

Design of start-up and shut-down control systems

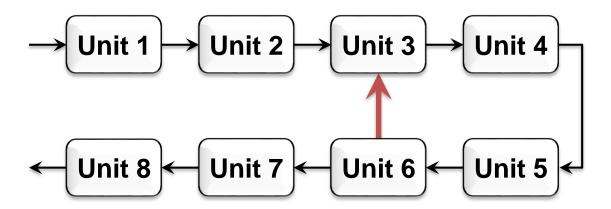
With emphasis on plant-wide in contrast to unit

Public Trial Lecture

Julian Straus

Start-up and shut-down

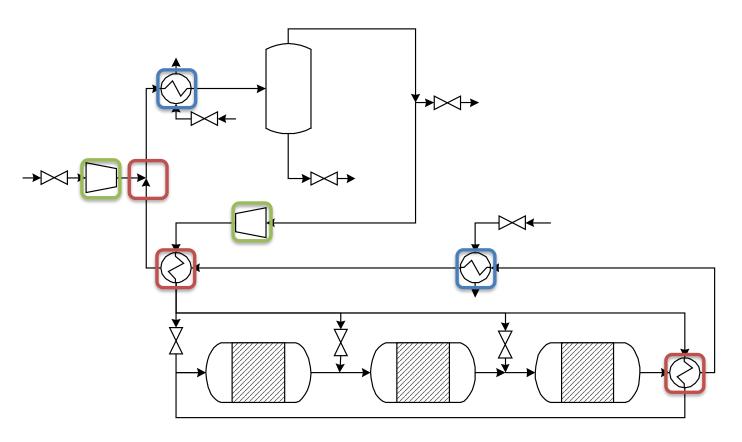
- Continuous manufacturing divided into 3 sequences:
 - Start-up
 - Continuous production
 - Shut-down
- Relative straight forward for sequential processes


$$\rightarrow \text{Unit 1} \rightarrow \text{Unit 2} \rightarrow \text{Unit 3} \rightarrow \text{Unit 4}$$

$$\leftarrow \text{Unit 8} \leftarrow \text{Unit 7} \leftarrow \text{Unit 6} \leftarrow \text{Unit 5} \leftarrow$$

Start-up and shut-down

- Continuous manufacturing divided into 3 sequences:
 - Start-up
 - Continuous production
 - Shut-down
- Relative straight forward for sequential processes


• How to do this in an integrated process?

1. Introduction

Ammonia synthesis loop

• Example: Ammonia synthesis loop

Automated start-up and shut-down

- Start-up and shut-down of unit operations mature field:
 - Each unit in itself contains several control loops
 - Integrated logic controllers (programmable logic controllers)
- Motivation for automation on plant-wide level
 - Safety (Texas City refinery explosion, 2005)
 - Improved economic (and environmental) performance
 - Reduced start-up and shut-down time (Power plants)
- Start-up:
 - Cold
 - Warm
 - Hot

- Shut-down:
 - Standard
 - Emergency

Plant-wide control systems

- Additional unit operations required (*e.g.* burner or cooler)
- Consideration of utilities (steam, cooling water, etc.)
- Complicated, large-scale systems with logical variables (hybrid system)
- General considerations
 - Creation of inert atmosphere/presence of dangerous chemicals
 - Material properties (stress in heating/cooling)
 - Impact on materials through non-normal operation conditions

Focus of this lecture

- Introduce current industrial practice
- To give an overview of different approaches for plant-wide start-up and shut-down control systems
- Provide a starting-point for detailed analysis of different applicable methods
- Applicability analysis of the different procedures

Presentation outline

- 1. Introduction
- 2. Current Industrial Practice
- 3. Discrete event dynamic systems
- 4. Dynamic optimization problem
- 5. Final thoughts

Presentation outline

1. Introduction

- 2. Current Industrial Practice
- 3. Discrete event dynamic systems
- 4. Dynamic optimization problem
- 5. Final thoughts

Chemical processes

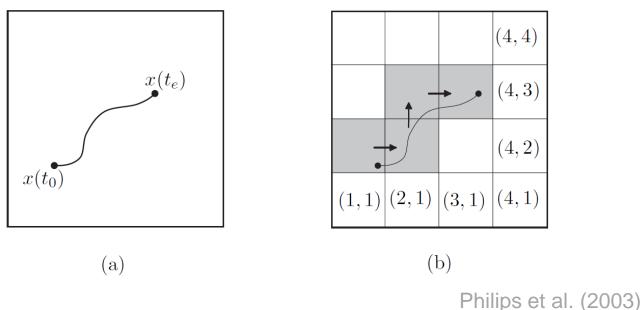
- Start-up and shut-down based on procedures developed through engineering insights
- Running of the process manually by the operator through changing controller set points and opening/closing valves
- May involve manual inspections
- Procedures fairly complex with a large number of steps
- Operators do not necessarily follow the procedure precisely
- Can result in dangerous situations

