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Summary

Kaibel distillation column, which performs separation of 4 products in a dividing-wall arrange-
ment, provides signi�cant energy and capital savings compared to conventional distillation ar-
rangements. In this thesis, the focus is on optimal operation and control of this type of thermally-
coupled columns, which are operated with two objectives: maximizing the purities in the products
with �xed boilup, minimizing energy with speci�ed product purities.
First, the optimal operation of Kaibel column is studied. The simulation is done rigorously in
HYSYS. This work demonstrates the use of the Vmin tool [1], which can be used to visualize the
minimum vapour requirement. A shortcut procedure is proposed to design a 4-product dividing-
wall column. It is based on the information derived from Vmin diagram. This has the advantage
of having more meaningful guesses for energy requirements and impurity �ows in the column.
Throughout the thesis, it is assumed that vapour split is a degree of freedom. The e�ect of
vapour split is studied in detail in a separate chapter. Two methods are used to study the e�ect
of vapour split manipulation, namely a shortcut method (Vmin diagram) and rigorous simula-
tions. Using a case-study, it is shown that the energy saving potential may be lost if the column
is operated away from its optimal point, due to disturbances.
A control structure is designed for a 4-product dividing wall (Kaibel) distillation column, based
on the plant-wide control procedure by Skogestad [2]. This is done for the case of maximizing
product purities. Unlike the common approach, vapour split is considered as a degree of free-
dom. The exact local method is used to �nd the best control variables as single measurements
or combination of measurements.
For the case of minimizing energy with speci�ed product purities, a soft sensor is designed by
reformulating the self-optimizing control method. The performance of the estimators depend
on whether it is used for monitoring (open-loop) or for closed-loop control applications. In this
work, estimators are designed to be specialized for each case. The approach is to minimize the es-
timation error for expected disturbances and measurement noise. The main extension compared
to previous work is to include measurement noise and to provide explicit formulae for computing
the optimal static estimator. The results are compared with standard existing estimators, e.g.
Partial Least Squares (PLS).
One of the drawbacks of combining measurements is that measurements with slower and faster
dynamics has weights with negative and positive signs and this may lead to an inverse response.
Di�erent possibilities to overcome the inverse response problem are studied in a separate chap-
ter. In the end, control of Kaibel distillation column with the objective of minimizing the energy
requirement is studied. This is done by estimating the compositions of the light and heavy keys
at the ends of the prefractionator.
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Chapter 1

Introduction

1.1 Motivation

Thermally coupled distillation arrangements o�er direct coupling between the prefractionator and
main column which reduce mixing losses and also minimize energy requirement for a speci�ed
separation. Successful applications of the dividing-wall columns have been reported in industry
(e.g. [3]), with BASF, with around 70 columns in operation, as the main user of these columns
[4]. It is a promising energy-saving alternative for separating multi-component mixtures into
four potentially pure products.

The focus of this thesis is to study optimal operation and control of 4-product dividing-wall
columns.

1.2 Organization of thesis

Chapter 2 is a short review on Thermally coupled columns, with special focus on Kaibel columns,
their design, optimal operation and control.

Chapter 3 introduces two operation modes of Kaibel distillation column which is studied in
this thesis. Optimal operation of the column with the two objectives is studied. In this thesis,
we have used a graphical tool, the Vmin diagrams, developed by Halvorsen and Skogestad [1].
Therefore, the application of the Vmin diagram for estimation of minimum energy for Kaibel
distillation column is described.

Chapter 4 shows how to use the information derived from Vmin diagram for shortcut design of
a Kaibel column. This has the advantage of having meaningful guesses for energy requirements
and impurity �ows in the column.

Chapter 5 is on vapour split and whether it should be considered a degree of freedom or
not. Two methods are used to study the e�ect of vapour split manipulation, namely a shortcut
method and rigorous simulations.

In chapter 6, a short review of self-optimizing methods is presented. This method is used in
the next chapter to �nd the appropriate control variables.

Chapter 7 shows the results for controlling Kaibel distillation column. The operational objec-
tive is to maximize the purities of products with �xed boilup. The control variables are derived
from self-optimizing method. The results are compared with the case that the impurities coming

1



2 Introduction

from top and bottom of the prefractionator are known and controlled.

Chapter 8 includes a short review on static estimators, especially the ones which were used
in this thesis. In Chapter 9, a new class of static estimators in presented. The estimators
were derived for four di�erent scenarios: fully open, primary variables are controlled, secondary
variables are controlled and estimation of primary variables are controlled. The results of the
estimation were compared with PLS estimation on a binary and a multicomponent case. In
chapter 10, the results of control of Kaibel column, which is operated with the objective of
minimizing vapour consumption, are presented. This is done by controlling the estimates of
key compositions in the two ends of prefractionator. chapter 11 presents some solutions to the
inverse response problem which stems from combining measurements with di�erent dynamics for
estimation. In chapter 12, the main conclusions of this thesis are summarized along with some
suggestions for further work.

