.

The resulting NLP problem is implemented in CasADi version 3.4.5 [4] using the
MATLAB programming environment. The resulting nonlinear programming problem
was solved using IPOPT version 3.12.2 [184] running with a MUMPS linear solver. All
the computation times reported in this thesis are based on simulations carried out
on an Intel core i-7, 2.6GHz workstation with 16GB memory. The plant simulator
was implemented using the IDAS integrator|[68| for differential algebraic equation
(DAE) models and the CVODES integrator [159] for ordinary differential equation
(ODE) models.
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8.3. Application example - Gas lift optimization

8.3 Application example - Gas lift optimization

In this section, we demonstrate the multistage NMPC approach using a network of
two gas lifted oil wells (n,, = 2) producing to a common riser manifold as shown in
Fig. A.1. The process is assumed to be constrained by a maximum gas capacity of
Wypree = 8kg/s. The uncertainty arises in the form of the gas-oil-ratio (GOR) from
the reservoir (uncertainty in the feed). The optimization problem is expressed as,

wmgllrz —co lzw; Wpo,i + Cql ZZW; Wi (8.5a)
s.t. ) )
i Wpgi < wpe"” (8.5b)
i=1
Xk4+1 = f(Xk, ug, GOR) (85C)
GOReP (8.5d)

Vied{l,...,ny}

where wg; ; is the gas lift injection rate for each well and is the manipulated variable
(ny = 2), Wpo,; and wp,; are the oil and gas production rates from each well
respectively, wpe® is the total gas processing capacity. ¢, and cg are economic
terms that represents the value of oil and cost of gas compression respectively.
(8.5¢) represents the nonlinear dynamic model of the gas lifted wells discretized
using direct collocation. The reader is referred to Appendix A for more detailed
description of the gas lifted well models. P denotes the uncertainty characteristics
to which the uncertain parameter is known to belong. Since we have two wells, we
have two uncertain parameters (n, = 2), namely, the gas-oil ratio for each well.
The resulting NLP problem was solved with a prediction horizon N = 60 and a
sampling time of Ty = 300 s. The first control input is then applied to the plant.

In this simulation example, we consider the uncertainty in GOR; € P; to be
equally distributed with P; € [0.05,0.15]kg/kg and Ps € [0.11,0.13]kg/kg. Hence,
the uncertainty set P = P; x Py is given as a box uncertainty set.

For the nominal optimization case, the nominal value of the uncertain parameter
GOR was used in the optimization problem, and, for the worst-case optimization,
the maximum values of the gas-oil-ratio of the two wells was used in the optimiza-
tion problem. For the multistage scenario NMPC, M = 5 discrete realizations of
the uncertainty are considered that corresponds to the combination of minimum,
maximum and nominal values of the gas-oil-ratio of the two wells (see Table 8.1),
and a robust horizon of Nz = 1 was chosen. This is schematically represented in
Fig. 8.2.

The optimization problem considered here computes the optimal gas lift rate
for each well. We assume that we have perfect low level controllers that adjust
the gas lift choke z4 to provide the desired gas lift rates. These assumptions are
justified, since the main focus in this chapter is to compare the nominal, worst-
case and multistage scenario-based optimization approaches. An Extended Kalman
Filter (EKF) was implemented for state feedback. The annulus pressure, well head
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Table 8.1: The GOR value used in the optimizer for nominal, worst-case and sce-
nario based approach

‘ Nominal ‘ worst-case ‘ multistage scenario-based
0.1 0.15 0.05 0.05 0.1 0.15 0.15
0.12 0.13 0.11 0.13 0.12 0.11 0.13

GOR well 1
GOR well 2

772 7)1 X Pz

Figure 8.2: (a) Uncertainty subspace and the possible models for the scenario tree
denoted by e, (b) Scenario tree with Ng = 1 and M = 5 models = S = 5! =5
scenarios.

‘pEP

Economic Xk
NMPC

u;, EKF
Plant 4
y

Figure 8.3: Block diagram of the implemented control structure including the EKF
for state estimation.

pressure, bottom hole pressure, wellhead choke flow rate and gas inflow rate are
all assumed to be measured and used as measurements in the EKF. An economic
NMPC control structure was chosen together with an EKF for state estimation as
shown in Fig.8.3. The simulation starts with the true GOR the same as the nominal
GOR for both the wells. At sampling instant N = 15, true GOR gradually increases
to 0.125 in well 1 and well 2, respectively, and remains constant at these values
until NV = 45. At sampling instant N = 45, the GOR suddenly increases to 0.15 and
0.13 (worst-case realization) in wells 1 and 2, respectively. The true GOR profile
is shown is Figure 8.4 bottom subplot.
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8.3.1 Simulation results
Nominal optimization

The system is first simulated for the nominal optimization case, where the opti-
mization assumes the GOR to be at its nominal value as shown in Table 8.1. When
the true GOR is at its nominal value, there is no plant-model mismatch and the
total gas capacity constraint is active, as expected. However, when the true GOR
in the system increases, this leads to constraint violations, as seen in Fig. 8.4 in
green curves.

Worst-case optimization

Then, the system is simulated with the worst-case optimization, where the opti-
mizer assumes GOR to take its worst-case value. When the true GOR is at its
nominal value, we see that the optimal solution implemented is rather conserva-
tive. The gas capacity constraint is no longer active, and there is spare capacity
that can be utilized. When the GOR increases, we see that the constraints are not
violated, even when the GOR does take its worst-case value at N > 45. This is
clearly shown in Fig. 8.4 (red curves). The solution is robust feasible at the cost of
conservativeness.

Multistage scenario-based optimization

Finally, the system is simulated with the multistage scenario-based optimization
with five different GOR values as shown in Table 8.1. All the scenarios are assumed
equally probable and are therefore provided with equal weights for all the scenarios.
When the GOR is at its nominal value, the optimizer solves for the optimal inputs
that are feasible for all the possible scenarios, and we see that the gas capacity
constraint is not active. However, the solution is less conservative than the worst-
case optimization, as clearly seen in Fig. 8.4 (blue curves).

As the GOR increases, the implemented solution proves to be robust feasible,
and the constraints are satisfied even when the GOR takes its worst-case value.
However, when the true GOR assumes its worst-case value, the total oil produced
is less than the worst-case optimization. This is due to the fact that there is no
plant-model mismatch in the worst-case optimization case, whereas in the scenario
tree optimization, the optimal solution is computed that maximizes the oil rate for
the other scenarios in addition to the worst-case scenario.

The overall reduced conservativeness is due to the recourse action in the mul-
tistage formulation, which can be clearly seen in Fig. 8.5, which shows the closed-
loop implemented solution along with the predicted trajectories. Note that Fig. 8.5
shows only the multistage formulation (blue) and the worst-case formulation (red).
Non-anticipativity constraints are also clearly seen in Fig. 8.5 (subplots 2 and 3),
where the first control sample is the same for all the scenarios.

Monte-Carlo simulations

To compare the performance of the nominal, worst-case and scenario optimization
methods, we now present a Monte Carlo simulation with 35 simulations. The GOR

145



8. Multistage Scenario-based Economic NMPC

N 9 T T T T T
wn
~ VO
a0
L s P
s Z
© 7 Nominal |
0 Worst case
@ )
@) 6 Scenario
0 50 100 150 200 250 300
34 T T T T T
"n’
)
4 33.5+
©
+
S 33t ]
.5
32.5 : : : : :
0 50 100 150 200 250 300
=5 0.16 w w r : :
Y,
o
~ 0.14 + .
S
|- / -
O 0.12 Well 1
I Well 2
< 0.1 . * * * *
0 50 100 150 200 250 300

Time [min]

Figure 8.4: Closed-loop implemented solution for nominal optimization (green),
worst-case optimization (red) and multistage scenario-based optimization (blue).
Top subplot shows the total gas rate along with the max gas processing constraint,
middle subplot shows the total oil production and bottom subplot shows the GOR
disturbance for well 1 (black) and well 2 (gray).
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8.3. Application example - Gas lift optimization
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Figure 8.5: Closed-loop implemented solution, along with the first 100 min of pre-
dicted trajectories for worst-case optimization (red) and multistage scenario-based
optimization (blue), demonstrating the recourse introduced by the multistage ap-
proach.
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Figure 8.6: Monte Carlo Simulation results each with a simulation time of 75min

values used in the nominal, worst-case and scenario optimization are summarized
in Table 8.1. For each Monte Carlo simulation, the true GOR used in the simulator
was randomly picked from a uniform distribution P and is shown in Fig.8.6. Each
Monte Carlo simulation was run for 75min (15 samples) and the total accumulated
oil over 75min (integrated objective) is compared.

As a benchmark, the results from the ideal-case are also plotted in the top left
subplot (shown in solid black lines), which corresponds to the case where we have
perfect information about all the parameters. The nominal optimization seems
to produce more oil than the ideal-case in some simulations, however the total
gas capacity constraints are violated in these simulations which demonstrates that
nominal optimization can lead to infeasibility. The constraint violations for all the
cases plotted in Fig.8.6 shows that the constraints are violated only in the nominal
optimization case.

However, it is important to note that this is not a general conclusion for the
multistage scenario-based optimization. The multistage approach can be constraint
feasible if at least one of the scenarios corresponds to the worst-case scenario,
which was the case in this simulation study (see Table.8.1). Fig.8.6 shows that the
worst-case and scenario optimization were robust feasible at the cost of conser-
vativeness. However, the scenario optimization was significantly less conservative
than the worst-case optimization. On average, the scenario optimization was less
conservative than the worst-case optimization. The average computation time for
nominal, worst-case and scenario optimization are also compared and we see that
the improved performance of the scenario optimization comes at the cost of higher
computation time.
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8.4 Chapter summary

In this chapter, we formalized the multistage scenario NMPC problem in (8.1) and
introduced the concept of non-anticipativity constraints, which enables closed-loop
implementation. Using a simulation case study, we showed that the multistage
scenario-based optimization provides a robust, yet less conservative solution com-
pared to nominal optimization and worst-case optimization respectively. However,
the computation time of the multistage scenario approach was significantly higher
than the nominal and worst-case formulations. In the next two chapters, we will
study how we can reduce the computation time using decomposition methods.
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Chapter 9

A Primal Decomposition Algorithm
for Distributed Multistage Scenario
Model Predictive Control

This paper proposes a primal decomposition algorithm for efficient com-
putation of multistage scenario model predictive control. Since the dif-
ferent scenarios are only coupled via the non-anticipativity constraints,
the different scenarios can be decomposed into smaller subproblems us-
ing primal decomposition and solved iteratively using a master problem
to coordinate the subproblems. We argue in favor of primal decompo-
sition algorithms, since it ensures feasibility of the non-anticipativity
constraints throughout the iterations, which is crucial for closed-loop
implementation.

Based on the article published in Journal of Process Control [101] and presented
as a Keynote talk at IFAC ADCHEM 2018 [94].

9.1 Introduction

In Chapter 8, the multistage scenario-based NMPC framework was presented,
where the uncertainty propagation was represented via a discrete scenario tree.
This was shown to be less conservative than the worst-case optimization problem,
due to the recourse action.

One of the main drawbacks of this approach is that the problem size grows
exponentially with 1) the number of uncertain parameters, 2) the number of un-
certainty realizations, and 3) the length of the prediction horizon. As justified by
Lucia et al. [116], one way to curb the exponential growth of the problem size is
by considering the branching of the tree only up to a certain number of samples in
the prediction horizon, known as robust horizon. Another solution is to exploit the
structure of the problem to decompose the problem into several smaller subprob-
lems. The different scenarios are independent and additively separable, except for

1 Finalist of the IFAC Young Author Award

151



9. Distributed Multistage Economic NMPC

the non-anticipativity constraints, which couples the different scenarios together.
To this end, decomposition methods can be used to solve the different scenarios in-
dependently and later use a master problem to iteratively co-ordinate the different
subproblems.

Scenario decomposition using dual decomposition methods were proposed by
Lucia et al. [117] and Marti et al. [124], where the different subproblems are solved
by relaxing the non-anticipativity constraints. A master problem then updates the
Lagrangian multipliers corresponding to the non-anticipativity constraints itera-
tively. Therefore, the non-anticipativity constraints are feasible only upon conver-
gence of the master and subproblem iterations. Dual decomposition methods may
require a relatively large number of iterations between the master problem and the
subproblems to converge. This leads to challenges with practical implementation
as noted by Marti et al. [124]. If the iterations between the master problem and
the subproblems do not converge within the required sample time of the NMPC,
the non-anticipativity constraints remains infeasible. As a result, the different sce-
narios may give different optimal control inputs at the first sample, which is not
acceptable for real-time closed-loop implementation.

To overcome the closed-loop implementation issue with dual decomposition,
we propose a primal decomposition algorithm for scenario decomposition [94][101].
In contrast to dual decomposition, primal decomposition produces a primal feasi-
ble solution with monotonically decreasing objective value at each iteration [12].
Therefore, primal decomposition ensures that the non-anticipativity constraints are
always feasible through out the iterations. This implies that even if the master prob-
lem and subproblem iterations are prematurely terminated, the non-anticipativity
constraints are still feasible and the first control input provided by all the scenar-
ios are the same (cf. (8.4)). As noted earlier, this is an important property for
closed-loop implementation of the multistage scenario NMPC problem.

The main contribution of this chapter is a distributed framework for the mul-
tistage NMPC problem based on primal decomposition. In addition, we also intro-
duce a novel back-tracking algorithm to select a suitable step-length in the master
problem update in order to ensure the feasibility of the nonlinear constraints in
the different subproblems. The proposed primal decomposition approach and the
novel backtracking algorithm are demonstrated using a continuously stirred tank
reactor (CSTR) case study.

The remainder of the chapter is organized as follows. Section 9.2 describes the
different decomposition approaches for scenario decomposition. Section 9.3 intro-
duces a novel backtracking algorithm for choosing a suitable step length in the
master problem. The proposed method is then demonstrated using a CSTR case
study in Section 9.4. Finally, discussions are provided in Section 9.5 before con-
cluding the chapter in Section 9.6

9.2 Distributed multistage scenario MPC
The multistage scenario MPC problem (8.1) consists of S independent MPC prob-

lems, except for the non-anticipativity constraints (8.1f), which couple the different
scenarios together. Different decomposition approaches can be used to split the
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multistage scenario problem into smaller subproblems and use a master problem
to co-ordinate the different subproblems.

9.2.1 Using Dual Decomposition [124]

Scenario decomposition using dual decomposition approaches is the most common
strategy. Here, each scenario subproblem is solved by relaxing the non-anticipativity
constraints, cf. [117], [124] and [86].

The scenario optimization problem (8.1) with the relaxed non-anticipativity
constraints is expressed as,

S N-1 S
Xkrj_lviglk,j Z le Z U(Xp g, ;)| + AT ZEjuj (9.1a)
Jj=1 k=0 j=1
s.t.
Xp+1,j = £(Xkj, Wk 5, Py j) VieS,Vke Kk  (9.1b)
g(Xk,j, Uk,j, Py ;) <0 VieS,Vke K (9.1c)
Xo0,j = &1 vjieS  (9.1d)
Xpj €X gy €U (9.1¢)

where A € R? is the Lagrange multiplier corresponding to the non-anticipativity
constraint (8.1f). Eq. (9.1a) is now additively separable in x and u and each j**
scenario subproblem can be reformulated as a function of A as shown below,

N-1
I'(\,p;) = i w; ];) 0(xp.j,uk ;) + AT Eju; (9.2a)
s.t.
Xpt1,5 = £(Xk 4, Uk j, Py ;) VieS,VkEe K (9.2b)
g(Xk,j> Uk j, P ) < 0 VieS,Vke K  (9.2¢)
X0 = & ViesS (9.2d)
Xp; €X u,; €U (9.2¢)

The subproblems are solved independently, and the Lagrange multiplier A\ is iter-
atively updated in the master problem. Under very specific conditions, the non-
anticipativity constraints only become feasible upon convergence of A, provided
the duality gap vanishes.

The implication of this is that, relaxing the non-anticipativity constraints may
impede real-time closed-loop implementation. In the receding horizon control frame-
work, at each time step, the first control move is implemented in the plant. In
multistage scenario MPC, the non-anticipativity constraints ensure that the first
control move is equal for all the scenarios. However, if the master problem and sub-
problems fail to converge within the required sampling time, the non-anticipativity
constraints are not satisfied. Consequently, the first control input computed by the
different scenarios are different, thus impeding closed-loop implementation.
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One way to address this problem is to take a weighted average of the manipu-
lated inputs at the first sample, based on the probabilities of the different scenarios
[149]. However, this may not be a good approach since the weighted average can
lead to an infeasible solution. Marti et al. [124] proposed to compute an average of
the control inputs at the first sample such that the worst-case constraint violation
for the local subproblems is minimized, which is given by solving an additional
linear programming (LP) problem.

In this thesis, we instead propose a primal decomposition approach to solve this
problem, which always ensures the feasibility of the non-anticipativity constraints.

9.2.2 Using Primal Decomposition - Proposed Approach

To address the problem of non-anticipativity constraint feasibility, we propose a
primal decomposition algorithm, which always produces a primal feasible point by
iterating directly on the coupling variables [12]. Therefore, at any point in time,
the non-anticipativity constraints are always feasible and the first control move
provided by all the scenarios are the same, which is an important property for
closed-loop implementation as described earlier.

The primal subproblem for the j** subproblem can be written by introduc-
ing a new auxiliary variable t; € R™, ¥l € {1,..., Zﬁ":l M™=1} for each non-
anticipativity constraints. Note that the number of non-anticipativity constraints
is given by Zi\i’":l M™1. Each scenario subproblem is then expressed as a function
of the auxiliary variables as shown below,

i = .
(tlvp] xkr?,llﬁ , Z E Xk,_]7 uk)g (9 3&)
s.t Xkt1,) = f(x;w-, Uy j, Py ;) VjeS,Vkek (9.3b)
g(Xk,j> Uk j, Py ;) <0 VjieS,Vkek (9.3¢)
X0,j = z; Vi e S (93d)
Ejllj = ’T'j V] €S (936)
Xpj €KX ug; €U (9.3f)

where T is given by
T1,2 | —71,2
72,3 | =723
7= (9.4)
TS—-1,8 | —TS-1,8

=[] [7s ] (9:5)

and 7; ;41 € R™"e.Gi+1) is a matrix that is composed of the auxiliary variables
t; € R™. Let X*(t;, p;) and A" (;, p;) respectively, denote the optimal primal and
dual solution of the j** subproblem (9.3).
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The master problem to update the auxiliary variables ¢; is then given by,
s
min y_ ®(t:,p;) (9.6)
j=1
The simplest approach to update t; is to use the subgradient method, where t;
is updated along the descent direction [20]. The search direction for the master
problem (9.6) is given by the subgradient

S
o= V®(t,p;)
j=1

These are simply the Lagrange multipliers that corresponds to the non-anticipativity
constraints (9.3e), which are computed by solving the different scenario subprob-
lems [20]. Hence the subgradient for the master problem is essentially available for
“free” without the need for any additional computations.

t; is iteratively updated along the search direction with a suitable step length
« given by

s N
i =t Ve V(L M (0)
= m=1

where (v) denotes the v*" iteration as explained in [12, 19, 20].

One commonly used stopping criteria for the master problem and subproblem
iterations is that the change in t; between two subsequent iterations, denoted by
At = ||tl(v+1) - tl(v) || must be less than a certain tolerance e.

The distributed scenario MPC using primal decomposition is schematically rep-
resented in Fig. 9.2.

To summarize, the solution to the multistage scenario-MPC problem (8.1) can
be reached by iteratively solving the smaller subproblems (9.3) with auziliary pri-
mal variables t;, which are then updated using the gradient descent step (9.7). For
convex and differentiable problems, it can be shown that solving the primal decom-
position problem is equivalent to solving the original centralized problem (see Ap-
pendiz I). In any case, by using auziliary primal variables t;, the non-anticipativity
constraints always remain feasible throughout the iterations, which is crucial for
closed-loop implementation.

To illustrate this, consider a scenario tree with M = 3, N, = 2 and S = 9
as shown in Fig.8.1. For such a tree | = 4 and ¢; € {t],tJ, ¢, t1}. The non-
anticipativity constraints for the scenario tree is such that the control input for all
the scenarios at the first control sample is the same.

g j = Uy j+1 =14, VJ S {1,...,5—1} (98)

where S — 1 = 8 in this case.
The non-anticipativity constraints at the second time sample is then given by

Uz 1 = U2 = Uz 3 =t
Uz 4 = U5 = Uz = t3 (9.9)

U7 = Ugg = Ugg = &4
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Figure 9.1: Schematic representation of the decomposed scenarios showing the non-
anticipativity constraints enforced using the auxiliary variables ¢;.
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This is schematically represented in Fig. 9.1. The auxiliary variables are then up-
dated in the master problem using the gradient descent step (9.7),

9
th=ti+a1 ) Vi, @

=1
9 9
where ijl Vi, ® = ijl ALj
9
th =ty +az ) Vi, @
=1
where Z?:l Vi, @ =X + Ao+ Ao
9
tf =t3+ a3 thgq)
=1

where 22:1 Vi, @ =Xoa+Aos + Ao

9
tZ =1y +a4zvt4<l>

j=1

where 23)‘:1 Vi, @ =Xo74+Xog+ A2y

9.3 Back-tracking algorithm

As mentioned in the previous section, when using primal decomposition, we solve
the subproblems by fixing the manipulated inputs for the non-anticipativity con-
straints to be equal to an auxiliary variable ¢; for all the scenarios by means of
the equality constraint (9.3e). The auxiliary variable ¢ is then iteratively updated
using a step length « as shown in (9.7). The equality constraint (9.3e) ensures that
the non-anticipativity constraints are always feasible throughout the iterations.
However, if the step length « is not suitably chosen, then the nonlinear constraints
g(Xk ;s ukvj,p,w-) < 0 may become infeasible by fixing the control input at tl+ using
the equality constraint (9.3e). Choosing a step length too small on the other hand
leads to a very slow convergence. Hence, careful selection of the step length « is
important in the presence of nonlinear constraints.

Therefore, in this chpater, we propose a feasibility ensuring backtracking algo-
rithm to suitably choose the step length «, such that we can choose a sufficiently
large step length and backtrack when required to ensure that the nonlinear con-
straints g(xx j, Uk j, Py ;) < 0 remain feasible throughout iterations. The proposed
backtracking algorithm is based on a forward integration of the system dynam-
ics and the nonlinear constraints one time step ahead using the proposed step
length. In other words, a one-step-ahead model prediction for each scenario using
the prospective tl+ is used to evaluate the nonlinear constraint feasibility before tl+
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is fixed in the subproblems using the equality constraint (9.3¢) in the next itera-
tion. The prospective ¢, is given by ¢;” = ¢, + ao, where o = (Zle Vi, ®(t,p;))
is the search direction or the subgradient. The step length « is backtracked until
the nonlinear constraints in the one-step-ahead model prediction is feasible. This
is illustrated in Algorithm 9.1.

Algorithm 9.1 Feasibility-ensuring backtracking algorithm

Define ¢ < 1.
Input: at each iteration between master problem and subproblem: initial state &,
initial ag, t and subgradient o = Zle Vi®(t,p;)

for j=1,2,...,5 do

< Qo

Evaluate x;11,; = f(2, (t + ao),py ;),
Vke{l,...,N,}

while g(xx+1,5, (t + o), p; ;) >0 do

o ca

end while

end for

Output: «

Theorem 9.1. Suppose the multistage scenario-based MPC problem (8.1) has a
feasible optimal solution and the gradient descent step has an initial feasible point
t € F, then 3« € [0,@] such that

t+aceF V0<a<w (9.10)

Proof. Asshown in [111, Ch.9], the subgradient ¢ for the master problem is feasible
by construction®. Hence there is a maximum value @ such that (9.10) holds. O

Theorem 9.1 shows that the proposed backtracking algorithm always converges.
The task of the feasibility ensuring backtracking algorithm is then to find the upper
bound @ using Algorithm 9.1 such that the updated value t* = t + oo is feasible.
The availability of an initial feasible guess for ¢; is discussed in Section 9.5.

The sketch of the proposed primal decomposition algorithm for multistage sce-
nario MPC problem using the feasibility ensuring backtracking algorithm is given
in Algorithm 9.2.

9.4 Case study

In this section, we test the proposed primal decomposition-based scenario decom-
position on a continuous stirred tank reactor (CSTR) process from [1, 41]. This

2See also Appendix I
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Algorithm 9.2 Distributed multistage scenario MPC using Primal decomposition

Define tolerance € > 0.
Input: at each time step: initial state & and At; > e, initial «

while At; > € do
Initialize iteration number v =1
for j=1,2,...,5 do
[X*(tg,pj),)\*(tl,pj)] < solution NLP ®(t;,p;)
end for
forle{1,...., XN MN-1} do
Update subgradients V¢, ®(t;, p;)
Backtrack « using Algorithm 9.1
Update /""" = ") + ay(X7_, Vi, ®(t1,p;)) )
Update At; = ||t — ¢
end for
end while
Update iteration number v = v + 1
Set ]
Reset « to initial guess.

Output: ¢, X*(t) = [X*(t],p,),.... X (t],ps)]"

is the same case example that was used in Chapter 3 (cf. 3.3.1) and the reader is
referred to (3.1) for the process model.

The objective is to maximize the product concentration Cp while penalizing
the utility cost of heating the input stream using the inlet temperature u = 7T;
as the manipulated variable as described in Chapter 3. In addition, the reactor
temperature now has a maximum limit of 425K.

min J = —[2.009Cp — (1.657 x 10°T;)?]

i

s.t. (3.1) (9.11)
T < 425

We assume that the concentration of component B in the feed stream is uncer-
tain and is known to vary in the range Cp; € [0,0.2]mol/l. We design a multistage
scenario NMPC with a prediction horizon of T' = 300s equally divided into N = 20
samples. For the scenario tree, we consider M = 3 discrete realizations of the
uncertainty, namely, Cp; € {0.0,0.1,0.2}mol/l.

9.4.1 Simulation case 1

In the first simulation case, we design the multistage NMPC with a robust horizon
of N, = 1, leading to S = MY = 3 scenarios. The process was simulated for
a total simulation time of 600s. The concentration of component B in the feed
stream changes at time ¢ = 300s from 0.15mol/l to 0.0mol/l. The process was first
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simulated with a fully centralized multistage scenario NMPC problem (8.1) to be
used as a benchmark (shown in thick yellow curves in Fig. 9.3).

The process was then simulated using the proposed primal decomposition-
based scenario decomposition (9.3), where the step length «; was initialized with
a = 2000. At each iteration, the step length o was suitably adjusted using the
proposed back-tracking algorithm introduced in Section 9.3. At each time step,
warm-starting was implemented for the auxiliary variables ¢; using the predicted
control trajectories from the previous time step. The simulation results are com-
pared with the fully centralized approach in Fig. 9.3. The cost function J, outlet
temperature T', and the inlet temperature T; are shown in the left hand side sub-
plots (solid red curves). The corresponding absolute errors compared to the fully
centralized approach is shown in the right hand side subplots (solid red curves).
From the plots, it can be clearly seen that the primal decomposition approach of
solving the multistage scenario NMPC problem results in the same solution as the
centralized solution, thus indication proper formulation. The total number of mas-
ter and subproblem iterations taken at each time step are shown in the bottom
right subplot and the step-length « value obtained from the proposed backtracking
algorithm is shown in the bottom left subplot.

As mentioned earlier, one of the main motivations to use primal decomposi-
tion is that it enables closed-loop implementation even if the master problem and
subproblems have not fully converged. In order to test this, the iterations between
the master problem and the subproblems were capped at 5 iterations to prema-
turely terminate the iterations. The simulation results are shown in Fig. 9.3 using
black dashed curves. It can be seen that by prematurely terminating the itera-
tions, the non-anticipativity constraints remain feasible, however, the closed-loop
solution is suboptimal. By warm starting the auxiliary variables, the proposed pri-
mal decomposition approach eventually converges to the optimal solution provided
by the centralized approach even when the master and subproblem iterations are
prematurely terminated. If the problem is convex and differentiable, then this can
be guaranteed [19]. This is also clearly seen in the error subplots, where the ab-
solute error compared to the centralized approach (shown in black dashed lines)
diminishes over time.

Effect of the step-length size The step-length o backtracked using the pro-
posed backtracking algorithm is shown in the bottom left subplot. When the dis-
turbance in the input feed stream changes at time ¢t = 300s, the optimal solution
drives the process to the constraint on reactor temperature. At time ¢ = 410s,
the step-length « is backtracked to a small value when operating close to the con-
straint. Keeping the step length constant at o = 2000, resulted in infeasibility of
the reactor temperature constraint. This is because, for the operating conditions
after about 400s of simulation, the upper bound on the step length @ for which the
master problem remains feasible as shown in (9.10) is lower than the initially used
step length value a = 2000. By using the proposed backtracking algorithm, the
step length was backtracked to find the upper bound @ as shown in the bottom-
left subplot in Fig. 9.3, such that it ensures the nonlinear process constraints also
remain feasible throughout the iterations while updating the auxiliary variables in
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Figure 9.3: Simulation results with N,, = 1 showing the optimal solution provided
by the centralized approach (thick yellow lines), primal decomposition approach
(solid red lines) and the primal decomposition approach with the maximum number
of iterations capped at 5 (black dashed lines).
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Table 9.1: CPU times (in sec) for simulation 1 and 2

N,.=1 N, =2
max avg min max avg min
Centralized | 0.219 0.168 0.154 | 0.549 0.429 0.377
Decomposed | 0.137 0.073 0.053 | 0.127 0.085 0.077

the master problem.

9.4.2 Simulation case 2

In this subsection, we simulate the system with a robust horizon of N, = 2, leading
to S = M™Nr = 9 scenarios. The process was simulated for a total simulation time
of 600s. The concentration of component B in the feed stream changes at time
t = 300s from 0.15mol/l to Omol/l just as in simulation case 1.

The process was then simulated using the primal decomposition based scenario
decomposition, where the step length a; was initialized with 500 for all I. At each
iteration, the step lengths were suitably adjusted using the proposed back-tracking
algorithm in Section 9.3. The simulation results and the corresponding absolute
errors for this simulation case is shown in Fig. 9.4.

The proposed method was also simulated with the total number of iterations
capped at 15 iterations. The simulation results are shown in Fig. 9.4 using black
dashed curves. It can be seen that the proposed primal decomposition approach
eventually converges to the optimal solution provided by the centralized approach
even when the master and subproblem iterations are prematurely terminated.

As can be seen from the simulation results from Fig. 9.3 and Fig. 9.4, the solu-
tion obtained by the proposed primal decomposition approach is almost identical
to the one provided by solving the multistage problem in a centralized fashion. The
Primal decomposition method was also shown to enable closed-loop implementation
when the iterations between the master and scenario subproblems are prematurely
terminated. The computation times for the multistage problem solved as a fully cen-
tralized problem and using the primal decomposition are also shown in Table. 9.1,
which shows that, by using the proposed primal decomposition approach for mul-
tistage NMPC, the same solution can be obtained at less computation times.The
proposed primal decomposition based multistage scenario decomposition approach
was also demonstrated using an oil and gas production optimization case study in
our recent work [94].

9.5 Discussions

9.5.1 Why Primal decomposition?

One of the key challenges today in real-time implementation of optimizing con-
trollers such as model predictive control, is the computation time. The late arrival
of a solution in many cases may simply not be acceptable. A solution to the opti-
mization problem must ideally be available within the sampling time.
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Figure 9.4: Simulation results with N,, = 2 showing the optimal solution provided
by the centralized approach (thick yellow lines), primal decomposition approach
(solid red lines) and the primal decomposition approach with the maximum number
of iterations capped at 15 (black dashed lines).
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Decomposition methods for scenario decomposition has its roots in multistage
stochastic optimization problems studied in the operations research community,
see [16, 67, 150, 151] to name a few. Problems studied in the operations research
field do not focus on real-time closed-loop implementation in the same fashion
as NMPC in the process control community. The nature of the problems studied
in operations research community often call for offline optimization problems, and
closed-loop implementation is not a focus, as opposed to NMPC applications in the
process industries. For example, in many process control applications, a new control
input must be computed at every sampling instant, which may be in the time scale
of seconds to minutes. As a result, the dual decomposition methods developed
for multistage stochastic optimization problems may not be directly applicable
for the multistage NMPC problem. If the dual decomposition does not converge,
then the non-anticipativity constraints are not feasible. The feasibility of the non-
anticipativity constraints is crucial for closed-loop implementation, since it ensures
that the first control input is the same for all the scenarios. Keeping in mind the
closed-loop implementation, primal decomposition is a favorable approach than
dual decomposition, since the non-anticipativity constraints are always feasible,
even if the problem does not converge to the optimal solution.

Since primal decomposition provides a primal feasible solution with mono-
tonically decreasing objective value with each iteration, premature termination
of the iterations only results in suboptimal operation and does not violate the
non-anticipativity constraints. By warm-starting the subsequent time steps, the
solution may eventually converge to the true optimal solution, under certain con-
ditions. This was also seen in the error plots in Fig. 9.3 and Fig. 9.4. Therefore,
primal decomposition approach addresses the practical implementation issues of
distributed multistage scenario NMPC problem.

9.5.2 Feasibility-ensuring backtracking algorithm

In this chapter, we also proposed a feasibility ensuring backtracking algorithm to
suitably choose the step length size in the master problem update such that the
nonlinear constraints in the subproblems remain feasible throughout the iterations.
In algorithm 9.1, we check the forward simulation for all the discrete realizations of
the uncertainty used in the scenario tree to backtrack the step length used in the
master problem. However, if the worst-case realization of the uncertainty is known
a-priori, we then need to check the feasibility of the local constraints only for the
worst-case scenario w.r.t to the nonlinear constraints instead of all the scenarios.
This is justified because if the local constraints within a subproblem are feasible
for the worst-case scenario, then it must also be feasible for all other scenarios.
With the proposed primal decomposition approach, it is important to note
that the initial guess of the auxiliary variables ¢ must be a feasible guess with
respect to the nonlinear constraints. As described in 9.3, with the assumption of
a feasible initial guess, the backtracking algorithm used here always ensures the
feasibility of the nonlinear constraints in the scenario subproblems according to
(9.10). Ome simple approach to get an initial feasible guess is by warm starting
the auxiliary variable using the predicted control trajectory. The predicted control
trajectory ranges from u; to uy for each scenario. The first control input u;
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(which is the same for all the scenarios due to the non-anticipativity constraints)
is implemented on the plant. For the next NMPC iteration, the auxiliary variable
can be initialized using the predicted control trajectory starting from the second
time step up to uy,4+1 in the prediction horizon corresponding to the worst-case
scenario. By initializing the auxiliary variables using the predicted control input for
the worst-case scenario, the initial guess will be feasible for all other scenarios as
well. Additional back-off on predicted control input from the worst-case scenario
may also be used when initializing the auxiliary variables at each time step to
ensure a feasible initial guess.

9.6 Chapter summary

In this chapter, we proposed a primal decomposition approach (9.3) to solve the
multistage scenario-based NMPC problems (cf. Algorithm 9.2). We showed that,
primal decomposition enables real-time closed-loop implementation of the multi-
stage approach, even in the case where the iterations between the master problem
and subproblems are terminated prematurely, unlike the dual decomposition ap-
proach.

Furthermore, we also presented a novel feasibility-ensuring backtracking algo-
rithm (cf. Algorithm 9.1) to suitably choose the size of the step length in the master
problem update in Section 9.3.

A CSTR case study demonstrates the effectiveness of the proposed method. In
addition to the CSTR process, this method was also tested on a gas-lift optimization
case study which can be found in Appendix J.
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Chapter 10

Improving Scenario Decomposition
for Multistage NMPC using a
Sensitivity-based Path-following
Algorithm

This chapter considers the primal decomposition based distributed multi-
stage scenario formulation from the previous chapter. Since the different
scenarios differ only in the uncertain parameters, the distributed sce-
nario NMPC problem can be cast as a parametric nonlinear programming
(NLP) problem. By using the NLP sensitivity, we do not need to solve
all the subproblems as full NLPs. Instead they can be solved exploiting
the parametric nature by a path-following predictor-corrector algorithm
that approximates the NLP. This further reduces the online computation
time.

Based on the article published in IEEE Control systems letters [98] and 57th
IEEE Conference on Decision and Control.

10.1 Introduction

In Chapter 9, we proposed a primal decomposition approach [94] for solving the
multistage sceanrio-based NMPC problem by decomposing the problem into several
subproblems, with each subproblem solving a discrete scenario. Both the dual and
the primal decomposition approaches, involve solving each scenario independently
and a master problem co-ordinates the different scenarios. Although performance
improvements have been reported by decomposing the scenario decomposition ap-
proaches by Lucia et al. [117], Marti et al. [124] and Krishnamoorthy et al. [94],
it still requires solving a nonlinear programming problem (NLP) for each scenario.
Even with today’s computing power, solving nonlinear dynamic optimization prob-
lems online can be computationally intensive.

In this chapter, we propose to further improve the scenario decomposition algo-
rithms by using NLP sensitivity-based path-following approaches [109, 178]. From
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(9.3) and Fig. 9.2 it can be clearly seen that the different scenario subproblems
differ only in the uncertain parameters p;. Therefore, we propose to re-cast the
scenario decomposition problem in the framework of parametric NLP and exploit
the NLP sensitivites to improve the computation time. Here, using the solution
of one full NLP, the subsequent scenario subproblems are solved by tracking the
optimal path along the parameter range that leads to the scenarios by a sequence
of predictor-corrector QPs. In simple terms, each of these QPs tells us how the
optimal solution changes when the parameter changes by a small value, and the
NLP solution change for a larger parameter change can be found by solving several
QPs. We apply this idea to the distributed multistage scenario NMPC problem to
compute how the optimal solution changes from one scenario to the other.

The main contribution of this chapter is the use of an NLP sensitivity-based
path-following method to efficiently solve the distributed multistage scenario NMPC
algorithm. The main result is presented as a Corollary of Theorem 10.2 and Algo-
rithm 10.1. To the best of our knowledge, parametric optimization concepts have
not been used previously to solve scenario decomposition problems for multistage
scenario NMPC.

We consider the fully centralized problem (hereafter denoted as Cyrp), where
the multistage scenario NMPC problem (8.1) presented in Chapter 8 is solved as a
single optimization problem. We then consider the distributed multistage NMPC
problem (hereafter denoted as Dypp) where the scenario subproblems (9.3) are
solved using primal decomposition, as presented in Chapter 9. Based on this, we
are now ready to present the sensitivity-based distributed scenario NMPC with a
path-following algorithm (main result).

10.2 Sensitivity-based distributed multistage scenario
MPC
10.2.1 Sensitivity in Parametric NLP

To keep the presentation simple, we now reformulate each scenario subproblem
(9.3) as a generic parametric NLP of the form,

H}}n j(X’ p)

s.t. ¢i(X,p) =0, Vie E (10.1)
Cj(Xap)S()» Vjel

where X € R"* denotes the optimization (primal) variables of (9.3), p € R"»
is the vector of uncertain parameters and the objective function is denoted by
J :R"* xR" — R. The equality and inequality constraints ¢ : R"*X x R — R
are denoted by the sets E = {1,...,v} and I = {v +1,...,n.}, respectively.

The Lagrangian of (10.1) is defined as

LX,\,p):=T(X,p)+ A e(X,p) (10.2)
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where A is the vector of Lagrange multipliers (dual variable). The Karush-Kuhn-
Tucker (KKT) conditions for this problem can be stated as

VxL(X,A\,p) = 0,
¢i(X,p) = 0,iek,
¢ (X,p) < 0,iel (10.3)
M (X,p) = 0,i€l,
A > 0iel

Definition 10.1 (KKT point). Any point (X*, X\*) that satisfies the KKT condi-
tions (10.3) for a given parameter vector p is called a KKT point for p.

The active inequality constraints in (10.1) are denoted by the set A (X,p) =
{¢; (X,p) = 0,7 € I} and the active set is then given by E U A. For a given KKT
point (X*, "), the active set A has two subsets, namely a weakly active set
Ag (X, \,p) = {i e A(X,p) | A =0} and a strong active set Ay (X, A, p) =
{i € A(X,p) | A\; > 0}. Consequently, the inactive set
A_ (X, A\ p) = {¢(X,p) <0,i €} is the complement of set A.

A constraint qualification is required to hold in order for the KKT conditions
to be a necessary condition of optimality and in this work we consider the linear
independence constraint qualification (LICQ) which is defined as follows.

Definition 10.2 (LICQ). Given a vector p and a point X, the linear independence
constraint qualification (LICQ) holds at (X, p) if the set of vectors

{Vxci (X, p) }ieIEUA(X,p)
are linearly independent.

Definition 10.3 (SSOSC). The strong second order sufficient condition (SSOSC)
holds at any KKT point (X*,X*), if d' H (X, X,p)d > 0 for all d # 0 such that
Vx¢i (X,p)" d=0forieEUA,, where the Hessian of the Lagrangian (10.2) is
given by

i=1

The LICQ and SSOSC guarantees that a KKT point is a strict local minimum.

Assumption 10.1: X satisfies the KKT conditions (10.3) for a given parameter
vector p, and the linear independence constraint qualification (LICQ) and strong second
order sufficient condition (SSOSC) hold at (X™, p,).

The reader is referred to Lemma 1 by Klintberg et al. [86] for detailed de-
scription on how the assumption of LICQ and positive definiteness of the Hessian
translates to the multistage scenario MPC problem (9.3).

Theorem 10.1. Let J,c be twice differentiable in p and X near a solution of
(10.1) (X ™, py) and let Assumption 10.1 hold, then the solution (X*(p), X*(p)) is
Lipschitz continuous in the neighborhood of (X ™, A*,py) and the solution X*(p) is
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directionally differentiable. Additionally, the directional derivative uniquely solves
the following quadratic problem (QP):

min 5AXTv?,(Xc(X Do, A*) AX

+ AXTVxp L (X* Do, X*) Ap (10.4)
s.t.
Vxe; (X*,pO)T AX
+ Vpei (X*,p0) Ap =0 i€ Ay UE,
Vxe (X*,po)’ AX
+ Vpe; (X*,pO)TAp§0 1€ Ay
Proof. See [148] and [17, Section 5.2]. O

The theorem above implies that a quadratic programming (QP) problem (10.4),
often referred as pure-predictor QQP, can be solved instead of a full NLP problem,
in order to compute an approximate solution of (10.1) in the neighborhood of
perturbation p,. This is the core idea of the sensitivity-based approach that we
now use to efficiently solve the distributed multistage scenario MPC problem.

10.2.2 Path-following predictor-corrector QP

A corrector term can be added to the objective function in (10.4) to improve the
approximation accuracy, as shown by Suwartadi et al. [178]. With the assumption
that the parameter enters linearly in the constraints, we can formulate the following

QP.

1
min o AXTV% L (X*, po + Ap,A*) AX
+ AXTVxpL (X*, po + Ap,A*) Ap
+VxJTAX (10.5)
s.t.
ci (X", py+ Ap) + Vpei (X*,py + Ap)” Ap+
Vxei (X*,po+Ap)  AX =0 ,ic A, UE,
ci (X", po + Ap) + Vpei (X*,py + Ap)" Ap
+ Vxe; (X*,po + AP)T AX <0 1 € Ag.

