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Summary

Chemical processes have to be operated at their economic optimum to remain competi-
tive. This is called optimal operation. Optimal operation is frequently incorporated using
a real-time optimization approach. In this approach, a model of the process is updated
using plant and disturbance measurement and subsequently optimized to calculate the
setpoints of the controller.

The competition in the bulk chemical industry furthermore dictates the necessity of heat
and mass integration. As a consequence, it is more and more difficult to obtain a model of
the overall process which can be used in real-time optimization. This thesis is therefore
applying and developing methods to achieve optimal operation in the case of integrated
chemical processes.

If it is not possible to obtain a detailed model for real-time optimization of the overall
process, it is only natural to try to achieve optimal operation for subprocesses. This can
be achieved either through the application of real-time optimization for the respective
subprocesses or through process control. The first part of this thesis is investigating dif-
ferent approaches to obtain optimal operation for said subprocesses. Economic nonlinear
model predictive control is one approach based on online dynamic optimization. In ad-
dition to converging to an optimal operation point, economic nonlinear model predictive
control follows the optimal trajectory to this point. Due to the potential complicated opti-
mization problem and problems associated with plant-model mismatch, self-optimizing
control in itself and in a hierarchical combination with extremum-seeking control is
subsequently applied to the same case study. When disturbances occur, self-optimizing
control is keeping the operation close to the optimum whereas extremum-seeking control
adjusts the setpoints to the self-optimizing variables to remove the steady-state loss of
self-optimizing control. This allows achieving optimal operation without the necessity
of a detailed model and reduces the impact of plant-model mismatch and the solution
time of the optimization problem in economic nonlinear model predictive control. Feed-
back real-time optimization as a novel alternative transforms the optimization problem
of conventional real-time optimization to a control problem. This allows a fast response
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Summary

to disturbances and removes problems associated with the cost measurement and gradi-
ent estimation in extremum-seeking control.

The second part of this thesis is developing methods for surrogate model generation. Sur-
rogate models are computational cheap regression models of computational expensive
detailed models. They can be used in the context of real-time optimization to reduce the
computational load to solve the optimization problem. The separation of the initial pro-
cess model into subprocesses results in models that are computational cheaper to solve.
Surrogate models are subsequently fitted to the subprocesses and combined into a sur-
rogate model flowsheet. The optimization is then performed using the surrogate model
flowsheet. Using surrogate models, it is possible to perform a variable transformation.
Partial least squares regression allows a reduction in the number of independent vari-
ables through the calculation of new, latent variables. The application of self-optimizing
variables in the generation of surrogate models results in a simplified surface of the de-
tailed model. The simpler surface requires then fewer points to achieve a satisfactory
fit of the surrogate model. Partial least squares regression can be used as a termination
criterion in sampling without the need of fitting a surrogate model at each sampling iter-
ation step as well. This results in a reduction of the computational load in sampling for
surrogate model generation. The surrogate model flowsheet can then be used in real-time
optimization.
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Chapter 1

Introduction

The following chapter outlines the motivation for the research conducted in this project.
Furthermore, it gives the scope and the structure of the thesis. It finalizes with the main
contributions of the thesis and the publications written in the course of the Ph.D. studies.

1.1 Motivation for and Scope of this Thesis

Chemical processes in mature industries become more and more integrated. El-Halwagi
[26] defines process integration as “a holistic approach to process design, retrofitting, and
operation, which emphasizes the unity of the process”. This implies that excess energy
and mass is utilized within the process. As a result, many recycle streams are present.
The reason for energy and mass integration is the ever increasing competition, environ-
mental constraints, and small profit margins in the chemical industry. A downside of
this integration is that it is difficult to achieve optimal operation as it leads to compli-
cated optimization problems. The available software for simulating chemical processes
complicates the optimization further.

Chemical processes are frequently modelled using flowsheeting software. This allows
the utilization of detailed thermodynamics and model equations. The available software
can be separated into two categories: sequential-modular and equation-oriented simula-
tor [12]. Sequential-modular simulators treat the individual unit operation independently
as self-containing blocks including the thermodynamic calculation. As a result, solving
a unit operation is fast and simple. If a recycle is present, this approach unfortunately
requires the introduction of tear streams, which have to be converged on a higher level.
In the case of an integrated plant, several mass and energy recycles are present. This
leads to a poor convergence for solving the flowsheet. Consequently, it is difficult to use
this type of simulators in optimization. Equation-oriented simulators try to avoid con-
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vergence problems given by the recycles by combining all equations in one system of
nonlinear equations. Hence, the recycle streams are solved simultaneously with the bal-
ances and thermodynamic calculations of the process. This increases the usefulness of
the simulators in optimization. However, it is difficult to initialize the system of equa-
tions. Consequently, it is difficult to use flowsheeting software in real-time applications.

As a first alternative, the infeasible path algorithm developed by Biegler and Hughes
[11] tried to circumvent problems associated with recycle streams. They achieved this
by moving the convergence of the recycle streams to the optimization layer. In the case
of a large number of recycles, this can be however complicated due to the large number
of independent variables.

A second alternative can be seen in optimal operation of subprocesses. This approach
achieves optimal operation for parts of the processes with the aim that the overall pro-
cess is then at the optimal operation point as well if each subprocess is at its respective
optimum.

A third alternative is given by the application of surrogate models for unit operations
or subprocesses to simplify the complete flowsheet. Surrogate models (also known as
response surface models, metamodels, or reduced order models) can be seen as input-
output relationships for given sampled data. The simplification can be achieved through
the substitution of computationally expensive unit operation by surrogate models.

Based on the state-of-the-art approaches for optimal operation, the scope of this thesis
is to investigate and develop novel approaches for achieving optimal operation of inte-
grated chemical processes. This includes both optimal operation of parts of the process
and optimization of the overall process through the application of surrogate models.

1.2 Structure and Summary

This thesis is structured into four parts.

Part I provides the introduction into the thesis. Chapter 2 gives an overview of the
ammonia synthesis process and elaborates on its advantage as case study. Chapter 3
introduces the field of optimal operation of chemical processes and discusses the state
of the art methods.

Part II covers the development and application of optimal control methods for parts
of chemical processes and consists of six chapters. A heat-integrated ammonia reactor
serves as case study in all chapters. The basic structure of the case study and the model
is explained in Appendix A. Adjustments to the case study are explained in the respec-
tive chapters. Chapter 4 formulates and solves a steady-state optimization problem for
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this case study. Subsequently, economic nonlinear model predictive control as method
for achieving optimal operation is applied in Chapter 5. As economic nonlinear model
predictive control may not be applicable due to plant-model mismatch, computational
expense, and stability concerns, Chapter 6 investigates the utilization of self-optimizing
control for the case study. The reactor is incorporated into a simplified recycle system
resulting in a change of the considered disturbances, and hence, the requirement of a
set point change. Chapter 7 combines self-optimizing and extremum-seeking control to
achieve this set point change of the controlled variable. A new method to convert the
optimizing controller of economic nonlinear model predictive control into a feedback
control problem is applied in Chapter 8. The second part concludes with a summary and
comparison of the developed and/or studied methods in Chapter 9.

Part III introduces surrogate models for optimization and consists of five chapters.
Chapter 10 proposes a framework for the optimization of integrated chemical processes.
Approaches for flowsheet splitting and substitution of variables are proposed, which
are subsequently applied in the following chapters. As surrogate models may struggle
with a large number of independent variables, Chapter 11 introduces a three-step proce-
dure for variable reduction and the generation of simplified surrogate models based on
partial least squares regression (PLSR). This procedure can be considered as gray-box
modelling due to the incorporation of process knowledge. Chapter 12 investigates the
influence of the sampling space and independent variable definition on the developed
variable reduction procedure. Chapter 13 combines the concepts of surrogate modelling
and self-optimizing control. The aim behind this approach is to achieve a simplified re-
sponse surface while potentially reducing the number of independent variables. A novel
termination criterion for sampling based on PLSR is presented in Chapter 14. Further-
more, the surrogate models are combined with the initial model and the comparison of
the optimization results are presented in this chapter.

Part IV concludes this thesis with a summary and discusses possible future research
directions based on the presented work.

1.3 Main Contributions

This thesis contributes to research in two areas: the development of new methods for op-
timal operation of subprocesses and the development of a surrogate model-based frame-
work for optimization of integrated plants.

The first main contribution of this thesis is the analysis of the impact of dependent dis-
turbances on the calculation of self-optimizing variables. The study shows the impact of
neglecting recycle streams in calculating self-optimizing variables and the necessity to
adjust setpoints and the weighting matrices.
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The combination of self-optimizing control and extremum-seeking control is the sec-
ond main contribution. This allows the adjustment of the setpoint in the case of per-
sistence disturbances or plant-model mismatch while maintaining fast disturbance re-
jection. Through the combination with extremum-seeking control, this is achieved in a
model-free approach.

The third main contribution is the development of a procedure for optimization of in-
tegrated processes based on surrogate models. The procedure includes a new gray-box
model structure for surrogate models that incorporates exact mass balances to achieve
mass consistency. Two approaches are developed to improve the surrogate model perfor-
mance. The first approach uses PLSR to calculate latent variables as linear combinations
of the original independent variables. This reduces the number of independent variables.
The second approach merges the concepts of self-optimizing control and surrogate mod-
elling. This results in a simpler, flatter response surface with respect to the independent
variables.

The fourth main contribution is the development of a new termination criterion for sam-
pling for surrogate model generation. Contrary to other sampling methods, this proce-
dure does not require the fitting of surrogate models at each sampling iteration. Conse-
quently, the computational load is reduced. This sampling procedure is based on PLSR.

1.4 Publications

During the course of the Ph.D. studies, the following publications were submitted or
accepted. The chapters of the thesis itself are based on these publications, but not limited
to them.

1.4.1 Journal Articles

J. Straus, D. Krishnamoorthy, and S. Skogestad. On combining self-optimizing control
and extremum-seeking control - Applied to an ammonia reactor case study. Submitted
to the Journal of Process Control, 2018 (Chapter 7).

J. Straus and S. Skogestad. Surrogate model generation using self-optimizing variables.
Submitted to Computers & Chemical Engineering, 2018 (Chapter 13).

J. Straus and S. Skogestad. Sampling for surrogate model generation using partial least
squares regression. Submitted to Computers & Chemical Engineering, 2018 (Chap-
ter 14).
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1.4.2 Peer-Reviewed Conference Articles

J. Straus and S. Skogestad. Self-optimizing control in chemical recycle processes. Pre-
sented at 10th IFAC Symposium on Advanced Control of Chemical Processes, Shenyang,
2018 (Chapter 6).

H. Bonnowitz, J. Straus, D. Krishnamoorthy, E. Jahanshahi, and S. Skogestad. Control
of the steady-state gradient of an ammonia reactor using transient measurements. In A.
Friedl, J. Klemeš, S. Radl, P. Verbanov, and T. Wallek, editors, 28th European Sympo-
sium on Computer Aided Process Engineering, volume 43 of Computer Aided Chemical
Engineering, pages 1111 – 1116. Elsevier, 2018 (Chapter 8).

J. Straus and S. Skogestad. Use of latent variables to reduce the dimension of surrogate
models. In A. Espuña, M. Graells, and L. Puigjaner, editors, 27th European Symposium
on Computer Aided Process Engineering, volume 40 of Computer Aided Chemical En-
gineering, pages 445 – 450. Elsevier, 2017 (Chapter 12).

J. Straus and S. Skogestad. Economic NMPC for heat-integrated chemical reactors. In
2017 21st International Conference on Process Control (PC), pages 309–314, June 2017
(Chapters 4 and 5).

J. Straus and S. Skogestad. Variable reduction for surrogate modelling. In Proceedings
of Foundations of Computer-Aided Process Operations 2017, Tucson, AZ, USA, 2017
(Chapter 11).

J. Straus and S. Skogestad. Minimizing the complexity of surrogate models for optimiza-
tion. In Z. Kravanja and M. Bogataj, editors, 26th European Symposium on Computer
Aided Process Engineering, volume 38 of Computer Aided Chemical Engineering, pages
289 – 294. Elsevier, 2016 (Chapter 10).

1.4.3 Conference Abstracts and Presentations

J.Straus and S. Skogestad. Surrogate model generation using the concepts of self-opti-
mizing control. In Proceedings of the 21st Nordic Process Control Workshop, Turku,
Finland, 2018.

D. Krishnamoorthy, J. Straus, and S. Skogestad. Combining self optimizing control and
extremum seeking control - applied to an ammonia reactor case study. In Proceedings of
AIChE Annual Meeting 2017, Minneapolis, MN, USA, 2017.

J.Straus and S. Skogestad. Surrogate subsystem modelling of chemical processes. In
Proceedings of the 20th Nordic Process Control Workshop, Sigtuna, Sweden, 2016.
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Chapter 2

The Ammonia Process

Nitrogen containing chemicals are one of the most important industrial products. They
include among others fertilizers and explosives as well as the majority of fine chemi-
cals. Initially synthesized with nitrates as starting materials, it was already predicted by
William Crookes in 1898 [45] that the natural reserves of nitrates will soon be outgrown
by the demand. Hence, the fixation of atmospherical nitrogen as a new nitrogen source is
crucial for feeding the world population. To this end, Fritz Haber and Carl Bosch devel-
oped the catalytic high-pressure synthesis of ammonia in the second decade of the 20th
century [44]. The process allows the relatively cheap production of ammonia according
to

3H2 +2N2 −−⇀↽−− 2NH3 (2.1)

Since its introduction, 90 % of the production of ammonia is based on the Haber-Bosch
process [5] and reached an estimated 150×106 t worldwide in 2017 [101].

Due to the large production volume, even small reductions in the production cost can
provide an advantage over competitors. Hence, optimal design and operation conditions
are crucial for achieving a competitive advantage. Consequently, mass and energy in-
tegration are applied extensively in modern ammonia plants. This integration leads to
difficulties in modelling and optimization, and thus in achieving optimal operation.

The production of ammonia can be split into two sections,

1. synthesis gas (hydrogen and nitrogen) production and

2. ammonia production.

In the following, both sections will be briefly explained with a focus on the process
integration in the ammonia production section.
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2.1 Synthesis Gas Production

The synthesis gas production received most attention since the introduction of the pro-
cess. As a result, several different feedstocks can be used. Depending on the chosen
feedstock, different processing methods are chosen. Table 2.1 gives an overview of the
different feedstocks and the required energy and corresponding CO2 emissions. The cho-
sen feedstock is depending on its availability at the site of the plant. Roughly one third
of the energy requirement (and hence CO2 emissions) is related to the burning of fuel
and two thirds to the production of hydrogen [49]. Ammonia plants in Europe and North
America are using today almost exclusively natural gas as feedstock whereas China uses
mostly coal due to the abundant available reserves. This section focuses hence on hydro-
gen production using natural gas.

Natural gas, predominantly methane (CH4), is the best hydrogen source as it possesses
the highest hydrogen to carbon ration. Consequently, the produced hydrogen to carbon
dioxide ratio is lowest. The first step is steam reforming in the primary reformer, in
which hydrogen as well as carbon monoxide and carbon dioxide are produced;

CH4 +H2O−−⇀↽−− 3H2 +CO (2.2)
CH4 +2H2O−−⇀↽−− 4H2 +CO2 (2.3)

Air is then added in the secondary reformer resulting in the production of water, CO,
and CO2 through partial oxidation. Further hydrogen is obtained through the water-gas
shift equilibrium reaction

H2O+CO−−⇀↽−− H2 +CO2 (2.4)

The majority of the carbon dioxide is then removed using absorption towers. The result-
ing process gas consists of hydrogen and nitrogen with a molar ratio of three. In addition,
argon and methane are frequently present as inert gases.

Table 2.1: Summary of different feedstocks with corresponding energy requirement and
CO2 emissions [49].

Feedstock Process Energy CO2 emissions
[GJ/t NH3] [t/t NH3]

Natural gas Steam Reforming 28 1.6
Naphta Steam Reforming 35 2.5
Heavy fuel oil Partial oxidation 38 3.0
Coal Partial oxidation 42 3.8
Water Electrolysis 341 0.02

1 With an energy efficiency of 100 %, e.g. wind energy, water energy, or photovoltaics.
2 If the electricity is produced carbon neutral.

10



2.2. Ammonia Production

The electrolysis of water as alternative to fossil feedstocks was already used in the 20th
century [103]. With the promotion of renewable energy sources and potentially stricter
environmental regulations, it may be again a promising hydrogen source for ammonia
plants in the future.

2.2 Ammonia Production

The ammonia production consists in total of four sections:

1. synthesis gas makeup and compression;

2. reaction section with the ammonia reactor;

3. separation section based on ambient or cooled temperatures;

4. refrigeration section providing the cooling for the separation section and poten-
tially the compression section.

Each section can contain energy and mass recycles within the section and to the other
sections. Due to the thermodynamical limitations in the ammonia synthesis, and hence
a reduced conversion per pass, it is necessary to recycle the majority of the process gas.
This results in an overall mass recycle corresponding to 80 % of the feed flow to the
reactor.

2.2.1 Synthesis Gas Makeup and Compression

The task of the synthesis gas makeup and compression section is to prepare the synthesis
gas for the reaction. This includes the compression to 150-250 bar and the removal of
remaining carbon dioxide, oxygen, and water. These chemical components are present
from the hydrogen production and are catalyst poisons that can lead to catalyst deactiva-
tion.

The removal can be achieved using molecular sieves or washing with liquid nitrogen
or ammonia. The latter is facilitated through the high solubility of water and carbon
dioxide in ammonia. The washing with liquid ammonia can be as well incorporated
into the separation section, if the separation section is between the compressor and the
reactor. As an alternative, it is possible to use a so-called cold-box before or between the
compressors. In this cold-box, energy integration is used to cool the synthesis gas to low
temperatures. Through the addition of produced liquid ammonia, it is possible to remove
the undesired catalyst poisons. As a second task, this section compresses and mixes the
recycles gas from the separation section.

Integration in this section is mostly incorporated through the main mass recycle as well
as the removal of the remaining carbon dioxide and water. It is connected to the reaction
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2. The Ammonia Process

b)a)

Figure 2.1: a) A reactor with interstage heat exchanger [98] and b) a quench flow reac-
tor [75] as examples for two heat-integrated ammonia reactors.

section and the separation section. As the compressors heat the synthesis gas, the makeup
section is frequently as well connected to the refrigeration section to cool the synthesis
gas in-between the stages of the compressor to improve the compressor efficiency.

2.2.2 Reaction Section

The reaction section is the core of the ammonia production. It includes the reactor and
heat integration within the reactor and the section for utilizing of the reaction energy.

Heat-integrated chemical reactors are generally applied in the case of exothermic re-
actions to increase on one hand the feed temperature to the first bed. This avoids the
necessity of external heating streams. On the other hand, the inlet temperature of the
subsequent beds should be reduced. This reduction of the inlet temperature increases the
conversion in the beds by shifting the thermodynamic equilibrium. As a result, the con-
version per pass is increased. Another example for this type of reactor is the methanol
synthesis reactor [87].

The heating of the feed to the first bed and cooling of the feed streams of subsequent beds
can be achieved through several reactor configurations. Figure 2.1 shows the concepts of
quench flows and interstage cooling as examples for two frequent reactor configurations.
Quench flows correspond to the cooling of the feed to a reactor bed through the addi-
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tion of fresh feed. In the case of interstage heat exchangers, the reactor includes a heat
exchanger in-between the beds. The main difference between the two reactor systems is
that the complete feed is fed to the first bed in the case of interstage heat exchangers,
whereas quench flows have a reduced flow through the first beds. In general, it is possi-
ble to combine interstage cooling with quench flows. The generated heat of the reactor
section is furthermore utilized for producing high pressure steam that can be used in the
steam turbines for compression of the synthesis gas.

The reactor section contains several internal mass and energy recycles. These are mainly
located inside the reactor and are necessary for an increased conversion per pass. There
is generally a heat-integration between the inlet and outlet of the reaction section to
avoid external heaters. It is connected to the synthesis gas makeup and separation section
through the overall mass recycles.

2.2.3 Separation Section

The separation section follows the reaction section. It separates ammonia from the re-
actants (hydrogen and nitrogen) and inert gases (frequently methane and argon). This is
achieved through condensation of ammonia at reduced temperatures. Depending on the
pressure in the synthesis loop, different refrigerants have to be used. In high pressure
synthesis loops (∼ 450 bar), water and air cooling may be sufficient to condense ammo-
nia. In medium pressure synthesis loops, ammonia itself is frequently used as refrigerant.
In this case, a refrigeration section has to be incorporated. The condensed ammonia is
after the separation flashed at 20 bar to remove the dissolved gases.

In addition to the separation of ammonia, this section includes a purge stream. This
stream is necessary to prevent the accumulation of inert gases in the synthesis gas loop
and has a major influence on the total flow in the mass recycle.

Integration within the separation section is given through heat integration for cooling
ammonia. Furthermore, it is connected to the refrigeration section through several heat
exchangers and the synthesis gas makeup and reaction section through the overall gas
recycle.
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2.2.4 Refrigeration Section

The refrigeration section is necessary in the case of medium pressure synthesis loops. It
consists of a refrigeration loop. Frequently, ammonia is used as refrigerant. It provides
the cooling of the effluent of the reactor section and potentially in-between the com-
pressor stages. This is achieved through evaporation of ammonia at different pressure
levels. The refrigeration section can be designed as a closed system, in which ammonia
is circulated, and as an open system. This means that the produced ammonia is fed to
and removed from the refrigeration section.

As the refrigeration section is either a closed or an open system, several recycle streams
exist inside it. Optimal operation of refrigeration loops is still an ongoing research area in
itself. In addition, it is integrated with the separation section and potentially the synthesis
gas makeup section.

2.2.5 Combined Ammonia Production

The position of the introduced sections can differ depending on the configuration of the
ammonia synthesis loop. Figure 2.2 shows several utilized configurations for the syn-
thesis loop [6]. The refrigeration section is not included in these plots and is in general
connected to the ammonia recovery at reduced temperature. Configuration a) is ener-
getically most favourable. The separation of ammonia and the purge stream before the
recycle compressor reduces the duty of the recycle compressor. Furthermore, the purge
stream is located after the separation to avoid purging ammonia and fresh feed. If cat-
alyst poisons are still present in the makeup gas, it may be necessary to separate the
ammonia after the addition of the makeup gas as shown in configuration b)-d). This can
be done before (configuration c)) or after the recycle compressor (configuration b) and
d)). As a disadvantage, the purge stream has the same ammonia concentration as the
reactor outlet. This can be circumvented in high pressure systems through the separation
of a part of the produced ammonia at ambient temperature as in configuration d).

Retrofitting of existing plants and purification of the makeup gas aims at configurations
close to a). The aforementioned cold-box is one approach to reduce the energy consump-
tion in the compressors and avoid purging ammonia.

Each of the subprocesses of the ammonia synthesis loop contains several internal mass
and energy integration. In addition, all sections are connected through the overall mass
recycle and further heat recycles. This corresponds to several nested and adjacent recycle
loops. The overall mass recycle corresponds to ∼ 80 % of the feed flow to the reactor.
Small changes in the different subprocesses can consequently result in large changes in
the other subprocesses. As a result, the overall ammonia production is difficult to model
and optimize. Hence, it is a good case study for this thesis.
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Figure 2.2: Different configurations for the synthesis loop of the ammonia process, de-
rived from [6].
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Chapter 3

Optimal Operation - State of the Art

As mentioned in the introduction, this thesis investigates the optimal operation of in-
tegrated processes. But what does optimal operation mean? This chapter will give an
overview of optimal operation and current practice in implementing it. Section 3.1 ex-
plains the general concept of optimal operation. Section 3.2 explains the main ideas
behind self-optimizing control as a means for selecting controlled variables. Section 3.3
covers model-free methods whereas Section 3.4 introduces online optimization-based
methods.

3.1 General Concepts

Each chemical plant has an economic profit or cost function corresponding to its eco-
nomic performance. The aim is then to minimize the operating cost for the production
of a certain amount of product. Optimal operation tries to achieve this through control
of the process. Hence, it is useful to look at the control structure.

For simplicity, the control structure is frequently divided in multiple layers [31]. A typ-
ical control hierarchy is shown in Figure 3.1 [90]. It consists of the overall scheduling
layer, which defines how much should be produced when and where. The operation tar-
gets are in this layer defined in a time scale of weeks and it is generally not automated
or uses simple linear models. In the context of the ammonia production, the site-wide
optimization layer then optimizes the ammonia process in combination with the nitric
acid and fertilizer production with a time scale of a day. It frequently uses a simplified
steady-state model of the processes. The local optimization as layer below looks into the
different processes like the production of synthesis gas, ammonia, or nitrous oxides in
the Ostwaldt process. As disturbances may change regularly, this layer has a time-scale
of hours. The supervisory and regulatory control layers focus subsequently on the con-
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Scheduling

(weeks)

Site-wide optimization
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Local optimization

(hour)

Supervisory control

(minutes)

Regulatory control

(seconds)

Figure 3.1: Typical control hierarchy of chemical processes, adopted from [90].

trol of the process. Generally, the supervisory control layer is operating on a slower time
scale than the regulatory control layer. The task of the former is to satisfy operational
constraints and is generally a multivariable control layer. The aim of the regulatory con-
trol layer is as the fastest layer the stabilization of the process, e.g. an ammonia synthesis
reactor.

The layers are hereby connected through the respective controlled variables. For exam-
ple, the layer local optimization calculates a setpoint cs for the controlled variable c that
is optimal for the current disturbances. The supervisory control layer then tries to keep
the measurement cm at the setpoint cs while satisfying operational constraints, until it
receives a new setpoint from the local optimization layer. Frequently, we assume as well
that there is a time scale separation in-between the different layers. That implies that
adjustments to the setpoints are immediately effective.

As for all simplifications, the control hierarchy does not represent the practice of all
chemical plants. It may serve however as an illustration of the general structure of control
systems in the chemical industry. In this context, optimal operation then requires an
optimal interplay between the layers in the hierarchy. As scheduling is frequently not
automated and does not require detailed models, this thesis will exclude the scheduling
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Figure 3.2: Possible implementations of optimal operation, adopted from [90].

layer and focus on the four lower layers.

The overall aim of optimal operation can as well be translated into a mathematical prob-
lem. Consider a nonlinear, dynamic model of any chemical process

ẋ = f(x(t),d(t),u(t))
0≥ h(x(t),d(t),u(t))

(3.1)

in which x(t) ∈ Rnx are the state variables, d(t) ∈ Rnd the disturbance variables, and
u(t) ∈ Rnu the degrees of freedom. The dynamic behaviour of the process is described
by f. In addition, operational constraints on the states, inputs, and disturbances can be
imposed through h. These constraints include normally environmental and product qual-
ity constraints as well as bounds on states and inputs. The aim is now to minimize an
economic cost function Jdyn (x(t),d(t),u(t)) subject to the constraints of the process
model (3.1). This means that we want to manipulate our degrees of freedom to achieve
the lowest production cost (or equivalently the highest profit).

This can be then rewritten as dynamic optimization problem for an infinite time horizon:

min
x(·),u(·)

∫
∞

0
Jdyn(x(t),d(t),u(t)) dt

s.t. ẋ = f(x(t),d(t),u(t)) ∀t ∈ [0,∞)

0≥ h(x(t),d(t),u(t)) ∀t ∈ [0,∞)

x(0) = x0

(3.2)

The solution of this nonlinear problem results then in optimal operation. This includes
the optimal trajectory of the inputs. How can the mathematical optimization strategy
then be implemented in practice?
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Figure 3.2 shows three possible approaches for the implementation of optimal opera-
tion [90].

The three approaches are

a) Open-loop implementation: the optimal trajectories are calculated offline beforehand.
Hence, feedback is not incorporated and disturbances result in deviation from the
optimal operation.

b) Closed-loop implementation with a control layer: introduction of controllers whose
setpoints are given by the optimization problem. In this approach, the controller ad-
justs the manipulated variables if the disturbances change.

c) Closed-loop implementation without a control layer: The optimization problem is an
optimizer and controller in one. This implies that feedback exists and the setpoints of
the manipulated variables are adjusted with changing disturbances at the optimization
level.

These approaches can be either implemented on a local or site-wide level. The block
Process corresponds to the process as seen by the optimization layer. Hence, it may
include stabilizing controllers and is not necessarily uncontrolled. In this situation, the
setpoints to the controllers are then decided by the optimization layer.

3.2 Variable Selection - Self-Optimizing Control

Controlled variables are the links of the different layers in a control hierarchy as it was
mentioned in the previous section. This leaves an important question as how one should
select the controlled variables. Already in 1973, Foss [34] asked in his Critique of chem-
ical process control theory:

Which variables should be measured, which inputs should be manipulated,
and what links should be made between these two sets? This problem is
considered by many to be the most important problem encountered by de-
signers of chemical process control systems.

Based on this question, many scientists worked on control structure design and variable
selection [2, 46, 51, 54, 72, 77, 90, 107]. Obviously the best controlled variables are those
that we can keep at a constant setpoint. In this case, it is not necessary to have frequent re-
optimizations. These variables are called self-optimizing variables and their application
as controlled variables results in self-optimizing control. Skogestad [90] writes about
self-optimizing control:
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Self-optimizing control is when we can achieve an acceptable loss L with
constant setpoint values for the controlled variables c (without the need to
reoptimize when disturbances occur)

Self-optimizing control itself is not a controller design, but a control structure philoso-
phy. Its aim is the selection of controlled variables and it corresponds to approach b) in
Figure 3.2.

How should these variable be selected? According to Skogestad [90], a self-optimizing
variable should have the following properties

1. The optimal value of the controlled variables should be insensitive to disturbances
so that the setpoint error is small.

2. The chosen controlled variables should be easy to measure and control so that the
implementation error is small.

3. The gain from the input u to the controlled variable c should be large. This corre-
sponds to a flat optimum with respect to c.

4. The controlled variables c should not be closely related in the case of several self-
optimizing variables.

This can be as well posed in a mathematical way. As self-optimizing control is looking
at the steady-state loss, optimization problem (3.2) has to be rephrased as a steady-state
optimization problem

min
x,u

JSS(x,d,u)

s.t. 0 = f(x,d,u)
0≥ h(x,d,u)

(3.3)

with a steady-state cost function JSS. In the case of disturbances d, an optimal controller
would use a setpoint uopt(d) resulting in an optimal cost function Jopt

SS (xopt(d),d,uopt(d)).
As this is frequently not possible, a steady-state loss L exists for a chosen controlled vari-
able:

L = JSS (x,d,u)− Jopt
SS

(
xopt(d),d,uopt(d)

)
(3.4)

The aim of self-optimizing control is then to choose controlled variables, which mini-
mize this loss. It is straight forward to notice that the ideal self-optimizing variable is the
gradient of the cost function with respect to the manipulated variables, Ju. This follows
from the first-order necessary conditions of optimality given by the Karush-Kuhn-Tucker
(KKT) conditions [79].

As it is frequently not possible to implement the gradient as controlled variable, the
majority of the methods select a linear combination of measurements ym = y+ny using
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a selection matrix H according to
c = Hym (3.5)

Furthermore, these methods are local methods. Hence, the plant model from the input
and disturbances to the measurements is linearized at the current operating point

y = Gyu+Gy
dd (3.6)

The cost function JSS in optimization problem (3.3) can be approximated around the
nominal point (x∗, d∗, u∗) as a second-order Taylor expansion [46].

JSS (x,d,u)≈JSS (x∗,d∗,u∗)+
[

JSS,u
JSS,d

]T [
∆u
∆d

]
+

1
2

[
∆u
∆d

]T [JSS,uu JSS,ud
JTSS,ud JSS,dd

][
∆u
∆d

] (3.7)

with ∆d = d− d∗ and ∆u = u− u∗. Note, that JSS,u, JSS,d, JSS,uu, JSS,ud, and JSS,dd
are evaluated at the nominal point (x∗,d∗, u∗). If the nominal point is an extremum
(JSS,u = 0) and for a given disturbance (∆d = 0), it is possible to express the loss in
Eq. 3.4 as

L =
1
2
(
u−uopt(d)

)T JSS,uu
(
u−uopt(d)

)
(3.8)

Using the linear model (3.6) and the loss expression (3.8), several methods were devel-
oped for selecting measurements (and combination of measurements) for self-optimizing
control. A concise summary of these methods can be found in [53].

Self-optimizing control will be used in Chapters 6, 7, and 13. These chapters will explain
the applied methods for calculating the optimal selection matrix H in more detail.