1.3 List of Contributions

International Journals

1. M. Ghadrdan, S. Skogestad, I.J. Halvorsen, "Composition Estimation using Temper-
ature Measurements: Application for Conventional and Thermally-coupled Distillation
Columns", ready to submit

2. M. Ghadrdan, S. Skogestad, I.J. Halvorsen, "Manipulation of Vapour Split in Thermally-
Coupled Distillation Arrangements", Chemical Engineering and Processing 72 (2013) 10-23

3. M. Ghadrdan, C. Grimholt, S. Skogestad, "A New Class of Model-Based Static Estima-
tors", Ind. Eng. Chem. Res., 2013, 52 (35), pp 12451-12462, DOI: 10.1021/ie400542n

4. M. Ghadrdan, I.J. Halvorsen, S. Skogestad, "Optimal Operation of Thermally-Coupled
Kaibel Distillation Columns", Chemical Engineering Research and Design, 89 (8), 2011,
pp 1382-1391

Peer-reviewed Conference papers

1. M. Ghadrdan, S. Skogestad, I.J. Halvorsen, "Dynamic compensation of static estimators
from Loss method", accepted to be presented at DYCOPS, 2013, India

2. M. Ghadrdan, S. Skogestad, I.J. Halvorsen, "Economically Optimal Control of Kaibel
Distillation Column: Fixed boilup rate", presented at ADCHEM, 2012, Singapore

3. M. Ghadrdan, S. Skogestad, I.J. Halvorsen, "Estimation of Primary Variables from Com-
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Chapter 2

A review on optimal design and control

of thermally-coupled columns

The thermally-coupled distillation column, which is the subject of this review, is a
special distillation column that involves direct coupling between the prefractionator
and the main column. This review covers from short-cut design to operation and
control issues.

2.1 Introduction

Distillation is perhaps the most important and widely used separation operation that is used for
about 95% of all �uid separation in the chemical industry and accounts for an estimated 3% of
the world energy consumption [5]. It is notable that more than 70% of the operation costs are
caused by the energy expenses [6].

At the end of 1930s, Brugma [7] �rst proposed a thermally coupled distillation column. This
separation operation was re-introduced by Wright [8] and later analyzed by Petlyuk [9]. The
energy consumption of distillation systems may be reduced by using 'coupling' of columns wherein
the columns are linked directly by process streams. This technique has long been practiced in
cryogenic processing where the incentive for reducing energy consumption is very great [10].

In the recent years, several groups are actively involved in research on energy e�cient dis-
tillation column design and operations. Several heat integrated distillation structures have also
been patented [11, 12, 13, 14].

Although several heat integration techniques are covered in this review, the main focus is
placed on the dividing-wall arrangement. The main intention of this review is to focus the present
status and future scope of research on these issues for columns. This chapter is organized as
follows. In section 2.2, several con�gurations which are used for separation of the components
have been presented shortly. The design and operation issues of energy-e�cient separation are
considered in the next section. Sections 4 and 5 include the controllability analysis and control
design for dividing-wall distillation column.

2.2 Di�erent types of distillation column con�gurations

2.2.1 Simple-column sequences

These consist of two or more simple columns (i.e., a column with one feed, two products, one
condenser and one reboiler) connected by a single stream. For a three-product system, the
following simple column sequences are possible:

5
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Direct sequence

The �rst column separates the lightest product as the distillate and the rest is fed to the second
column to perform the downstream separation (Figure 2.1a). The column pressures can be opti-
mized separately or individually to perform the two splits since the two towers are independent
and are connected by a liquid stream.

Indirect sequence

This setup reverses the sequence of splits by �rst separating out the heaviest product (Figure
2.1b). In this case, the second column is usually operated at a pressure below that of the �rst
to ensure the natural �ow of vapour without using compressor.

Distributed sequence

Unlike the other simple sequences, this one employs sloppy (or distributed) splits to minimize
mixing losses in a three-column sequence (Figure 2.1c). The �rst column separates component
a completely from c and allows b to distribute itself between the distillate and the bottoms to
minimize the column's re�ux ratio. The distillate of the �rst column feeds the second column to
separate component a from b, while the third column uses the bottoms of the �rst to separate
component b from c. The separation e�ciency of this con�guration is said to be the highest
when a partial condenser is used on the �rst column [15]. However, this imposes a lower bound
on the operating pressure of the column that makes the a/b split [16]. The pressure of the other
column can be optimized independently. This sequence shifts part of the heating and cooling
load to intermediate levels on the reboiler and the condenser of the �rst column. Hence, it can
use lower-quality energy, a warmer cold utility or a cooler hot utility. However, distributing the
split often requires a higher capital investment since it calls for a third column and additional
heat exchangers.

2.2.2 Multi-e�ect distillation

Multi-e�ect distillation approach used for separating multi-component mixtures has received
increasing research attention from the last decade (e.g. [17, 18]). The basic idea of this method
is to use the overhead vapour of one column as the heat source in the reboiler of the next column.
The columns may be heat integrated in the direction of the mass �ow (forward integration) or
in the opposite direction (backward integration).