The QP formulation (10.5) is known as the predictor-corrector QP. It can be
thought of a combination of a first-order sensitivity step and an SQP step towards
the solution for the new parameter value. In the small neighborhood of p,, the
predictor-corrector QP formulation was shown to provide good approximations of

the NLP solution. However, the different models M used in the scenario optimiza-
tion need not necessarily be in the small neighborhood of each other. Therefore,
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in order to allow for large perturbations (i.e. large Ap, we propose to apply a
path-following approach [178], where we solve a series of QP problems sequentially.

Given an optimal solution X*(p,_;) for a parameter vector p,_;, we want
to compute the optimal solution for a parameter vector p;. The path-following
predictor-corrector QP then updates X for the parameter sequence p according to

pve)=(1- Vn)pj—l + VkDy (10.6)

where vy = 0 until it reaches v,, = 1. In other words ) = 0 < 1 <1y < --- <
v, = 1. Given a sufficiently small step Av, the path-following predictor-corrector
QP, after solving a series of QP problems, provides the optimal solution X*(p,)
for a parameter vector pjl. For the sake of simplicity, we use a fixed step size
AV = V41 — V.

10.2.3 Sensitivity-based path-following distributed multistage
scenario MPC

Based on these developments, we are now ready to formulate the sensitivity-based
distributed multistage scenario MPC algorithm.

Assumption 10.2: There exists a continuous path of unique optimal solutions
between the subproblems ®(t;,p;_;) and ®(¢;,p;).

Corollary 10.2 (Main result). Let [X*(p;_,),A\"(p,;_)] be the solution for one
scenario subproblem obtained by solving the NLP <I>(tl,pj_1) and let Assump-
tions (10.1) and (10.2) hold. Further, let p; be in the neighborhood of p;_;, then the
solution for all other scenario subproblems <I>(tl,pj) with the same set of auziliary
variables t; is Lipschitz continuous in the neighborhood of [X*(pjfl),)\*(pjfl)]
and can be obtained by repeatedly solving the predictor-corrector QP (10.5).

Proof. Since the only difference between the scenarios ®(t;,p;_;) and ®(t;,p;)
is the parameter vector p;, it follows from Theorem 10.1 that the NLP problem
®(t;,p;) can be approximated by repeatedly solving the QP problem (10.5) for a
small parameter perturbation Ap along the path from p;_; to p;. O

Corollary 10.2 above suggests that instead of solving S number of NLPs, the
multistage scenario MPC problem can be solved using M~ ~! number of NLPs and
the remaining subproblems can be solved as QPs. The number of common nodes
between two consecutive scenarios n, (; j+1) is used to check if the two scenarios
have the same set of auxiliary variables ¢;.

The sensitivity-based distributed scenario MPC algorithm then consists of the
following three steps.

INote that path-following approaches were developed in the context of advance step MPC[74,
178], where the idea was to parameterize the initial condition constraint (i.e. p = xg). Whereas
in this chapter, we apply it to the distributed scenario MPC problem, where the parameter p are
the uncertain parameter value used in each scenario subproblem.
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1. For a given primal master variable ¢;, solve the NLP problem ®(¢;, pjfl) for
one subproblem with the parameter vector p;_; to obtain the optimal primal
and dual variables X*(p;_;) and X*(p;_;), respectively.

2. For the subsequent scenario subproblems with the same set of auxiliary vari-
ables, compute an approximation of the NLP problem ®(¢,, pj) using the QP
(10.5) in a path-following manner as described in Section 10.2.2.

3. Using the computed Lagrange multipliers corresponding to the non-anticipativity
constraints (9.3¢) A C A from all the subproblems, update the primal master
variable ¢; according to (9.7).

A sketch of the proposed sensitivity-based multistage scenario MPC procedure is
described in Algorithm 10.1.

Algorithm 10.1 Sensitivity-based distributed multistage scenario MPC

Define tolerance € > 0, Av < 1.
Input: At each time step, initial state &, initial ) and At; > ¢, initial

while At; > € do
for j=1,2,...,5 do
if (] = 1) V (n(,’(j,l’j) <N, — 1) then
[X*(p,), A" (p,)] ¢ solution NLP @(t;,p;)
else > Approximate NLP using QP (10.5).
[AX*, X"(p;)] < QP_PF(X*,A",p;_1,p;).
Set X*(p;) = X" (p;_1) + AX".
end if
end for
Update t” = ¢, + a(ZfZl Aj)
Update At; = ||t — ¢,
end while

function QP PF(X™*(p;_1), A" (P;_1),Pj_1,P;)
Define A .
Set v,, = 0.
while v, < 1 do
[AX™", A*] «—solution QP (10.5) with p = p(v,;)
X*=X"4+AX"
Vil < Vi + Av
p(vs)=(1- VK)P];1 + VkP;
end while
return AX ", \*
end function

Output: X*(p;),Vj € {1,...,5}
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10.3 Illustrative example

In this work, we consider the same CSTR example as in Chapter 9. We assume
the concentration of component B in the feed stream is uncertain and consider five
discrete realizations, namely, Cg; € {0,0.05,0.1,0.15,0.2}mol /.

We use a multistage scenario NMPC with a prediction horizon of T = 300s
divided equally into N = 20 samples. The NLP problem was solved using the
IPOPT solver and the QP problems were solved using TOMLAB MINOS [132]. The
optimization problem then consists,

1. J(xp,j,up ) = (=2.009Cp + (1.657 x 1073T;)?),
2. discretized system model,

3. uncertain parameter p = Cp, discretized into M = 5 finite models, namely,
Cp, €{0,0.05,0.1,0.15,0.2} ,

4. process constraints g(xy j, ug,;) = T — 425, and
. non-anticipativity constraints (8.1f).

We note that in the considered case study, the constraint 7" < 425K becomes
active at steady-state only when Cp, € {0,0.05}mol/l and not when Cp, €
{0.1,0.15,0.2}mol/l. Therefore the active constraint set changes between the dif-
ferent scenarios. The true realization of C'p, used in the simulations changes from
Cp, = 0.15mol/l to Cp, = 0.05mol/l at time ¢t = 300s.

Simulation 1 - Robust horizon length = 1

In the first simulation we consider a robust horizon of N, = 1 and hence we
have S = 5 scenarios. We first compute the solution of a fully centralized ap-
proach (Cnrp), ie. (8.1) to be used as a benchmark. The multistage scenario
NMPC is then solved using the primal decomposition approach i.e. (9.3), where
all the scenario subproblems are solved as NLP problems (Dyrp). We then solve
the optimization problem using the proposed path-following QP (pf-QP), where
the first scenario was solved as NLP problem and the subsequent four scenarios
are solved using the path-following predictor-corrector QP (10.5) as described in
Algorithm 10.1 with a fixed step size Av = 0.5. Hence two QPs were solved to ap-
proximate each subproblem. For the distributed scenario approaches, the tolerance
was chosen to be € = 0.001 and a feasibility ensuring backtracking algorithm was
used to select a suitable step length a.

The closed-loop implemented solution for the proposed sensitivity-based dis-
tributed scenario NMPC are compared with the fully centralized scenario NMPC
(Cnrp) and the distributed scenario NMPC solved using full NLPs (Dypp) along
with the corresponding absolute errors in Fig. 10.1.

Simulation2 - Robust horizon length = 2

In the second simulation we consider the same problem, but a robust horizon of
N, = 2 leading to a scenario tree with S = 25 scenarios. By using the path-following
predictor-corrector QP (10.5), we solve 5 scenarios using NLPs and 20 scenarios
were solved using path-following QPs. The closed-loop implemented solution for the
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Figure 10.1: Closed-loop simulation results for fully centralized approach Cypp
(Thick gray lines), distributed approach with full NLP Dy p (solid red lines) and
the proposed path-following approach pf-QP (black dashed lines) for N, =1, 5 =5
scenarios

proposed sensitivity-based distributed scenario NMPC (pf-QP) are compared with
the fully centralized scenario NMPC (Cnpp) and the distributed scenario NMPC
solved using full NLPs (Dyrp). The closed-loop results and the corresponding
absolute errors are shown in Fig. 10.2.

The average CPU times for each subproblem for the two simulation cases are
reported in Table 10.1 and graphically represented in Fig. 10.3 for Simulation 1
and 2. Note that the computation time depends heavily on the implementation
and computation time of the QP may be further improved by using dedicated high
performance QP solvers instead of an off-the-shelf solver.

The simulation results in Fig. 10.1 and Fig. 10.2 clearly demonstrates that the
proposed sensitivity-based distributed Scenario NMPC is able to provide a very
good approximation of the centralized scenario NMPC and full NLP distributed
scenario NMPC from Chapter 9. The simulations also demonstrate that the pro-
posed approach can handle changes in active constraint set between the different
subproblems. Simulation 2 with 25 scenarios demonstrates scalability of the pro-
posed approach.

Using the proposed approach as a foundation, one can then reduce the online
computation time significantly, by combining it with the advanced step-framework
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Figure 10.2: Closed-loop simulation results for fully centralized approach Cypp
(Thick gray lines), distributed approach with full NLP Dypp (solid red lines)
and the proposed path-following approach pf-QP (black dashed lines) for N, = 2,
S = 25 scenarios

Table 10.1: CPU times (in sec)

N,.=1 N, =2
max avg min max avg min
Centralized 0.4103 0.3065 0.2508 | 3.5868 2.0541 1.8048

Decomposed NLP | 0.1368 0.0737  0.053 | 0.1405 0.0805 0.0582
Decomposed pf-QP | 0.093  0.011  0.0082 | 0.1266 0.0383 0.0123

proposed in [189] and [178]. The main idea here will be to solve the M~~~! number
of NLPs, offline using the respective predicted state &, |, as the initial condition.
At time t 4+ 1, when ;47 is available, then the solution to the NLPs that was
computed offline, can be updated in the same fashion as the advanced-step NMPC,
by using the NLP sensitivity with respect to the initial condition &; [189]. The
solution to the remaining scenarios can be updated from the M™~! scenarios
using the NLP sensitivity with respect to the scenarios p; as proposed in this
chapter, thereby avoiding the need to solve any NLPs online. This is an interesting
future research direction that can be built upon the proposed approach.
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Figure 10.3: Maximum, average and minimum CPU times in seconds for (a) simu-
lation 1 (b) simulation 2.
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10.4 Chapter summary

Earlier, in Chapter 9, we showed that multistage scenario NMPC can be decom-
posed using primal decomposition to reduce the online computation time. In this
chapter, we have shown that the number of NLPs to be solved can be reduced by
using a sensitivity-based path following approach presented in Algorithm 10.1 to
solve the different scenario subproblems. Fig. 10.3 clearly shows the reduction in
online the computation times by systematically decomposing the scenario subprob-
lems and by exploiting the parametric nature of the subproblems.
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Part I - Summary

In part I of this thesis, we considered the steady-state optimal economic operation of
the process. As mentioned in the introduction, one of the fundamental limitations
of steady-state optimization is the steady-state wait time. Steady-state optimal
operation can be tremendously improved if transient measurements can be used
in the optimization problem. In part I, we presented different algorithms to online
process optimization that answers the research question,

How can transient measurements be used to achieve optimal
steady-state operation and avoid steady-state wait time?

e In Chapter 2, we presented the hybrid RTO approach, where dynamic models
were used in the model update step, thereby avoiding the steady-state wait
time. The corresponding steady-state model is then used in the optimization
step. In Fig. 2.8, we showed that similar performance as dynamic RTO can
be achieved using the proposed hybrid RTO at similar computation times as
steady-state RTO.

e In Chapter 3, we proposed to convert the hybrid RTO approach into a feed-
back approach. Here, the steady-state gradient is estimated using transient
measurements by linearizing the nonlinear dynamic model around the cur-
rent operating point. The gradient is then estimated as Ju=-CA'B+D,
which is driven to a constant setpoint of zero using feedback control.

e In Chapter 4, we showed how classical feedback controllers, along with some
simple logic blocks can be used to achieve optimal operation. A systematic
guideline of designing classical feedback controllers for different operating
cases and how to switch between the different operating regions was provided
in Section 4.2.

e In Chapter 5, we considered the extremum seeking control approach for op-
timizing the unconstrained degrees of freedom. We showed that, by fixing
the plant dynamics, transient measurements can be used, thus speeding up
the convergence to the optimum by one order of magnitude compared to the
classical extremum seeking control. The proposed method was also shown to
be robust to neglected/unmodeled plant dynamics unlike the Bl-approach
by Bamberger and Isermann [7], which was quantified for a general case in
Theorem 5.1. This approach also addresses the cost of developing accurate
models (Challenge 1).
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Part I- Summary

e In Chapter 6, we combined self-optimizing control with extremum seeking
control. Due to the different time-scale at which these methods operate, these
can be combined in a hierarchical fashion to exploit the combined advantages
of the two methods. Self-optimizing control was able to provide quick reaction
to the disturbances and keep the process in the near-optimal region and
extremum seeking control was shown to fine tune the setpoints to the self-
optimizing control layer to reduce the loss.

In addition, the methods presented in Chapters 4-6 avoids the need for rigorous
nonlinear models, hence addressing Challenge 1.

The methods proposed in Chapters 3-6 also avoids the need to solve numerical
optimization problems, hence addressing Challenge 3.

Future research directions

Distributed Optimization of Large-scale Processes

A natural extension to the Hybrid RTO approach presented in Chapter 2, is to
develop the Hybrid RTO approach for large-scale distributed process systems with
shared resources. Here, the optimization is performed for small clusters of process
units and a master problem is used to co-ordinate the sub-problems. The subprob-
lems optimize the local operations and report back the shadow prices to the master
problem, which co-ordinates the subproblems by optimally allocating the shared
resources. Existing literature on distributed RTO (such as [61, 185]) focuses more
on the optimization part, rather than the online model update. The extension of the
proposed hybrid RTO approach to a distributed optimization framework enables
developing optimization routines for large-scale systems.

In particular, it enables industrial symbiosis and resource sharing in a circular
economy setting, where different organizations share common resources and mate-
rials. The overall optimal operation of such a symbiotic industrial system involves
sharing detailed information about the production network, in the form of models,
real time measurements, local constraints and the objective function across the
different organizations, which may not be desirable due to several reasons such as
intellectual property rights and market competitiveness. Therefore, there is a clear
need to optimize such process with limited sharing of information across the differ-
ent organizations, in order to enable optimal operation in an industrial symbiotic
setting. Preliminary results in this direction can be found in [105].

In the spirit of Industrial symbiosis, a very interesting future research direc-
tion could be to consider a distributed optimization framework, where the different
organizations/subproblems use different RTO strategies to solve their local sub-
problems, which to the best of my knowledge, has not been studied before.

Gradient estimation algorithms

In chapters 3 - 6, we considered the problem of achieving optimal operation using
feedback control, where the ideas was to control the steady-state cost gradient, or
a combination of the cost gradients using the unconstrained degrees of freedom.
Although the gradients are not measured variables, there exists a wide range of
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model-based and model-free gradient estimation methods, including the two new
gradient estimation schemes proposed in chapter 3 and 5 respectively. With dif-
ferent gradient estimation algorithms currently available in literature, there is a
need for clear overview and understanding of the advantages and disadvantages
of the different gradient estimation algorithms 2. The different model-free gradi-
ent estimation algorithms have also been predominantly developed for single-input
single-output (SISO) systems. Very little effort has been dedicated to multivari-
able extremum seeking control, except for a few works such as [56]. For large-scale
processes with multiple inputs, computing the steady-state gradient from the dif-
ferent input channels to the scalar cost measurement poses additional challenges.
Therefore, there is a clear need to develop gradient estimation algorithms for mul-
tivariable processes.

Hierarchical RTO

It is important to note that there is no single approach to real-time optimization
that addresses all the challenges listed in Chapter 1 (cf. Section 1.1). The different
approaches to online process optimization have varying degrees of complexity and
flexibility, and the different methods work in different timescales and can handle
different kinds of uncertainty. These methods have been developed and investigated
rather independently and in general these methods are often seen as competitive
to one another. However, as we showed in Chapter 6, the different methods are
often complement each other. Based on the timescale separation, one can merge
the different approaches in a hierarchical fashion, thereby reaping the potential
rewards of the different approaches. Table 10.2 summarizes the advantages and
disadvantages of different approaches to real-time optimization.

Table 10.2 is an important result in this thesis, as it aims to provide an overview
and a clear understanding of the different RTO approaches.

To this end, we want to stress that the different methods proposed in this
thesis are not a replacement of any other method but rather adds to the “toolbox”
of available methods for economic process optimization. We summarize Part I with
a future outlook on a hierarchical combination of various RTO approaches with
three layers as shown in Fig. 10.4.

e Lowest self-optimizing control layer: The self-optimizing control acts
in the fastest time scale providing immediate reaction to the disturbances
and takes the process to the near optimal region, by maintaining the self-
optimizing variable at a constant setpoint. By doing so, we keep the process
operation in the near optimum region.

e Middle model-based RTO layer: We then propose that the traditional
model-based RTO approaches (along with the modifications and develop-
ments proposed in this thesis) to adjust the setpoints to the self-optimizing
variable in order to account for the nonlinearity in the process and reduce
the optimality gap. These work in a slower time scale compared to the self-
optimizing layer.

2 Srinivasan et al. [172] provided such a brief overview of some of the gradient estimation
algorithms.
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Part I- Summary

. Model-free Ty Steadgjstjte
Slow timescale optimization gradien
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Process J

Figure 10.4: Schematic representation of a three layer Hierarchical RTO

e Top model-free optimization layer: The middle layer still requires accu-
rate models and may still be subject to structural uncertainty (Challenge 1).
Hence, we propose to account for this structural mismatch by estimating and
exploiting the plant gradients directly from the cost measurement (model-
free) in the slowest time scale, e.g. extremum seeking control and modifier
adaptation.
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Table 10.2: Comparison of different approaches to online process optimization

self-optimizing classical extremum Feedback steady- Hybrid economic Modifier
control® adv. control seeking RTO state RTO RTO NMPC/ DRTO adaptation
(Ch. 6) (Ch. 4) (Ch. 5,6)® (Ch. 3) (Traditional) (Ch. 2) (Ch. 7-10)° [120]
Cost Measured No No Yes No No No No Yes
static model Only for dynamic model static model static and dynamic model static model
Model used offline unconstrained Model-free used online used online dynamic model used online used online
DOF* used online
perturbation No No Yes No No No No Yes
Transient h
Yes Yes No/(Yes™) Yes No Yes Yes No
measurements
Long-term near-optimal Optimal Optimal®* Optimal? Optimal®f Optimal® Optimal? Optimal®*
performance
Convergence time very fast very fast very slow®" fast slow fast fast? very slow®"
Handle change in No Yes? No No Yes Yes Yes Yes
active constraints
Numerical No No No No static static dynamic static
solver
Computational very very very low intermediate intermediate high intermediate
cost low low low

Process size

small-scale

small-scale

small-scale

medium-scale

large-scale

large-scale

large-scale

medium-scale!

% SOC is complementary to the other methods that should ideally be used in combination.

b NCO tracking also has similar properties but can also track changes in active constraints in addition.

¢ Economic NMPC typically has non-economic control objectives in addition to the economic objectives in the cost function, whereas DRTO has only economic
objectives. Studied in more detail in Part 2 of this thesis.

Converges to model optimum. Converges to the true plant optimum only if model is structurally correct.

requires time scale separation between system dynamics, dither and convergence. Sub-optimal operation for long periods following disturbances.

/' Slow due to steady-state wait time. Sub-optimal operation for long periods following disturbances.

9 limited by computation time.

® Transient measurements can be used for gradient estimation if local linear dynamics are included as proposed in Chapter 5, resulting in reduced convergence
time by one order of magnitude.

* Converges to the true plant optimum and not the model optimum.

7 Need additional logic blocks as presented in Chapter 4. Ok for smaller problems.

k Often not used in practice, instead engineering intuition is used to select suitable controlled variables for unconstrained DOF.

! limited by plant gradient estimation.
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Part 1I - Summary

In part II of the thesis, we considered the dynamic optimization problem, with
particular emphasize on handling uncertainty using the multistage scenario-based
economic NMPC formulation. In Part II, we presented novel algorithms that an-
swers the research question

How can computational issues be addressed in the dynamic
optimization problem?

e In Chapter 8, we showed that the multistage economic NMPC formulation
was able to provide less conservative solution than the worst-case approach,
due to the “recourse”. However, the problem size increases exponentially, and
thus becomes computationally intensive.

e To address this computational issue, we presented a distributed multistage
scenario NMPC approach based on primal decomposition in Chapter 9. We
showed that the decomposition of the problem enables parallelization. In par-
ticular, we showed that primal decomposition always ensures feasibility of the
non-anticipativity constraints (unlike dual decomposition), which is an impor-
tant property for closed-loop implementation. Furthermore, a backtracking
algorithm to choose the step length in the master problem was presented in
Algorithm 9.1.

e In Chapter 10, we further improved the computation time by recasting the
distributed multistage NMPC problem from Chapter 9 using parametric op-
timization, and showed that the different subproblems can be solved using
sensitivity-based path-following approach, instead of solving the full NLP.
Fig. 10.3 shows the reduction in the computation time by using Algorithm 9.2
and Algorithm 10.1.

Future research directions

Data analytic tools to understand the uncertainty

When considering optimization under uncertainty, a very important, and often
overlooked, notion is to understand the uncertainty, in order to decide what uncer-
tainties one must consider in the optimization problem, and how to handle them.
For instance, a model parameter that has low/no effect on the optimal solution,
need not be considered in the optimization problem.
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Part II - Summary

Since the ultimate objective of optimization under uncertainty is to hedge
against the variability, it is important to first understand and explain the vari-
ability, before one seeks robustness to it. Data analytic and statistical tools can be
extremely useful in producing such valuable insights about the uncertainty, which
can be used to then decide how to handle the uncertainty (if needed).

Most of the works in literature that study the multistage scenario-based ap-
proach assume that the uncertainty characteristics are known a-priori, and that
the discrete scenarios are given, for example, based on engineering insight before
the NMPC is designed. However, the issue of how to select the discrete realizations
of the uncertainty for the scenario tree generation is an important practical aspect
that has not been well studied in this area. Some initial results on how multivariate
data analysis tools can be used to judiciously select the scenarios can be found in
Appendix K.

Online update of uncertainty for time-invariant uncertainty

For problems with constant but unknown parameters, i.e. time-invariant uncertain
parameters, it may be desirable to approach the problem from an adaptive frame-
work rather than a robust framework [60]. An interesting future research direction
is to update the uncertainty characteristics (i.e. compact set/ probability density
function) instead of updating the parameters directly. The idea of updating the un-
certainty characteristics instead of using a parameter estimator itself is not entirely
new. Similar ideas of “adaptive-robust” approaches were also briefly explored by
Guay et al. [60], Hanssen and Foss [64], Lucia and Paulen [115], where the uncer-
tainty set containing all possible values of the uncertain parameters are estimated
instead of adapting the parameters directly. In the context of multistage scenario
MPC, we recently proposed an alternative approach using recursive Bayesian prob-
ability to update the scenario tree online, which can be found in Appendix L.

Machine learning for process optimization

Finally, the current enthusiasm and promise of machine learning and artificial in-
telligence is evident in the field of control and process systems engineering, with
academics and practitioners alike. Currently, there are many applications that yield
quick successful results. However, the greatest and perhaps the most intellectually
interesting challenge in this direction lies in understanding and developing concep-
tual frameworks that address the different challenges of online process optimization.
Often machine-learning algorithms are used to build surrogate models and digital
twins starting with the assumption that no knowledge of the system is available.
To address challenge 1, one must go beyond data-centric machine learning and
combine machine-learning models with domain-specific knowledge. This leads to
more efficient use of data focused on the unknown and uncertain aspects of the
process.

Machine-learning algorithms and artificial intelligence have also been predom-
inantly used from a computer science and statistics perspective. From online pro-
cess optimization perspective, there is a clear need to tailor machine-learning al-
gorithms, to develop purpose-built models for optimization. As mentioned earlier,

188



machine-learning algorithms try to learn the model with the objective of minimiz-
ing the model prediction error. However, from an optimization perspective, the
objective is not to develop an excellent predictive model, but rather a model that
will take the process close to its true optimum. A very good predictive model can
still be a rather poor optimization model. Therefore, an important research direc-
tion for using machine learning in the context of online process optimization is to
develop good optimization models. More specifically, the learning objective must
be modified not only to minimize the prediction error, but one that also minimizes
the error between the model gradients and the true plant gradients.

For many large-scale problems, solvers may take a long time to converge to the
optimal solution or, in some cases, may even fail to converge to an optimal solution.
For example, with today’s computational power, numerical optimization solvers
for very simple chemical processes running on standard workstations (for example,
2.6GHz processor and 16GB RAM or similar configuration) typically converge in
the time scale of seconds to several minutes. This makes it very difficult to run
such numerical computations for more complex processes on embedded platforms
and cloud computing, due to their limited computation capacity. This challenge is
escalated further with the inclusion of integer decision variables, leading to mixed-
integer and combinatorial optimization problems, which are very common in the
field of process systems engineering. Currently, the computation cost for solving
such problems are prohibitively large for online decision-making.

In order to avoid solving numerical optimization problem online, one can ap-
proximate computationally expensive optimization problems using machine-learning
algorithms. Instead of developing surrogate models that will be used in the opti-
mizer, one can build “surrogate optimizers” that approximate the numerical op-
timization solvers. Similar ideas are recently explored in [80] in the context of
nonlinear MPC, and in [88] in the context of real time optimization. However, it
is worth noting that the training can be very expensive. Another alternative to
approximating the numerical optimization solver is to train black-box models that
predict the plant gradients, which can then be used to drive the process to its opti-
mum (similar to extremum seeking control). The reader is referred to Appendix M
for some preliminary discussions in this direction.
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Appendix A

Modeling of a gas lifted well network

Consider a network of gas-lifted wells producing to a common manifold as shown
in Fig. A.1. Production from a cluster of N' = {1,--- ,n,} gas lifted well can
be described using differential and algebraic equations. The dynamics are include
in the model due to the mass balances in each well which are described by the
following differential equations.

Mga, =Wgl; — Wiy, (A.1a)
Mgt, =Wiy; — Wpg, + Wrg, (A.1b)
moti =Wro; — Wpo, Vi € N (AlC)

where, mgq, is the mass of gas in the annulus, my,, is the mass of gas in the well
tubing, me, is the mass of oil in the well tubing, wg, is the gas lift injection
rate, wj,, is the gas flow from the annulus into the tubing, w,, and wy,, are the
produced gas and oil flow rates respectively and, w4, and w,,, are the gas and oil
flow rates from the reservoir for each well i. The mass balance in the riser for oil
and gas phase is given by,

Tgr = Z Wpg; — Wiy (A.2a)
i=1

Moy = Z Wpo, — Wio (A.2b)
i=1

where, mg, is the mass of gas in the riser and m,, is the mass of oil in the riser
and wey and wy, are the total gas and oil flow rates respectively. The densities pq,
(density of gas in the annulus in each well) and p,,, (fluid mixture density in the
tubing for each well) and p, (fluid mixture density in the riser) are given by,

Mypa,
= ; A.
Pai = TR (A.3a)
Mgt, + Mot, — PoLivh; Abh,
g = gts T ot Lot A.3b
Pu, Lo A, (A.3D)
_ Mgr + Moy ,
=4 Vie N (A.3c)
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A. Modeling of a gas lifted well network

Riser

Wgql,1 Wgl,2 Wygl,ny
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injection § % -+

point

Figure A.1: Schematic representation of a production network with gas-lifted wells

where M,, is the molecular weight of the gas, R is the gas constant, 7, is the
temperature in the annulus in each well, p, is the density of oil in the reservoir,
Lyp, and L, are the lengths of each well above and below the injection point
respectively and App, and A,,, are the cross-sectional area of each well above and
below the injection point respectively. L, and A, are the length and the cross
sectional area of the riser manifold. The annulus pressure p,,, wellhead pressure
DPwh,, Well injection point pressure p;,,, and the bottom hole pressure pyy, for each
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well are given by,

T..R gH,,
= i i . A4
Pa; (Vai Mw + LaiAai> mg i ( a)

- TwlR mgti
Puh: M’w Luu Awi + LbhiAbhri — T

Po
1 (mg +m,
- (gAtgHw> (A.4b)
Pwi; = Pwh; + ﬁ(moti + Mgt — poLbhi Abhi)Hwi
+ Ap}—ric (A4C)
Doh; = Pwi; + Pw; 9Hbn, + Apl}};ic Vie N (A.4d)

where L,, and A,, are the length and cross sectional area of each annulus, 7}, is the
temperature in each well tubing, H,, and H,, are the vertical height of each well
tubing below and above the injection point respectively and g is the acceleration
of gravity constant. Ap}ric and Aplj’f;ic represents the frictional pressure drop in
the well tubing above and below the gas injection point respectively. The manifold
pressure p,, and the riser head pressure p..;, are given by,

T.R [ mgy,
— A.
Prh Mw (LrAr) ( 5&)
Pm = Pri + prgHy + Ap},. (A.5b)

where T, is the average temperature in the riser, H, is the vertical height of the
riser and Ap;ric is the frictional pressure drop in the riser. The flow through the
downhole gas lift injection valve wy,,, total flow through the production choke wy.,,
produced gas and oil flow rate, and the reservoir oil and gas flow rates are given
by,

Wiv; = Civi\/ma‘r(07 Pa; (pai - pwii)) (A6a)

Wpe; = Cpci\/max(ov Pw; (pwh,-, - pm)) (A.Gb)
m t;

Wpg; = mwpci (A.6¢)
Mot

0 = T Wpg; A.6d

Cros Mgt, + Mo, e ( )

Wro, = PI;(pr, — pon,) (A.6e)

Wrg, = GOR; - Wy, Vie N (A.6f)

where, C;,, and Cp., are the valve flow coefficients for the downhole injection valve
and the production choke for each well respectively, PI; is the reservoir productivity
index, py, is the reservoir pressure and GOR; is the gas-oil ratio for each well. The
two wells produce to a common manifold, where the manifold pressure is denoted
by p, and the flow rates from the two well mixes together. The total flow through
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A. Modeling of a gas lifted well network

Table A.1: List of well parameters and their corresponding values used in the
results.

Parameter units Well 1 Well 2
L, [m] 1500 1500
H, [m] 1000 1000
D, [m] 0.121 0.121
Lyy [m] 500 500
Hyp, [m] 500 500
Dy, [m] 0.121 0.121
L, [m] 1500 1500
H, [m] 1000 1000
D, [m] 0.189 0.189
Po [kg m~3] 800 800
Civ [m?] 0.1E-3 0.1E-3
Cpe [m?] 2E-3 2E-3
Dr [bar] 150 155
PI [kg s™1 bar™?| 0.7 0.7
Ty [°C] 28 28
Tw [°C] 32 32

GOR [kg/ke] 0.14£0.05  0.12+0.02

the riser head choke w,p, the total produced oil and gas rates are then given by,

Wrp = Crh\/ Pr (prh - ps) (A7a)

Mgr
Wiy = ——————W A.7b
T g+ (A.Tb)
Mor
Wiy = ———————W A.7c
to gr+mor rh ( )

where C, is the valve flow coefficient for the riser head valve and p; is the separator
pressure, which is assumed to be held at a constant value.

As seen from (A.la) - (A.7c), the gas lifted well is modeled as a semi-explicit
index-1 DAE system of the form

x =F(x,z,u,d) (A.8a)
G(x,z,u,d) =0 (A.8Db)

where F(x, z, u, d) is the set of differential equations (A.1a) - (A.2b) and G(x,z,u,d) =
0 is the set of algebraic equations (A.3a) - (A.7c), x € R3"»*2 are the set of dif-
ferential variables, z € R1?"= %6 are the set of algebraic variables, u € R™ are the

set of control inputs and d € R™ are the set of uncertain parameters.
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Table A.2: List of riser parameters and their corresponding values used in the
results.

Parameter units Riser
L, [m] 500
H., [m] 500
D, [m] 0.121
Crh [m?] 10E-3
Ds [bar] 20
T, [°C] 30
M, [g mol 1] 20
R [J mol™' K~!] 8.314
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Appendix B

Dynamic model adaptation using
extended Kalman filter

In this thesis, dynamic model adaptation was used in Chapters, 2, 3 and 8 among
others, for online state and parameter estimation. This appendix details the use of
extended Kalman filter for parameter estimation using an augmented state vector
x' = [xT,dT]T € R"=*"4 constructed using the states and the uncertain parame-
ters.

The set of uncertain variables d is modeled using an integrated noise term
di+1 =dg + Wa,k (B.1)

where, wq ; ~ N(0,Qq) is a small artificial noise with zero mean and covariance
Qa term that allows the Kalman filter to adjust the estimate the of the parameter
[164]. The augmented system is then given by

X;€+1 = [ﬁz:::i] = f/(Xk, ug, dk:) + W;C (B2)

X
Ymeas,k = [h(xlm uk) O] |:dk:| + Vi
k
where v, ~ N (0, R) is the normally distributed measurement noise with zero mean

and covariances R and the augmented system model f'(xy, ug, dy) is constructed
as shown,

(B.3)

f/(xkauk,dk) = |:f(xk7uk’adk) +Wk}

dy + wa i

where wy, ~ N(0,Q) is the normally distributed process noise with zero mean and
covariances Q.

Remark B.1. The maximum dimension of the disturbance d that one can choose,
such that the augmented system remains detectable is equal to the number of
measurements (i.e. ng < n,) [144].
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B. Dynamic model adaptation using extended Kalman filter

The discrete-time extended Kalman filter for the augmented system is then
given by [164],

Xplh—1 = £ (Xp,1)p— 15 Uk—1, dg_1]5_1) (B.4a)
Pijp—1 = FraPr_1pi Floy + Qpy (B.4b)
Ky = Py HY (Hy Py Hy + Ry) (B.4c)
Xtk = X1 + Kie(¥Ymeas, e — B(Xpjp—1, ur)) (B.4d)
Ppr = — KeHy) Py (B.4e)

where P is the covariance of the state and parameter estimates, K is the Kalman
gain, F and H depicts the linearized system around the current estimate, given by

ot Jh
= — = — B.5
F ox'| ox'| (B.5)
and the augmented covariance Q' is given by,
Q0
= B.6
-3 g (B:6)
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Appendix C

Application Examples of feedback
RTO

This appendix contains papers showing three application examples of the Feedback
RTO approach proposed in Chapter 3.

e Application to oil production optimization - Paper published in2018 IFAC
International Workshop on Automatic Control in Offshore Oil and Gas Pro-
duction (OOGP), Esbjerg, Denmark*.

e Application to three bed ammonia reactor - Paper published in 2018 Com-
puter Aided Chemical Engineering (ESCAPE 28), Graz, Austria.

e Application to Evaporator process - Paper published in 2019 PSE Asia,
Bangkok, Thailand.

* This paper received the IFAC-ABB Best paper award.
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Gas-lift Optimization by Controlling
Marginal Gas-0il Ratio using Transient
Measurements *

Dinesh Krishnamoorthy Esmaeil Jahanshahi
Sigurd Skogestad

Dept. of Chemical Engineering, Norwegian Univ. of Science &
Technology , NO-7491 Trondheim , (e-mail:
dinesh.krishnamoorthy@ntnu.no, esmaeil.jahanshahi@hotmail.com,
skoge@ninu.no).

Abstract: This paper presents the application of a steady-state gradient control using transient
measurements to a gas-lift optimization problem. Optimal operation of a gas-lifted field involves
controlling the marginal gas-oil ratio (mGOR), which is the steady-state gradient of the oil
rate with respect to the gas lift rate. In this paper, we apply a novel method to estimate the
marginal GOR online using a dynamic model and transient measurements, without the need for
additional perturbation. The proposed method is based on linearizing the dynamic model around
the current operating point to estimate the marginal GOR, which is then controlled using simple
feedback controllers to achieve optimal operation. In case of disturbances, the proposed method
is able to adjust fast to the new optimal point, without the need to solve computationally
expensive optimization problems. By using transient measurements, it does not need to wait
for the process to reach steady-state to update the model. The proposed method was tested in
simulations and was shown to provide similar performance as an economic MPC.

Keywords: Production optimization, Measurement-based optimization, real-time optimization,

plant-wide control

1. INTRODUCTION

In many mature oil and gas production fields, when
the reservoir pressure is not sufficient to lift the fluids
economically to the surface, artificial lift methods are used
to boost the production. Gas-lift is one such commonly
used artificial lift method, where compressed gases are
injected into the well tubing to reduce the hydrostatic
pressure drop and hence increase production. Injecting
too much gas also has a detrimental effect on the oil
production due to increased frictional pressure losses in the
well tubing. Each well then has an optimal gas-lift injection
rate that optimizes the production. This paper deals with
the problem of finding the optimal gas lift injection rates
for the different wells.

Daily production optimization is an important aspect of
operating an oil and gas production network. Many differ-
ent approaches are available in literature to optimize the
production from a gas-lifted well network. Traditionally,
production engineers use commercially available steady-
state multiphase simulators to generate the so-called gas-
lift performance curves, which gives the static mapping
between the oil production rate and the gas lift injection
rate (Rashid, 2010). Nonlinear steady-state optimization
tools may then be used to compute the optimal gas lift in-
jection rates. However, a common approach to optimizing

* The authors gratefully acknowledge the financial support from SFI
SUBPRO, which is financed by the Research Council of Norway,
major industry partners and NTNU.

production from a gas-lifted well network is to use the gas-
lift performance curves directly. The optimal allocation of
gas-lift rate is known to occur when the marginal gas-
oil ratio is equal for all the wells. Marginal gas-oil ratio
or simply known as marginal GOR, is a quantity that
describes the increase in oil rate per unit change in the gas-
lift injection rate. In other words, marginal GOR is given
by the slope of the gas-lift performance curves (Bieker
et al., 2007).

The principle of marginal GOR has been proven to be
the optimal solution for any parallel unit such as the gas
lift production network (Downs and Skogestad, 2011), and
was also used by Urbanczyk et al. (1994) and Kanu et al.
(1981). This was also later shown to fulfill the necessary
condition of optimality (Sharma and Glemmestad, 2013).
Therefore, the simplest approach to optimal gas lift allo-
cation is by controlling the marginal GOR to be equal for
all the wells.

Recently, the use of centralized dynamic optimization solu-
tions such as economic NMPC has been gaining popularity
in the process control literature. The use of economic
NMPC for the gas lift optimization was considered by Co-
das et al. (2016) and Krishnamoorthy et al. (2016a). There
is no doubt that theoretically optimal performance can be
achieved by using such centralized optimizing controllers,
however, solving a numerical optimization problem may
be computationally intensive and can potentially lead to
computational delays. Moreover controller tuning and pro-



longed maintenance over time is crucial to ensure good
performance (Skogestad and Postlethwaite, 2007).

There have also been developments in other optimization
methods, where instead of solving a numerical optimiza-
tion problem, optimal operation is achieved via feedback
control. Such methods are classified as direct input adapta-
tion methods (Chachuat et al., 2009), where the optimiza-
tion problem is converted into a feedback control problem.

Self-optimizing control is one example of such a method. It
involves finding the right controlled variable which when
kept constant leads to near optimal operation (i.e. min-
imum loss). Alstad (2005) demonstrated the application
of self-optimizing control using nullspace method for gas
lift optimization. This method however is based on local
linearization around the nominal operating point and may
lead to steady-state losses if the disturbances moves the
operation of the process far away from the nominal operat-
ing point. The ideal self-optimizing variable for the gas-lift
problem would indeed be the marginal GOR. However, the
major challenge is that the marginal GOR is not a readily
available measurement for control.

Model-free methods such as extremum seeking control has
been applied for gas lift wells by Peixoto et al. (2015)
and Krishnamoorthy et al. (2016b). Extremum seeking
control involves estimating the steady-state gradient (the
marginal GOR) directly using the measurements. The
estimated marginal GOR is then controlled using simple
integral action. The main advantage of these methods is
that it does not require a model. However, to estimate the
marginal GOR accurately, constant perturbations of the
manipulated inputs are required, which may be undesir-
able in many oil production wells. It also requires direct
measurement of the cost function.

More importantly, the use of transient measurements in
such model-free methods leads to erroneous gradient esti-
mation. Therefore, such methods often require clear time
scale separation between the plant dynamics , excitation
signal and the convergence to the optimum, such that the
plant can be approximated as a static map (Krsti¢ and
Wang, 2000). This results in very slow convergence to
the optimum. Gas-lift wells typically have long settling
times due to compressibility of the gas in the annulus
and transport time inside the well tubing. Therefore, the
time scale separation can make such model-free methods
prohibitively slow for gas lift optimization. Additionally,
abrupt disturbances may cause undesired responses during
the transients, which was motivated in Krishnamoorthy
et al. (2016b) using a gas-lift optimization problem.

In this paper, we propose to use a new model-based steady-
state gradient estimation method to drive the process to
optimal operation (Krishnamoorthy et al., 2018). It uses
available transient measurements along with a dynamic
model online to estimate the exact steady-state gradient
around the current operating point without any additional
perturbation. Consequently, it converges to the new opti-
mum point in the fast time scale following a disturbance.
The proposed method also does not require the need
to measure the cost directly. Furthermore, the proposed
method is computationally cheap, since the optimization
is done via feedback.

The main contribution of this paper is the application of
the new steady-state gradient estimation method using
transient measurements to the gas-lift optimization prob-
lem, which is demonstrated using a simple case example
with two gas lifted wells connected to a common manifold.

The reminder of the paper is organized as follows. Section
2 introduces the proposed method and its application for
both, unconstrained and constrained gas-lift optimization
cases. Simulation results for both the cases are provided
in section 3 and compared with economic NMPC. Some
discussions are provided before concluding the paper in
section 4.

2. PROPOSED METHOD

In this paper we consider a gas lifted well network with
n,, wells. The gas lifted well network can be modelled as
a dynamic model,
x =1f(x(t),u(t),d(t)) (1a)
y(t) = h(x(t), u(t)) (1b)
where x € R" is the vector of differential variables,
u € R is the vector of manipulated variables, d € R"4
is the vector of process disturbances and y € R™ is the
vector of measurements. f : R x R"» x R™ — R" ig
the set of differential equations and h : R"= x R"» —
R™ is the measurement model. The reader is referred to
Krishnamoorthy et al. (2016a) for detailed description of
the model.

In a gas lifted well, the flow from the wells are predom-
inantly controlled by the gas lift injection rates under
normal operating conditions. Typically, well head chokes
are used only under unusual conditions such as to dampen
slug flow or to control casing-heading etc., which are not
considered in this work for the sake of simplicity. There-
fore, in this work, the manipulated inputs are set to be the

e e s T
gas lift injection rates u = [wg 1, . .., Wy n,,]

Let the total oil production rate wy, be given by,

N

Wto = Z Wpo,i = g(X(t), u(t)) (2)

where, g : R"> x R"* — R and wy,; is the oil production
rate from the i** well..