3.3 Model-Free Methods

Several different measurement-based alternatives for achieving optimal operation have
been developed that avoid to solve the optimization problem (3.2) by simply transform-
ing it into a feedback control problem. These methods are classified under direct input
adaptation-based methods [16] and require a good measurement or estimation of the
steady-state cost JSS. Such methods are computationally cheap to implement since op-
timization is done via feedback. A further advantage is that they are model free. That
implies that plant-model mismatch does not affect the methods and it is not necessary to
develop a detailed model of the process. Extremum-seeking control (ESC) and necessary
conditions of optimality (NCO) tracking belong to such methods. A good classification
of the different methods available can be found in [16] and [96].
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3.3.1 Extremum-Seeking Control

Extremum-seeking control is a fairly old method and dates back to the 1920s [99]. How-
ever, it received increased attention after the proof of stability by Krstić and Wang [62]
in 2000. The concept of extremum-seeking control is to use input excitation (dither) and
the resulting change in the cost to estimate the gradient of the cost function. It can be
as well applied if the dependency of the states and disturbances on the cost function is
known [43]. ESC requires a time-scale separation in-between the plant dynamics and
the dither as well as in-between the dither and the control action. This is necessary as it
allows to consider the system as a static map. Therefore, it is a rather slow method.

The traditional approach to ESC is to use a sinusoidal for plant excitation and an es-
timation of the gradient through the combination of a high- and low-pass filter [62].
Hunnekens et al. [48] developed a dither free approach based on least squares estimation
of the gradient to remove one time-scale separation. This method estimates the gradient
using a buffer of past input usage and past values of the cost. Similarly, Chioua et al.
[18] reported improvements in convergence through a recursive least squares estimation
with forgetting factor.

Most studies on extremum-seeking control investigate the convergence from a subop-
timal to the optimal operation point. Hence, disturbances are not considered. Krish-
namoorthy et al. [60], Marinkov et al. [66], and Marinkov et al. [67] reported problems
in the estimation of the gradient when disturbances occur.

Extremum-seeking control, with a focus on least squares estimation of the gradient, and
its combination with self-optimizing control is covered in more detail in Chapter 7. A
new method to handle unmeasured disturbances is proposed as well.

3.3.2 NCO Tracking

NCO tracking is similar to extremum-seeking control in the respect that it does not
require a model, but a measurement of the cost function. It does however differ as the
majority of the publications on NCO tracking use a discrete update of the input [35, 42,
50], which is given by a Newton step with reduced step size. The gradient is estimated
using finite differences. An advantage of NCO tracking over ESC is the possibility to
track and adopt to changes in the active constraints [97].
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3.4 Online Optimization Based Methods

Online optimization-based methods rely on solving the optimization problem as steady-
state or dynamic problem. The former is known as steady-state real-time optimization
(SRTO) whereas the latter is called economic nonlinear model predictive control (E-
NMPC) or dynamic real-time optimization (DRTO). This implies that they can be used
in the local and the side-wide optimization layer in Figure 3.1. Darby et al. [21] and
Engell [28] give extensive reviews of RTO, whereas Ellis et al. [27] explains E-NMPC
in detail.

3.4.1 Real-Time Optimization

Conventional real-time optimization solves the steady-state problem (3.3). This results
in optimal steady-state setpoints, which are given to the lower level control layers. The
idea behind this approach is that the majority of chemical processes have a steady-state
optimum. Steady-state models, which can be used for optimization, are generally de-
veloped during the design face. The development of dynamic models, which accurately
represent the process, is however more complicated. As result, conventional RTO gives a
transient loss as steady-state optimization is used. This is however deemed acceptable as
it is computational cheaper to optimize a steady-state problem than a dynamic problem.

The steps in RTO are given by [78]:

1. Steady-state detection
The majority of the data reconciliation and parameter estimation methods are
based on steady-state models. Hence, it is necessary to detect, whether the condi-
tion of steady state is fulfilled or not.

2. Data reconciliation
As data is general suspect to errors, data reconciliation adjusts measured and po-
tentially estimates unmeasured states.

3. Parameter estimation and model adaptation
Based on the reconciled data, this step updates the model parameters.

4. Steady-state optimization
Using the steady-state optimization problem (3.3), new setpoints for the controlled
variables are calculated.

5. Setpoint update
The calculated setpoints are checked for plausibility and e.g. feasibility in a lower
level model predictive controller, before transferred to control layer.

One major drawback of RTO is the requirement of steady state before it can be used.
This is reflected in the long period, in which the optimization problem is solved. If a
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disturbance occurs, the low level controllers will first regulate the plant to their previous
setpoints. Once all control loops have settled, it is possible to start the aforementioned
steps and update the setpoints. Hence, the period of solving optimization problem (3.2)
generally ranges from 4-8 h or even only once a day [28]. Improvements are there-
fore mostly located in the data reconciliation step. Data reconciliation can use linear or
nonlinear, static or dynamic models. Câmara et al. [19] give an extensive overview of
different methods and their application in data reconciliation. Especially the application
of dynamic models for data reconciliation allows a reduced period for RTO updates.

Conventional real-time optimization is not applied in this thesis. The development of
surrogate models for integrated chemical processes in Part III aims however at the appli-
cation of the developed models in a RTO environment.

3.4.2 Economic Nonlinear Model Predictive Control

As an alternative to conventional RTO, economic model predictive control (E-NMPC)
and dynamic real-time optimization (DRTO) are attracting more and more research in
recent time. The idea behind both methods is similar, that is using the dynamic model to
predict the optimal trajectories. DRTO has however a lower level control layer and cor-
responds hence to control structure b) in Figure 3.2. Furthermore, it only has economic
terms in the objective function.

E-NMPC developed from nonlinear model predictive control. The exchange of the con-
trol cost function to an economic cost function is only a small step. This results in the
integration of the controller and the optimizer in one optimizing controller similar to
Figure 3.2 c). Hence, as the optimizer is as well controlling the process, it is necessary
to implement E-NMPC at a higher sampling rate than DRTO. Especially in the case of
transient process, E-NMPC is advantageous compared to RTO as it is not possible to
achieve steady state. This includes e.g. batch processes.

E-NMPC solves the following dynamic optimization problem at sampling step τk re-
peatedly with a given sampling interval ∆t = τk+1− τk and time horizon τN = N∆τk.

min
x(·),u(·)

∫
τN

0
Jdyn(x(t),d(t),u(t)) dt

s.t. ẋ = f(x(t),d(t),u(t)) ∀t ∈ [0,τN)

0≥ h(x(t),d(t),u(t)) ∀t ∈ [0,τN)

x(0) = x(τk)

(3.9)

The initial states x(0) and disturbances have to be measured and/or estimated accord-
ingly. The solution to the problem then describes the optimal trajectory with respect to
the dynamic cost function. However, only the first value of the input function is imple-
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mented. Feedback is achieved as the optimization problem is solved repeatedly. There
are however three points that have to be addressed.

First of all, the formulation of the optimization problem (3.2) does not incorporate feasi-
bility. The optimization problem has to be both both feasible at the initial starting point
as well as recursively at each sampling point. Consequently, soft constraints have to be
used with exact penalties in the cost function [88].

Secondly, even if feasibility is assumed, stability of the closed-loop system is not yet
considered. Several approaches exist to guarantee stability of the closed-loop system. A
first approach is to consider an infinite horizon as in problem (3.2) [106]. This results in
a modified cost function ∫

∞

0
e−ρtJdyn(x(t),d(t),u(t), t) dt (3.10)

with ρ as a discount factor to incorporate the present value of money. Furthermore, the
time was transformed to achieve a finite time horizon. A second approach introduces ter-
minal constraints. This includes the introduction of a terminal penalty cost Vf (x(tmax))
to the purely economic cost function Jdyn to guarantee stability or terminal constraints
on the states

x(tmax) ∈ X f (3.11)

for a terminal region X f . A third approach introduces Lyapunov constraints. Faulwasser
et al. [29] provide a broad overview of different approaches to guarantee stability in
E-NMPC, albeit under assumptions.

As a third point, closed-loop performance cannot be guaranteed in general even if sta-
bility and feasibility are guaranteed. Ellis et al. [27] show this with a simple example.

Economic nonlinear model predictive control is applied to an ammonia reactor in Chap-
ter 5.
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Optimal Operation of Subprocesses
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Chapter 4

Steady-State Optimum of a
Heat-Integrated Ammonia Reactor

Heat-integrated chemical reactors are frequently utilized for exothermic reactions. Sec-
tion 2.2 introduced two types of chemical reactors used in reactions which are limited
by the thermodynamic equilibrium. Due to the reluctance of industry to use automated
control for these types of reactors, limit cycle behaviour can occur in the case of dis-
turbances like a pressure or temperature drop with potential extinction of the chemical
reaction [75]. In order to counteract this behaviour, operation points away from the opti-
mal conditions have to be chosen. This results in a constant economic loss. Nonetheless,
the system stability is not guaranteed for large disturbances.

Morud and Skogestad [75] showed that this behaviour is caused in the case of a three-
bed quench flow reactor by a combination of positive feedback by the preheater and an
inverse response of the reactor outlet temperature to a step change in the reactor inlet
temperature. For the same case study, Naess et al. [76] proposed a controller based on
the inlet temperature of the respective beds with an additional split range controller for
controlling the ratio between the flow through the heat exchanger and quench flow 1.
However, no dynamic simulation results showing the performance of this control struc-
ture were presented.

Similar problems were reported by Rovaglio et al. [86] for a different ammonia reactor
configuration. The investigated configuration consisted of two beds with an interstage
heat exchanger. They considered in addition the incorporation of the reactor into the
overall synthesis loop. In this case, the feedback through the recycle results in limit cy-
cle behaviour for disturbances in which the reactor itself (without recycle) would not
show limit cycle behaviour. As a result, they concluded that this behaviour is intrin-
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sically linked to exothermic reactions in heat-integrated reactors. A stabilizing control
structure was proposed and dynamic simulations showed the ability of the proposed con-
trol structure to prevent limit-cycle behaviour.

However, the aim of the proposed control structures for both reactors was stabilization.
Optimal operation of the reactor in the presence of the disturbances was not considered
As we are interested in optimal operation of subprocesses, this chapter will first present
the steady-state optimization of the ammonia reactor. The model for the ammonia reactor
as described by Morud and Skogestad [75] will serve as a starting point for the subse-
quent evaluation of different control strategies to achieve optimal operation in subunits.
A detailed model description can be found in Appendix A.

This chapter is structured as follows. In Section 4.1, the optimization problem will be
posed and simplified based on the definition of the system. It furthermore includes the
steady-state results with the reactor profiles highlighting the improved bed utilization.
Section 4.2 visualizes problems which are present due to the change of operation con-
ditions in dynamic simulations and the resulting implications on operating the reactor
system with fixed split ratios.

4.1 Problem Statement and Results

The constraints for the steady-state system are defined by Eq. (A.19) with ẋ = 0 . The
number of discrete volumes in each reactor bed is chosen to be n = 10 as in this case,
the actual diffusion is cancelled by numerical diffusion [75]. This results in a nonlinear
problem with 30 algebraic and 30 dynamic states as well as 3 decision variables. The
aim is to maximize the rate of extent of reaction of ammonia which is defined as

ξ̇ = ṁin (wNH3,30−wNH3,in) in [kg NH3/ s] (4.1)

The sole maximization of the rate of extent of reaction furthermore reduces the cost
in the separation and synthesis gas make-up section through a reduction of the recycle
stream and hence a reduced compressor power in the recycle compressor. A higher rate
of extent of reaction additionally increases the outlet temperature of the system. The
increased outlet temperature can then be utilized to produce high-pressure steam for
the reformer as this process requires a large amount of energy due to its endothermic
nature. For a given feed, the cost function can be simplified to the outlet mass fraction
of ammonia wNH3,30. This results in the following nonlinear problem

min
x,z,u

−wNH3,30

s.t. 0 = f(x,z,d,u)
0 = g(x,z,d,u)
0≥ h(u)

(4.2)
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Table 4.1: Results of the steady-state optimization.

Split ratio Split ratio Split ratio ξ̇

reactor 1 reactor 2 reactor 3 [kg NH3/s]

Nominal 0.2302 0.1389 0.1270 16.2147
Optimal 0.2124 0.3079 0.2958 18.1797

The results of the steady-state optimization and a comparison to the current operation
point are given in Table 4.1. As only the produced ammonia is interesting (vide supra),
the rate of the rate of extent of reaction as defined in Eq. (4.1) is used for comparison. The
change in produced ammonia corresponds to a 12 % increase compared to the nominal
case. The temperature and concentration profiles of the optimized system as well as the
original system are given in Figure 4.1. Especially the split ratios to reactor beds 2 and 3
were increased, as this indicates a reduction in temperature at the inlet of the respective
bed which results in a lower equilibrium temperature at the reactor outlet, and hence,
higher conversion. The split ratio to bed 1 is slightly reduced. However, the flow through
the heat-exchanger is reduced as well from 0.5039 to 0.1839. This results to an overall
lower inlet temperature in bed 1.

Figure 4.1: Reactor profile for the original and optimal split ratios u with nominal inlet
conditions (ṁin = 70 kg/s, pin = 200 bar, Tin = 200 °C, and wNH3,in = 8 wt%) and steady-
state.
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Figure 4.2: Outlet temperature of bed 3 with a pressure drop of ∆pin = −20 bar at
t = 10 min and back to nominal conditions at t = 75 min with a constant input u corre-
sponding to manual operation (open loop).

4.2 Discussion and Conclusion

The steady-state optimization improves the reactor utilization in the system. This is di-
rectly visible in Figure 4.1. Half of reactor bed 3 is not utilized with the nominal split
ratios. This is indicated by the flat temperature and concentration profiles at the end of
the reactor in the nominal case. A further improvement is given by the larger residence
time in the first two reactor beds which corresponds as well to an improved utilization
of the catalyst bed.

However, the problem in this heat-integrated reactors is the occurrence of limit-cycle
behaviour or reactor extinction (vide supra), and hence, dynamic simulations with an
input disturbance were conducted to compare the response of the operation point to
disturbances. Figure 4.2 shows a pressure disturbance of ∆pin =−20 bar occurring after
t = 10 min and the return to nominal conditions at t = 75 min. As we can see, the
optimized split ratios decrease the potential of the system to reject disturbances. This can
be explained by a reduced inlet temperature of the first bed, which results in complete
extinction of bed 1, and therefore, the reactor.

Hence, automated control is necessary for operating at the optimum operation condi-
tions. The following chapters will look into different controller designs to achieve opti-
mal operation of the ammonia reactor.
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Chapter 5

Economic NMPC for a Heat-Integrated
Ammonia Reactor

As shown in Chapter 4, it is necessary to have automated control if the optimal operation
point should be implemented. Using a simple feedback controller as suggested by Naess
et al. [76] and Morud and Skogestad [75] would work for stabilizing the reactor at the
optimal operation point. However, it would not result in optimal operation in the case
of disturbances. In order to achieve optimal operation, this chapter investigates the ap-
plication of economic nonlinear model predictive control (E-NMPC) for the ammonia
reactor presented in Chapter 4. E-NMPC combines the controller and optimizer into a
single optimizing controller. This removes the required waiting time for steady state and
allows the setpoint to the controllers to follow the optimal trajectory. It is explained in
Chaper 3.

This chapter is organized as follows. Section 5.1 defines the optimal control problem
based on the nonlinear steady state problem derived in Chapter 4 with the respective
tuning parameter of the E-NMPC. Section 5.2 shows the performance of the controller
in the case of start-up from the initial operating point as well as disturbance rejection in
the case of input disturbances in the mass flow rate ṁin, pressure pin, temperature Tin,
and ammonia mass fraction wNH3,in. Section 5.3 and Section 5.4 conclude this chapter
with a discussion of the limitations and alternatives to the proposed control structure.
The model, the state variables, and the used algorithms are described in Appendix A.
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5.1 Problem Statement and Tuning Parameters

The core of the optimal control problem is given by the steady-state optimization prob-
lem (4.1). As a modification, a penalty term for input usage is introduced. This results in
the following cost function at each step of the moving horizon

Jdyn (z(t),u(t)) =−wNH3,30 + u̇TRu̇ (5.1)

This corresponds to an optimal control problem given by

min
x(·),z(·),u(·)

∫ tmax

0
−wNH3,30(t)+ u̇(t)TRu̇(t) dt

s.t. ẋ = f(x(t),z(t),d(t),u(t)), t ∈ [0, tmax]

0 = g(x(t),z(t),d(t),u(t)), t ∈ [0, tmax]

0≥ h(u(t)), t ∈ [0, tmax]

(5.2)

Neither terminal regions, nor a terminal cost is introduced. Hence, stability is not guaran-
teed for this controller. The parameters shown in Table 5.1 are used as tuning parameters
of the NMPC. Morud shows [75], that the time the temperature wave requires to move
through the reactor is given by roughly 350 s. Hence, it is necessary, that the NMPC
horizon is at least 350 s long to capture the process dynamics. Due to the change in the
input variables, the residence time in the first two reactors is increased and hence, the
interval should be even longer. As the interval in the beginning of the NMPC should be
accurate, input blocking is applied using an increasing block length for the input of[

1 1 1 2 2 2 5 6
]

tblock,NMPC (5.3)

in which the input is not changed. This corresponds to a total time frame of 600 s. The
advantage of input blocking is the reduced computational expense of the optimization
problem. The tuning matrix R was chosen to limit the input movement and to avoid
oscillatory behaviour while maintaining fast settlement to the new setpoint.

Table 5.1: Tuning parameters for the NMPC optimization.

Parameter Value Unit

Integrator step length tint 1 s
Input movement penalty R diag

([
20 20 20

])
-

Sampling time tsamp,NMPC 30 s
Block time tblock,NMPC 30 s
Horizon 20 -
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5.2. Results

Figure 5.1: Response of the split ratios a) and the ammonia mass fraction b) during
startup of the NMPC at nominal conditions (ṁin = 70 kg/s, pin = 200 bar, Tin = 200 °C,
and win = 8 wt.%).

Full state knowledge is assumed to simplify the calculations. Furthermore, it is assumed
that the NMPC calculation is instantaneous. The investigated disturbances are input dis-
turbances and assumed to have a measurement error given by Gaussian white noise with
a standard deviation of σ = 0.5%.

5.2 Results

During the start-up of a plant, E-NMPC is generally turned off as the model is fitted in
the operation range as well as additional equipment like heaters may be used. Hence, the
start-up of the controller from the nominal conditions was investigated in a first step to
evaluate the possibility of switching from manual to automatic control. The results are
plotted in Figure 5.1. The dashed lines in the following figures correspond to the optimal
value for the given input conditions obtained in the steady-state analysis. We can directly
see an inverse response of the outlet mass fraction of ammonia. The E-NMPC controller
is able to reach the optimal setpoint within five minutes and settles within the first ten
minutes to the optimal value given in Table 4.1. Small oscillations around the optimal
concentration are hereby caused by the Gaussian white noise.

To evaluate the performance of the control structure on disturbance rejection, simula-
tions with disturbance changes in all inlet variables were conducted. Here, one-directed
disturbances are applied as disturbances in the other direction may lead to sub-optimal
behaviour, but not to limit-cycle behaviour or reactor extinction. This can be explained
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by an increased rate of extent of reaction resulting in an increased outlet temperature of
reactor bed 3, T30, and hence, an increased inlet temperature of bed 1, T0.

Disturbances in the inlet flowrate ṁin as well as the pressure of the system pin are pre-
sented in Figure 5.2. This flowrate change increase and pressure drop is generally quite
large. Flowrate increases can occur during the operation if problems with the purge con-
trol are present. They can lead to reactor extinction due to a reduced residence time and
hence reduced rate of extent of reaction. Similarly, pressure drops can occur if prob-
lems with the compressor trains exist and result in the same problem as in the case of
an increased inlet flowrate due to a reduction in the reaction rate and in the equilibrium
concentration. As shown in Figure 4.2, already a pressure drop of ∆pin =−20 bar leads
to unstable performance in manual mode using the optimized input values without ad-
justment. The application of E-NMPC however gives in the case of both disturbances
close-to-optimal behaviour. The settling time of the optimized outlet mass fraction of
ammonia corresponds to about 10 min as it was already the case in the startup of the
controller. Both disturbances result in an increased inlet temperature T0.

Disturbances in the inlet temperature Tin as well as the inlet mass fraction wNH3,in are pre-
sented in Figure 5.3. Temperature reductions in the inlet can be present if the preheating
control is faulty and can result in a lower inlet temperature of the first bed. Concentra-
tion increases on the other hand can occur of the ammonia separation temperature is too
high and the ammonia concentration in the recycle increases. Similarly to the pressure
and flowrate disturbance, the temperature drop and ammonia mass fraction increase can
be handled by the controller. Again, the settling time to the nominal optimum is around
10 min. The inlet temperature of the first bed is increased for all disturbances showing
the reduced rate of extent of reaction in the beds and hence reduced heat of reaction.
Additionally, the variation in the outlet temperature is way smaller than the variation
in the inlet temperature due to the equilibrium. This can be explained by the fact, that
an outlet temperature of around 490 °C corresponds to the best achievable equilibrium
concentration for the reactor configuration and nominal operation conditions.

5.3 Discussion

The rejection of all disturbances which would lead in the case of manual operations to
limit-cycle behaviour or extinction of the reactor shows the performance of the chosen
controller configuration. It is interesting to note that for all disturbances, the quench
flows are reduced compared to the optimal values without disturbances. This reduction
increases the preheating of the feed to the first bed and increases the inlet temperature to
avoid limit cycle behaviour or reactor extinction. It is furthermore similar to the original
split ratios as shown in Chapter 4.
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5.3. Discussion

Figure 5.2: Response of the inlet (T0) and outlet (T30) temperature a), the split ratios ui
b), and the ammonia mass fraction at the outlet w30 with start at nominal conditions and
as disturbance an inlet flowrate increase of ∆ṁin = 15 kg/s at t = 10 min and back to
nominal flow rate at t = 50 min with a simultaneous pressure drop of ∆pin =−50 bar.
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Figure 5.3: Response of the inlet (T0) and outlet (T30) temperature a), the split ratios ui b),
and the ammonia mass fraction at the outlet w30 with start at nominal conditions and as
disturbance a temperature drop of ∆Tin =−30 °C at t = 10 min and back to nominal inlet
temperature at t = 50 min with a simultaneous mass fraction increase of ∆win = 4 wt.%.
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5.4. Conclusion

The assumption of full state feedback is generally not possible to achieve in practice
where state estimators have to be used. Temperature measurements can be implemented
at least at the inlet and outlet of each bed. However, in the case where the states at the
time step 0 of the controller are assumed to be at their respective nominal optimum,
the E-NMPC is able to achieve close to optimal conditions. As the median of the op-
timization time is around 2.5 s and the maximum 6 s on an Intel® Core™ i5-6600K,
the assumption of instantaneous calculations can be seen valid with a sampling time of
tNMPC = 30 s.

5.4 Conclusion

An economic nonlinear model predictive controller was introduced for the control of the
split ratios in an ammonia synthesis reactor as an example of heat-integrated chemical
reactors. The application of the controller yields the optimal conversion of ammonia in
the case of drastic input disturbances which would lead in manual operation to reactor
extinction. It has to be noted, that these disturbances are generally not encountered in
day-to-day operation and are only occurring in severe plant failures as it was the case for
the reported limit-cycle [75].

The tuning of this controller was performed by trial-and-error, and hence, potential im-
provements of the performance of the controller are possible. The big advantage of uti-
lizing E-NMPC for subsystems of chemical processes is given by the ability to adjust
to feedback (both negative and positive) from the recycle the reactor is incorporated in.
This allows to operate at optimal conversion per pass independently of the feed and
hence may allow optimal operation for integrated chemical processes which do not al-
low to determine a steady-state optimum. Stability is not guaranteed for the investigated
case as neither terminal constraints nor a penalty cost were introduced.

As an alternative to E-NMPC, it is also possible to use real-time-optimization (RTO)
with setpoint tracking NMPC. Setpoint tracking NMPC without an RTO layer may how-
ever not be feasible to implement for this system as, depending on the magnitude of a
disturbance, defined setpoints for temperatures may not be reached. This would then
require the introduction of soft constraints as outlined in Chapter 3. Similarly, the ap-
plication of the control structure of Naess et al. [76] can result in input saturation in the
case of large disturbances.
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Chapter 6

Self-Optimizing Control in Chemical
Recycle Systems

Chapter 5 investigated the application of economic nonlinear model predictive control
for the ammonia reactor. Due to the simplified model and the made assumptions, it may
not be feasible to apply the proposed controller to a real ammonia reactor.

As an alternative, self-optimizing control may be utilized as outlined in Chapter 3. Here,
the starting point for selecting a good control structure is to optimize the process for
various disturbances. The aim is to find a simple way of implementing optimal operation,
that is, a simple control structure with a small loss. Frequently, it is difficult to obtain
a detailed process model that can be used for optimization, especially for systems that
incorporate mass and energy recycle.

Applying optimization locally, however, results in a scenario where the considered dis-
turbances may be dependent on the selected input variables through the recycle, resulting
in a feedback. Furthermore, the cost function may be different in the overall flowsheet
and the submodels. The submodel operation point does not necessarily correspond to
the true optimum including the recycle loop as well. Therefore, the application of self-
optimizing control to individual submodels of a large process can result in a situation, in
which the selected measurement combination is not optimal.

The aim of this chapter is to investigate, how the dependency of disturbances may influ-
ence the theoretical performance of a self-optimizing control structure. Section 6.1 re-
capitulates SOC with focus on the applied exact local method [46], whereas Section 6.2
looks into the effect of dependent disturbances in the calculation of the optimal selec-
tion matrix H. Section 6.3 investigates the influence of the feedback on a case study
representing an ammonia reactor with a simplified recycle loop.
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6.1 Self-Optimizing Control

Self-optimizing control (SOC) is the selection of controlled variables c, which when
kept constant in the case of a disturbance, result in an acceptable economic loss [90].
The starting point is a steady-state optimization problem given by

min
x,u

J(x,d,u)

s.t. 0 = g(x,d,u)
0≥ h(x,d,u)

(6.1)

in which x ∈ Rnx denote the state variables, d ∈ Rnd the disturbance variables, and u ∈
Rnu the steady-state degrees of freedom. The process model itself is given by g : Rnx ×
Rnd ×Rnu →Rng whereas h : Rnx×Rnd ×Rnu →Rnh denote the operational constraints
given by the process. The cost function J : Rnx ×Rnd ×Rnu →R describes an economic
cost of the system.

For given disturbances d, we assume that there exists an input uopt(d) that minimizes
the optimization problem (6.1). If different values than the optimal input uopt are chosen
for the manipulated variables u, there will be a steady-state loss

L = J (x,d,u)− J
(
xopt(d),d,uopt(d)

)
(6.2)

The aim of self-optimizing control is then to find controlled variables c, which when
kept constant give a u that minimize this loss for expected disturbances.

One direct solution to self-optimizing control is to control the gradient of the cost func-
tion J with respect to the inputs u (Ju) to 0 as this would imply that the cost function is
always at an extremum. The corresponding model-free approach of controlling the mea-
sured gradient to zero is called extremum seeking control and dates back to 1922 [99].
However, in general, the gradient cannot be measured. In certain cases it is possible to
express the gradient of the cost function as a direct function of the measurements and
control it to 0 [52].

As it is frequently not possible to obtain the gradient of the cost function as a simple
expression of the measurements y ∈ Rny

y = hy(x,d,u) (6.3)

it is necessary to define the controlled variables c as a function of the available measure-
ments as

c = hc (y) (6.4)

in which hc : Rny → Rnc may be a function of any type. Frequently, linear measurement
combinations with H ∈ Rnc×ny are used resulting in

c = Hy (6.5)
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6.1. Self-Optimizing Control

6.1.1 Linearization of the Process Model and Cost Function

The majority of the self-optimizing control methods are based on a local analysis at the
nominal optimal operation point. This results in a linearization of the measurements

y = Gyu+Gy
dd (6.6)

where Gy ∈ Rny×nu and Gy
d ∈ Rny×nd are the process and disturbance gain matrices,

respectively. The cost is approximated through a second order Taylor expansion around
the nominal operation point (x∗, d∗, u∗)

JSS (x,d,u)≈JSS (x∗,d∗,u∗)+
[

JSS,u
JSS,d

]T [
∆u
∆d

]
+

1
2

[
∆u
∆d

]T [JSS,uu JSS,ud
JTSS,ud JSS,dd

][
∆u
∆d

] (6.7)

with ∆d = d−d∗ and ∆u = u−u∗. Note, that the derivatives JSS,u, JSS,d, JSS,uu, JSS,ud,
and JSS,dd are evaluated at the nominal point (x∗, d∗, u∗). Combining Eq. (6.2) with
Eq. (6.7) and utilizing that JSS,u = 0 at the optimum, we can calculate the loss for dis-
turbances d = d∗ as

L =
1
2
(
u−uopt(d)

)T JSS,uu
(
u−uopt(d)

)
(6.8)

6.1.2 Calculation of the Selection Matrix H

Several methods exist to obtain optimal measurement combinations, c = Hy. The reader
is referred to Jäschke et al. [53] for a concise review of the different methods, which
can be utilized. In this study, the exact local method as developed by Halvorsen et al.
[46] and simplified by Yelchuru and Skogestad [107] is utilized. In order to make a
statement about the loss, Halvorsen et al. [46] introduced diagonal scaling matrices for
the disturbances Wd and measurement errors Wny as

∆d = Wdd′; ny = Wnyny′ (6.9)

in which the vectors d′ and ny′ are assumed to satisfy∥∥∥∥[ d′

ny′

]∥∥∥∥
2
≤ 1 (6.10)

For a given selection matrix H, the linearized model (6.6), and the general loss expres-
sion (6.8), it is possible to derive the worst-case loss [46] and the average expected
loss [55] as

LWC (H) =
1
2

σ̄ (M)2 (6.11)

Lavg (H) =
1
2

∥∥M
∥∥2

F (6.12)
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6. Self-Optimizing Control in Chemical Recycle Systems

in which the loss matrix M is shown to be

M = J1/2
uu (HGy)−1 HY (6.13)

with
Y =

[
FWd Wny

]
(6.14)

The optimal sensitivity matrix for the measurements F can be obtained numerically or
calculated from the linearized model [46]

F =
∂yopt

∂d
(6.15)

=−
(

GyJ−1
SS,uuJSS,ud−Gy

d

)
(6.16)

The optimal measurement combination H can now be calculated as the solution, which
minimizes the average (6.12) and worst case (6.11) loss. Both these optimization prob-
lems have the same optimal solution [55], which can be obtained by solving

min
H

∥∥Juu
1/2 (HGy)−1 HY

∥∥
F

(6.17)

The analytical solution to this problem was first described by Alstad et al. [3] and later
simplified by Yelchuru and Skogestad [107] to

HT =
(
YYT

)−1 Gy (6.18)

From Eqs. (6.18) and (6.14), we can see that the required model information is Gy and
F, where the latter can be calculated using Eq. (6.16). In practice, if a nonlinear process
model is utilized, it is simpler to calculate F numerically from Eq. (6.15) and using
finte differences. Similarly, the loss L can be calculated using the nonlinear model and
optimization problem (6.1).

6.2 Dependent Disturbances

Consider the block diagram in Figure 6.1, where Local plant represents our submodel
(ammonia reactor in our case study) and Remaining plant represents the neglected part
of the process (the recycle in our case).

The first question is now: Assume that we optimize our Local plant with a fixed value
of d0, that is, we neglect the effect u has on d0 through, for example, the recycle. Is this
acceptable? Of course, the answer is generally no

The second question is: Assume now that we find controlled variables (that is, find H0)
based on considering our Local plant. Is this acceptable? Again, the answer is generally
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6.2. Dependent Disturbances

d0 yd0

u
Controller Local plant

y

c

-

c
s

H

Remaining 

plant

d

Global

plant

Figure 6.1: Visualization of the dependency of local disturbances d0 on the inputs u,
measurements y, and the independent disturbances d.

no, but in practice the answer may be “yes” if the local cost function is the same as the
overall one. To better understand this, let us consider how the matrices used to find H in
Eqs. (6.13) and (6.14) may change.

To see the difference between Gy (based on the overall plant) and Gy
0 (based on the local

plant), we can look at the total differential,

Gy ,

(
dy
du

)
d

=

(
∂y
∂u

)
d0

+
∂y
∂d0

∂d0

∂yd0

dyd0

du

= Gy
0 +Gy

d0 Gd0
yd0

Gyd0
u

(6.19)

with yd0 corresponding to the outlet variables of the local plant, which affect the ne-
glected part, see Figure 6.1. In our case, these are the outlet flow, pressure, temperature,
and composition. The gain Gd0

yd0
is the previously neglected feedback and can be obtained

from the submodel of the remaining plant. The gain Gyd0
u corresponds to the change in

the outlet variables with changing input.

A similar analysis can be conducted for the Hessian of the cost function Juu and the
disturbance gain Gy

d.
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6. Self-Optimizing Control in Chemical Recycle Systems

6.3 Case Study - Ammonia Synthesis Loop

The core of the case study is the three-bed ammonia reactor used in Chapter 5 in the ap-
plication of economic nonlinear model predictive control. In this model, the disturbances
(d0) are the inlet variables to the system

d0 =
[
ṁFeed0 pFeed0 TFeed0 wNH3,Feed0

]
(6.20)

There exist 3 input variables (u), which correspond to the split ratios to the three reactor
beds. The cost function for the ammonia reactor is to maximize the rate of extent of
reaction ξ̇

J =−ξ̇

=−ṁFeed0
(
wNH3,Rea−wNH3,Feed0

) (6.21)

As the reaction is limited by the thermodynamical equilibrium, a recycle is necessary
to utilize the unreacted hydrogen and nitrogen. The reactor is connected to the recycle
through the inlet stream d0 and the outlet stream yd0. This recycle stream (dr) corre-
sponds to 75 % of the mass of the feed to the reactor. Hence, the impact of the depen-
dency of the neglected remaining plant is expected to be large in this case study.

