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Ammonia Process

• Haber Bosch process: Fixation of atmospheric nitrogen

• Developed in 1910s

• Strong competition and high energy demand
 Integration of the process
 Difficult optimization of the process

• Split into 2 sections
1. Synthesis gas production

2. Ammonia synthesis
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Optimal Operation

• Aim: minimizing production cost 
through process control

• Control structure frequently 
hierarchical

• Optimal operation results in an 
optimization problem
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Optimal Operation

• Implementation of optimal operation
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Optimal Operation
- Integrated Processes

• Optimizer for dynamic or steady-state optimization problem 
required

 Model of the process

• Problems of integrated process:
– Nested Recycle Loops

– Convergence of the Flowsheet

– Simulation noise

• Two different approaches
1. Optimal operation of subprocesses

2. Simplified model for optimization of the overall process
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• Three bed ammonia reactor

• Three manipulated variables u

• Heat integration for reduced cost through 
reactor outlet heat exchanger

• Cost function: rate of extent of reaction x

• Exhibits limit cycle and reactor extinction
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• Solves dynamic optimization problem for a time horizon

• Implements first calculated input of the trajectory

• Problems:
– Required time for solving the optimization problem

– Feasibility of the solution to the optimization problem and stability
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• Constant setpoint policy

 Selection of controlled variables

• Based on steady-state optimization considering
the disturbances and local linearization

• What happens if remaining plant is neglected
when calculating H? 
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 Requires adjustment of setpoint to controllers
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• Extremum-seeking control as optimizing layer for setpoint 
adjustment

• Self-optimizing control for fast close-to-optimal disturbance 
rejection
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• ESC rather slow

• E-NMPC complicated through online optimization 

• Translation of optimization problem into a
feedback problem:
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• Detailed models often computational expensive to solve

• Introduction of surrogate models reduces computation load

• Surrogate model:
Simple input (u)-output (ysurr) representation (                  ) of 
a detailed model

• Input: Connection and decision variables

• Output: Connection and economic variables
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Original (steady-state) optimization problem:

1. Split original model g into n submodels gi

2. Calculate surrogate models gi,k’ for submodels gi

3. Combine surrogate models in big model through connection 
constraints

4. Optimize new problem
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• Connection variables can result in high number of 
independent variables nu

• Sampling and surrogate model fitting computation expensive 
with high nu

• Reduction necessary:
1. Introduction of linear mass balances
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• Connection variables can result in high number of 
independent variables nu

• Sampling and surrogate model fitting computation expensive 
with high nu

• Reduction necessary:
1. Introduction of linear mass balances

2. Reduction of nu through PLSR:
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• Connection variables can result in high number of 
independent variables nu

• Sampling and surrogate model fitting computation expensive 
with high nu

• Reduction necessary:
1. Introduction of linear mass balances

2. Reduction of nu through PLSR:

3. Fitting of surrogate model using new latent and dependent variables
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• Reaction section, ammonia synthesis loop
– 7 feed variables

– 3 manipulated variables

– 3 dependent variables

• Surrogate model structure
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• Idea: Simplify response surface through change of 
independent variables (sample interesting regions)

• Initial independent variables:
– Feed

– Manipulated variables

• Initial dependent variables
– Output

• Change of variables from u to c via self-optimizing
control principles, i.e. add equality constraints:
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• Aim: Maximize rate of extent
of reaction

• Local SOC variables per bed
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• Aim: Maximize rate of extent
of reaction

• Local SOC variables per bed

• 4 different SOC variable
combination tested

– Inlet temperatures
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• Aim: Maximize rate of extent
of reaction

• Local SOC variables per bed

• 4 different SOC variable
combination tested

– Inlet temperatures

– Inlet and outlet temperatures
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• Aim: Maximize rate of extent
of reaction

• Local SOC variables per bed

• 4 different SOC variable
combination tested

– Inlet temperatures

– Inlet and outlet temperatures

– 1 optimal temperature per bed

– 2 optimal temperatures per bed

• Error with respect to true 
optimum
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Extent of reaction
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• Limit cycle behavior and reactor extinction close to optimal 
point

• Complicates normal sampling
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• Sampling crucial for:
– Performance of surrogate model

– Computational expense

• Common sampling approaches
– Predefined

– Adaptive

• Aim: Sampling without
– Surrogate model fitting

– Over-sampling
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• Weights Wk change with growing sampling space (              )

• Convergence of the significant weights

3

Sampling for Surrogate Model 
Generation

17.
August
2018 T u W u



36

• Convergence corresponds to flattening in error improvement:
Reaction section ( sampled points)
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Presentation Outline

1. Introduction
– Ammonia Process (Chapter 2)

– Optimal Operation (Chapter 3)

2. Optimal Operation for Subprocesses
– Economic Nonlinear Model Predictive Control (Chapter 5)

– Self-optimizing Control with Extremum-Seeking Control (Chapter 6+7)

– Feedback Real-time Optimization (Chapter 8)

3. Optimal Operation through Introduction of Surrogate Models
– Main Procedure (Chapter 10) 

– Variable Reduction using PLS Regression (Chapter 11+12)

– Application of Self-optimizing Variables (Chapter 13)

– Sampling for Surrogate Model Generation (Chapter 14)

4. Conclusion
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Conclusion

• Optimal operation methods
– Self-optimizing control in recycle systems

– Combination of self-optimizing control and extremum-seeking control 
for removal of steady-state loss

– Feedback real-time optimization for fast disturbance rejection

• Optimization of integrated process
– Method for surrogate model-based optimization

– Independent variable reduction through PLS regression

– Simplification of response surface through self-optimizing variables

– Termination criteria for sampling without the need of surrogate model 
fitting
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