Marginal GOR is defined as the change in oil rate per unit
change in the gas lift rate which is equivalent to the steady-
state gradient of (2) with respect to the control inputs. Let
the marginal GOR be represented by the symbol v

awm

v; Do Vie{l,..., ny} (3)
In order to control the marginal GOR, we propose a new
approach to estimating the marginal GOR using tran-
sient measurements. The proposed method uses a dynamic
model (1) online to estimate the states and the distur-
bances using any state estimator such as the extended
Kalman filter (EKF) (Simon, 2006). The dynamic model
from the total oil production rate (2) to the manipulated
variables u is then linearized around the current operating
point to get a local linear dynamic model approximation
of the form,
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Fig. 1. The proposed method to estimate and control the
steady-state gradient (marginal GOR) using transient

measurements.
%X = Ax+ Bu (4a)
wg, = Cx + Du (4b)
where,
of of
A= B= &
ox T=T Ou T=T
o % o8
0x|,_,; oul,_,

The corresponding local linear steady-state model is given
by setting x = 0. Consequently, the estimated steady-state
marginal GOR is given by,

v=-CA'B+D (5)

where, o = [1n ...
marginal GOR values.

z/nm}T is the vector of estimated

The estimated marginal GOR can then be controlled using
any feedback controller to a constant setpoint to achieve
optimal operation. This is schematically represented in
Fig.1. In the following subsections, we consider simple con-
trol structures to control the marginal GOR for different
cases.

2.1 Unconstrained Optimization problem

In the unconstrained optimization case, we assume that
there is an unlimited supply of gas available for gas lift,
and the objective is to maximize the total oil production
by computing the optimal gas lift injection rates wg; ; for
all the wells 4.

M

min J = — pro;i (6a)
i=1
s.t.
% = f(x(t),u(t),d(?)) (6b)
awta
50 e B o
ou 811.),50 I}nw
awgl,nw

The estimated marginal GOR can then be controlled
to drive the system to its optimum using any feedback
controller such as a PI controller. To maximize the total oil
production in the unconstrained case, the marginal GOR

sp LSP
v
1 PID i i PID 2

Wgl,1

Fig. 2. A gas lifted field with n,, = 2 wells and the
proposed controller design in the case of unlimited
gas lift supply.

of each well is driven to a constant setpoint of ;¥ = 0
(thus satisfying the necessary conditions of optimality).

In many gas lifted fields, the objective is not only to
maximize the oil production, but also minimize the usage
of gas lift, due to the costs associated with compressing
the gas. The modified cost function J’ then has additional
terms that penalizes input usage.

min J = —¢, Z Wpo + Cql Z Wi (8a)
i=1 i=1
s.t.
x = f(x(t),u(t), d(t)) (8b)

where ¢, and ¢, are the value of oil and cost of gas

compression respectively. In this case, the steady-state
gradient of the modified cost function is given by

—col + ¢y

500 _ | T

Y ou

)

—Coln,, + Cgql

At the optimum Jyu = 0. Therefore the estimated marginal
GOR 7; in (5) is now controlled to a constant setpoint of
v;? = cq1/c, to achieve optimal operation.

i

For a gas lifted field with n, wells, we can use n,,
decentralized PI controllers to control the marginal GOR
as shown in Fig.2.

K.
W = (Kpi . —fl) WP —5) Vi={L,....nu} (10)
S

2.2 Constrained Optimization problem

In many cases, the total gas available for gas lift is limited
due to the limited compression capacity. In such cases,
the total available gas lift must be optimally allocated
among the different wells. The optimization problem can
be written as,

min J = —¢, Z Wpo + Cg1 Z Wl (11a)
i=1 i=1
s.t.
%= £(x(t), u(t), (1) (11b)
(11c)

aymaz
E Wyl,i < Wy
=1
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Fig. 3. A gas lifted field with n,, = 2 wells and the
proposed controller design in the case of limited gas
supply.

where 'w;'f“*”’ is the maximum gas lift rate.

When the total available gas lift rate is insufficient to
operate all the wells at their local optimum, then the
optimum occurs when all the available gas is optimally
allocated among the different wells, i.e. the maximum gas
lift rate becomes active at the optimal operation. There-
fore, according to good plant-wide control practice, one of
the wells is used to control this active constraint tightly
(Skogestad, 2000). The remaining (n,, — 1) unconstrained
degrees of freedom are used to maintain the marginal
GOR of the wells to be equal. This is because the optimal
operation of any parallel unit happens when the marginal
cost of the different units (wells) are equal (Downs and
Skogestad, 2011). The (n,, — 1) self-optimizing controlled
variables would then be

Vie{l,...,n, — 1}

In such a case, (n,, — 1) feedback controllers are used to
maintain equal marginal GOR and 1 controller is used
to control the active constraint tightly. For example, in
a production network with two wells, if well 2 is used to
control the active constraint tightly, then well 1 maintains
the marginal GOR of all the wells to be equal, i.e. the
controlled variable is set to 1 — 19 and controlled to a
constant setpoint of zero. This is schematically represented
in Fig.3.

Vi — Vi+1 (12)

3. SIMULATION RESULTS

In this section, we demonstrate the proposed method for
gas lift optimization using a case study with two gas lifted
wells. For the state and parameter estimation, we use
a discrete time extended Kalman filter with a sampling
time of 1s as used by Krishnamoorthy et al. (2017).
Decentralized PID controllers were used to control the
estimated marginal GOR. The PI controllers were tuned
using the SIMC tuning rules (Skogestad, 2003). The plant
simulator was implemented using IDAS integrator.

The proposed method was compared with an centralized
optimizing control structure. An economical nonlinear
model predictive control was implemented with a sampling
time of 5 min and a prediction horizon of 60 samples. The
continuous time model was discretized using a third order
collocation. The reader is referred to Krishnamoorthy et al.
(2016a) for more detailed description on this.

8.1 Unconstrained case

In this subsection, we consider that the total gas available
for gas lift is unlimited. In the first simulation, we want
to maximize the oil production from the two wells using
the cost function (6). The estimated marginal GOR for
each well is then controlled to a constant setpoint of zero.
The PI controller gains were tuned using the SIMC tuning
rules and the resulting PI tuning values used for the two
controllers are shown in Table 1. The disturbance enters in
the form of step changes in gas-oil ratio (GOR) from the
reservoir. The GOR for well 1 increases from 0.1 to 0.12 at
time ¢t = 2h and the GOR of well 2 decreases from 0.12 to
0.1 at ¢ = 3h. The simulation results using the proposed
method compared with economic NMPC is shown in Fig.4.

Table 1. PI controller tunings.

Kp K;
Unconstrained case  Well 1 7:09340.0149
neonstram Well 2 11.1111  0.0214
Constrained case  Well 1 7.0934  0.0149
Well 2 0 1

It can be clearly seen that the computed optimal gas
lift rates by the proposed method converges to the same
solution as the economic NMPC.

We then simulate the same problem, but now the objective
is to maximize the oil production and at the same time
minimize the costs associated with gas compression as
shown in (8). The value of oil ¢, = 1§ and the cost
of compression ¢y = 0.5$. Therefore the marginal GOR
of both wells are now controlled to a constant setpoint
of ¢qi/co = 0.5 instead of 0. The PI controller tunings
were the same as shown in Table 1. We consider the
same disturbances in GOR as in the previous simulation
case. The simulation results are shown in Fig.5 and are
compared with the solution provided by the economic
NMPC. It can be clearly seen that the proposed method is
able to provide similar performance as that of an economic
MPC.

3.2 Limited Gas lift case

In this simulation case, we now consider that the total
available gas for gas lift is limited to wy " = 4kg/s. Well 1
is used to control the marginal GOR of the two wells to be
equal, whereas well 2 tightly controls the active constraint.
The proposed method estimates the marginal GOR of both
the wells and a PI controller is used to control o5 — 1 to
a constant setpoint of zero. By doing so, we ensure that
the marginal GOR of the two wells would be equal. The PI
controller tuning is shown in Table 1. We consider the same
disturbances in GOR as in the previous simulation case.
The simulation results are shown in Fig.6 and compared
with the optimal solution provided by economic NMPC.
It can be clearly seen that the proposed method is able
to provide a similar performance as that of an economic
MPC.

4. DISCUSSION AND CONCLUSIONS

In this paper, we presented some simple plant-wide control
structure design for optimal operation of gas lifted wells.
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Fig. 4. Simulation results for the unconstrained case when
the cost function is given by (6). The proposed
method is shown in red lines and the economic NMPC
is shown in thin black lines.

‘We showed that optimal operation can be achieved by us-
ing a dynamic model online to estimate the marginal GOR
using transient measurements and control the marginal
GOR to constant setpoints. The performance of the pro-
posed control strategy was compared to economic NMPC
and was shown to provide similar response as the economic
NMPC. The proposed method is based on feedback control
and hence is computationally cheap to implement. The
average computation times for the case study used here
were 0.005s for the proposed method as opposed to 0.924s
for the economic NMPC. The proposed control structure
is easier for the operators to understand. Additionally, the
PI controllers are also easier to tune and maintain than
the economic NMPC solution.

It is however important to note that when the active
constraint set changes, then the control structure design is
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Fig. 5. Simulation results for the unconstrained case when
the cost function is given by (8). The proposed
method is shown in red lines and the economic NMPC
is shown in thin black lines.

different as shown in Fig.2 and Fig.3. This may require re-
design and re-tuning of the PI controllers. The economic
NMPC can however easily handle changes in the active
constraint set.

Rashid (2010) noted that, in practice, the wells are often
considered independently neglecting the back-pressure ef-
fects imposed by interconnected wells. Optimization based
on marginal GOR from individual gas lift performance
curves may only lead to pseudo-steady-state solutions. The
proposed method can include the interaction terms as well,
thereby overcoming this limitation.

In terms of plant model mismatch, since the model used
in the proposed method and the economic NMPC are the
same, both the methods are equally affected by the plant-
model mismatch. Model-free slow optimizing controllers
such as extremum seeking control or NCO-tracking control
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can be employed on top of the proposed method to account
for any plant-model mismatch (Jaschke and Skogestad,
2011; Straus et al., 2017). In the simulation case study
shown here, the same model structure was used to estimate
the marginal GOR and in the plant simulator. A more
realistic case would be to test with the plant modelled in
advanced multiphase simulators such as OLGA which is
an ongoing work.
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Abstract

This paper presents the application of a steady-state real-time optimization strategy using transient
measurements to an ammonia synthesis reactor case. We apply a new method for estimating the
steady-state gradient of the cost function based on linearizing a dynamic model at the present op-
erating point. The gradient is controlled to zero using a standard feedback controller, for example,
a PI-controller. The applied method is able to adjust fast to the new optimal operation in case
of disturbances. The advantage compared to standard steady-state real-time optimization is that
it reaches the optimum much faster and without the need to wait for steady-state to update the
model. It is significantly faster than classical extremum-seeking control and does not require the
measurement of the cost function and additional process excitation. Compared to self-optimizing
control, it allows the process to achieve the true optimum.

Keywords: Optimal Control, Extremum-Seeking Control, Reactor Control, Measurement Based
Optimization

1. Introduction

The general aim of a process plant is to operate at the economic optimum. Different approaches
are available in the literature for driving a process to its optimal operation point. The traditional
approach is steady-state real-time optimization (RTO) in which a rigorous steady-state model is
used for computing optimal setpoints. The necessary model reconciliation requires however that
the plant is at steady-state before each reoptimization. This is a fundamental limitation of RTO as
it may lead to subopimal operation most of the time (Darby et al., 2011).

Self-optimizing control (SOC) (Skogestad, 2000) alleviates this problem through keeping the op-
eration close to the optimum at all times by controlling selected controlled variable at a constant
setpoint. Therefore, it can be used for close to optimal operation while waiting for the steady-
state. The implementation is very fast and simple, but in case of unknown or large disturbances,
the setpoints need to be updated using some other approach.

An alternative to RTO is a data-based approach, e.g. extremum-seeking control (ESC), which
uses the plant measurements to drive the process to its optimal operation (Krsti¢ and Wang, 2000).
This is achieved by estimating the steady-state gradient from the input to the cost and using a
small I-controller to drive the gradient to zero. Closely related approaches are the “hill-climbing”
controller of Shinskey used recently by Kumar and Kaistha (2014) and the NCO-tracking approach
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of Bonvin and coauthors (Franois et al., 2005). Their main advantage is that they are model free.
The main challenge in these methods is the accurate estimation of the steady-state gradient from
dynamic measurements. This normally requires constant excitations that are slow enough such
that the dynamic system can be approximated as a static map (Krstic and Wang, 2000). As a
result the convergence to the optimum is usually very slow. In the presence of abrupt disturbances,
extremum-seeking control also causes unwanted deviations as discussed by Kumar and Kaistha
(2014) andKrishnamoorthy et al. (2016).

A newer method for optimal operation is economic nonlinear model predictive control (E-NMPC),
which handles the dynamic process behaviour, operational constraints, and leads to the optimal
inputs for multivariable processes. Nevertheless, solving the optimization problem for a large-
scale problem is computationally intensive and can potentially lead to computational delay.

In this paper, a new model-based dynamic gradient estimation (Krishnamoorthy et al., 2018, in
preparation) is applied to drive the process to optimal operation. In contrast to standard ESC, the
exact steady-state gradients is estimated based on the dynamic model of the process and hence no
excitations are required. For the proposed method there is no need to measure the cost directly.
Moreover, reoptimization is done by feedback control and solving the optimization problem is not
necessary.

Heat-integrated processes, like the ammonia synthesis reactor (Morud and Skogestad, 1998) con-
sidered in this paper, are widespread in case of exothermic reactions to utilize the reaction heat.
However, limit-cycle behaviour and reaction extinction may occur in the case of disturbances
due to the positive feedback imposed through the heat integration (Morud and Skogestad, 1998).
Straus and Skogestad (2017) proposed the application of E-NMPC for optimal control of the am-
monia reactor to avoid this behaviour. In this paper, the application of the new feedback method
is suggested to drive this process to optimal operation without the need of nonlinear dynamic
optimization as is the case with E-NMPC or dynamic RTO.

2. Steady-state gradient control using transient measurements

‘We consider a process that can be modelled as a nonlinear dynamic system of the form

x =f(x,u,d) (N
y=hy(x,u) @)

where x € R™, u € R"™, d € R%, and y € R" are the states, available control inputs, disturbances,
and measurements. The cost does not need to be directly measured. In the proposed method, a
state estimator such as an extended Kalman filter (EKF) (Simon, 2006) is applied to estimate the
states x of the system by using the measurements and the dynamic model, given in Egs. (1) and (2).

Let the cost be modelled as J = h; (x,u) with iy : R™ x R™ — R. A local linear state-space model,
given by the Egs. (3) and (4), can be obtained through linearization around the current operation
point, as shown by Krishnamoorthy et al. (2018, in preparation).

X = Ax+ Bu 3
J=Cx+Du “)

where A = 9f/dx, B =df/du, C = dh,;/dx, and D = dh;/du. In order to derive the steady state
gradient, we set X = 0 and can derive in deviation variables

AJ = (—CA"'B+D)Au &)
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Figure 1: Block diagram of the proposed method.

which, since AJ = JyAu, gives the following estimate or prediction of the steady-state gradient:
Ju=-CA"'B+D ©)

‘We want to drive the system to an optimal steady-state where J,, = 0, so even if the system is not at
steady-state, we can use feedback control with y = J, as “measurements” to drive the system to the
optimal steady-state and by that satisfying the necessary conditions of optimality (Krishnamoorthy
et al., 2018, in preparation). Any feedback controller, such as a PI controller, can be used to bring
the gradient to zero. It is important to note that by using a nonlinear state estimator and a dynamic
model for estimating the steady-state gradient J,, we can use transient measurements, without the
need to wait for steady-state, as in traditional RTO. The scheme of the proposed method is shown
in Figure 1. The disturbances can be estimated as well through the extension of Eq. (1) to an
augmented system (Simon, 2006).

3. Model and problem formulation

The model of the ammonia reactor and all the model assumptions are based on Morud and Sko-
gestad (1998)’s stability analysis. The process, shown in Figure 2, consists of 3 sequential reactor
beds and the feed is split into 4 streams. The model is a differential algebraic system, where
the differential equations describe the temperature evolution in the reactor beds and the alge-
braic equations represent the corresponding mass fraction of ammonia. There are 3 split-ratios or
u = [uo,. o2 u013} T which are controlled by local temperature controllers. This is necessary
for stabilizing the process. The temperature controllers are incorporated into the model in con-

. L . . ; T
tinous time increasing the number of states by 3. This leads to u = [Tlsnp L Ty, T[‘;p;] . The
temperature controllers are modelled as single-input single-output integrator controllers, as the re-
sponse can be approximated as a proportional process. The SIMC rules (Skogestad and Grimholt,

2012) were applied for the slave controllers tuning.

The state estimation is performed using an EKF (Simon, 2006). To this end, the model was
reformulated as a system of ordinary differential equations. Each reactor bed in the model consists
of n discrete volumes, which can be modelled as a CSTR cascade. This leads for each reactor bed
to a total of 2n state variables per time step. For any CSTR reactor j in the CSTR cascade,
the differential equations for the ammonia weight fractions wyy;,,; can be formulated as seen in
Eq. (7), in which o = 0.33 represents the bed void fraction, pg = 50 kg/m® the density of the gas,
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Figure 2: Heat-integrated 3 bed ammonia synthesis reactor with cascade control. The setpoint of
the slave temperature loop is given by the proposed method.

and V;j = Vjq /n the volume of each CSTR reactor j (Morud, 1995).

dWNH;,j  11j—1WNH3,j—1 — L jWNHy,j + Mear, jTNH; |
dr Vipso

)

To summarize, we can write, X € R®+3 u € R? in the system, given in Egs. (1) and (2).

In contrast to Straus and Skogestad (2017), full state knowledge is not assumed in this paper.
The measurement set for state estimation is given by the inlet and outlet temperature of each
reactor as well as the outlet temperature of the heat exchanger (see Figure 2). In real plants the
catalyst activity is changing over time, which is difficult or impossible to measure and leads to a
plant-model mismatch. To take into account industrial applicability, we assume, that the catalyst
activity is not measured, but included in the model as an uncertain parameter. Hence, the states
and the uncertain parameter are combined to the augmented states with d = [a.q], What results
in an augmented system. To optimize the operation, we want to maximize the (mass) extent of
reaction.

& = 1itin(WNH3 30 — WNHy,in) ®)

This results in a cost function J = —&. In this case, a cascade control is used, where the master
controllers drive the three gradients to zero by giving new set points to three slave control loops.
The EKF and the proposed method were implemented in discrete time. The controller of the
proposed method are single-input single-output controllers. The continuous time process model,
given in Eq. (1), was modelled using CasADi (Andersson, 2013) and integrated with CVODES,
which is part of the SUNDIALS package (Hindmarsh et al., 2005)

4. Results

In the following section, we consider a disturbance in the feed flow and a plant-model mismatch,
given by a mismatch in the catalyst activity. In all cases, we have three inner stabilizing tempera-
ture loops as indicated by the letter “T” on the plots. In addition, the results are compared to pure
self-optimizing control (SOC) and extremum-seeking control (ESC) in the optimization layer. The
integrated cost difference (loss) J;, is used for comparison of the different methods,

Jint (t) = /Ot [éopI.SS (t/) *& (l/)] dr’ )
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Figure 3: Responses of the alternative methods in a) the extent of reaction and b) the integrated
loss to a disturbance in the feed flowrate of Arit;,, = —15 kg/s at time t = 1 h. 5{,%53 represents the
steady-state optimal extent of reaction.

First we simulate a disturbance change in the inlet flowrate 1, to evaluate the performance of the
control structure. The results for a decrease in the feed flowrate of Arir;;, = —15 kg/s attimer =1h
are presented in Figure 3. The new proposed method gives fast disturbance rejection and settles
down at the new optimal operation after about 30 min, as seen Figure 3 a). SOC is equally fast, but
it does not quite reach the new optimum. This leads to a continous increase in the integrated loss
for SOC as seen in Figure 3 b). If we compare the proposed method to ESC as optimizing control,
the proposed method is much faster and therefore causes a lower integrated cost difference of
Jint (tena) = 0.1 t. This is because the data-based gradient estimation takes longer time for accurate
gradient estimation and the controller gain has to be small to satisfy stability. The application
of extremum-seeking controllers does not converge to the steady-state optimum in the investigate
time frame and requires 13 h.

In the second simulation, we consider plant-model mismatch. The results for a decreased catalyst
activity Adcq by 20 % at time ¢+ = 1 h, which normally occurs slowly over a longer period of
time, are presented in Figure 4. Therefore, the activity of the catalyst, or more specifically the

a) 66 by 4
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3 N /
& ~ 9 /
= g 7
c6 k Y
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= 62 \ A Y
61 0
0 1 2 3 0 1 2 3
Time t [h] Time t [h]

Figure 4: Responses of the alternative methods in a) the extent of reaction and b) the integrated
loss to a plant-model mismatch of Aa.,; = —20 % attime ¢ =1 h. é,,pf _ss represents the steady-state
optimal extent of reaction.
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pre-exponential factor of the Arrhenius equation, spontaneously changes between the model used
for the simulations and the model for the state estimation. The simulation shows that the proposed
method is performing well even in the presence of a plant-model mismatch. This is because we are
able to estimate the real value of the catalyst activity using the augmented EKF framework. About
1.5 minutes after the activity change, the mismatch as well as the states are estimated correctly.
The proposed method is much faster than T+ESC, which in turn results in a lower total loss as
seen in Figure 4 b). Again, SOC is equally fast, but the real optimum is not reached. The proposed
method causes a total integrated cost difference of about Jiy (feng) = 0.12 t of ammonia for the
considered case with plant-model mismatch.

5. Conclusion

We have applied a new method of utilizing transient measurements and a dynamic estimator to
estimate the steady-state gradient and then using a simple PI controller for driving the process
to its optimal operation. For an ammonia synthesis reactor with both disturbances and plant-
model mismatch, the proposed method outperforms comparable control strategies. The industrial
applicability is conceivable due to the usage of only seven measurements of the process besides
the used dynamic model. An extended Kalman filter (EKF) allows the estimation of the steady-
state gradients, even in case of plant-model mismatch by including unmeasured but modelled
parameters in the estimator.
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Abstract. This paper presents the application of a feedback based real time optimization
(RTO) strategy using transient measurements for optimal operation of an evaporator
process. The proposed method is based on estimating the steady-state gradient of the cost
function by linearizing the nonlinear dynamic model around the current operating point.
Any feedback controller can then be used to drive the estimated steady-state gradient to zero
to achieve optimal operation. Since the proposed method uses transient measurements, it
avoids the steady-state wait time which is a limitation with traditional steady-state RTO.
Since the optimization is achieved via feedback, it does not require to solve numerical
optimization problems, as in conventional steady-state RTO or dynamic RTO. Compared
to self-optimizing control, the proposed method does not have any steady-state losses when
operated far away from the nominal optimal point. Compared to model-free methods such
as extremum seeking control, it is significantly faster and does not require external process
excitation for steady-state gradient estimation. The performance of the proposed method
for the evaporator process is compared with traditional static RTO, dynamic RTO, hybrid
RTO, self-optimizing control and extremum seeing control.

Keywords: Real-time optimization, Optimal Control, Measurement Based Optimization

1. Introduction

Real-time optimization of chemical processes traditionally involves solving a steady-state optimization
problem using rigorous steady-models of the process. Following any changes in the disturbance or the
operating conditions, the optimization problem must be solved to re-compute the new optimal points.
However, before the new optimal points can be recomputed, it is necessary to wait for the process to settle
to a steady-state operating point. This steady-ate wait time is a fundamental limitation of the traditional steady-
state optimization of chemical processes [1]. Dynamic real-time optimization does not suffer from the steady-
state wait time. However, the computation cost is prohibitively expensive in many applications even with
today's computing power.

In order to address the steady-state wait time issue of the traditional static RTO and the computation cost of
dynamic RTO, we recently proposed a hybrid RTO strategy, where the model adaptation is dine using
dynamic models and the numerical optimization is solved using the corresponding steady-state model. The
hybrid RTO approach thus requites the maintenance of both the static and the dynamic models.

Recently, there has been an increasing interest in the so-called direct input adaptation methods, where optimal
operation is achieved by means of feedback control. Self-optimizing control, extremum seeking control,
NCO-tracking etc. are some well known approaches that belong to such a category. In self-optimizing control
we control a combination of measurements to a constant setpoint such that the economic losses are
minimized. However when the process is operated far from the nominal optimal region, this leads to large
steady-state losses [2].

Model-free approaches such as extremum seeking control and NCO-tracking on the other hand are based
on estimating the steady-state gradient directly from the measurements and controlling them to a constant



setpoint of zero. However, the main disadvantage of these methods is that it has a very slow convergence to
the optimum. In addition, these methods also require additional perturbation for accurate gradient estimation
[3]. Extremum seeking like approaches are also known to provide unwanted deviations in the presence of
abrupt disturbances as motivated by [4].

In this paper, we apply a recently developed feedback-based RTO approach for the evaporator process, which
is based on converting the hybrid RTO into a feedback control problem. The proposed method is based on
estimating the steady-state gradient of the cost function by linearizing the nonlinear dynamic model around
the current operating point. The estimated steady-state gradient can then be controlled to a constant setpoint
of zero. Since the proposed method uses nonlinear dynamic models, it can use transient measurements and
hence avoid the issue of steady-state wait time. It also does not require any additional dither to estimate the
steady-state gradient.

2. Feedback RTO using steady-state gradient control
Consider a nonlinear dynamic system of the form,

x=f(x,u,d)
y=g(x,u)

n, n, n, n . .
where XeR™ ueR",deR"™ and yeR"™ are the states, inputs, disturbances and the measured

O

outputs respectively. Note that the N, control inputs (manipulated variables) considered here are the

unconstrained degrees of freedom. In the proposed feedback RTO method, any state estimator such as an
extended Kalman filter (EKF) [5] can be applied to estimate the states X of the system by using the
measurements and the nonlinear dynamic model (1).

Let the cost be modelled as,

J=h(x,u) @

with h:R™ xR™ — R . Note that the cost does not need to be measured in the proposed method. Using
the updated states, the nonlinear model from the inputs to the cost can be linearized around the current
operating point to get a local linear state-space model, given by (3) as described in [6].

X =Ax + Bu

3
y =Cx+Du @

where the system matrices A, B ,C and D are the Jacobians of the non-linear functions f ,and h from

(1) and (3), evaluated around the current operating point,

A;ﬂ =i =a_h Dza_h )
OX g oul,_4 OX g ou|,_4
The steady state gradient can then be obtained by setting X =0 to get,
AJ =(CA'B+D)Au ©)
The estimate of the steady-state gradient around the current operating point is then given by,
J,=CA'B+D ©)

since AJ = J,AuU.

To optimize the operation of the process, the estimated steady-state gradient is driven to a setpoint of
J » = O by using any feedback controller thus satisfying the necessaty conditions of optimality [6].

It is important to note that by using a nonlinear state estimator and a dynamic model for estimating the
steady-state gradient J 4> We can use transient measurements, without the need to wait for steady-state, as in

traditional RTO. The proposed method is schematically shown in Fig. 1.
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Fig. 1. Block diagram of the Feedback RTO approach

3. Optimal operation of an evaporator process

We now apply the proposed feedback RTO method on the evaporator process shown in Fig. 2 and compare
it with the traditional static RTO (SRTO), dynamic RTO (DRTO) and the recently developed hybrid RTO
(HRTO). In addition, the proposed method is compared with two other direct-input adaptation methods,
namely, self-optimizing control (SOC) and extremum seeing control (ESC). The purpose of the evaporator
process is to increase the concentration of the dilute liquor by evaporating the feed solvent F, while the liquor
is circulated through the heat exchanger. The model is the same as the one used in [7]and for more detailed
information on the model equations and the model parameters, the reader is referred to [7].
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Fig. 2. Evaporator process

>

The objective is to minimize the operation cost, and the optimization problem is formulated as,
muin J = 600F,, +0.6F,, +1.009(|:2 + F3)
st x=f(xu,d)
X, >35.5%
Ry, <400kPa
There are four dynamic degtees of freedom, namely, F,, Py, F;and F,y, .At the optimal point, both the
MV inequality constraints are active, namely X, =35.5% and P,,, = 400kPa. Therefore, these two active

constraints are tightly regulated using PI controllers. The input F, is used to control X, at a constant

¥



setpoint of X, =35.5% , and B, which is an input itself, is maintained at a constant value of
P =400kPa. In addition, the separator level which does not have any steady-state effect is controlled by
F, . Therefore, F,y, is the only remaining unconstrained degree of freedom that can be used for
optimization. In other words, we only have one steady-state degree of freedom, i.e. U = F,,. By using F,q,

for control, we optimize P,, thus optimizing the evaporator process. We assume there are four unmeasured

disturbances d = [Fl X, T Tzoo] and the available measurements ate Y = [F2 Foo  Tao F3] .

As mentioned earlier, the proposed method uses a state estimator. In this work, we use an extended Kalman
filter (EKF) for combined state and disturbance estimation by augmenting the unmeasured disturbances with
the states, e.g. see [5]. The steady state gradient of the cost is then estimated according to (6). In this work,
we use a PI controller to control the estimated gradient to a constant setpoint of zero. The process is
simulated for a total simulation time of 10h with variations in the unmeasured disturbances as shown in Fig.3
[7]. The measurements are assumed to be available with a sampling rate of 1s.
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Fig. 3. Disturbance trajectories affecting the evaporator process.

3.1. Comparison with optimization based approaches

First, we compare the proposed feedback RTO method with the traditional steady state RTO (SRTO), where
the disturbances are estimated using a static model of the system. The system is subject to disturbances as
shown in Fig. 3. In traditional SRTO, the parameter estimation uses only the steady-state operating points,
and a steady-state detection algorithm as described in [8] was used. The steady-state wait time due to the
steady-state detection is a fundamental limitation of the traditional SRTO and the plant is operated sub-
optimally for significant periods before the model can be updated.

We also compare the newly proposed hybrid RTO (HRTO) approach and with dynamic RTO (DRTO) using
the same extended Kalman filter as the one used in the proposed feedback RTO approach. As mentioned
earlier, the hybrid RTO approach uses the dynamic model and the EKF to update the model using the transient
measurements, but uses the corresponding updated stazic model to solve a static numerical optimization
problem. The only difference between the hybrid RTO and the proposed feedback RTO is that the hybrid
RTO solves a numerical optimization problem, whereas in feedback RTO, optimization is achieved via
feedback control.

For the dynamic RTO, the updated dynamic model is directly used to solve a dynamic optimization problem
with a prediction horizon of 30 min and a sampling time of 1s to compute the optimal input trajectory. As
mentioned eatlier, the main challenge with DRTO is the computation time.

The performance of the proposed feedback RTO (black solid lines) is compared with the traditional static
RTO (black dash-dotted lines), dynamic RTO (green dashed lines) and hybrid RTO (red solid lines) in Fig.4

The cost function J is shown in Fig.4a along with the integrated loss in Fig.4b, which is given by the
expression,

t
L=, Jopuss 0= I (1) dt ®



3.2. Comparison with self-optimizing control
For comparison with self-optimizing control, null-space method was used to compute the optimal selection

matrix. The resulting self-optimizing variable € =0.002F, —0.0976F,,, —0.0081T,,, +0.0125F; is

controlled to a constant setpoint of €, =—0.9951, as desctibed in [7]. The simulations were performed with
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Fig. 4. Comparison of the proposed method with traditional static RTO, dynamic RTO and hybrid RTO
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the same disturbances as in the previous case. The performance of the proposed feedback RTO (red solid
lines) is compared with self-optimizing control (red dashed lines) in Fig.5, where the cost function is shown
in Fig.5a and the integrated loss is shown in Fig.5b

It can be clearly seen that when the disturbances move the operating point of the system away from the
nominal optimal point, self-optimizing control leads to steady-state losses. This is not the case with the
proposed feedback RTO. This is because, in the proposed method, the nonlinear model is linearized around
the current operating point as opposed to linearizing around a nominal optimal point in self-optimizing
control.
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Fig. 5. Comparison of the proposed method with self-optimizing control (a) Profit (b) Integrated loss given
by (8)

3.3. Comparison with extremum seeking control

In this subsection, we compare the performance of the proposed method with extremum seeking control,
which is also based on estimating and controlling the steady-state gradients directly from measurements. In
this section we use the least square based extremum seeking control as introduced in [9]. In this method, the
steady-state gradient is estimated purely based on the measurements by constantly perturbing the system
around the current operating point. The estimated steady state gradient is then driven to zero using integral
action.

Since the steady-state gradient are estimated directly from the measurements, it requires time scale separation
between the system dynamics, perturbation and the convergence to the optimum. Therefore, the convergence
of the extremum seeking control is prohibitively slow in many cases.

Due to the slow convergence, the process is simulated with a total simulation time of 100h (10 times longer
than the previous simulation cases). In this simulation, an integral gain of K g = 0.02 was chosen. In this

simulation, the disturbances vary over a period of 100h instead of 10h. The simulation results are shown in



Fig.6. From the simulation results, it can be seen that the proposed method converges significantly faster
than the extremum seeking control.

4. Conclusion

We have proposed a new method of utilizing transient measurements and a dynamic estimator to estimate
the steady-state gradient and then using a simple PI controller for driving the process to its optimal operation.
For an ammonia synthesis reactor with both disturbances and plant-model mismatch, the proposed method
outperforms comparable control strategies. The industrial applicability is conceivable due to the usage of only
seven measurements of the process besides the used dynamic model. An extended Kalman filter (EKF)
allows the estimation of the steady-state gradients, even in case of plant-model mismatch by including
unmeasured but modelled parameters in the estimator.
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Appendix D

Optimal operation of William-Otto
reactor using simple control
structures

In this Chapter 4, we proposed a generalized framework for selecting “what to
control” in order to achieve optimal economic operation. An optimization problem
can be converted into a feedback control problem by controlling

o g — 0

e ¢ =N"V,J — 0, where N is chosen such that NTVugA =0
This will be demonstrated using a benchmark William-Otto reactor in this ap-
pendix.

D.1 Optimal CV selection

Consider the benchmark William-Otto reactor example, where the raw materials
A and B are converted to useful products P and E through a series of reactions

A+B—C k1 = 1.6599 x 100e6666-7/T> (D.1)
B+C — P+E ko = 7.2177 x 10383333/ (D.2)
C+P—G ks = 2.6745 x 10'2e 11111/ T (D.3)

The feed stream F4 with pure A component is a disturbance to the process and
the manipulated variables are the feed stream Fz with pure B component and the
reactor temperature 7T, as shown in Fig. D.1. The objective is to maximize the
production of valuable products P and F, subject to some purity constraints on G
and A in the product stream,

min — 1043.38zp(Fy + Fp) — 20.9225(Fa + Fp) + 79.23F4 4 118.34F5 (D.4)

r,Fp

s.t. zg <0.08, ra <0.12

Since we have two constraints, we can have at most 22 = 4 active constraint
regions, namely, 1) 4 and z¢ active, 2) only z¢ active, 3) only x4 active, and
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TP, TE,XG

Figure D.1: Simulation results using the linear gradient combination as the self-
optimizing variable

4) unconstrained. However, the max limit on z¢ is so low that xg will always be
active. Therefore, we only need to choose CVs for regions 1 and 2 only. In region 1,
we simply control the concentration of x4 to its limit of 0.12kg/kg and z¢ to its
limit of 0.08kg/kg. In region 2, we control ¢ to its limit of 0.08kg/kg, and control
the linear gradient combination ¢ := 0.9959V g, J 4 0.0906V 1, J to a constant
setpoint of zero.

Region 1 (F4 = 1.8275kg/s) - When the disturbance is Fqy = 1.8275kg/s, we
are operating in region 1, with both the constraints active. This is the simplest
case, where optimal operation is achieved using active constraint control.

0.1 0.13

© 012 — — — =
HOOSW—— 50l
= =
S S o1t
0.06

0 60 120 0 60 120

— — Proposed
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0 60 120 "0 60 120 4 4.5 5 5.5 6
Time [min] Time [min] Fp [kg/s)

(a) (b)

Figure D.2: Region 1: Simulation results using the proposed CVs when F4 =
1.8275kg/s.

Region 2 (F4 = 1.3kg/s) - When the disturbance is Fy = 1.3kg/s, we are oper-
ating in region 2, with only x¢ constraint active. We use the reactor temperature 7T,
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Figure D.3: Region 2: Simulation results using the proposed CVs when F4 =
1.3kg/s.

to control this constraint tightly and use F'g to control the linear gradient combina-
tion ¢ := 0.9959V . J + 0.0906V 7, J. In this case, we use a model-based gradient
estimation method proposed in Chapter 3. The simulation results are shown in
Fig. D.3, where it can be seen that the proposed CVs are able to drive the process
ot its true optimum.

Switching between x4 and ¢ can automatically be achieved using a max se-
lector block according to Theorem 4.2. Fig.D.4 shows the simulation results with
varying disturbance and measurement noise, and the switching between the active
constraint regions using a max selector.

In region 2, we now compare the performance of the proposed linear gradient
combination with linear measurement combination as self-optimizing CV. Based
on the optimal sensitivity around the nominal operating point of F4 = 1.3kg/s,
rp and o were the least sensitive to the disturbance. Hence we compare the loss
when z g, ¢ and a linear combination of g and x¢ is chosen as the self-optimizing
variable. For the linear combination, we use the nullspace method by [2] which gives
¢ :=0.6305z5 + 0.7762x ¢, controlled to setpoint of 0.2656. The loss for the three
candidate CVs, along with the proposed linear gradient combination is summarized
in Table...

Table D.1: Steady-state loss for the candidate CV with respect to disturbances.

| FA=1 Fu=11 F4=12 Fu=13 Fyu=14

Tp 3.6892 2.0482 0.8355 0.0026 0.4832
TC 3.8021 2.0994 0.8460 1.225e-5 0.4742
hixp + hozc 3.6858 2.0468 0.8325 9.715e-5 0.4861
mVegd +mVr,.J 0 0 0 0 0
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Figure D.4: Simulation results showing the switching between different active con-
straint regions.

D.2 Optimal operation of parallel operating units

In this section, we show how the proposed linear gradient combination framework
can be used to choose the CVs for optimal operation of parallel operating units.
Often in practice, when a plant capacity expands, this is done by simply adding
new units in parallel to the existing units. The parallel units often share com-
mon resources such as feed, hot water etc. The different units may have different
capacities, different equipment condition and different efficiencies.

Consider the optimal operation of p parallel units each with a cost function
4;(u;) and a given total feed U™*. The optimization problem is given as

P p
min J = Z&(ui) s.t. Zul -Um?* =0 (D.5)
' i=1 i=1
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In this case, Vags = 17 and N € R®=D*P such that
P P
Zm,jvujj, vaﬂ' =0 Vizl,...,p—l (DG)
j=1 j=1

where 7); ; is the ¢ and 4t element in N. This implies Vubi = Vy,{; for all i # j.
That is the optimal operation of parallel units occur when the marginal cost is
the same for all the units, which was also proved by [37] and commonly used in
practice.

To illustrate this, consider a process with p = 3 parallel units. Using the
nullspace of Vuga = [1,1,1]7, we get

¢1: —0.5774Vy, J + 0.7887V y, J — 0.2113V,J = 0
¢y —0.5774Vy,J — 0.2113Vy,J + 0.7887V,J = 0

Adding ¢j+cg yields —Vy, J+Vy,J = 0. Substituting this in ¢; gives —0.5774Vy, J+
0.5774Vy,J = 0, which results in Vy,J = Vy,J =V, J.
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Appendix E

Optimal operation of ESP lifted
wells using simple PID controller
and logics

In Chapter 4, we used gas lift as the artificial lift technology. In this appendix, we
show the use of simple PID controllers with logics to achieve optimal operation of
Electrical Submersible Pumps (ESP). ! ESPs are especially common in heavy oil
fields, where the reservoir oil is very viscous and does not flow naturally. ESPs are
multistage centrifugal pumps that are placed several meters below inside the well
tubing [179] as depicted in Fig. E.1.

The ESP lifted wells are operated by adjusting the rotational speed of the
pump (denoted by w) and the production choke (denoted by z.), i.e. there are two
manipulated variables for each well. Offshore oil fields may have several ESP lifted
wells producing to a common manifold, such that the operation of one pump affects
the operation of the other ESP lifted wells due to the coupling via the manifold
pressure p,,. In addition, the fluid viscosity, reservoir inflow conditions and the
available power may also change, which affects the optimal operation.

Traditionally, the operation of an ESP lifted well is decided by the operators to-
gether with an external ESP expert team (typically from the ESP vendor). However
it may be challenging to operate several ESP lifted wells simultaneously, especially
when the wells are highly coupled. It is important to operate the ESP lifted well
properly in the presence of disturbances in order to avoid pump failures and to
extend the pump life time, since ESP failures can be expensive both in terms of
the replacement costs and lost production.

Automatic control of an ESP lifted well can contribute to safe and optimal oper-
ation [135]. The objective is to compute the optimal ESP speed and the production
choke opening such that the :

e ESP intake pressure is maintained at desired setpoint

e ESP power consumption is minimized

1The experimental results presented in this appendix was carried out in 2013 before I started
my PhD.
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t Ze

Figure E.1: Schematic representation of an ESP lifted well.

e ESP operation is maintained within a desired operating envelop.

The main objective in controlling an ESP lifted well is to maintain the ESP
intake pressure at a desired setpoint, since this gives direct control over the produc-
tion rate from the reservoir [90]. In addition, it is desirable to achieve this setpoint
using minimal power consumption. For example, this can be achieved by reducing
the ESP speed to its minimum limit and manipulate the production choke suitably
to achieve the intake pressure setpoint. Reduced ESP frequency directly translates
to reduced power consumption, since the power consumed increases cubically with
increasing speed, as given by the pump affinity laws [179],

P=P, (“’)3 (E.1)

wo

where P, is the power consumed at some nominal ESP speed wg and P is the power
consumed at frequency w.

The pump must also be operated within a pre-defined operating envelop, which
is constrained by the minimum and maximum ESP speed (Wi and wyq, ) and
two constraints known as upthrust and downthrust limits as shown in Fig. E.2.
Upthrust and downthrust regions correspond to unbalanced thrust forces either
in the upwards or downwards direction, leading to mechanical degradation of the
pump. Therefore, it is undesirable to operate in these regions. These are often
represented on the pump performance curves, which are usually provided by the
ESP vendor. A typical ESP envelope is shown in Fig. E.2a as a function of flowrate
and pump head. The pump head is given by,

(pdis - pln)
P9

H= (E.2)

where pr, and pg;s are the pump intake and discharge pressures respectively (see
Fig. E.1) and p is the mixture density and g is the acceleration of gravity. In
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the pump performance curves shown in Fig. E.2a, the normal operating envelope is
shown by the edges A-B-C-D, where A-B and C-D are the minimum and maximum
ESP speed respectively. B-C and A-D are the upthrust and downthrust limits
respectively.

The operational envelope in Fig. E.2a can be translated to the envelope in
Fig. E.2b which is plotted as a function of head and ESP speed. Since each line
representing the pump characteristics for different frequencies in Fig. E.2a, the
maximum and minimum head corresponding to the upthrust and downthrust limits
respectively can be retrieved to translate the envelope in terms of head and ESP
speed 2. The main motivation for translating the pump envelope into head and ESP
speed in Fig.E.2b is because this envelope is not sensitive to viscosity unlike the
flow vs head envelope in Fig. E.2a. As the water and oil fractions vary, the water
and oil mixture forms emulsions, which will lead to significant viscosity changes,
especially for heavy oil wells. For most centrifugal pumps, the head is not very
sensitive to viscosity up to 500cP, unlike flow rate, power and pump efficiency.
Hence formulating the upthrust and downthrust constraints in terms of head and
ESP speed makes it insensitive to viscosity changes.