Start-up of a steam methane reformer

- Harmonized procedures by Compressed Gas Association
 - 1. Nitrogen purging with manual leak tests
 - 2. Starting of burner
 - 3. Heating of reformer with nitrogen
 - 4. Introduction of steam and simultaneous reduction of nitrogen
 - Condensation has to be avoided
 - 5. Introduction of methane once temperatures exceed a certain level
 - Higher steam/carbon ratio to prevent coking
 - 6. Addition of downstream process
 - Consideration for damaging these unit operations
 - Can give additional fuel gas sources

Asis Industrial Gas Association

Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit


Presentation outline

- 1. Introduction
- 2. Current Industrial Practice
- 3. Discrete event dynamic systems
- 4. Dynamic optimization problem
- 5. Final thoughts

Concept

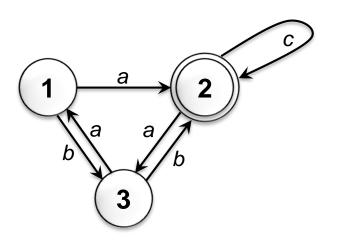
- Modelling of the system using discrete states
- Transitions between states triggered by events
- Intrinsically integer based
- From continuous to discrete:

Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit

Concept

- Several ways to model discrete event systems
 - Automata
 - Petri nets
- Different ways to identify states and events
 - Discretization of dynamic models
 - Process knowledge for identifying states
- Supervisor control
 - Formalism for triggering desired events
 - Using control inputs to move to nominal operation

Oynamic Systems


Discrete Event

Automata

- Directed graph for event systems
- Deterministic automata

 $\boldsymbol{G}_{d} = \left(\boldsymbol{X}, \boldsymbol{E}, \boldsymbol{f}, \boldsymbol{\Gamma}, \boldsymbol{X}_{0}, \boldsymbol{X}_{m}\right)$

 $X = \{1, 2, 3\}$ $E = \{a, b, c\}$ $X_m = 2$ f(1, a) = 2 f(1, b) = 3 f(2, a) = 3 f(3, b) = 2 f(3, a) = 1 f(2, c) = 2 $\Gamma(x) = \{a, b\} \text{ for } x = \{1, 2\}, \Gamma(3) = \{a, c\}$

Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit

15

Discrete Event Dynamic Systems

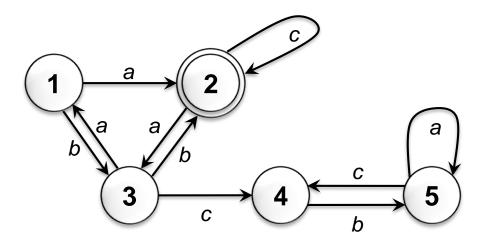
Automata

- Directed graph for event systems
- Deterministic automata

 $\boldsymbol{G}_{d} = \left(\boldsymbol{X}, \boldsymbol{E}, \boldsymbol{f}, \boldsymbol{\Gamma}, \boldsymbol{x}_{0}, \boldsymbol{X}_{m}\right)$

Non-deterministic automata $G_{nd} = (X, E, f_{nd}, \Gamma, x_0, X_m)$ $E = \{a, b, c\}$ $X_m = 2$ $f_{nd} (1, a) = \{2, 3\}$ $f_{nd} (3, b) = 2$ $f_{nd} (2, a) = 3$ $f_{nd} (2, c) = 2$ $f_{nd} (3, a) = 1$ $\Gamma(1) = a$ $\Gamma(2) = \{a, c\}$ $\Gamma(3) = \{a, b\}$

Discrete Event Dynamic Systems

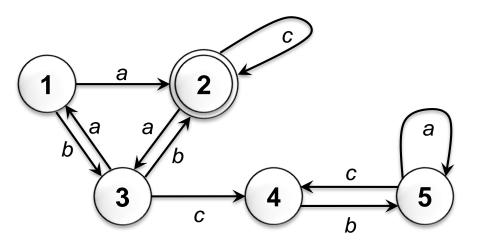


Blocking in automata

- Blocking occurs if
 - States do not have events leading to a marked state

- A set of unmarked states do not have events leading to a marked state

Discrete Event Dynamic Systems


Blocking in automata

- Blocking occurs if
 - States do not have events leading to a marked state
 - A set of unmarked states do not have events leading to a marked state