The model including the recycle is depicted in Figure 6.2. In the recycle system, the
actual disturbances (which usually are the true disturbances) are the inlet values to the
new system:

d =
[
ṁFeed pFeed TFeed wNH3,Feed

]T (6.22)

Note, that d0 is dependent on both d and yd0 (through dr).

6.3.1 Model Description

The recycle adds the following assumptions to the model:

• hydrogen and nitrogen are fed as a stoichiometric mixture and no inerts are present
in the feed, resulting in neglecting a purge flow;

• the feed to the system determines the pressure in the reactor and the inlet temper-
ature to the reactor system;

• the reactor system operates at constant pressure with a pressure drop after the
reactor system;

• the compressor operates with a fixed efficiency of η = 80 % and is considered to
be isothermal as the compression ratio is smaller than 1.1 in the synthesis loop;

• the separation is defined via a (fixed) separation coefficient α = 0.25 and only
ammonia is separated. This corresponds to a splitter for ammonia.
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6.3. Case Study - Ammonia Synthesis Loop

Bed 3 Bed 2

T30 T20

Bed 1

T10

Rea = yd0

u3

TIn,1

u1u2

TIn,2

Recycle = dr

Separator

Compressor
Sep

Feed = d

Feed0 = d0

Local plant = Reactor

TIn,3

Figure 6.2: Heat-integrated three-bed reactor system incorporated into a simple recycle
system consisting of a separator and a recycle compressor.

Based on the assumptions, the separation of ammonia is then calculated as

ṁSepwNH3,Sep = αṁReawNH3,Rea (6.23)

Additionally, a model equation similar to a valve coefficient has to be added for the
pressure drop after the separator

0 = ṅSep− k
√

pFeed− pSep (6.24)
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6. Self-Optimizing Control in Chemical Recycle Systems

Table 6.1: Nominal (optimal) inlet conditions for the reactor.

Recycle ṁFeed0 pFeed0 TFeed0 wNH3,Feed0
[kg/s] [bar] [°C] [wt.%]

Without 70.0 200 250 8.0
With 61.8 200 250 8.3

with a given pressure drop coefficient k (kmol/(s·
√

bar)). The compressor duty of an
isothermal compressor is (e.g. Skogestad [92])

W =
ṅSepRTFeed

η
ln
(

pFeed

pSep

)
(6.25)

As there is no purge flow and the product is pure ammonia, all of the feed has to be
converted. The system will therefore operate with a constant rate of extent of reaction,
and hence, it cannot be used anymore as cost function as it was the case in the local
reactor system. Instead, the new economic cost function corresponds to minimizing the
compressor duty of the recycle loop, i.e.

J =W (6.26)

As mentioned beforehand, this change in cost function may affect SOC variables defined
for the reactor system. The new cost function aims at minimizing the flow within the
recycle. This corresponds to minimizing the feed flow to the reactor while maintaining
a constant rate of extent of reaction. It can be seen as equivalent to the old cost function
where the aim is to maximize the rate of extent of reaction for a given feed. Alternatively,
maximizing the conversion per pass can be used in both cases as it is equivalent to ξ̇ for
a fixed feed and in addition minimizes the recycle flow.

The optimization was performed using CasADi [4] with IPOPT [102].

Let us first consider the first question in Section 6.2; is it possible to optimize the reactor
neglecting the recycle? With the new cost function and the modified system, the opti-
mal nominal inlet conditions of the reactor are given in Table 6.1. Unsurprisingly, it is
not possible to neglect the recycle in the optimization. Especially the reactor inlet mass
flow ṁFeed0 changes a lot due to the recycle. This is caused by a positive feedback. A
higher conversion per pass corresponds to more ammonia produced and separated, and
hence, a lower recycle flowrate. This in turn increases the residence time in the beds, and
hence, increases the conversion per pass. The ammonia mass fraction experiences neg-
ative feedback due to the assumption of a constant split factor. Hence, its value changes
only by a small value. Due to the aforementioned assumptions, the inlet pressure and
temperature of the system are the same with and without the recycle stream.
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6.3. Case Study - Ammonia Synthesis Loop

6.3.2 Application of SOC

This brings us to the second question in Section 6.2. Are the calculated controlled vari-
ables c0 = H0y based on considering only the reactor a valid choice?

To this end, we apply the exact local method as explained in Section 6.1.2 to both only
the reactor (local plant) and to the reactor+recycle (global plant). In order to reduce the
number of measurements utilized and pair the controlled variables close to the inputs,
each reactor bed is treated individually and the exact local method is applied to the inlet
temperature and the outlet temperature of the respective reactor bed; i.e.

yi =

[
TIn,i
Ti0

]
i = 1,2,3 (6.27)

This results in the combination of two measurements and corresponds additionally to
selecting measurements that have a high gain from the input to the respective measure-
ments.

The scaling matrices for the disturbance and measurement error in Eq. (6.9) are given by

Wd = diag
([

5 20 20 1
])

(6.28)

Wny,i = diag
([

4 4
])

i = 1,2,3 (6.29)

This implies that the actual optimal operation point with recycle does not fulfill require-
ment (6.10).

Utilizing the initial model of the reactor without recycle and cost function (6.21), we
achieve the following combinations of self-optimizing control variables (H0)

c1,0 = 0.053 TIn,1+T10

c2,0 = 0.329 TIn,2+T20

c3,0 = 1.311 TIn,3+T30

(6.30)

whereas, if we incorporate the recycle in the calculation of our SOC variables and use
cost function (6.26), we get (H)

c1 =−0.288 TIn,1+T10

c2 =−0.161 TIn,2+T20

c3 = 0.940 TIn,3+T30

(6.31)

Comparing the optimal selection matrices (6.30) and (6.31), we can directly see that
there are changes in the SOC variables. The most important measurement (T10, T20) in
the first 2 self-optimizing variables ci remains the same, however the weights change.
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6. Self-Optimizing Control in Chemical Recycle Systems

This can be partly explained by an increase in the process gains Gy
1, Gy

2, and Gy
3 corre-

sponding to the gains from ui to yi by around 15% in average:

Gy
1,0 =−

[
576
1071

]
, Gy

1 =−
[

667
1283

]
Gy

2,0 =−
[

603
800

]
, Gy

2 =−
[

703
948

]
Gy

3,0 =−
[

563
229

]
, Gy

3 =−
[

656
253

] (6.32)

The changes in the optimal sensitivity matrices Fi are even more pronounced, especially
for the two disturbances with different values in the nominal optimal case; the inlet
flowrate ṁFeed0 (ṁFeed) and the inlet mass fraction wNH3,Feed0 (wNH3,Feed).

F1,0 =


0.91 0.35
−0.505 0.085
−0.27 −0.14
535.4 −95.7


T

, F1 =


4.13 1.79
−0.561 0.004
−0.28 −0.12
134.9 −34.4


T

F2,0 =


0.73 0.25
−0.31 0.13
−0.186 0.001
242.8 −144.4


T

, F2 =


3.44 1.14
−0.40 0.06
−0.18 0.02
57.8 −47.3


T

F3,0 =


0.59 0.20
−0.20 0.15
−0.04 0.12
116.6 −181.5


T

, F3 =


2.84 1.05
−0.28 0.09
−0.02 0.14
23.94 −57.1


T

(6.33)

Based on these findings, it can be concluded that the linearization (6.6) (not surprisingly)
is no longer valid if a recycle is introduced. This can be caused by the change in the
optimal inlet flowrate of the reactor as shown in Table 6.1. ṁFeed0 is reduced by 12 %
and should be outside the linear range of the nonlinear model.

It is possible to verify whether the linearization error is caused by the different inlet to
the model or the feedback by changing the inlet to the model to the inlet calculated by
the model with recycle. The plant gains Gy

i are in this situation similar to the ones with
recycle. Furthermore, Juu is similar except for a scalar multiplier. This can be explained
by the total differential (6.19). In the case of the ammonia reactor with a maximized
rate of extent of reaction, wNH3,Rea is maximized. In addition, TRea is maximized as well
whereas pRea and ṁRea are unaffected due to mass conservation and the assumption of
constant feed pressure to the reactor. Hence, in our case Gyd0

u = 0 and

Gy = Gy
0 (6.34)
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6.3. Case Study - Ammonia Synthesis Loop

Figure 6.3: Loss as a function of the disturbance for both cases (H0 and H). The setpoints
for the local selection matrices Hi,0 are not adjusted to optimal setpoints of the global
recycle system.

This special behaviour occurs, if the outlet variables are equivalent to the cost function.

The optimal sensitivity matrices change however due the neglected dependency of d0 on
yd0 (and hence u) through changes in Gy

d and JSS,ud. This explains the changes in the
selection matrices Hi, see (6.30) and (6.31).

6.3.3 Loss Calculation

In order to evaluate the performance of both CV selections, Hi,0 in (6.30) and Hi in
(6.31), the loss as defined in Eq. (6.2) with cost function (6.26) and the (nonlinear) model
including the recycle was calculated. The setpoints for the controller in the problem
without recycle were given by the optimal setpoints without recycle. The comparison of
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6. Self-Optimizing Control in Chemical Recycle Systems

Figure 6.4: Loss as a function of the disturbance for both cases (H0 and H). The setpoints
for local selection matrices Hi,0 are adjusted to optimal setpoints of the global recycle
system.

both losses is shown in Figure 6.3. As can be seen from the red curves in Figure 6.3,
there is a loss even at the nominal point. This is not necessarily caused by a poor H0
matrix, but by a non-optimal operating point.

Hence, the setpoint for the SOC variables should be adjusted to the new nominal opti-
mum, in which the recycle is considered. The new loss calculations are shown in Fig-
ure 6.4. It is interesting to note, that the differences are surprisingly small. For an inlet
pressure disturbance and mass flow disturbance, the loss is smaller for H, whereas the
loss is higher for H than for H0 for an inlet pressure and ammonia mass fraction distur-
bance.
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6.3. Case Study - Ammonia Synthesis Loop

Figure 6.5: Loss as a function of the disturbance for both cases (H0,2 and H). The set-
points for local selection matrices Hi,0,2 are adjusted to optimal setpoints of the global
recycle system and the weighting matrix Wd changed.

Both H0 and H use the same weighting matrices (6.9). As the reactor inlet mass flow
ṁFeed0 is varying between 42 kg/s and 84 kg/s for a flowrate disturbance, we can directly
see the incorrect weighting of the inlet mass flow. Changing the value of the mass flow
disturbance in the weighting matrix to 20 kg/s results in new controlled variables (H0,2)

c1,0,2 =−0.181 TIn,1+T10

c2,0,2 =−0.053 TIn,2+T20

c3,0,2 = 0.971 TIn,3+T30

(6.35)

which are more similar to (6.31). The corresponding loss is depicted in Figure 6.5. We
can directly see that the difference in the loss is marginal, especially for ṁFeed , which had
the largest loss in Figure 6.4. This is not surprising as the the optimal selection matrix
H0,2 (6.35) is close to H (6.31).
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6.3.4 Discussion

It has to be highlighted that in this specific case study, it was possible to define a cost
function in the system without recycle, which corresponds to the cost function in the
system with recycle. This is not necessarily the case for all submodels of recycle systems.
If one would consider the case of a detailed separation section, the aim would be to
minimize the cooling costs for a given feed. This feed would also represent some of
the disturbances to the model. An unconstrained optimal solution would be given by no
cooling and hence no separation. Therefore, separation requirements are needed, either
on the separated product or through assigning cost values to all connection streams.
Hence, the optimal point would be based on these separation requirements. On the other
hand, the total model does not need constraints on the separation as separating no product
would result in no profit.

From the definition of the loss in Eq. (6.2), it is obvious that there is a constant loss at the
nominal operation point if the setpoint for the self-optimizing variables is not adjusted.
Recall that the starting point of this investigation is that it is however too complicated to
optimize the overall model, and hence, to calculate the true optimal setpoint. Therefore,
a model-free approach, e.g. extremum-seeking control or necessary conditions of opti-
mality tracking [35], should be used on top of self-optimizing control for calculating the
optimal setpoint.

Neglecting the feedback through a recycle will result in overestimation of the loss in the
case of negative feedback (ammonia mass fraction) and underestimation of the loss in
case of positive feedback (mass flow). Adjusting the scaling matrices to account for the
feedback will reduce the loss in the case of disturbances.

6.4 Conclusion

The dependency of considered disturbances on the input (and measurements) changes
the optimal selection matrix in the application of self-optimizing control. This is the
case even if the actual values of the disturbances, and hence, the feed to the submodel
are unchanged.

The loss is in the investigated case study similar if the setpoints to the controllers and
the disturbance weighting matrix Wd are adjusted. This cannot be generalized and is
depending on the neglected dependencies.
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Chapter 7

Combining Self-Optimizing Control
and Extremum-Seeking Control

Self-optimizing control is an important concept to reduce the loss if disturbances are
present. Chapter 6 showed however that it is necessary to update the setpoints to the
controlled variables if dependencies of the disturbances are neglected. As it may be
prohibitive to obtain a model of the plant for this adjustment, it can be necessary to
use a model free method to update said setpoints. Jäschke and Skogestad [50] success-
fully combined self-optimizing control with NCO tracking in a hierarchical structure and
demonstrated that the measurement based optimization techniques and the model based
self-optimizing concepts are complementary. As a result, NCO tracking adjusted the set-
points of self-optimizing control to remove the steady-state loss whereas self-optimizing
control reduced the input usage of NCO tracking. Both methods converged to the new
setpoint at a similar rate. However, the gradient was estimated using finite differences
which gave relatively poor NCO tracking. The authors suggested that more advanced
gradient estimation and input adaptation methods may give a better overall performance
as a future research direction.

A second model free method for achieving optimal operation is extremum-seeking con-
trol. As outlined in Chapter 3, extremum-seeking control aims at driving the gradient of
the cost function to zero. The use of extremum-seeking control on top of self-optimizing
control was briefly discussed by Keating and Alleyne [57] using the classical extremum-
seeking method. However, the authors only considered measured disturbances for a
single-input single-output system and limited themselves to a predefined optimal selec-
tion matrix H. Additionally, based on the simulation results presented, Keating and Al-
leyne [57] did not consider a clear time scale separation between the extremum-seeking
and self-optimizing controllers.
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In this chapter, the work from Jäschke and Skogestad [50] and Keating and Alleyne
[57] is extended. It is structured as follows. Section 7.1 briefly recapitulates the ideas of
self-optimizing control as described in [90] and [46] and extremum-seeking control as
described in [8] and [48]. Section 7.2 describes the framework in which we combine the
two methods in a hierarchical structure. We then exemplify the proposed method using
an ammonia synthesis reactor in Section 7.3. The results are discussed in Section 7.4
before concluding the paper in Section 7.5.

7.1 Background

Consider a process where the optimal operation of the process can be formulated as,

min
x,u

J(x,d,u)

s.t. (7.1)
ẋ = f(x,d,u)

where J ∈R is a scalar cost, x∈Rnx denote the state variables, u∈Rnu denotes the vector
of manipulated variables and d ∈ Rnd denotes the vector of disturbances and f denotes
the nx independent model equations. Note that we have no inequality constraints. More
precisely, we assume that any active constraints are satisfied and the nu manipulated
variables u are the remaining unconstrained degrees of freedom, which are available for
optimization [90].

We use the steady-state model equations f(x,d,u) = 0 to formally eliminate the states,
x = l(d,u). The steady-state cost can then be expressed just in terms of the inputs u and
disturbances d,

Jss(u,d) = J (l(d,u),d,u) (7.2)

The steady-state version of the optimization problem (7.1) is then equivalent to

min
u

Jss(u,d) (7.3)

This says that the input u should be manipulated to optimize the steady state performance
for any given disturbance d. We make the following additional assumptions:

Assumption 1. There exists u = uopt such that,

∂Jss

∂u
(uopt ,d) = Juopt = 0 (7.4)

∂ 2Jss

∂u2 (uopt ,d) = Juuopt > 0 (7.5)
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7.1. Background

7.1.1 Self-Optimizing Control

Self-optimizing control is a strategy of selecting an optimal measurement combination c
as controlled variables, such that the impact of known but unmeasured disturbances d on
the optimal operation is minimized. This is achieved by using the system model offline to
compute an optimal measurement combination. The ideal self-optimizing variable would
be to control the gradient Ju to a constant setpoint of 0. However, in most applications,
the gradient cannot be measured. A simple alternative is to identify a controlled variable
c ∈Rnc (with nc = nu)as a function of the available measurements y ∈Rny . The simplest
approach would be to select a linear combination of measurements given by,

c = Hym (7.6)

where, ym = y+ny is the vector of available measurements corrupted by measurement
noise ny and H ∈ Rnc×ny is the measurement selection matrix. In addition to finding H,
we must also find the optimal setpoint cs.

Several approaches can be used to calculate the optimal measurement combination c =
Hy. The reader is referred to [53] for a comprehensive review of the different self-
optimizing control methods. Most of the self-optimizing control approaches are based
on local linearization around the nominal optimal point. In this paper, we consider the
exact local method as introduced in [46] and further developed in [3] and [107]. In this
method, the optimization problem (7.3) is approximated by a quadratic approximation
and a linearized model. Let the linearized measurement model be represented by,

y = Gyu+Gy
dd (7.7)

where Gy ∈Rny×nu and Gy
d ∈Rny×nd are the gain matrices from u to y and d to y respec-

tively. The optimal selection matrix H, which with constant setpoints cs for c, minimizes
the loss in Jss with respect to the expected disturbances and measurement noise, is then
given by the expression,

HT = (YYT)−1Gy (7.8)

where,
Y =

[
FWd Wny

]
(7.9)

and Wd and Wny are diagonal scaling matrices for the expected magnitudes of the dis-
turbance and the measurement noise, respectively. F = ∂yopt

∂d is the optimal sensitivity
matrix, which describes how the optimal measurements change with the disturbance.
The optimal sensitivity matrix may be determined analytically using

F =−(GyJuu
−1Jud−Gy

d) (7.10)

or it may also be determined numerically by perturbing the disturbances and re-solving
the optimization problem as described in [2].
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Figure 7.1: Block diagram of the least squares based extremum-seeking controller.

As seen from the equations above, the optimal selection matrix is based on the plant
model Gy and the optimal sensitivity matrix F for the expected disturbances. Due to the
linearization around the nominal optimal point, the controlled variables combination is
only locally valid around this nominal optimal point. If a disturbance moves the process
far from the nominal optimal point, the local model approximation may be poor, result-
ing in higher steady-state loss as shown in Chapter 6. Over time, as the plant model
mismatch increases, the increase in the loss may no longer be acceptable. This requires
re-optimization and computation of new optimal setpoints cs. Additionally, any unmod-
elled disturbances that are not accounted for in the optimal sensitivity matrix cannot be
handled efficiently.

7.1.2 Extremum-Seeking Control

Extremum-seeking control is a model-free adaptive control method, where the steady-
state performance of the system is optimized purely based on measuring the cost. The
objective is to drive the estimated steady-state gradient of the cost Ju to zero. The main
advantage of extremum-seeking control compared to many other real time optimizers is
that no plant model is required. This enables extremum-seeking control to optimize the
performance of complex systems where the process model is not known accurately. The
main disadvantages are that it requires that the cost function is measured and that the
convergence can be very slow.

Unlike self-optimizing control, which is based on local linearization of the model around
the nominal operating point, extremum-seeking control is based on local linearization of
the measured cost around the current operating point. The input and the cost measure-
ments are used to continuously estimate the steady-state gradient Ju around the current
operating point. The estimated gradient is then controlled to a setpoint of zero.
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7.1. Background

There are different ways of estimating the gradient based on the input and cost measure-
ments. The classical approach is based on exciting the system with a sinusoidal signal
and using a correlation based on high-pass and low-pass filters to retrieve the steady-
state gradient information [62]. An alternative extremum-seeking scheme method was
proposed in [48], where a linear least squares estimation method was used to estimate
the steady-state gradient, which allows for a more general class of excitation signals [17].
The least squares method is also simple to implement and has fewer tuning parameters
than the classical method. The least squares approach also provides a natural platform
for multivariable systems. Improved performance using a recursive least squares ap-
proach was also reported in [18]. Therefore, we proposed to use the least squares based
extremum-seeking control in the rest of the paper.

In this work, we extend the least squares based gradient estimation presented in [48] to a
multivariable system. The goal is to estimate the gradient from the inputs ũ to the mea-
sured cost J . In the least squares based extremum-seeking control, the last N samples of
data is used to fit a local linear cost model of the form,

J = Jũ
Tũ+m (7.11)

where Jũ ∈ Rnu is the vector of gradients from ũ to J and m ∈ R is the bias.

At the current sample time k, let J̃ = [Jk · · · Jk−N+1]
T ∈ RN be the vector of the last N

samples of the measured cost and Ũ = [ũk · · · ũk−N+1]
T ∈ RN×nu be the vector of the

last N samples of the input. A moving window of fixed length N is then used to estimate
the gradient using the linear least squares method [64]

θ̂ = arg min
θ

∥∥J̃−Φ
T

θ
∥∥2

2 (7.12)

where θ ∈ R(nu+1) is the vector of parameters to be estimated and is given by

θ =
[
Jũ

T m
]T (7.13)

and Φ ∈ RN(nu+1) is the regressor vector given by

Φ =


ũT

k 1
ũT

k−1 1
...

...
ũT

k−N+1 1

=
[
Ũ 1

]T (7.14)

The analytical solution to the least squares problem is given by, [64]

θ̂ =
[
Φ

T
Φ
]−1

Φ
TJ̃ (7.15)
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Note that in theory, it is not necessary to use a dither signal when this approach is used,
but for practical purposes it is recommended, and in our case study we use a sinusoidal
dither signal with a sufficiently small amplitude.

Once the gradient Jũ is estimated, nu integral controllers can be used to drive the gradi-
ents to zero using as degrees of freedom ũ (setpoints to the lower level controllers). The
integral controller in general can be written as,

dũ
dt

= KI Ĵũ (7.16)

where, KI ∈ Rnu×nu is the gain matrix. However, in many cases, we use decentralized
control where KI is diagonal. This is the case in our case study.

In order to estimate the static gradient Ĵũ using dynamic data, the adaptation gain KI
must be chosen small enough such that the time-scale of the gradient estimation is slower
than that of the system dynamics. Since the linear model assumption is valid only locally
around the current operating point, the gradient can be estimated using only the past few
samples of data. It was shown in [48] that the least squares based extremum-seeking
control is stable and that the error is small for a sufficiently small adaptation gain KI and
sample size N.

Thus, the extremum-seeking control is based on the local linearization around the current
operating point. Using the cost measurements, the gradient from the inputs to the cost
is estimated and driven to its optimum. Since the gradient estimation relies entirely on
the cost measurements, it requires accurate cost measurements. The convergence to the
optimum may also be slow for a dynamic process.

7.2 Proposed Method

In this chapter, an hierarchical implementation with separate optimization and control
layers proposed in [46] as shown in Figure 7.2 is proposed. Due to the time-scale sepa-
ration required between the optimization and control layers [90], the extremum-seeking
scheme fits better in the slow optimization layer and thus replaces the conventional RTO.
Self-optimizing control is proposed to be in the faster layer below and tracks the up-
dated setpoint given by the extremum-seeking controller. In other words, the extremum-
seeking controller uses the measured cost J to compute the setpoints cs, which are pro-
vided to the self-optimizing controller. The controller output from the extremum-seeking
controller is ũ = cs in (7.11)-(7.15)1.

It may be argued that the self-optimizing control layer is redundant since an extremum-
seeking scheme can directly manipulate the process to optimize the objective function.

1In the case where extremum-seeking controller controls the plant directly, ũ = u
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Figure 7.2: Hierarchical implementation of combined self-optimizing control and
extremum-seeking control. The extremum-seeking controller used in this paper is shown
in Figure7.1. The setpoint controller is a simple PID controller.

However, by using a purely data-driven approach, any a-priori knowledge about the sys-
tem and the effect of disturbances are completely ignored. In addition, the extremum-
seeking controller does not make use of measurements besides the cost measurements.
Hence the convergence to the optimum is slow following a disturbance. The proposed hi-
erarchical combination of extremum-seeking control and self-optimizing control avoids
the shortcomings of the extremum-seeking scheme and improves the convergence to the
optimum. This is primarily due to a faster initial reaction of the self-optimizing layer
to known (modelled) disturbances. Following a disturbance, the self-optimizing control
quickly brings the operation point to the near-optimal region, and on a slower timescale,
the extremum-seeking control reduces any loss associated with the self-optimizing con-
trol.

At the same time, the self-optimizing control can benefit significantly from an extremum-
seeking layer above it. As mentioned earlier, the extremum-seeking layer handles the
plant-model mismatch and unmodelled disturbances and reduces any steady-state loss
by adjusting the setpoint of the optimal measurement combination. This avoids costly
re-optimization and redesign of the controllers.

In summary, we use the knowledge about the system to stay in the near-optimal region
using self-optimizing control in the presence of disturbances. The extremum-seeking
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Table 7.1: Properties of self optimizing control and extremum-seeking control.

Self-optimizing control Extremum-seeking control

offline model required model free
fast rejection of disturbances slow rejection of disturbances
local linearization around nominal op-
timal point

local linearization around current oper-
ating point

handles unmeasured but expected dis-
turbances

handles unmeasured and unexpected
disturbances

needs no cost measurement requires measurement of cost

control helps to reduce the losses due to plant-model mismatch, handle any unexpected
disturbances, and fine tunes the optimal operating point. The key properties of the two
methods are summarized and compared in Table 7.1, which shows that self-optimizing
control and extremum-seeking control are complementary rather than competing.

Improvements in Gradient Estimation

Although data-driven methods such as extremum-seeking control can handle unmod-
elled disturbances on a longer timescale, abrupt changes in disturbances may temporar-
ily cause erroneous gradient estimation, especially with the least squares gradient esti-
mation method used in this paper. This may result in undesired manipulations by the
extremum-seeking controller during the transients as motivated in [60]. Some modifi-
cations to improve the disturbance rejection in extremum seeking has been proposed in
[60], [66], and [67], which all require the disturbances to be measured. The least-square
based extremum-seeking control presented in this paper can be easily modified to handle
measured disturbances, by adding the measured disturbances as a part of the regressor
Φ in (7.15). However abrupt changes in unmeasured disturbances still pose issues with
erroneous gradient estimation. A natural way to curb the effect of the inaccurate gradient
estimate following an abrupt change in the disturbance, is to bound the magnitude of the
individual gradients (Ĵũi ) in (7.16) to a value Jui,max∣∣Ĵũi

∣∣≤ Jui,max (7.17)

This approach is used in our case study as illustrated in Figure 7.4.
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Figure 7.3: Flowsheet of the reactor case study, modified from [75] to include the pro-
posed control structure.

7.3 Case Study - Ammonia Synthesis Reactor

The investigated case study is a three-bed ammonia reactor with heat integration as in the
previous chapters. A flowsheet, including the control structure for the proposed method,
can be found in Figure 7.3. Economic nonlinear model predictive control was able to
react to disturbances and bring the reactor to its steady-state optimum. In order to avoid
repeated numerical optimization and to handle disturbances and plant-model mismatch
more efficiently, self-optimizing control, extremum-seeking control and a combination
the both approaches is considered in this chapter. The incorporation of the reactor into
the ammonia synthesis loop requires adjustments to the setpoints of the self-optimizing
controllers as shown in Chapter 6. This adjustment can be achieved through extremum-
seeking control.
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The objective is to maximize the rate of extent of reaction ξ̇ for a given feed, that is

J = ξ̇ (7.18)
= ṁin (wNH3,30−wNH3,in) (7.19)

In the context of the overall process, this corresponds to minimizing the recycle feed and
hence minimizes the recycle compressor cost as well as the cooling cost in the separation
section.

7.3.1 Summary of the Model

The model consists of three sequential reactor beds and one heat exchanger. The inlet
stream to the reactor system (denoted by subscript in) is split into four streams; one
quench flow to each bed and a preheated flow to the first reactor bed. The quench split
ratios correspond to the three manipulated variables u0 =

[
u0,1 u0,2 u0,3

]T. The three
reactor beds are discretized into a cascade of continously stirred tank reactors (CSTR).
We use the Temkin-Pyzhev kinetic expression for the reaction rate. The heat-exchanger
is modelled using the number of transfer units (NTU) method. The resulting model with-
out controllers corresponds to a differential-algebraic system with x ∈ R30 as dynamic
state variables corresponding to the temperatures in the beds, z ∈ R30 as algebraic state
variables corresponding to the ammonia mass fractions in the beds, and u0 ∈ R3 as
manipulated variables. A detailed model description can be found in Appendix A. The
system is modelled using CasADi [4]. The nominal optimal point and the optimal sen-
sitivity matrix F for self-optimizing control were computed using the IPOPT nonlinear
problem solver [102]. The plant model was simulated using IDAS [47].

7.3.2 Controller Design

The potential instability in case of disturbances as described in [75] requires a stabilizing
slave control layer. Otherwise, large disturbance would result in limit-cycle behaviour or
even reactor extinction. It was shown in Chapter 4, that if the reactor is operated close to
the nominal optimum and without control, the reactor extinction may result even from
small disturbances compared to the large disturbances investigated by [75]. Hence, also
for the case when extremum-seeking control is utilized without self-optimizing con-
trol, a stabilizing slave control layer is required resulting in a cascade controller for all
investigated control structures. This furthermore reduces the coupling between the self-
optimizing controllers. The slave temperature loops as well as the master self-optimizing
control loops were tuned using the SIMC rules [93]. These controllers were directly in-
cluded into the differential-algebraic model increasing the number of differential vari-
ables by three for the extremum-seeking control or six for the combined self-optimizing
and extremum-seeking control. The extremum-seeking controllers were implemented in
discrete time resulting in a discrete-continuous representation.
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Table 7.2: PI tuning parameters and of the temperature and SOC controllers in Figure 7.3.

Input Output Kp KI
(MV) (CV) [-] [s−1]

Sl
av

e TC 1 u0,1 TIn,1 [-] −2.1×10−4

TC 2 u0,2 TIn,2 [-] −2.7×10−4

TC 3 u0,3 TIn,3 [-] −4.2×10−4

M
as

te
r SOC 1 Ts,In,1 c1 0.169 0.76×10−3

SOC 2 Ts,In,2 c2 0.209 1.25×10−3

SOC 3 Ts,In,3 c3 1.000 5.0×10−2

Slave Temperature Controller Pairing and Tuning

Slave temperature controllers are introduced in all control structures studied in this pa-
per. The slave controllers use the splits (bypass) u0,i to control the corresponding bed
inlet temperature. This is a pure mixing process with instantaneous dynamics, and an
integrating controller is recommended [93]. The desired closed loop time constant for
the three controllers was chosen to be τc = 10 s. The resulting integral gain KI for the
three temperature loop controllers can be found in Table 7.2.

SOC Controller Pairing and Tuning

The SOC controllers give the setpoints to the respective slave temperature controllers.
The measurements y for self-optimizing control are selected to be the inlet and outlet
temperature of each reactor bed; i.e.

yi =

[
TIn,i
TOut,i

]
i = 1,2,3 (7.20)

Hence, only two measurements were used for the calculation of Hi in (7.8). This local
treatment of each bed does not necessarily result in overall optimal selection matrices
Hi. It would be possible to increase the number of measurements, e.g. using all 6 mea-
surements for the calculation of the selection matrices. This will reduce somewhat the
steady-state loss in self-optimizing control [107]. However, it may also lead to undesired
dynamic behaviour through coupling and delays in the self-optimizing variables c.

The disturbances are the inlet conditions;

d =
[
ṁin pin Tin wNH3,in

]T (7.21)

65



7. Combining Self-Optimizing Control and Extremum-Seeking Control

The chosen scaling matrices in (7.9) are

Wd =


7 0 0 0
0 20 0 0
0 0 25 0
0 0 0 0.008

 (7.22)

Wny =

[
4 0
0 4

]
(7.23)

The expected disturbance magnitudes (Wd) are 10 % of the nominal value whereas Wny

corresponds to a measurement noise of 4 K for each measurement. The resulting (scaled)
selection matrices Hi from (7.8) are then given by

H1 =

[
−0.03
1.00

]
H2 =

[
0.23
1.00

]
H3 =

[
1.00
0.74

]
(7.24)

To get a fast response in the self-optimizing control layer, because it will be combined
with an upper extremum-seeking layer, the closed-loop time constant τc for each of the
three controllers is equal to its respective time delay. The resulting PI parameters (Kp
and KI) can be found in Table 7.2.