E.0.1 Control structure design

In order to achieve these objectives, optimizing controllers such as model predictive
control (MPC) have been proposed by Krishnamoorthy et al. [90], Pavlov et al.
[135]. In this appendix chapter, we show how simple feedback controllers can be
used to achieve the same objective.

In order to reduce the power consumption, we want to minimize the ESP speed,
hence the low limit on the ESP speed in Fig.E.2b is potentially an active MV
constraint. In the presence of disturbances, the pump operation maybe pushed
towards the upthrust operating region. In such cases, the upthrust limit becomes
active. To handle these different operating conditions, we use a split range controller
to control the intake pressure at its setpoint as shown in Fig. E.3. The output of
this PID control (with nominal range 0-100%) enters a split range logic. When the
output signal u is below a chosen value ugg (e.g. 50%), the ESP speed is kept close
its minimum limit wy,;, + € (e.g. between 35Hz and 36Hz) to minimize the power
consumption. The well head choke is controlled via a lower layer controller that
controls the pump head. The corresponding setpoint for the head H5? is given by
a linear value from maximum to minimum head for the lowest ESP speed.

Hdn, — Hup
HEP () = HE,, — =ome—miny (E3)

where, ngl and H gf;m are the downthrust and upthrust head corresponding to
the minimum ESP speed w,,;, that are obtained from the ESP operating enve-
lope in Fig. E.2. The head measurement is computed using the pump intake and
discharge pressure as shown in (E.2). Head reduction in this case will reduce the
ESP intake pressure. Therefore, in this case, the ESP speed is kept close to its

2Note that upthrust corresponds to low head and downthrust corresponds to high head in
Fig. E.1
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Figure E.3: Proposed control structure design for optimal operation of an ESP
lifted well.

minimum w,,;, and the ESP intake pressure is driven to its setpoint using the well
head choke z. indirectly via the head control (E.3).

When the first control output gets higher than ugg, then the pump speed
increases to maintain the ESP intake pressure at its setpoint. In this case, the
upthrust constraint becomes active. Therefore, the head is controlled using the
well head choke to maintain it at its upthrust limit and the corresponding setpoint
is given as the upthrust head, which is a function of the ESP speed,

HP(w) = cypw? (E4)

The head setpoint in this case is designed such that there is a margin to the actual
upthrust limit. Here, the head setpoint essentially follows the upthrust limit (plus a
user defined margin) as shown in the operating envelope in Fig. E.2b. Note that the
hear scales quadratically with ESP speed as given by the pump affinity laws [179],
hence the square term on the ESP speed in (E.4). In this case, the intake pressure is
controlled using the ESP speed and the wellhead choke in used to control the head
at its upthrust limit®. To automatically switch between the two head setpoints,
(E.3) and (E.4), we use a maximum selector block H* = max(H,*, H,"), as shown
in Fig. E.3. Therefore, the operation of the ESP is maintained along the red dashed
lines that are shown in the ESP envelope in Fig. E.2. The ESP speed and the head

3Depending on the optimization objective, one may also choose to follow the best efficiency
point (BEP) instead of the upthrust limit for increased ESP lifetime instead of increased produc-
tion
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Figure E.4: The ESP speed and the head setpoint as a function of the intake
pressure controller output signal.

setpoint as a function of the intake pressure control output v are shown in Fig. E.4.

E.0.2 Experimental results

The proposed control system was tested in a large-scale multi-phase test facility at
Equinor research center in Porsgrunn, Norway. The test facility is designed to use
live viscous crude oil (crude oil in real well conditions). The ESP installed in the
test facility is a full-scale multistage horizontal centrifugal pump with 84 stages.
The pump is a 538-P75 SXD model from Baker Hughes and is equipped with a
variable speed drive to control the pump speed.

The layout of the multiphase flow loop is shown in Fig. E.5. The oil and water
stream from the main separator is fed to the ESP with the help of feeder pumps.
The heat exchanges allow the fluids to be cooled to a desired temperature. The oil
feeder pump and the corresponding split stream are controlled such that the flow
rate is inversely proportional to the ESP intake pressure. The water split stream is
controlled using a ratio controller to get the desired watercut. As such, the main
separator along with the oil and water feed pumps emulate the reservoir inflow in
to the well. Water and oil is mixed upstream the ESP and enters the ESP. The fluid
mixture is then directed through a 2" test section that is 200m long. This section
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Figure E.5: Schematic representation of the large-scale experimental test facility
used to test the proposed control structure.

emulates the well tubing. A choke downstream this 2" test section is used as the
production choke as indicated in Fig. E.5. The fluid mixture is then redirected
back to the main separator. The specifications of the test facility are summarized
in Table. E.1.

The PID controllers, logic blocks and the calculation blocks to compute the
head setpoint were all implemented in the process control system from Kongsberg
AIM process control system that is normally used for operation of the test facility.
Adjustment of setpoints, controller parameters and the signal range are carried
out from the same user interface that the operators are familiar with. The PID
controllers were tuned using trial and error method and are shown in Table. E.2.

For the ESP in the test facility, the minimum and maximum ESP speed were
35Hz and 45Hz respectively. The split range controller used to control the ESP
intake pressure was designed with ugr = 50%, where the ESP speed is kept between
35Hz and 36Hz when the controller output is below usg = 50% and the head is
kept at its upthrust limit when the controller output is above usr = 50%. The
head setpoints were computed according to (E.4) and (E.3) for the regions below
and above ugg = 50%. The different parameter values used to compute the head
setpoints are shown in Table. E.3.

The proposed control structure was tested for a total of 2 hours (from 9:00 to
11:00). The experiment starts with 0% watercut. The controllers were turned on
at time 09:05 and we see that the intake pressure is driven to its setpoint as shown
in Fig. E.6. The setpoint for the ESP intake pressure and the head are shown in
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Table E.1: Test facility specifications

No. of phases 3 (oil, water and gas)
Fluids Saline water, crude oil, natural gas
Oil flow rate 0-15m3 /h

Water flow rate 0- 10m3/h

Liquid flow rate 0 - 25m3/h

Max pressure at ESP 175 bar

Temperature range 4 -110°C

nominal oil viscosity 70cP (at ~ 40°C)

Pipe internal diameter  0.05248 - 0.079m

Total liquid volume 8.3m3

Material Duplix stainless steel 22Cr

Table E.2: Controller tuning parameters used in Fig. E.3.

Kp Kj
Intake pressure control 1 0.05
Head control 0.05  2.5e-3

Table E.3: Parameters used in the control structure design

Parameter  value

HI™ 480m
’U.EL/Ln
Wmin 390m
Cup 0.32
USR 50%

solid red lines and the measured intake pressure and the head are shown in solid
black lines. The upthrust and downthrust constraints are shown in red dotted lines.
The ESP speed and the well head choke are also shown in solid black lines and
the maximum and minimum MV limits are shown in red dotted lines, as clearly
marked in Fig. E.6. The ESP head is also plotted on the head Vs speed envelope
which shows that the proposed control structure design is able to maintain the ESP
operation inside the safe operating envelope as shown in Fig. E.7. It is important
to note that when large disturbances such as flow inversion happens, the pump
violates the upthrust limit only dynamically, which is acceptable.

At time 09:13, the ESP intake pressure was changed from 39bar to 37bar and the
new intake pressure setpoint is achieved by the controllers as shown in Fig. E.6.
It can also be seen that this is achieved by keeping the ESP speed close to its
minimum (i.e. between 35Hz and 36Hz in this case).

As mentioned earlier, one of the most common disturbance to an ESP lifted
well is the manifold pressure (due to the coupling between the different wells). To
emulate this disturbance, the pressure downstream the production choke was varied
between times 09:20 and 09:55 as shown in the bottom-left subplot in Fig. E.6.
When this disturbance happens, it can be seen that the intake pressure controlled
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Figure E.6: Experimental Results using the proposed control structure. Measured
values are shown in solid black lines, setpoints are shown in solid red lines and
constraints are shown in red dotted lines.

output increases above usg = 50% and the ESP speed is increased to maintain the
intake pressure setpoint. Consequently, the head setpoint now coincides with the
upthrust limit as shown in Fig. E.6 and the production choke is increased to follow
the head setpoint.

At time 09:45, the watercut starts to increase slowly and consequently, the
mixture viscosity starts to increase due to water-in-oil (WiO) emulsion formation.
This can be seen in the bottom right subplot in Fig. E.6. As the watercut increases,
the ESP speed increases to maintain the intake pressure at its setpoint and the head
setpoint coincides with the upthrust limit. At 10:15, the watercut is high enough
to cause an inversion from water-in-oil emulsion? to oil-in-water emulsion®. When
this happens, there is a significant drop in viscosity from ~140cP to ~30cP. At
10:20, the water cut is reduced again and we see that the emulsion inverts back
to water-in-oil emulsion. During the flow inversions, there is a significant change
in the viscosity and it can be seen that the proposed control structure is able to
maintain the intake pressure at its setpoint and maintain the ESP operating within
the operating envelop.

Several other tests were conducted at the Equinor test facility in Q1 2013 to

4water droplets suspended in oil medium
50il droplets suspended in water medium
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Figure E.7: Experimental Results using the proposed control structure. Measured
head plotted on the operating envelope.

validate the use of simple PID control structures for optimal operation of the ESP
lifted well. These lasted over 6 days. The test campaign also involved repeating the
tests several times to ensure repeatability and reproducability of the test results.
The overall conclusion from the test campaign was that PID controllers were able
to consistently achieve the control objectives and simple logics such as split range
and selectors were sufficient to handle changes in different operating regions. For
the sake of brevity, only a few test points are presented in this thesis. Based on
the test results, the use of automatic control of ESP lifted wells were qualified for
first-use in Equinor operated fields.
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Appendix F

Handling active constraint changes
with MV-MYV switching

Online process optimization using simple PID control structures was presented in
Chapter 4, where the main focus was on how to handle CV-CV switching. This
appendix contains the paper on handling active constraint changes with MV-MV
switching.
e Paper published in 2018 Computer Aided Chemical Engineering (ESCAPE
28), Graz, Austria.

This paper was selected as a Keynote presentation. The reader is also referred to
[146] for further reading on this topic.
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Abstract

Control structures must be properly designed and implemented to maintain optimality. The two
options for the supervisory control layer are Advanced Control Structures (ACS) and Model Pre-
dictive Control (MPC). To systematically design the supervisory layer to maintain optimal op-
eration, the constraints that can be given up when switching active constraint regions should be
prioritized. We analyze a case study in which we control the temperature and the flow in a cooler
with two degrees of freedom (DOF) represented by two valves, one for each of the two streams.
Either valve can saturate and make a constraint active, forcing other constraints to be given-up,
and thus changing the set of active constraints. We show that optimal or near-optimal operation
can be reached with both ACS and MPC. We do a fair comparison of ACS and MPC as candidates
for the supervisory layer, and provide some guidelines to help steer the choice.

Keywords: Process control, supervisory control, PID control, MPC, optimal control, active con-
straints

1. Introduction

On a time-scale basis, the overall control problem of a process plant can be decomposed into differ-
ent layers. The upper layers are explicitly related to slow time scale economic optimization, which
sends economic setpoints to the lower and faster control layer. The control layer is divided into
supervisory layer and regulatory layer. The latter follows the set-points given by the former and
stabilizes the plant. Most process are operated under a set of constraints, which can be operational
limitations, quality specifications, or safety and environmental requirements. “Active constraints”
are related to variables that should be kept at their limiting value to achieve optimality. These can
be either Manipulated Variables (MVs) or Controlled Variables (CVs). The MVs correspond to
the dynamic (physical) DOF used by the control system, and a typical MV constraint is the maxi-
mum opening of a valve. An example of CV constraint is the maximum pressure in a distillation
column. Every process is subject to disturbances, such as changes in feed rate or product specifi-
cation. It is the task of the supervisory or “advanced” control layer to maintain optimal operation
despite disturbances. The supervisory control layer has three main tasks (Skogestad, 2012):

1. Switch between the set of CVs and control strategies when active constraint changes occur
due to disturbances.
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2. Supervise the regulatory layer, avoiding saturation of the M Vs used for regulatory control.

3. Follow economic objectives by using the setpoints to the regulatory layer as MVs .

The supervisory control layer could be designed using classical ACS with PID controllers, or using
MPC, which achieves optimal operation and handles constraints and interactions by design. With
ACS, we refer to PID-based structures such as split range control (SRC), input resetting (valve
positioning), and use of selectors, to name a few.

2. Changes in active constraint regions and optimal operation

When a disturbance occurs, the process might start operating in a different active constraint region.
If the supervisory layer is well-designed, it is possible to maintain optimal operation by using ACS
with PID controllers, or by using MPC.

2.1. Optimal control in the presence of active constraint changes

Regardless of whether we choose ACS or MPC, the first step to systematically design the su-
pervisory control layer is to identify and prioritize all constraints. It is useful to visualize how
disturbances may cause new constraints to become active. In some cases, we can generate a plot
showing the active constraint regions (optimal operation) as a function of variations in important
disturbances by solving a series of optimization problems. This may be very time consuming and,
in some cases, difficult due to the lack of an appropiate model. Moreover, it can also be difficult
to visualize for more than two variables. Alternatively, we can use process knowledge and engi-
neering insight to minimize the need for numerical calculations (Jacobsen and Skogestad, 2011).
This information is useful regardless of the type of controller used in the supervisory layer.

Prioritization of constraints has been implemented in a few industrial MPC applications (Qin and
Badgwell, 2003). Reyes-Lua et al. (2018) propose a guideline to generate a priority list of con-
straints that can be used also for ACS. Under this scheme, the constraints with the lowest priority
should be the first given-up when it is not feasible to fulfill all constraints. This way, controlling a
high priority constraint will never be sacrificed in order to fulfill a low priority constraint.

2.2. Advanced control structures in the supervisory layer

ACS requires a choice of pairings, which can become challenging with changing active constraints.
When implementing ACS, Reyes-Lua et al. (2018) propose to start designing the control system
for the nominal point, with few active constraints and with most of the priorities satisfied. Then,
to minimize the need for reassignment of pairings when there are changes in active constraints,
we should pair MVs with CVs according to the Pairing Rule (Minasidis et al., 2015): An impor-
tant controlled variable (CV) (which cannot be given up) should be paired with a manipulated
variables (MV) that is not likely to saturate.

When a disturbance occurs and the process starts operating in a different active constraint region,
two types of constraints might be reached:

e MV constraint: we must give up controlling the corresponding CV. If the pairing rule is
followed, this MV is paired with a low priority CV, which can be given-up. However, if it
is not possible to follow the pairing rule, the high priority CV must be reassigned to an MV
which is controlling a low priority CV. This requires the use of ACS such as input resetting
(valve position control) or SRC combined with a selector block.

e CV constraint: we should give up controlling a CV with a lower priority. We can do this
using a min/max selector.
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2.3. Model predictive control in the supervisory layer

MPC uses an explicit process model to predict the future response of the plant and, by computing a
sequence of future MV adjustments, optimizes the plant behavior. The first input of the sequence
is applied to the plant, and the entire calculation is repeated at every sampling time (Qin and
Badgwell, 2003).

The main challenge when using MPC is that expertise and a good model is required. This is
either difficult to have ready at startup, or the modelling effort is too expensive. To achieve a truly
optimal operation, the model would need to be perfect, and all the measurements would need to
be available and reliable, which is unrealistic from a practical point of view. There are methods
to circumvent this, but there is no universal solution and this analysis is out of the scope of this
paper.

When an application lacks DOF to meet all control specifications, standard text-book MPC does
not handle changes in active constraints effectively. The standard approach is to use weights in
the objective function to assign the priorities. Having weights in the objectives function implies
a trade-off between the control objectives. An optimal weights selection can assure that a CV is
completely given-up, or that the solution will lie at the constraint, as explained in Section 3.4.2.
However, there is no systematic way of choosing the weights, as there are no tuning rules for MPC,
and this has to be done by trial and error.

An alternative approach consists of implementing a two-stage MPC with a priority list. The first
stage has the purpose of finding the solution of a sequence of local steady-state optimization
problems (LPs and/or QPs). In this sequence constraints are added in order of priority. The
resulting information regarding feasibility is used in the formulation of the dynamic optimization
problem for the MPC in the second stage (Qin and Badgwell, 2003).

3. Case study

We study a cooler in which the main control objective is to keep the outlet temperature in the hot
stream to a desired setpoint (Ty = T,_Sf' ) by using cooling water (F¢). Additionally, the setpoint for
the flow of the hot stream (F}/) can be changed.

There are two MVs, one corresponding to the cooling water (Fr) and another to the hot stream
(Fi)- Desired operation is at maximum throughput, with F’ = Fj/**. The primary input (F¢) may
saturate for a large disturbance (7). This case is an extension of what is presented by Reyes-Liia
et al. (2018).

3.1. Process model

‘We consider a countercurrent cooler, represented by the dynamic lumped model in Eq. (1). The
cooler is discretized in space into a series of n = 10 cells, as depicted in Fig. 1. Incompressible
fluids and constant heat capacities are assumed. The boundary conditions are: Ty, = Ty, for cell

i =1 (inlet), and T¢,, = Tg,, for cells i = 10 (outlet). The energy balance forcelli =1...nis:

dTe.  Fe UA(Ty, - T¢,)
L= TIc.,, — Tc) + ——————~ 1
dt pCVC,-( G —Te) ¥ pcVe;cpe (1w
dTy. F; UA;(Ty, — T¢;
b g, 4 QI Te) (1b)
dt  puVh, PuVHCpy
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Figure 1: Lumped model for the studied cooler.

3.2. List of priorities

Table 1 shows the priority list of constraints for the cooler we are analyzing.

Table 1: Constraints for the studied cooler.

Priority level ~Description Constraints
1 MV inequality constraints which define the feasibility region — Fp < Fjj™*
Fe < Fénax
2 MYV or CV equality constraints, which is the control objective Ty = T}
3 Desired throughput Fy=F)}
4 CV inequality constraints or self optimizing variables none

3.3. Active constraint regions for cooler

As we want to keep Ty = T,;p , this constraint is always active and only one DOF remains. With
one DOF and three potential constraints we have three possible active constraint regions, which
are shown as a function of the throughput (Fy) and the disturbance (7}") in Fig. 2.

&) 28l Infeasible Operation |
SO Region @ Active constraint in each region:
F 26F
5 ; .
% e Region D e Region 1: Fy = F:,p
%— ol May st Fy, freely . e Region 2: Fy = Fjj™
= ion® hN
Region @———>| N 3 . —
20l ‘ ‘ ‘ ‘eglon (@ ] e Region 3: F¢c = F'**
0 0.5 1 15 2 25 3 35

Hot stream mass flow, FH (kgls)

Figure 2: Active constraint regions for the cooler

3.4. Design of the supervisory layer for the cooler

We consider nominal operation in Region 2 (F/ = F/**). According to the priority list, when T."
is so high that Fc = F'*, the controller should give up controlling Fyy = F;;** and reduce Fy to
keep Ty = T}, thus switching to Region 1. We design both an ACS and an MPC for this case.

3.4.1. Classical advanced control structures for optimal operation

To design the supervisory layer using ACS, we implement SRC with a min selector block, as in
Fig. 3. The controller is tuned by fitting a first order plus delay model obtained from the open-loop
step response of the process, and applying the SIMC rule (Skogestad, 2003) with 7. = 80 s and
K. = —0.06. To account for the different gains that F¢- (negative) and Fy (positive) have on Ty,
the MVs were respectively multiplied with a gain of 1 and —2.
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Figure 3: Split range control structure for cooler.

3.4.2. Model predictive control for optimal operation

The optimal control problem is discretized into a finite dimensional optimization problem divided
into N = 40 control intervals. We use a third order direct collocation scheme for a polynomial
approximation of the system dynamics for each time interval.

The dynamic optimization problem is setup in CasADi (Andersson, 2013), which is an algoritmic
differentiation tool. According to Eq. 1, the dynamic model is non-linear. The resulting NLP
problem is thus solved using IPOPT (Wichter and Biegler, 2005). The prediction horizon is set
to 400 s with a sampling time of At = 10 s. We assume we have full state feedback and the
disturbance, Tci”, is measured.

In this paper, we chose to implement the standard MPC formulation given by Eq. 2, and to assign
different weights for the two control objectives. A high weight is assigned to the high priority CV
(Ty) and a low weight is assigned to the low priority CV (Fgy). The values @; = 3 and @, = 0.1 are
used. These were found by trial and error. In addition, the MVs are restricted to a rate of change
of 10% of Fg** and FZ'* respectively.

N
min Y (o |[(Ti, - 17) |+ o | (R — Fig) |
k=1

s.t.
T = f(Tri, Tui-1, Teyi, Tey it Fuy o Fe,)
0 < Fy, < Fjar Vke {1,....N}
0 < Fe, < R
0 < AFy, <0.1Fpe
0<AF, < O.IFg’“‘}

@

Vke{l,...N—1}

where AF; = Fy — F_1,Vk € {1,...,N —1}. For k = 1, F_; represents the flow at the nominal
operation point.

3.4.3. Simulation results

Fig. 4 shows the simulation results for the case study. T}/ is 26.3°C. MPC and SRC structures
are tested for the same step disturbances in Tci": +2°C at t = 10s, and an additional +4°C at
t = 1000s. Both MPC and SRC follow the priority list and reach optimal operation at steady state.
Once F¢ = F'*, the control structure gives-up controlling Fyy = Fi**, and Fp is used as MV to
maintain Ty = Ty .
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Figure 4: Simulation results for MPC and SRC.

4. Discussion and conclusion

The supervisory control layer can be designed using MPC or ACS. MPC uses the manipulated
variables to achieve optimal operation by design, but it requires expertise and a model, which may
be difficult to obtain. Well designed ACS can also maintain optimal operation, require much less
model information, and are usually easier to implement and tune. In our example, SRC efficiently
switches the MVs, achieving optimal operation. Compared to ACS, MPC implementation requires
more effort as the tuning of weights in the objective function is more challenging because it is done
by trial and error. As it is seen in Fig 4, for a short transient time during the first disturbance in the
MPC implementation, Fyy # F{j*. This could be improved by increasing @, relative to @;. This
would however be at the expense of having an offset for Ty from 77, as its weight in the objective
function would be smaller. Therefore, we should point out that a different MPC implementation
or tuning could have better performance, especially on the input usage.

‘We recommend to use priority lists as a tool for analyzing and designing the supervisory layer.
Understanding the process is an important step to decide which controller should be implemented.
Both ACS and MPC have advantages and disadvantages, and the designer of the control layer
should be aware of these. While in simple cases such as the presented case study, ACS seems
better fitted due to achieving optimality with less implementation effort, in multivariable systems
with more interactions, MPC should be considered as the most convenient alternative.
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Appendix G

Plantwide control of an oil
production network

This appendix contains the paper showing the comparison of Economic NMPC,
self-optimizing control and feedback RTO based on dynamic simulations using the
high-fidelity OLGA simulator.
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Plantwide control of an oil production network
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Abstract

In this paper, we consider Real-Time Optimization (RTO) and control of an oil production system. We follow a
systematic plantwide control procedure. The process consists of two gas-lift oil wells connected to a pipeline-riser
system, and a separator at the topside platform. When the gas injection rates are low, the desired steady flow regime
may become unstable and change to slug flow due to the casing-heading phenomenon. Therefore, a regulatory control
layer is required to stabilize the desired two-phase flow regime. To this end, we propose a new control structure using
two pressure measurements, one at the well-head and one at the annulus. For the optimization layer, we compare
the performance of nonlinear Economic Model Predictive Control (EMPC), dynamic Feedback-RTO (FRTO) and Self-
Optimizing Control (SOC). Based on dynamic simulations using the realistic OLGA simulator, we find that SOC is the

most practical approach.

Keywords: Oil production, plant-wide control, Self-Optimizing Control, unstable systems

1. Introduction

Modeling, estimation, control, and optimization method-
5

ologies are becoming exceedingly important in the up—3
stream petroleum industries. Concepts from Advanced
Process Control (APC) are being developed and deployed
in offshore oil and gas production (Campos et al., 2015).

There are however numerous remaining challenges (Foss,
40

2012).

One standard approach for control and optimization of
multi-input multi-output processes is centralized model-
based control (e.g., Nonlinear Model Predictive Control,
NMPC) which simultaneously uses all the inputs and out-

puts of the system (Engell, 2007). In theory, such a control *

scheme can optimally handle the dynamic interactions be-
tween different input/output pairings, and provide inputs
for optimal operation of the system. However, the success
of this solution depends on obtaining a good process model

and the ability to update it. In addition, optimization us- *

ing detailed dynamic models (with hundreds of state vari-
ables) is computationally demanding and often not suit-
able for real-time applications. Campos et al. (2015) says
that many numerical issues need to be addressed before

dynamic optimizers can be widely used in the offshore oil ”

and gas production. Instead, fast local controllers can be
used for stabilization while slower centralized optimizers
may be used for long-term optimization (Skogestad, 2004).

In our study, we initially attempted to solve an op-

timal oil production control problem using a centralized *

NMPC approach, that is, with a single optimizing con-
troller. However, we were not successful. This was, partly,
because the plant is unstable and, also because of the
plant-model mismatch. We used the Olga simulator as

Preprint submitted to Computers € Chemical Engineering

the “real” process and a simplified dynamic model for the
control design. Willersrud et al. (2013) successfully ap-
plied a centralized control structure (NMPC) to another
oil and gas production system. However, they assumed no
model-plant mismatch; that is, they considered the same
model for both optimization and simulation. Thus, robust-
ness against modeling errors was neglected. Moreover, this
single-layer centralized strategy was not tested in closed-
loop with unmeasured disturbances.

Complex industrial processes require a structured con-
trol architecture for their operation. Skogestad (2004);
Saputelli et al. (2006); Foss (2012) propose to decompose
the control and optimization problem on different time
scales. Luyben et al. (1997) and Skogestad (2004) propose
systematic procedures for design of such plantwide control
systems.

The resulting multi-layer plantwide control structure
in Fig. 1 (Skogestad, 2004) is well established in the pro-
cess industry, see e.g., Campos et al. (2015). The lower
control layers are fast and do not affect the optimization
of the process. In practice, the slow Real-Time Optimiza-
tion (RTO) layer is designed based on steady-state mod-
els. These models are usually detailed physical models, but
they may also contain empirical nonlinear equations. Such
models can be described, for example, by piecewise-defined
numeric functions in the optimization problem formulation
(Gunnerud and Foss, 2010).

The fastest regulatory layer typically controls levels,
flow rates, and pressures. There is also a growing interest
in introducing a slower secondary advanced (supervisory)
control layer (APC), for example using model predictive
control (MPC), for coordination purposes and for taking
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into account the constraints and interactions (Foss, 2012).

The plantwide control structure design method pre-
sented by Skogestad (2004) is divided into a Top-down
analysis and Bottom-up design (Skogestad, 2004, see Table
1). The Top-down analysis starts with the definition of op-
erational objectives, then the identification of the manip—12
ulated variables and degrees of freedom (DOF), optimiza-
tion and finally selecting the primary variables for control
(CV7y in Fig. 1). In contrast, the Bottom-up design starts
with the stabilizing control layer, then supervisory con-
troller, and ends up with providing the integration with
the optimization layer. The idea is that the control layer1
should contribute to the optimization.

For the top-down step a key decision is the selection of
economic controlled variables (CVy). For the bottom-up
step a key desicion is the selection of stabilizing controlled
variables (CVy). Often the CV; variables are active con-
straints and they are sometimes moved into the fast regu-13
latory layer (as part of CVy).

Many papers on oil and gas production optimization
focus only on the optimization layer, assuming a perfect
regulatory control (Krishnamoorthy et al., 2016). How-

ever, gas-lifted wells and multiphase risers may become dy-
namically unstable, in particular at the optimum economic
point (Di Meglio et al., 2012). The usual remedy to these
instabilities is to use more lift-gas, which may be costly
or not available. Moreover, injecting more gas increases
the friction pressure loss which reduces the production
rate. Another passive solution is to choke a downstream
valve, which may lead to sub-optimal operation due to an
increased back-pressure. Stabilizing the desired non-slug
flow regime by feedback control is shown as an optimal so-
lution to gas-lifted well instabilities (Dalsmo et al., 2002).
Both robustness and tracking performance are necessary
for the stabilizing regulatory control layer. The regulatory
control layer must remain stable despite the variations in
the process gain due to change of the operating point.

The primary objective of this study is to apply the
plantwide control design procedure on the gas-lift produc-
tion system. We compare three online optimizing control
strategies, namely, 1) Economic NMPC, 2) Self-Optimizing
Control, and 3) Direct input adaptation using a new model-
based feedback-RTO (Krishnamoorthy et al., 2019). More-
over, we study the effect of unmeasured disturbances in
reservoir pressure and gas-oil ratio. We use the Olga sim-
ulator as the “real” plant and use a simplified dynamic
ODE model for state estimation and optimization. This
approach allows us to study the effect of modeling errors.

The article is organized as follows. In Section 2, we
introduce the oil production network. The top-down anal-
ysis is explained in Section 3. The bottom-up design pro-
cedure is presented in Section 4 where the design and
the robustness properties of the regulatory control layer
are presented. In Section 5, we consider the optimization
layer including the Economic NMPC, self-optimizing con-
trol and the dynamic Feedback-RTO. Dynamic simulations
are presented in Section 6. After discussing the findings
and challenges of this work in Section 7, the concluding
remarks are given in Section 8.

2. Oil production netwok

The oil production network is simulated using the Olga
simulator and is represented in Fig. 2. Olga is the industry-

standard tool for simulating dynamic multiphase flow (Schlum-

berger, 2018). In this work, the Olga model consists of
two wells operated by gas-lift. The oil wells feed a com-
mon pipeline-riser connected to a topside separator. The
system has seven control inputs (Manipulated Variables,
MVs):

e Gas injection mass flow rate at the annulus top of
each well (MVi4, MVyp)

e Production choke valve opening of each well (MVay,
MVsg)

e Top-side valve opening (MV3)

e Two valves for separator control (MVy, MV5)
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Fig. 2: Production network model in Olga simulator (open-loop pro-
cess without controllers)

We consider fourteen measurements:

e Pressure measurements (7) at the riser top, at the
inlet of the pipeline, at the wellheads, at the top of
each annulus and in the separator pressure

e Mass flow rate measurements (6) gas and liquid rates
at the two wellheads and at the riser top

180

e Level measurement (1) in the separator

The two vertical wells are assumed to be geometrically
identical with a tubing and annulus length of 2048 m. The
inner diameter of the tubing is 0.124 m, and the annulusiss
is modeled by a cylindrical (not annular) pipe with 0.2 m
diameter. The roughness of the pipes is set to 4.5E-5 m.
The reservoir temperature is assumed to be 108 °C. The
well inflow relation is assumed to be linear (i.e., wyes =
PI(Pres — Pon)) with a Productivity Index (PI) of 0.2470
kg/s/bar. Nominally, the feed from the reservoir is oil
for the present case study, that is, the produced gas-oil
ratio (GOR) and water-cut are assumed to be negligible
at nominal conditions. The two reservoir pressures are
considered to be different; the nominal values are 160 bar
for well A and 170 bar for well B. 10

The pipeline length is 4300 m, where the last 2300 m
has a negative inclination of 1°. The pipeline goes to a
riser with height 300 m. The pipeline and riser have a di-
ameter of 0.2 m and roughness of 2.8E-5 m. The separator
operates at a constant pressure of 5 bar.

In Olga, the fluid properties can be specified by a black-,
oil model or as PVT Tables. We use PVT tables generated
by PVTSim®. For a given feed composition, these tables
contain all fluid properties such as viscosity, gas density,
oil density, and gas mass fraction as functions of pressure
and temperature. The viscosity of the oil considered in

5

this paper ranges from 0.2 to 1 ¢P, which is not sufficient
to classify it as a heavy oil. In Fig. 3, we show the oil
density and gas mass fraction as a function of pressure at
88 °C. The produced fluid is at ‘undersaturated condition’
and does not have free gas in the range of bottom-hole
pressures considered. With these fluid conditions and the
low reservoir pressure, the wells considered in this work
are not naturally flowing. Therefore, gas-lift is required to
assist the production.
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Fig. 3: Fluid Properties

The two gas-lifted oil wells operate in the casing-heading
instability region when the injected gas rates are low. As
shown in Fig. 4, the theoretically optimal steady-state op-
erating point is in this region (Aamo et al., 2005). The
casing-heading instability causes slugging flow regimes which
are characterized by large flow and pressure oscillations in
the form of a limit cycle behavior. The slugging causes
safety problems and inadequate separation of oil and gas.
Moreover, as seen from Fig. 4, the average production un-
der slugging is less than the production with non-slug flow.
To avoid slugging, stabilizing control is required. The sta-
bilization is performed by low-level controllers in the reg-
ulatory layer.

2.1. Models

Three different models of the oil production network
are used in this work as described next.

2.1.1. Reference model in the Olga simulator

The Olga model of the oil production network is used
as the “real” process in the subsequent dynamic simula-
tions. When the development of Olga was initiated in the
1980’s at NTNU and Sintef, one of the motivations was
to study the dynamics of slow flow regimes for offshore
oilfields (Bendiksen et al., 1991). The simulator includes
empirical correlations which have been fine-tuned by data
from the oil-fields in the North Sea.
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(2005)).

However, for the user, the simulator is a black box andzso
the user cannot see the model equations. This means it is
difficult to use the commercially available Olga simulator
for production optimization.

2.1.2. Spline surrogate model 255

With the Olga simulator, it is possible to find the global
optimal operating point and optimal cost. To this end, we
generated data points from simulations using Olga and
constructed a surrogate spline model (Jahanshahi et al.,
2016). The surrogate spline model consists of piecewise®
third-order or fourth-order polynomials. These models
have the necessary accuracy and smoothness (two times
differentiable) for global optimization solvers, and are then
used to find the optimal operating points for different dis-
turbance scenarios. The optimal cost values are used ass
a benchmark to compare the different optimizing control
methodologies.

2.1.3. Simplified dynamic model

A simplified nonlinear dynamic model of the process is
used for the state and parameter estimation and for solv-
ing the dynamic optimization problem (NMPC). The state
equations of the model are the mass balances in different
parts of the network. The gas-lift well model is similar to
the one used by Jahanshahi et al. (2012) with some mod-
ifications, and the pipeline-riser model is as presented by
Jahanshahi and Skogestad (2014).

The dynamic model can be represented as a set of or-
dinary differential equations:

&= f(z,u,d)
y = h(z,u,d)

(1a)
(lb)zvo

where x represents the dynamic states, i.e., the mass of lig-
uid and gas in the pipeline segments, u represents the ma-
nipulated variables (MV), i.e., the valve openings and the
mass injection of lift-gas, and d represent the disturbances,

e.g. accounting for variations in the reservoir pressure and
275

GOR. The outputs y includes variables of particular in-
terests, such as pressure measurements and constrained
outputs.

We fine-tuned the simplified dynamic models to match
the Olga simulator. The valve coefficients were used as the
tuning parameters for this purpose.

3. Top-down design procedure

3.1. Definition of operational objectives

The primary goal is to optimize an economic objective
which in most cases corresponds to recover as much oil as
possible. The objective can be seen from a long-term per-
spective, where the reservoir dynamics play an essential
role (Jansen et al., 2009), or from a short-term perspec-
tive (commonly known as daily production optimization),
where the reservoir is considered to be static (Kosmidis
et al., 2005; Gunnerud and Foss, 2010; Codas et al., 2012;
Grimstad et al., 2016). This work considers the short-term
perspective and therefore disregards the reservoir dynam-
ics. The short-term optimization of gas-lift wells is often
constrained by the maximum amount of available lift-gas
(Camponogara et al., 2009).

In this work, we minimize the operation cost, J = in-
jected gas cost - produced oil value. This is the nega-
tive of the economic profit. The constraints include the
maximum injection rates and the minimum valve pres-
sure drops. The latter are for controllability purposes.
The constraints are controlled in the regulatory layer as
explained in the bottom-up design, section 4.2. Ideally,
the constraints should be controlled at their correspond-
ing physical bounds, but a back-off is introduced to ensure
feasibility and stable operation.

More precisely, the steady-state optimization problem

is:
minJ = ag (Winj,A + Winj,B) = Qo (Wo,4 +wo,B)  (22)
subject to
0= f(z,u,d) (2b)
y = h(z,u,d) (2¢)
Winj,A + Winj,B < wy** (2d)
b <y <bY (2e)
bt <u < by (26)
The five decision variables u = (Winj A, Winj,B, VY, Vs, UP)

are the two gas injection rates three and valve openings.
Q, 0y are oil and gas prices ($/kg). Equation (2d) is the
constraint on the total available gaslift, (2e) are the con-
straints on selected outputs (e.g. valve pressure drops),
and (2f) are the constraints on the five decision variables.

3.2. Manipulated variables and degrees of freedom

As mentioned, the degrees of freedom for the steady-
state optimization are the three valve openings (v, v}y, vP)
and the two gas injections rates (winj,A, Winj,B). There are
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actually five valves, but it is assumed that two downstream
valves are used to keep constant separator level and pres-

sure. The degrees of freedom resulting from the three

valves are replaced by the valve pressure drop setpoints
(CVis). This transformation does not have any impact on
the control performance, but it is essential for optimization
purposes due to the uncertainty of the valve models.
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8.3. Optimal operation

The steady-state real-time optimizer uses the surrogate
spline model to represent the gas-lift system. The two
injection rates are the steady-state degrees of freedom for

the optimization. 330

To obtain the surrogate model, we used the built-in
parametric study tool in Olga, and we applied 0.01 kg/s
steps in the two gas injection rates which gave 420 points
for each disturbance scenario. Fig. 5 shows a plot of the

cost as a function of the two gas injection rates with others;

parameters at their nominal values.

In addition to the nominal operating point, we also
optimize the process for disturbances in the two reservoir
pressures (D1, D2) and their gas-oil (mass) ratios (D3,
D4). The nominal reservoir pressures are 160 and 170

bars, and the nominal gas-oil mass ratios are 0. Table L.

summarizes the optimal inputs and corresponding cost for
various disturbances.

3.4. Active constraints (CV;)

The primary economic controlled variables (CV7) con-ss

sist of the active constraints plus self-optimizing controlled
variables. In general, it is always economically optimal to
open the valves as much as possible. A maximum valve
opening is equivalent to a minimum pressure drop of the
valve. That is, the three valve pressure drop constraints
on the three valves are always active and these are thus se-
lected as primary controlled variables (CV7). As a result,

Table 1: Optimal gas injection rates for various disturbance scenarios

\ | Nom. D1 D2 D3 D4
Pres,a | 160 155 155 160 160
Dvs | PresB | 170 170 165 170 170
GOR,4 | O 0 0 0.03 0.03
GORp | 0 0 0 0 0.03
w inj,A | 1.296 1.279 1.277  0.847  0.846
P | winyp | 1.325 1.321 1.307 1.315  0.830
| Jopt | -28.433 -27.878 -27.313 -28.827 -29.239

only the two gas injection rates are unconstrained degrees
of freedom for the steady-state optimization.

3.5. Primary controlled variables CV;y for Self-Optimizing
Control

In this section, we apply the self optimizing control
(Skogestad, 2004) to select the two associated controlled
variables (CV1) to be kept at constant setpoint. These
controlled variables are regulated by the two unconstrained
DOFs (gas injection rates). The objective is to achieve
an acceptable loss with constant setpoints when distur-
bances occur without re-optimizing the process for the dis-
turbances. The setpoint values are chosen as the nominal
optimal values. The loss relative to the ideal (reoptimized)
costs for each disturbance are shown for seven candidate
controlled variables in Table 2. These losses are obtained
from simulations in the Olga simulator without any simpli-
fication. We also considered the open-loop case (Alterna-
tive 0) where the two gas injection rates are kept constant.

We conclude that the well-head gas flow rates (Alter-
native 7) are the best controlled variables (CVy) for self-
optimizing control. Note that the well-head gas flow rate
is the sum of the injection rate, the produced gas from
the reservoir, and the gas flashed from the petroleum at
the lower pressure of the well-head compared to the reser-
voir pressure. Controlling the well-head liquid flow rates
(Alternative 6) gives the worst result, even worse than
the open-loop case (Alternative 0). Constant GOR at the
well-head also gives small losses (Alternative 1).

8.6. Production rate

The location of the throughput manipulator (TPM) is
not considered in this work, because it is optimal to min-
imize the production cost, and the production rate is set
indirectly by the optimization. The optimal production
rate is affected by the prices of injected gas and produced
oil, as well as the different disturbances. However, in gen-
eral, the throughput manipulator should be located close
to the bottleneck. For example, it should be located close
to the receiving facilities if the maximum capacity of pro-
cessing units (e.g., separation) is the bottleneck.



w

50

360

365

370

375

380

385

390

Table 2: Loss compared to optimal (Jopt) for four disturbance scenarios. The well-head gas mass flow rates (Alternative 7) are selected for

self-optimizing control.

Disturbances
Nominal D1 D2 D3 D4
Controlled Variables  Description | Jopt | —28.433 —27.878 —27.313 —28.827 —29.239
0  Open-loop No control 0.000 0.001 0.001 0.274 0.480
1 GORwnaA,GORyn  Well-head GORs 0.000 0.004 0.005 0.001 0.001
2 Pun,as PunB ‘Well-head pressures 0.000 0.042 0.018 0.000 0.000
3 Pmn Pipeline inlet pressure Loss 0.000 0.005 0.018 0.166 0.001
4 Ziop Topside valve opening 0.000 0.004 0.013 0.165 0.005
5  ZwnA, Zwh,B ‘Well-head valve openings 0.000 0.019 0.022 0.014 0.022
6 WLwh,A,WLwh,B Well-head liquid mass flow rate 0.000 1.639 2.551 0.007 0.033
7 WQwh,A> WGwh,B Well-head gas mass flow rate 0.000 0.001 0.001 0.000 0.000

4. Bottom-up design procedure

4.1. Selection for requlatory controlled variables C'V2

From a controllability point of view, the bottom-hole
pressure is the preferred Controlled Variable (CV2) forss
stabilizing control of gas-lift oil wells (Jahanshahi et al.,
2012). However, the bottom-hole pressure is often not
available, and if it is available, it has long sampling time
intervals only suitable for monitoring purposes. Bottom-
hole sensors can also easily fail and are generally not re-
placed in case of failure. 00

Aamo et al. (2005) proposed to apply a nonlinear ob-
server to estimate the bottom-hole pressure from a combi-
nation of top-side measurements. These topside measure-
ments are the tubing head pressure, casing head pressure,
and the multi-phase fluid density. Jahanshahi et al. (2012),
have carried out a controllability analysis on unstable gas
lift oil wells, and have concluded that a combination of
topside measurements results in a robust stabilizing con-
trol system.

Codas et al. (2016) considered combining the tubing
head pressure (CV;) and the casing head pressure (CV2)
by applying cascade control. Both CVs are located at the
seabed and are relatively robust and easy to measure. Fig-
ure 6 shows such a control structure (CS1) where the an-
nulus pressure (CV2) is controlled in the inner loop (slave)
and the tubing pressure (CVy) is controlled by the outer,,
loop (master). Here, the production choke valve opening
is used as the Manipulated Variable (MV) for the regula-
tory control, and the tubing pressure setpoints (CV1s) are
available as a DOFs for the optimization layers.