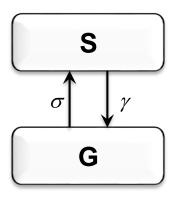
Deadlock

Livelock

- Results in undesired behavior
 - \rightarrow Locks should be avoided

Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit

Discrete Event Dynamic Systems



Oynamic Systems

Discrete Event

Supervisor control

- Differentiation between observable, controllable (E_c), and uncontrollable (E_u) events
 - Controllable events can be disabled
- How does a supervisor look?

- Automaton
- Disables event for movement to desired end state
- Formal rules for supervisor synthesis developed by Ramadge and Wonham
- Supervisor theory can be used for start-up and shut-down of processes

Ramadge and Wonham (1989)

Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit

Verification of control system

- Control systems need to be verified
 - Wrong sequences can result in large problems
 - Controller verification tools for hybrid models
- Sequence control system
 - System represented as system of Boolean equations
 - Specification formulated as temporal logic
 - Verification through solution of a series of Boolean satisfiability problems
- Large-scale automation systems
 - Automatically generated process independent tests
 - Coin of influence reduction for handling state explosion

Presentation outline

- 1. Introduction
- 2. Current Industrial Practice
- 3. Discrete event dynamic systems
- 4. Dynamic optimization problem
- 5. Final thoughts

Mixed logical dynamical systems

- Transformation of propositional logic into linear inequalities
- Automata are MLD systems
- Set-up of a model predictive control (MPC) framework using a mixed integer quadratic program environment
 - Linear dynamic model with integer constraints
 - Quadratic cost function
 - Stability of model is proven
 - Can be used for tracking MPC
 - Allows incorporation of heuristics
- Problems:
 - Model accuracy of linear model over wide range during start-up
 - Consideration of technical constraints like maximum temperature gradient in reactor walls
 Bemporad and Morari (1999)

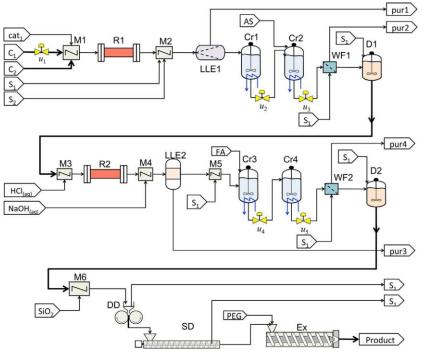
Dynamic scheduling - Concept

- Similar to batch process scheduling
- Automation of procedure development and set-point ramps generation
- Based on a dynamic, detailed models of the overall process
 - Non-smooth formulation of a differential-algebraic system

$$- \dot{\mathbf{x}}(\mathbf{u},t) = \mathbf{f}(\mathbf{x}(\mathbf{u},t),\mathbf{y}(\mathbf{u},t),\mathbf{u}(t))$$

 $\mathbf{0} = \mathbf{g}\big(\mathbf{x}(\mathbf{u},t),\mathbf{y}(\mathbf{u},t),\mathbf{u}(t)\big)$

 $\mathbf{x}(\mathbf{u},0) = \mathbf{x}_0$

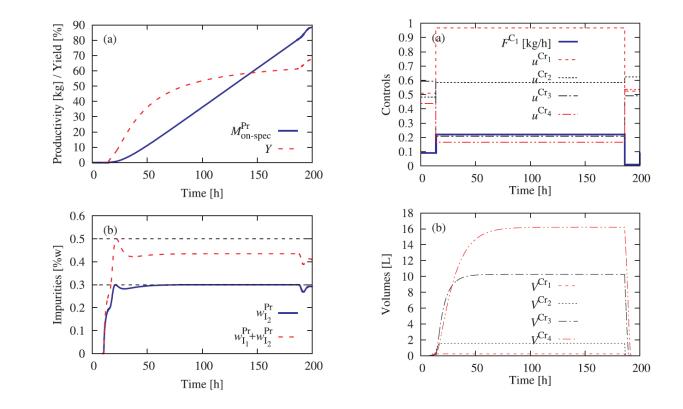

- Production quality constraints
- Non-smooth formulation through logical operators (min, max, mid)
- Does not require steady-state for *on-spec* production

Petrescu and Barton (2018)

