Design of start-up and shut-down
control systems

With emphasis on plant-wide in contrast to unit
Public Trial Lecture

Julian Straus
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Start-up and shut-down

« Continuous manufacturing divided into 3 sequences:

— Start-up
— Continuous production
— Shut-down

« Relative straight forward for sequential processes

—>‘ Unit 1 >‘ Unit 2 >‘ Unit 3 >‘ Unit 4
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Start-up and shut-down

« Continuous manufacturing divided into 3 sequences:

— Start-up
— Continuous production
— Shut-down

« Relative straight forward for sequential processes
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« How to do this in an integrated process?
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Ammonia synthesis loop

« Example: Ammonia synthesis loop
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Automated start-up and shut-down

« Start-up and shut-down of unit operations mature field:

— Each unit in itself contains several control loops
— Integrated logic controllers (programmable logic controllers)

« Motivation for automation on plant-wide level
— Safety (Texas City refinery explosion, 2005)

— Improved economic (and environmental) performance
— Reduced start-up and shut-down time (Power plants)

e Start-up: « Shut-down:
— Cold — Standard
— Warm — Emergency
— Hot
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Plant-wide control systems

« Additional unit operations required (e.g. burner or cooler)
« Consideration of utilities (steam, cooling water, etc.)

» Complicated, large-scale systems with logical variables
(hybrid system)

« (General considerations
— Creation of inert atmosphere/presence of dangerous chemicals
— Material properties (stress in heating/cooling)
— Impact on materials through non-normal operation conditions
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Focus of this lecture

Introduce current industrial practice

« To give an overview of different approaches for plant-wide
start-up and shut-down control systems

« Provide a starting-point for detailed analysis of different
applicable methods
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« Applicability analysis of the different procedures
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Presentation outline

1. Introduction

2. Current Industrial Practice

3. Discrete event dynamic systems
4. Dynamic optimization problem

5. Final thoughts
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Presentation outline

2. Current Industrial Practice
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Chemical processes

« Start-up and shut-down based on procedures developed
through engineering insights

» Running of the process manually by the operator through
changing controller set points and opening/closing valves

« May involve manual inspections
« Procedures fairly complex with a large number of steps

« Operators do not necessarily follow the procedure precisely

» Can result in dangerous situations
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Start-up of a steam methane reformer

« Harmonized procedures by Compressed Gas Association
Nitrogen purging with manual leak tests

Starting of burner

Heating of reformer with nitrogen

Introduction of steam and simultaneous reduction of nitrogen

+ Condensation has to be avoided

5. Introduction of methane once temperatures exceed a certain level
» Higher steam/carbon ratio to prevent coking

6. Addition of downstream process

« Consideration for damaging these unit operations

« Can give additional fuel gas sources
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Presentation outline

3. Discrete event dynamic systems
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Concept

« Modelling of the system using discrete states

« Transitions between states triggered by events
 Intrinsically integer based

« From continuous to discrete:
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Concept

Several ways to model discrete event systems
— Automata

— Petri nets

Different ways to identify states and events
— Discretization of dynamic models

— Process knowledge for identifying states

Supervisor control
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— Formalism for triggering desired events

— Using control inputs to move to nhominal operation
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Automata

Directed graph for event systems

Deterministic automata
G, = (X,E,f,I',Xg, X,y )

X ={12,3]

E ={a,b,c}

X =2

f(la)=2 f(Lb)=3
f(2a)=3 f(3,b)=2
f(3a)=1 f(2c)=2

I'(x)={a,b} forx ={1,2},I'(3) = {a,c}
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Automata

« Directed graph for event systems

 Deterministic automata
G, = (X,E,f,I',Xg, X,y )

« Non-deterministic automata X ={1,2,3}
Gy = (X,E\f .1, %0, X)) E ={ab,c}
X =2

C m

o g fq(la)={23} f,(3b)=2
fq(2a)=3 fq(2c)=2
e r@)=a
I'(2)={ac}
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Blocking in automata

« Blocking occurs if

— States do not have events leading to a marked state Deadlock

— A set of unmarked states do not have events leading to a marked state
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Blocking in automata

« Blocking occurs if

— States do not have events leading to a marked state Deadlock

— A set of unmarked states do not have events leading to a marked state

 Results in undesired behavior Livelock

- Locks should be avoided
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Supervisor control

 Differentiation between observable, controllable (E,), and
uncontrollable (E,) events

— Controllable events can be disabled

 How does a supervisor look?