2.2.3 Heat Integrated Distillation Column (HIDiC)

In the distillation technique, heat is used as a separating agent. It is conventionally supplied
at the highest temperature at the bottom reboiler to evaporate a liquid mixture and is lost at
the lowest temperature when liquefying the overhead vapour at the re�ux condenser. So, the
thermal energy recovered at the condenser cannot be reused for heating other �ows in the same
distillation unit. Actually, the energy is degraded over the temperature range, and this is the rea-
son of thermodynamic ine�ciency of the conventional distillation technology. A HIDiC has been
developed through e�ectively applying heat pump principles to conventional distillation columns
[19]. In contrast to other heat pump-assisted distillation columns, this process involves internal
heat integration between the whole rectifying and the stripping sections and thus possesses high
potential for energy savings [20, 21]. Nakaiwa et al. [22] have mentioned in their comprehensive
review that a number of important issues must be considered during HIDiC design, e.g. �exibil-
ities to operating condition changes, in�uences of an impurity of a third component, and process
dynamics and operation. These issues impose strict constraints on the energy e�ciency that can
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be achieved potentially by HIDiC. Therefore, trade-o� between process design economics and
process operation appears to be very important and has to be carried out with great caution. In
the meantime, several con�gurations for HIDiC have been developed and investigated up to now.
So far, most of the research and development on HIDiC has primarily been con�ned to binary
mixture separations [22]. As multi-component mixture separations represent major applications
of distillation columns, development of corresponding HIDiC techniques is a very important and
extremely challenging topic for future work.
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Feed
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bcd
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cd
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Figure 2.1: Simple column con�guration for a four-component mixture. (a) Direct sequence, (b)
Indirect sequence, (c) Prefractionator arrangement

2.2.4 Thermally coupled arrangements

the primary source of ine�ciency in multi-component, simple distillation is due to the irreversible
mixing of non-identical streams. The concentration of the middle-boiling components often
reaches a maximum on intermediate trays and then decreases to satisfy the overall mass balance.
This remixing inherently a�ects the e�ciency of separation.

Employing complex column con�gurations can minimize these mixing losses, as well as re-
duce energy consumption and decrease capital costs. Such columns promote closer interaction
between sections by introducing thermal coupling between di�erent sections. They can employ
additional sections (e.g., side recti�ers) to minimize remixing of components. Complex-column
arrangements can also include prefractionators to minimize feed-tray mixing losses. While ther-
mal coupling improves the separation e�ciency and often reduces column duties, the pressure
constraint can result in a greater temperature spread. Balancing this trade-o� can be di�cult.

Thermal coupling eliminates the condenser (side stripper arrangement), or the reboiler (side
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Table 2.1: Criteria for using di�erent con�gurations [16]

Direct sequence when the feed contains a high concentration
of a and/or the separation between b

and c is relatively more di�cult than that
between a and b (i.e., αb/c < 1.5 < αa/b)

Indirect sequence when the feed contains a large concentration
of c and/or the separation between a and b
is relatively more di�cult than between

b and c (i.e., αa/b < 1.5 < αb/c)

Distributed sequence when the feed contains a high concentration
of b (xb > 0.3) and/or both the splits are di�cult

(i.e., αa/b ∼ αb/c < 1.5)

α ∶ Relative volatility

recti�er arrangement) or both (prefractionator arrangement) and introduces a vapour/liquid
connection. Tedder and Rudd [23] showed that side recti�ers and side strippers can be cost-
e�ective for any ternary separation where less than half of the feed leaves in the middle product
or where low purity of the middle product is acceptable. Fidkowski [15] has shown that using a
side stripper or side recti�er will lead to less energy requirement.

Petlyuk column

This con�guration introduces additional thermal links between the �rst (prefractionator) and the
second (main) column of the prefractionator arrangement to improve e�ciency (Figure 2.2). It
was named Petlyuk after presenting the detailed study which was done by Petlyuk et al. [9]. In
fact, the Petlyuk design replaces the condenser and reboiler of the �rst (prefractionator) column
with thermal couplings. This thermal integration minimizes separation losses and improves
vapour /liquid interaction in all sections of both columns (i.e., yielding higher e�ective rectifying
or stripping ratios).

The Petlyuk column requires the least amount of stripping vapour or rectifying liquid among
all of the options for a three-product system. A detailed analysis of this column is found in [9]
and [15]. As compared to a conventional distillation unit, the Petlyuk column has more degrees
of freedom in both operation and design [24] causing di�culty in designing both the column as
well as the control system.