Extremum-Seeking Controllers Tuning

The upper layer in the control structure in Figure 7.2 consists of the three extremum-
seeking controllers. These slow integral controllers give the setpoints to either the base
layer temperature (Ts,In, denoted T+ESC) or the self-optimizing controllers (cs, denoted
T+SOC+ESC). The estimation of the gradient θ̂ according to (7.15) is performed using
ũ as the setpoint of the respective slave controller (T or SOC). It is assumed that the
disturbances are unmeasured. Hence, θ is given by

θ =
[
Jũ

T m
]T (7.25)

where m is the present value of the cost and Jũ the gradient. As the disturbances are not
corrected for, this will result in wrong gradient estimation when disturbances occur. One
way to rectify this problem is to temporarily turn off the extremum-seeking controllers
when this happens. It may, however, not be obvious that a disturbance is occuring. Hence,
instead the gradients Ĵũi are bounded as shown in (7.17).

The tuning of extremum-seeking controllers depends on multiple factors. We need to
choose the number of past measurements N, the periods and amplitudes of the sinusoidal
dithers, as well as the integral gains. All these parameters have an influence on each other
resulting in a difficult selection. The parameters were chosen based on trial and error to
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Table 7.3: Controller tuning parameters for the extremum-seeking controllers in the case
of only temperature controllers (T) and also self-optimizing control (SOC) as the setpoint
control layer.

Controller Amplitude Period Jui,max KI
[K] [h] [kg s−1 K−1] [s−1]

T

ESC 1 1.0 2.0 0.3 0.05
ESC 2 1.0 2.5 0.225 0.05
ESC 3 1.0 3.0 0.225 0.05

SO
C

ESC 1 1.0 2.0 0.3 0.08
ESC 2 1.0 2.5 0.45 0.04
ESC 3 1.0 3.0 0.45 0.04

achieve satisfactory performance and are given in Table 7.3. The time horizon for the
past measurements was chosen to be 1 hour in all cases. This corresponds to N = 240
samples with a chosen integrator step time of tint = 15 s. Equal effort for both T+ESC
and T+SOC+ESC tuning was attempted to achieve comparable performance.

7.3.3 Results

In order to compare the proposed methods, two disturbances were investigated; a dis-
turbance in the inlet mass flow rate ṁin, corresponding to a modelled disturbance in
self-optimizing control, and an unmodelled disturbance in the reaction rate r. These dis-
turbances were chosen as they correspond to the largest losses for the self-optimizing
control structure (not shown). Hence, the improvement using extremum-seeking control
is most pronounced. In addition, both disturbances would result in reactor extinction, if
the stabilizing temperature controllers would not be present. The integrated loss (cost
difference),

Jint (t) =
∫ t

0

[
ξ̇opt,SS

(
t ′
)
− ξ̇

(
t ′
)]

dt ′ (7.26)

is used to compare the proposed methods.

First, consider a +20 % step change in the inlet mass flow rate to see the impact of the
bounds (7.17) on the gradient estimates Ĵũi . Figure 7.4 shows the bounds and the gradient
estimate for gradient 1 as well as the corresponding manipulated variable, cs,1. As we
can see, the gradient estimate at the time of the disturbance (t = 3 h) is indeed outside
the respective bound. At t = 3.025 h it reaches a minimum value of Ĵũi =−93.42 kg s−1

K−1, a value 300 times as large as the bound. The estimate is within the bound 1 h after
the occurrence of the disturbance (t = 4 h). This corresponds to the time horizon of the
past measurements according to (7.15). If no bounds are introduced, the wrong estimate
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Figure 7.4: a) Gradient estimate for ESC controller 1 and b) controller output cs,1.

of the gradient would require a very small integrator gain for the extremum-seeking
controller resulting in a very slow convergence.

The cost J = ξ̇ and the integrated loss (7.26) are shown in Figure 7.5. The cases with
extremum-seeking control settle to the new optimum in contrast to pure self-optimizing
control. The combination of self-optimizing control and extremum-seeking control gives
a large reduced loss in produced tons of ammonia. As seen in Figure 7.5, this reduction

Figure 7.5: Response of a) rate of extent of reaction ξ̇ and b) integrated loss to a +20 %
disturbance in inlet mass flow rate, ∆ṁin =+54 t/h, at t = 3 h.

68



7.3. Case Study - Ammonia Synthesis Reactor

Figure 7.6: Closeup of Figure 7.5 a) at the time when the disturbance occurs.

corresponds to 4.95 t ammonia in the investigated time-frame of 18 hours. One could
argue that this is caused by suboptimal tuning parameters in the pure extremum-seeking
control. By taking a look at the time the disturbance is occurring, we claim that this is
not the case. Figure 7.6 shows the response in the cost function for the first 1.2 hours
after the disturbance occurs. From this figure, it can be clearly seen that both ESCs
(solid lines) initially follow their respective slave controllers, before deviating when the
ESCs start changing the setpoints to the slave controllers. Both ESC control structures
are in fact moving initially in the wrong direction, that is, to a reduced rate of extent of
reaction. This can be explained by the past measurements, before the disturbance, which
are still used at this point. One approach to circumvent this behaviour is to use a smaller
time horizon (smaller N). This results on the other hand in a drift away from the optimal
setpoint on a long time scale. Hence, it is preferable to have a slightly suboptimal initial
performance.

A disturbance in the reaction rate r is an unmodelled disturbance. This implies that it
is not considered in the calculation of the optimal selection matrices according to (7.8).
It can be considered a plant-model mismatch. The simulation results for a −20 % step
change in the reaction rate r is shown in Figure 7.7. Similarly to a disturbance in the
inlet mass flow ṁin, the control structure based on the proposed method with both
self-optimizing and extremum-seeking control settles to the new optimum after 7 hours
whereas extremum-seeking control alone requires around 13 hours. During the time the
controllers require to settle to the new optimum, the loss is reduced in the proposed con-
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Figure 7.7: Response of a) rate of extent of reaction ξ̇ and b) integrated loss to a −20 %
disturbance in pre-exponential factors of the Arrhenius equations at t = 3 h.

trol structure with SOC. Over 18 hours, the proposed control structure has a reduced loss
of 6.71 tons of produced ammonia. Here it has to be noted, that despite this disturbance
was not included in the design phase, the self-optimizing control structure has a reduced
loss. This can be explained by general favourable properties of self-optimizing feedback
with regard to disturbances and plant-model mismatch.

7.4 Discussion

As shown, the hierarchical combination of self-optimizing control with extremum-seek-
ing control improves the rejection of disturbances. This is caused by the (fast) rejection
of the disturbance through self-optimizing control combined with the final adjustment
of the setpoints cs by the extremum-seeking controllers. Is it still possible to speak of
self-optimizing control in the context, when the setpoint is adjusted? Yes, the idea of self-
optimizing control is to allow for less frequent changes in the setpoint. Skogestad [90]
speaks in his original paper on self-optimizing control explicitly of the possibility to ad-
just the setpoint for SOC variables using an optimizing layer. This is especially important
considering the incorporation of the reactor into the synthesis loop in which the recycle
is neglected as shown in Chapter 6. The proposed method adjusts then the setpoints, if it
is not possible to solve an optimization problem for the overall process

Self-optimizing control is model-based. However, the proposed method is less reliant on
the accuracy of the model than many other model-based approaches, since it only uses
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the model offline for the calculation of the optimal selection matrices Hi. The setpoints
of the self-optimizing controllers are handled by the extremum-seeking controllers in a
model-free approach.

There remains however one limitation to the proposed methodology; it is necessary to
measure (or estimate) the cost function for the extremum-seeking controller. This is sim-
ilar to the sole application of extremum-seeking control and can be seen as an inherent
limitation of this type of methods.

7.5 Conclusion

It was shown that extremum-seeking control and self-optimizing control are comple-
mentary rather than competing. By combining self-optimizing control and extremum-
seeking control, the convergence to the optimum is improved and it is possible to handle
a wider class of uncertainty than each of the methods individually. Using a three bed
ammonia reactor case study, it was demonstrated that the combined system can handle
unmeasured and unexpected disturbances and at the same time correct for plant model
mismatch.
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Chapter 8

Feedback Steady-State Real-Time
Optimization

Economic NMPC as described in Chapter 5 handles the dynamic process behaviour,
operational constraints, and leads to the optimal inputs for this multivariable processes.
Nevertheless, solving the optimization problem for a large-scale problem is computa-
tionally expensive and can potentially lead to computational delays. Furthermore, the
modelling and controller tuning is challenging to ensure good performance over time [94].

The application of self-optimizing control in Chapter 6 showed, that it is possible to keep
the reactor close to optimum. Therefore, it can be used for close to optimal operation
while waiting for the steady-state [90]. The implementation is very fast and simple, but
in case of unknown or large disturbances, it was shown that the setpoints need to be
updated using some other approach, e.g. a data-based approach like extremum-seeking
control as shown in Chapter 7. Closely related approaches are the hill-climbing controller
of Shinskey used recently by Kumar and Kaistha [63] and the NCO-tracking approach
of Bonvin and coauthors [35]. Their main advantage is that they are model free. The
main challenge in these methods is the accurate estimation of the steady-state gradient
from dynamic measurements. This normally requires constant excitations that are slow
enough such that the dynamic system can be approximated as a static map [62]. As a
result the convergence to the optimum is usually very slow. In the presence of abrupt
disturbances, extremum-seeking control also causes unwanted deviations as discussed
in Chapter 7 and Krishnamoorthy et al. [60].

In this chapter, a new model-based dynamic gradient estimation [61] is applied to drive
the process to optimal operation. In contrast to standard extremum-seeking control, the
exact steady-state gradients is estimated based on the dynamic model of the process
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and hence no excitations are required. In addition, there is no need to measure the cost
directly for the proposed method. Moreover, reoptimization is done by feedback control
and solving the optimization problem is not necessary.

This chapter starts with the explanation of the utilized estimator and the proposed method
in Section 8.1. Section 8.2 formulates then the problem and the model. The results are
presented in Section 8.3, including a comparison with the combination of extremum-
seeking control and self-optimizing control (Chapter 7).

8.1 Steady-state Gradient Control Using Transient Measurements

We consider a process that can be modelled as a nonlinear dynamic system of the form

ẋ = f(x,d,u)
y = hy(x,d,u)

(8.1)

where x ∈ Rnx , u ∈ Rnu , d ∈ Rnd , and y ∈ Rny are the states, available control inputs,
disturbances, and measurements. The cost, which we want to minimize, does not need
to be directly measured, but is instead given by

J = hJ (x,d,u) (8.2)

with hJ : Rnx ×Rnd ×Rnu → R. In the proposed method, a state estimator such as an
extended Kalman filter (EKF) [89] is first applied to estimate the states x of the system
by using the measurements and the dynamic model, given in Eq. (8.1). This is different
to Chapter 5 were full state knowledge was assumed.

8.1.1 Extended Kalman Filter

For a discrete-time extended Kalman filter, it is necessary to rewrite the model as

xk = fEKF,k(xk−1,dk−1,uk−1)+nx (8.3)
yk,meas = hy(xk−1,dk−1,uk−1)+ny (8.4)

in which nx ∼N (0,Qk) is the process noise with covariance Qk and ny ∼N (0,Rk) is
the measurement noise with covariance Rk. Reformulating Eq. (8.1) using the forward
Euler method, we can write

fEKF,k = xk−1 + f(xk−1,dk−1,uk−1)∆t (8.5)
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in which ∆t corresponds to the discrete-time step. At each step k, it is first necessary to
linearize the system around the last previous operating point given by

Fk =
∂ fEKF,k

∂xk−1

∣∣∣∣
x̂k−1|k−1,dk−1,uk−1

(8.6)

Hk =
∂hy

∂x

∣∣∣∣
x̂k−1|k−1,dk−1,uk−1

(8.7)

The prediction step of the extended Kalman filter for the state (x̂) and covariance (P)
estimates is described as

x̂k|k−1 = fEKF,k(x̂k−1|k−1,dk−1,uk−1) (8.8)

Pk|k−1 = FkPk−1|k−1FT
k +Qk (8.9)

Using the prediction of the covariance, the Kalman gain Kk is calculated as

Kk = Pk|k−1HT
k
(
HkPk|k−1HT

k +Rk
)−1

(8.10)

and used in combination with the measurements yk,meas to update the estimates of the
states and the covariance

x̂k|k = x̂k|k−1 +Kk
(
yk,meas−hy

(
x̂k|k−1,uk−1,dk−1

))
(8.11)

Pk|k = Pk|k−1−KkHkPk|k−1 (8.12)

As it can be seen in the equations of the extended Kalman filter, it is necessary to mea-
sure the disturbances. In the case of unmeasured disturbances and unknown parameters,
it was suggested [58] to estimate these simultaneously with the states. Therefore, we can
rewrite the model given in Eqs. (8.1) to include a differential equation for the distur-
bances

ḋ = wd (8.13)

wd is given by a small artificial noise term. The resulting augmented systems with states

x′ =
[

x
d

]
(8.14)

can then be formulated as

ẋ′ =
[

f′(x′,u)
wd

]
y = h′y(x

′,u)
(8.15)

The models f′ and h′y are the same as the ones given in Eq. (8.1). However, due to
the change in notation with x′, it seemed reasonable to rename them. Using the model
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described in Eq. (8.15), it is possible to estimate the states and disturbances via Eqs. (8.6)
to (8.12). If certain disturbances are measured, it is as well possible to only estimate some
of the disturbances. It is however necessary, that observability conditions hold. This can
be tested using e.g. the observability matrix, the observability Gramian, or the output
pole vectors. This is explained in detail in [94].

8.1.2 Estimation of the Gradient of the Steady State System

The cost function described in Eq. (8.2) is at each time linearized around the current
operating point. This results in a local linear dynamic model for the states x and the cost
j as a function of the input u.

∆̇x = A∆x+B∆u
∆J = C∆x+D∆u

(8.16)

The system matrices of the state-space representation are hereby evaluated at the current
operating point through the estimates of the states and measurements of the disturbances.

A =
∂ f
∂x

∣∣∣∣
x̂,d,u

B =
∂ f
∂u

∣∣∣∣
x̂,d,u

C =
∂hJ

∂x

∣∣∣∣
x̂,d,u

D =
∂hJ

∂u

∣∣∣∣
x̂,d,u

In order to obtain the steady-state gradient, we can set ∆̇x = 0 and derive in deviation
variables

∆J =
(
−CA−1B+D

)
∆u (8.17)

which, since ∆J = Ju∆u, gives the following estimate or prediction of the steady-state
gradient

Ĵu =−CA−1B+D (8.18)

We want to drive the system to an optimal steady-state where Ju,s = 0, so even if the
system is not at steady-state, we can use feedback control with y = Ĵu as measurements
to drive the system to the optimal steady-state and by that satisfying the necessary condi-
tions of optimality [61]. Any feedback controller, such as a PI controller, can be used to
bring the gradient to zero. It is important to note that by using a nonlinear state estimator
and a dynamic model for estimating the steady-state gradient Ju, we can use transient
measurements, without the need to wait for steady-state, as in traditional RTO.

The scheme of the proposed method is illustrated in Figure 8.1. Although an extended
Kalman filter was used for state estimation, this is not a necessity. In general, any ob-
server may be used for the state estimation.
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Figure 8.1: Block diagram of the proposed method.

8.2 Adaptation of the Model and Problem Formulation

The model of the ammonia reactor and all the model assumptions are explained in de-
tail in Appendix A. The 3 split ratios u0 =

[
u0,1 u0,2 u0,3

]T are controlled by local
temperature controllers. This is necessary for stabilizing the process for the proposed
procedure and was already applied in Chapter 7. The temperature controllers are incor-
porated into the model in continous time increasing the number of states by 3. This leads
to u=

[
Ts,In,1 Ts,In,2 Ts,In,3

]T for the proposed procedure. The temperature controllers
are modelled as single-input single-output integrator controllers, as the response can be
approximated as a proportional process. The parameters of the temperature controller
can be found in Table 7.2. The required differential equations for the integrated error eint
in the temperature controllers are given by

deint, j

dt
= Ts,In, j−TIn, j ∀i = 1,2,3 (8.19)

The SIMC rules [93] were applied for the slave controllers tuning.

In contrast to Chapter 5, full state knowledge is not assumed in this chapter. The state
estimation is performed using an EKF as described in Section 8.1.1. The measurement
set for state estimation is given by the inlet and outlet temperature of each reactor as well
as the outlet temperature of the heat exchanger (see Figure 8.2). This corresponds to

y =
[
THEx TIn,1 TOut,1 TIn,2 TOut,2 TIn,3 TOut,3

]T (8.20)

To this end, the model was reformulated as a system of ordinary differential equations.
As shown in Appendix A, each reactor bed in the model consists of n discrete volumes,
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Figure 8.2: Heat-integrated 3 bed ammonia synthesis reactor with cascade control. The
setpoint of the slave temperature loop is given by the proposed method.

which can be modelled as a CSTR cascade. This leads for each reactor bed to a total
of 2n state variables per time step. So far, the ammonia weight fractions wNH3, j were
considered as algebraic variables. For any CSTR reactor j in the CSTR cascade, the
differential equations for the ammonia weight fractions wNH3, j can be formulated as
seen in Eq. (8.21), in which α = 0.33 represents the bed void fraction, ρg = 50 kg/m3

the density of the gas, and Vj =Vbed/n the volume of each CSTR reactor j [74].

dwNH3, j

dt
=

ṁ j−1wNH3, j−1− ṁ jwNH3, j +mcat, jrNH3, j

Vjρgα
(8.21)

To summarize, we can write, x ∈ R6n+3, u ∈ R3 in the system, given in Eqs. (8.1).

The catalyst activity is changing over time in real plants. This is in general difficult or
impossible to measure and leads to a plant-model mismatch. To take into account in-
dustrial applicability, we assume, that a change in the catalyst activity is not measured,
but included in the model as an uncertain parameter. Hence, the states and the uncer-
tain parameter are combined to the augmented states with d = [acat ]. This results in an
augmented system given by Eq. (8.15).

To optimize the operation, we want to maximize the (mass) rate of extent of reaction.

ξ̇ = ṁin(wNH3,out,3−wNH3,in) (8.22)

This results in a cost function J = −ξ̇ . In this case, a cascade control is used, where
the master controllers drive the three gradients to zero by giving new set points to three
slave control loops. The EKF and the proposed method were implemented in discrete
time. The controllers of the proposed method are single-input single-output controllers.

78



8.3. Performance Analysis

Table 8.1: PI tuning parameters and of the temperature and SOC controllers in Figure 8.2.

Input Output Kp KI
(MV) (CV) [-] [s−1]

Sl
av

e TC 1 u0,1 TIn,1 [-] −2.1×10−4

TC 2 u0,2 TIn,1 [-] −2.7×10−4

TC 3 u0,3 TIn,1 [-] −4.2×10−4

M
as

te
r SOC 1 Ts,In,1 Ĵu,1 65 1.6

SOC 2 Ts,In,2 Ĵu,1 61 3.4
SOC 3 Ts,In,3 Ĵu,1 80 4.45

The proportional (Kp) and integral (KI) gain of the controllers can be found Table 8.1.
The continuous time process model, given in Eq. (8.1) and Appendix A, was modelled
using CasADi [4] and integrated with CVODES, which is part of the SUNDIALS pack-
age [47].

8.3 Performance Analysis

In the following section, we consider a disturbance in the feed flow and a plant-model
mismatch, given by a mismatch in the catalyst activity. In all cases, we have three in-
ner stabilizing temperature loops as indicated by the letter “T” on the plots. In addition,
the results are compared to pure self-optimizing control (SOC) and self-optimizing con-
trol with extremum-seeking control (SOC+ESC) in the optimization layer. The latter
corresponds to the results presented in Chapter 7. The controller parameters for both
self-optimizing control and extremum-seeking control as optimization layer for self-
optimizing control can be found in Table 7.2. The integrated cost difference (loss) Jint is
used for comparison of the different methods

Jint (t) =
∫ t

0

[
ξ̇opt,SS

(
t ′
)
− ξ̇

(
t ′
)]

dt ′ (8.23)

First we simulate a disturbance change in the inlet flowrate ṁin to evaluate the per-
formance of the control structure. The results for an increase in the feed flowrate of
∆ṁin = 15 kg/s at time t = 1 h are presented in Figure 8.3. The new proposed method
gives fast disturbance rejection and settles down at the new optimal operation after about
30 min, as seen Figure 8.3 a). SOC is equally fast, but it does not quite reach the new
optimum due to its constant setpoint approach. This leads to a continous increase in the
integrated loss for SOC as seen in Figure 8.3 b). If we compare the proposed method
to ESC as optimizing layer on top of SOC, the proposed method is much faster and
therefore causes a lower integrated cost difference of Jint (tend) = 0.1 t. This is because
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Figure 8.3: Responses of the alternative methods in a) the rate of extent of reaction and
b) the integrated loss to a disturbance in the feed flowrate of ∆ṁin = 15 kg/s at time
t = 1 h. ξ̇opt,SS represents the steady-state optimal extent of reaction.

the data-based gradient estimation takes longer time for accurate gradient estimation as
shown in Chapter 7 and the controller gain has to be small to satisfy stability. Extremum-
seeking control does not settle to the steady-state optimum in the investigated time frame
as well.

In the second simulation, we consider plant-model mismatch. The results for a decreased
catalyst activity ∆acat by 20 % at time t = 1 h, which normally occurs slowly over a
longer period of time, are presented in Figure 8.4. Therefore, the activity of the catalyst,
or more specifically the pre-exponential factor of the Arrhenius equation, spontaneously
changed between the model used for the simulations and the model for the state estima-
tion. The simulation shows that the proposed method is performing well even in the pres-
ence of a plant-model mismatch. This is because we are able to estimate the real value
of the catalyst activity using the augmented EKF framework presented above. About
1.5 minutes after the activity change, the mismatch as well as the states are estimated
correctly. This good performance requires however the incorporation of the catalyst rate
as disturbance into the model. The proposed method is much faster than T+SOC+ESC,
which in turn results in a lower total loss as seen in Figure 8.4 b). Again, SOC is equally
fast, but the real optimum is not reached. The proposed method causes a total integrated
cost difference of about Jint (tend) = 0.12 t of ammonia for the considered case with
plant-model mismatch.
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Figure 8.4: Responses of the alternative methods in a) rate of extent of reaction and b)
the integrated loss to a plant-model mismatch of ∆acat =−20 % at time t = 1 h. ξ̇opt,SS
represents the steady-state optimal extent of reaction.

The reactor settles to the new steady-state optimum in around 30 min. This is one order
of magnitude faster than the extremum-seeking approach. However, it is still three times
slower than economic nonlinear model predictive control.

8.4 Conclusion

A new method of utilizing transient measurements and a dynamic estimator to estimate
the steady-state gradient was applied to the ammonia reactor case study. This allows
the usage of a simple PI controller for driving the process to its optimal operation. The
method outperforms comparable methods. The industrial applicability is conceivable
due to the usage of only seven measurements of the process besides the used dynamic
model. An extended Kalman filter allows the estimation of the gradients of the steady-
state system, even in case of plant-model mismatch by including unmeasured but mod-
elled parameters in the estimator.
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Chapter 9

Summary of the Different Methods

Part II investigated different methods for optimal operation of subprocesses of chemical
processes. The utilized case study in all chapters were given by the ammonia reactor as
described Appendix A. The investigated methods for optimal operation are given by

1. economic nonlinear model predictive control (E-NMPC) in Chapter 5;

2. self-optimizing control (SOC) in Chapters 6 and 7;

3. extremum-seeking control (ESC) with and without self-optimizing control as lower
layer in Chapter 7;

4. feedback steady-state real-time optimization (F-RTO) in Chapter 8.

Table 9.1 gives a summary of the key properties of the different methods, which will

Table 9.1: Comparison of the different methods investigated in Part II.

E-NMPC SOC ESC F-RTO

Model usage online offline none online
Optimization online offline none none
Measurement of Cost no no yes no
Perturbation of the Plant no no yes no
Convergence fast fast slow fast
Optimality yes1 near yes yes1

Constraint Handling yes yes2 no no
1 when there is not plant-model mismatch.
2 SOC can handle constraints, albeit the implementation can be difficult if the number
of constraint regions is large [53].
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be elaborated further in the following sections. E-NMPC is on the one hand an optimiz-
ing controller, in which a dynamic optimization problem is solved. On the other hand,
SOC, ESC, and F-RTO are feedback methods for achieving the steady-state optimum.
This chapter illustrates the advantages and disadvantages of the different methods with
respect to optimal operation.

9.1 Economic Model Predictive Control

Economic Model Predictive Control can be seen as a benchmark for analysis of differ-
ent methods. Among the considered methods, E-NMPC is the only one that takes into
account the optimal trajectory to the new steady-state optimum as it solves a dynamic
optimization problem. It is in addition a true multivariable controller compared to the
other methods presented in this part. As a result, it can handle coupling between the
controlled variables without the introduction of decoupling. A further advantage is the
possibility to respond to a change in active constraints. A change in the active constraint
set may occur e.g. by saturation of manipulated variables. These correspond to the split
ratios in the ammonia reactor. If one of the split ratios is 0 (or alternatively the sum is
1), single-input single-output controllers as used in the three other approaches may sat-
urate. This results in loss of control for the respective controlled variable and can lead
to limit-cycle or reactor extinction. E-NMPC takes this into account when calculating
the optimal trajectories. The investigated case study did not have a change in active con-
straint. This may however happen in the case of other subprocesses with more inequality
constraints.

However, there are as well major drawbacks in the application of E-NMPC. As it is
model-based, every plant-model mismatch results in suboptimal performance. This re-
quires that the mismatch of the model is constantly monitored and the model needs to
be maintained. Furthermore, the states (and disturbances) of the system have to be either
measured or estimated. This was not implemented in the case study as full state and dis-
turbance knowledge was assumed. The application of an extended Kalman filter is how-
ever possible as shown in Chapter 8. The major drawback of E-NMPC is however given
by the computational cost of the optimization problem. Despite the possibility to satisfy
stability under certain assumptions [29], the solution time of the nonlinear problem may
prohibit its application. Especially in the case of large-scale system, the sampling rate is
restricted by the time to solve the optimization problem. Due to the computational delay,
instabilities and performance degradation were observed in the case of NMPC [30]. The
ever increasing computational power may reduce the issues associated to the computa-
tional delay in the future. But with current technology, limitations still exist. In addition,
the integration of the optimizer and controller can pose problems in its practical appli-
cation. If the optimizer fails and produces arbitrary results, the whole control structure
will break down.
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9.2 Self-Optimizing Control

Self-optimizing control is a strategy that moves the optimization problem from online
to offline calculations. This is achieved through the control of variables c = h(y) whose
setpoints are less sensitive to disturbances. Note, that self-optimizing control is not a
type of controller (like e.g. MPC or PID), but a philosophy of which variables should
be controlled with the unconstrained degrees of freedom. The type of controller is not
important, and hence, linear or nonlinear MPC can be used to achieve multivariable
control. Manum and Skogestad [65] developed a method for active set changes in self-
optimizing control based on results from explicit model predictive control as well.

As self-optimizing control is based on a linearization around the nominal operation
point, persistent disturbances will lead to a constant steady-state loss as it was reported
in Chapter 6. In the case of plant-model mismatch, this steady-state loss will be present
even at the nominal operation point and it may be necessary to compute a new setpoint.
Furthermore, if self-optimizing control is computed for subprocesses, neglecting depen-
dencies of the disturbances on the manipulated variables may result in wrong optimal
selection matrices. As shown in Chapter 6, it is however possible to achieve similar per-
formance in this case, if the setpoint and the disturbance weighing matrix are updated.

9.3 Extremum-Seeking Control

Compared to all other investigated methods, extremum-seeking control does not require
a model. Instead, it fits a linear model from the inputs to the cost function. This is a ma-
jor advantage as plant-model mismatch cannot occur. As a consequence, ESC can even
be applied in cases, where the model is too complicated for online optimization. If com-
bined with self-optimizing control, ESC can be used in the context of real-time optimiza-
tion to adjust the setpoints to the self-optimizing control layer as shown in Chapter 7.
This approach combines the fast response of self-optimizing control with achieving true
optimality using extremum-seeking control.

Extremum-seeking control requires the measurement (or estimation) of the cost. This
may not be possible in all cases. In the investigated case-study, the cost consists of two
concentrations, which are complicated to measure online. It requires furthermore a con-
stant excitation of the plant through the dither in order to estimate the gradient correctly.
This can be a limiting factor, as operators may be reluctant to disturb plants regularly.
Both the dither and plant dynamics require a time-scale separation so that it is possible
to assume the plant as a static map. As a result, the convergence to the steady-state op-
timum is slow. It is one order of magnitude slower than the other investigated methods.
Least-square extremum-seeking controllers have as well problems, if large disturbances
are present. As they use past measurements for the estimation of gradients, these mea-
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surements correspond to the system without disturbance. Hence, the gradient estimation
is incorrect at the point when the disturbance occurs. The proposed limitation on the
change in the manipulated variables reduces the problems associated with large distur-
bances. It does however not account for the wrong gradient estimation, and hence, the
convergence to the new optimum is still slow.

9.4 Feedback Steady-State Real-Time Optimization

The control of steady-state gradients using transient measurements has several advan-
tages compared to the other methods. Similarly to ESC, it does not require the solution
to an online nonlinear problem. Instead, the optimization problem is transformed into a
feedback problem through a local linearisation around the current operating point. Op-
posite to ESC, F-RTO does however allow the utilization of transient measurement data.
This improves the convergence rate to the steady-state optimum. This method does not
require offline optimization either. Instead, the model is used for deriving linearized ex-
pressions for the gradients Ju as a function of the states and disturbances. Compared to
self-optimizing control, it settles to the true steady-state optimum. As the gradient is not
estimated using past measurements, it furthermore has the advantage that it can react
fast to step disturbances.

As the method is model-based (like E-NMPC and SOC), the performance degrades in the
case of plant-model mismatch. Additionally, this method requires accurate expressions
for the continuous time-variant state-space representation.

9.5 Conclusion

The different applied methods have each their own advantages and disadvantages as
described in the previous sections. In general, there is not a single method, which is
ideal for all subprocesses. The applicability of the different methods is given by the
availability of detailed models and measurements.

There is however one common problem in all applied methods; they require a local
cost function, which corresponds or is close to the cost function of the overall plant. If
this is not the case, then it can result in suboptimal performance of the overall process.
That may not be possible in all situations. Frequently, there is an economic trade-off be-
tween the costs in the different subprocesses. If one considers for example the synthesis
gas makeup section, the real economic cost function for this subprocess would consists
of the interstage cooling and compressor duty. Hence, a local economic cost function
would correspond to minimizing the outlet pressure and it would be required to intro-
duce constraints, e.g. on the outlet pressure. Alternatively, cost values are assigned to
the different stream values. The outlet pressure has an effect on the following reaction
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section as well. Increasing the pressure results in an increase in the reaction rate and si-
multaneously shifting the equilibrium concentrations towards ammonia as it can be seen
in the reaction rate expression (A.2). This implies that the optimal pressure may not cor-
respond to the constraint defined in the synthesis gas makeup subprocess. Hence, it is
necessary to find a cost function, which corresponds to the cost function of the overall
plant as it is the case in the extent of reaction.

As an alternative, it is as well possible to extend the subprocess. This can lead to large
optimization problems, which may become too complicated for a real-time application
in E-NPMC and even for the offline optimization in self-optimizing control. If on the
other hand simplified models are used, plant-model mismatch may become a prohibitive
factor.

Part III develops a method for optimization of integrated plants through the introduction
of surrogate models. The procedure can be applied in cases, where it is not possible to
obtain a detailed model for optimization. This addresses both the issues with complicated
steady-state models and the utilization of simplified models.
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Part III

Optimal Operation through
Introduction of Surrogate Models

89





Chapter 10

A Framework for Surrogate
Model-Based Optimization

In chemical engineering, processes are frequently modelled using flowsheeting software.
With sequential-modular simulation packages, like Aspen Plus®, Aspen Hysys®, Sim-
Sci PRO/II, or UniSim Design Suite, numerical problems may arise especially when
we have large recycles. Furthermore, certain unit operations like reactors or columns
may be computationally expensive to solve. In large integrated flowsheets, sequential-
modular solver have on the one hand problems with convergence due to the recycles.
Equation-oriented solvers are on the other hand difficult to initialize. Consequently, it
can be necessary to simplify the model if it should be used in optimization. As an alter-
native, surrogate models may be introduced for individual units or combination of units
with incorporated recycle streams resulting in reduced computational cost for solving
the overall flowsheet.