Alternatively, the pressure drops over the two wellhead
valves (CV7) can be controlled by the master COHtI‘Oller.420
This is reasonable because, as noted, the minimum pres-
sure drop is an active constraints and should be selected
as (CVy). Such a control structure is shown as Control
Structure 2 (CS2) in Figure 6. A similar control struc-
ture is applied to control the pipeline-rise subsystem (see
Figure 7). ”

The master loops of the cascade controllers are here
classified as part of the supervisory control. The mas-
ter loop helps for the stabilization by avoiding drift from

410
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the controller design point (i.e. keeping the system in
the linear region), and at the same time track the opti-
mal setpoints given by optimization layer. The tracking
performance of the master control loops is important for
optimal operation.

4.2. Setpoints for active constraints

In this work, we have used 2 bar pressure as the min-
imum pressure drop AP for the wellhead valves, and 0.7
bar for the riser choke.

For optimal operation, it is desired to minimize the
pressure drop in the network. Therefore, these AP con-
straints will always be active, and should be selected as
primary controlled variables (CVy). The proposed con-
trol structure (CS2 in Figure 6) allows for controlling the
pressure drops at their constraints.

4.8. Regulatory control layer

A block diagram of the regulatory controllers and the
disturbances are shown in Figure 8. The regulatory layer
must keep the process stable during the transition along
the optimal path provided by the supervisory controllers,
and reject disturbances on a fast time scale. The reservoir
pressure and gas-oil-ratio (GOR) are uncertain parame-
ters which are considered as unknown disturbances in this
work. Besides, the MVs used by the layers above are dis-
turbances to the regulatory layer. For example, the gas
injection rates used for as the DOF's for optimization are
disturbances to the regulatory controllers.

4.4. Robustness

The main consideration for tuning the regulatory con-
trollers is robustness. The robustness is evaluated at two
operating points, at the initial conditions and at the steady-
state optimal point. The gas injection rates to the wells
are initially 1 kg/s, with the three valves 50% open. PI
tunings, gain margin and phase margin for six pressure
controllers are shown for the two operating points in Ta-
ble 3. The gain margins are larger than 2 for all cases.
That is, if the process gain increases by a factor 2 or de-
creases to half due to nonlinearity, the system remains
stable.
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Fig. 6: Cascade control structures used for regulatory control of oil wells

Table 3: PI tuning and robustness measures of controllers. Initial operating point is winj A = 1, winj,B = 1, Zyn,a = 0.5, Zyp, = 0.5,
Ziop = 0.5

design point | Controller K. Ti[s] GM* PM* DM [s]* [IS|I** ||IT|**
PCan,a —2x 1075 600 2.39  20.67  13.69 - -
Initial PCyna 0016 100 385 6619 2988 142 1.00
operatin PCan,B —2x107° 600  2.57 19.67  11.90 - -
Dt PCyun.n 0.016 100 390 66.83 3193 142 1.00
P PCin —2x10°6 300 3.86 53.24  377.87 - -
PCiop 04 300 105.02 1224 1.00  1.00
PCan.a —3x 1075 600 3.32 32.33  20.56 - -
PCyna  0.016 100 481 72.28 2926 126 1.00
. . PCan.B, —-3x107® 600 3.11 3214  20.37
Optimal point | p ' 0.016 100 4.66 7203 2945 127 1.00
PCin —2x 1075 300 649  80.65  10.39 - -
PCiop 0.4 300 - 100.90 1051 100 1.00

EX3

* larger is better smaller is better
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Fig. 7: Cascade control structure used for regulatory control to sta-
bilize pipeline-riser subsystem (CS4)
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Fig. 8: Block diagram of the decentralized regulatory control struc-
ture used to stabilize the gaslift network
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Fig. 9: Sensitivity transfer functions for regulatory control loops at
the optimal operating point

Figure 9 shows the sensitivity transfer functions S =
(I+GC)™t and T = I — S as functions of frequency at the
optimal operating point. Here, S is the transfer function
from a output disturbance to CVy, and 7T is the transfer
function from CVy4 to CVy. These are for the master con-
trollers. The peaks of sensitivity transfer functions (M-
value) are less that 1.4 which indicates good robustness
(Skogestad and Grimholt, 2012).

5. Optimization layer

5.1. Economic nonlinear model predictive control

In this section, we apply nonlinear economic model pre-
dictive control (EMPC) as defined by the following opti-
mization problem.

k+nyp k+np
min Z g(xk, ug) + Z Auf RAuy (3a)
k k

subject to

Xk+1 = F(xk, up, di) (3b)
¢ < d(xp,up) <o (3¢)
usuy <u (3d)

)

Au < Au;, < Au (3e
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The first term in (3a) sums the economic cost J (2a)
over the prediction horizon {ty, tx4n, } where g(xz, ux) =
J, and the second summation term penalizes large control
movements to regularize the problem and make the con-
trol action smooth. Note that this second term does not
have any steady-state effect, because at steady-state the
input change Auy is zero. The weight matrix R is a tun-
ing parameter which is chosen as a diagonal matrix. The
continuous-time model (1a) is discretized using the direct
single shooting method (Biegler (2010)), and the result-
ing discretized nonlinear dynamic process model gives the
equality constraints (3b). Additionally, general box con-
straints are imposed in (3c). Input constraints and rate
of input constraints are imposed in (3d) and (3e), respec-
tively. An extended Kalman filter is also implemented to
give full state-feedback for the EMPC implementation.

5.2. Steady-state gradient control (Feedback RTO)

We also consider the recently proposed dynamic feed-
back based RTO approach (Krishnamoorthy et al., 2019),

which is based on estimating the steady-state gradient us-,s

ing process measurements ¥,eqs and a nonlinear model.
A state estimation scheme is used to estimate the states
% and the unmeasured disturbances d. In this paper, for
the sake of demonstration, we use an augmented extended
Kalman filter (EKF) for combined state and parameter
estimation, see Simon (2006) for a detailed description.
Once the states and unmeasured disturbances are esti-
mated to get an updated nonlinear model (1a), the model
is linearized to obtain a local linear dynamic model from
the inputs u to the objective function .J. This linear model

is given in state-space form by the matrices A, B, C andllgs

D.

X = Ax + Bu
J=Cx+ Du

The steady-state gradients can then be estimated as fol-5°

lows (Krishnamoorthy et al., 2019).
Ju=—-CA'B+D (5)

The process can be driven to its optimum by controlling

the estimated steady-state gradient to a constant setpoint505

of zero using any feedback controller, for example a PI
controller. The idea is illustrated in Fig. 10.

Note that the steady-state gradient is obtained from
a dynamic model and not from the steady-state model as

would be the conventional RTO approach (Francois et al.,m

2012). The use of a dynamic model means that we can
use the transient measurements, and thus avoid the wait
time for the process to reach steady-state, as required for
conventional RTO.
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5.3. Self-optimizing control (SOC)

We have in Section 3.5 found that the well head gas
rate is a very promising self-optimizing variable (see Ta-
ble 2). Therefore, in addition to economic MPC and the

state and

parameter
[A B} estimation
Gradient ¢ p|| Linearize | g d | % — f(x,u,d)
. . model from| _
Estimation y = h(x,u)
utoJ
Jo=-ca'B4D
Feedback
Controller |2 Process y Ymeas
—» (e.g. PID) ? v
JSP=0 n
ta

Fig. 10: Block diagram of the Dynamic Feedback-RTO method

feedback RTO approach, we also study the performance of
self-optimizing control, by keeping the wellhead gas rate
constant at its nominal optimal value.

6. Simulation results

In this section, we compare the three alternative opti-
mization approaches by dynamic simulations.

6.1. Implementation and computation time

The Olga simulator is treated as the “real” process.
The controllers (including the optimization) are imple-
mented in Python using the simplified dynamic model of
the process. The simplified dynamic model of the process
is implemented in Modelica. The Modelica compiler gen-
erates a functional mock-up unit (FMU), which is a stan-
dard model component that can be shared with other ap-
plications. The resulting model was imported to CasADi
(Andersson et al., 2019) which includes efficient automatic
differentiation techniques. NMPC and EKF were imple-
mented using the CasADi verion 2.0.0. The communica-
tion between the Olga Simulator and the controllers was
done by OPC Data Access where the Olga OPC Server is
a built-in module of the simulator and the OPC client is
coded in Python.

The sampling interval for the state estimation using
EKF is 10 sec. The control interval of the EMPC is set to
1 hour. Both the prediction and control horizon of EMPC
are set to 16 hours. The dynamic model used for the EKF
and the optimization includes 21 state variables and five
inputs. Therefore, for a single shooting formulation of the
EMPC, there are 5 x 16 = 80 optimization variables.

Each EMPC optimization takes about 2 minutes of
computation time to solve which is significantly larger than
the sampling interval of 10 sec. On the other hand, the
Feedback-RTO computation time is less than the sam-
pling interval. As a result, the feedback-RTO updates the
optimal control settings (injection rates and pressure set-
points) at each sampling interval (10 sec).

Time scale separation is necessary for the regulatory
controllers to settle to the new optimal setpoints before
we perform a new re-optimization (Foss, 2012; Saputelli



520

530

535

540

545

550

Well A gas injection rate

.13 s
@
<
212} i
ESRY ]
=
S LF EMPC - - = = Feedback-RTO ]
Self-Optimizing - Steady-State Optimal
0.9 L L L L L
0 5 10 15 20 25 30
time [h]
‘Well B gas injection rate
. 13¢ b
&)
—~
212t ,
a5, ]
s Ly EMPC ~~ ~ ~ Feedback-RTO i
Self-Optimizing «seweeeee Steady-State Optimal
0.9 L L L L L
0 5 10 15 20 25 30

time [h]

Fig. 11: Gas injection rates for nominal conditions

et al., 2006). One should notice that the time-scale sepa-
ration concerns the closed-loop time constant of the upper
control layer, not the sampling time interval of the data
acquisition and the control signal. In general, a more fre-
quent MV signal update leads to a smoother operation
when the closed-loop time constant (adjusted by the con-
troller gain) is kept constant.

6.2. Optimization at nominal conditions

Figures 11 and 12 compare the performance of EMPC,
self-optimizing control and dynamic Feedback-RTO when
taking the system from an initial operating point to the
optimal steady-state with no disturbance.

We fine-tuned the simplified dynamic model so that its
optimal operating point is very close to that of the Olga
model. Therefore, the dynamic optimization converges to
the same values as the steady-state RTO based on the
surrogate model.

Fig. 11 shows the two gas injection rates and Fig. 12
shows the cost and two gradients. The gradients for EMPC
and self-optimizing control are shown for comparison pur-

poses, as the gradients are used for control only by Feedback-

RTO. For self-optimizing control, we show in Fig. 13 the
well-head gas flow rates which are the self-optimizing CV;s.
The optimal setpoints for the self-optimizing control are
provided by the steady-state optimizer explained in Sec-
tion 3.3. As expected, the estimated gradients for the self-
optimizing control approach to zero as the gas flow rates
settle to their optimal setpoints.

Figures 14, 15 and 16 show the optimal setpoints and
the performance of the low-level pressure controllers for
EMPC, self-optimizing control and Feedback-RTO, respec-
tively. As discussed earlier, the Feedback-RTO updates
the optimal settings more frequently, and the process re-
sponse is smoother than with EMPC. The regulatory con-
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Fig. 12: Cost function and gradients for nominal conditions
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Fig. 14: EMPC: Optimal setpoints and performance of low-level pres-
sure controllers

trollers for the self-optimizing control and Feedback-RTO
show only one overshoot when the optimization is turned,,
on (at t = 1 hour), whereas there is one overshoot for every

1 hour for EMPC (Fig. 14). The overshoots are because
of the inverse response of the process to the step changes
of the pressure setpoints and the gas injection rates with
1-hour intervals. The process with the AP outputs is non-,
minimum phase.

For the self-optimizing control, we have a decentralized
control layer with five CVs and five MVs. The two uncon-
strained DOFs (gas injection rates) are used to control
the self-optimizing CVys (gas flow rates at the well-heads,,
shown in Fig. 13). The remaining DOFs are the three
CVs setpoints used to control the three AP (CVy) on
their constraints (Fig. 15).

6.3. Optimization in presence of disturbances 505

The three optimizing control methods are next com-
pared for two disturbances scenarios. The first scenario
is a 5 bar decrease in the reservoir pressure of both wells
(D1, D2), and the second disturbance scenario (D3, D4)
is a 3 % increase the mass gas-oil ratio of the fluid cominggso
from the reservoir. The disturbances are ramped up and
down within 10 hours. we do not use step changes because
they are not typical for a real process, and also because a
large step change crashes the numerical simulation.
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Fig. 15: Self-optimizing control: Performance of low-level pressure
controllers

Figures 17 and 18 show the cost and loss from the
ideal for the two disturbance scenarios, respectively. As
expected, reduced reservoir pressures have a negative ef-
fect on the production and increases the cost, whereas in-
creased gas-oil ratio decreases (improves) the cost.

Figures 19 and 20 show the corresponding gas injec-
tions. The increase in the gas-oil ratio has a larger effect
than the reservoir pressure on the manipulated variables.
The gas injection decreases significantly to compensate for
the extra gas coming from the reservoir. The extra gas
causes an increase in the fluid velocity and the friction in
the well which leads to more pressure drop. Hence, the
optimizer decreases the gas injection.

Both the EMPC and the Feedback-RTO rely on the
joint state and parameter estimation by EKF. The distur-
bances in the reservoir pressure (D1, D2) and the gas oil
ratio (D3, D4) are estimated as parameters. Figures 21
and 22 show the performances of EKF for estimating the
disturbances when the well-head pressures and flow rates
are used as the available measurements. The accuracy of
this estimation depends on the model used by the EKF. As
shown in the Figures 21 and 22, there are almost 10% es-
timation errors compared to the actual values of the Olga
simulator.

The losses are compared in Table 4. For self-optimizing
control, we use the variable that is found in Table 2, namely,
the gas mass flow rates at wellheads. The loss values in
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Fig. 20: Optimal gas injection for disturbance in gas-oil ratio (D3,

D4) Table 4 show that for the disturbances in the reservoir
pressures (D1, D2), none of the controllers have any sig-
nificant advantage over the open-loop (gas injections kept
at their nominal optimal values). However, this is depen-

s0 dent on the regulatory layer control design. The losses

with the self-optimizing control are the lowest overall, and

the loss values of the Feedback-RTO are lower than those

for the Economic NMPC for the disturbances in the gas-oil

ratios (D3, D4). Since the EMPC and Feedback-RTO are

Well A reservoir pressure a5 based on the same dynamic model and the same EKF, this

160 ‘ el (Olga Simuln‘tor) ‘ i is a surprising result that is discussed in the next section.
= - - - - EKF Bstimation (Dynamic Model) Regardless of the dynamics, we expected they settle to the
“3; 158 4 same steady-state.
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0 10 20 30 10 50 0 7.1. Effect of requlatory controllers on optimization

Well B r;z;igﬂ pressure For the disturbance in the reservoir pressure (D1, D2),
‘ ‘ ‘ ‘ we do not obtain any significant benefit from the opti-
. 110 e mizing control over the open-loop situation (i.e., the gas
év sl injection rates are kept at their nominal optimal values).
M es  However, it depends on the control structure of the reg-
Qﬁ 166 |- ulatory layer. In this work, we chose to control the pres-
— g%‘a};s(ﬂf";i‘r‘:‘(“g‘:ﬁmc Modap)|  NTmmTmmod sure drop of the wellhead valves because their constraints
164 : w : : are active, and in practice, they will be controlled on a

0 10 0 e [k 30 40 50 constant setpoint. Hence, it becomes easier to apply the

me [b] 60  self-optimizing control. If we control the wellhead pres-

Fig. 21: Performance of EKF for estimating the disturbances in reser- sures (CS1) instead of the pressure drops (CS2), we will
voir pressure (D1, D2) by measuring well-head pressures and flow  get poor results for the disturbances in the reservoir pres-

rates sures. Obviously, it is not optimal to keep the wellhead

pressure constant when the reservoir pressure decreases.
63 The Feedback-RTO gives lower losses than the EMPC

(Table 4), although they are designed based on the same

dynamic model. The reason is the smoother behavior of
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Table 4: Loss from optimal for different control designs and different disturbances

Disturbances
Nominal D1 D2 D3 D4
Jopt = —28.433  Jopt = —27.878  Jopt = —27.313  Jopt = —28.827  Jopt = —29.239
Open-loop 0.000 0.001 0.001 0.274 0.480
Self-Optimizing Control  0.000 0.001 0.001 0.000 0.000
Economic NMPC 0.000 0.000 0.000 0.015 0.033
Dynamic Feedback-RTO  0.000 0.000 0.000 0.003 0.004

the regulatory controllers for the Feedback-RTO simula-es
tion. The inverse responses of the process to the setpoint
changes decreases the control performance and prevents
the controllers from tracking the optimal setpoints. There-
fore, the limitation of the regulatory control performance
affects the optimization. As an experiment, we decreased,,
the control interval of the EMPC from 1 hour to 20 minutes
so that the regulatory controller have a smoother operation
to track the optimal setpoints. As a result, the loss values
of EMPC decreased by about 40%. However, by reducing
the control interval to one third, the number of optimiza-,
tion variables increases to three times (240 variables), and
the computation time for optimization increases from 2
minutes to 18-20 minutes.

7.2. Importance of robust requlatory control o0

Dealing with an unstable plant is a challenge for long-
term dynamic optimization. Explicitly considering the
regulatory controllers in the model for dynamic optimiza-
tion seems necessary, for accuracy and completeness. How-
ever, this approach requires proper tuning and possibly
gain-scheduling for robustness. If the system becomes un-
stable, the optimization problem cannot be solved because,
of invalid Jacobians. This is related to the fact that when
the system becomes unstable, the inputs saturate that is
Au = 0, and note that elements of the Jacobians matrix
ave (3y,)/(5u;).

Excluding the regulatory dynamics from the optimiza-
tion is possible only when the two control layers operate at
completely different time scales, such that the regulatory
dynamics do not affect the optimization. However, this is
not the case for our system.

700

705

710
7.3. Consideration of active constraints in MPC
As explained above, reducing the control interval of
EMPC increases the number of the optimization variables.
We know that three of the input constraints (related to
pressure drop setpoints) are active at the optimal point.ns
We used this information for the disturbance rejection sim-
ulations and removed these three variables from the opti-
mization problem by replacing the inequality constraints
by equality constraints. This reduces the number of op-
timization variables from 240 to 96, saving a significant

amount of computation time. 0
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7.4. Computation time for steady-state models

To obtain the data for the surrogate spline models, we
run each simulation for 20 hours to reach the steady state.
It takes about 15 minutes to finish each simulation on a
laptop with a quad-core CPU running at 3.7 GHz. It took
about five days to run 420 simulations and generate the
surface shown in Fig. 5.

By using surrogate models, it is possible to incorpo-
rate the commercially available simulation models (e.g.,
Olga, LedaFlow, K-Spice) into the optimization problem
formulation. However, constructing the surrogate models
based on simulation data involves extensive offline compu-
tations to obtain the steady-state data. Nevertheless, this
approach is becoming a viable solution with the availabil-
ity of faster computers and using cloud computing with
high (parallel) processing power.

8. Conclusion

To our knowledge, this is the first publication on the
complete control structure design (including both the reg-
ulatory and the optimization layer) applied to an oil pro-
duction network and tested on the Olga simulator.

We compared three approaches for optimization layer.
The dynamic Feedback-RTO and self-optimizing control
are able to steer the operation to the optimal point more
smoothly compared to economic MPC (EMPC). In case
of unknown disturbances, self-optimizing control results
in the lowest loss compared to EMPC and Feedback-RTO.

We conclude that the self-optimizing control is the most
practical method for our case study. However, this de-
pends on the right choice of the controlled variables and
the control structures throughout the control hierarchy. In
this way, we found the gas mass flow rate at the well-head
as the best controlled variable for self-optimizing control.
Also, controlling the pressure drop over the valves (i.e. su-
pervisory layer) is necessary to control the process on the
active constraints.
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Appendix H

Open-loop versus closed-loop
optimization

In Chapter 7, we considered the optimization problem formulation under uncer-
tainty, where we provided some useful discussions on open-loop optimization and
closed-loop optimization. In this appendix, we provide some more detailed discus-
sions that complements Chapter 7.

Model predictive control differs from conventional control, in the sense that it
does not use a pre-computed control law u = k(z). Instead, MPC obtains a set
of control actions by solving an open-loop optimal control problem for the current
initial state. The first control action is implemented on the plant and the OCP is
re-optimized for the new system state at each sampling time. This is an effective
implementation of the dynamic programming (DP) solution, since the optimal
control u obtained by the MPC in the deterministic case, satisfies u = k(x) for the
current state x, whereas DP solves a feedback version of the same OCP, yielding
the receding horizon control law x(-) that can be used for any state [144].

In the absence of uncertainty, the solution obtained by the open-loop control
is equivalent to the feedback version of the OCP. However, in the presence of
uncertainty, closed-loop optimization is far superior to open-loop optimization. We
will now demonstrate this using a simple example, and show how the multistage
MPC problem approximates the DP solution.

H.1 Dynamic programming solution

We first provide a brief introduction to dynamic programming (DP) to solve a
finite horizon linear quadratic problem of the form,

N-1
min Z Lx(k),u(k)) +n(z(N)) (H.1)
k=0
s.t. x(k+ 1) = Ax(k) + Bz (k)

where the stage cost is defined as ¢(z,u) := 0.5(x"Qx + u" Ru) and the terminal
stage cost £x(x(N)) := 0.527 Pyx. This is solved using the backward DP, where
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H. Open-loop versus closed-loop optimization

the problem is first solved at the last stage, and then move to the second last stage
of the DP recursion, and then to the next stage and so on and so forth, as clearly
explained in [144]. The optimal control policy at each stage is given by,

up(z) = K(k)x k=N-1,N-2,...,0 (H.2)
with the optimal gain K (k)
Kk)=—-B"(k+1)B+R)'B'(k+1)A k=N-1,N-2,...,0 (H.3)
and the Riccati matrix

M(k+1)=Q+ A'TI(k)A — ATTI(k)B(B'II(k)B + R)'BTI(k)A  (H.4)
k=NN-1,...,1

with the terminal condition II(N) = Py.

H.2 TIllustrative example

Consider a linear dynamic system with an additive disturbance w
z(k+1) = (k) + u(k) + wk)

where w is known to lie in the compact set [—1,1]. The objective is to solve the
finite horizon OCP problem with the stage cost ¢(z,u) := 0.5(x? + u?) and the
terminal stage cost 0.522 !,

No uncertainty First let us consider the case with no uncertainty, i.e. w =
0% . In this case, the open-loop optimal control and state sequence u’(z(0)) and
x%(z(0)) with the initial condition x(0) = 1 for N = 25 are shown in Fig. H.la.
The closed-loop/feedback optimization using DP recursions (H.3) and (H.4), yields
a feedback policy

1 = (u8(~)7u?(')7~-~’“?V—1('))

which is a sequence of control laws, rather than a sequence of control actions. For
the state at time i, the control is given by u?(x;), which in the deterministic case
is simply u(i). The DP solution is shown in Fig. H.1b, which is identical to the
open-loop optimal trajectories in Fig. H.1a.

With uncertainty  However, in the presence of uncertainty, if we apply the
same sequence of open-loop optimal control actions u® determined earlier, it does
not yield the same result as applying the sequence of feedback control policies p°
determined using DP recursions. We now compare the results for three different
realizations of the uncertainty: w° := 0V, w! := 1V, and w? := —1V. The
corresponding state trajectories are denoted by x°, x! and x2 respectively. Fig. H.2a

shows the open-loop state trajectories when applying sequence of control actions u®,

IThis is the same illustrative example used in [144].
2The notation (-)° denotes the nominal case.
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H.3. Comparison of multistage MPC with DP

u u

012345 20 22 24 012345 20 22 24
(a) (b)

Figure H.1: No uncertainty: (a) Open-loop optimization (b) Closed-loop optimiza-
tion computed using DP recursion.
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(a) (b)

Figure H.2: With uncertainty: (a) Open-loop optimization (b) Closed-loop opti-
mization computed using DP recursion.

and Fig. H.2b shows the feedback state trajectories when applying the sequence of
control laws u°. It can be seen that the spread of the trajectories |2?(N)—x(N)| =
2N in the case of open-loop optimization, whereas for the closed-loop optimization
case using DP recursion, |z%(N) — 2!(N)| — 3.24 as N — oo, which was also
demonstrated in [144].

The obvious conclusion from this is that, in the presence of uncertainty, op-
timizing over control policies (closed-loop optimization) is better than optimizing
over control actions (open-loop optimization). However, solving a closed-loop op-
timization problem using DP recursions is rather complex.

H.3 Comparison of multistage MPC with DP

In chapter 7, we presented the multistage MPC approach, which is a closed-loop
optimization approach that explicitly takes into account the feedback. In this sec-
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H. Open-loop versus closed-loop optimization

012345 20 22 24

Figure H.3: Comparison of state trajectories (solid black) and control trajectories
(solid gray) from DP and state trajectories (dashed red) and control trajectories
(dashed blue) from multistage MPC for w? := 0V, w' := 1V, and w? := —17.

tion, we now compare the solution of the multistage MPC with that of the DP
solution, using the same example as above.

We solve the multistage MPC problem with three discrete realizations of the
uncertainty {—1,0,1} and a robust horizon of N, = 1, leading to 3 discrete sce-
narios, as described in chapter 8. The non-anticipativity constraints ensures that
the first control input is the same, which is implemented on the plant in a receding
horizon fashion (cf. chapter 9). Fig. H.3 shows the results of the multistage MPC
(dashed lines) implemented in a receding horizon fashion, along with the DP solu-
tion computed earlier, where it can be seen that the multistage MPC implemented
in a receding horizon fashion (even with robust horizon = 1) approximates the DP
solution.

To summarize,

e No uncertainty: Open-loop optimization with closed-loop implementation
(conventional MPC) approximates the DP solution.

e With uncertainty: Closed-loop optimization with closed-loop implementa-
tion (e.g. multistage MPC) approximates the DP solution.
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Appendix I

Primal decomposition

Consider the optimization problem

S

nilln Z 4i(x;) (I.1a)

i=1
s.t.

s

Zgi(iﬂi) =0 (I.1b)
i=1
v eX;, Vie{l,...,S} (I.1c)

(I.1) can be decomposed using primal decomposition by introducing auxiliary vari-
ables t;, where each subproblem is posed as,

®(t;) ::rrglciin Li(z;) (I.2a)
s.t.
gi(zi) =t; (I1.2b)

for a given ¢;. Clearly, original problem (I.1) is equivalent to the following problem,
which is known as the master problem,

5
Ir%;m Z ®(t;) (I.3a)
i=1

S
sty ;=0 (1.3b)
i=1

The simplest way to find a solution to the master problem is by using the
gradient descent method ( also known as subgradient method [20]), where a step
is taken along the descent direction o;

tl(-vﬂ) = tl(-v) + ao; Vi
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1. Primal decomposition

with a suitable step size «. It can be seen that the descent direction of the master
problem is given by the gradients of the subproblem.
The Lagrangian of the subproblems can be written as

Consequently,
g; i— vt7¢(t1) = 7)\1'

For the descent direction to be feasible Zle(ti) = 0 [111]. This can be ensured by

introducing only S — 1 auxiliary variables instead of S auxiliary variables and the
last auxiliary variable is simply set as

5—1
ts=—> t (15)
i=1
The gradient descent problem is then given as
t =4 4 aey Vi=1,...,8-1

with tg(v) = — Zf:_ll t;(v).
We now show that the problem (I.1) can be equivalently solved using primal
decomposition.

Assumption I.1: Fori=1,...,5, we assume that
e X; is nonempty, compact and convex

£;(x;) is convex and differentiable on X;

gi(z;) is convex and differentiable on X;

(I.1) has a feasible solution denoted by T*

Theorem I.1. Given assumption 1.1, if t} is the minimizer of the master prob-
lem (1.3), and x}(t;) is the minimizer of the i'" subproblem (1.2), then x* :=
(27 (t]), ..., x5(ty)] ts the minimizer of the original problem (I.1).

Proof. Since (I.1) is equivalent to (I.3), feasibility of (I.1) implies that (I.3) is fea-
sible. Updating ¢; iteratively using gradient descent method moves ¢; in a direction
of improvement of the overall objective [19, 111] and (I.5) ensures that the de-
scent direction is feasible. For a differentiable system, it can be shown by using the
gradient descent algorithm [12]

lim ¢; — tj

vV— 00
Moreover continuity of ¢; and g;, along with the compactness of &A; imply that the
subproblems have an optimal solution whenever it is feasible [111]. Therefore,

[21(t7), - 25 (ts)] = T
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Appendix J

Distributed Multistage NMPC
applied to oil production
optimization

This appendix contains the paper showing the application of the distributed sce-
nario NMPC proposed in Chapter 9 to an oil production optimization problem.

e Paper published in 2018 IFAC International Symposium on Advanced Control
of Chemical Processes (ADCHEM), Shenyang, China.

This paper was selected as a Keynote presentation and was a finalist for the IFAC
Young Author award.
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Abstract: In this paper, we consider the decomposition of scenario-based model predictive
control problem. Scenario MPC explicitly considers the concept of recourse by representing
the evolution of uncertainty by a discrete scenario tree, which can result in large optimization
problems. Due to the inherent nature of the scenario tree, the problem can be decomposed into
each scenario. The different subproblems are only coupled via the non-anticipativity constraints
which ensures that the first control input is the same for all the scenarios. This constraint
is relaxed in the dual decomposition approaches, which may lead to infeasibility of the non-
anticipativity constraints if the master problem does not converge within the required time.
In this paper, we present an alternative approach using primal decomposition which ensures
feasibility of the non-anticipativity constraints throughout the iterations. The proposed method
is demonstrated using gas-lift optimization as case study.
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1. INTRODUCTION

Model predictive control (MPC) has proven to be a highly
successful control methodology in the process control in-
dustry due to its ability to handle large and complex
multivariable systems, subject to process and operating
constraints. MPC typically uses models that represents the
system and computes an optimal input trajectory based
on model predictions in order to minimize a certain cost
function over the prediction horizon. Recently, there has
been an increasing trend in the use of Economic NMPC,
where the economic objectives are incorporated into the
MPC problem.

The presence of plant-model mismatch or process varia-
tions can easily lead to constraint violations or suboptimal
operation. Different approaches have been proposed in
the literature to handle uncertainty in the MPC problem,
such as min-max MPC (Campo and Morari, 1987), which
computes an optimal input trajectory that minimizes the
cost of the worst-case realization of the uncertainty. This,
however, leads to a very conservative solution, since the
optimization is performed in an open-loop fashion. It ig-
nores the fact that new information will be available and a
new control trajectory will be re-computed in the future. In
other words, min-max MPC ignores one of the important
aspect of uncertainty handling, namely, feedback. Feedback

* The authors gratefully acknowledge the financial support from
SUBPRO, which is financed by the Research Council of Norway,
major industry partners and NTNU.

min-max MPC scheme was proposed by Scokaert and
Mayne (1998) to overcome the limitations of the open-
loop min-max MPC. Feedback min-max MPC is a closed-
loop optimization scheme, where the notion of feedback is
explicitly taken into account by optimizing over different
control policies rather than a single control trajectory by
representing the evolution of the uncertainty by a scenario
tree. This approach was later studied in detail for nonlinear
systems in the context of multistage NMPC problem and
was shown to reduce the conservativeness at the cost of
computational time (Lucia et al., 2013a).

One of the main challenges of this method is that the com-
putational size of the problem grows exponentially with 1)
length of the prediction horizon, 2) number of uncertain
parameters and disturbances and 3) number of discrete
models for each uncertain variable that is considered in
generating the different scenarios. This poses a challenge
for real-time implementation, despite advancements in
computational power and efficient numerical solvers.

One solution to this problem is to stop the branching after
a certain number of samples in the prediction horizon
(known as robust horizon) in order to curb the number
of scenarios as described in Lucia et al. (2013a). Another
solution is to exploit the fact that each scenario can be
written as an independent subproblem except for the so-
called non-anticipativity constraints. Hence decomposition
methods can be employed by solving the subproblems

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2018.09.325
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independently and later use a master problem to co-
ordinate the individual subproblems iteratively.

Scenario decomposition using dual decomposition was pro-
posed by Lucia et al. (2013b) and Marti et al. (2015). Dual
decomposition (also known as Lagrangian decomposition)
method solves the subproblems by relaxing the coupling
constraints. A master problem then co-ordinates the in-
dividual subproblems iteratively. The previously relaxed
constraints are feasible only upon convergence. Marti et al.
(2015) indicates that such methods require a relatively
large number of iterations between the master problem
and the subproblem to converge, leading to challenges
with practical implementation. The use of augmented
lagrangian methods can help improve the convergence
properties, however this makes the problem non-separable
(Boyd et al., 2011).

The risk of dual decomposition is then that the master
problem may not converge within the required time. This
leads to infeasibility of the non-anticipativity constraints,
the implications of which are that the different subprob-
lems may give different control inputs at the first sample
time in the prediction horizon. This is not acceptable for
real-time closed-loop implementation. In this paper, we
propose an alternative approach to scenario decomposition
using the primal decomposition approach which ensures
the non-anticipativity constraints are always feasible. This
is because, in contrast to dual decomposition, primal
decomposition produces a primal feasible solution with
monotonically decreasing objective value at each iteration.

The key challenge in any real-time implementation of
optimizing controllers such as MPC is clearly, how best
to deal with time. Quoting Kerrigan et al. (2015), “The
correctness of a computation is a function of time”. The
late-arrival of a solution in many cases may simply not
be acceptable. In real-time optimization, approzimate so-
lution now s better than an accurate solution tomorrow.
This strategy is adopted in many optimization algorithms
(Kerrigan et al., 2015). This is also the motivation to use
primal decomposition as opposed to dual decomposition
for the scenario MPC problem.

The paper is organized as follows. The framework of sce-
nario MPC is introduced in section 2. The decomposition
algorithm is presented in section 3. The proposed method-
ology is verified using a case study in section 4 before
concluding the paper in section 5.

2. SCENARIO MPC

Consider a discrete-time nonlinear system of the form,

Xpt1 = £(xg, ug, dy) 1
where, x;, € R denotes the state vector at time step k,
u; € R™ is the vector of control inputs and dj € R"
represents the uncertain parameters and disturbances.
Let us assume that the uncertainty belongs to a known
distribution such that dy € U Vk.

If the model (1) is perfect, the predicted state trajectory
is given by X[ 4N for the open-loop implementation of
the corresponding input trajectory upg r4n—1) over the
prediction horizon [k, k + N]. However, in the presence
of plant-model mismatch, up ;4 n—1) must be associated

u2,1,dz2,1 uN,1,dN, 1 S

di2 wu22,d22 uN 2, dN,2 S5

ug,3, ds un,3, dN 3 .
dU L d] 3 2,3,02,3 N,3,0N.3 53
u2,4,d2,1 un4,dN1 g
diy 4
do,2 di2 wuzs,d22 UuN 5, dN,2 S5
u2,6,d2,3 un6,dN3 | 5o
u2,7,d2,1 un7, AN g
2 u2g.da2 ung dne g
—\h\“2,97d2.3 ung dng g

Np =2

Fig. 1. Scenario Tree for M = 3 and N, = 2.

with a cone of state trajectories {X[ x4 n)}u depending
on the realization of the uncertain variables (Guay et al.,
2015). Optimizing over a single control trajectory (open-
loop optimization) disregards feedback. In other words,
it disregards the fact that new information will be avail-
able in the future and the control trajectory will be re-
optimized. It may be prudent to optimize over different
control policies rather than a single control trajectory, see
Mayne (2014) and Mayne (2015). In other words, the opti-
mization problem should compute a cone of possible con-
trol trajectories {u[k,k+N—1] }u instead of a single control
trajectory. A simple approach to solve this problem is to
discretize the uncertainty space and represent the cone of
trajectories as discrete scenarios. This is the basic principle
behind scenario MPC. Scenario MPC (also known as mul-
tistage MPC or feedback min-max MPC) is thus a closed-
loop optimization approach, where the evolution of the
uncertainty is explicitly taken into account by modelling
a tree of discrete scenarios as described by Scokaert and
Mayne (1998). By doing so, we can considerably reduce
the conservativeness of the solution compared to min-max
methods that optimize over a single control trajectory
(Lucia et al., 2013a).

To formulate the scenario MPC mathematically, the
discrete-time nonlinear system (1) reads as,

Xit1,5 = £(Xk,55 Wk, 5, i j) (2)

where, the subscript (-)j ; represents the j*" scenario at
time step k.

The first step to building a scenario tree is to discretize
the uncertainty space U to get M discrete realizations. A
common practice is to consider a combination of nominal
and extreme values to cover the overall uncertainty space,
which has been shown to give good results in many
different application examples, see Lucia et al. (2013a),
Krishnamoorthy et al. (2017) and the references therein.

From the discrete realizations of the uncertainty, a scenario
tree is generated as shown in Fig.1. Each scenario is defined
as the path from root node to the leaf node. The number
of scenarios resulting from the branching at each time
step leads to exponential growth of the problem. A simple
strategy to curb this is to stop the branching after a certain
period of time N, (known as robust horizon) as justified
in Lucia et al. (2013a). The total number of scenarios is
then given by S = M-,
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The resulting optimization problem is then written as,

s N
min Z [w]- ZJ(xk,j, uk,]-)] (3a)
Hhoa g ST k=1
s.t
Xkt1,j = F(Xkj5 Uk j, di ) (3b)
8(%kj; ug ;) <0 (3¢)
s
> Eju; =0 vie{l,---,S} (3d)
j=1

where w is the probability or weight for each scenario,
J(xk,j, ur,;) is the cost function, f(xy j, u,;,ds,;) is the
system model, g(x,;,ux ;) represents the nonlinear con-
straints. The constraints in (3d) are known as non-
anticipativity or causality constraints which impose the
fact that the future control inputs cannot anticipate the
realization of the uncertainty. This implies that the states
that branch at the same parent node, must have the same
control input. Note that u; here represents the sequence
of optimal control input for the j** scenario, i.e. u; =
[ug,j cee uJT\,ij]T € R™N. To explain the notation of E,
we first introduce the notation:

S—1
P=N0 Y et (4)
=1

where n. (; j4+1) represents the number of common nodes
for two consecutive scenarios j and j + 1 in the scenario
tree (Klintberg et al., 2016). The matrices E; € RP*™N
can then be given as,

Ei2|—FEi2
_ Ey3 |—Ea3
E= . (5)
Es_15|—-FEs-1,5
= [E1[Ep| - [Es |
where
I,

Ej,j+1 — 0 c Rn“ncudw)xn“,N (6)

I,

and 0 € R+ X" (N=Nr) g 5 zero matrix. Using such
a chain structure for the non-anticipativity constraints
results in sparse structures, which can be an added ad-
vantage (Klintberg et al., 2016).

3. SCENARIO DECOMPOSITION

As described above, the different scenarios are independent
except for the non-anticipativity constraints, which couple
the different scenarios together. To this end, the differ-
ent scenarios are easily separable. Different decomposition
strategies exists that facilitates efficient solutions of such
large scale optimization problems by decomposing them
into smaller subproblems. This way the different subprob-
lems can be parallelized. A master problem is then em-
ployed to co-ordinate the coupling constraints, (Bertsekas,
1999).

scenario 1

Py (t)
AL

th=t+ad )

Fig. 2. Block diagram showing the structure information
flow between the subproblems and the master prob-
lem.

3.1 Lagrangian Decomposition

In Lagrangian decomposition, the dual variables A\ corre-

sponding to the non-anticipativity constraints are used to

define the Langrange function,
s

N
L(x,u,\) = Z [w]- ZJ(xk‘,j,uk‘j)
k=1

j=1

S
+ATY Eju; (7)
j=1

Since £(x,u, \) is separable in x and u, each scenario can
be solved independently by relaxing the non-anticipativity
constraints as shown (Klintberg et al., 2016),
N
Ly(xj,u5,A) = wy I ung) + A Eju; - (8)
k=1

Note that (7) and (8) are also subject to the system
model (3b) and nonlinear constraints (3c) for all j €
{1,...,S}. The master problem iterates on A and the
non-anticipativity constraints become feasible only upon
convergence of A. Different forms of augmented Lagrangian
decomposition methods have also been introduced in Marti
et al. (2015), where an additional quadratic penalty term is
added to (7) to improve the convergence properties. How-
ever, this makes the problem not separable in x and u. The
subproblems must then be solved sequentially using the
Alternating Directions Method of Multipliers (ADMM)
approach (Boyd et al., 2011). Solving the subproblems
sequentially can then make the computation time longer
for problems with large number of scenarios.

The relaxation of the non-anticipativity constraints in
Lagrangian decomposition poses a challenge for real time
implementation. In an MPC framework, the optimization
problem is solved to compute the optimal control trajec-
tory and the first control move in implemented in the
plant in a receding horizon fashion. In scenario MPC, the
non-anticipativity constraints ensure that the first control
input is the same for all the scenarios. However, if A fails
to converge within the required sampling time, infeasi-
bility of the non-anticipativity constraints would mean
that the first control move provided by the different sce-
nario subproblems may be different. This is not acceptable
for closed-loop implementation. We therefore, provide an
alternative approach using primal decomposition frame-
work which always produces a primal feasible point with
monotone-decreasing objective value at each iteration.

3.2 Primal Decomposition
Primal decomposition iterates directly on the shared

variables (Bertsekas, 1999). This ensures that the non-
anticipativity constraints are always feasible at any point
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Fig. 3. Parallalized representation of the scenario tree for
an uncertainty with 3 discrete realizations (M = 3)
and a robust horizon of 2 samples (N, = 2). The non-
anticipativity constraints that couple the different
scenarios are marked in different coloured boxes.

in time. Thus the first control move provided by all the

scenario subproblems will be the same, enabling closed-
loop implementation.

The subproblem for each scenario can be written by
introducing a new auxiliary variable t;,

N
2i(h) =iy i ) Ik, ukg) - (O2)
s.t
Xpt1,j = £(Xej, k5, d;) (9b)
8(Xkjruk ) <0 (9¢)
Eju; =t; (9d)
where t has a similar structure to Ej as shown below,
t12|—t12
_ ta3 |—t23
t= (10)
ts—1,5|—ts-1,8
= [t1]E2]-- [ts]

tjj+1 € R™MeG+0 is composed of auxiliary variables
t; € R". The index [ can be given by the expression,

Ny
le{l,....,> M™'}
m=1
The master problem is then written as,
s
min ; ®;(t1)
which simplifies to updating each ¢; using the correspond-

ing lagrange multipliers from the different subproblems as
shown in Fig.2.

(11)

(12)

The generation of t; ;,1 and the master problem update
is illustrated using an example with M = 3 and np = 2.
The corresponding scenario tree is shown in Fig.1 and the
decomposed tree is shown in Fig.3. For such a tree, | =4
and ¢, = {t¥,--- ,tT}. Table 1 shows the ¢; ;41 or each
scenario pair.