Dividing-wall column

The dividing- wall column (DWC) is essentially a Petlyuk column in a single shell. The DWC
introduces a vertical partition (wall) inside the shell to accommodates a prefractionator in the
same structure [8, 25, 26]. This allows a great saving in the capital investment of the separation
system and increases the separation e�ciency at the same time. One di�erence between the
DWC and the Petlyuk column is the heat transfer across the wall. Kolbe and Wenzel [27] have
stated the following average savings gained by using a DWC (for an industrial case) against a
conventional column system: 25% in investment cost, 35% in operating cost and 40% in space
requirement. This was based on rigorous simulation of an extractive distillation pilot plant.
There are also some researches for retro�tting conventional columns to dividing-wall columns
because of di�erent savings [28].
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Figure 2.2: Petlyuk distillation column

The advantage o�ered by this partitioned column is that a ternary or 4-component mixture
can be distilled into pure product streams with only one distillation structure, one reboiler
and one condenser. Obviously, this reduces the cost of separation. Moreover, reduced number of
equipment units leads to a low initial investment cost. To fractionate the feed mixtures containing
four or more components, single tower distillation process with multiple vertical partitions was
�rst proposed by Kaibel [25]. For multi-component mixture separation, Agrawal [29] discussed
various types of partitioned columns with their advantages and disadvantages. These structures
decrease the number of distillation column shells to one and the total number of reboilers and
condensers by at least n - 2. Due to the lack of experience in design and control, the dividing-wall
columns have not been used extensively in industry except within BASF. However, their number
is growing rapidly (more than 100 units in 2007 worldwide) [30].

2.3 Design of thermally-coupled columns

2.3.1 Shortcut methods

The use of short-cut methods has been defended based on the complexity of the problem and
the need to rapidly assess alternative designs, perform preliminary optimization and provide
the initialization for rigorous simulation [31]. Most of the methods make two assumptions -
constant molal over�ow and constant relative volatility - that restrict their applicability only to
non-azeotropic systems. The primary objective of the shortcut methods is to obtain estimates for
the vapour /liquid tra�c (i.e., re�ux and reboil ratios) and the number of trays in each section
of the column. For example, the minimum re�ux ratio is calculated using Underwood's method
[32, 33, 34], while the minimum number of theoretical stages is estimated using Winn's method
[35]. It is an extension of Fenske's method and accounts for changes in the temperature of the
column by introducing additional parameters that depend only on the K-values (vapour/liquid
equilibrium ratios) of the key components. The actual re�ux ratio and the number of stages
are then determined by employing Molokanov's correlation [36] for the speci�ed ratio of the
actual to the minimum re�ux ratios (R/Rmin). This formulation provides the information about
the trade-o� between the re�ux ratio and the number of trays [26]. The feed tray location is
estimated using Kirkbride's correlation [35]. Cerda et al. [37] the proposed technique tends to
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Figure 2.3: Thermally coupled columns

give R values a little lower than the real ones.

Malinen and Tanskanen [38] have proposed a minimum energy method for non-ideal multi-
component distillation. In their method, the actual minimum energy determination can be
carried out in three steps. At �rst, the initial state distribution for the column sequence is
calculated. Then, the state distribution of the column sequence is calculated with exact mole
fraction speci�cations for the product �ows by using the initial column pro�le obtained in the �rst
phase (feasibility issues must be kept in mind). In the second step, the molar �ow ratios in the
ends of prefractionator, namely liquid �ow entering from top / vapour �ow exiting from top and
vapour �ow entering from bottom / liquid �ow exiting from bottom, are also speci�ed to ful�l the
separation target. In the third step, the minimum energy operation point is determined based on
the optimization of the the �ow ratios. Optimization is based on the minimisation of the reboiler
duty instead of the boilup rate or the boilup ratio. The solution obtained in the second step is
used as a starting point for minimization. This method is based on the assumption of in�nitely
high columns and it was not considered for the case of �nite number of stages. Triantafyllou and
Smith [26] and Shah [39] discussed extending this method to the liquid and vapour side-draw
columns. Finn [10] has rede�ned the net feed �ow rate and feed quality in order to make use of
the conventional Underwood equations for thermally coupled columns. Halvorsen et al [1, 40, 41]
have presented minimum energy requirement diagrams to calculate the minimum energy required
for the separation of components in the Petlyuk con�guration. They have proposed to adjust
the liquid and vapour splits in order to keep the boilup in its optimum point. The reboiler
duty solution surface shown is reminiscent of the optimal solution surface of the Petlyuk column
reported in Halvorsen and Skogestad [42]. It is worth mentioning that the energy usage, i.e., the
reboiler duty, increases rapidly outside the optimal operation area. They have shown that when
the column is operated at the preferred split (the minimum energy for separating components
a and c in the prefractionator), the in�nite-staged Petlyuk column always consumes less energy
than the corresponding conventional solution. They have noted that: To operate at minimum
energy, we �rst have to ensure that RV is in the �at region in order to be within the solution
surface V (RL,RV ) between P* and R* at all (P* and R* are the two points at two ends of the
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�at region). This task seems quite easy unless the feed composition is close to the boundary
curve. Second, we must �nd the optimal value of RL for the particular RV to ensure that we
actually operate on P*-R* and not somewhere to the sides of P*-R*, where V (RL,RV ) may
be quite steep. With both RL and RV constant, the probability of hitting P*-R* on a solution
surface, which is moved around by changes in feed composition, quality and re�ux will be very
small, so this will only be a feasible strategy if the operating conditions are reasonable steady
and for cases where the solution surface is not very steep. Halvorsen et al. [43] have also studied
the energy consumption of a Kaibel column using shortcut analysis. This is the method which
is used in this thesis.