— Automaton
S

— Disables event for movement to desired

T l end state
o) 4

[ — Formal rules for supervisor synthesis
G J

developed by Ramadge and Wonham
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« Supervisor theory can be used for start-up and shut-down of
processes
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Verification of control system

« Control systems need to be verified
— Wrong sequences can result in large problems

— Controller verification tools for hybrid models

e Sequence control system
— System represented as system of Boolean equations
— Specification formulated as temporal logic

— Verification through solution of a series of Boolean satisfiability
problems
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« Large-scale automation systems
— Automatically generated process independent tests

— Coin of influence reduction for handling state explosion
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Presentation outline

4. Dynamic optimization problem
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Mixed logical dynamical systems

« Transformation of propositional logic into linear inequalities
 Automata are MLD systems

« Set-up of a model predictive control (MPC) framework using
a mixed integer quadratic program environment
— Linear dynamic model with integer constraints
— Quadratic cost function
— Stability of model is proven
— Can be used for tracking MPC
— Allows incorporation of heuristics

* Problems:
— Model accuracy of linear model over wide range during start-up

— Consideration of technical constraints like maximum temperature
gradient in reactor walls
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Dynamic scheduling - Concept

« Similar to batch process scheduling

« Automation of procedure development and set-point ramps
generation

« Based on a dynamic, detailed models of the overall process

Non-smooth formulation of a differential-algebraic system
X(u,t) =f(x(u,t),y(u,t),u(t))

0=g(x(ut),y(ut),u(t))

X(u,0) =X,

Production quality constraints

Non-smooth formulation through logical operators (min, max, mid)
Does not require steady-state for on-spec production
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Continuous production of
pharmaceuticals

« Aim: Maximizing on-spec Yield instead of minimizing start-up
and shut-down time

» Can result in on-spec in transients
[ pur2 >

Optimization variables
5 valves discretized in time
* Time of each discretization
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Summary of dynamic scheduling

« Improves on-spec production through exploitation of
transient operations

* Problems:

— Simple process results in computational large problems:
« 878 dynamic equations
« 1254 algebraic equations

— Number of decision variables and input discretization small
— Computational cost: Several hours
— Plant-model mismatch?
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Thermal power plants

« Extensive research for integration of intermittently available
renewable energy sources

« Requires frequent load changes and shut-down/start-up
« Can be seen as simple chemical recycle processes

—{Condenser]%
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NMPC in start-up

« Application of NMPC investigated
« Costfunction:  Maximize profit
« Constraints: Maximum wall temperature gradient
%0_4” B T L ;_,,;_,,J/,“ff ] §0_4_..... ,"( B4 N R
E : - L ‘ ‘
g 02 -~ conventional control || 02— ctual pé;,v:er'o'utp&
: — optimal control _ - Predicted power output
0'%.0 012 0!4 0‘.6 0.‘8 0'%_0 O_|2 0.‘4 0.‘6 O.IS 1.0
Normalized time Normalized time

* Included a lower level stabilizing controller
* Does not include explicitly integer variables
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Presentation outline

5. Final thoughts
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Conclusion

« Current industrial practice follow procedures developed by
engineers and based on manual operator set points

« Academic research is less focused on start-up and shut-
down of processes

 Lack of communication between different communities

« Discrete event dynamic systems:
— Process not considered to be continuous but discrete
— Possibility to introduce a supervisor control (RW framework)
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« Dynamic optimization problems:
— Continuous dynamic model (non-smooth or with integer variables)
— Give optimal trajectory for the start-up and shut-down
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Personal thoughts

« Development of automated control systems useful, when
— Safety considerations require automated control
— Development is achievable
— Start-up and shut-down is frequent

* Problems with current approaches
— Curse of dimensionality for discrete event dynamic systems
— Difficulty of developing (and maintaining) accurate plant models for
dynamic optimization
— Limitations imposed by computational hardware and modelling
capabilities
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