Each t; is then updated in the master problem as shown,

t;r =ti+a1( M1+ + /\1,9) (13)
tf =ty + ag(Aoq + -+ Aa3) (14)
t =t3+az(Maa+- -+ dag) (15)
tzr =14+ 064(/\2,6 + 4 /\2,9) (16)

where the subscripts of Ay ; represents the lagrange mul-
tiplier at sample instant k for the j** scenario and « is a
suitable step length. A simple stopping criteria for the iter-
ations between the master problem and the subproblems
could be when the change in ¢ between two consecutive
iterations is less than some small user-defined tolerance e.

By introducing the auxiliary variables ¢;, the first control
input for all the scenarios is w3 ; = t;. The master problem
iterates to drive t; to the optimal input. In the case, where
the master problem does not converge to the optimum
within the required sampling time, the non-anticipativity
constraints are still feasible, thus enabling closed-loop im-
plementation. By warm-starting ¢; in the subsequent time
steps, the optimization problem is expected to eventually
converge to the true optimum.

4. ILLUSTRATIVE EXAMPLE
4.1 Process description

The primal decomposition approach proposed above is
implemented on an oil and gas production optimization
problem. We consider a gas lifted well network consisting
of 2 wells producing to a common manifold and a riser as
shown in Fig.4. More detailed description of the system
can be found in Krishnamoorthy et al. (2016) and the
references therein.

The objective of the optimization problem is to find the
optimum gas lift injection rates for the two wells such that
the the profits from the oil production is maximized and
the cost of gas compression is minimized. The gas-oil-ratio
GOR,; for each well i € {1,--- ,ny}, is assumed to be
uncertain. The nominal value GORy, and the variance o;
are assumed to be known a-priori.

N Ny N
min Z -3, Z Wpoyi, + S Z Wl iy, (17a)
[ i=1 i=1
s.t.
Xk4+1 = f(Xk7 ug, G’ORM) (17b)
GOR; € {GOROZ + 0'1;} (17C)

Vie{l, - ,ny,},ke{l,--- ,N}
where w), is the oil production rate from each well, wy; is
the gas lift injection rate for each well, n,, = 2 is the
number of wells, $§, and $, are the value of produced

Table 1. Construction of ¢; ;.1 for the scenario
tree in Fig.3.

(:J+1)  ne s 41
1,2) 2 (b7, 61"
N
(45) >y
A

) 1
(7,8) 2 T e )r
(8.9) 2 )"
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Well 1
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Well 2

Fig. 4. Schematic of a gas lifted well network with 2 wells
producing to a common riser manifold.

Table 2. The discrete realizations of GOR used
in the optimizer

GOR well 1
GOR well 2

0.08
0.10

0.10
0.12

0.12
0.14

oil and cost of gas compression respectively. The system
constraints are enforced in (17b).

The continuous time differential equations are discretized
into (17b) using a third order direct collocation scheme
in CasADi v3.0.1 (Andersson, 2013) using the MATLAB
R2017a programming environment. The NLP problem is
then solved using IPOPT version 3.12.2 running with
mumps linear solver.

The dynamic optimization problem was solved with a
prediction horizon of N = 15 and a sampling time of
Ts = 5min. A robust horizon of ng = 2 was chosen.
M =3 discrete realizations of the uncertain parameter
GOR chosen are shown in Table.2. For the scenario de-
composition approach, the step length was fixed at o =
[0.0001, 0.0002, 0.0002,0.0002] . The stopping criteria was
defined as when the change in ¢ between two consecutive
iterations is less than e = 0.001.

4.2 Results and Discussion

In this section, the performance of the centralized ap-
proach and the distributed approach using primal decom-
position as proposed above is compared using the case
study described above. For the comparison of scenario
MPC with nominal and worst case MPC for this problem,
the reader is referred to Krishnamoorthy et al. (2017).

In the first simulation, we compare the centralized solution
with the decomposed solution. The true realization of
GOR for the cases is as shown in Fig.5. The total produced
oil for the centralized and decomposed case are shown in
top left subplot in Fig.5. The error between the centralized
and decomposed solution is shown in top right subplot.
The control input (gas lift injection rates for wells 1 and
2) for centralized and decomposed solution is plotted in the
middle left subplot and the corresponding error is plotted
in the middle right subplot. The number of iterations
required for the scenario decomposition to converge at
each time step is plotted in the bottom right subplot.
From the simulation results, it can be seen that the

T4
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Fig. 5. Comparison of centralized approach and decompo-
sition approach.

primal decomposition approach provides similar solution
as the centralized approach. Warm starting the problem
at subsequent time steps reduced the number of iterations
required to converge in the subsequent time steps. The
average computation time for each subproblem was around
1s, as opposed to 11s for the centralized problem.

As mentioned earlier, the main advantage of primal de-
composition over dual decomposition methods is when
the master problem does not converge within a required
sample time. This will lead to violation of the non-
anticipativity constraints in dual decomposition, thus lead-
ing to closed-loop implementation issues. However, pri-
mal decomposition always ensures the feasibility of non-
anticipativity constraints. From the results in Fig.5, it was
seen that the number of iterations varied between 1 and 19
to converge. To emulate the case where the master problem
has to be terminated before it converges fully, the number
of iterations is capped at 5. The simulation setup is the
same as the previous case. In the case of dual decom-
position, prematurely stopping the iterations as done in
this simulation will result in an infeasible solution, which
causes implementation issues.

The results are shown in Fig.6. It can be clearly seen
that the error between the centralized and decomposed
approach is much larger during the first hour compared
to the results in Fig.5. It can also be seen that the error
becomes smaller over time, clearly showing the benefits
of warm starting the master problem. The number of
iterations required is also reduced to 1 when the change in
GOR is constant for a period. This shows that if the the
disturbance is not varying too much, the primal decom-
position is able to converge to the true optimal solution
despite terminating the master problem prematurely. A
close look of the first 1 hour of simulation comparing the
simulation with the number or iteration uncapped (Fig.5)
and capped (Fig.6) is shown in Fig.7.
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Fig. 6. Comparison of centralized approach and decompo-
sition approach with the maximum number of itera-
tions capped at 5.
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Fig. 7. Closer look at the first one hour of simulation
to compare the centralized, decomposed, and decom-
posed with max iterations capped at 5.

5. CONCLUSION

In this paper, we presented an alternative approach to
scenario decomposition using primal decomposition. The
primal decomposition approach always ensures the feasi-
bility of the non-anticipativity constraints, hence enabling
closed-loop implementation, unlike dual decomposition
methods. Warm-starting the master problem eventually
leads to convergence over time. Primal decomposition ap-
proach may thus be an useful way to decompose scenario
MPC for applications with higher sampling rates. The
proposed method was tested on a gas lift optimization
case study. The simulation results clearly demonstrates
the benefit of primal decomposition approach for scenario
decomposition. Simulation results show that the primal
decomposition eventually converges to the solution of the
centralized counterpart despite being terminated prema-
turely.
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Appendix K

Data-driven scenario selection for
multistage NMPC

A main assumption in many works considering multistage model predictive control
is that discrete realizations of the uncertainty are chosen a-priori and that the
scenario tree is given. In this chapter, we focus on choosing the scenarios which is
an important practical aspect of multistage scenario-based NMPC. In particular,
we show how data analytic tools such as principle component analysis (PCA) can
be used to select the scenarios.

This appendix contains the paper that shows how to select the scenarios using
PCA and its application to a thermal storage system with time-varying uncertainty.

e Paper published in 2018 TFAC Conference on Nonlinear Model Predictive
Control (NMPC) 2018, Madison, WI, USA.

e Paper published in 2019 IFAC International Symposium on Dynamic Control
of Process Systems (DYCOPS), Florianopolis, Brazil.
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Abstract: A main assumption in many works considering multistage model predictive control
(MPC) is that discrete realizations of the uncertainty are chosen a-priori and that the scenario
tree is given. In this work, we focus on choosing the scenarios, which is an important practical
aspect of scenario-based multistage MPC. In many applications, the distribution of the uncertain
parameters is not available, but instead a finite set of data samples are available. Given this
finite set of data samples, we present a data-driven approach to selecting the scenarios using
principal component analysis (PCA). Using this approach, the scenarios are carefully selected
such that the conservativeness of the solution can be reduced while still maintaining robustness
towards constraint feasibility. The effectiveness of the proposed method is demonstrated using

a simple example.

Keywords: Multistage MPC, Big data analysis, principal component analysis, MPC under

uncertainty

1. INTRODUCTION

Model predictive control under uncertainty is an active
research area that has received tremendous attention in
the recent past, with developments in several different
approaches to robust and stochastic MPC in the control
literature. Many of these approaches solve an open loop
optimization problem to determine the optimal control
sequence, taking into account the uncertainty. However,
this may not be optimal, since efficient handling of uncer-
tainty requires feedback. In a recent review paper, Mayne
(2014) notes that a better strategy would be to optimize
over different control trajectories (closed-loop optimiza-
tion) rather than a single control trajectory (open-loop op-
timization). One such closed-loop optimization strategy is
the multistage scenario MPC also known as feedback min-
max MPC or scenario-tree MPC (Scokaert and Mayne,
1998; Lucia et al., 2013).

In this approach, the evolution of the uncertainty in
the prediction horizon is described by a scenario tree
generated using discrete realizations of the uncertainty. By
computing different control trajectories for the different
scenarios, the notion of feedback, also known as recourse,
is explicitly taken into account in the receding horizon
implementation. This was later extended to nonlinear
model predictive control by Lucia et al. (2013) in the
framework of robust multistage MPC. The approach has
since then received a lot of interest and has been applied

* D.K, S.S and J.J gratefully acknowledge the financial support from
SFI SUBPRO. M.T, S.S and J.J gratefully acknowledge the financial
support from FME HighEFF. Corresponding author: J.J.

to several chemical process systems (Lucia and Engell,
2013; Marti et al., 2015), autonomous vehicles (Klintberg
et al., 2016), energy systems including power systems, oil
and gas (Krishnamoorthy et al., 2016; Verheyleweghen and
Jaschke, 2017), building climate control (Maiworm et al.,
2015) etc. to name a few.

Most of these works assume that the uncertainty charac-
teristics are known a-priori and that the discrete scenar-
ios are given, for example, based on engineering insight
before the MPC is designed. However, the issue of how to
select the discrete realizations of the uncertainty for the
scenario tree generation is an important practical aspect
that has not been well studied in the control literature.
Nevertheless, the problem has recently been considered in
the operations research community under the topic of mul-
tistage stochastic optimization and is usually applied only
for convex multistage optimization problems assuming full
recourse. For example, Monte-Carlo sampling methods
were considered in Shapiro (2003) and moment matching
methods of the probability density functions (PDF) were
used in Hgyland et al. (2003). Lucia et al. (2013) also noted
that the issue of how to generate the scenario tree for MPC
applications is an important future research direction that
must be addressed to enable practical implementation of
such methods. Recently, a quadrature-based scenario tree
generation was proposed using sparse grids by Leidereiter
et al. (2014).

In many real applications, the probability distribution
function (PDF) or the uncertainty set for the uncertain
parameters is not readily available, but only a finite num-



ber of data samples may be available. Classical stochastic
MPC frameworks make use of such data indirectly to
infer the probability distribution of the uncertain problem
parameters by means of statistical estimation methods.
The estimated probability distribution function is then
subsequently used in the optimization problem (Parys
et al., 2016). Thus classical stochastic MPC problem is
based on this two-step approach:

(1) estimate the PDF from the finite data samples
(2) use the estimated PDF in the optimization problem.

The main issue with this two step approach is that the
estimation step often aims to achieve maximum prediction
accuracy without tailoring it to the optimization problem.
Hence, the estimated probability distribution function it-
self may be uncertain as noted by Parys et al. (2016) (lead-
ing to recent developments in the so-called distributionally
robust optimization). In multistage MPC, the scenario
tree is generated using a finite number of uncertainty
representations. Given finite data samples, the uncertainty
representations may be chosen directly from this data set,
thus releasing the assumption of the uncertainty having
any particular distribution.

Therefore in this paper, we propose a data-driven multi-
stage scenario MPC problem that avoids the estimation
of probability distribution functions and selects discrete
realizations of the uncertainty from the finite set of data
samples using Big data analytics.

In the case of multi-dimensional parametric uncertainty,
the scenario tree becomes large. In such cases, careful se-
lection of scenarios becomes very important to reduce the
conservativeness and keep the computation cost low. Given
a finite set of data for the different parameters, the use of
univariate statistical analysis may fail to detect the rela-
tionship between the different parameters. Consequently,
this often leads us to choose the scenarios assuming that
the parameters are independent of one another. The re-
sulting scenario tree may then span over an unnecessarily
large uncertainty space leading to conservative solutions.
Big data analytics can examine such large and varied
data sets to uncover hidden correlations and can help
us choose the scenarios. Therefore in our approach, the
relationship between the different parameters is exploited
to carefully choose only those combinations of parameters
that are likely to be the true realization of the uncertain
parameters.

In this paper, we address the issue of how to choose the
discrete scenarios from a finite number of data samples and
propose the use of multivariate data mining tools such as
principal component analysis (PCA) to judiciously choose
the scenarios in order to reduce the conservativeness. We
use an example to motivate and demonstrate the use of
PCA in choosing the scenarios for the multistage MPC
formulation.

Methods such as principal component analysis have long
since been used together with model predictive control.
Among these, the two main application areas combining
MPC and PCA has been 1) online performance monitoring
(Loquasto and Seborg, 2003; Qin and Yu, 2007; AlGhaz-
zawi and Lennox, 2009) and 2) model reduction (Maurath
et al., 1988; Wang et al., 2002; Drgona et al., 2018). In

Fig. 1. Schematic representation of a scenario tree gen-
erated for M = 5 models and a robust horizon of
N, =1.

an another interesting approach by Liu et al. (2006), the
MPC framework is used to control the score space of the
PCA to reduce variations in product specifications.

The remainder of the paper is organized as follows. We
introduce the multistage MPC problem in Section 2. Using
a simple example, Section 3 motivates the need for data-
mining techniques for choosing the discrete scenarios and
describes the proposed data-driven multistage scenario
MPC using principal component analysis (PCA). Simu-
lation results for the corresponding multistage scenario
MPC are provided in Section 4 as a proof-of-concept. Sec-
tion 5 provides some useful discussions and future research
directions towards Big data optimization with respect to
multistage MPC before concluding the paper in Section 6.

2. MULTISTAGE MPC

Consider a discrete time nonlinear dynamic system

Xp41 = F(xg, ug, p) 1)

where x; € R™ and up € R™ denotes the states and
inputs at time step k respectively and p € R™» denotes the
vector of constant but uncertain parameters. The objective
is to minimize a performance function J(xg,ux) : R™ x
R™ — R while satisfying constraints g(xx,u;) < 0 using
an MPC with a prediction horizon of length N.

In multistage MPC, branching of the scenarios at each
sample makes the problem size to grow exponentially over
the prediction horizon. In order to curb the problem size,
the scenario tree branching is stopped after a certain
number of samples N, < N known as robust horizon as
justified by Lucia et al. (2013).

Given M discrete realizations of the uncertainty and a
robust horizon of length N, we then have S = MM
discrete scenarios in the scenario tree as shown in Fig. 1.
The resulting multistage MPC problem can be formulated
as,
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Fig. 2. Raw data of the two parameters p; (left subplot)
and ps (right subplot).
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g(xk,j,uk,;) <0 (2¢)
S
> Eju; =0 (2d)
j=1

VEe{l,...,N},Vje{l,...,S}
where the subscript (-),; denotes the time step k and sce-
nario j and w; represents the weight given to each scenario.
(2d) represents the non-anticipativity constraints with

T S
u; = [ugj . "u%—l,]’} € R™N. The non-anticipativity

constraints enforce the fact that all the decisions that
branch at the same parent node are the same. This cap-
tures the real-time decision process correctly, since the
control inputs cannot anticipate the future realization of
the uncertainty, see Krishnamoorthy et al. (2018a,b) for
more details on the structure of E;.

In this paper, we consider a constrained optimization
problem under uncertainty, where the constraint feasibility
must be ensured for any given realization of the uncer-
tainty at the cost of conservativeness. Multistage MPC
was shown to provide robust constraint feasible solutions
whilst being less conservative than min-max approaches
(Lucia et al., 2014).

In the next section, we will present a method for analyzing
the data and choosing appropriate M discrete realizations
of the uncertain parameters p given a finite set of data
samples representing the uncertainty. Note that we require
no knowledge on how the data is distributed, however, we
assume that discrete historical data samples are available
for the different uncertain parameters.

3. DATA-DRIVEN MULTISTAGE MPC
3.1 Motivating example

For the sake of simplicity, let us consider a system with
two parameters (n, = 2) and the finite data samples for
each of the parameters are available as shown in Fig. 2.
At first glance, the data samples tell us that each of
the parameters vary in [—1,1]. With no additional in-
formation, one often tends to assume that the param-
eters are uncorrelated, and assumes for example, a box
uncertainty set. Consequently, the discrete realizations of
the uncertainty from the four corners of the uncertainty
set and the nominal value may be chosen, namely, p; €

Fig. 3. Multivariate plot of the two parameters. The points
p; € {(717 71)7 (17 71)7 (07 0) (717 1)7 (17 1)} are rep-
resented by the black '+’ and the gray shaded area
represents the univariate limits of the two parameters.

{(_17 _1)7 (17 _1)7 (00)7 (_1’ 1)7 (17 1)}7 to get a gOOd rep-
resentation of the uncertainty as shown in Fig. 3 (in gray
shaded area). It is also often argued that a combination
of extreme and nominal values of the all the parameters
must be part of the scenario tree (Lucia et al., 2013).

However, plotting the two parameters against each other
gives us more information about the relationship between
the two parameters, as shown in Fig. 3. One can imme-
diately see that p; selected using independent parameter
variations includes parameter combinations that are un-
likely to be the true realization of the uncertainty. Seeking
robustness against parameter combinations that are not
likely can lead to very conservative and hence suboptimal
operation. The information from the simple multivariate
plot in Fig. 3 gives us more information into the data’s
hidden structure which can be exploited to choose the
different uncertainty realizations that are more likely. This
simple two parameter example already motivates the need
for multivariate data analysis methods when choosing the
discrete scenarios for multistage MPC.

When the number of parameters and the number of
data points increases, it can be cumbersome and time
consuming, if not impossible, to plot two parameters at a
time to find out the hidden structures in the data simply
due to information overload and the effort required to
make each plot. Multivariate data mining approaches that
attempt to find the hidden structure in big data sets can
thus lead to more information that would not have been
otherwise discovered. This can directly be exploited in
the scenario tree generation to select and include only
those parameter combinations that are likely to be the
true realization of the uncertainty.

3.2 Data mining using principal component analysis

Principal component analysis (PCA) is a universal data
mining tool for extracting useful information hidden in
massive amounts of data (Seber, 1984). Principal com-
ponent analysis attempts to explain the variability in a
given set of data by separating the data into so-called
principal components (PC) where each PC contributes to
explaining the total variability of the data. More specifi-
cally, PCA uses an orthogonal transformation to convert



a set of (possibly correlated) data into a set of linearly
uncorrelated principal components. This transformation
is such that the first principal component explains the
largest variance in the data set and the other PCs are
ordered in decreasing component variance. A principal
component therefore points out which variables contribute
most to the observed variability in the data and finds the
relationship between the different variables (Rao, 1964).
In simplest terms, PCA can be thought of as fitting a
multi-dimensional ellipsoid to the data, where each axis of
the ellipsoid represents a principal component (Hotelling,
1933).

Consider a data set with n, number of observations for
each parameter and the data is represented by a data
matrix P € R™*"r_ It is important to note that PCA
is sensitive to the scaling of the variables and hence the
data must be scaled. In addition, mean-centering is also
necessary to ensure that the first principal component
describes the direction of maximum variance (Jolliffe,
1986).

Therefore, let Py € R™*"» be the scaled and mean-
centered data matrix corresponding to P. PCA returns
the bilinear model

P, =ACT (3)
where the matrix A € R™*"r contains the so-called scores
(left-hand eigenvectors). The scores represent the distance
of the different data points from the mean along the direc-
tion of the principal components. The matrix C € R"»*"»
contains the coefficients of the principal components which
represents the weight by which each original data point
should be multiplied to get the component score.

The principal components, scores and coefficients are use-
ful means of understanding the correlation between the
different parameters. This information can be exploited in
choosing the scenarios as explained in the section below.

In the following subsection, we show how PCA can be
used to select scenarios for the multistage robust MPC
framework, which to the best of our knowledge has not
been used before.

3.3 Scenario generation using data

We now describe how the scores and the coeflicients
from the principal component analysis can be used to
select the discrete realizations of the uncertain parameters.
The variance in the scores along the different principal
components can be used to describe the uncertainty set
instead of using the univariate parameter data. To do this,
we pick the data points corresponding to the maximum
and minimum scores along the directions of the different
principal components that explains the variability with
sufficient component variance. Using the coefficients of
the principal components, we can then transform this to
the original parameter space. These points now form the
discrete realizations of the uncertainty that represents the
uncertainty space.

This is further illustrated using the data set for two
parameters shown in Fig. 2 and Fig. 3. The score plot
for this data set is shown in Fig. 4, where the data points
corresponding to the maximum and minimum scores along
first and second principal component directions are shown

Score plot

Principal Component 2
=)
Q

-1.5 -1 -0.5 0 0.5 1 1.5
Principal Component 1

Fig. 4. Score plot along the two principal component direc-
tions. The data points corresponding to the maximum
and minimum scores along the two PC directions are
shown in blue circles.

-1 -0.5 0 0.5
P

Fig. 5. Data plot in the original space, with realizations
corresponding to maximum scores on first and second
principal components marked by red ‘x’. The black
‘X’ correspond to realizations picked by simply taking
the combination of extreme values of the parameters.

in blue circles. These are then transformed into the original
parameter space as shown in Fig. 5 using a red ‘x’. We can
see that the discrete realizations selected using principal
component analysis captures the parameter variations
more tightly than the ones chosen by looking at the
parameter variations independently.

The proposed approach can thus be summarized by the
following steps,

(1) Scale and mean center the data set P to obtain Py.

(2) Perform PCA to compute the principal components
and the scores for each of the data points A and the
corresponding co-efficient matrix C of the principal
components.

(3) Pick out the maximum and minimum scores along the
direction of the different principal components that
sufficiently explain the total variance of the data.

(4) Using the coeflicient matrix, re-transform the selected
scores from step 3 to the original data space.

(5) Generate the scenario tree based on the discrete
realizations of the uncertainty selected in step 4.



4. ILLUSTRATIVE EXAMPLE

In this section, we now compare the effect of the discrete
realizations of the uncertainty on the performance of the
multistage scenario MPC. We consider a simple example,
where the system is given by a model with two states
x = [21,22])7 and one control input u = u and two
uncertain parameters p = [p1,p2]” as shown below,

By = % (—3.5u% + 30u — 1) (4)

. 1
Ty = - (4u + 2py + 4ps + 10 — z2)
with 7 = 5s being the time constant.

The objective is to maximize z; while satisfying con-
straints on xo despite the uncertainty in p; and ps. We
apply the multistage scenario MPC approach (2) with,

o stage cost J(xy j, Uy j) = —T1,
e system model (4) discretized using third order direct
collocation,

e inequality constraint (2c): z2 < 20,

e uncertain parameters discretized into M = 5 realiza-
tions of the uncertain parameter

e non-anticipativity constraints (2d).

‘We choose a prediction horizon of =1 min divided equally
into N = 60 samples and a robust horizon of N, = 2 sam-
ples (25 scenarios). The true realization of the parameters
for the simulation was chosen to be at its nominal value
(0,0). The resulting multistage MPC was implemented in
MATLAB using CasADi algorithmic differentiation tool (An-
dersson, 2013) version 3.1.0, and IPOPT solver (Wichter
and Biegler, 2006) was used to solve the resulting nonlinear
programming problem.

We first simulate the multistage scenario MPC using p;
selected using the parameters variations independently, as
shown in Table.1 (Simulation 1) and in Fig. 5 using black
‘4+’. This corresponds to using the corner points of the
box [-1 1] x [~1 1]. The points at the boundaries that
constitute a combination of the minimum and maximum
values of the uncertain parameters along with the nominal
point (0,0) have been selected to get a good representation
of the uncertainty based on the time series (univariate)
data in Fig.2. This simulation is used as a benchmark.

We then solve the same problem but by replacing p;
which is now selected using principal component analysis
as shown in Table.l (Simulation 2) and Fig. 5 using red
‘x’. The simulation results are compared in Fig. 6. The
left subplot shows x; which has to be maximized, the
right subplot shows zs which must be maintained below
its maximum value of 20. It can be clearly seen from the
simulation results that the scenarios chosen using principal
component analysis is much less conservative than the
scenarios chosen using the parameter data independently.
This is because, in the proposed approach, we do not
consider scenarios in the scenario tree that are not likely
to be the true realization of the uncertainty.

We then simulated the system for 30 runs with different
randomly chosen realizations of the uncertain parameters
in the plant simulator as shown in Fig. 7 (right subplot).
To evaluate the performance, we also plot the integrated
objective (left subplot), which is the objective function J

Table 1. Discrete realizations of p used in the

simulations
7 | Simulation 1 | Simulation 2
P1 p2 P1 P2
1 1 1 0.18 0.44
2 1 -1 0.79 -0.92
310 0 0 0
4 | -1 1 -0.87 0.99
5| -1 -1 -0.18 -0.56
60
S S S )
—

Simulation 2 10

0 20 40 60 0 20 40 60
Time [s] Time [s]

Fig. 6. Simulations results with two different set of scenar-
ios.
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Fig. 7. Monte Carlo Simulations results with different
realizations of the uncertain parameters.

integrated over the entire simulation time of ¢ = 60 min
for each simulation, i.e. integrated objective

t=60
t

=0
It can be clearly seen that by using the scenarios selected
using the PCA method, we are able to improve the
performance for different realizations of the uncertainty
from the given data set whilst being robust feasible.

5. DISCUSSION AND FUTURE WORK

In this paper, we proposed to use data mining approaches
to select the scenarios based on a finite set of data samples.
Note that we have purposefully used a simple example
with two uncertain parameters to clearly demonstrate the
concept to readers of any level of expertise with such
methods. Indeed, the full potential of such data-mining
techniques is realized for large data sets with multidi-
mensional parameters, where it may be difficult to select
the scenarios purely based on engineering intuition and
univariate analysis. For example, consider the building



Component 1

Fig. 8. Data samples for three parameters and the corre-
sponding score plot.

climate control problem, where many uncertain param-
eters such as temperature, humidity, cloud cover, solar
radiation, building occupancy level etc. affect the building
climate control problem. Multistage MPC for the building
climate control was shown to be a promising approach in
Maiworm et al. (2015). One or more of these parameters
affecting the climate control problem may be correlated,
such as cloud cover, solar radiation and temperature. Us-
ing historical data of the weather conditions and building
occupancy levels, multivariate data mining techniques can
be used to appropriately choose the scenarios to reduce the
conservativeness, instead of picking the scenarios based on
a combination of maximum and minimum values of the dif-
ferent parameters. By doing so, one can potentially reduce
the number of scenarios or the span of the scenario tree to
be used in the multistage MPC problem. The application
of the proposed data-based scenario selection approach for
a building climate control problem is an ongoing work.

5.1 Scenario reduction using variability explanation

Methods such as principal component analysis also pro-
vides the percentage of variability explained by the differ-
ent principal components. This information can in addi-
tion, be used to discard scenarios that do not sufficiently
explain the variability in the data, hence reducing the
number of scenarios that must be considered in the mul-
tistage scenario MPC problem. This can help reduce the
problem size. For example, consider a different data set
for three parameters as shown in Fig. 8. The PCA for this
data set returns three principle components, where the
first principle component explains 72.5% and the second
principal component explains 26.9% of the variability in
the data. The third principal component explains only
0.48% of the variability. Based on this, we can then select
the maximum and minimum scores along the direction
of the first and second principle components and discard
the scenario combinations along principal component 3,
since it does not sufficiently explain the variability of the
data. This helps in reducing the number of scenarios to be
included in the scenario tree.

5.2 Weighting in the MPC' cost function

The different scenarios can be weighted in the optimization
problem as shown in (2a). The results from principal
component analysis can not only be used to select the
scenarios from the data, but also provide a weight for the
selected scenario.

As mentioned earlier, the scores provided by the PCA
represent how far a data point is from the mean along
the direction of the principal components. Since the data

matrix is mean-centered, the data points with large scores
are far away from the mean and the vice versa. The weight
given to a data point that is far away from the mean (i.e.
large score) must be low, compared to the weight given
to a data point that is closer to the mean (i.e. low score).
Therefore, the weights for the discrete scenarios selected by
the PCA method are chosen to be inversely proportional
to its score.

5.8 Online update of scenarios

In this paper, we assumed that a finite set of data sam-
ples are available which was used to select the scenarios
offline using principal component analysis. As more data
points become available, PCA can also be used online
to continuously adapt the scenarios to reflect the most
recent data points. This can be especially useful when
the uncertain parameters are time varying in nature. As
more data points become available, this information can be
included to update the different scenarios in the multistage
MPC formulation.

5.4 Other data analytic methods

It must be noted here that PCA does have its limitations,
although it works well with the example considered in this
work. PCA aims to find hidden linear correlations within
the data set, and is thus lacking when data has inherently
nonlinear correlations. Further, it only finds PCs that are
orthogonal to each other, whereas the projections within
the data with highest variance may be nonorthogonal in
nature.

For data that is not linearly separable, other data classi-
fiers such as the nonlinear support vector machines (SVM)
may be used. The nonlinear SVM maps the given data
into a higher-dimensional space using so-called kernel func-
tions, and the transformed data is then linearly separable.
Another avenue for further research in improving upon
the proposed methodology would be to use advanced data
mining techniques for outlier detection. This would be
helpful in eliminating the selection of parameters that
correspond to ‘unlikely’ scenarios and help reducing the
conservativeness of the solution.

In the previous section, we selected the scenarios cor-
responding to the maximum scores along the different
PC directions. This was done in order to ensure robust
constraint feasibility for any realization of the uncertain
parameters from the given data set. Alternatively, the
scenarios can be chosen based on the scores that falls
within some user-defined percentile along the different
PC directions to further reduce the conservativeness by
trading off on the constraint satisfaction. For example, the
scenarios can be chosen using the scores that fall within
the 90th percentile in order to reduce the conservativeness
to ensure constraint satisfaction with a given probability
(analogous to using a chance constrained MPC formu-
lation). Alternatively, one may also use the associated
probabilities of the data points to appropriately choose
the scenarios. Note that more rigourous analysis must be
carried out to get an equivalent performance as using a
chance constrained optimization, which is another useful
future research direction.



6. CONCLUSION

To conclude, we have motivated the need to develop
methods to appropriately choose the scenarios based on
a finite sample of historical data. Using a simple example
we have demonstrated the concept of how data mining
techniques such as principal component analysis can be
used to uncover hidden structures in the data, which can
then be exploited in choosing the necessary scenarios and
discarding the scenarios that need not be considered in
the optimization problem. This leads to a less conservative
solution as demonstrated in the simulation example. We
have also provided some discussions on possible research
avenues towards using data mining techniques for scenario
selection and hope to stimulate further research in this
direction.
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Abstract: Multistage model predictive control (MPC) is based on the enumeration of scenarios
that represent the uncertainty in the system. Scenario selection is important in multistage MPC
since the choice of scenarios determines the degree of conservativeness of the optimal solution. We
propose a data-driven approach based on principal component analysis (PCA) to dynamically
select the scenarios, leading to reduced conservativeness. When time-varying uncertainty is
considered, PCA can be performed online to select new scenarios whenever the uncertainty
data is updated. The results of the approach are demonstrated for a two-plant system with a
thermal storage tank. The solution obtained is less conservative than with standard multistage
MPC. This is because the online PCA-based approach accounts for the most recent, and thus

more representative, uncertainty realizations.

Keywords: Multistage MPC, online PCA, scenario selection, parametric uncertainty

1. INTRODUCTION

A lot of energy in chemical process plants is lost in the form
of industrial waste heat. In industrial clusters of multiple
process plants, energy resources such as steam, cooling
water, raw materials, etc. are often shared. Optimal energy
efficiency in such a system demands flexible operation
of the plants, so that surplus energy from one plant is
transferred to another plant in need of it. The plants
in such clusters can act both as sources of heat (those
having surplus heat) and sinks of heat (those having energy
demands). Examples of industrial clusters in Scandinavia
include Mo Industripark in Norway and Kalundborg Sym-
biosis in Denmark. The surplus heat streams from different
sources are available at varying temperatures. Moreover,
supply of surplus heat and energy demand is often asyn-
chronous, while also operating at differing time scales. To
mitigate some of these issues, employing a thermal energy
storage system is an attractive option. Such a system
creates a buffer between the energy suppliers and users.
For example, domestic thermal energy storage in buildings
was considered by de Oliveira et al. (2016).

Process plants often exhibit highly nonlinear dynamics.
In addition, they also have to contend with disturbances
in process parameters like temperatures and flow rates
during operation. In the context of energy exchange, this
consequently results in an uncertain yield/consumption of
surplus heat on the supply/demand side. The existence
of such uncertainties presents a significant challenge for
operating these plants at an optimal point.

* M.T and J.J gratefully acknowledge the financial support from
FME HighEFF. D.K and J.J gratefully acknowledge the financial
support from SFI SUBPRO. Corresponding author: J.J.

Model predictive control (MPC) is a powerful tool for op-
erational optimization that is widely used in the process in-
dustry. However, nominal MPC does not explicitly model
the uncertainties in the system. To rigorously account for
uncertainty, methods classified under “Robust MPC” have
been receiving some attention in control literature. Based
on the theory of robust optimization, the so called min-
max MPC approach (first proposed by Campo and Morari
(1987)) minimizes the cost of the worst-case realization of
the uncertainty. The notion of feedback in min-max MPC
was first introduced by Scokaert and Mayne (1998). In
this approach, the closed-loop optimization is sought over
different sequences of control inputs for different realiza-
tions of the uncertainty. This idea was further extended
by Lucia et al. (2013) for multistage nonlinear MPC,
based on the concepts of stochastic programming. Here,
the evolution of uncertainty is assumed to be modeled
by a scenario tree, which is generated from the discrete
realizations of the uncertainty. By optimizing over each
branch of this scenario tree, the idea that new information
will be available in future stages is explicitly accounted
for.

The convention in multistage MPC is to assume that the
uncertainty information is known a-priori, that it is known
perfectly and that it is discrete. However, the selection of
scenarios that build the scenario tree is very important in
the practical implementation, and has not been sufficiently
addressed in the context of multistage MPC. Traditionally,
scenario-based stochastic programming methods involve
a two step process: estimating a probability distribution
function (PDF) from a finite data-set, and subsequently
discretizing the PDF to generate scenarios (Birge and
Louveaux, 2011). Another approach is to skip the PDF



estimation step and go directly from data to scenarios,
i.e. the discrete scenarios can directly be chosen from the
available data samples. After all, the different data samples
represent the discrete measurements of uncertainty in the
system. Ideally, then, any set of selected scenarios should
be a subset of this data set for the best representation of
uncertainty.

Having decided on selecting scenarios directly from avail-
able data, the next question to consider is which data sam-
ples to select as scenarios. The size of the multistage MPC
problem increases exponentially with increasing number of
scenarios. Hence it is important to capture maximum un-
certainty information with minimum number of scenarios,
in order to be computationally efficient.

Uncertain parameters in a system often exhibit correla-
tions. Sampling methods like the Monte Carlo or the Latin
hypercube sampling emphasize randomness of sampling to
maximize information, but ignore correlations. Therefore,
these scenario selection methods may not be the best if
we want to exploit the correlation to reduce the number
of scenarios. To overcome this, multivariate data-analysis
methods like the principal component analysis (PCA)
can be used to detect any hidden correlations within
the available data samples. The scenarios chosen using
these multivariate methods explicitly take into account the
interdependence between the parameters. Dimensionality
reduction methods such as PCA explain the parametric
variation in a data set in fewer dimensions - referred to
as principal components. This means that lesser number
of scenarios are able to effectively describe the parametric
variation in the system, leading to a compact scenario tree
formulation.

In this paper, we propose an online PCA-based approach
for systems with time-varying uncertainty, that can be
performed dynamically in the multistage MPC implemen-
tation. The idea is to select new scenarios online whenever
new uncertainty data becomes available, and to systemati-
cally reformulate the optimization problem in anticipation
of a predicted change in uncertainty. This can provide
an additional hedge against uncertainty, since the “lat-
est” data is constantly being used to select the scenarios.
Moreover, we propose that if the parametric variation can
be explained by a small number of “dominant” principal
components (shown by PCA), it suffices to select the sce-
narios only along these components to sufficiently explain
the uncertainty. The proposed approach is applied to a
simple thermal energy storage model.

The paper is structured as follows. Section 2 describes
the formulation of the multistage MPC problem and the
dynamic scenario selection strategy using PCA. Section
5 illustrates the modeling for energy storage used as a
case study for the demonstration of the multistage MPC.
Simulation results are presented in Section 6 and the
conclusions and recommendations are stated in Section 7.

2. PRELIMINARIES - MULTISTAGE MPC

Consider sets 8§ = {1,...,S}and J = {0,..., N—1}, where
S is the total number of scenarios and N is the length
of the prediction horizon. The scenario-based multistage
MPC problem can be formulated as follows:
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Fig. 1. Illustration of the scenario tree at time t; with
M = 2 realizations of uncertainty. The prediction
horizon N = 4 and the robust horizon N, = 2.
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The states and inputs for the ith scenario and jth time step
are denoted by x; ; € R™* and u; ; € R™ respectively. The
uncertain parameters for the ith scenario are denoted by
m; € R". Equation (1a) represents the cost to minimize,
where w; is the weight assigned to the ith scenario and
¢ : R™ x R™ — R is the objective function. Equation
(1b) represents the initial condition constraints, with x#
being the vector of starting points for the states. Equation
(1c) represents the model of the nonlinear dynamic system
described by the vector of state equations f : R"= x R™x x
R"* — R™, and Equation (1d) represents the constraints
in the system, denoted by g : R"* x R™» — R.

Equation (1e) represents the non-anticipativity constraints,
which enforce that all control inputs applicable to branches
of the same node, are equal. This is because, in real
applications, the uncertainty is realized after the control
input is applied. In other words, one cannot anticipate
how the scenario tree is going to branch out at a node
before a decision is taken at that node. The reader is
referred to Krishnamoorthy et al. (2018a) for details on
the construction of the non-anticipativity matrix E;.

To curb the rapid growth of the scenario tree, the uncer-
tainty is assumed to be constant after a certain point in
the prediction horizon so as to reduce the computational
cost, as justified by Lucia and Engell (2013). This point
represents the so-called robust horizon of the problem,
with a length N,.. The scenario tree evolution showing the
prediction horizon and the robust horizon is illustrated in
Fig. 1. Therefore if we have M discrete realizations of the
uncertainty, then this results in S = M scenarios.



3. DYNAMICALLY ADJUSTING THE
SCENARIO-TREE

Many systems have to contend with uncertainty that
is time-varying. In this paper, we propose to update
the scenario-tree dynamically to acknowledge this time-
varying uncertainty. Our approach takes into account that
the considered scenarios may change during the operation
of the system. That is, the uncertainty may have very
different characteristics during different points in time.

For example, consider the intra-day variation of energy
demand in a district heating network, with high peaks
in the morning and the afternoon. Clearly, the scenarios
depicting the demand during the peak hours will be dif-
ferent from the scenarios during low and medium demand
periods.

To reflect these changes, the scenario-tree can be updated
during operation as new uncertainty data becomes avail-
able. We propose two update strategies for the scenario-
tree:

(1) Adjust the scenarios, i.e the parameter values, at
every time step as new information becomes available.

(2) Extend the length of the robust horizon at the current
time step if a change in uncertainty information at a
future time step can be anticipated.

The first strategy recognizes that multistage MPC is
performed on a moving horizon, where the optimization
problem is repeatedly solved at every time step with an
updated initial condition. We propose, in addition, to also
update the scenarios themselves at every time step in
recognition of newly available uncertainty information.

For instance, assume that at time tg, the scenario-tree is
as given in Fig. 1. This tree is used in the multistage-
MPC controller until updated information is available. If
at time t5 new information about the uncertain parameters
becomes available, the scenario-tree for the optimization
problem will be updated using the new data. This updated
scenario-tree will be used in the multistage MPC imple-
mentation from time ¢5 until newer information about the
scenarios becomes available.

With respect to the second strategy, if it is known a-priori
that uncertainty data will be updated at a future time
step in the horizon, the robust horizon can be accordingly
modified to take this into account. Farther way from the
point of update, a shorter robust horizon can be used to
reduce computational burden. As the predicted point of
update comes closer, the robust horizon can be extended
to include the new scenarios reflecting the update.

Consider again the scenario tree shown in Fig. 1. Here
N, = 2 at time tg. However, if it known at time to that new
uncertainty information is available at at time t5, then the
robust horizon can be increased from N, = 2 to N, = 3 at
time ¢y, in order to accommodate this extra branching at
time to. This would thus lead to consideration of additional
scenarios (in this case, 2% = 8 scenarios).

These updates of scenarios and the robust horizon can be
done dynamically within multistage MPC. The procedures
can be performed via online computations at any time step
which presents new information about the uncertainty.

— First PC

— Second PC

Fig. 2. Selected scenarios, marked by ‘X’, correspond to
the maximum and minimum scores along the two
principal components.

4. DATA-DRIVEN SCENARIO SELECTION

Given a data set representing the uncertain parameters,
the naive approach of selecting scenarios would be to take
the combinations of the minimum and maximum values
of each parameter to maximize uncertainty information.
Similar to random sampling methods, this approach ig-
nores parameter correlation. PCA can be leveraged to judi-
ciously choose those samples from the set that incorporate
information about correlations between the parameters.
This is especially true for large data sets with many param-
eters where detecting correlations between parameters, if
they exist, is impractical via simple tools such as univariate
analysis.

PCA employs a mathematical procedure that transforms a
data set with multiple, possibly correlated, variables into a
lesser number of uncorrelated variables, known as principal
components. Essentially, it is an orthogonal linear trans-
formation of the data set into a new coordinate system
with each new axis representing a principal component.
The first principal component points in the direction of
maximum variance within the data set. Subsequent prin-
cipal components account for as much of the remaining
variance as possible, in decreasing order. This dimension-
ality reduction helps explain the parametric variation in
the data using smaller number of components.

Consider a data matrix X € R™ x R"~ where rows of
the matrix represent observations and columns represent
the (possibly correlated) parameters. To remove arbitrary
biases from the measurements, the data is mean-centered
and scaled, resulting in the data matrix X,. € R™ x R"~.
Performing PCA on X, results in the output Y € R™ x
R"=, with 7’ < , according to:

Y =X,.P (2)
where, P € R"* x R" is the projection matrix with
each column representing a principal component. In other
words, each column of P contains the coefficients that
project the original data point to the new coordinate
system (Y) of 7/ principal components. These are also
referred to as loadings. The matrix Y is called the scores
matrix. The score of a data point along a principal com-
ponent represents the distance of that data point from



the mean along the direction of that principal component.
For an overview of PCA and its algorithms, the reader is
referred to Jolliffe and Cadima (2016).