A design procedure to utilize the three-column model was introduced by Triantafyllou and
Smith [26]. Separating the main column of the fully thermally coupled distillation system makes
a system of three separate continuous distillation columns to which the short-cut design equations
for the multi-component distillation design can be applied. Though the design procedure easily
gives the tray numbers of the three separate columns, matching the compositions of interlinking
streams requires adjustment and time-consuming iterative calculation. Since the fully thermally
coupled distillation column, has interlinking between a prefractionator and a main column, usual
multi-component design procedures are not applicable to the design of the column when the
information of the interlinking streams is not given [44].

2.3.2 Rigorous Design

The synthesis of complex distillation system is a problem of multi-hierarchy combinatorial opti-
mization. One step is to �nd the optimal distillation sequence and to identify the heat integration
strategy. The next step is to �nd the optimal operation parameters for every unit included in
the �owsheet. The complexity and combinatorial explosion of this kind of problem leads to
high di�culty for solving it. In this part, the major works which are done on this topic will be
reviewed.

2.4 Di�erent Con�gurations and Arrangements

Agrawal et al. proposes a guideline (in a diagram) to choose the most e�cient con�guration
for di�erent 3-component feed compositions when both splits have identical relative volatilities
(α = 2) [45]. These diagrams are useful to gain insights, but it is di�cult to evaluate the
complicated trade-o�s related to the quality and quantity of energy, or the e�ect of pressure
constraints. Halvorsen et al. [46] have studied this matter from energy point of view. They have
shown the range of feed composition in which petlyuk con�guration is a good option, because
of the nearly similar peaks in the minimum required energy diagram, which means that there
will be no loss due to the di�erence of energy requirement in the upper and lower parts of the
main column. For the simplicity of column construction, a dividing-wall structure is preferred
and has been adopted in many studies [47]. But the structure adds the complexity in the design
since the number of trays in a prefractionator has to be same or close to the tray number in the
middle section of a main column. Another problem associated with the dividing-wall structure
is that controlling the split of liquid and vapour �ow is di�cult.

There are some papers which deal with new con�gurations of thermally coupled columns in
order to make them more operable. Agrawal and Fidkowski [48] have proposed various con�g-
urations of an FTCDC by rearranging sections in a main column and a prefractionator, which
are thermodynamically equivalent. Agrawal also extended this idea to n-component systems
[49, 50, 29]. These con�gurations are derived from the known sequential or satellite column ar-
rangements. However, like the previous study, there is not any quantitative comparison between
the proposed con�gurations and the conventional Petlyuk. The pressure di�erence between
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the main column and prefractionator has a key role to determine a plausible alternative. To
present the alternatives, Rong et al. [51] have formulated a procedure which makes the synthesis
of the fully heat-integrated thermally coupled con�guration for any n-component mixture sys-
tematically. They have [52] used a short-cut design to compare the columns for separating 5
components. The works done by Hernandez et al. [53, 54] are also with the same goal. All of the
alternatives are equivalent in terms of minimum energy requirement. There are of course many
di�erences, e.g. in how easy it is to set individual vapour and liquid �ow rates in practice, how
the column arrangement behaves for non-optimal operation, how easy it is to control, possibly
for operation at more than one pressure level, practical construction issues.

In order to alleviate the control di�culty of a fully thermally coupled distillation column
(FTCDC), the reduction of the number of interlinking streams is attempted by installing a heat
exchanger at the interlinking streams [55, 56]. However, along with the conversion, a number
of additional column sections as well as additional heat exchangers were added to the modi�ed
con�gurations. The proposed structures provide energy saving comparable to the fully thermally
coupled system in some cases. Their reason of this study is that Petlyuk arrangement contains
a maximum number of thermal couplings that is a disadvantage for the operability due to the
harsh pressure constraints in terms of vapour transfers. The separation sequence of the Petlyuk
arrangement contains all of the feasible subgroups of a multi-component mixture (i.e., n(n-1)/2
subgroups). This results in the fact that the Petlyuk arrangement contains a maximum number
of thermal couplings compared to other possible thermally coupled con�gurations. On the one
hand, at the thermally linked locations between the di�erent columns, in order to minimize
exergy losses, there need to be small pressure driving forces to facilitate the vapour transfers. At
the same time, inside a column along di�erent sections, one needs to carefully design the pressure
drops in order to meet the requirements of the pressure driving forces. On the other hand, the
harsh pressure constraints could cause the system to be sensitive to pressure disturbances, which
would incur di�culties in the system's control.