Surrogate models, frequently called response surfaces or reduced order models, are an
emerging field with many applications [32]. They are simplified mathematical represen-
tations of complex models. They can be seen as input-output mapping of a nonlinear
models and are in this respect similar to lookup tables. Their application reduces the
computational cost. Bhosekar and Ierapetritou [9] give a detailed overview of the ap-
plication of surrogate models in the field of process systems engineering. One applica-
tion field is multi-scale modeling [13, 56]. Surrogate models are, for example, in this
approach used to include computational fluid dynamics calculations in process simula-
tions. A second emerging field for surrogate models is the optimization of black-box
models [15, 25, 33, 40, 84]. Commercial process simulators generally do not provide
derivative information. This reduces their applicability in optimization. However, the
fitting of surrogate models allows to use derivative-based optimization algorithms.
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Caballero and Grossmann [15] developed an algorithm for the use of surrogate mod-
els in modular flowsheet optimization. In this approach, the surrogate model substitutes
noisy and/or computational expensive models. By a noisy model we mean that the output
from the model may vary because of numerical issues, for example, dependencies in the
initial values. Their surrogate model was given by Kriging models [59] and can com-
prise several unit operations. This approach was also applied to a sour-water stripping
plant [84]. Through the Kriging model structure, it is possible to account for noisy data.

As an alternative to Kriging models and with the aim of using the surrogate model in
optimization routines, Cozad et al. [20] developed the ALAMO methodology. In this
methodology, the surrogate model is based on a selection of basis functions and the
model quality is improved through error maximization sampling. The advantage of the
ALAMO approach is the simplicity of the basis functions and the easy availability of
derivative information of the surrogate model. However, it is necessary to fit a surrogate
model after each sampling iteration of the algorithm.

Eason and Biegler [25] developed a trust region framework for the substitution of com-
putational extensive models in the context of optimization. This framework combines
the sampling, fitting of surrogate models and optimization into a single algorithm.

The chosen basis functions for the surrogate model affects the achievable accuracy of
the surrogate model to represent the nonlinear response surface. Common basis func-
tions include B-splines [41], Kriging models [15, 25, 59, 84], individual chosen basis
function [20], and artificial neural networks [24]. Davis et al. [22] provide an overview
of the different methods and compare their performance on 47 challenge functions.

So far, the developed methods focus on the substitution of individual noisy or computa-
tional expensive unit operations. Problems may then still arise if many recycle streams
are present. The approach presented in this chapter develops therefore a framework
which uses surrogate models of subprocesses for the optimization of the overall process.
This chapter is structured as follows. Section 10.1 introduces a procedure of splitting the
overall process into subprocesses and introduces methods for variables selection. Sec-
tion 10.2 gives two examples, the first for the splitting into subprocesses and the second
for the selection of controlled variables.
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10.1 Optimization through Separation and Surrogate Modelling

A general nonlinear problem utilizing a commercial flowsheet simulator is defined as

min
x,u

J (x,d,u)

s.t. 0 = g(x,d,u)
0≥ h(x,d,u)

(10.1)

in which J (x,d,u) is the objective function, g(x,d,u) the equality constraints defined
through the steady-state model of the simulator and h(x,d,u) the inequality constraints
which can be imposed on the states x or inputs u. The inequality constraints are in gen-
eral linear and not part of the mathematical equations defined in the flowsheet simulator.
In addition, disturbance variables d can be present. If a surrogate model of the whole
process should be designed, we would need an increased amount of function evaluations
to develop the surrogate model as shown in example 3 of Caballero and Grossmann
[15], in which the approach using two surrogate models reduces the number of model
evaluations.

10.1.1 Separation into Subprocesses

To circumvent this problem, we can split the equality and inequality constraints in n
subprocesses, each with its respective states xi, inputs ui, and disturbances di. The newly
defined optimization problem is then given by

min
xc,u

J (xc,d,u)

s.t. 0 = gi (xi,di,ui) i ∈ 1, . . . ,n
0≥ hi (xi,di,ui) i ∈ 1, . . . ,n

(10.2)

The overall dimension of the combined vectors of states xc =
[
xT1 xT2 · · · xT

n
]T is,

due to interactions between the subprocesses, higher than dim(x). The subscript c in-
dicates the combined vector, whereas dim(uc) = dim(u) and dim(dc) = dim(d). The
subprocesses require, due to their interaction, additional linear equality constraints de-
fined as

gi,k = zi,k−yi,k = 0 i = 1, . . . ,n, ∀k 6= i (10.3)

in which zi,k corresponds to the input connection variables of submodel k and yi,k to
the output connection variables of submodel i. Hence, the introduction of subprocesses
increases concurrently the number of states and equality constraints. However, it allows
the combination of rigorous and surrogate modelling and simplifies in general the opti-
mization, as dim(xi)< dim(x).
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Figure 10.1: a) Complete model with inputs u, states x, and disturbances d, b) its split
into 3 subprocesses with the respective inputs ui, states xi, and disturbances di and c) the
derived surrogate model with inputs u′i, states x′i, and disturbances d′i.

The approach of separation is frequently used in the case of complicated processes,
in which only parts are optimized as shown by Araújo and Skogestad [7]. The ammonia
synthesis gas loop was in this article split, e.g., from the the synthesis gas preparation and
make-up and the refrigeration loop. The approach of Biegler and Hughes [11] can also be
seen as a special case of this procedure, as it allows the optimization routine to handle the
recycle streams instead of the process simulator and hence introduces additional states
and equality constraints. Figure 10.1 as an example shows the splitting of a process
(a)) into 3 interacting models (b)). In this case, we would have as additional equality
constraints (and as measure of interaction through dim(zi,k))

g1,2 = z1,2−y1,2 = 0 g2,1 = z2,1−y2,1 = 0
g1,3 = z1,3−y1,3 = 0 g3,1 = z3,1−y3,1 = 0
g2,3 = z2,3−y2,3 = 0 g3,2 = z3,2−y3,2 = 0

(10.4)

10.1.2 Creation of Surrogate Models

Through the introduction of a low-complexity surrogate model g′i(x′i,di,u′i) for the ini-
tial submodel gi(xi,di,ui), we can reduce the number of states (dim(x′i)� dim(xi)) and
hence simplify the problem further. In fact, a surrogate model i only needs as states the
interaction states zk,i and yi,k as surrogate models can be seen as input-output relation-
ships in which the original states xi are not important. Within a surrogate model, the
respective inequality constraints are normally treated as linear inequalities, eliminated
(never active), or as equalities (always active). We however have to include the origi-
nal states which have an impact on the cost function in the nonlinear problem (10.2).
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This does not require additional flowsheet evaluations. The basis function of the surro-
gate model is not important for this procedure. In addition, surrogate models allow us
to obtain directly derivatives, which reduces the computational expense and noise in-
troduced through numerical differentiation. Furthermore, a change of decision variables
u′i (satisfying dim(u′i) = dim(ui)) can be performed simplifying the problem further.
However, the selection of the new decision variables has to be performed carefully and
the number of decision variables in the surrogate models should be limited due to the
exponential dependency of the the number of flowsheet evaluations to the number of
independent variables (independent variables to submodel i include di, ui, and zk,i).

Reduction of the Number of Independent Variables and Use of Linear Relation-
ships
There are several heuristic approaches for reducing the number of independent vari-
ables. In some cases, the optimal setpoint (CVs) is constant and we may eliminate the
variations in this CV from the surrogate model, that is, one degree of freedom u may be
eliminated from the surrogate model. This applies if we are controlling an active con-
straint (CVs = constraint limit) or for an unconstrained problem if u′i = Jui (the gradient
of J with respect to the degree of freedom ui). More generally, we may not be able to
eliminate a variable, but we can assume that its effect on the output is linear, which gives
the same results in terms of simplifying the surrogate model. This can include connec-
tion states zi,k and independent variables u′i. In addition, plant knowledge can be used
for the reduction. For example, if we define a surrogate model for a reaction section
and we know that inerts are present, we can define a linear input-output relationship
(yi,out = zin,i) for the inerts in these streams. If, on the other hand, we want to define a
surrogate model for the separation section, we can directly say, that for the input coming
from the reaction section, the reacting species are depending on each other, e.g. through
the rate of extent of reaction ξ̇ and cannot be treated independently. In the case of a
submodel without reaction or phase change we can also directly observe a linear rela-
tionship between the input and output in the molar (mass) flowrates ṅi (ṁi). However,
the composition can still play a role for the output temperature and pressure as the ther-
modynamical calculations are composition dependent. In summary, whether these linear
relationships can be applied or not, is defined by the nonlinearity of our flowsheet.

Independent Variable Selection using SOC
One approach to select new independent variables is the application of the concepts of
self-optimizing control developed by Skogestad [91]. This concept tries to select con-
trolled variables which minimize the economic loss with respect to disturbances. The
remaining controlled variables, with tight control of constrained independent variables,
are then selected as

ci = Hiyi (10.5)
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in which the selection matrix Hi can be obtained using the exact local method or the
nullspace method [3]. Both methods require a linear model of the process and multiple
optimization of the flowsheet. As we would like to define models for optimization, this
procedure cannot be implemented directly for our overall model g. We can however
implement this procedure for the optimization of subprocesses gi, where the decision
variables u′i are selected while constructing the surrogate model. We then choose u′i = ci.
This would require new, local cost functions Ji for the respective subprocesses and leads
to the following optimization problems

min
xi,ui

Ji (xi,di,ui)

s.t. 0 = gi (xi,di,ui)

0≥ hi (xi,di,ui)

(10.6)

The setpoint for the new decision variables u′i is then calculated in the optimization prob-
lem (10.2). This approach has furthermore the advantage, that the controlled variables
are defined within the surrogate model, as otherwise states which could be the perfect
choice for SOC may be omitted in the surrogate models. This approach will be discussed
in detail in Chapter 13.

Independent Variable Selection using the Existing Control Structure
Generally, finding the self-optimizing variables requires reoptimization of the system
for the expected disturbances, which is actually the end goal for the use of the surrogate
models, so they will not be available in most cases, at least not initially. For example, the
definition of local cost functions can be in many cases not feasible or introduce additional
errors. We may therefore use as alternative the current control strategy of the plant for
selecting new independent variables. The idea is that the current control structure is
designed to keep its operation close to the optimal in spite of disturbances. Selecting
u′i as the current controlled variables (CV) for the considered subprocess constrains the
sampling domain to the important regions.

10.1.3 Algorithmic Approach

Based on the above concepts of surrogate modelling, process splitting and self-optimiz-
ing control, we can define a procedure for solving integrated plants (Algorithm 1). This
algorithmic approach can reduce the complexity of integrated flowsheets in the case
of recycle streams drastically and allows the subsequent optimization. The final prob-
lem (10.2) can then be seen as a combination of sequential-modular and equation ori-
ented [12] operation, which utilizes the advantages of both approaches based on the
existing control structure.
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Algorithm 1 Surrogate Model Optimzation
1: Define Optimization Problem (10.1).
2: Split of g(x,d,u) into n gi(xi,di,ui).
3: for i in 1 : n do
4: if Ji exists then
5: Define u′i using SOC and Optimization Problem (10.6).
6: else
7: Define u′i using existing control structure.
8: end if
9: Calculate g′i.

10: end for
11: Connect g′i and/or gi.
12: Solve Optimization Problem (10.2).

10.2 Examples and Applications

Two examples will be covered in the following. First, a simplified version of the ammo-
nia synthesis gas loop is used as example for plant separation into three subprocesses.
Second, a continuous tank reactor will exemplify the transformation of independent vari-
ables.

10.2.1 Ammonia Synthesis Gas Loop

Modern ammonia plants are highly integrated as shown in Chapter 2. The synthesis loop
in particular includes several recycle streams in addition to the overall mass recycle. This
overall recycle corresponds to up to 75 % of the mass entering the reactor. Solving these
type of processes in sequential-modular solvers is difficult and it is next to impossible to
use the developed flowsheets for optimization.

However, it is possible to separate the synthesis gas loop into different subprocesses as
shown in Figure 10.2. These subprocesses are the synthesis gas makeup, the reaction sec-
tion and the combined separation/refrigeration section. It is possible for each submodel
to define surrogate models. The high amount of connection variables (zi,k = pressure p,
enthalpy h or temperature T , 5 molar flows ṅi (H2, N2, NH3, Ar, and CH4)) requires
however the definition of simple linear relationships, which is for example possible for
all flowrates in non-reacting regions of the process on the one hand (vide supra). In the
reaction section, it is on the other hand possible to utilize the concept of rate of extent
of reaction ξ̇ . In addition, constraints on cooling water usage are usually active reducing
the number of independent variables further.
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Separation/

Refrigeration

SynGas makeup

Figure 10.2: The ammonia synthesis gas loop with the three distinctive subprocesses.

10.2.2 Continuous Tank Reactor with Exothermic Reaction

As an example for the application of the change of manipulated variables, consider
a continuous tank reactor (see Figure 10.3 with holdup MR), in which two sequential
exothermic reaction take place.

A→ B→ C (10.7)

Tin, ci,in

TR, ci,R

Q

TC

�

MR

Figure 10.3: Process diagram of a continuous tank reactor.
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Table 10.1: Nomenclature of parameters and calculated values.

Variable Description Value Unit

A0,1 Arrhenius factor, Reaction 1 5×105

A0,2 Arrhenius factor, Reaction 2 5×1010

Ea,1 Activation Energy, Reaction 1 45 kJ/mol
Ea,2 Activation Energy, Reaction 2 105 kJ/mol
R Universal gas constant 8.314 J/mol/K
τ Residence time 1800 s

MR Reactor hold-up 15 m3

cp Molar heat capacity 106 J/m3/K
∆Hrx Heat of reaction 1 −2×104 J/mol A
∆Hrx Heat of reaction 2 −2×105 J/mol B
cA,in Feed concentration A 700 mol/m3

cB,in Feed concentration B 0 mol/m3

cC,in Feed concentration C 0 mol/m3

Tin Feed temperature 20 °C

The aim is in this reaction to produce chemical B, and hence, we would like to maximize
the molar fraction xB. This reactor can be part of a bigger submodel, for which we would
like to design a surrogate model. The parameters for the investigated system are given
in Table 10.1 As the residence time τ and feed composition ci,in is given, this part of the
submodel has one manipulated variable, u = Q. The model equations are given by

0 =
1
τ
(cA,in− cA,R)− r1 (10.8)

0 =
1
τ
(cB,in− cB,R)+ r1− r2 (10.9)

0 =
1
τ
(cC,in− cC,R)+ r2 (10.10)

0 =
Q

MR
+

cp

τ
(Tin−TR)− r1∆Hr,1− r2∆Hr,2 (10.11)

with

r1 = A0,1 exp
(
−

Ea,1

RTR

)
cA,R (10.12)

r2 = A0,2 exp
(
−

Ea,2

RTR

)
cB,R (10.13)

being the reaction rates for reaction 1 and 2.
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Figure 10.4: a) Molar fraction of chemicals A, B, and C and b) required heating energy
Q as a function of the reactor temperature TR.

Considering Eq. (10.11), it is possible to either define Q (u) or TR (u′) as independent
variable while the other is dependent. This allows to impose constraints, e.g. maximum
heating energy, on both the reactor temperature and the energy. If we would like to define
a surrogate model with Q as independent variable, it is possible to end up covering
operation regions that are never encountered in practice, or at least are far from the
optimum that we want to find. Using instead TR as independent variable corresponds to
a common control structure for this system.

Figure 10.4 shows the molar fraction of chemicals A, B, and C as well the the reactor
temperature for this system. For this particular system, we can see that the required en-
ergy has a maximum at a reactor temperature above the interesting range. This maximum
results on one hand in two solutions for each given energy. On the other hand, certain
values for the energy Q do not give a solution. Hence, the variable transformation from
Q to TR simplifies the sampling domain definition and prevents sampling of undesired
operation conditions.
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10.3 Conclusion

Based on the concepts of process splitting, surrogate modelling, and independent vari-
able transformation, we propose an algorithmic approach to solve flowsheets of inte-
grated chemical plants. Furthermore, this approach allows the combination of rigorous
and surrogate models in cases, where detailed models are easily available and the num-
ber of independent variables exceeds for parts of the process a practical value.

Two examples of subroutines of the approach are presented. The first example uses the
synthesis loop of the ammonia process as an example of splitting the process into sub-
processes. The subprocesses are simpler to solve due to a reduced number of recycle
streams and can be sampled for the generation of surogate models. The second exam-
ple demonstrates the utilization of the current control structure for selecting independent
variables prior to surrogate model creation. This results in a different sampling domain
and may allow simpler solutions of the subprocess.

The following chapters will explain different steps in surrogate model generation in more
detail. Chapters 11 and 12 look into the reduction of independent variables. This is espe-
cially important for the proposed procedure as due to the connection variables, we gen-
erally encounter a large number of independent variables. Chapter 13 extends the idea of
using concepts from self-optimizing variables and exemplifies the advantages associated
with it. Chapter 14 introduces a novel sampling procedure to avoid both oversampling
and fitting of a surrogate model during the sampling procedure.
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Chapter 11

Variable Reduction using Partial Least
Squares Regression

Chapter 10 proposed a methodology for the optimization of integrated process. This
method involves splitting the complete flowsheets into several submodels, fit surrogate
models to these submodels and subsequently combining the surrogate models into a
system of nonlinear equations which can be optimized. However, due to the connection
variables, the number of independent variables (nu) is generally quite high. This can
lead to problems caused by the dimensional curse of surrogate models if regular grids
are used. The exponential dependency of the surrogate model fitting with nu independent
variables for a 2-point regular grid is given in Eq. (11.1).

nRG = 2nu (11.1)

Hence, it is important to keep nu small, preferably less than four [40].

One way to reduce nu is given by a factorial sampling plan as developed by Morris
[73]. This approach utilizes preliminary simulations, in which it is decided which of the
independent variables have an effect on the dependent variables and whether this effect
is linear. The insignificant variables may be omitted in the latter design of experiments,
whereas linear variables require less sampling points. Additionally, active constraints
may be identified and cancelled out to reduce nu.

Another possibility is to introduce new independent variables (latent variables) u′, which
can be, among others, derived via partial least squares (PLS) regression. PLS regression
is a linear regression tool in which the predicted and observable variables are projected
into a new space through the introduction of components. It was developed by Wold
et al. [104] to solve the multivariate calibration problem in the case of chemometrics. In
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this problem, the number of sampling points is less than the number of independent vari-
ables, i.e. the number of varied concentrations is smaller than the number of measured
frequencies and an optimal combination of measurements for concentration regression
has to be found. Similarly, it was applied in the analysis of genomic data [14].

Based on the mentioned previous applications of PLS regression, it seems to be a reason-
able tool for the reduction of the number of independent variables. Through the incor-
poration of PLS regression, a 3-step procedure for surrogate model fitting is developed.
The principles of PLS regression are explained in Section 11.1. This method incorporates
process knowledge and will be explained in Section 11.2. It is subsequently applied in
Section 11.3 to a pipe model, which can have an arbitrary number of independent vari-
ables and to the reaction section of a ammonia synthesis loop in Section 11.4 which
serves as a case study for integrated chemical processes. It has to be noted, that the
procedure itself is not limited to partial least squares regression, but can also utilize for
example dimensionless numbers as well for the reduction of independent variables.

11.1 Background - Partial Least Squares Regression

In many applications, the number of independent variables nu, e.g. spectroscopy fre-
quencies and genes, exceed the number of samples np, which results in problems with
classical multivariate regression models. Furthermore, problems may arise in the mul-
tivariate regression, if independent variables are noisy or strongly correlated. To this
end, Wold et al. [104] developed partial least squares regression (PLSR). A detailed re-
view of PLSR can be found in [14] and [105]. The former explains various algorithms
for the calculation of the latent variables.

The aim of PLSR is a variable reduction in the independent variables resulting in new
latent variables. Hence, it is also called Projection to Latent Structures [105]. PLSR is
similar to Principal Component Regression (PCR) [68]. It does, however, in contrast to
PCR, consider in the calculation of the latent variables their impact on the dependent
variables. The variable reduction is given through the transformation of the original in-
dependent variable space U ∈ Rnp×nu into a space of nu′ latent variables U′ ∈ Rnp×nu′

through the loads P ∈ Rnu×nu′ . Similarly, the dependent variable space Y ∈ Rnp×ny is
transformed into a space of latent variables Y′ ∈ Rnp×nu′ through the loads Q ∈ Rny×nu′ .
This is mathematically given by

U = U′PT+E (11.2)

Y = Y′QT+F (11.3)

in which E and F are error matrices. From Eq. (11.2), we can derive the following equa-
tion for a variable transformation through neglecting the error term E.

U′ = UW (11.4)
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with the weight matrix
W =

(
PT
)+

(11.5)

Here,
(
PT
)+ corresponds to the right Moore-Penrose inverse as described in [82]. The

load matrices P and Q are hereby calculated to maximize the covariance between U′ and
Y′.

Several algorithms exist for computing W. An overview is given by Boulesteix and
Strimmer [14]. In this thesis, the Statistically Inspired Modification of PLS algorithm
(SIMPLS) [23] is used. It obtains the weights for each component i = 1, . . . ,nu′ sequen-
tially according to

wi = argmax
w

wTUTYYTUw (11.6)

with the following constraints

wT
i wi = 1

wT
i UTUw j = 0 ∀ j = 1, . . . , i−1

(11.7)

wi denotes the columns of the weight matrix W. It gives the coefficients of the original
variables in the calculation of the new latent variables. The first constraint normalizes the
weights, whereas the second constraint results in orthogonality of the latent variables.

Depending on the implemented algorithm (e.g. plsregress in MATLAB and simpls in
R [14]), u′i corresponding to a column of U′ may have a length of 1, i.e.

u′i
Tu′i = 1 (11.8)

This is contrary to the constraints (11.7). The proposed method however utilizes weights
wi with unit length. Hence, it requires the transformation of the weights wi to have unit
length.
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Figure 11.1: Proposed new model structure including the surrogate model.

11.2 Procedure for Surrogate Model Fitting with Dimension
Reduction

The overall procedure to reduce nu consists of in total three steps

1. introduction of linear material balance relationships;

2. independent variable dimension reduction through PLS regression;

3. fitting of the surrogate model to the new independent variables u′.

The content of each of the three steps will be explained in the following subsections. As
a result of this procedure, a new model structure is introduced. This structure is visual-
ized in Figure 11.1. This methodology requires the initial sampling of a certain number
of points np to perform the PLS regression resulting in a sampled space given by U.
We propose to incorporate the corner points of a regular grid of the sampling space in
order to not extrapolate data within the investigated sampling space and add additional
points through Latin hypercube sampling or orthogonal sampling to guarantee a proper
distribution of the points. This is however limited in the case of a large number of inde-
pendent variables u as in the case of 20 independent variables, Eq. (11.1) already gives
nRG = 1048576 points. In this case, pure Latin hypercube sampling may be sufficient.

11.2.1 Definition of Linear Relationships

Linear input-output relationships can be always defined for mass balances and in certain
cases for the energy and force balances. This can be reasoned by the knowledge of the
flowsheet topology in the case of production optimization. However, the application of
linear relationships may require the introduction of auxiliary variables yaux. In the case
of a reaction within the submodel, the rate of extent of reaction ξ̇ in combination with
the stoichometric factors νi allows the reduction of the number of surrogate models to
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be fitted. In the case of multiple chemical reactions, it is as well possible to calculate
several rate of extent of reactions ξ̇ . If, on the other hand, a separation takes place in the
submodel or a split is present, the mass balances can be introduced via separation coeffi-
cients p. The introduction of linear relationships hence reduces the number of surrogate
models which have to be fitted.

In addition, the introduction of linear mass balances results in mass consistency. If this
step would not be included, the combination of surrogate models could lead to creation
or removal of mass due to model inaccuracy, rendering their application doubtful. Hence,
the new model structure can be considered as grey-box modelling through the combina-
tion of process knowledge and surrogate models.

11.2.2 Dimension Reduction

As mentioned, the application of PLS regression yields as a result linear combinations
of the initial independent variables, which represent the nonlinear output variables ynl
and/or yaux for the given sampled data best through the introduction of weights W. It
is important to mention, that a PLS regression should be performed for each of the
output variables ynl and yaux. This corresponds to multiple univariate response cases.
Otherwise, components are chosen with a trade-off for fitting the dependent variables
to the independent variables. This results in a individual weight Wk for each dependent
variable yk. The new independent variables for each dependent variable k are then given
by

u′k = uWk (11.9)

An additional advantage of the application of PLS regression is that it gives an overview
about the influence of the independent variables u on the derived nonlinear output values
ynl and yaux. This can be utilized for the addition of points to the sampling domain
in the relevant direction, but will not be elaborated further in this chapter. The linear
combinations of the components defined are hereby independent of the total number of
components. This means, that the linear combination of the first component will be the
same if nu′ = 1 or nu′ = nu as it is shown as well in Section 11.1. Therefore, it is useful
to perform the PLS regression directly for nu′ = nu components and only use the first j
components for the definition of the surrogate model in the subsequent fitting. Before
applying PLS regression, it is additional advantages to perform variable transformations
for the independent variables. If it is for example known, that the partial pressure of
components or the total flow play a crucial role, it is useful to redefine the matrix for the
sampled space U in terms of total flow ṅ and mole fractions xi or partial pressures pi.
This will be further elaborated in Chapter 12.
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The SIMPLS algorithm used by MATLAB for PLS regression is strongly depending on
the scaling of the variables. Hence, it is crucial to scale the sampled space appropriately
before performing PLS regression. If the scaling is not performed properly, the first com-
ponent will point towards the sampling space instead of capturing the true component.
In the following, the standard score will be applied for scaling the sample space U which
is defined as

Uscaled = (U−µU)◦σ
−1
U (11.10)

where µU is the mean value and σU the standard deviation in the matrix U with respect to
each of the independent variables u. Using the standard score, we scale the input matrix
U in way that we assume the variance of each independent variable is equal. However,
in cases where we would like to preserve the changes in the independent variables, the
scaled matrix Uscaled can be further adjusted using a scaling matrix SU, for example,
corresponding to the percentage change in the sampling space.

The scaling is then required in the model structure shown in Figure 11.1 when the sur-
rogate model is combined with the other surrogate models.

11.2.3 Surrogate Model Fitting

The surrogate models are fitted to the new independent variables u′ defined as linear
combinations of the original independent variables u corresponding to

g′ : u′ 7→ ysurr (11.11)

with ysurr =
[
yTnl yTaux

]T. The fitting of the surrogate model is an iterative procedure
in which the number of components, nu′ is increased until a fitting criteria is fulfilled.
Alternatively, the explained variance per component in the response (ynl and/or yaux)
can be utilized as a starting point. The type of surrogate model is not important for this
procedure. For example, artificial neural networks, splines, Kriging models, or polyno-
mials can be applied. However, due to the introduction of new independent variables, it
is necessary that the surrogate model basis functions do not require a regular grid as a
regular grid will not exist after variable transformation through PLS.

11.2.4 Algorithmic Approach

Algorithm 2 summarizes the steps outlined above.

108



11.3. Example 1 - Simple Pipe Model

Algorithm 2 Procedure for independent variable reduction.
1: Define sampling domain U of the problem.
2: Sample training and validation space.
3: Define linear relationships if possible.
4: for k = 1 to ny,nl +ny,aux do
5: Perform PLS regression with nu′,k = nu.
6: while ε j > threshold do
7: Fit surrogate model g′ to nu′,k = j.
8: ysm,k = g′(uval ,nu′, j).

9: εk =
|yval,k−ysm,k|

yval,k
.

10: j = j+1.
11: end while
12: end for

11.3 Example 1 - Simple Pipe Model

A pipe model is used as a proof of concept model. The model gives the pressure drop
over a pipe as a function of the independent variables inlet pressure pin, temperature Tin,
and component molar flows ṅi,in. The total number of independent variables nu is hence
given by nu = 2+ngas in which ngas is the number of chemicals in the gas stream. This
value can be varied to increase the number of independent variables in a simple manner.

11.3.1 Model

The model itself consists of an isothermal pressure drop given in Eq. (11.12)

p2
in− p2

out = 4 f
L
D

RTinM
A2 ṅ2

tot,in (11.12)

Based on step 1 in the procedure, we can introduce as linear balances the constant tem-
perature assumption and the mass balances

Tin = Tout (11.13)

ṅi,in = ṅi,out for i = 1...ngas (11.14)

This leaves as a nonlinear relationship the calculation of the outlet pressure. Hence, one
surrogate model has to be defined. Simulations with 3, 5, and 8 chemical components
are performed to demonstrate the procedure. The sampled space is given by a 2-point
regular grid with an additional 100 (1000 and 5000 respectively for 5 and 8 chemicals)
points defined as a Latin hypercube. This corresponds in each case to about 2.5 points in
a regular grid. The flowrates are varied with ±20 % around the nominal point, the inlet
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Figure 11.2: a) Maximum and b) mean relative error for the surrogate model of the
outlet pressure pout as a function of the number of PLS components nu′ in the simple
pipe model for a varying number of independent variables.

temperature by ±5 °C, the inlet pressure by ±3 bar. As outlined in Section 11.2, it is
possible to perform a variable transformation before applying PLSR. As the total flow
rate ṅtot,in and the molar fractions xi are used in Eq. (11.12), it is reasonable to use these
values as well in the application of PLSR. After performing PLS regression, a 1-layer
cascade-forward neural network with 5 hidden neurons was fitted using the new indepen-
dent variables defined via PLS regression and the performance of the surrogate model
was evaluated with 104 points sampled as a Latin hypercube with the same bounds as in
the sampling space. The advantage of neural networks is the simple implementation for
multivariable regression within MATLAB. Alternative approach, like Kriging models,
would require the implementation of the fitting in MATLAB.

11.3.2 Results of the Reduction in Independent Variables

From Eq. (11.12), we can directly see that four independent variables, pin, Tin, M, and ṅ,
are sufficient for the full characterization of the system and it is not necessary to know
the exact composition of our gas stream as long as we now the average molar mass M.
As the PLS components are always taking into account the previous, unchanged linear
combinations, it has to be noted, that a similar performance cannot be expected.

A PLS regression with 2, 3, and 4 latent variables gives the results in Figure 11.2. It
can be seen that the number of variable reduction through PLS allows as little as 3 inde-
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11.4. Example 2 - Reaction Section of the Ammonia Synthesis Loop

pendent latent variables. Increasing the number of latent variables to 4 only marginally
improves the performance of the surrogate model fitting. This is confirmed by the ex-
plained variance through PLS regression for the response variable pout ; from 2 to 3 com-
ponents, it is increased from 77.71 % to 99.56 % whereas the increase to 4 components
only has an influence on the explained variance in the predictor variable matrix Uscaled .
Analogous results can be found in the case of 5 and 8 chemicals. The increased accuracy
for 5 and 8 chemicals with a similar number of components defined via PLS regression
is given by the increased number of points the surrogate model is fitted to, as the regular
grid for the initial independent variables u is exponentially increasing with the number
of independent variables as shown in Eq. (11.1). Increasing the sampling space in the
case of 3 chemicals to the same number as points as in the case of 8 chemicals results in
similar relative errors, confirming this reasoning.

11.4 Example 2 - Reaction Section of the Ammonia Synthesis Loop

The reaction section of an ammonia synthesis loop is used as second case study. The
used submodel is elaborated in Appendix B. The submodel consists of 10 independent
variables, the inlet pressure pin, temperature Tin, and mole flows ṅi,in as well as the outlet
temperature of heat exchanger 4 THEx4,out and the split ratios to the valve nVal and heat
exchanger 3 nHEx3.

The flowrates (H2,N2,NH3,Ar,CH4) are varied with −
[
12.5 15 50 40 40

]
%

and +
[
12.5 15 100 50 50

]
% around the nominal point, the outlet temperature

of heat exchanger 4 by ±10 °C, the inlet pressure of the system by ±6 bar, the inlet
temperature of the system by ±20 %, and the split ratios by ±3 and ±10 percentage
points respectively.

The sampled domain is given by a 2-point regular grid and 5000 additional points de-
fined as a Latin hypercube to improve the fitting of nonlinearities in the system. The
fitted surrogate models are 3-layer cascade-forward neural networks with 2, 5, and 5
hidden neurons in the layers respectively. It has to be mentioned, that the neural network
structure was not optimized with respect to the different dependent variables ysurr. In
addition, the sampling space was chosen too small for the fitting of a nonlinear model
to a regular grid as it corresponds to 2.39 points for each independent variable. The
validation space was given by a Latin hypercube of 104 points.

11.4.1 Results of the Reduction in Independent Variables

In step 1 of the proposed procedure, linear relationships for the mass balances are intro-
duces using the rate of extent of reaction ξ̇ as

ṅi,out = ṅi,in +νiξ̇ (11.15)
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Figure 11.3: a) Maximum and b) mean relative error for the surrogate model of the outlet
pressure pout as a function of the number of PLS components nu′ for the reaction section
of the ammonia synthesis loop.

This leaves nonlinear relationships for pout and Tout (ynl), as well as ξ̇ (yaux) as dependent
variables ysurr. Hence, 3 surrogate models have to be fitted in total. Compared to the
pipe model, it is this time not possible to define the minimum number of latent variables
(nu′,min) necessary to fit a surrogate model to accurately predict the outlet pressure pout ,
the outlet temperature Tout , and the rate of extent of reaction ξ̇ . In this situation, it is
useful to start at a minimum value for the number of components of nu′ = 5 and continue
in a positive or negative reaction, depending on the fit of the surrogate model. From
experience it is expected, that it can be beneficial to describe the problem in terms of a
total flow ṅ,in and mole fractions xi,in for PLS regression instead of using the mole flows
ṅi,in. In order to fulfill that the numbers of independent variables remain the same, one
mole fraction has to be left out, in this case the mole fraction of hydrogen as this is the
highest mole fraction within the system.