Scenarios can be chosen by leveraging information from
this transformed data set. Since the principal components
are orthogonal to each other, scenarios can be chosen
along the direction of these principal components to ob-
tain maximum uncertainty information, as demonstrated
in our previous paper (Krishnamoorthy et al., 2018b).
For example, the chosen scenarios could correspond to
the maximum and minimum scores along the dominant
principal components that explain the variations in the
data sufficiently, as shown in Fig. 2.

The PCA may result in principal components such that
some components dominate over the others, in terms
of how much data variability they explain. We propose
to select scenarios only along these dominant principal
components, since the chosen scenarios can then account
for maximum variation in the uncertainty.

For instance, Fig. 2 shows scenarios (marked by red and
blue “X”s) selected along both the principal components.
Instead, since it can be seen clearly that the first principal
component is dominant !, scenarios can be chosen only
in that direction (marked by red “X”s). Thus, instead
of choosing 4 scenarios, only 2 scenarios can encompass
most of the parametric variation in the data shown in
Fig. 2, without any significant loss in explained variability.
Reducing the number of scenarios in this manner can
thus make the size of resulting multistage MPC problem
significantly smaller, reducing the computational effort.

5. CASE STUDY: SIMPLE ENERGY STORAGE
SYSTEM

We consider a simple two-plant thermal storage system,
with one plant being the supplier of heat (plant A) and
the other being the consumer (plant B). A thermal storage
tank acts as a buffer between the two plants to facilitate
the energy exchange. The tank interacts with the two
plants via heat exchangers, as shown in Fig. 3.

Further, the tank can directly be heated up via a local
heating source. For example, in the context of industrial
clusters, surplus heat from the flue gases that result from
various chemical processes can be used to heat up the tank.
Thus, the local heating source is considered inexpensive.
If the energy in the tank is insufficient to meet the
energy requirements on the demand side, the plant has to
purchase the excess energy from the market. Energy from
the market is usually much more expensive than the local
heating source. The objective is to operate the system such
that the total cost of energy purchase is minimized.

5.1 Process model

The heat exchangers are modeled as devices with two
chambers representing the hot side and the cold side.
Both chambers of the heat exchanger, as well as the
tank itself, are considered to have the same temperature
throughout their volumes. Thus the temperatures exiting

1 For the data shown in Fig. 2, the first principal component explains
96.4% of the variance.
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Fig. 4. Schematic of the model. The states, inputs and
disturbances are shown in red,blue, and green respec-

tively.
Table 1. Model parameters
Symbol Value Symbol Value
Vin 100 m? % 0.5 m3
Atn 100 m? A 300 m?
Utn 0.5 kW/m2K U 0.5 kW/m?K
(9ah) maz 1m3/s (@ah)min 0m?/s
(9ac) maz 1 m3/s (9ac)min 0m?/s
(@bh) maz 1m3/s (@bh) min 0m?/s
(Be) maw 1m?/s @) min 0m3/s
(Tt")maw 100 °C (Ttn)mln 30 °C
(Qtn) max 5000 kW (Qtn) min 0 kW
Toamb 20 °C Qdemand 5000 or 10000 kW
Pin 5 units/kW Pk 1000 units/kW
p 1000 kg/m? Cp 4.18 kJ/kgK

these volumes are considered to be same as those inside the
volumes. The driving force for the heat exchange between
the two chambers is the difference in the temperatures of
the two chambers. Further, we consider hot water as the
fluid for heat exchange.

Both heat exchangers have an area A, volume V and
heat transfer coefficient U. The tank has a volume Vj,,
a surface area of Ay,, and experiences heat loss with a
heat transfer coefficient Uy,. The density and specific heat
capacity of water are denoted by p and C), respectively.
Temperatures on the hot and cold sides of heat exchangers
on both sides (plant A and plant B) are T, ,, Tq,¢, Tp,» and
Ty, respectively. The tank temperature is T},, whereas
the ambient temperature is T},,,p- Inlet temperatures from
plant A and plant B are T, ;, and T3 ;, respectively The
flow rates on either side of the heat exchangers are gq,p,
Ga,cy @v,n and gy - respectively. Local heat supply is denoted
by @, and the energy purchased from the market is
denoted by @,k The model parameters are shown in
Table 1.



Fig. 4 shows the schematic with the different states, inputs
and disturbances in the model. The exit temperatures from
the chambers of heat exchangers and the tank are the
states x. Flow rates on either sides of the heat exchanger,
along with the local and market heat supply, are the inputs
u. The inlet temperatures from the two plants are the
disturbances. The energy balances on the hot and cold
chambers of the heat exchangers, and on the tank, become:

dT, n
dt
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5.2 Uncertainty description

We consider uncertainties in the form of disturbances in
the system, Tg i, and T sy, the inlet temperatures from the
two plants. The temperature data from various streams
in a process is usually logged. A period of 24 hours is
considered for this uncertainty data. Further, we consider
that the inlet temperature distributions are different for
three distinct phases of the day (12 AM to 8 AM, 8 AM
to 4 PM and 4 PM to 12 AM). We assume that historic
data is available for the temperature distributions for these
phases.

The plants operate at higher temperatures during the
day phase and lower temperatures during the evening and
night phases. Further, it is reasonable to expect that these
plant temperatures are correlated to each other. This is
because the periods of high and low activity in plants in
an industrial cluster are similar. The scatter plot of the
two inlet temperatures is shown in Fig. 5, for a series of
historic data.

5.3 Formulating the multistage MPC' problem

For a given energy demand profile for plant B, the eco-
nomic objective is to minimize the cost of energy. In
context of the multistage MPC formulation (1), the cost
function for ith scenario and jth time step can then be
stated as:
Ptn(Qtn)@j + Pk, (ka)i,j

where P;,, and P, are the prices of the local energy supply
and the market supply respectively.

The starting values of all temperatures are imposed as
the constraints (1b). The model equations (1c) of the
multistage MPC formulation are obtained by discretizing

80
6 75
& 70 g 12 AM to 8 AM
o 8 AM to 4 PM
65— - 4PMto 12 AM
10 12 14 16 18 20

Tb.m (C>
Fig. 5. Uncertainty data - inlet temperatures from the
plants for different phases of the day. It can be
seen that the temperatures are correlated differently
throughout each phase of the day.

the energy storage model equations (3) using collocation
on finite elements. These form the equality constraints of
the problem. Bounds on the temperatures, flow rates, and
energy supplies are imposed for each scenario and time
step, and these form the inequality constraints (1d). In
addition, the non-anticipativity constraints (le) are also
imposed.

Recall that plant B purchases energy from the market to
satisfy the demands in excess of what can be satisfied solely
through the storage system. For the ith scenario and jth
time step, this can be formulated as the constraint:

(Q"Lk)’i,j + pCqu,c((Tb,c)i’j - (Tb,’in)i’j) 2 Qdemand

where Qgemand 1s the total energy demand of plant B. This
imposes the condition that the energy purchased from the
market in addition to the energy from the storage system
must at least be equal to energy demand from the plant.

6. RESULTS

The multistage MPC problem is formulated with N = 24
hours (finite elements) and N, = 1 hour, with control
action changing every hour. JuMP (version 0.18.2) (Dun-
ning et al., 2017), a modeling tool within the framework
of Julia (version 0.6.2) (Bezanson et al., 2017) program-
ming language, is used to implement the multistage MPC
problem. The resulting nonlinear optimization problem
is solved using Ipopt (Wichter and Biegler, 2006). The
results are divided into the following two parts:

(1) Comparison of a scenario selection using a data-
driven PCA and a conventional “BOX” approach,
with a constant N, = 1.

(2) Studying the effect of dynamically adjusting N,. closer
to an anticipated change in the uncertainty data,
while using PCA for scenario selection.

6.1 Data-driven vs conventional scenario selection

For comparison, the dynamic scenario selection is done
with two methods. In the first method, a conservative
approach is used, selecting scenarios as the four corner
points from the box that encompasses all the uncertainty
data over each 8-hour phase during the day. Essentially,
these scenarios represent the combinations of the minimum
and maximum of the data set along each dimension. A
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Fig. 6. The energy supplies and the tank temperature
across the 24-hour period, for the two methods.

fifth scenario is chosen to represent the mean value along
each dimension. This approach is referred to as the “BOX”
method. The BOX method does not account for any
correlations between the uncertain inlet temperatures.

In the second, “PCA” method, the scenarios are chosen
by performing PCA dynamically over the data sets that
are relevant for the corresponding phases of the day
(shown by different colors in Fig. ??7).The PCA results
in two principal components for each data set, with the
first principal component explaining 96.51% of the total
variability for the 12 AM to 8 AM data, 89.72% for the
8 AM to 4 PM data, and 91.84% for the 4 PM to 12
AM data. Since the first principal components explain a
large fraction of the variance in the data, two scenarios
are selected corresponding to the minimum and maximum
scores along this principal component. A third scenario is
chosen to represent the mean value along each dimension.

We consider the uncertainty to be time-varying over the
MPC horizon, where the “true” realization of the un-
certainty in the simulator is chosen randomly for each
hour from the corresponding data set. The simulation is
considered for the 24 hour horizon from 12 AM to 12 AM.
The demand is constant at 5000 kW throughout the day,
except for 7 AM to 9AM and 3 PM to 5 PM, when there
is a peak demand of 10,000 kW.

The results of the optimization are shown in Fig. 6. It can
be clearly seen that for the BOX method, the solution
is more conservative. The tank is heated to a higher
temperature for satisfying the same demand profile across
the day. Similarly, the heat supplied to the tank is also
more compared to the PCA method. Also, the data-driven
approach leads to lower purchases of the expensive energy
from the market during peak demands.

Moreover, the simulations were repeated 30 times for the
time-varying uncertainty case. The “true”” set of uncer-
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Fig. 7. The averaged integrated cost for 30 different
simulation runs.

tain parameters in each simulation was a randomly chosen
subset of the available data set. The performance for each
simulation run was evaluated based on the integrated ob-
jective function, which sums up the values of the objective
cost for all stages and scenarios. The results are presented
in Fig. 7, where it can be seen that the PCA method
outperforms the BOX method with a lower cost. Note that
the integrated objective costs are divided by the respective
number of scenarios chosen for each method for a fairer
comparison.

6.2 Dynamically adjusting the robust horizon

Here, the simulations were run such that the multistage
MPC was implemented using two N, cases. In the first
case, the robust horizon was kept constant throughout the
simulation at N, = 1. This is referred to as the “NR1”
case.

In the second case, the robust horizon was dynamically
adjusted (switched) from N, = 1 to N, = 2, one hour
before the night-to-morning and morning-to-evening phase
changes. This change was implemented only for the cor-
responding next one time step, and subsequently reduced
back to N, = 1 for later time steps. Thus, N, = 2 was
used for the MPC time steps at 7 AM and 3 PM. This is
because it is known that, at these times, the uncertainty
data will be updated in one hour due to change in phase;
and the robust horizon length of 2 hours reflects this. This
is denoted as the “NR2” case.

The scenario selection was done via PCA for both cases.
Moreover, the energy demand was considered to be con-
stant at 5000 kW throughout the 24-hour period (i.e. no
peak heating). The results are shown in Fig. 8

It can be seen that by dynamically extending the robust
horizon (NR2 case), the optimization anticipates the up-
coming rise in inlet temperatures by pre-empting the local
tank heating at 7 AM (shown by a higher Q4 in the NR2
case than in the NR1 case). This can also be seen from
the tank temperature profile, where the temperature of
the tank rises higher in the NR2 case at 7 AM than in the
NRI1 case. Consequently, the market purchase at 8 AM is
smaller in the NR2 case, leading to lower cost. During the 4
PM phase change, the temperatures are dropping anyway
so market purchase is unnecessary. This leads to the same
temperature and heating profiles in the evening phase for
both NR1 and NR2 cases. This is because, at this time,
the tank has enough energy to satisfy the energy demand
of Plant B.
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Fig. 8. The energy supplies and the tank temperature
across the 24-hour period, for N,. = 1 and N, = 2.

7. CONCLUSION AND FURTHER WORK

The case study of the thermal storage tank demonstrates
that the same energy demand profile can be satisfied by
heating the tank less if the scenario selection is data-driven
and dynamic. Not only does the tank operate at a lower
temperature, but the cost of operation is also significantly
lower.

In addition, extending the robust horizon dynamically
leads to the consideration of future changes in inlet tem-
peratures by the MPC algorithm. This prompts preemp-
tive control action so that the tank is heated up in an-
ticipation even before the uncertainty data changes. The
result is that the market purchase is reduced when the
energy is demanded at a higher inlet temperature.

To conclude, we have demonstrated that an online PCA-
based, dynamic scenario-tree adaptation approach leads
to solutions that are less conservative while still hedging
against the uncertainty. Moreover, the approach involves
solving an optimization problem of a smaller size since
less scenarios, chosen only along the dominant principal
component are needed to describe the uncertainty.

With respect to further work in this domain, multistage
MPC could be combined with tube-based MPC in a sim-
ilar fashion as described in Subramanian et al. (2018) to
seek robustness against the uncertainty in the direction
of the “insignificant” principal components, which were
discarded in scenario selection procedure in this work. In
terms of modeling, a thermal storage system with multiple
suppliers and consumers of energy is more realistic. Fur-
ther, the effect of uncertain time-varying peak loads on the
optimal operation (i.e. using scenarios to describe varying
magnitudes of peak loads) can be studied.

REFERENCES

AlGhazzawi, A. and Lennox, B. (2009). Model predictive
control monitoring using multivariate statistics. Journal
of Process Control, 19(2), 314-327.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.
(2017). Julia: A fresh approach to numerical computing.
SIAM Review, 59(1), 65-98.

Birge, J.R. and Louveaux, F. (2011). Introduction to
Stochastic Programming. Springer Publishing Company,
Incorporated, 2nd edition.

Campo, P.J. and Morari, M. (1987). Robust model pre-
dictive control. In 1987 American Control Conference,
1021-1026.

de Oliveira, V., Jischke, J., and Skogestad, S. (2016).
Optimal operation of energy storage in buildings: Use
of the hot water system. Journal of Energy Storage, 5,
102 - 112.

Dunning, I., Huchette, J., and Lubin, M. (2017). Jump:
A modeling language for mathematical optimization.
SIAM Review, 59(2), 295-320.

Jolliffe, I.T. and Cadima, J. (2016). Principal component
analysis: a review and recent developments. Philosoph-
ical transactions Series A, Mathematical, physical, and
engineering sciences.

Krishnamoorthy, D., Foss, B., and Skogestad, S. (2018a).
A distributed algorithm for scenario-base model pre-
dictive control using primal decomposition. IFAC AD-
CHEM 2018 (In-Press).

Krishnamoorthy, D., Thombre, M., Skogestad, S., and
Jaschke, J. (2018b). Data-driven scenario selection for
multistage robust model predictive control. In 6th IFAC
Conference on Nonlinear Model Predictive Control (In-
Press). IFAC.

Loquasto, F. and Seborg, D.E. (2003). Model predictive
controller monitoring based on pattern classification and
pca. In American Control Conference, 2003. Proceedings
of the 2003, volume 3, 1968-1973. IEEE.

Lucia, S. and Engell, S. (2013). Robust nonlinear model
predictive control of a batch bioreactor using multi-stage
stochastic programming. In Control Conference (ECC),
2013 European, 4124-4129. IEEE.

Lucia, S., Finkler, T., and Engell, S. (2013). Multi-stage
nonlinear model predictive control applied to a semi-
batch polymerization reactor under uncertainty. Journal
of Process Control, 23(9), 1306-1319.

Maurath, P.R., Laub, A.J., Seborg, D.E., and Mellichamp,
D.A. (1988). Predictive controller design by principal
components analysis. Industrial & engineering chem-
istry research, 27(7), 1204-1212.

Scokaert, P. and Mayne, D. (1998). Min-max feedback
model predictive control for constrained linear systems.
IEEE Transactions on Automatic Control, 43(8), 1136
1142.

Subramanian, S., Lucia, S., and Engell, S. (2018). A syner-
gistic approach to robust output feedback control: Tube-
based multi-stage nmpc. In 10th IFAC International
Symposium on Advanced Control of Chemical Processes,
494-499. TFAC.

Wichter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106(1), 25-57.






Appendix L

Multistage model predictive control
with online scenario tree update
using recursive Bayesian weighting

Once the scenarios in the multistage formulation are chosen, the scenario tree is
often kept fixed. This appendix contains the paper, where we propose an “adaptive-
robust” idea to update the scenarios using a recursive Bayesian weighting approach,
thereby gradually shrinking the uncertainty set.
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Multistage Model Predictive Control with Online Scenario Tree Update
using Recursive Bayesian Weighting

Dinesh Krishnamoorthy, Sigurd Skogestad and Johannes Jidschke

Abstract— This work deals with a nonlinear multistage
model predictive control (MPC) formulation, where the future
propagation of the uncertainty in the prediction horizon is
represented via a discrete scenario tree. The scenario tree
is often generated using finite realizations of the uncertainty
sampled from an uncertainty set or a probability distribution
function. Once the scenarios are chosen, the scenario tree is
often kept fixed for all the iterations. In this paper, we propose
to update the different discrete realizations of the uncertainty
in the scenario tree using a recursive Bayesian weighting
approach. We show that by gradually shrinking the uncertainty
set, we can further reduce the conservativeness of the closed-
loop solution. The effectiveness of the proposed method is
demonstrated using an oil and gas production optimization case
study.

I. INTRODUCTION

Model predictive control is a popular optimal control
method in the process industry due to its ability to handle
multivariable constrained systems. However the performance
of MPC is strongly affected by the quality of the prediction
model used by the MPC. Models are almost always subject
to uncertainties due to imperfect knowledge of the system
or model simplification. In the presence of constraints, addi-
tional robustification must be introduced in order to ensure
robust constraint satisfaction despite the uncertainty.

To this end, there has been several developments in min-
max approaches [1], where the optimal input trajectory is
computed by minimizing the cost of the worst case real-
ization of the uncertainty. Although this ensures robust con-
straint satisfaction, this often leads to overly conservative and
hence suboptimal solutions. This is because the optimization
is performed for the worst-case scenario in an open-loop
fashion without any notion of feedback.

In a recent review paper [2], the author argues that
effective handling of uncertainty requires feedback mod-
els and hence the control trajectory computed by solving
an open loop optimization problem is not optimal. Multi-
stage scenario-based MPC, also known as feedback min-
max MPC, is one such closed-loop optimization approach
introduced in [3] and later extended to nonlinear systems
in [4]. Here, the future evolution of the uncertainty in the
prediction horizion is represented by a discrete scenario
tree. Different control trajectories are then computed for
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the different scenarios. In other words, the multistage MPC
formulation explicitly takes into account the fact that new
information will become available in the future and new opti-
mal control input will be re-computed. This can be envisaged
as a player’s decision making process in an evolutionary
strategic game. Instead of preparing a single sequence of
optimal moves, we compute several backup moves depending
on the future evolution of the uncertainty throughout the
game. This concept is commonly known as recourse in
the stochastic programming literature and is an important
property in optimal decision making under uncertainty.

The multistage scenario-based MPC formulation has been
shown to be less conservative than traditional min-max
approaches for various applications, see for e.g. [4],[5], [6],
[7] to name a few. Nevertheless, the solution provided by
the multistage MPC will be conservative in order to ensure
robust constraint satisfaction for all the scenarios considered
in the scenario tree. A common approach to choosing the dis-
crete realizations of the uncertainty in the scenario tree is to
use a combination of the maximum, minimum and nominal
values of the uncertain parameters. If the assumed range of
the uncertain parameter is large, the resulting span of the
scenario tree is also large, and consequently the solution
provided will be conservative, albeit less conservative than
traditional min-max MPC.

For problems with constant but unknown parameters,
i.e. time-invariant uncertain parameters, it may be desir-
able to approach the problem from an adaptive framework
rather than a robust framework[8]. Typical adaptive control
frameworks involve the use of parameter estimators that
adapts the uncertain parameters online such that it converges
asymptotically to the true system. However, developments in
adaptive MPC have been rather limited. Parameter estimation
algorithms also often requires the uncertain parameters to be
observable from the measurements, which may not always
be the case.

In this paper, we propose to adapt the uncertainty char-
acteristics (i.e. the span of the uncertain parameters) instead
of adapting the parameters directly. The idea of updating
the uncertainty characteristics instead of using a parameter
estimator itself is not entirely new. Similar ideas of adaptive
robust approaches were also explored in [8], [9], [10],
where the uncertainty set containing all possible values of
the uncertain parameters are estimated instead of adapting
the parameters directly. The different works used different
approches to update the uncertinty sets, such as ensemble
Kalman filter (EnKF) or set-based guranteed parameter esti-
mation etc. In this paper, we propose an alternative appraoch



to updating the uncertainty set that does not requre the use
of a parameter estimation algorithm. Instead, we propose to
use the recursive Baysian probability to update the scenario
tree.

Using the process measurements and the model predictions
from the different scenarios, we compute and assign a
Bayesian weight for the different scenarios. The Bayesian
weights are then used to shrink the span of the scenario
tree by updating the scenarios with a very low weight. In
other words, by computing Bayesian weights for the differ-
ent discrete uncertainty realizations, we gradually eliminate
values from the uncertainty set that do not explain the ob-
served measurements with sufficient likelihood. This results
in shrinking the span of the scenario tree over time and
hence further reduce the conservativeness from the standard
multistage scenario-based MPC.

Recursive Bayseian weighting approach such as the one
used in this work were also used in multiple model predictive
control (MMPC) formulations in works such as [11] and [12]
to interpolate between different models from a model bank.
We apply a similar Bayesian weighting scheme and instead
of interpolating between the different scenarios, we update
the scenarios with very low weights. This is an intuitive
approach to updating the scenario tree online based on the
available measurements and model predictions.

The reminder of the paper is organized as follows. The
multistage scenario-based robust MPC framework is intro-
duced in Section 2. The proposed online scenario tree adap-
tation based on recursive Bayesian weighting approach is
described in Section 3. The proposed method is demonstrated
using an oil and gas production optimization problem in
section 4 before concluding the paper in Section 5.

II. BACKGROUND

Consider a discrete-time nonlinear system parameterized
by a vector of time-invariant uncertain parameters p € R"»,

Xpy1 = F(xp, ug, p) (D
Vi = h(xg, ug) 2)

where x5, € R™ and u; € R™ denotes the state and input
vectors, respectively. The system model is represented by
f:R" x R™ x R" — R"=. The vector of available mea-
surements is denoted by y € R™ given by the measurement
model h : R x R™ — R"v.

The objective is to minimize a cost function J : R x
R"™+ — R subject to the nonlinear inequality constraints g :
R™ x R™ — R™ over a prediction horizon of length N.
The optimal control problem can then be written as,

N-1
min J(xp, ug) (3a)
Kot k=0
s.t.
Xp41 = £(xp, ug, p) (3b)
g(xp,ux) <0 (3c)
Xg =& (3d)

peU, Vke{o,....N—1}

u2,1,d2,1 uN,1,dN 1 S5
0

u2,2,d2,2 uN,2,dN 2 S5
un3, dNgs g,
u2,4,d2,1 un.4,dN 1 Sa
uN5,dN 2 Ss

u2,6,d2,3 un6, dN3 | g
0

u2,7,d2,1 un,7,dN 1 Sy
0

u2,8,d2,2 un.g,dN 2 Sg
0

u2,0,d2,3 un9,dN3 g
*r—e

Fig. 1: Schematic representation of the scenario tree with
M = 3 discrete realizations of the uncertainty and a robust
horizon of N, = 2, leading to S = 9 scenarios.

where &/ C R"™ denotes the bounded uncertainty charac-
teristics, either in the form of uncertainty set or probability
distribution function. Initial conditions are enforced in (3d),
where & denotes the current state estimates.

If the model was perfect and p was known accurately, then
for an optimal input trajectory uz["t’ L+N]? the predicted state
trajectory is given by x’[“t, N However, in the presence of
uncertainty, an optimal input trajectory uﬁy N would give
rise to a cone of state trajectories {Xﬁt,t N }u depending
on the value of the uncertain parameter p € /. Optimizing
over a single control trajectory uz[”t. N ignores the fact that
new information will be made available at the next time step
and a new optimal input trajectory will be re-computed. In
other words, the optimization is performed in an open-loop
fashion (although the implementation may be in closed-loop,
if the optimal control problem is re-solved at each sampling
time with only the first control input move implemented on
the process). Closed-loop optimization, on the other hand,
involves computing a cone of possible control trajectories
{u’[’t, o N]}U instead of a single control trajectory uﬁj N
thereby introducing recourse action.

A simple approach to closed-loop optimization is by
discretizing the uncertainty characteristics and solving the
sampled average approximate problem as explained in [3]
and [4]. Therefore the first step to designing a multistage
scenario-based MPC is to select the discrete realizations
of the uncertainty from the uncertainty set. In order to
ensure robust constraint satisfaction for any realization of
the uncertainty from the uncertainty set, a combination of
maximum, minimum and nominal values of the different
uncertain parameters are often chosen as the scenarios.

To this end, M discrete realizations of the uncertain pa-
rameters are sampled from the uncertainty set {/ to generate
a scenario tree as shown in Fig.1. In order to prevent the
exponential growth of the problem, the scenario branching
is often terminated after a certain number of samples N, in



the prediction known as robust horizon, as justified in [4].
This results in .S = M number of scenarios. The resulting
scenario optimization problem can be written as,

s N
min w; J(Xp i, 4a
Xpgotn; Z::l 7 kzd ( k.j> lw) (4a)
s.t.
Xpt1,j = £(Xp 5, U 5, Pj) (4b)
g(Xkj, uk ) <0 (4c)
X =& (4d)
S _

> Eju;=0 (4e)

j=1

vje{l,-- S}vke{o,....N—1}

where w; represents the weight for the different scenarios.
The constraints in (4e) represents the non-anticipativity or
causality constraints which enforce the fact that the control
inputs cannot anticipate the future realization of the uncer-
tainty. In other words, the states that branch from the same
parent node must have the same control inputs. Here u;
represents the sequence of optimal control input for the ;"
scenario, i.e. u; = [ug e u]val) v]T € RN The reader
is referred to [13] and [14] for detailed description of the
non-anticipativity constraints and the structure of E; used in
(4e).

III. MULTISTAGE MPC WITH ONLINE SCENARIO
UPDATE

As mentioned earlier, often a combination of maximum,
minimum and nominal values of the different parameters
are chosen as the different uncertainty realizations in the
scenario tree. If the uncertainty parameter range is rather
large, then the scenario tree has a large span resulting in
a conservative solution. A common assumption in most
works considering multistage scenario MPC is that, once the
scenarios are selected, the scenario tree remains fixed. In
the case of time-invariant uncertain parameters, an adaptive
framework may be preferable that enables the controller
to improve its performance over time by employing some
adaptive mechanism to eliminate/update scenarios that do not
explain the observations with sufficient likelihood.

The proposed multistage model predictive control method
with online scenario tree update is based on adapting the
scenario tree online using the available measurements y™ &
R™. A recursive Bayesian weighting scheme is used to
assign weights to the different scenarios. The scenarios that
do not explain the observations with sufficient likelihood
(represented by very low weights) are then updated online
to reduce the span of the scenario tree.

A. The recursive Bayesian weighting scheme

In this paper, we use a probabilistic weighting scheme
which assigns weights to each scenario, which is a value
ranging from 0 to 1. This is based on the conditional
probability of the j** scenario being the true realization of

the uncertainty given the past history of residuals and proba-
bilities of all the scenarios. The recursive Bayes theorem for
the j*" scenario at time step k is then given by,

— 5eT N
e Ovoék’stk‘JPkfl,j

Py =
2] S —0.5€¢f | Ke
Zm,:l e b,m K €k,m Pkfl‘m

(&)

where the residual €, ; € R for the j* scenario at the
current time step k is computed using the observations y™
and the model predictions (2) for the jth scenario,

€k =yi —h(xk;, k) (©)

Here, K is a weighting matrix, which is typically chosen to
be diagonal and can be seen as the inverse of the residual
covariance. Hence, large values of K often leads to faster
convergence towards a scenario and smaller values of K lead

to a more averaging approach to the scenarios. Using the
th

recursive probabilities (5), the weight for the j*"* scenario at
time step k are then computed as shown below,
Py
W)= —gd @)
an=1 Iy k,m

B. Online scenario tree update

Using the Bayesian weights, we can update the sce-
nario tree online. We find the scenario corresponding to
the smallest weight represented by j and find the scenario
corresponding to the largest Bayesian weight represented by
7. If the Bayesian weight for the j" scenario becomes lower
than a user defined threshold &, then the least likely ;™
scenario is updated by moving it towards the most likely

—th . . . .
7 scenario. For example, if the j™ scenario has a very

. . ~th .
low weight Wy, ; < 4§ relative to the ]t scenario, then the
fh scenario is updated in the direction of the most likely
scenario using a user defined step length o < 1 as shown

below,
p; ¢ p; +a(p; — pj) ®

The step length o must be sufficiently small (typically in the
range of 0.1) to retain the originally envisioned robustness
properties. Hence, at the next time step k + 1, the j®
scenario in the scenario tree is updated according to (8)
and the scenario MPC problem (4) is solved using the
updated scenario tree. Note that, the threshold § must be
chosen such that the likelihood of the ™ scenario explaining
the observations must be sufficiently low. This is to avoid
updating a scenario which only has a marginally lower
Bayesian weight relative to the other scenarios. Since we
have used a recursive weighting scheme, it is also crucial
that the weights are reset after each time the scenarios are
updated. This is because the new weight of the updated
scenario must not be based on the probability of the old
scenario realization. A sketch of the proposed multistage
MPC with online scenario tree update scheme is described in
Algorithm 1. The algorithm presented here to compute the
recursive Baysiean weights is computationally inexpensive
and is known to reject poor models exponentially fast [11].



Algorithm 1 Multistage MPC framework with online sce-
nario tree update

Define tolerance § > 0, o < 1, initial probability for each
scenario Py ; = g vjed{l,...,S}.

Input: At each time step, observations y}* and model pre-
dictions y, ;

for j=1,2,...,5 do
€k < YR — Vi

—0.5¢f . Kep,
e k.j kurpkilj
Pk\] « S —0.5¢]  Kep m
Y=y © T P4 m
k.
Wi+ =s—5— j:
m=1Tk,m
end for

Find scenario corresponding to smallest weight 7 =
arg min; Wy ; B
Find scenario corresponding to largest weight j =
arg max; Wy ;
if W, ; < 6 then

Update l'th' scenario p; < p; + a(p]f - pz)

Reset probability P, ; < %, vied{l,...,S}
end if
[x} ;> ui ;] « Solution of Scenario MPC problem (4)

Output: uj ;

The computed Bayesian weights, in addition to scenario
pruning, can also be used to weight the different scenarios
in the cost function by setting w; = W ; in (4). By doing
so, we give more weight on the scenarios that explains the
observations with a higher likelihood.

IV. CASE STUDY

In this section, we demonstrate the proposed scenario tree
update mechanism using a gas lift optimization case study.

A. Process description

We consider an oil and gas production network consisting
n,, = 2 gas lifted wells as shown in Fig.2. The objective is
to maximize the total oil production from the network while
maintaining the total gas production within the processing
capacity constraints. This is expressed as,

Ny Ny
glin —Co Z Wpo,i + Cgl Z Wl i (9a)
abi i=1 i=1
S.t.
N
Z Wpg,i < “’Z}M (9b)
i=1
Xpt1 = £(Xp, ug, p) (9¢)
pelu (9d)
Vie{l,...,ny}

where wg; ; is the gas lift injection rate for each well and
is the manipulated variable (n, = 2), wp,; and wy,; are

Wgl,1 Wgi,2

Well 2

Well 1

GORj; € U; GORy € Uy

Fig. 2: Schematic representation of two gas lifted wells.

GOR>

GORy

Fig. 3: Uncertainty subspace showing the 5 discrete scenarios
used to generate the scenario tree.

the oil and gas production rates from each well respectively,
wpy™* is the total gas processing capacity. ¢, and cg are
economic terms that represents the value of oil and cost of
gas compression respectively. (9c) represents the nonlinear
dynamic model of the gas lifted wells. The reader is referred
to [5] for more detailed description of the gas lifted well
models.

The gas-oil-ratio GOR is a reservoir property that denotes
the ratio of oil and gas entering each well from the reservoir,
which is an uncertain parameter (i.e. p = GOR). U denotes
the uncertainty characteristics to which the uncertain param-
eter is known to belong. Since we have two wells, we have
two uncertain parameters (n, = 2), namely, the gas-oil ratio
for each well. In this simulation example, we consider the
uncertainty in GOR; € U, to be equally distributed with
GOR; € [0.05,0.15]kg/kg and GOR, € [0.11,0.13]kg/kg.
Hence the uncertainty set U = U; X Uz is given as a box
uncertainty set. For the multistage scenario MPC, M = 5
discrete realizations of the uncertainty are considered that
corresponds to the combination of minimum, maximum and
nominal values of the gas-oil-ratio of the two wells. This
is schematically represented in Fig.3, where the discrete
scenarios are marked by an ’x’. Multistage scenario MPC
was then applied with a robust horizon of N, = 1 leading
to S = 5 discrete scenarios, as described in [15].

The multistage scenario MPC is setup with a sampling
time of 5min and with a prediction horizon of 2hours
using CasADi v3.1.0 [16] with MATLAB programming
environment. The resulting nonlinear programming (NLP)
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Fig. 4: Simulation results comparing the proposed method
with online update of scenario tree with fixed scenario tree
multistage MPC

problem is solved using IPOPT v.3.12.2 running with a
MUMPS linear solver. The simulations were performed on a
2.6GHz workstation with 16GB memory. The plant model
was implemented using the IDAS integrator. It is worth
noting that, given the timescale of the optimization problem,
the changes in the reservoir properties are very slow and
can be considered constant for the optimization problem.
Hence, the uncertain parameter GOR, which is a reservoir
property, can be assumed to be a time invariant parameter
for the production optimization problem, with a given initial
uncertainty characteristics .

B. Simulation results

In this section, we apply the proposed multistage MPC
formulation on the gas lift optimization case study, where
the scenarios are updated online using the recursive Bayesian
weighting scheme, with a suitable step length o = 0.2.
The results from the standard multistage MPC with a fixed
scenario tree was used to benchmark the performance of
the proposed scheme. To update the scenario tree, pressure
measurements and flow measurements through the wellhead
choke are used to compute the Bayesian weight for the
different scenarios.

In the first simulation, we assume the true realization of
the gas-oil-ratio in the plant is GOR = [0.0975,0.1201]7
and the maximum gas capacity limit is considered to be
wpe'® = 8kg/s. Figd shows the closed-loop simulation
results for the multistage MPC with updated scenario tree
(solid lines) compared to the standard multistage MPC with
fixed scenario tree (dashed lines). The first subplot shows the
total gas production rate and the second plot shows the total
oil production rate.

In the proposed multistage MPC scheme, the scenarios
with very low weights are updated as described in Algo-
rithm 1. By doing so, the span of the uncertainty subspace
covered by the scenarios gradually reduces. Consequently,
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Fig. 5: Uncertainty space spanned by the different scenarios
updated online, initiated with a box comprised of a combina-
tion of minimum and maximum GOR values. (a) 3-D view
of the uncertainty subspace over time. (b) corresponding 2-D
view. The true realization is marked by ’x’

the conservativeness also reduces gradually. This can be
clearly seen in the plot in Fig.4, where the total gas produced
is utilizing more of the available capacity to increase the total
oil production compared to the standard multistage MPC
with a fixed scenario tree. Fig.5 shows the evolution of the
discrete scenarios in the scenario subspace. It can be seen
that the span of the uncertainty subspace is gradually reduced
compared to the initial box uncertainty.

We then test the proposed approach for 30 different
realizations of the uncertainty randomly selected from U to
be the true realization in the plant, as shown in Fig.7 (bottom
subplot). To evaluate the performance, we plot the integrated
objective, which is the oil production rate integrated over a
period of 10 hours for each simulation run and compare it
with the multistage MPC with fixed scenario tree, see Fig.7
(top subplot).

It can be clearly seen that by updating the scenario tree
and gradually shrinking the uncertainty space covered by the
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Fig. 7: Monte Carlo Simulations results with different real-
izations of the uncertain parameters.

scenario tree, the conservativeness can be further reduced,
leading to less conservative operation. The uncertainty space
covered by the updated scenario tree for run numbers 8, 12
and 18 are shown in Fig.6, to portray how the initial box
uncertainty set is updated for different true realizations of
the uncertain parameter.

V. CONCLUSION

When the time-invariant uncertain parameters cannot be
estimated directly, methods that update the uncertainty char-
acteristics may be useful in reducing the conservativeness. In
this paper, we presented one such adaptive robust multistage
MPC framework, where the scenario tree was updated online
by computing recursive Bayesian weights for the different

updating the scenario tree online, the conservativeness can
be further reduced, leading to increased profits.
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Appendix M

Real-time optimization using
surrogate optimizers

This chapter is based on the extended abstract presented in Foundations on Process
Analytics and Machine Learning (FOPAM), Raleigh, NC.*

The process industry is one of the biggest producers of data, where a typical
process generates hundreds of thousands of data in real-time. The process industry
has used real-time data for decision making for more than 5 decades and has up
to now been the leading industry in terms of intelligent use of data. However, in
spite of many successes, there is still a large potential for further improvements
in developing online process optimization tools to address future challenges with
industry 4.0. With the recent surge of interest in machine learning, we discuss some
future research directions on how machine learning tools can be used to address
some of the challenges listed in Section 1.1.

M.1 Surrogate optimizers

Another challenge with online process optimization is the computational issues
and numerical robustness (Challenge 3). For many large-scale problems, solvers
may take a long time to converge to the optimal solution or, in some cases, may
even fail to converge to an optimal solution. For example, with today’s compu-
tational power, numerical optimization solvers for very simple chemical processes
running on standard workstations (for example, 2.6GHz processor and 16GB RAM
or similar configuration) typically converge in the time scale of seconds to several
minutes. This makes it very difficult to run such numerical computations for more
complex processes on embedded platforms and cloud computing, due to their lim-
ited computation capacity. This challenge is escalated further with the inclusion of

1Recipient of the Young Researcher NSF Travel Award.
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M. Real-time optimization using surrogate optimizers

integer decision variables, leading to mixed-integer and combinatorial optimization
problems; which are very common in the field of process systems engineering. Cur-
rently, the computation cost for solving such problems are prohibitively large for
online decision-making. Furthermore, there is an increasing interest and need to
deploy such decision-support tools on mobile platforms and web-solutions in many
industrial applications. Engineers and operators can clearly benefit if autonomous
decision-support tools such as optimization, process control, soft sensors etc. can
also be made available on cloud platforms.

In order to avoid solving numerical optimization problem online, we aim to ap-
proximate computationally expensive optimization problems using machine-learning
algorithms. Instead of developing surrogate models that will be used in the opti-
mizer, we propose to build “surrogate optimizers” that approximate the numerical
optimization solvers.

In this chapter, we briefly discuss these ideas and present some surrogate opti-
mizer structures along with some preliminary results in this direction.

M.1.1 Open-loop surrogate network based on measured
disturbances

In this approach, the main idea is to solve the numerical optimization problems
offline and use the trained network online to drive the process to its optimal opera-
tion. By doing so, we effectively move the computationally expensive optimization
problems offline and the trained network approximates the numerical optimization
solver and acts as the surrogate for online optimization. In other words, we train
a neural network to map the relation between disturbances d to the optimal set-
points, such that given the current disturbance, the trained network provides the
corresponding optimal solution as output as shown in Fig. M.la. This structure
approximates the optimization block from Fig. 2.1. This is analogous to multi-
parametric programming, where the models are used offline to generate an optimal
solution space as a function of the disturbances/parameters [138]. Here, instead
of using a pre-computed solution space using first-principle models, we use a neu-
ral network to map the relation between the various disturbances to the optimal
setpoints.

M.1.2 Closed-loop surrogate network based on available
measurements

Alternatively, models can also be trained to directly map the relation between the
available measurements to the optimal setpoints in the same fashion as training a
model from the disturbances to the optimal setpoints as shown in Fig. M.1b. In
this structure, the neural network approximates both the model update and the
optimization block from Fig. 2.1. This approach would be preferred over the open-
loop approach in Fig. M.1a, since this structure does not require the disturbances
to be measured/estimated, which can be advantageous in many systems where
disturbance measurements are not available.
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Surrogate Surrogate Surrogate

d
optimizer optimizer optimizer

* * J
Yop Estimator Yop v
Setpoint Setpoint Setpoint | Ju™ =0

controller controller controller [
u* u* u*
Process y Process y Process y
(a) (b) (c)

Figure M.1: Surrogate optimizers: (a) Open-loop surrogate optimization structure
using neural network that maps measured disturbances to optimal setpoint. (b)
Closed-loop surrogate optimization structure using neural network that maps mea-
surements to optimal setpoint. (¢) Gradient-based surrogate optimization structure
using a neural network to estimate the steady-state cost gradient.

M.1.3 Gradient-based approach

In this thesis, we had proposed different algorithms to estimate the steady-state
gradient directly from the measurements to optimize the process (cf. Chapters 3
and 5). In the same spirit, another approach is to train a surrogate network that
directly maps the measurements to the steady-state cost gradient. This approach
does not require solving numerical optimization problems either offline or online.
The trained model is then used online to estimate the steady-state cost gradient
using real-time measurements. Optimal operation can then be achieved by simply
controlling the estimated gradients to a constant setpoint of zero using simple
feedback controllers, thereby achieving the necessary condition of optimality. A
schematic representation of the proposed surrogate optimization approach is shown
in Fig. M.1c.

M.1.4 Simulation results

The three different surrogate optimizer structures are applied to the same CSTR
model described by (3.9). The optimization problem was solved offline for various
realizations of the disturbances to generate the training data. As a proof of concept,
a shallow neural network with 10 neurons was trained and validated using this data
to approximate the optimization problem from the disturbance to the optimal
setpoints. The trained neural network was then used online to optimize the process
using the structure in Fig. M.la. The process was simulated with disturbances in
the feed concentrations as shown in Fig. M.2. Note that in this simulation, we
assume that the disturbances are measured. The cost function using the proposed
approach was compared with the ideal steady-state optimal cost (solid black lines)
and is shown in Fig. M.2 (solid red lines).

We then use the training data to train and validate a neural network from the
available measurements to the optimal setpoints to build a closed-loop surrogate
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Figure M.2: Cost obtained using the surrogate optimizer structure from Fig. M.1a
(solid red) and Fig. M.1b (dashed blue) compared with the ideal optimal cost (solid
black)

network using available measurements as shown in Fig. M.1b. The process was sim-
ulated for the same disturbances and in this case, we assume that the disturbance
measurements are not available. The simulation results using this approach is also
shown in Fig. M.2 (dashed blue lines) to compare the open-loop and closed-loop
surrogate approaches and we see that the system is able to reach the optimum
despite the unmeasured disturbances.

The gradient-based surrogate optimization approach was also tested on the
same CSTR case example. The process was simulated to generate measurement
data for different disturbance realizations. The measurement data along with the
corresponding steady-state cost gradient evaluated offline was used to train and
validate a neural network with 10 neurons. The trained model was then used to
estimate the steady-state gradient, which was controlled to a constant setpoint of
zero using a PI controller. The cost function along with the estimated gradient for
the same disturbance as in the previous case is shown in Fig. M.3(solid blue lines)
along with the ideal steady-state cost (solid black lines).