Agrawal [57] proposed a superstructure for a certain subclass of Petlyuk arrangements by
considering arrangements with n-2 satellite columns in communication with a central distilla-
tion column. Agrawal claims that this superstructure includes as substructures all previously
proposed con�gurations giving sharp splits, which in fact is not quite true due to a study by
Christiansen et al. [58], which is done on four-component separation in a single column. The
sharp split arrangement is de�ned as an arrangement of columns in which any degree of separa-
tion (purity) can be obtained by increasing the number of stages (provided the internal re�uxes
are above certain minimum values and provided the separation is thermodynamically feasible).
A Petlyuk column is then a sharp split arrangement with a single condenser and a single reboiler.
In any case, Agrawal's superstructure includes Sargent's [59] superstructure and also Kaibel's
and Cahn's arrangements as substructures. Agrawal derives by simple arguments that the min-
imum number of rectifying and stripping sections required for sharp splits using such satellite
arrangements, is equal to 4n-6 (10 sections for n = 4).

Kim [60] has suggested using post-fractionator in order to decrease the energy usage even
further. For examining the economical bene�ts from the introduction of postfractionator to the
fully thermally coupled column, utility and investment costs were calculated with the formulas
given in Kim and Luyben [61]. He has simulated the BTX fractionation and claimed that it's
economically pro�table.

Grossmann et al. [62, 63] have presented a systematic approach for generating all the ther-
modynamically equivalent structures for a given sequence, then, this method could be integrated
in the framework of Disjunctive Programming to exact the best solution for a given objective
function [64]. Afterward, a two stage decomposition procedure was described that gave a novel
superstructure for designing sequences of distillation columns, which ranges from conventional
to fully thermally coupled systems and goes through all the alternative intermediate possibilities
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[65] and the optimal synthesis of complex distillation columns using rigorous models was given
[66]. Recently, Caballero and Grossmann [67] improved a superstructure approach for synthe-
sizing heat-integrated thermally coupled distillation sequences. The model was formulated as a
Generalized Disjunctive Programming (GDP) problem and solved as a modi�ed mixed integer
non-linear programming (MINLP) model. The above works can create a large number of new
distillation con�gurations, which has formulated a large new search space for the optimization
work. Wang et al. [68] have worked on this subject using genetic programming as a stochastic
tool.

2.5 Design for minimum energy

Hernandez et al [69] proposed a model which is used to detect the operating conditions under
which a given design for the Petlyuk system can provide the minimum energy consumption. The
approach is an extension of a model previously developed for the design of thermally coupled
distillation sequences with side columns [70]; An important aspect for the design of the system
is the speci�cation of the two recycles streams. Di�erent mixtures were analyzed in an attempt
to understand the in�uence of the relative di�culty of the separation a/b with respect to b/c on
the energy consumption and design of the system. The optimization procedure is done in the
dynamic mode by changing vapour and liquid splits.

They have noted that an adjustment of the initial design might be needed if the �nal steady
state compositions do not agree with the established set points.

The ease of separation index (ESI), as de�ned by Tedder and Rudd [23], was used to charac-
terize each mixture:

ESI =
αab
αbc

(2.1)

The following recommendations were developed as a function of the mixture properties and its
feed composition. For mixtures with ESI = 1:

� If the content of the intermediate component b is high (>30%), use RV = 0.5 and perform
an optimization search over RL.

� If the content of the intermediate component b is low (<10%), use RV = 0.7 and carry out
an optimization search over RL. For mixtures with ESI ≠ 1:

� If the content of the intermediate component is high, use RV = 0.7 and optimize RL.

� If the content of the intermediate component is low, use RV = 0.4 and carry out an opti-
mization search over RL.

� For all cases, the optimal value of RL is lower than that of RV . These observed trends
can provide the basis for useful heuristic design rules. It should be emphasized that these
trends were obtained for separations of ideal mixtures.

� For all cases, the optimal value of RL is lower than that of RV .

It should be emphasized that these trends were obtained for separations of ideal mixtures.
Their results show that RV values can be correlated to an ESI, and that there is no signi�cant
deviation in the optimal solution with small changes in RV . There is, however, a high dependency
on the energy consumption with respect to RL once a value for RV has been speci�ed. Therefore,
the results suggest that a proper value for RV can be set ahead of design, but a search over RL
is still required to obtain a design with minimum energy consumption. They have claimed that
these observations reduce signi�cantly the search space for the design of the Petlyuk system with
minimum energy consumption.



14 A review on optimal design and control of thermally-coupled columns

Malinen et al. [38] have presented a rigorous minimum energy calculation method which is
the extension of Tanskanen et al.'s [71] works to a fully thermally coupled distillation column
system, also known as a Petlyuk column. Tanskanen et al. [71] have presented it for non-ideal
multi-component distillation. The method is based on column simulation with a large number
of equilibrium stages to mimic in�nitely high columns .