The results for the outlet pressure pout can be found in Figure 11.3. From this Figure,
we see that the outlet pressure of the system can be accurately described by four or more
components obtained via PLS regression. In absolute values, the maximum and mean
error for four components are given by 0.2 bar and 0.02 bar respectively at a nominal
outlet pressure of 129.78 bar. Here, it is interesting to note that the explained variance
in the response pout is increasing from one to four components from 96.9 % to 99.94 %,
which corresponds to the improved fit of the surrogate model shown in Figure 11.3.
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Figure 11.4: a) Maximum and b) mean relative error for the surrogate model of the outlet
temperature Tout as a function of the number of PLS components nu′ for the reaction
section of the ammonia synthesis loop.

Similar to the outlet pressure pout , the outlet temperature Tout can be adequately de-
scribed with four or more PLS component as shown in Figure 11.4. In general, the
maximum and mean relative error is higher than in the case of the outlet pressure. How-
ever, the maximum and mean error correspond to only 0.20 °C and 0.02 °C respectively.
Analogous to pout , a drastic improvement can be found by increasing the number of PLS
components from 1 to 4. The improvement in the explained variance in the response Tout
is increasing in these steps as well from 99.83 % to 99.99 % showing that the explained
variance can be used for analyzing results, but not for the prediction of the accuracy of
the model fit. Otherwise, one would conclude that one component would be sufficient.

Unlike the outlet pressure and temperature, the rate of extent of reaction ξ̇ does not
result in a similar good fitting as it can be seen in Figure 11.5. This can be explained by
the influence of all independent variables in the first four components defined via PLS
indicating the difficulty to find linear combinations. This is also visible in the increase
in the explained variance in the response ξ̇ from 82.01 % with nu′ = 1 to 97.89 %
with nu′ = 5. This finding correlates with the improve of the fit as it was in the case
of the pressure and temperature. The maximum and mean relative error using 5 PLS
components corresponds hereby to an error of 7.72 mol/s and 0.86 mol/s respectively
whereas the nominal rate of extent of reaction is given by ξ̇ = 413.4 mol/s. Despite
the relatively high error in these calculations, it is possible to apply the rate of extent
of reaction surrogate model with 5 PLS components into the procedure described in
Chapter 10.
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Figure 11.5: a) Maximum and b) mean relative error for the surrogate model of the rate of
extent of reaction ξ̇ as a function of the number of PLS components nu′ for the reaction
section of the ammonia synthesis loop.

11.5 Conclusion

The developed three-step procedure was applied to two examples, a pipe model and
the reaction section of the ammonia synthesis loop. In both cases, it was possible to
obtain surrogate models with high accuracy considering the reduction in the variable
space. Incorporation of the surrogate model into a flowsheet consisting of a synthesis-
gas make-up section, the reaction section, and a separation section results in a maximum
relative error of 0.1 % in all streams.
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Chapter 12

Preprocessing of Sampling Data for
Partial Least Squares Regression

In the 3-step procedure developed in Chapter 11, the definition of the independent vari-
ables u was arbitrarily chosen. In both the pipe (Section 11.3) and the reaction section
(Section 11.4) of the ammonia synthesis loop case study, the total flow ṅtot,in and the mo-
lar fractions xi,in were used for performing partial least squares regression and surrogate
model fitting. To this point, process knowledge was not incorporated into the definition
of the sampling domain and preprocessing of the sampled data was not investigated. This
can potentially lead to improved fit of the surrogate model. Hence, the aim of this chap-
ter is to investigate the influence of preprocessing of sampled data as well as dependency
incorporation into the sampling domain on the resulting fit of the surrogate model.

The chapter itself is structured as follows. Section 12.1 explains the different preprocess-
ing and sampling domain definition tasks. Section 12.2 applies the tasks to the reactor
section case study whereas section 12.3 summarizes the results and gives recommenda-
tion for the preprocessing and domain definition in surrogate model definition.

12.1 Investigation of Sampling Space Definition for Model Fitting

12.1.1 Preprocessing of the Data

The composition in inlet streams is generally defined using an extensive property like
the molar or the mass flow. However, chemical reaction kinetics and flash calculations
in process simulators are generally given by the intensive variables mole fractions xi
or partial pressure pi. The utilization of intensive variables will influence the weights
defined via PLS regression and may hence influence the surrogate model fit. Therefore,
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12. Preprocessing of Sampling Data for Partial Least Squares Regression

the application of intensive variables will be investigated.

A second question arising is the impact of using differences in pressure and temperature
instead of outlet pressure and temperature. The outlet temperature and pressure is general
depending on the inlet pressure and temperature respectively. This results in the first
component being almost exclusively the inlet pressure or temperature. Through taking
the difference of the outlet and inlet condition, it is possible to remove this dependency.
This is similar to the extent of reaction as the difference between inlet and outlet molar
flow. Hence, the required number of components will be compared between using the
outlet variables as dependent variables or their difference.

12.1.2 Introduction of Dependencies of the Independent Variables.

Normally, the sampled space U is obtained using upper and lower bounds on each of the
independent variables u independently. If we consider an inlet stream to a section, the
molar flows ṅi,in are generally not independent from each other, as the aim is to keep
them close to stoichiometry. This is achieved in the upstream subprocesses through con-
trol. The incorporation of a dependency between inlet molar flows reduces the variation
in the ratio of the variables as they are not varied independently any more. This can
have an effect on independent variables which are depending on ratios and will be hence
investigated.

12.2 Case Study - Reaction Section of an Ammonia Process

The influence of preprocessing of the data as well as the sampling domain definition
will be analysed using the reaction section of a simplified ammonia synthesis loop as
explained in Appendix B with a 5 chemicals feed (hydrogen, nitrogen, and ammonia, as
well as argon and methane) corresponding to the reacting and inert chemicals.

12.2.1 Description of the Sampling Domain

The sampled space is given by a two-point regular grid and 5000 points were sam-
pled in addition using Latin hypercube sampling. The flowrates are varied with ±20 %
around the nominal point, the temperatures (both inlet and outlet of heat exchanger 4)
by ±10 °C, the inlet pressure by ±6 bar, and the split ratios by ±5 (Valve) and ±10 per-
centage points (heat exchanger 3) respectively. The sampling domain is hence different
compared to Chapter 11 and the results cannot be compared directly.

The fitted neural network is a 3-layer cascade forward neural network with a layer size
of 5, 5, and 5 hidden neurons respectively. The same sampling space was used for all
analysis and the resulting surrogate models were validated with 104 points randomly
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12.2. Case Study - Reaction Section of an Ammonia Process

Figure 12.1: Comparison of the preprocessing of the independent variables on the mean
absolute error of a) the outlet pressure pout , b) the outlet temperature Tout , and c) the
extent of reaction ξ as a function of the number of latent variables nu′ . The independent
variables are in molar flow ṅi, mole fraction xi, and partial pressure pi.

sampled. The new domain definition in the case of the dependency analysis required
newly sampled points.

12.2.2 Preprocessing of the Independent Variables

As described before, the independent variables were represented by the extensive vari-
able molar flow ṅi as well as the intensive variables mole fraction xi and partial pressure
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12. Preprocessing of Sampling Data for Partial Least Squares Regression

Figure 12.2: Comparison of the mean absolute error of defining the independent vari-
ables a) outlet pressure pout and b) outlet temperature Tout in pressure drop ∆p and
temperature change ∆T as function of the number of latent variables nu′ .

pi. In the case of mole fractions, the largest mole fraction, xH2 , was left out to account
for the imposed total sum of mole fractions. The results of the analysis can be found
in Figure 12.1. From this Figure we see that it is best to use extensive variables ṅi,in
for three or fewer latent variables, but for more, especially in the case of the extent of
reaction, better fit can be achieved using intensive variables. The worse fit of utilizing
the intensive variables for less than four latent variables is caused by a smaller explained
variance of the first latent variables in the dependent variables. In the case of using the
molar flow as independent variable, the first latent variable already explains 99.87 % of
the variance in the outlet pressure pout , 99.96 % of the variance in the outlet temperature
Tout , and 99.69 % of the variance in the extent of reaction ξ . The subsequent latent vari-
ables improve the explained variance in the predictor matrix U, but not in the response
variables. Contrary to that, using the mole fractions or the partial pressure results in sub-
sequent latent variables explaining as well variance in the response variables. For the
following sections, the mole fraction was chosen as independent variable as it combines
a reasonable amount of latent variables for all dependent variables with an improved fit
for the extent of reaction.

Next, consider the model fit when pressure and temperature differences are used instead
of the outlet temperature and pressure. The main influence on the first component for
both independent variables Tout and pout is given by the respective inlet variable as shown
in Chapter 11. As it can be seen in Figure 12.2, using the difference instead of the

118



12.3. Conclusion

absolute value increases the accuracy of the fit for the pressure by a factor of 2 whereas
in the case of the temperature the number of necessary latent variables is reduced by
one to maintain a similar fit. Here, it is interesting to note that the influence of the inlet
pressure and temperature is reduced from being the most crucial independent variable to
being less important as given by the loads calculated by PLS regression.

12.2.3 Incorporation of Dependencies in the Sampling Domain Definition

The so far applied individual variation of the molar flows by ±20 % results in extreme
values for the H2/N2 ratio of

max(ṅH2,in/ṅN2,in) = 4.7
min(ṅH2,in/ṅN2,in) = 2.1

However, in practical operations, the ratio will be close to the stoichiometric ratio of 3.
Hence, the nitrogen molar flow was varied around the hydrogen molar flow with ±10 %
resulting in an maximum and minimum ratio of 3.5 and 2.86 respectively. The results
of this change can be found in Figure 12.3. Due to the definition of the nitrogen molar
flow as a function of the hydrogen molar flow, the application of the ratio ṅH2,in/ṅN2,in
as independent variable instead of the mole fraction xN2 was investigated as well. In
the case of the pressure and temperature difference, the introduction of the dependency
results in the same fit. This can be explained by a reduced dependency of both variables
on the exact molar composition. However, if the ratio is not used as independent variable,
one more component is required for equal good fit for the pressure drop and temperature
change. In the case of the the extent of reaction, the introduction of this dependency
improves the model fit for 5 to 8 components while remaining the same for a lower
number of latent variables. This is valid for both the ratio and the nitrogen mole fraction
as independent variable.

12.3 Conclusion

Based on the above presented results, we conclude that preprocessing of data as well as
analysing dependencies in the feed to a submodel or between other independent vari-
ables has a major influence on the number of latent variables required for a good model
fit. If the costs of the fitting of a surrogate model to data is depending on the number
of independent variables, it would make sense to use extensive variables as indepen-
dent variables. If on the other hand, this is not crucial, it is advisable to apply intensive
variables as most of the thermodynamical or reaction kinetics equations are functions of
intensive variables. Dependent variables should furthermore be defined as differences,
as this reduces the influence of the respective inlet variable on the first component de-
fined via PLS regression resulting in an improved fit or alternatively a reduced number
of necessary independent variables for a similar fit.
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Figure 12.3: Comparison between without incorporation of the hydrogen/nitrogen ratio
dependency in the domain definition (1), and with incorporation using the mole fraction
of nitrogen (2) and the ṅH2,in/ṅN2,in ratio as independent variable (3) on the mean abso-
lute error of a) the outlet pressure pout , b) the outlet temperature Tout , and c) the extent
of reaction ξ as a function of the number of latent variables nu′ .
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Chapter 13

Surrogate Model Generation Using
Self-Optimizing Variables

Chapter 11 introduced partial least squares regression (PLSR) for the reduction of the in-
dependent variables. Through PLS regression on the sampled space, new latent variables
u′ with dim(u′) < dim(u) are defined. The independent variables u for the surrogate
model fitting are subsequently the latent variables u′.

Chapter 10 proposed to use the concepts of self-optimizing control (SOC) [90] to re-
duce the number of independent variables nu. Self-optimizing control is a philosophy
from control theory. The aim is to select controlled variables, which, if kept constant
when disturbances occur, give small economic loss. Using SOC, it is possible to reduce
the number of independent variables by the number of manipulated variables for each
submodel or find variables where a linear model is sufficient. Furthermore, it allows the
mapping of the region we are actually interested in. The combination of self-optimizing
control and surrogate model generation will hence be investigated in this chapter.

This chapter is structured as follows; Section 13.1 summarizes the application of surro-
gate models in the context of optimization based on Chapter 10 and introduces the vari-
ables used in this chapter. Section 13.2 explains the concepts of self-optimizing control
and measurement selection. Section 13.3 discusses how self-optimizing variables can
be applied in the generation of surrogate models. Section 13.4 first introduces the am-
monia case study and then shows results from the application of self-optimizing control
in surrogate model generation. Section 13.5 discusses the applicability of the proposed
procedure and addresses limitations and problems if self-optimizing control is utilized.
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Figure 13.1: Example of a submodel within an overall model.

13.1 Optimization Using Local Surrogate Models

Consider a large-scale steady-state process to be optimized, given by

min
x,u

J (x,d,u)

s.t. 0 = g(x,d,u)
0≥ h(x,d,u)

(13.1)

where J is a scalar cost function, usually an economic cost, d ∈ Rnd denotes the distur-
bances, for example feed variables and model parameters, u ∈ Rnu are the independent
decision variables, and x∈Rnx are the internal model variables. The equality constraints
g : Rnx ×Rnd ×Rnu → Rnx are typically given by the equations in the flowsheeting soft-
ware. Operational inequality constraints h : Rnx ×Rnd ×Rnu → Rnh can be imposed on
the states x or inputs u. As the optimization of a large-scale process is generally difficult,
the process is split into several submodels given by gi : Rnxi ×Rndi ×Rnui → Rnxi and
hi : Rnxi ×Rndi ×Rnui → Rnhi . This is exemplified for the distinctive submodel i and the
remaining submodels k in Fig. 13.1. Each submodel may have individual manipulated
variables ui ∈ u and disturbances di ∈ d. It is possible that a disturbance or manipulated
variable appears in several submodels. In addition, each submodel has inlet zk,i ∈ Rnzk,i

and outlet connection variables zi,k ∈ Rnzi,k . Note that the variables zi,k are states or out-
puts for the submodel i they come from, zi,k = yi,k, whereas they are disturbances for
the submodel k they enter. The connection variables and the disturbance variables can
be combined into an augmented disturbance vector

d̃i =

[
di
zk,i

]
(13.2)
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Each submodel gi may be reformulated as a surrogate model given by

g′i,k : {d̃i,ui} 7→ yi,k (13.3)

The total number of independent variables for each submodel is ntot
i = nui + nd̃i

. Note
that this is an input-output model with no explicit internal states. The reformulated opti-
mization problem in terms of surrogate models then becomes

min
d̃,u

J
(
d̃,u
)

s.t. 0 = yi,k−g′i,k
(
d̃i,ui

)
i ∈ 1, . . . ,n, ∀k 6= i

0 = zi,k−yi,k i ∈ 1, . . . ,n, ∀k 6= i

0≥ hi
(
d̃i,ui

)
i ∈ 1, . . . ,n

(13.4)

The sampling domain for surrogate model generation is given by bounds on the inde-
pendent variables for each submodel

d̃i,min ≤d̃i ≤ d̃i,max (13.5)
ui,min ≤ui ≤ ui,max (13.6)

The sampling may be performed using for example Latin hypercube sampling or regular
grid sampling. Depending on the number of independent variables ntot

i and the nonlin-
earity of the model, this can require a large sampling space. Hence, a reduction in the
complexity of the surrogate model may be necessary.

13.2 Previous Results on Self-Optimizing Control

Consider the following optimization problem

min
x,u

J (x,d,u)

s.t. 0 = g(x,d,u)
0≥ h(x,d,u)

(13.7)

For example, this could be the local optimization problem, but with subscript i omitted.
The aim of self-optimizing control is to identify controlled variables c which, when kept
constant, result in a minimum loss in the presences of disturbances d. Frequently, linear
combinations of measurements y are used

c = Hy (13.8)

where H ∈ Rnu×ny is a combination matrix. The question is: how can we identify the
optimal selection matrix and correspondingly the self-optimizing variables? A detailed
review answering this question can be found in Jäschke et al. [53].
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13.2.1 Summary of Self-Optimizing Control Approaches for Obtaining H

For simplicity, the subscript i is dropped in the following explanation of self-optimizing
control. The optimal selection matrix H as introduced in Eq. (13.8) that minimizes∣∣J (c,d)− Jopt (d)

∣∣ can be calculated using the nullspace method [2] or the exact-local
method [3]. It is given by the solution to the following optimization problem

min
H

∥∥HY
∥∥

F

s.t. HGy = J1/2
uu

(13.9)

with Gy ∈Rny×nu representing the measurement gain matrix with respect to the input u.
Y is given by

Y =
[
FWd Wny

]
(13.10)

The optimal sensitivity matrix F = ∂yopt

∂d can be calculated as

F =−
(
GyJ−1

uu Jud−Gy
d
)

(13.11)

where Juu ∈ Rnu×nu is the Hessian of the cost function, and Jud ∈ Rnu×nd which is the
second order derivative of J with respect u and d. Alternatively, if it is not possible to
easily obtain the analytic matrices of the cost function Juu and Jud, the optimal sensitiv-
ity matrix F can also be calculated using finite differences. This results in nd additional
optimization problems. Wd and Wny are the disturbance and measurement noise scaling
matrices given by

∆d = Wdd′; ny = Wnyny′ (13.12)

The vectors d′ and ny′ are assumed to satisfy∥∥∥∥[ d′

ny′

]∥∥∥∥
2
≤ 1 (13.13)

Thus, Wd and Wny represent the magnitude of the expected variations in d and y. The
solution to problem (13.9) when H is a full matrix is [107]:

HT =
(
YYT

)−1 Gy (13.14)

13.2.2 Measurement Selection for H

It is in general desirable to use few measurements y. In order to select the an optimal
subset of measurements ny, Yelchuru and Skogestad [107] developed a mixed integer
quadratic programming approach. It requires the reformulation of the problem given in
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Eq. (13.9) in vectorized form:

min
hδ σδ

hT
δ

Fδ hδ

s.t. Gy
δ

Thδ = jδ

nytot

∑
k=1

σk = ny

(13.15)

where σk ∈ {0,1} with k = 1 . . .nytot are binary variables to indicate, whether measure-
ments are used in the selection matrix. The quadratic cost term is given by

Fδ = Yδ YT
δ

(13.16)

and is block diagonal. The same holds true for Gy
δ

T whereas hδ and jδ are a vectorized
form of H and Juu respectively. Further constraints have to be imposed on hδ to guaran-
tee that h jk = 0 for σk = 0 and input u j and measurement yk. In this problem, the big-m
approach is chosen. This results in bounds for the entries in the selection matrix H given
by

−


m
m
...
m

σk ≤


h1k
h2k

...
hnuk

≤


m
m
...
m

σk, ∀k ∈ 1,2, . . . ,nytot (13.17)

For a detailed description and derivation of the MIQP approach for measurement selec-
tion, the reader is referred to Yelchuru and Skogestad [107].

13.3 Surrogate Model Generation Using Self-Optimizing Variables

Consider a detailed model representation

gi
(
xi, d̃i,ui

)
= 0 (13.18)

of submodel i and let yi,k = fi,k
(
xi, d̃i,ui

)
represent the variables we are interested in

knowing. To avoid solving the detailed model (13.18) every time, for example during
optimization, we want to derive a surrogate model (13.3). To be able to introduce self-
optimizing variables ci to replace the original independent variables ui, we assume that
we can define a a local cost function Ji

(
xi, d̃i,ui

)
. This cost function should reflect the

overall cost J in (13.1) because we are not interested in arbitrary variations in ui, but in
changes along the optimal surface. That is, we want to find instead a surrogate model

g′i,k,SOC : {d̃i,ci} 7→ yi,k (13.19)

where we remain close to the optimal surface for expected variations in d̃i when the new
variables ci are kept constant (or strictly speaking their setpoints ci,s).
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Figure 13.2: Example for mapping the optimal response surface using the Rosenbrock
function as case study.

13.3.1 Motivating Example

As a motivating illustration of the concept, consider the Rosenbrock function [85]:

Ji (ui) = (1−di)
2 +100

(
ui−d2

i
)2

(13.20)

The cost function is in this case also the outlet dependent variable yi. The contour map
for Ji as a function of ui and di is shown in Figure 13.2. For a given disturbance value
di, it would not make sense to map the whole region for ui as it includes regions with a
high value of the cost function. Instead, it is preferable to map only the region around
the optimal input ui,opt (di) as given by the yellow line. Note, by introducing

ci = ui−d2
i (13.21)

and setting ci,s = 0, the cost function is minimized independently of the value of di as
we indirectly get ui = ui,opt (di) = d2

i . This allows to map along the optimal response
surface as shown by the dashed lines. These bounds correspond to ci =±0.5. The close-
to-optimal response surface has a simpler structure compared to the complete response
surface. Compared to the optimal response surface approach, it is possible to vary the
setpoint of the new variable, ci,s as well. The surrogate models according to Eqs. (13.3)
and (13.19) are then given by

g′i : {di,ui} 7→ Ji (13.22)
g′i,SOC : {di,ci} 7→ Ji (13.23)
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Figure 13.3: Block diagram illustrating the change of independent variables.

in which g′i would include interaction terms between ui and di and fourth-order terms
in di. On the other hand, g′i,SOC does not include interaction terms and at most second-
order terms are needed in the model. Correspondingly, less points have to be sampled
due to the simpler structure of the model. Note that this illustrative example does not
correspond to the linear self-optimizing variables ci as used in this paper. Unfortunately,
it is in general difficult to obtain nonlinear self-optimizing variables. Hence, linear com-
binations of measurements are used as self-optimizing variables as outlined in the next
section.

13.3.2 Prcoedure for Selecting Self-Osptimizing Variables

Let the measurements

yi =

xi
d̃i
ui

 (13.24)

represent all the system variables and assume that we use self-optimizing control ideas
to find a linear measurement combination

ci = Hiyi (13.25)

with ci ∈ Rnui are the local self-optimizing variables and yi ∈ Rnyi are the selected mea-
surements to replace the independent variables ui. This variable change is illustrated in
Figure 13.3 using a block diagram. The controller K has integral action so that we have
perfect control at steady state (ci = ci,s). Note that Figure 13.3 is just for illustrating how
we can change the independent variables from ui to ci, and there are no dynamics present
in the surrogate model. The objective is that with this change in independent variables,
the surrogate models become much simpler, for example linear, and in some cases we
may even eliminate variables.
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13. Surrogate Model Generation Using Self-Optimizing Variables

To this effect, we define a local cost function Ji (xi,di,ui) and consider the following
local optimization problem

min
xi,ui

Ji (xi,di,ui)

s.t. 0 = gi (xi,di,ui)

0≥ hi (xi,di,ui)

(13.26)

We need to define the expected disturbance set through the weight Wd and the expected
noise (caused by numerical errors) in the measurements yi through the weight Wny .
The self-optimizing variables are then obtained as the set ci = Hiyi which minimizes∣∣Ji
(
ci, d̃i

)
− Ji,opt

(
d̃i
)∣∣. If we neglect noise, then we may use the nullspace method [2],

but in this paper we include noise and use the exact local method, [3] as described in
more detail in Section 13.2.

Note that we include the inlet connection variables zk,i as disturbances in the calculation
of Hi, that is

d̃i =

[
di
zk,i

]
(13.27)

and nd̃i
= ndi + nzk,i . The calculation of the SOC selection matrix according to opti-

mization problem (13.15) requires the solution to 1 (or nd̃i
+1 if the optimal sensitivity

matrix is calculated using finite differences) nonlinear problem(s) and nui mixed integer
quadratic problems. Furthermore, ntot

i nonlinear systems of equations have to be solved
to obtain the gain matrix Gy and the disturbance gain matrix Gy

d. The sampling for the
calculation of the surrogate model then consists of solving np nonlinear systems of equa-
tions.

As scaling matrices, we suggest using

Wd = diag
(
max

(
d̃i− d̃i,min, d̃i,max− d̃i

))
(13.28)

as this results in minimizing the loss within the surrogate model domain. The measure-
ment noise scaling matrix should be set to the expected numerical noise in yi. If this
noise is small compared to the disturbance scaling matrix, we can set the measurement
noise scaling matrix to

Wny = wny diag(1) (13.29)

where wny is small and 1 is a vector of ones with length ny. However, two necessities
arise for the parameter wny

1. wny is large enough so that YYT in (13.14) is nonsingular;

2. wny should be small compared to the entries of Wd to reduce the effect of mea-
surement noise in the calculation of the selection matrix H.
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It is often preferable to use a block diagonal selection matrix Hi. The advantage of a
block diagonal matrix is to reduce the computational load of adjusting the setpoints itera-
tively in the flowsheeting software. This corresponds to Problem 3 described by Yelchuru
and Skogestad [107] and cannot be solved using the MIQP approach of [107] as it vi-
olates the convex formulation theorem. However, it is possible to calculate a local se-
lection matrix Hi,l for each input ui,l using only measurements in the vicinity of ui,l ,
see 13.2.2 for details. The resulting block diagonal matrix is due to neglecting interac-
tions not optimal, but is sufficient for the subsequent application. A discussion of the
scaling matrices and the use of a structured selection matrix Hi is provided in Sec-
tion 13.5.2.

In summary, the procedure for utilizing self-optimizing variables in the context of surro-
gate model generation can be summarized as follows:

1. Set up a nonlinear problem (13.26) for submodel i and identify the connection
variables zk,i and yi,k.

2. Construct the augmented disturbance vector

d̃i =

[
di
zk,i

]
and the measurement vector

yi =

xi
d̃i
ui


3. Define the sampling domain and the scaling matrices Wd and Wny , for example

using (13.28) and (13.29).
4. Solve the nonlinear problem (13.26) for the nominal input variables and calcu-

late the sensitivity matrix F either using Eq. (13.11) or through finite differences.
This requires the solution of 1 or 1+nd̃i

optimization problems, depending on the
availability of analytic expressions for Gy, Gy

d, Juu, and Jud.
5. Define the local measurements around the manipulated variables used for the cal-

culation of the self-optimizing variables based on the total measurement yi.
6. Define the maximum number of measurements used for each manipulated variable

ul .
7. Calculate the optimal selection matrices Hi,l for the different manipulated vari-

ables ui,l using the MIQP (13.15).
8. Add the linear equality constraints given by Eq. (13.25) to the model gi and sample

np points.
9. Construct the surrogate models g′i,k,SOC for the dependent variables yi,k as given in

Eq. (13.19).
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Figure 13.4: Heat-integrated three bed reactor system of the ammonia synthesis gas loop.

13.4 Case Study - Ammonia Synthesis Reactor

The case study is a heat-integrated ammonia reactor as shown in Figure 13.4. This reac-
tor was previously used for stability analysis [75] and the application of several optimal
operation methods in Part II. A detailed model description can be found in Appendix A.
Chapter 4 showed that small disturbances lead to limit-cycle behaviour and/or reactor
extinction at the steady-state optimal operation point. Varying the manipulated variables
u individually results therefore in creating a response surface that includes undesirable
operating regions with reactor extinction and limit cycle behaviour. This results in a
complicated response surface and it is necessary to sample a lot of points to achieve a
good performance of the surrogate model. Hence, the ammonia reactor can be seen as
an excellent case study for the application of the proposed method.

13.4.1 Model Description and Modification

The aim of the reactor is to maximize the conversion per pass, which can be expressed
in this example as the rate of the extent of reaction ξ [kg/s],

ξ̇ = ṁin (wNH3,30−wNH3,in) (13.30)
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Table 13.1: Bounds and units for the connection variables.

ṁin pin Tin wNH3,in RH2/N2,in
[kg/s] [bar] [°C] [wt.%] [-]

Lower Bound 59.5 185 235 7 2.8
Nominal Value 70.0 200 250 8 3.0
Upper Bound 80.5 215 265 9 3.2

where ṁ [kg/s] is the mass flow and wNH3,i the ammonia mass fraction. Correspondingly,
the cost function for the optimization problem (13.26), which is posed as minimization
problem, is given by

J =−ξ̇ (13.31)

The equality constraints are given by the ammonia mass balance and the energy balance
described in Appendix A for each CSTR j in the CSTR cascade used to represent each
reactor bed. The number of CSTRs in each bed is n = 10.

In order to increase the applicability of the resulting surrogate model, the hydrogen to
nitrogen molar ratio is not considered to be fixed anymore. Instead, the molar ratio of
hydrogen to nitrogen,

RH2/N2, j =
ṅH2, j

ṅN2, j
(13.32)

in each reaction section j is introduced as an algebraic state. This results in 30 additional
algebraic constraints

0 = RH2/N2, j−
ṅH2, j−1 + rH2, jmcat, j/MH2

ṅN2, j−1 + rN2, jmcat, j/MN2

(13.33)

in which Mi is the respective molar mass and ri, j the reaction rate in [kg i/kgcat h].

For this system, the independent variables are given by the three split ratios

u =
[
u1 u2 u3

]T (13.34)

which may be viewed as the real manipulated variables. The five disturbances are the
inlet conditions to the system

d̃ =
[
ṁin pin Tin wNH3,in RH2/N2,in

]T (13.35)

These are the connection variables zk,i. The bounds on the disturbance variables are
given in Table 13.1. Two output variables have to be fitted in the surrogate model. These
are the (mass) rate of the extent of reaction ξ and the outlet temperature Tout . The outlet
ratio RH2/N2,out can be calculated through the respective outlet molar flows ṅi,out which
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in turn are calculated from exact mass balances using ξ . This furthermore guarantees
mass conservation in the resulting surrogate model. To summarize,

yi,k =

[
ξ

Tout

]
(13.36)

The system was modelled using CasADi [4] and optimized using IPOPT [102].

13.4.2 Application of SOC

As nu = 3, three SOC variables c = Hy have to be obtained. We want to use local vari-
ables for each reactor bed to simplify the calculations when using a flowsheet simulator.
Hence, the MIQP approach in (13.15) as proposed by Yelchuru and Skogestad [107] is
applied individually for each bed resulting in a block diagonal matrix given by

H =

H1 0 0
0 H2 0
0 0 H3

 (13.37)

In order to have a small number of measurements, we consider for each bed ny = 1
and ny = 2. This is compared to a more intuitive control structure, where the the inlet
temperatures (In) as well as the inlet and outlet temperatures of the respective beds are
used (In,Out). The scaling matrix Wd according to Eq. (13.28) and Table 13.1 is

Wd = diag
([

10.5 15 15 1 0.2
])

(13.38)

whereas the parameter wny in the calculation of Wny is selected as wny = 10−3.

The candidate measurements for the MIQP approach are

y1 =

[
TIn,1
T1:10

]
for Bed 1, u1 (13.39)

y2 =

[
TIn,2

T11:20

]
for Bed 2, u2 (13.40)

y3 =

[
TIn,3

T21:30

]
for Bed 3, u3 (13.41)

Therefore, each of the three selection matrices considers 11 measurements. The mass
fraction measurements wNH3 would not be viable measurements for control purposes.
However, in the case of surrogate model generation, they can still be used. We found that
including the mass fractions in the measurements did not change the selected subset of
measurements. Hence, the mass fractions are excluded in the candidate measurements.
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Table 13.2: Optimal selection matrix for a fixed selection (In,Out) as well as the optimal
measurement subset for each input and the corresponding optimal selection matrix Hi
with ny = 2 (MIQP2).

Chosen Variables Selection Matrix Hi
In

,O
ut

Bed 1 TIn,1, T10
[
0.067 −1.000

]
Bed 2 TIn,2, T20

[
0.098 1.000

]
Bed 3 TIn,3, T30

[
1.000 0.721

]
M

IQ
P

2 Bed 1 T4, T6
[
0.952 −1.000

]
Bed 2 TIn,2, T11

[
0.982 −1.000

]
Bed 3 T28, T30

[
1.000 −0.994

]
The optimization problem (13.15) was solved using m = 100 in the big-m approach of
Eq. (13.17). The solution to the problem with one measurement (ny = 1, MIQP1) for
each bed gives as chosen measurements:

Bed 1: T9 Bed 2: T18 Bed 3: T25 (13.42)

The solution to the optimization problem (13.15) with ny = 2 is given in Table 13.2
(MIQP2). Similar to the results reported by Yelchuru and Skogestad [107], the chosen
measurements change depending on the chosen number of measurements ny. That means
that a measurement which is optimal with only one measurement is not necessarily in-
cluded with two measurements.