Continuous production of pharmaceuticals

- Aim: Maximizing on-spec yield instead of minimizing start-up and shut-down time
- Can result in on-spec in transients

Optimization variables


- 5 valves discretized in time
- Time of each discretization

Petrescu and Barton (2018)

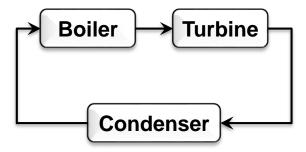
4. Dynamic Optimization Problem

Results of dynamic scheduling

Petrescu and Barton (2018)

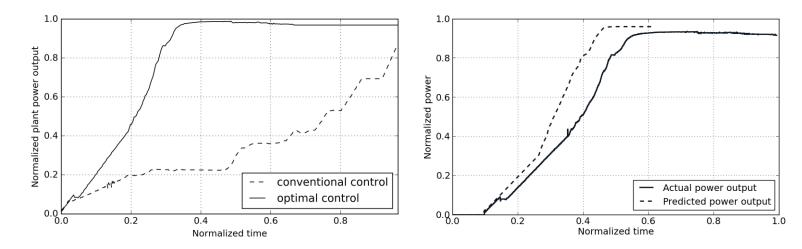
Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit

25


Summary of dynamic scheduling

- Improves on-spec production through exploitation of transient operations
- Problems:
 - Simple process results in computational large problems:
 - 878 dynamic equations
 - 1254 algebraic equations
 - Number of decision variables and input discretization small
 - Computational cost: Several hours
 - Plant-model mismatch?

Thermal power plants


- Extensive research for integration of intermittently available renewable energy sources
- Requires frequent load changes and shut-down/start-up
- Can be seen as simple chemical recycle processes

NMPC in start-up

- Application of NMPC investigated
- Cost function: Maximize profit
- Constraints: Maximum wall temperature gradient

- Included a lower level stabilizing controller
- Does not include explicitly integer variables

Julian Straus | Design of start-up and shut-down control systems - With emphasis on plant-wide in contrast to unit

Presentation outline

- 1. Introduction
- 2. Current Industrial Practice
- 3. Discrete event dynamic systems
- 4. Dynamic optimization problem
- 5. Final thoughts

Conclusion

- Current industrial practice follow procedures developed by engineers and based on manual operator set points
- Academic research is less focused on start-up and shutdown of processes
- Lack of communication between different communities
- Discrete event dynamic systems:
 - Process not considered to be continuous but discrete
 - Possibility to introduce a supervisor control (RW framework)
- Dynamic optimization problems:
 - Continuous dynamic model (non-smooth or with integer variables)
 - Give optimal trajectory for the start-up and shut-down

Personal thoughts

- Development of automated control systems useful, when
 - Safety considerations require automated control
 - Development is achievable
 - Start-up and shut-down is frequent
- Problems with current approaches
 - Curse of dimensionality for discrete event dynamic systems
 - Difficulty of developing (and maintaining) accurate plant models for dynamic optimization
 - Limitations imposed by computational hardware and modelling capabilities

Literature

- V. Alstad, Yara ASA personal correspondence (Aug. 2018).
- A. Araújo and S. Skogestad, *Comput. Chem. Eng.* 32 (2008) 2920–2932.
- Asia industrial gas association AIGA 086/14 Safe startup and shutdown practices for steam reformers.
- A. Bemporad and M. Morari, Automatica 35 (1999) 407-427
- C. Cassandras and S. Lafortune, Introduction to Discrete Event System (2008)
- K. Dietl and K. Link, Proc. CoDIT 18 599-604.
- S. Engell et al., *Proc IEEE* 88(7) (2000) 1050-1068.
- K Forsman, Perstorp AB personal correspondence (Aug. 2018).
- N. G. Leveson and G. Stephanopoulos, *AIChE J* 60(1) (2014) 2-14.
- T. Park and P. Barton, *Comput. Chem. Eng.* 23, (2000) 1783-1793.
- M. Patrascu and P. I. Barton, *Chem. Eng. Process. Process Intensification* 125 (2018) 124-132.
- P. J. Ramadge and W.M. Wonham, SIAM J. Control Optim. 25(1) (1987) 206-230.
- P. J. Ramadge and W.M. Wonham, *Proc. IEEE* 77(1) (1989) 81-98.
- B. C. Rawlings, J. M. Wassick, and B. E. Ydstie, Comput. Chem. Eng. 114, (2018) 211-220.
- P. P. H. H. Philips et al., Int. J. Control 73(3) (2003) 277-294