M.2 Chapter summary

With the vast amount of data that is generated in the process industry, there
is a clear need for new technologies and approaches to integrate and interpret
this data more efficiently in order to drive faster and more accurate decisions.
Process optimization using new paradigms emerging from the computer science
and cybernetics domain such as data machine learning, artificial intelligence and
data analytics will be one of the key factors affecting the success of the modern
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Figure M.3: Cost obtained using the gradient-based surrogate optimizer structure

from Fig.4 (solid blue) compared with the ideal optimal cost (solid black)

process industry.
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Appendix N

Fast economic model predictive
control of gas-lifted wells

As discussed in this thesis, solving dynamic optimization problems in the context
of economic NMPC may be computationally intensive. This leads to non-negligible
computation delay that can degrade the performance. To address the problem of
computation delay, we can use the advanced-step path following economic NMPC
framework. Here, the computationally expensive NLP problem is solved offline,
and the NLP sensitivities are used to solve a path-following QP problem online
to update the solution. This is similar to the path-following sensitivity approach
used in Chapter 10, where the idea is to parameterize the NLP w.r.t. the initial
condition constraint (i.e. p = Xo).

This appendix contains the paper showing the application of the fast advanced-
step economic NMPC [178] to an oil production optimization problem.

e Paper published in 2018 IFAC International Workshop on Automatic Control
in Offshore Oil and Gas Production (OOGP), Esbjerg, Denmark
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Abstract: This paper considers the optimal operation of an oil and gas production network by
formulating it as an economic nonlinear model predictive control (NMPC) problem. Solving the
associated nonlinear program (NLP) can be computationally expensive and time consuming. To
avoid a long delay between obtaining updated measurement information and injecting the new
inputs in the plant, we apply a sensitivity-based predictor-corrector path-following algorithm
in an advanced-step NMPC framework. We demonstrate the proposed method on a gas-lift
optimization case study, and compare the performance of the path-following economic NMPC

to a standard economic NMPC formulation.

Keywords: Sensitivity-based NMPC, Path-following algorithm, Dynamic optimization,

Production optimization, Gas-lift optimization

1. INTRODUCTION

Operation of an oil and gas production network involves
making daily control decisions in order to maximize the
revenue while satisfying process and operating constraints.
This is known as short-term production optimization or
daily production optimization (DPO). Mathematical tools
are increasingly used in production optimization to com-
pute the optimal decision variables based on a digital
representation of the system. The use of mathematical op-
timization for daily production optimization has enabled
production increases in the range of 1-4% (Stenhouse et al.,
2010). A comprehensive survey of optimization tools used
for production optimization can be found in Bieker et al.
(2007). DPO problems may be formulated as either static
optimization problems or dynamic optimization problems.
Useful discussions on the static and dynamic formulations
for DPO are provided in Foss et al. (2017), where the
authors note that DPO applications may benefit from
dynamic formulations in some cases, particularly when the
profit is strongly affected by short-term control decisions.

In this paper, we consider such a dynamic production
optimization problem, where the control and optimization
layers are tightly integrated. In this case, the production
optimization problem is formulated as an economic non-
linear model predictive control (ENMPC) problem. The
key idea in ENMPC is to use a single dynamic optimiza-
tion problem to control the process, and to optimize the
economic performance simultaneously. By doing so, the
economic cost is optimized also during transient operation
of the system. In the face of volatile oil prices and competi-
tive markets, optimizing the transients to maximize profits
has become more and more desirable.

* The authors gratefully acknowledge the financial support from
Research Council of Norway through IKTPLUSS Young Researcher
Grant and SFI SUBPRO programs.

For large-scale production networks, the economic NMPC
problem formulation may become rather large with several
hundred decision variables. For example, the production
optimization of the Troll oil field in the Norwegian conti-
nental shelf includes more than one hundred subsea wells
(Hauge et al., 2005). This leads to optimization problems
that are computationally very intensive. Moreover, non-
linear models are typically used for economic optimiza-
tion, which further adds to the computational complexity.
Computational cost has been a prohibitive factor for the
widespread implementation of dynamic optimization in
the oil and gas industry, despite being a promising ap-
proach, as noted in Forbes et al. (2015). Solving the large-
scale nonlinear programming (NLP) problem may take a
significant amount of time and this computational delay
can lead to performance degradation or even to closed-loop
instabilities (Findeisen and Allgéwer, 2004). Hence there
is a clear need for numerical methods that make it possible
to obtain updated solutions to the large-scale NLP in very
short time.

In this paper we address this issue by applying a
sensitivity-based path-following algorithm in an advanced-
step NMPC framework (Suwartadi et al., 2017) to a gas-
lift optimization problem. The algorithm has the advan-
tage that it can handle large parameter changes, and still
give an accurate approximation of the solution. Several
sensitivity-based approaches have been proposed to ad-
dress the issue of computation time. See e.g. Diehl et al.
(2005), Zavala and Biegler (2009), Jéschke et al. (2014).
A review article on fast NMPC schemes is given by Wolf
and Marquardt (2016).

At each sample time, the NMPC optimization problems
are identical, except for one time varying parameter,
namely, the initial state. All the fast sensitivity approaches
capitalize on this property. When new measurements of
the states become available, these approaches use the



sensitivity of the optimal solution that was computed at
a previous time step to obtain fast approximate solutions
to the new resulting nonlinear optimization problem. Such
approximations enable fast implementation of the optimal
input in the plant in a minimal delay.

The remainder of the paper is organized as follows. The
daily production optimization problem for a gas lifted
well network is introduced in Section 2. The sensitivity-
based economic NMPC with the path-following approach
is presented in Section 3. Simulation results from a gas-lift
optimization case study are presented in Section 4, before
concluding the paper in Section 5.

2. PROBLEM FORMULATION

An offshore oil and gas production network typically con-
sists of several wells that produce to a common processing
facility. The reservoir fluid enters through the well bore of
each well and is produced to a topside processing facility
via a common production manifold as shown in Fig.1. In
some wells, the reservoir pressure may not be sufficient to
lift the fluids to the surface. In such cases, artificial lift
methods are employed to boost the production from the
wells. In this paper, we consider the gas lift method, which
is a commonly used artificial lift technology. In gas lifted
wells, compressed gas is injected into the well tubing via
the annulus to reduce the mixture density. This results
in reduced hydrostatic pressure, and hence boosted pro-
duction. However, higher gas injection rates also increase
the frictional pressure drop. The oil production starts
to decline if the effect of the frictional pressure drop is
dominant over the effect of the hydrostatic pressure drop.

Production from a cluster of N' = {1,...,n,} gas lifted
wells can be modelled as a semi-explicit index-1 DAE
system of the form,
).( = f(X7 Z7 u)7
0 = g(x7 Z7 u)7

(1a)
(1b)
where f(x,z,u) is the set of differential equations and
g(x,2z,u) is the set of algebraic equations. The dynamics
arise in the model due to the mass balances for oil and gas
phases in each well and the riser. Algebraic equations are
used to describe the densities, pressures and flow rates
for each well and the riser, as described in detail by
Krishnamoorthy et al. (2016).

The inlet separator in the topside processing facility sets
the downstream boundary conditions which are typically
kept at a constant pressure by tight regulatory control.
The upstream boundary conditions are set by the reservoir
inflow conditions. The DPO problem is concerned with
the production network exposed to these upstream and
downstream conditions, and hence the reservoir model
and topside processing facilities are not included in the
production optimization problem.

Gas lifted wells are often controlled by adjusting the gas
lift injection rate of each well. The production network
is also subject to process and operating constraints. For
example, the total gas processing capacity in the topside
facilities may be constrained, or the rate of compressed
gas injection may be limited. The optimization problem
then involves computing the optimal gas lift injection rates

w1

g
- ~ g
3 3 3
= = £

) )

Fig. 1. Schematic representation of a gas lifted production
network with n,, wells producing to a common topside
processing facility.

for each well such that the operating profits are maxi-
mized subject to the network processing and operating
constraints.

Before this can be formulated as an economic NMPC
problem, the infinite dimensional problem is discretized
into finite horizon optimal control problem using direct
collocation method. The discretized system dynamics at
any time instant [ can be expressed as,

F(xl+l’xl7<l7l/l) =0. (2)

A detailed explanation on how the system is discretized
into a nonlinear programming problem using direct collo-
cation can be found in Krishnamoorthy et al. (2016).

The economic NMPC problem can then be formulated as

E+N-1
P (xx) 1XHgn l"I’ (Xk+Nka+N) + Z ¥ (X, 615 v1)
ver¥ 1=k
st. F (Xl+1-,le ¢ Vl) =0, VleN
G(leClvyl)S07 Vie N (3)

(x,¢pv1) €2, YIEN

(Xks+ s Cran) € Xy

Xo = Xk-
Here x; € R™x, v; € R™, and ¢; € R represent the pre-
dicted state, control input, and algebraic at time instance
I, respectively for all I belonging to N' = {k,...,k+ N}.
The constraints include the system dynamics as equality
constraint, nonlinear inequality constraints G, and the
equality constraint of the initial predicted state x equal
to the actual state x; € R™x obtained from measurement
data. The path constraint confines the predicted state,
algebraic, and control inside the set Z, and the final state
and algebraic variables (X, n,Crin) are constrained to
lie in the set X’y. The objective function comprises the final
cost ¥ (Xk+N7Ck+N) € C%: R™ xR"™ — R and the stage
cost ¥ (x5, € 1) €C2: R™ x R™ x R™ — R.

In the gas lifted well problem, the stage cost is defined as
Ny
T/J(XuCuVl) ::Z(frowpo,i +T_qlwgl,i) 3 (4)
i=1
where 7, is the oil price, ry is the cost for gas lift
injection, and n,, denotes the number of production wells.
The nonlinear inequality constraints enforce the total gas
capacity constraints,



-
G (Xh < Vl) = Z (wpgyi) - w;naz. (5)

i=1
The path constraints are in the form of bound constraints
for the state, control inputs as well as the algebraic

variables B
X1
<6< : (6)
14 v

The notations ~ and - represent the upper and lower bound
for the corresponding variable. It is easily possible to limit
the state variables with the bound constraints since the
system dynamics are transcribed using direct collocation,
in which the state, algebraic, and control are treated as
optimization variables.

IR o]
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Once the economic NMPC problem is formulated, it can
be solved in a receding horizon fashion. At each sample
time k, the state measurement or estimate xy, is assigned
as the initial state for the optimization problem (3). The
optimization problem is solved to compute the optimal
input trajectory V[*lyl 4N] Over the prediction horizon. The
first step of the optimal control sequence is implemented
in the plant, i.e. uj = v} . At the next time step k + 1,
new measurements of the state x;1 are obtained and the
optimization procedure is repeated, hence enabling closed-
loop implementation.

We consider a full-state feedback control structure. The
measurements from the plant are used for estimating the
states. The estimated states are then used for full state
feedback for the economic NMPC, which computes the
optimal inputs for the plant. The state estimation is
performed online by an extended Kalman filter (EKF).
The EKF is implemented in discrete time as described
in Krishnamoorthy et al. (2017). Commonly available
measurements such as annulus pressure, wellhead pressure
and down hole pressure for each well along with the riser
head pressure, manifold pressure and total oil and gas
production rates are used as measurements for the EKF.

In an ideal case, the optimization problem (3) would
be solved instantly and the optimal input would be im-
plemented in the plant without time delay. In practice,
however, there is always some delay between the state
measurement/estimation and the implementation of the
optimal control input. This is mainly because of the com-
putational time required to solve the optimization problem
(3). For many linear MPC applications, the computational
delay is rather small and can be neglected. However, for
large-scale nonlinear systems, as the number of optimiza-
tion variable increases, solving the optimization problem
requires more time, and the computational delay may no
longer be neglected.

3. FAST ECONOMIC NMPC

To address the issue of computational delay, fast sensitivity-
based NMPC approaches have been developed. One such
approached is the advanced-step NMPC (asNMPC) intro-
duced by Zavala and Biegler (2009), where at time k, the
NMPC problem is solved with the predicted state value of
time k + 1 instead of using the measured/estimated state
X. An approximation of the NLP solution is then com-
puted using a single sensitivity step (Zavala and Biegler,

2009), or a path-following approach (Jaschke et al., 2014;
Suwartadi et al., 2017) as soon as the measurement Xj1
is available at time k£4-1. In this work we use the predictor-
corrector path-following algorithm based on Suwartadi
et al. (2017), described below.

Since the optimization problem (3) differs only in the
initial state variable, which is denoted as the equality
constraint x, = X, from one NMPC iteration to another,
the problem can be cast as the following parametric NLP
problem

min 7 (X,p) (7)
st (X,p)=0,i €€,
ci(X,p)<0,ieZ,

where X € R™X is the primal variable, p € R"» is the

parameter, and the objective function J : R"*X xR"» —

R. The equality and inequality constraints ¢ : R"X x

R™ — R" are represented by the sets £ = {1,...,m}
and Z = {m+1,...,n.}, respectively.

We define Lagrangian of the problem (7) as
LXAp)=T(X,p)+Ac(X.p), (8
where A is the dual variable or Lagrange multiplier.

The first-order optimality (Karush-Kuhn-Tucker (KKT))
conditions are

VxL(X,\ p)=0,
¢ (X,p)=0,i€&, (9)
¢i(X,p)<0,i€T,
M (X,p)=0,i€1,
X\i>0,iel

Active inequality constraints are denoted by the set
A(X,p) = {¢; (X,p) =0,i € Z}. For a given multiplier
A and X that satisfies the KKT conditions (9), the active
inequality set A (X, p) has two subsets, which are a weakly
active set Ay (X,A\,p) = {i€c A(X,p) | A =0} and a
strong active set A4 (X, A, p) ={i € A(X,p) | A\; > 0}.

Furthermore, we define the optimality residual as

77(X7>\>p)= '( . C(X7p)£ )
[min (¢ (X, p), Nz -
(10)

Here, we assume that the linear independent constraint
qualification (LICQ) is satisfied at any point X that
satisfies the KKT conditions (9).

Definition 1. (LICQ). Given a vector p and a point X, the
linear independence constraint qualification (LICQ) holds
at X if the set of vectors {Vxc; (X,p)};ceuaix p) are
linearly independent.

We also assume that the strong second order sufficient
condition is also satisfied.

Definition 2. (SSOSC). The strong second order sufficient
condition (SSOSC) holds at (X ,A) that satisfies the KKT

conditions, if dTV%(XL (X,p,A)d > 0 for all d # 0 such
that Vxe¢; (X,p)Td =0forief U AL (X,p,A).



We are now ready to state the result for sensitivity of the
NLP, where X™ (p) and A* (p) are the primal and dual
solutions of (7), respectively.

Theorem 3. Let J, ¢ be twice continuously differentiable
in p and X near a solution of (7) (X™,py), and let
LICQ and SSOSC hold at (X™,p,). Then the solution
(X (p),A" (p)) is Lipschitz continuous in a neighborhood
of (X™, A", py), and the solution function (X* (p),A* (p))
is directionally differentiable. Moreover, the directional
derivative uniquely solves the following quadratic problem:

H 1 * *
min 5A.XTvg(Xﬁ(X , Do, \*) AX

+ AXTV,x L (X*,po, \*) Ap (11)
s.t.
Vxe (X*,po)T AX
+Vpci(X*,p0)TAp=0 1e AL UE,
Vxe; (X*,po)" AX
+ Vpe; (X*,p0)" Ap <0 j € Ay

Proof. See Robinson (1980) and (Bonnans and Shapiro,
1998, Section 5.2). O

Instead of solving a full NLP problem, one can solve a
quadratic programming (QP) problem (11) to compute a
first-order approximation of the solution to the optimiza-
tion problem (3) in the vicinity of perturbation p,. We
refer the QP (11) to as pure-predictor QP. Note that there
is no requirement of strict complimentary in the theorem,
allowing for active-set changes.

To improve the approximation of the solution, we intro-
duce a corrector term in the objective function, and taking
into account that the parameter p enters linearly in the
problem, we can formulate the following QP (Suwartadi
et al., 2017; Kungurtsev and Diehl, 2014)

min %AXTvg(Xﬁ(X*,pOJrAp,)\*)AX
+VxJTAX
s.t.
¢ (X™,py + Ap)T Ap
+ Vxe (X5 pg+Ap) AX =0 ,ic AL UE,
¢; (X*,py+Ap)" Ap
+Vxe (X5 py+Ap) AX <0 ,jeT\ A,

(12)

We denote the QP above as predictor-corrector QP, see
Algorithm 1. This QP formulation provides a reasonably
good approximation of the NLP solution in a small neigh-
borhood of p,. To allow large perturbation (large Ap), we
employ a path-following approach, that is, to solve a series
of QP problems. This is analogous to Euler integration
scheme for ordinary differential equations. The parameter
p is updated according to p (t;) = (1 — t;) po+t;p, where
to = 0 until it reaches ¢t = 1, that is tg = 0,1 < t3... <
tj < tj41... < tena = 1. The parameter Py corresponds
to new measurement data. During the course of path-
following iteration, the primal variable AX and dual vari-
able A are updated for each t;. The optimality residual
condition n (10) is computed and compared against its

maximum tolerance 7,4, If necessary, the stepsize At is
reduced to satisfy 17 < Mmaz. The method is implemented
as a subroutine in Algorithm 1, denoted as QP_PC_PF.

As described in Suwartadi et al. (2017) and Jéschke
et al. (2014), we apply the path-following QP within the
advanced-step NMPC (asNMPC') framework (see Zavala
and Biegler (2009)) and refer the method to as pf~-NMPC.
The pf-NMPC procedure includes the following three
steps.

(1) Solve the NLP problem (3) at time k constraining the
initial state value to the predicted state at k + 1.

(2) When the measurement x,41 becomes available at
time k£ 4+ 1, compute an approximation of the NLP
solution (3) using the QP (12) in a path-following
manner.

(3) Implement the optimal control input and update k +
k + 1 and repeat from Step 1.

A sketch of the pf-NMPC procedure is described in Algo-
rithm 1.

4. SIMULATION RESULTS

In this section we use a gas lifted well network with n,, = 2
wells to demonstrate the pf-NMPC controller and compare
its results against the ideal NMPC (iNMPC) controller
which solves the problem (3) using an NLP solver. All
simulations are done in MATLAB using CasADi version 3.2.0
as algorithmic differentiation tool (Andersson, 2013) where
IPOPT (Wichter and Biegler, 2006) is included as an
NLP solver. We use the QP solver from TOMLAB MINOS
(Murtagh and Saunders, 1982).

First, we run a steady-state optimization with total gas
production capacity constraint equals to 9.5 kg/s. The
optimized steady-state control inputs, algebraic and state
variables are incorporated in the stage cost regularization
terms, i.e.,

wm(XuVvaz):ﬂJ(Xqu»Cz) (13)
+a(lx =%l lve = ullL 16— 2)

where x5, ug, and z4 are the steady-state state variable,
control input, algebraic variable respectively.

Next, we run the NMPC controllers and initiate the system
with an initial condition far away from the optimal point.
The NMPC controllers are implemented with sampling
time of 5 minutes with a prediction horizon of 2 hours
yielding 3014 optimization variables and 2966 nonlinear
constraints in the NLP.

We set fmar = 107° and initial At = 1.0 for the pf-
NMPC controller. Note that we use an adaptive steplength
strategy for At in the Algorithm 1 meaning that the
steplength At may be reduced in case faz > 1075,

4.1 Comparison of Open-loop Optimization Results

We compare the open loop solutions from the ideal NMPC
and pf-NMPC controllers at time t = 10 minute (at second
NMPC iteration). The results are shown in Figure 2 in
which the total oil and gas production are depicted. The
solutions from pf-NMPC accurately track those of the ideal



Algorithm 1 Economic pf~-NMPC algorithm

Input: initial state xq, initial At, and 940

for k=0,1,2,... do

| [X*,A*] + solution NLP Py (Xp4q) for k+ 1.
if a measurement of x4 is available then

| Set py < Xpr1-

\ \ Set Dp ¢ Xpt1-

\ \ X QP,PC,PF(X*,)\*,pO,pf,At)
Extract first input value from X and inject to
the plant as uy.
Update initial state x¢ < Xgt1.
Set k+ 1+« k.

end if

end for

function QP_PC_PF(X, X, py, py, At)

Define parameter v satisfying 0 < vy < 1.

Determine A .

Set parameter 7,,q.-

Set j < 0.

Set t]' 0.

while ¢; < 1 do

Compute n; :=n (X, Aj,p(t;)).

if QP is feasible then > solve QP

Compute njia =7 (X; +AX, AN p(tj+a0)) -

if 7j4+A > Mmae then.

Decrease At.

j—J+ 1L

else

X+ X +AX

A+ AX

t]'+1 — tj + At

p(t;)) = (1 —t;)po +1t;ps

| if njta < 77]1-+7 then > very good step
| Increase At.

end if

Update A, .

j—Ji+1

end if

else

Decrease At.

j—J+ 1L

end if

end while

return X

end function

> reduce QP stepsize

> from QP’s dual solution.

> reduce QP stepsize

Output: xi, X2, X3, ug, Uz, ug, ...

NMPC controller. The errors between the ideal NMPC and
pf-NMPC are plotted in Figure 3.

4.2 Closed-loop Results

Next, we compare the closed-loop solution for both NMPC
controllers. The solutions, control input profiles as well as
total gas and oil productions, are displayed in Figure 4 and
Figure 5. The total gas production capacity constraint,
shown in Figure 5, is active. The solutions of pf-NMPC
approximate the solutions of the ideal NMPC controllers
very well. Moreover, we compare the online optimization

Total oil and gas production
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Fig. 2. Comparison of total oil and gas production for
iNMPC and pf-NMPC controllers from open loop
solutions at iteration number two. The solution of
iNMPC is depicted in green color, which overlaps the
solution of pf-NMPC denoted in black color.
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Fig. 3. Total production errors for open-loop solution at
iteration number two.

online optimization runtime (in sec.)

min  max average
iNmpc 0.85 0.94 0.88
pf-Nmpc  0.34  0.39 0.36

runtime for 60 NMPC iterations. It is shown that the
pf-NMPC controller is able to speed up the optimization
more than two times faster than those of the ideal NMPC
controller. However, a rigorous comparison of runtime is
very implementation dependent, and outside the scope of
this paper.

5. CONCLUSION

In this paper we presented an economic nonlinear model
predictive control for a gas lifted well network. To address
the issue of computational delay associated with economic
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Fig. 4. Control inputs comparison of iNMPC and pf-
NMPC controllers from closed-loop solutions.
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Fig. 5. Total production of oil and gas of iNMPC and pf-
NMPC controllers from closed-loop solutions.

NMPC, we presented a path-following predictor-corrector
approach. Using simulation results, we showed that the pf-
NMPC is able to provide a fast solution, while honoring
the active constraints and reasonably approximating the
solutions.
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Appendix O

Dynamic extremum seeking scheme -
applied to gas-lift optimization

This appendix contains the paper showing the application of dynamic extremum
seeking control proposed by Bamberger and Isermann [7] to a network of gas lifted
wells.
e Paper published in 2019 IFAC International Symposium on Dynamic Control
of Process Systems (DYCOPS), Florianopolis, Brazil.
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A Dynamic Extremum Seeking Scheme
Applied to Gas Lift Optimization *
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Abstract: This paper presents the application of a data-driven optimization scheme using
transient measurements to a gas-lift optimization problem. Optimal operation of a gas-lifted
field involves controlling the marginal gas-oil ratio (mGOR), which is the steady-state gradient
of the oil rate from the gas lift injection rate. In this paper we apply a dynamic extremum
seeking scheme to estimate the marginal GOR online using transient measurements, which is
based on identifying a local linear dynamic model around the current operating point instead of
a local linear static model. By doing so, we can use the transient measurements and effectively
remove the time-scale separation between the plant dynamics and the perturbation signal, that
is typically required in the classical extremum seeking scheme. This results in significantly faster
convergence to the optimum compared to classical extremum seeking scheme. The effectiveness
of the proposed method is demonstrated using simulation results for a single gas lifted well, as
well as a network of gas lifted wells.

Keywords: Production optimization, Measurement-based optimization, real-time optimization,

extremum seeking control

1. INTRODUCTION

In oil production wells, when the reservoir pressure is
sufficiently high, then the fluids from the reservoir flows
naturally to the surface. Over time, the reservoir pressure
drops and may no longer be sufficient to lift the fluids
economically to the surface. In such cases, artificial lift
methods are used to boost the production from the wells.
One such commonly used artificial lift method is the gas-
lift method, where compressed gases are injected into the
well tubing via the well annulus. This reduces the fluid
mixture density, hence reducing the hydrostatic pressure
drop across the well tubing, leading to an increased oil
production. However, injecting too much gas increases
the frictional pressure drop, which has a detrimental
effect on the oil production. The oil production rate
starts to decrease if the effect of the frictional pressure
drop becomes dominant over the effect of the hydrostatic
pressure drop. Each gas-lifted well then has an optimal
gas lift injection rate that maximizes the oil production.
In addition, the amount of gas available for gas lift may be
limited. The production optimization problem then deals
with the problem of finding the optimal gas lift allocation
for the gas lifted wells, in order to maximize the total oil
production.

Daily production optimization is an important task for
maximizing the daily operating revenue from a production
network. Traditionally, production engineers use so-called

* The authors gratefully acknowledge the financial support from SFI
SUBPRO, which is financed by the Research Council of Norway,
major industry partners and NTNU.

gas-lift performance curves for daily production optimiza-
tion, which maps the static relationship between the oil
production and the gas lift injection rate for each well
(Rashid, 2010). The gas lift performance curves are typ-
ically obtained using commercially available steady-state
multiphase flow simulators. Steady-state nonlinear opti-
mization tools may then be used to compute the optimal
gas lift allocation among the different wells. Production en-
gineers may also often use the gas-lift performance curves
directly for production optimization by using a quantity
known as marginal gas-oil ratio (mGOR). Marginal gas-oil
ratio or simply marginal GOR, is a quantity that describes
the increase in oil rate per unit change in the gas-lift
injection rate. In other words, marginal GOR is given
by the gradient of the gas-lift performance curves (Bieker
et al., 2007).

The optimal allocation of the gas lift among the different
wells is achieved when the marginal GOR is the same
for all the wells (Urbanczyk et al., 1994). The principle
of equal marginal cost has been proven to be the op-
timal solution for any parallel unit, e.g. by Downs and
Skogestad (2011). Therefore, optimal operation of a gas
lifted well network can be achieved by simply controlling
the marginal GOR to be equal for all the wells. This is
schematically represented for two wells in Fig.1.

The use of centralized dynamic optimization tools such
as economic NMPC for production optimization has re-
cently been gaining popularity. Codas et al. (2016) and
Krishnamoorthy et al. (2016a) used economic MPC for-
mulations to optimize production from a gas lifted well
network. However, solving a numerical optimization prob-



\J

Wgl

Fig. 1. Schematic representation of gas lift performance
curves and the marginal GOR v.

lem may be computationally intensive and can potentially
lead to computational delays. Campos et al. (2009) point
that many numerical issues need to be addressed before
dynamic optimization can be used in practice for offshore
oil and gas applications.

On the other hand there have been developments in op-
timization approaches that do not require solving numer-
ical optimization problems. Instead, optimal operation is
achieved via feedback control. Self-optimizing control is
one such method (Skogestad, 2000), where the objective
is to find the right controlled variable, which when kept
constant, leads to near optimal operation (i.e. minimum
loss). The use of self-optimizing control using nullspace
method for gas lift optimization was demonstrated by
Alstad (2005). Since self-optimizing control is based on
local linearization around a nominal optimal point, it
may lead to steady-state losses if the disturbances moves
the operation of the process far away from this nominal
operating point. The ideal self-optimizing variable for the
gas-lift problem would indeed be the marginal GOR, which
is the slope of the gas-lift performance curve, see Fig.1.
However, the major challenge is that the marginal GOR
is not a readily available measurement for control.

The optimization approaches mentioned above rely on
the use of complex physical models either online or of-
fline. However, models are often uncertain due to lack of
knowledge or simplification, which can affect the optimal
operation point computed by these methods. To address
the issues related to model uncertainty, purely data-driven
optimization tools become an attractive alternative to
optimize the process under plant-model mismatch. To this
end, we will focus on data-driven optimization tools that
do not require complex physical models in the reminder of
the paper.

The use of data-driven methods such as extremum seek-
ing control for oil and gas production optimization has
recently been gaining steady interest. Peixoto et al. (2015)
and Krishnamoorthy et al. (2016b) applied the classical
extremum seeking scheme for gas lift optimization for a
single gas lifted well. Extremum seeking control involves
estimating the steady-state gradient (i.e. marginal GOR)
directly using the gas lift rate and oil production rate
measurements. The estimated marginal GOR is then con-
trolled to a constant setpoint using simple integral action
to drive the system to its optimum.

Since extremum seeking control involves estimating the
steady-state gradient directly from the measurements, the
use of transient measurements leads to erroneous gradient
estimation. Therefore, such methods often require clear
time scale separation between the plant dynamics and the
perturbation and the convergence to the optimum, such
that the plant can be approximated as a static map (Krsti¢
and Wang, 2000). This results in very slow convergence to
the optimum.

For processes such as gas lifted oil wells that have long
settling times (typically in the range of minutes to hours),
the convergence to the optimum can be prohibitively slow
due to the time scale separation requirements. This im-
pedes the direct applicability of the classical extremum
seeking control scheme for oil and gas applications. Al-
though Extremum seeking control was used for optimizing
a gas lifted well by Peixoto et al. (2015), Krishnamoorthy
et al. (2016b) and Pavlov et al. (2017) to name a few, the
convergence time to the optimum was not the main focus
of these works.

There have been several improvements in extremum seek-
ing control to address the issue of slow convergence. For
example, Hunnekens et al. (2014) proposed to use a least-
square based method to improve the convergence. How-
ever, this method still assumes the plant as a static map,
restricting the use of transient measurements. Trollberg
and Jacobsen (2016) proposed the so-called greedy ex-
tremum seeking control to optimize during the transients
for chemical and bio-processes with long settling times.
However, the greedy extremum seeking control can be
implemented only for a class of systems with a specific
timescale structure. Peixoto et al. (2017), recently pro-
posed a phase-lock-loop based extremum seeking control
to account for the phase shift due to the plant dynamics
and speed up the convergence to the optimum point.

In this paper, we investigate a different approach, where
we directly use the transient measurements to identify a
local linear dynamic model around the current operating
point, instead of a local linear static model. For example,
we can identify linear ARX models from the process
measurements that are locally valid around the current
operating point. The steady-state gradient can then be
estimated from the identified local linear dynamic model.

In fact, the use of measurements to identify a dynamic
model around the current operating point for optimiza-
tion dates back to 1977 in the work by Bamberger and
Isermann (1978). This was later extended by McFarlane
and Bacon (1989), where the authors presented an empir-
ical strategy for open-loop online optimization using ARX
models. The main motivation for these works were indeed
to optimize the steady-state behaviour of slow dynamic
processes in a relatively short period of time. With the
recent surge of interest in extremum seeking control for
oil and gas applications, we reframe this old idea in the
context of extremum seeking control in this paper and
show that the proposed dynamic extremum seeking control
addresses the convergence issues of classical extremum
seeking control, especially for processes with long settling
times. In addition, we also propose a simple control struc-
ture for distributed dynamic extremum seeking control
scheme and apply to an oil and gas production network.



The reminder of the paper is organized as follows. Section
2 introduces the proposed dynamic extremum seeking
scheme. Section 3 demonstrates the effectiveness of the
proposed dynamic ESC compared to the classical ESC
scheme for a single gas lifted well. A distributed dynamic
ESC scheme is also proposed and applied in Section 3
to a production network with 6 gas lifted wells before
concluding the paper in Section 4.

2. DYNAMIC EXTREMUM SEEKING SCHEME

Consider a nonlinear process, where the objective is to
drive the cost J to its minimum by using the input w.
Assumption 1. The plant cost J can be measured.
Assumption 2. The plant cost J can be represented as
Hammerstein model with a combination of a nonlinear
time invariant mapping f(-) : R — R, with proper,
stable, finite-dimensional, linear, time-invariant (FDLTT)
dynamics G(s), at its output, see Fig.2.

Assumption 3. f(u) is sufficiently smooth and continu-
ously differentiable such that

Of wy _
oy =0 1)
*f .

Assumption 3 ensures that f(u) has a unique minimizer
at u = v* and the goal is to drive u to the neighborhood
of u*.
In this section, we propose a dynamic extremum seeking
scheme which is based on identifying a local linear dynamic
model around the current operating point using transient
measurements. The cost and input measurements from a
fixed moving window containing the last N data samples
are used to continuously fit an ARX model of the form,
Jt)=—arJ{t—1)— - —an, J({t—ng) 3)
+bu(t —1)+ -+ by ult —np) +e(t)
Remark 1. The input and cost measurements in (3) are

pre-processed such that they are mean-centered (Ljung,
1999).

We estimate the ARX polynomials,

O=lar -+ an, b1 -+ by,] (4)
using linear least squares estimation
6 =arg min|J — 2793 (5)

where @ is given by the expression

S=[-Jt—1) ... =J(t—n4) ult—1) ... u(t—mn)]"
(6)
Introducing the notation
Apoly(q) =1+ alq_l ++ an,,q_n“
and
Bpoly (Q) = b1q71 +--+ b'n,hqinb
yields a local linear dynamic system of the form,
B, 1
(1) = wl0) ) 4 e(t) )

Apoly(q)

The steady-state gradient around the current operating
point can then be estimated by,

ju = Apoly(Q)_proly(Q) (8)

poly (q)
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Fig. 2. A schematic representation of the proposed dy-
namic extremum seeking control scheme for a class
of systems that can be modelled as Hammerstein
models.

Alternatively, the identified ARX polynomials Apey(q)
and Bpery(gq) can be converted to continuous time state-
space system ! as shown below,

& = Ax + Bu

J=Cz + Du ©)

The steady state gain is then given by setting ¢ = 0 and
eliminating the states z in (9),
J=(-CA™'B+D)u
| S —

Ju

(10)

Once the steady-state gradient Jy is estimated, a simple
integral action can be used to drive the system to its
extremum. In discrete time, this can be expressed as,

(11)

where K7 is the integral gain and T is the sample time.
Additional perturbation w such as a pseudo random binary
sequence (PRBS) signal is added to the input signal
to provide sufficient excitation, u(t + 1) = a(t + 1) +
w. A schematic representation of the proposed dynamic
extremum seeking scheme using ARX model identification
is shown in Fig.2.

Gt +1) =at) + %ju

3. ILLUSTRATIVE EXAMPLE
8.1 Process description

We consider a production network with n,, gas lifted wells.
The steady-state oil production rate for the i*" well Wpo,i
is a function of the corresponding gas lift injection rate
u; = wgr,; and is given by the gas lift performance curve
Wpo,i = f(wgr,i). Bach gas lifted well is then modelled as a
Hammerstein model with a proper stable first order linear
dynamics G;(s)

Wpo,i = f (Wg1,i)Gi(s)wgr.i (12)
The use of such simplified Hammerstein models for gas-
lifted well is justified in Peixoto et al. (2015) and Peixoto
et al. (2017), where the authors show that the main fea-
tures of the mechanistic model from Eikrem et al. (2006)
can be sufficiently captured by using such a Hammerstein
model. Plucenio et al. (2009) also use a Hammerstein
model for gas lifted wells. Empirical models are also often
used in practice (Hamedi et al., 2011).

1 for example using idss and d2c command in MATLAB
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Fig. 3. Simulation results for the dynamic ESC for a single
gas lifted well.

We assume that the measurements for the oil production
rate for each well J; = w,,,; is available. The objective
is to maximize the total oil production rate w;, which is
given by

N
max J = wg, = E Wpo,i

(13)
i=1

In many fields, the amount of gas available for gas lift

injection is limited to w};** and the total amount of the

lift gas must be optimally allocated among the different
wells. This is represented by the following constraint,

T

maxr
E Wgl,i < Wy
i=1

Marginal gas oil ratio, which is defined as the change in
the oil rate per unit change in the gas lift injection rate,
is represented by the symbol v

OWpo,;i

GOR; =v; =
m v, P

(14)

Vie{l,... e 15
Sl vie{Lond (9)
which is equivalent to the steady state gradient of (12)

with respect to the gas lift injection rate.
3.2 Single gas lifted well

In the first simulation case, we demonstrate the effective-
ness of the proposed dynamic extremum seeking scheme
compared to the classical extremum seeking scheme using
a single gas lifted well ( i.e. n,, = 1), with special focus on
the convergence time to the optimum. The gas lifted well
model from Krishnamoorthy et al. (2016a) is captured by
a Hammerstein system with the gas lift performance curve
Wpo = —0.1(wy —20)? 445 and first order linear dynamics

Gls) = —

ey e
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Fig. 4. Simulation results for the classical ESC for a single
gas lifted well (red) compared to the dynamic ESC
(blue).

where the time constant was set to 7 = 174s. For the
dynamic extremum seeking scheme, we identify an ARX
model with orders n, = 1 and n, = 1, using the past

data points from a fixed moving window size of N = 720
samples. This implies that Ap.y(q) = 1+ aig”' and
Bypoiy(q) = big~!. Therefore two parameters, namely, a;
and b; are fitted. The measurements are assumed to be
available with a sample time of 1s. An additional PRBS
perturbation with an amplitude of 0.1kg/s was added to
the gas lift injection rate. An adaptation gain of K; =
0.005 was used to drive the estimated steady state gradient
(marginal GOR) to zero, since this is an unconstrained
problem.

Fig.3 shows the simulation results for the proposed dy-
namic extremum seeking scheme for a single gas lifted well.
Note that the extremum seeking controller was turned on
after the first 720s (0.2h). It can be seen that the pro-
posed scheme successfully drives the system to its optimal
operating point within 1 hour.

We then compare the performance of the proposed method
with the classical high-pass filter and low-pass filter based
extremum seeking control (Krsti¢ and Wang, 2000), where
the system was perturbed with a sinusoidal signal with
a time period of 800s and an amplitude of 0.1kg/s. An
adaptation gain of K; = 0.00075 was used to drive the
estimated steady state gradient to zero.

Fig.4 shows the simulation results of the classical ex-
tremum seeking scheme compared to the proposed dy-
namic extremum seeking scheme. It can be clearly seen
that the classical extremum seeking scheme has a sig-
nificantly slower convergence compared to the proposed
dynamic extremum seeking scheme due to the static map
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well 5

well 4

Fig. 5. Schematic representation of 6 gas lifted wells
producing to a subsea processing unit. The proposed
control structure is shown in grey blocks.

assumption. The classical ESC takes more than 15 hours to
converge to the optimum, whereas the proposed dynamic
ESC scheme converges only within 1 hour, making it
more relevant for practical implementation. This exam-
ple clearly demonstrates the effectiveness of the proposed
dynamic extremum seeking scheme.

3.8 Gas lifted well network

In this simulation case, we now apply the proposed dy-
namic extremum seeking scheme to a production network
consisting of n,, = 6 gas lifted wells producing to a com-
mon subsea processing unit. The total available gas for gas
lift is limited to wy;** = 56kg/s during normal operation,
which must be optimally allocated among the six wells. All
the six wells are modelled as Hammerstein models with a
polynomial function for the gas lift performance curve and
linear first order dynamics with the time constants varying
between 170 - 180s. See Ryu (2018) for detailed description
of the models used for the six wells.

In the case of limited gas lift, the optimum operation
happens when all the available gas is used for lifting (i.e.
the constraint (14) is active at the optimum), which is
typically the case in most gas lifted fields. According to
good plantwide control practice (Skogestad and Postleth-
waite, 2007), we then control the active constraint tightly
using one of the wells. We use the remaining (n,, — 1) un-
constrained degrees of freedom to optimize the production
from the well network. This is achieved by maintaining the
marginal GOR for all the wells to be equal, according to
the principle of equal slopes as described by Downs and
Skogestad (2011).

‘We propose a simple decentralized control structure such
that we have (n,, — 1) feedback controllers to control the
difference in the marginal GOR between two wells to a
constant setpoint of zero and 1 feedback controller to
control the active constraint tightly. In other words, the
controlled variables for the (n, — 1) feedback controllers
would be (v; — vj4q) for all i € {1,...,n, — 1} which is
controlled to a constant setpoint of zero, thereby fulfilling
the principle of equal slopes for optimal operation, and
one feedback controller to control the total input usage
S wg; to a constant setpoint of w7, as described
by Krishnamoorthy et al. (2018). The marginal GOR v;
for each well is estimated using the proposed dynamic
extremum seeking scheme (10).

The simulation starts with normal operation with the total
gas capacity constrained at wy ™ = 56kg/s. At time
t = 12h, due to some unexpected topside disturbance, the

max

processing capacity is reduced to wy = 52kg/s. Fig.6
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Fig. 6. Simulation results for the dynamic extremum
seeking scheme applied to a network of 6 gas lifted

wells.
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Fig. 7. Simulation results showing the total oil production
rate from the well network (top subplot) and the total
gas lift injection rate (bottom subplot).

shows the simulations results for the 6 well case. The top
subplot shows the oil production from the 6 wells and the
second subplot shows the gas lift injection rates. From the
principle of equal slopes, it is known that the optimal
operation happens when then marginal GOR for all the
wells are equal. It can be clearly seen that the marginal
GOR for all the wells converge to a value of 1.5kg/kg
during normal operation and the marginal GOR of all the
wells change to a value of 1.61kg/kg when the processing
capacity is reduced. Fig.7 shows the total oil production
and the total gas lift injection rate.



Table 1 shows the oil production rate converged to
steady-state using the proposed dynamic extremum seek-
ing scheme compared to the true optimum which is com-
puted by solving a nonlinear optimization problem (used
as benchmark). This shows that the proposed scheme is
able to drive the system to its true optimum.

Table 1. Oil production rates converged to
the steady state using the proposed method
compared to the true optimum .

True optimum Converged solution

wwlLa;L' ‘

‘ . 56kg/s  52kg/s | 56kg/s 52kg/s
well 1 | 39.375 3851 | 39.37 38.57
well 2 | 53.875  53.70 | 53.88 53.63
well 3 | 52.187  51.75 | 52.19 51.77
welld | 43.75 4202 | 43.75 42.01
well 5 | 25.9375  23.78 | 25.93 23.78
well 6 | 24.375  23.51 24.4 23.49
Total | 239.5  233.28 | 2395 233.25

4. CONCLUSION

In this paper we proposed a dynamic extremum seeking
scheme for a class of systems that can be modeled as
Hammerstein models, which is based on identifying a local
linear dynamic model around the current operating point.
The steady-state gradient is estimated from the identified
ARX model using (10). By using transient measurements
for the gradient estimation, we have effectively eliminated
the time scale separation required between the plant dy-
namics and the dither signal. This leads to a significantly
faster convergence to the optimum, especially for systems
with very long settling times, as demonstrated in Fig.3
and Fig.4. Additionally, for a network of gas lifted wells,
we presented a simple decentralized framework for optimal
allocation of lift gas in a network of gas lifted wells using
the proposed dynamic extremum seeking scheme.
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