13.4.3 Fitting of the Surrogate Model

The surrogate models are cubic B-splines fitted through the application of the SPLIN-
TER library [41], which requires a regular grid in the independent variables cs (which
here replace u) and d̃. In this case study, the overall cost function is minimized by op-
timizing locally the degrees of freedom (c = Hy), that is, the local cost Ji is equal to
the global cost J, so it is not necessary to include the setpoints cs as degrees of freedom
as it normally would be. The regular grid is given by four points for each of the varied
variable d̃, ṁin, pin, Tin, wNH3,in, and RH2/N2,in. This results in np = 45 = 1024 sampling
points. The advantage of using B-splines of order two or higher is that it gives continuity
of the first derivative of the surrogate model. This gives advantages for the subsequent
optimization. If self-optimizing variables are not used, we would need to consider all
variables (d̃ and u) simultaneously giving 48 = 65536 sampling points. Alternatively,
other surrogate model structures like Kriging or the ALAMO approach [20] could be
used.
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Table 13.3: Estimation error ε with fixing the three SOC variables using different selec-
tion matrices H.

H definition Rate of Extent of Reaction ξ Outlet Temperature Tout

max |ε| |ε| max |ε| |ε|
In 4.353 % 0.742 % 8.00 K 1.457 K

In,Out 0.540 % 0.092 % 1.02 K 0.184 K
MIQP1 0.211 % 0.027 % 0.41 K 0.055 K
MIQP2 0.022 % 0.003 % 0.04 K 0.005 K

13.4.4 Evaluation of the Surrogate Model Performance

The resulting surrogate models for the outlet temperature Tout and ξ were evaluated
using 5000 randomly sampled validation points. These validation points are the optimal
response surface for this model. This implies that the surrogate model may theoretically
give perfect fit for the self-optimizing variables response surface. However, this is only
of minor interest as the aim of the surrogate model is to utilize it in further optimization.

In order to compare the different methods, the maximum absolute error max |ε| and the
mean absolute error |ε| are calculated with respect to the optimal response surface. The
results of the four different combination matrices can be found in Table 13.3. We can
see that arbitrarily chosen measurements (In and In,Out) do not necessarily result in a
good surrogate model fit. Using only the three inlet temperatures (In) results in a training
space with infeasible points. For example, two of the split ratios are negative for

d̃ =
[
80.5 185 235 9 2.8

]T (13.43)

Adding the outlet temperature of each bed to the selected measurements (In,Out) re-
duces the error by one order of magnitude. Furthermore, all points in the training space
are feasible. Selecting only one optimal measurement in each bed (MIQP1, see (13.42))
reduces the error by more than a factor two compared to using two arbitrary measure-
ments (In,Out) in each bed. Finally, increasing the number of measurements in the MIQP
approach from ny = 1 (MIQP1) to ny = 2 (MIQP2) in each bed gives a further decrease by
one order of magnitude. This shows that it is important to select the best measurements.
Otherwise, the resulting surface is more complicated and it may be even necessary to
reduce the sampling space to avoid sampling infeasible points.

Importantly, the resulting response surface is simple. To show this, the surrogate models
were validated using a response surface created through incorporation of constraints
(13.25). The comparison to this validation space results in a maximum absolute error
for the surrogate model using the inlet temperatures (In) of 0.37 % in ξ and 0.7 K in
Tout . Compared to the optimal response surface, this error is one order of magnitude
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Figure 13.5: Outlet temperature of Bed 3 with a pressure drop of ∆pin = −15 bar at
t = 10 min with a constant input u at the optimal point.

smaller. In comparison, with the MIQP approach with ny = 2 (MIQP2), the maximum
absolute error is given by 0.001 % in ξ and 0.001 K in Tout . This indicates, that the
resulting response surface is indeed simpler and it is possible to reduce the number of
sampling points. Using instead quadratic B-splines with three points for each variable
d̃ , np = 53 = 243 points have to be sampled. The maximum absolute error is then
given by 0.01 % in ξ and 0.02 K in Tout which is still below the error of using the inlet
temperatures with 4 points for each variable.

Sampling the space without variable transformation, i.e. selecting c = u, is not advis-
able for this case study. First, as already mentioned, it would require the sampling of
much more sampling points. In addition, the resulting surface is more complicated. To
illustrate this, consider the case when all disturbance variables are at their lower bound
(Table 13.1)

d̃ =
[
59.5 185 235 7 2.8

]T (13.44)

and the manipulated variables are fixed at their nominal optimum (u = uopt
(
d̃nom

)
).

In this situation, the reactor is extinct. Hence, using the split ratios u as independent
variables would require the mapping of regions in which the reactor is extinct as well as
crossing the limit-cycle region [75]. This region is exemplified in Figure 13.5 where the
inlet pressure is at its lower bound and the other disturbances at their nominal value. We
can see that the system displays limit-cycle behaviour and it is not possible to define a
steady-state value for this operating point. However, these regions are not important for
the subsequent optimization, and hence, should not be sampled.
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13.5 Discussion

13.5.1 Advantages of the Proposed Method

The proposed utilization of self-optimizing variables to map the optimal response surface
is a promising new method in the generation of surrogate models. The main advantages
are given by

1. A response surface which is close to the optimal response surface but does not
require the solution of a large number of nonlinear problems;

2. Potentially a reduced number of sampling points compared to sampling with the
original independent variables.

This allows us to sample only regions we are interested in, and to neglect regions that are
not encountered in practice. In the case study, it is in fact not possible to use the original
inputs ui (split ratios) as independent variables. Thus, a variable transformation would
be required independently of the application of self-optimizing control. For example,
one could use the variable transformation utilizing the existing control structure as pro-
posed in Chapter 10. If it is necessary to have surrogate models for other states than the
dependent variables yi,k, it is possible to calculate them as well, e.g. for the actual split
ratios ui or for additional potential measurements. In certain cases, as for our case study,
it is as well feasible to reduce the number of independent variables.

An alternative to utilizing self-optimizing variables is to directly sample the optimal
response surface given by

g′i,opt : {d̃i} 7→ yi,k (13.45)

This approach is however computationally expensive. It would require the solution to
np nonlinear problems whereas in the application of the proposed method, only nd̃ + 1
have to be solved in the calculation of the optimal sensitivity matrix F. In addition, this
approach does not allow for having the set points cs as degree of freedom for solving the
overall optimization problem as it is allowed with surrogate model (13.19).

Certain limitations of the proposed method can be identified and need to be addressed.

13.5.2 Practical Use of the Proposed Method

A first important point is the selection of the disturbance and measurement scaling matri-
ces, Wd and Wny . These matrices will influence the performance of the resulting surro-
gate model. The 2-norm is used for scaling of the disturbances and measurement noises
as we can see in Eq. (13.13). This implies that all disturbances and measurement noises
may not be at their upper or lower limit simultaneously. In the case of control, this seems
reasonable and a detailed discussion for using the 2-norm is given by Halvorsen et al.
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[46]. However, this is not the case, if we want to use the self-optimizing variables in
the calculation of surrogate models. We actually want to sample these so-called corner
points to avoid extrapolation. The best would be to use another norm, for example the
1-norm, but it can be partly circumvented by multiplying Wd by√nd̃ .

A second important point relates to the selection of the measurements y as they influ-
ence the loss when disturbances are present. In the case of surrogate model generation,
the measurements do not need to be actual measurement as it is in the control applica-
tion of SOC. Hence, it is possible to extend the measurements to states that are generally
not considered as they are hard to measure, e.g. concentrations. As a result, the number
of possible measurements nytot can be high. This requires the application of the MIQP
approach as developed by [107] and described in 13.2.2. Unfortunately, the MIQP ap-
proach for measurement selection does not handle structural zeros in the selection matrix
H. The reason is that the the convex reformulation for obtaining the optimization prob-
lem (13.9) does not hold in this case as a pre-multiplication of H with a non-singular
matrix Q will not preserve the structure of H. Consequently, it is necessary to minimize
the nonlinear loss expression

L =
1
2

∥∥∥J1/2
uu (HGy)−1 HY

∥∥∥2

F
(13.46)

This optimization could be performed using a global non-linear mixed integer optimiza-
tion solver like BARON [100] or ANTIGONE [71]. Unfortunately, there are no simple
methods for solving this problem in a convincing way as highlighted by Jäschke et al.
[53]. The development of an approach to include structural zeros is not the scope of
this paper and will therefore not be discussed further. When we used alternatively a full
selection matrix H, we found that complicated adjustments in the flowsheet solver oc-
curred. The proposed local approach and the resulting block diagonal selection matrix
does not guarantee the optimal measurement combination in the combined measurement
matrix and may lead to cases, where problems may arise. However, it is not possible to
generalize when problems may occur and when not.

13.5.3 Number of Independent Variables

It is in general not possible to say, when the application of self-optimizing variables
allows a reduction in the number of independent variables. There are however certain
conditions, which have to be fulfilled as it is the case in the case study. One prerequisite
is that the cost function Ji corresponds to the overall cost function J. In addition, it is
necessary that the cost function is flat with respect to the self-optimizing variables as
it was already stated by Skogestad [90]. The simpler response surface as aim of the
introduction of self-optimizing variables is still likely to hold, independently of whether
it is possible to reduce the number of independent variables. Especially if there are many
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disturbances (or connection variables), this may give a much simpler surrogate model
which requires fewer sampling points to get a desired accuracy, as in the case study.

13.5.4 Application in Flowsheeting Software

The application of self-optimizing variables ci in flowsheeting software can be difficult.
It requires the use of additional equality constraints which can cause problems because it
may require many iterations in sequential-modular simulators. As a result, the computa-
tional expense is increased. Hence, we proposed to use a structured selection matrix Hi
with measurements in the vicinity of the respective manipulated variables. The variables
ci are then more decoupled and it is not necessary to converge the complete flowsheet
for each adjustment. This problem is less pronounced in equation-oriented simulators.
There, the application of surrogate model-based optimization results in smaller mod-
els, and hence, a simpler initialization of the models. The application of self-optimizing
variables will then only increase the number of equality constraints.

13.5.5 Local Cost Function

The application of self-optimizing variables requires the definition of a local cost Ji
corresponding to the overall cost J. This is possible for the investigated case study as it
is general advantageous to maximize the conversion per pass of a chemical reactor. If
this is not the case, the self-optimizing variables must be obtained using the overall cost
and optimization problem (13.1). In the investigated case study, the introduction of an
additional heat-exchanger with external cooling duty would for example complicate the
cost function as there is no direct cost linked to the conversion per pass. This brings us
back to the starting point of the application of surrogate model generation and is similar
to the hen and egg problem. If it is not possible to optimize the overall flowsheet, how
can we then calculate the self-optimizing variables for each submodel gi?

One approach to achieve this is the utilization of a simplified overall model for the cal-
culation of the self-optimizing variables. These can then be used in the generation of
the surrogate models for the submodels. In addition, this would require the incorpora-
tion of the setpoints cs of the self-optimizing variables into the sampling domain as they
do not correspond to the actual optimal values due to the simplified overall model. The
advantage here is the simplified response surface. Another approach, which is is proba-
bly better, is to define a reasonable local cost function, for example, based on physical
arguments.
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13.5.6 Manipulated Variables and Disturbances Affecting Several
Submodels

As mentioned in Section 13.1, it possible that disturbances and manipulated variables
affect several submodels. This can include, for example, a disturbance in the cooling
water temperature or if several compressors are connected to the same turbine shaft.
This leads to the question if we can apply the procedure in these cases as well.

On one hand, it is not a problem with a disturbance affecting several submodels. The rea-
son is that the disturbances are included as independent variables in the surrogate model
generation (see Eqs. (13.19) and (13.2)). Therefore, the connection of the submodels for
optimization will provide to all surrogate models the same disturbance value.

One the other hand, manipulated variables u∗i , which affect several submodels, have to be
handled more carefully. Due to the variable transformation, it is not possible to calculate
self-optimizing variables for these manipulated variables in each submodel. Instead, the
manipulated variables must be assigned to one submodel. In addition, it is required in
this submodel to fit a surrogate model

g′ui
: {ci, d̃i} 7→ u∗i (13.47)

to calculate the value of u∗i . This value is then used as connection variable in the other
submodels that contain u∗i as independent variable.

It has to be noted that it is more common in chemical process that disturbances affect
several submodels. Furthermore, the developer of the surrogate models can decide to
include all unit operations with the same manipulated variables u∗i into one submodel.
Then, it is not necessary to fit a surrogate model (13.47) to the manipulated variables u∗i .

13.6 Conclusion

Combining principles from control theory and surrogate modelling, a new method was
developed to simplify the structure of surrogate models. The main idea is to replace the
original independent variables ui by a better set ci using the approach of self-optimizing
control. This is caused by omitting regions in which the submodel is suboptimal, for
example because a reactor is extinct. In addition, it may in some cases result in fewer
independent variables. The proposed method is independent of the structure of the sur-
rogate model. Hence, it is possible to combine it with other approaches in the literature
for the calculation of surrogate models, e.g. Kriging models and the ALAMO approach.
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Chapter 14

Sampling for Surrogate Model Using
Partial Least Squares Regression

So far, the sampling of points for the surrogate model was based on a fixed number of
sampling points np. The sampling of points from the detailed model has, in addition
to the fitting of the surrogate model, the main computational cost. Hence, the aim of
sampling is to sample as few points as possible while achieving satisfactory performance
of the surrogate model. The overall concept is called design of computer experiments.
Garud et al. [38] provide an extensive review of the different sampling approaches. They
can be differentiated between predefined (static) and adaptive sampling. In the former,
the sampling points are generated and sampled in one iteration, whereas in the latter the
performance of the surrogate model affects the placement of the new sampling points.

Predefined (static) sampling is the simplest approach. Monte Carlo sampling [70] is an
early method based on pseudo-random numbers. The key idea of Monte Carlo sampling
is that the randomness in sampling will result in space filling. This is however not guar-
anteed and may result in a large number of sampling points np.

Hence, space-filling methods are considered instead. The simplest space-filling method
is regular grid sampling. It is applied for surrogate modeling [40], but it has an exponen-
tial increase in sampling points

np = nnu
g (14.1)

where ng is the number of points per dimension in the regular grid. Therefore it is only
useful for a small number of independent variables nu.

Several other methods have been developed to overcome this so-called curse of dimen-
sionality. Latin hypercube sampling (LHS) [69] is probably the most popular method
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today. It is applied by e.g. Ochoa-Estopier et al. [81] for a heat-integrated crude oil dis-
tillation system for nu = 10 and np = 3000. It may however not explore the whole space
as shown for a simple 2-dimensional case study by Garud et al. [38]. Independent of
the chosen sampling method, static approaches have in addition the inherent problem of
selecting how many points to sample. This can lead to undersampling or oversampling.

This can be alleviated by incremental sampling with evaluation of the surrogate model
fit. Nuchitprasittichai and Cremaschi [80] use such an incremental approach based on
LHS. Surrogate models are fitted after each additional sampling step and the procedure
is stopped after reaching a termination criteria based on boots trapping. Quirante and
Caballero [84] used the maxmin approach in which the points are placed so that the min-
imum distance between sampling points is maximized. Depending on the performance
of the surrogate model, more points are sampled, again using the maxmin approach.

Adaptive sampling methods were developed as an alternative to the static approaches
to overcome the problem of oversampling. They are generally based on two concepts,
exploration and exploitation [38]. While the former tries to achieve point placement in
regions which are poorly represented in the sampling space, the latter utilizes the fitting
of a surrogate model to sample in highly nonlinear regions.

The smart sampling algorithm developed by Garud and co-workers is one of the adaptive
sampling methods [37, 39]. Through the application of two metrics, one for exploitation
and one for exploration, they identify new optimal points. Cozad et al. [20] developed a
combined surrogate model fitting and sampling algorithm which aims at sampling points
which have a maximum error with the surrogate model. The resulting surrogate models
have a simple structure allowing the easy calculation of derivatives. Eason and Cre-
maschi [24] combined space filling through incremental LHS with exploitation through
jackknifing.

As mentioned, static sampling has the potential problem of under- or oversampling. The
incremental approach of Nuchitprasittichai and Cremaschi [80] and Quirante and Ca-
ballero [84] alleviates this problem, but adds the cost of fitting a surrogate model at each
step . In addition, one also has to make a choice for the basis functions. Therefore, the
development of a termination criteria for incremental sampling without the need of fit-
ting a surrogate model is attractive, and the focus of this chapter. One possible approach
is to apply partial least squares regression (PLSR), which has a very low computational
cost, and use this as a termination criteria.

PLSR is a method from chemometrics, developed for the analysis of high-dimensional
data. Chapter 11 and Chapter 12 apply PLSR in the calculation of surrogate models to
reduce the number of independent variables nu in the fitting through the introduction of
latent variables. The new latent variables u′ are calculated using the weights W given
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by PLSR. In this chapter, we use this information instead as a termination criteria for
sampling without the need to fit a surrogate model. PLSR is explained in Section 11.1.

This chapter is structured as follows; Section 14.1 describes the developed procedure
for sampling of surrogate models without the necessity of fitting a surrogate model in
each iteration. Section 14.2 illustrates the steps in the procedure using a simple pipe
model as motivating example. Section 14.3 applies this method to two case studies, the
reaction and the separation sections of a simplified ammonia synthesis reactor. These
two submodels are then combined with the original synthesis gas makeup section for the
respective submodels and evaluated in comparison to the original model. Section 14.4
then discusses the properties of the proposed method.

14.1 Proposed Sampling Procedure Utilizing PLSR

The idea is to compute the weight matrix W after each sampling, or after a block nadd of
samplings, and consider the convergence of Wk. This may be done by monitoring how
the norm of the difference

∆Wk = Wk−Wk−1 (14.2)

depends on the iteration k. The norm,
∥∥∆Wk

∥∥, can be utilized as termination criteria for
the sampling procedure. However, W should only include the weights corresponding to
the important latent variables by setting a threshold β . This results in defining

Wk =
[
wk

1 · · · wk
ns

]
(14.3)

where the omitted weight vector wk
ns+1 explains less than β % of the variance of the

dependent variable y. The value ns corresponds therefore to the number of significant
weights.

The initialization of the procedure consists of sampling nini points. PLSR is then applied
to calculate the initial weights W1. In the subsequent iterative procedure, nadd points are
sampled at each iteration step k. This corresponds to a so-called arithmetic sampling, as
defined by Provost et al. [83], and can be written as

np(k) = nini + k ·nadd (14.4)

The sampling of the points can be performed using any method, e.g. Latin hypercube
sampling [69] or Sobol sampling [95]. Subsequently, the weights of the latent variables
Wk are calculated. Using the explained variance, we calculate the difference ∆Wk of the
significant weights to the previous calculated weights and its norm

∥∥∆Wk
∥∥

F .

Although the norm converges, it can temporarily increase and decrease. This noise may
terminate the procedure before reaching a satisfactory performance. To avoid a preemp-
tive termination, we propose to average the norm of the last n f steps resulting in the
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Algorithm 3 Sampling procedure.
1: For a given subprocess g with independent variables u ∈ Rnu and dependent vari-

ables y ∈ Rny , define upper and lower bounds for the independent variables.
2: Sample nini initial points.
3: Select the threshold β and calculate W1 according to Eq. (14.3).
4: Initialize with k = 2.
5: while

∥∥∆Wk
∥∥av

F > γ do
6: Sample nadd additional points.
7: Perform PLS regression.
8: Obtain the number of significant weights ns using the selected β and calculate

∆Wk according to Eq. (14.2) and Eq. (14.3).
9: Calculate the averaged norm

∥∥∆Wk
∥∥av

F in Eq. (14.5).
10: Set the iteration number k = k+1.
11: end while
12: Fit the surrogate models.

calculation of the averaged norm

∥∥∆Wk
∥∥av

F =

k

∑
l=k−n f +1

∥∥∆Wl
∥∥

F

n f
(14.5)

The averaged norm is compared to a threshold γ and, if it is below γ , the iterative pro-
cedure is stopped and a surrogate model is fitted to the sampling space. Algorithm 3
summarizes the procedure. The reason behind choosing the Frobenius norm is discussed
in Section 14.4. In the case of multiple dependent variables y, it is either possible to per-
form PLS regression for all dependent variables independently or simultaneously. The
former is computationally more expensive. If the latent variables are used to fit the sur-
rogate model, it was advised in Chapter 11 to perform PLS regression independently.
However, we are looking at the differences and do not use the latent variables for the fit
of the surrogate model. We therefore use the simultaneous approach. This will be further
discussed in the case studies in Section 14.3.
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Table 14.1: Parameters of the pipe case study.

Parameter L/D A f
[-] [m2] [-]

Value 8.8×104 0.2 0.003

14.2 Description of the Sampling Procedure

The sampling procedure will now be explained in detail using the pressure drop over an
isothermal pipe, as used in Chapter 11, as motivating example. The independent vari-
ables are the inlet pressure pin, the temperature T , and the inlet molar flows ṅin,i. The
dependent variable is the outlet pressure pout . The model is

0 =
(

p2
in− p2

out
)
−4 f

L
D

RT M
A2 ṅ2

in (14.6)

This model allows for changing number of independent variables nu through changing
the number of gas components ngas in the stream. These influence the average molar
mass

M =
∑

ngas
i=1 Miṅin,i

ṅin
(14.7)

and the total flow

ṅin =
ngas

∑
i=1

ṅin,i (14.8)

We have as input u =
[
pin T ṅT

in
]T. The investigated case has 5 gas components

(i = H2, N2, NH3, Ar, and CH4) resulting in nu = 7. One surrogate model has to be
fitted for the pressure difference y = pin− pout (ny = 1). Molar fractions xi are used as
independent variables in the fitting of the surrogate model and calculation of the PLSR
weights. The data of the pipe are given in Table 14.1. The nominal value and the bounds
(lower and upper bound) of the grid can be found in Table 14.2. Table 14.3 gives the
parameters for the sampling procedure (Algorithm 3).

Table 14.2: Upper and lower bounds and the nominal value of the independent variables
(u) (pipe model).

pin T ṅH2,in ṅN2,in ṅNH3,in ṅAr,in ṅCH4,in
[bar] [°C] [mol/s] [mol/s] [mol/s] [mol/s] [mol/s]

Lower Bound 23 0 700 230 50 10 10
Nominal Value 27 10 1400 460 100 20 20
Upper Bound 31 20 2100 690 150 30 30
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Figure 14.1: Development of the norm of the weights,
∣∣∣∣∆wk

i

∣∣∣∣av
F (pipe model).

14.2.1 Evaluation of the norm of the weights

We only include the the significant weights wi in W, see Eq. (14.3). To understand this
better, Figure 14.1 shows the convergence of all the seven weights wi for an increas-
ing sampling space np(k). Note the log scale for the norm. For illustration purposes,
we oversample using 5000 points sampled as a Latin hypercube. PLSR was performed
every 5 sampling points (nadd = 5) after initialization with 25 sampling points. The last
5 calculated norms were used for filtering (n f = 5). The colour code shows the three
significant weights (black) and the four weights with an explained variance smaller than
β = 2 % (red). As we can see, all weights are converging. However, it is possible to see a
clear difference between the significant and insignificant weights. w1 and w2 are similar
in convergence and hard to distinguish. w3 is converging at a slightly slower rate and has
a value in-between the significant and insignificant weights. The insignificant weights
converge at a much slower rate. Especially w6 and w7 experience frequent changes in
the norm resulting in noisy bumps, even with the applied filtering.

It has to be noted that the number of significant weights ns (with β ≥ 2 %) decreases
with increasing np in this case study. Initially, w4,k explains between 2 % and 4 % of the

Table 14.3: Tuning parameters of the proposed sampling method (all case studies).

Parameter nini nadd n f β γ

Value 25 5 5 2 % nadd×10−2
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Figure 14.2: Development of the averaged norm of the combined weight matrix of the
significant weights,

∣∣∣∣∆Wk
∣∣∣∣av

F (pipe model).

variance in y, so ns = 4. However, it settles to around 0.5 % after around 300 sampled
points, giving ns = 3. As a result, the number of significant weights ns can change in the
course of the sampling.

Figure 14.2 shows how the important combined averaged norm of the significant weights∥∥∆Wk
∥∥av

F changes for the first 1000 sampling points, but here using a linear scale for the
norm. As we can see, the reduction in the norm is especially pronounced in the first 100
to 150 sampling points and is less pronounced with increasing sampling points. This
threshold γ = 0.05 is reached after 200 sampling points. The norm of the differences
of the combined significant weights,

∥∥∆Wk
∥∥av

F , is less susceptible to the noise in the
calculation compared to the individual weights shown in Figure 14.1. Hence, it is not
necessary to use a large n f for filtering.

14.2.2 Error of the surrogate model

We found in Figure 14.2 that the significant weights Wk converge after about 200-300
sampling points. How does this reduction correspond to the accuracy of a fitted surrogate
model?

To this end,we investigate the correlation between the norm of the difference,
∥∥∆Wk

∥∥av
F ,

and the performance of the surrogate model. The surrogate model structure is a 2-layer
cascade forward neural network with 5 hidden neurons in each layer. The surrogate
models were fitted after each 5 additional points starting at initially 25 points. After
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Figure 14.3: Mean absolute error of the surrogate model |ε| as function of the averaged
Frobenius norm of the significant weights Wk (pipe model).

100 sampled points, the interval is increased to every 25 points and to every 100 points
after 1000 sampled points. Each time, 10 neural networks were fitted to average the
randomness in the initial seed to the neural networks. The dependent variable of the
surrogate model fit (y = pin− pout ) is then calculated as the average of the 10 neural
networks. The validation space is given by 104 randomly sampled points. Note that the
neural networks were not fitted to the latent variables u′, but to the initial independent
variables u. This is different to the results reported in Chapters 11 and 12.

Figure 14.3 shows the mean absolute error |ε| of the pressure difference y = pin− pout
as a function of

∥∥Wk
∥∥av

F . The threshold γ = 0.05 used in the previous section is also
shown. From this figure, where we used log-scale for |ε|, we see that sampling more
than 1000 points does not reduce the error further. Increasing the sampling space above
np ≈ 300− 500 only marginally reduces the error in the fitted neural network. This
corresponds to the concept of learning curves as described by Provost et al. [83] which
says that an increase in sampling points does not improve the accuracy of the surrogate
model. The threshold γ corresponds to the point in which the decrease in the averaged
norm

∥∥∆Wk
∥∥av

F in Figure 14.2 flattens and is at∥∥∆Wk
∥∥av

F ≈ 0.02-0.05 (14.9)

Since we want to avoid the fitting of the surrogate model (neural networks) during the
sampling, this can be used as the termination criteria in the sampling for surrogate model
generation
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14.2.3 Results of the Applied Procedure

The application of the method with the tuning parameters given in Table 14.3 and Latin
hypercube sampling for the calculation of new sampling points results in a termina-
tion after 210 sampled points. This is similar to the previous oversampling shown in
Figure 14.2. Here, the threshold γ is crossed after 200 sampling points. The resulting
surrogate model shows a maximum absolute error of 0.07 bar and an average absolute
error of 1× 10−3 bar. The 3 significant weights explain 94.30 % of the variance in the
dependent variable y= pin− pout . All 7 weights explain in total only 94.45 % of the vari-
ance in the dependent variable due to the nonlinearity of the pipe model. Consequently,
the insignificant weights explain combined only 0.15 % of the variance in y. The high
maximum absolute error is caused by neglecting the corner points of the independent
variables, i.e. the points given by constructing a 2-point regular grid using the bounds in
Table 14.2. Hence, the surrogate model is extrapolating close to the corners. With nu = 7,
it would be possible to incorporate the corner points as they only correspond to 27 = 128
points. However, if nu > 10, the incorporation of the corner points would require a large
number of sampled points. In this situation, it is best to apply the surrogate model first.
If necessary, it is then possible to add only the corner points in which the subsequent
application of the surrogate model is moving. This reduces the points which one has to
sample.

14.3 Ammonia Synthesis Loop Case Studies

So far, the method was applied to a single case in which ny = 1. Now, two additional case
studies are used for testing the sampling procedure with ny > 1 and evaluate, whether
similar conclusion can be drawn. Both case studies are part of the ammonia synthesis
loop shown in Figure 14.4. The first case study is the reaction section (marked red) as
previously used in Chapters 11 and 12. The second case study is looking at the separation
section (marked green) of the same synthesis loop.

The maximum absolute error max |ε| and the root mean squared error (RMSE)

RMSEi =
∑

nval
1

(
ysurr,i− yval,i

)2

nval
(14.10)

are used to assess the performance of the surrogate models. In addition, the relative error
is calculated using the range of the dependent variables of the validation space, yval , i.e.

ε i,rel =
ε i

maxyval,i−minyval,i
(14.11)
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Figure 14.4: Ammonia synthesis loop with the submodels Reaction Section and Separa-
tion Section.

14.3.1 Reaction Section of an Ammonia Synthesis Loop

The reaction section of the ammonia synthesis loop is applied in Chapters 11 and 12 in
the introduction of new latent variables u′. It is connected to the compressor train and
the separation section through the overall mass recycle. It consists of two consecutive
reactor beds with interstage heat integration (HEx3). Furthermore, the reaction heat is
used for the generation of high pressure stream (HEx5) and heating the inlet flow to the
first bed (HEx2 and HEx4). It is shown in Figure 14.4. Note, that the labeling of the heat
exchangers is different than in Chapers 11 and 12.

Model Description

The model has 10 independent variables (u): the inlet pressure pin, the inlet temperature
Tin, 5 inlet molar flows ṅi,in (H2, N2, NH3, Ar, and CH4), 2 split ratios, and the outlet
temperature of the steam generation heat exchanger 5, THEx5,out . There are 4 dependent
variables (y): the pressure drop ∆p, the temperature change ∆T , the rate of extent of
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reaction ξ̇ , and the duty of heat exchanger 5, QHEx5. It is possible to define exact mass
balances using ξ̇ and the stoichometric coefficients νi

ṅi,out = ṅi,in +νiξ̇ (14.12)

In the previous application of the model for surrogate model generation in Chapters 11
and 12, a 2-point regular grid and 5000 points defining a Latin hypercube were used.
This resulted in reasonable errors for the dependent variables ∆p, ∆T , and ξ̇ s through
the introduction of latent variables u′. The duty of the heat exchanger is a new dependent
variable. The 2-point regular grid corresponds already to 210 = 1024 sampling points,
but we want to see if we can terminate the sampling with even fewer points.

The upper and lower bounds of the sampling grid can be found in Table 14.4. Mole
fractions xi and the total molar flow ṅin are used as independent variables in the sur-
rogate model generation and application of PLSR instead of the molar flows ṅi,in. This
requires omitting the mole fraction of hydrogen. Furthermore, the molar ratio H2/N2 is
used instead of the mole fraction of nitrogen as independent variable in surrogate model
fitting.

The surrogate model structure is a two layer cascade forward neural network with 5 hid-
den neurons in each layer. The validation space consists of nval = 104 randomly sampled
points.

Table 14.4: Upper and lower bounds of the independent variables (u) (reaction section).

Variable Unit Lower Upper
Bound Bound

pin [bar] −10 +10
T [K] −20 +20
ṅH2,in [%] −20 +20
ṅH2 ,in
ṅN2 ,in

[%] −10 +10
ṅNH3,in [%] −20 +20
ṅAr,in [%] −20 +20
ṅCH4,in [%] −20 +20
THEx5,out [K] −20 +20
Split Ratio 1 [pp] −5 +5
Split Ratio 2 [pp] −20 +20
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Figure 14.5: Development of the Frobenius norm
∣∣∣∣∆Wk

∣∣∣∣ as a function of the number
of sampling points with γ = 5×10−2 (reaction section).

Results

The data for the proposed sampling procedure are the same as in the pipe case study,
see Table 14.3. PLSR was applied to all dependent variables simultaneously with γ =
0.05. The sampling procedure terminated after 410 sampled points. This corresponds
to a regular grid with 1.8 points for each dependent variable. Figure 14.5 shows the
evaluation of the norm of the significant weights. Similar to the pipe section, we can
observe a steep decrease in

∥∥∆Wk
∥∥av

F for the first 100 sample points. This decrease is
reduced with an increasing sampling space. We have ns = 5 weights in W which explain
more than 98.34 % of the variance in the dependent variables y after 410 sampling
points. w6 explains only 0.6 % of the variance in y. During the sampling procedure, ns
changed twice in the first 100 points but remained constant at ns = 5 from 100 points
onwards.

Repeating the sampling procedure 10 times, results in a mean number of sampling points
np = 382.5 with a standard deviation of s = 27.2. This shows that the proposed sampling
procedure is consistent in its termination. The variation in the number of sampling points
is caused by the randomness in the new sampling points. The performance measures
max |ε i| and RMSEi for the four dependent variables (y) can be found in Table 14.5.
Again, the corner points were not sampled. This results in extrapolation for certain values
of the independent variables y. The maximum absolute normalized error max

∣∣ε i,rel
∣∣ is

0.09 %, 0.26 %, 0.28 %, and 0.27 % for ∆p, ∆T , ξ̇ , and QHEx5 respectively.
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Figure 14.6: Mean absolute error for y3 and y4 of the surrogate model |ε| as function of
the averaged Frobenius norm of the significant weights Wk (reaction section).

The chosen threshold
γ = nadd×10−2 = 5×10−2 (14.13)

was based on the threshold in the pipe case study. Hence, we want to analyze the the
correlation of

∥∥∆W
∥∥av

F with the surrogate model fit. 2000 points were sampled using
Latin hypercube sampling and were used in the following analysis. 10 neural networks
were fitted every 5 points from 25 to 100 points, every 25 points to 1000 points and sub-
sequently every 100 points. The used value of the dependent variable in the calculation
of the error is the average value of these 10 values. PLSR was applied to all dependent
variables simultaneously. Figure 14.6 shows the mean absolute error for the dependent
variables ξ̇ and QHEx5 as a function of

∥∥∆W
∥∥av

F . The two dependent variables corre-
spond to the variables with the highest maximum absolute relative error according to
Eq. (14.11). If we compare Figure 14.6 (this case study) to Figure 14.3 (pipe model), we
can directly see that the correlation between |ε| and

∥∥∆W
∥∥av

F is similar. In both cases,
increasing the number of sampling points does not improve the fit from a certain point
onward and gives a similar threshold γ .

Table 14.5: Results for the dependent variables y (reaction section).

y ∆p ∆T ξ̇ QHEx5
[mbar] [mK] [mol/s] [kW]

max |εi| 8.0 14.8 0.78 85.0
RMSEi 0.5 1.0 0.03 7.2
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14.3.2 Separation Section of an Ammonia Synthesis Loop

The task of the separation section of the ammonia synthesis loop is to separate ammonia
from the reaction gas. This is achieved by several sequential and parallel heat exchangers
followed by a separator. A heat exchanger using water as coolant (HEx6) cools the gas
stream leaving the reaction section before it is split into two parallel heat exchanger
trains. The first cooling train uses the gas stream leaving the separator for heat integration
(HEx7) whereas the second cooling train uses liquid ammonia as refrigerator in two
separate heat exchangers (HEx8 and HEx9). The two streams are subsequently mixed
and cooled (HEx10) with liquid ammonia. Ammonia is then separated in a separator
in which the liquid stream is considered as product stream and the gas stream is heat-
integrated with the first parallel heat exchanger (HEx7).

Model Description

HEx6 and HEx7 are modelled using the Number of Transfer Units Method. HEx8,
HEx9, and HEx10 are heat exchangers with fixed outlet temperatures THEx8,out , THEx9,out ,
and THEx10,out . The duties of the heat exchangers are calculated using the mass enthalpy
of the gas streams as a function of the temperature, pressure, and composition. The mass
enthalpy was calculated using a surrogate model based on cubic B-splines [41]. This
surrogate model was fitted to points sampled in Aspen HYSYS. This is a simplified ap-
proach, but rather accurate. The separator is calculating the vapour-liquid equilibrium
using Raoult’s law for NH3 and Henry’s law for the other gas components [1]. It has to
be noted that heat exchangers 8 and 9 are redundant in this model structure as heat ex-
changer 10 is cooling the stream to a fixed outlet temperature. However, in a real plant,
the cooling in heat exchangers 8,9, and 10 is achieved using an ammonia refrigeration
loop. The different heat exchangers correspond then to a liquid ammonia refrigerant at
different pressure levels.

The separation section has 13 independent variables (u). These are the inlet pressure pin,
the inlet temperature Tin, 5 molar flows ṅi,in (H2, N2, NH3, Ar, and CH4), the inlet flow
rate ṅH2O,in and temperature TH2O,in of the cooling water in HEx6, 1 split ratio, and the
outlet temperatures of the heat exchangers THEx8,out , THEx9,out , and THEx10,out . The 12
dependent variables (y) are the stream variables of the two streams leaving the section
(∆p, ∆T , and ṅi) corresponding to the product (subscript P) and the recycle (subscript R)
stream, the temperature change of the water stream in heat exchanger 6, ∆TH2O , and the
heat duties in the heat exchangers 8, 9, and 10 (QHEx8, QHEx9, and QHEx10. Note, that the
temperature difference between the liquid outlet stream and the feed stream as dependent
variable can be calculated using the two independent variables Tin and THEx10,out as

∆TP = Tin−THEx10,out (14.14)
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Table 14.6: Upper and lower bounds of the independent variables (u) (separation sec-
tion).

Variable Unit Lower Upper
Bound Bound

pin [bar] −10 +10
T [K] −25 +25
ṅH2,in [%] −15 +15
ṅH2 ,in
ṅN2 ,in

[%] −10 +10
ṅNH3,in [%] −20 +20
ṅAr,in [%] −20 +20
ṅCH4,in [%] −20 +20
ṅH2O,in [%] −20 +20
TH2O,in [K] −5 +5
THEx8,out [K] −4 +4
THEx9,out [K] −4 +4
THEx10,out [K] −8 +8
Split Ratio [pp] −5 +5

Chapter 11 proposes to use exact component mass balances to avoid the creation or
destruction of mass through the introduction of surrogate models. This can be achieved
through defining a separation factor αi for each chemical component i:

ṅi,rec = αiṅi,in (14.15)
ṅi,prod = (1−αi) ṅi,in (14.16)

Consequently, 12 surrogate models have to be fitted. The upper and lower bounds of the
independent variables can be found in Table 14.6. The parameters used are the same as in
the reaction section and for the pipe model. They are given in Table 14.3. The surrogate
model structure is a 2-layer cascade forward neural network with 5 hidden neurons in
each layer. The validation space consists of nval = 104 randomly sampled points.

Results

We apply PLSR to all dependent variables y simultaneously because with ny = 12, it
is computationally expensive to perform PLSR independently. The method terminated
after np = 635, corresponding to 1.6 points in a regular grid. This is a similar number
of points in a regular grid as in the reaction section. With β = 2 %, we find that ns = 5
weights explain 90.46 % of the variance in the dependent variables y. The neglected w6
explains 1.83 % whereas w7 explains 0.78 %. Figure 14.7 shows the evaluation of the
filtered norm for the simultaneous approach. We can see a jump in the norm at about
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Figure 14.7: Development of the Frobenius norm
∣∣∣∣∆Wk

∣∣∣∣ as a function of the number
of sampling points with γ = 5×10−2 (separation section).

100 points corresponding to an increase in ns from 6 to 7. After 250 sampled points, ns
is further reduced to the final 5 significant weights.

The error performance measures max |ε i| and RMSEi in the corresponding surrogate
model fit can be found in Table 14.7. As the splitting factors for H2, N2, Ar, and CH4
are all around 99 %, it is not useful to calculate the error directly. Hence, their errors
are calculated as the error in the recycle stream ṅi,rec. Normalizing the error according
to Eq. (14.11) results in a maximum absolute normalized error of around 0.1 % for the
first 9 dependent variables in Table 14.7. The last three variables (heat exchanger duties)
have however a normalized error of around 1 %. This can be explained by the phase
change occurring in the heat exchangers through the condensation of ammonia. This
phase change is not captured perfectly using the surrogate model approach. Applying
the method 10 times gives an average number of sampling points of np = 639.5 and a
standard deviation s = 51.2.
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14.3. Ammonia Synthesis Loop Case Studies

Table 14.7: Results for the dependent variables y (separation section).

y Unit ε max |ε i| RMSEi

∆pR [mbar] 0.98 0.07
∆TR [K] 0.130 0.013
∆pP [mbar] 2.42 0.14

∆TH2O,out [mK] 2.0 0.3
αH2 [mmol/s] 0.6 0.06
αN2 [mmol/s] 0.18 0.02

αNH3 [mmol/s] 54.5 4.6
αAr [mmol/s] 0.99 0.09

αCH4 [mmol/s] 0.65 0.04
QHEx8 [kW] 231 24
QHEx9 [kW] 71 7
QHEx10 [kW] 94 12

14.3.3 Combination of Surrogate Models for Optimization

So far, we fitted individual surrogate models to the reaction and separation section. The
validation error of the surrogate model is small. However, in the real process the two
models are combined and have a recycle (Figure 14.4), and a good individual fit does
not guarantee that the combined model converges to the same optimum as the detail
model. The reaction and the separation section are therefore combined with the models
of the purge split and the compressor train to form the flowsheet in Figure 14.4 which
has 9 operational degree of freedom.

The considered cost function which should be minimized is

J =− pPṅP− ppurgeṅPurge− pSQHEx5

+ p f eed ṅ f eed

+ pC (QComp1 +QComp2 +QComp3)

+ pHEx (QHEx8 +QHEx9 +QHEx10)

(14.17)

The prices for the feed, product, and purge stream as well as the compressor duties are
adopted from [7] with p f eed = 0.704 $/kmol, pP = 3.4 $/kmol, ppurge = 0.0112 $/kmol,
and pC = 0.072 $/kW. The heat duty in heat exchanger 5 has a cost term of pS =
0.036 $/kW whereas the cooling in heat exchangers 8, 9, and 10 has a cost term of
pHEx = 0.027 $/kW. The cooling water flow and temperature to heat exchangers 1 and 6
are considered to be at a fixed value.

The operational constraints are given by the bounds in the decision variables for surro-
gate model generation. In addition, there are bounds on the purge split ratio and the com-
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pressor circumferential velocity. The duties of heat exchanger 8 and 9 may be different
between the surrogate model and the original model. This is caused by the redundancy
of both heat exchangers.

Both the original model and the surrogate-based model are subsequently optimized for
a given feed. The results are very similar. 8 degrees of freedom are at constrained oper-
ation. The compressor speed is unconstrained and the error with respect to the original
model is 0.59 %. The resulting relative error in the cost function is 0.14 %.

14.4 Discussion

The proposed method does not require the fitting of a surrogate model. In this respect, it
differs to the ALAMO approach [20], the smart sampling algorithm [37], and the adap-
tive sampling approach of Eason and Cremaschi [24]. The computational expenses are
hence reduced if ny or nu is large or the fitting of the surrogate model is computational
expensive. A further advantage is that the decision about the surrogate model basis func-
tion is separated from the sampling. This allows to choose the best basis function based
on the sampled space. There are however certain points which have to be addressed.

14.4.1 Choice of Tuning Parameters

Several tuning parameters have to be decided. The most important tuning parameter is
the threshold γ of the norm as it serves as termination criteria. It is possible to continue
the procedure by lowering the threshold γ , if one is not satisfied with the performance
of the surrogate model. Hence, a higher threshold may be convenient to avoid over-
sampling. In general, the nonlinearity of the response surface has a high influence on the
required threshold. The results of the three case studies indicate however that a threshold
of approximately 5×10−2 seems to work for several cases, if PLSR is performed after
every fifth sampled point. The similar performance can be explained through the con-
straint of having weights with length 1. This allows the application of the same threshold
for several cases.

A second important tuning parameter is the threshold β in the explained variance which
is used to select the significant weights wi,k. Depending on the definition of the inde-
pendent variables, this threshold may exclude the majority of the weights as discussed
in Chapter 12. For example, if molar flows are used as independent variables in the pipe
case study, then only 1 weight is significant. On the other hand, using mole fraction as
independent variables results in the presented 3 significant weights. Furthermore, using
a hard bound β may result in constant switching of ns. This results in drastic changes
in the norm as illustrated for ∆Wk,ξ̇ in Figure 14.7. This was weakened in the presented
case studies by using the minimum value of ns of the last two steps. As an alternative,
it is possible to choose ns directly after sampling a certain number of points instead of
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Table 14.8: Simultaneous vs. individual application of PLSR.

Case Study Approach np s

Reaction Individual 368 28.7
Simultaneous 382.5 27.2

Separation Individual 664 52
Simultaneous 639.5 51.2

choosing the threshold β . In all case studies, ns did not change after a certain number of
sampled points with a

∥∥∆W
∥∥av

F still way larger than the threshold γ .

Further tuning parameters are the number of sampled points in each iteration, nadd , and
the past horizon n f for averaging the norm. It is advisable to have a small value of nadd to
avoid problems in the calculation of the differences ∆Wk. However, if chosen too small,
it can be that the sampling space is not properly filled. Provost et al. [83] proposed as
an alternative to the arithmetic a geometric sampling approach. The number of sampled
points increases with increasing step number in geometric sampling. They showed that
the computational load to converge to the required number of sampling points is reduced
as the termination criteria does not have to be evaluated as frequently. Applying this
approach for the PLSR-based termination criteria can however be problematic as the
method is relying on the difference in the loads. As the calculation of the weights is not
computationally expensive, at least if applied simultaneously, the arithmetic approach
used in this paper seems reasonable.

The past horizon n f is important to remove problems with oscillatory behaviour of the
norm. Oversampling can be the result if it is chosen too high. Hence, it should be limited.
The value n f = 5 used in the case studies seems to be a reasonable. It avoids oversam-
pling while preventing preemptive termination of the sampling.

14.4.2 Simultaneous and Individual Application of PLSR

If ny > 1, one has to decide whether PLSR is applied individually to each dependent
variable yi or simultaneously to all dependent variables. We used simultaneously in both
case studies. The advantage of applying PLSR individually is that it is possible to see
which of the dependent variables require the most sampling points.

Both ammonia case studies were repeated 10 times with individual application of PLSR
to compare the performance of the sampling procedure and whether there is a differ-
ence if PLSR is applied simultaneously or individually. The resulting average number
of sample points and standard deviations can be found in Table 14.8. The difference in
the average number of sampling points is not significant in either case study. Hence, we
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conclude that is advantageous to apply PLSR simultaneous to all dependent variables.
This reduces the computational load in calculating the weights.

14.4.3 Choice of Norm

The choice of the norm is in general not very important. It only has an influence on the
defined threshold. The 1-norm will correspond to the the 1-norm of the weight wns,k as
the difference is largest in the last significant weight. The contribution from the other
weights wi,k with i < ns are then neglected. As a result, the termination threshold has to
be higher than in the case of other norms. The infinity norm on the other hand calcu-
lates the maximum absolute row sum. As the individual weights wi,k are the columns of
the matrix Wk, this approach seems counter intuitive. However, the infinity norm looks
at all weights wi,k with i ≤ ns compared to the 1-norm. The 2-norm and the Frobenius
norm incorporate all entries in the difference ∆W1:ns,k. The Frobenius norm was even-
tually chosen due to the similarity of the Frobenius norm to the vector 2-norm and its
performance in the application.

14.5 Conclusion

A new method for sampling for surrogate model was introduced. It incorporates a novel
termination criteria to predict when sufficient points are sampled. This termination crite-
ria is independent of the surrogate model basis functions and does not require the fitting
of a surrogate model at each sampling step. This is advantageous if the fitting of the sur-
rogate model is computational expensive and/or the number of dependent variables, ny,
is large. The case studies showed that the application of the termination criteria allows
a reduction in sampling points compared to predefined sampling. For the ammonia pro-
cess, the combination of the surrogate models with the compressor train of the original
model resulted in very good results in the subsequent optimization.
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Closing Remarks
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Chapter 15

Conclusion

The aim of this thesis was to investigate and develop methods for optimal operation
of integrated chemical processes. As mentioned in the introduction, this includes both
optimal operation of subprocesses and the development of methods for the optimization
of integrated processes.

Optimal operation of subprocesses was investigated using an ammonia reactor as case
study. This allows the comparison of the different applied approaches. Economic non-
linear model predictive control served as benchmark for the other methods. In its im-
plementation, it is the fastest method to converge to the steady-state optimum while
simultaneously considering the optimal trajectory.

The investigation of the effect of dependent disturbances was analyzed in the context of
self-optimizing control. Neglecting the dependency of the disturbance on the input and
the real disturbance to the system results in a new optimal selection matrix, even if the
nominal inlet values to the subprocess are unchanged. However it was shown, that the
optimal selection matrix calculated from the subprocess has a similar performance if the
calculated setpoints are adjusted. This is necessary as the optimal operating point can
be different. Adjusting the disturbance weighting matrix to the actual magnitude of the
disturbances reduced the difference in loss further.

The hierarchical combination of self-optimizing control and extremum-seeking control
is hence proposed. The self-optimizing controllers provide in this method a fast, close-to-
optimal rejection of the disturbances. The extremum-seeking controllers then adjust the
setpoints of the self-optimizing controllers to remove the steady-state loss in the case of
persistent disturbances. A further advantage of this combined approach is the reduction
of the impact of plant-model mismatch as the adjustment of the setpoint is performed
using a model-free approach. The hierarchical implementation is possible due to a time
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scale separation of both control structures.

Feedback real-time optimization as third investigated method is the translation of the op-
timization problem in conventional real-time optimization into a feedback problem. This
reduces the computational load of the optimizing controller and allows the application
in cases where the optimization problem is computational expensive. The application
to the ammonia synthesis reactor showed that the method can be as well applied to a
multivariable case. Its performance is better than the performance of extremum-seeking
control while reducing the computational load compared to economic nonlinear model
predictive control. It is however depending on the accuracy of the model, similarly to
economic nonlinear model predictive control.

The application of optimal operation of subprocesses is depending on the possibility to
define a local cost function. This cost function has to correspond to the overall cost func-
tion as otherwise the overall process is not at its optimum. Even if it may be possible
to achieve optimal operation for certain subprocess, it remains challenging to achieve
optimal operation for all subprocesses due to the problems associated with the local cost
function. The application of surrogate models to subprocesses and subsequent optimiza-
tion of the combined process using the surrogate models can be seen as one solution to
this problem. Through the incorporation of recycle streams and computational expensive
models in the surrogate models, it is possible to reduce the computational cost of the op-
timization problem. This may allow the application of optimal operation using detailed
models. Several approaches in the field of surrogate model generation were developed.

First, the application of partial least square regression allows a reduction in independent
variables through the introduction of latent variables. This is especially useful in the case
of a large number of independent variables, as the computational cost of fitting surrogate
models increases with an increasing number of independent variables. It reduces how-
ever the performance of the resulting surrogate model as information is lost about the
previous independent variables. The introduction of exact mass balances in the method
prevents the creation or destruction of mass.

Second, the response surface should be as simple as possible. The simpler the response
surface, the less points have to be sampled to obtain satisfactory performance of the
surrogate model. This is achieved through a variable transformation from the original
independent variables to self-optimizing variables. Contrary to their application in self-
optimizing control, all state variables can be used in the developed method.

Third, the sampling has a major influence on the performance of the surrogate model.
Current sampling procedures may either result in oversampling or require the fitting of a
surrogate model at each sampling step. Both can be prohibitive due to the computational
expense in the case of a large number of independent variables. Partial least square re-
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gression can be used as a computational cheap termination criteria for sampling to avoid
oversampling and the fitting of surrogate models at each sampling iteration.
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Chapter 16

Future Work

This chapter will discuss future research direction based on the results presented in this
thesis. Future work can be conducted on both optimal operation of subprocesses as well
as the application of surrogate models in the context of real-time optimization.

16.1 Optimal Operation of Subprocesses

Part II looked at the optimal operation of subprocesses with an ammonia reactor as
case study. The studied methods all have their own advantages and disadvantages. The
majority of these methods attract constant research interest for improvements in the con-
vergence to the optimum and stability analysis of the resulting controllers. Hence, this
will not be covered in detail.

The investigated case study has however one advantageous property, independently of
the utilized method. It is possible to define a cost function which corresponds to the
overall cost function when integrated in the ammonia synthesis loop. This is obviously
not always the case. Chapter 6 discussed potential implications of other subprocesses
in the ammonia synthesis loop. However, no direct conclusions can be drawn for other
processes.

Hence an open research direction is the development of a method to assess the appli-
cability of optimal operation to subprocesses. This can help in the decision what type
of control structure should be applied. Similarly, the development of a method to assign
economic costs to the connection streams may allow the utilization of the studied meth-
ods. In the context of real-time optimization, the prices assigned to different stream then
have to be updated regularly. Both research direction may aid in the decision, whether it
is useful to use optimal operation for subprocesses.
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16.2 Optimal Operation through Introduction of Surrogate Models

Part III looked at the introduction of surrogate models in the context of optimization.
Current research in the field of surrogate modelling is either focusing on the sampling
or the utilized basis functions. Both fields have a large impact on the performance of
the surrogate model independently of its application. This section will introduce future
research directions in addition to the above mentioned research areas.

16.2.1 Selection of Splitting Streams

The splitting of the overall process into subprocesses allows the generation of surro-
gate models for said subprocesses. The optimization of a combined flowsheet based on
the surrogate models reduces the computational costs, if these subprocesses incorporate
recycle streams or are complex. The application of surrogate models in the literature is
based on process knowledge. Frequently, surrogate models are fitted to noisy or complex
unit operations.

The question remains which subprocesses or unit operations should be substituted by
surrogate models. It is general advisable to split streams which do not have a lot of
stream variables. However, there is no methodology for this problem. This reduces the
number of independent and dependent variables in surrogate model generation. The de-
velopment of a concise theory for which unit operations or subprocesses should be sub-
stituted is a future research direction The adaptation of partioning and tearing principles
from sequential-modular flowsheeting software can be one approach to develop a theory
for splitting of a process into subprocesses.

16.2.2 Sample Domain Definition

The definition of the sampling domain is crucial in the generation of surrogate models.
In general, it is beneficial to sample only in regions we are interested in. As a result, less
points have to be sampled and the response surface may be simpler. Chapter 12 investi-
gated this influence in the case of two reacting species and concluded that it is necessary
to identify dependencies in the inlet variables to improve the fit of the surrogate model.
Similarly, the introduction of self-optimizing variables in Chapter 13 aims at sampling
only the regions we are interested in to obtain a simpler response surface.

However, most variables are still sampled within fixed bounds. This approach neglects
dependencies and increases the sampling space unnecessarily. This results frequently in
more complicated response surfaces which require more sampling points. For example,
if an inlet stream to a surrogate model is coming from a compressor, both the temperature
and the pressure are not entirely independent. Similarly, the variation of the inlet molar
flows results in the separation section in sampling mole fractions of ammonia which are
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impossible to achieve due to the thermodynamical equilibrium. Hence, a future research
direction may be the development of a method to improve the incorporation of process
knowledge in the definition of the sampling grid. This method should preferably incor-
porate information obtained from the other subprocesses to simplify its application.
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Appendix A

Model Description for the Ammonia
Reactor of the Brunsbüttel Ammonia
Plant

This chapter is describing the model used in Chapters 4, 5, 6, 7, 8, and 13. The process
model is similar to the one used by Morud and Skogestad in their analysis of the limit-
cycle behaviour [75]. The modifications to the core process model as described below are
given in the individual chapters. The process itself consists of three sequential reactor
beds and is shown in Figure A.1. The feed (denoted by the subscript in) is split into
four streams given by three split ratios. These split ratios correspond to the manipulated
variables u =

[
u1 u2 u3

]T. One of the streams is heated through the reactor effluent
in a heat exchanger to increase the inlet temperature of the first bed whereas the other
three streams are quench (cooling) streams to the three reactor beds. This results into the
positive feedback mentioned by Morud and Skogestad [75].

A.1 Model assumptions

In order to simplify the mathematical model, the following assumptions are made:

• there is no pressure drop in the system;

• the heat capacity of the streams are independent of composition and temperature;

• there is a perfect low level ratio controller controlling the split ratios;

• the change in the split ratios can be assumed to be instantaneous, and hence, dy-
namics for the valves do not need to be incorporated;
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Figure A.1: Heat-integrated 3 bed reactor system of the ammonia synthesis gas loop.

• the reactor beds can be modelled as continuous stirred tank reactor (CSTR) cas-
cade. This corresponds to a discretization of the partial differential equation of a
plug-flow reactor along the x-axis;

• there is a time-scale separation between the changes in the concentration and the
temperature. Hence, it is possible to assume that the concentration is at steady-
state in the investigated reactor section.

• the gas hold-up in the sections of the bed is assumed to be constant;

• the mixing of the streams before the reactor beds is perfect;

• the heat capacity of the process gas is negligible compared to the heat capacity of
the catalyst bed.

Based on the above mentioned assumptions, a differential algebraic formulation is pro-
posed in the following sections. The considered disturbances are inlet disturbances

d =
[
ṁin pin Tin wNH3,in

]T (A.1)

The differential equations represent the temperature evolution within the sections of each
reactor bed whereas the algebraic equations define the concentrations within the sections
of the reactor beds. The definition of the states and parameters are given in the Tables A.1
and A.2.
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A.2 Reactor model

The reaction rate as a function of the partial pressure pi, j in the CSTR reactor j of the
cascade is given by the Temkin-Pyzhev equation as described by Froment [36].

rN2, j = k j,1
pN2, j p

3
2
N2, j

pNH3, j
− k j,−1

pNH3, j

p
3
2
H2, j

(A.2)

in which the reaction constants k j,±1 are given by the Arrhenius equation:

k j,±1 = A0,±1e
−

Ea,±1
R(Tj+273.15) (A.3)

It has to be noted, that in this model, the molar ratio of hydrogen to nitrogen is considered
to be fixed at 3. This corresponds to the stoichiometric ratio in the reaction. As the only
considered concentration state is given by the mass fraction of ammonia, wi, the partial
pressures have to be calculated from the mass fraction of ammonia. This reaction rate is
written in [kmol N2/ m3

cat h] and hence, the reaction rate in [kg NH3/kgcat h] needed for
the mass and temperature balances is then given by

rNH3, j = f rN2, j
2×17

ρcat
(A.4)

The reaction rate is multiplied with a factor of f = 4.75 to match plant data as explained
by Morud and Skogestad [75]. The change in the temperature in each subsection of the
reactor is then given by

dTj

dt
=

cp,gas
(
ṁ j−1Tj−1− ṁ jTj

)
+mcat, jrNH3, j∆Hrx

mcat, jcp,cat
(A.5)

whereas the component balances can be written as

0 = ṁ j−1wNH3, j−1− ṁ jwNH3, j + rNH3, jmcat, j (A.6)

Table A.1: Nomenclature of the states and decision variables.

State Description Lower bound Upper bound Unit

x Temperatures T 200 600 °C
z Mass fractions NH3 wNH3 0 100 wt.%
u Split ratios u 0 100 %
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Table A.2: Nomenclature of parameters and calculated values.

Variable Description Value Unit

A0,+1 Arrhenius factor, forward 1.79×104 -
A0,−1 Arrhenius factor, backward 2.57×1016 -
Ea,+1 Activation Energy, forward 87,090 J/mol
Ea,−1 Activation Energy, backward 198,464 J/mol

R Universal gas constant 8.314 J/mol/K
ρcat Catalyst density 2,200 kg/m3

cp,gas Gas heat capacity 3,500 J/kg/K
cp,cat Catalyst heat capacity 1,100 J/kg/K

mcat,R1 Catalyst mass bed 1 14,718 kg
mcat,R2 Catalyst mass bed 2 21,186 kg
mcat,R3 Catalyst mass bed 3 33,440 kg
mcat, j Catalyst mass in volume j depending kg

ṁ j Mass flow in volume j depending kg/s
∆Hrx Heat of reaction −2.7×106 J/kg NH3

U Heat transfer coefficient 536 W/m2/K
A Heat exchanger area 283 m2

A.3 Heat exchanger model

The heat exchanger is modelled using the number of transfer units (NTU) method. In
this method, the NTU and the ratio of the enthalpy (C∗) of the cold (subscript c, feed)
and hot stream (subscript h, outlet bed 3) are calculated and based on these values, the
effectiveness (ε) can be calculated in Eq. (A.9).

C∗ =
ṁccp,gas

ṁhcp,gas
(A.7)

NTU =
UA

ṁccp
(A.8)

ε =
1− e−NTU(1−C∗)

1−C∗e−NTU(1−C∗)
(A.9)

This effectiveness corresponds to the percentage of the maximum achievable energy
transfer Q as shown in Eq (A.10).

Q = εQmax

= εṁccp,gas(Tin,h−Tin,c)
(A.10)
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Due to the assumption of a constant heat capacity, the outlet temperatures of the heat
exchanger are then given as

Tout,h = Tin,h−
Q

ṁhcp,gas
(A.11)

Tout,c = Tin,c +
Q

ṁccp,gas
(A.12)

It has to be noted, that these model equations do not add a further differential of algebraic
equation to the system. This is caused by the fact, that the equations define a relationship
between the temperature of the first CSTR in the first bed and the outlet temperature of
the last bed. As the inlet temperature of a bed is not a state, no additional algebraic
equations are defined.

A.4 Stream mixing and general requirement

The equations of mixing two streams 1 and 2 for the temperature and concentrations are
given as

Tmix =
ṁ1

ṁ1 + ṁ2
T1 +

ṁ2

ṁ1 + ṁ2
T2 (A.13)

wNH3,mix =
ṁ1

ṁ1 + ṁ2
w1 +

ṁ2

ṁ1 + ṁ2
w2 (A.14)

Similar to the heat exchanger equations, they do not increase the number of algebraic
equations as they are purely defining relationships between the outlet states of the pre-
vious bed and the inlet of the following bed. The inlet temperature of bed 1 is in the
following denoted as T0 as it has an important influence on the occurrence of limit-cycle
behaviour.

Due to mass conservation, the following inequality constraint for the decision variables
u has to be fulfilled as well.

h(u(t)) = ∑
i

ui(t)−1≤ 0 (A.15)
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A.5 Optimization of the system

The differential states are defined as the temperatures x = T, the algebraic states as the
weight fractions z = w. Both type of states have a total of 3n input variables per time
step in which n defines the number of discrete volumes in each of the 3 reactor beds
(vide supra). The manipulated variables are 3 per time step and correspond to the split
ratio to the inlets of the reactor beds. To summarize, we can write

x ∈ R3n (A.16)

z ∈ R3n (A.17)

u ∈ R3 (A.18)

The corresponding non-linear problem constraints are given in semi-explicit representa-
tion by

ẋ = f(x(t),z(t),d(t),u(t))
0 = g(x(t),z(t),d(t),u(t))
0≥ h(u(t))

(A.19)

in which f corresponds to the differential equations of the temperature defined in Eq. (A.5),
g to the algebraic equations defined in Eq. (A.6), and h(u) to the input inequality defined
in Eq. (A.15). Furthermore, bounds on the variables are defined in Table A.1. This sys-
tem represents an index 1 differential algebraic system which can be verified by taking
the total differential of g(x,z,u) given by

d
dt

g(x,z,u) =
∂g
∂x

f+
∂g
∂z

ż+
∂g
∂u

u̇ = 0 (A.20)

The optimisation was performed using CasADi [4] with IPOPT [102]. The optimal con-
trol problem (OCP) was solved via the direct collocation method [10] with RADAU
order 3 as collocation points. The used integrator for the simulation is IDAS, which is
part of the SUNDIALS package [47], with a fixed integrator step length of tint .
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Appendix B

Model Description for the Synthesis
Reactor Section of an Ammonia Plant

This chapter is describing the reaction section of the simple ammonia reaction section
as case study for surrogate model definition. This case study is used in Chapters 11, 12,
and 14.

B.1 Process Description

The reaction section of the ammonia synthesis gas loop is an example of an integrated
process. The model consists of two reactor beds and is illustrated in Figure B.1. In this
process, a feed consisting of hydrogen and nitrogen is reacting to ammonia. Addition-
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Split1 Split2
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Figure B.1: Flowsheet of the reaction section of the ammonia synthesis loop.
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B. Model Description for the Synthesis Reactor Section of an Ammonia Plant

ally, ammonia as well as the inert gases argon and methane are present in the feed stream.
To exploit the produced heat of the exothermic reaction and improve reactor utilization
through shifting of the thermodynamic equilibrium, several heat exchangers are intro-
duced. A first heat integration is performed using heat exchanger 1 in which the feed is
heated through the stream leaving the reaction section. Secondly, the feed is split into 3
streams going through a valve, an interstage heat exchanger and a heat exchanger post
the second reactor bed. All streams are subsequently mixed with each other and fed to
the first reactor bed. After heat exchanger 3, excess energy present through the exother-
mic reaction is used for creating high pressure steam in heat exchanger 4. In this model,
we have two nested recycle loops (M-R1-HEx2-M and M-R1-HEx2-R2-HEx3-M) as
well as a third recycle loop in contact with the two nested (HEx1-S-HEx3-HEx4-HEx1).
Incorporating this model into a big flowsheet where an overall mass recycle loop is in
contact with the third recycle loop leads to a complicated initialization of the model. In
addition, small changes in the manipulated variables may lead to computational expen-
sive flowsheet evaluations. Hence, incorporating the overall model into an optimization
routine requires further simplifications of the model and frequently leads to crashes of
the system.

B.2 Model Description and Assumption

The flowsheet was modelled in MATLAB and compromises a nonlinear system of equa-
tions with 282 states. The reactor beds are modelled as CSTR-cascades and the heat
exchangers using the Number of Transfer Units Method. As heat exchanger 4 is defined
via its outlet temperature, simple mass balances and an outlet temperature definition are
sufficient. For the calculation of the energy transfer in heat exchanger 4,

The number of independent variables nu = 10 is given by the variables of the feed stream
(7 variables: pin, Tin, and ṅi,in) plus the two split ratios through the valve (nVal) and heat
exchanger 3 (nHEx3) as well as the outlet temperature (THEx4,out ) of heat exchanger 4.
The split ratio through heat exchanger 2 is defined via the aforementioned split ratios to
maintain constant mass in the split.
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