The design method proposed by Blancarte-Palacios et al. [72] involves a search procedure on
the interconnection vapour and liquid streams until a minimum energy consumption is detected.
Halvorsen et al. [1, 40, 41] have sketched the solution surface in terms of the two remaining
degrees of freedom. They have concluded that if the region is wide in both directions, both the
remaining DOFs may be kept constant, and if it is narrow, on-line adjustment of both DOFs is
required in order to achieve the potential energy savings. If the optimality region is �at in only
one direction, one DOF may be kept constant, but online adjustment of the other is probably
required. The degrees of freedom may be constant for the following cases:

1. A large �at region when the feed conditions (composition, liquid fraction and relative
volatilities) is far from the boundary where the operating points for a preferred prefrac-
tionator split coincide with a balanced main column.

2. Low purity in the side-stream product gives a large �at region.

2.5.1 Feed composition considerations

Annakou [73] has compared three di�erent ternary distillation schemes - the conventional schemes,
the heat-integrated schemes, and the fully thermally coupled distillation column - on the basis
of the total cost with four di�erent feed compositions with di�erent ease of separation and three
di�erent product purity speci�cations. He has claimed that the FTCDC can be competitive with
the heat-integrated schemes only in those cases when the concentration of the middle component
in the feed is high and the a/b split is harder than b/c split. The thermally coupled distillation
column is not recommended when the composition of the least volatile component is the highest
in the feed. Emtir et al. [74] and Mizsey et al. [75] have also reached similar results. Emtir et al.
have compared heat integrated structures with thermally coupled columns and have presented
some rules governing the ranks of the studied structures according to total annual cost. They
have used USA and EU energy prices for their comparisons. They have also mentioned that
petlyuk structure has the greatest chance to win over the energy-integrated schemes at balanced
relative volatility ratio. Due to the comparisons in the work of Rév et al. [76], the advantage,
in total annual costs, over energy-integrated structure is approximately 6% at low (American)
utility prices; but this advantage is approximately 20% at high (European) utility prices.

Agrawal and Fidkowski [55] showed that the thermodynamic e�ciency of fully thermally
coupled distillation is not so high as suggested in earlier studies for some cases. The energy saving
is quite dependant to feed composition. Yet the improvement of the e�ciency in the coupled
system is largely due to the less mixing in feed stage and remixing of middle component in a
prefractionator [26], and the mixing and the remixing are not counted in the study. Two notes are
worthy to mention here. First, it is important to highlight that the Petlyuk distillation column
and the dividing-wall distillation column are thermodynamically equivalent, but the industrial
operation is di�erent. Recently, Suphanita et al. [77] have found that the heat transfer across
the wall can improve the operation of the dividing-wall distillation column. The other di�erence
is of course in the limitation of splits which is tight in the case of dividing-walls. Second, as
mentioned previously, since a main column and a prefractionator are interlinked, more degrees
of freedom than two binary distillation columns are involved. There are not enough manipulated
variables to formulate control loops equivalent to the degrees of freedom, and therefore multiple
steady-state solutions are obtained for a given set of product speci�cations [78, 79].
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2.6 Optimal Operation

The degree of freedom of a the thermally-coupled column with side streams, dividing-walls and
communication points is as shown below [58]:

DOF = 2 + nS + 2nD + 4nC (2.2)

where
nS ∶ number of side streams
nD ∶ number of dividing walls
nC ∶ number of communication points

Due to the coupling, the number of degrees of freedom for thermally coupled columns is more
than conventional columns. To design and simulate the FTCDC system, several quantities must
be determined:

1. number of theoretical trays in the prefractionator,

2. number of theoretical trays in the main column,

3. internal recycle streams, liquid stream draw-o� from the main column to the prefraction-
ator, and vapour stream draw-o� from the main column to the prefractionator,

4. re�ux ratio in the main column,

5. tray locations for all feed streams, side draw-o� streams, and side product stream.

For such a design problem two major approaches of the process syntheses are in use: the hier-
archical approach (e.g., Douglas [80]) and the algorithmic approach (Grossmann [81]). The two
major approaches can also be combined (Mizsey and Fonyo [82]).

Fidkowski and Krolikowski [31] have studied ideal ternary solutions and selected the fractional
recovery of the middle component in the top product of the prefractionator as a decision variable.
Triantafyllou and Smith [26]. They have indicated that the recovery of the middle component
in the prefractionator is not an independent variable because it depends on the recoveries of
the light and heavy components. Annakou et al [83] started the solution by shortcut design
procedures to estimate the number of theoretical trays, location of the feed trays and draw-
o� trays, and the re�ux ratio. In the next step of the design the system was investigated by
rigorous modeling and changes made according to the desired performance. The prefractionator
was designed as a separate unit. In the prefractionator it is supposed that the most volatile
component of the ternary mixture is only in the top product and the heaviest component is
only in the bottom product. The middle component distributes between the top and bottom
products. The optimal fractional recovery of the middle component where the energy consumed
by the FTCDC is minimal has been de�ned by Treybal [84] in terms of the relative volatilities
and also used by Fidkowski and Krolikowski [31] for saturated liquid feed:

β∗ =
αb − αc
αa − αc

(2.3)

A comprehensive parametric study is performed to investigate the role of the fractional recovery
on the energy consumption and the total annual cost of the FTCDC. The FTCDC is rigorously
simulated at several fractional recovery values within the range of 0 < β < 1 and also at the
balanced fractional recovery (β∗). These results obtained by rigorous simulations show the
importance of the fractional recovery and its role in determining the internal recycle streams
for better economic performance of the FTCDC. The fractional recovery and as a following
the internal recycle streams should not be arbitrarily selected. They are very important design
parameters and should be determined to obtain the optimal economic performance of the FTCDC
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2.7 Controllability

A common procedure is to design a plant based on steady-state considerations, and then add
on a control system at a later stage of the project. This may be acceptable if one at the
early design stage can assess whether the plant inherent control limitations has good achievable
control performance and is called controllable or dynamic resilient. The controllability of a plant
is determined by inherent properties of the process and not of the control system. Since a
plant's dynamic resilience can not be altered by change of the control algorithm, but only by
design modi�cations, it follows that the term dynamic resilience provides a link between process
design and process control. A number of methods for evaluating controllability are described in
the work of Wol� et al. [85], which are summarized shortly here. All measures are controller
independent. In the next section, the researches on controllability of thermally-coupled columns
will be reviewed.

Functional and state controllability

Probably the �rst thing that should be checked is that the plant is functional controllable.
Essentially, a plant is not functional controllable if the rank of G(s) is for all s less than the
number of outputs we want to control. For square plants the requirement is that we should have
detG(s) ≠ 0 [86].

RHP-zeros and time delays

A right half plane (RHP) transmission zero of G(s) limits the achievable bandwidth of the plant.
This holds regardless of the type of controller used (Holt and Morari, 1985). The upper limit
on the bandwidth is approximately ωB < z where z is the location of the RHP-zero (the exact
expression depends on the direction of the RHP-zero).

RHP-poles

Poles of G(s) in the right half plane also put limitations on the control system through stability
considerations. The bandwidth of the closed-loop system must be above the frequency of the
RHP-pole to ensure a stable system.

Singular Value Analysis

The singular value decomposition of any matrix G is G = UΣVH with the matrix Σ having the
singular values σi on the main diagonal. The singular values are directly related to the vector
2-norm. The singular values give the gain in the corresponding input and output directions
(columns in V and rows in U respectively). An SVD on G and Gd is useful for examining which
manipulated input combinations have the largest e�ect and which disturbances give the largest
output variations.

Condition number

The ratio between the largest singular value (σ) and the smallest nonzero singular value (σ), is

often denoted the condition number, γ(G) =
σ(G)
σ(G) . Plants with a large condition number are

called ill-conditioned, and require widely di�erent input magnitudes depending on the direction
of the desired output. There is a close relationship between the optimally scaled condition
number, γ∗(G) (minimize γ(G) with respect to input and output scaling) and the magnitude
of the RGA-elements (e.g., [87]).
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Relative gain array (RGA)

The most widespread controllability measure is probably the RGA which was introduced by
Bristol [88]. For a square plant G(s) the relative gain is de�ned as the ratio of the "open-loop"
and "closed-loop" gains between input j and output i. It is de�ned at each frequency as

λij(s) =

(
∂yi
∂uj

)
ui≠j

(
∂yi
∂uj

)
yi≠j

= gij(s) [G
−1

(s)]
ji

and a RGA-matrix is computed from Λ(j ω) = G(j ω)×G−1(j ω)T , where × denotes element-by-
element multiplication. It is established that plants with large RGA-values, in particular at high
frequencies, are fundamentally di�cult to control. In particular, it is known that one should never
use decouplers in such cases because of a strong sensitivity to (structured) input uncertainty in
each channel, i.e., one should never use a controller with large RGA-values citeSkogestad1987d.

Disturbance sensitivity

The open-loop disturbance sensitivity is given by Gd
x whose elements are given by gdx = (∂xi

∂d
)
uj
.

If appropriately scaling has been applied and any of the elements are larger than 1 then control
is needed to get acceptable performance. Disturbance condition number: To study speci�cally
the direction of a disturbance, Skogestad and Morari [87] introduced the disturbance condition
number of the matrix A, where A may be G or L = GC.

Relative order and phase lag

The relative order is sometimes used a controllability measure. The relative order may be de�ned
also for nonlinear plants, and for linear plants it corresponds to the high-frequency roll-o�, that
is, the pole excess of the transfer function. Of course, we want the inputs to directly a�ect the
outputs, and the relative order should be small. However, the usefulness of the concept of relative
order is rather limited since it depends on the modeling details. In fact, a more useful measure
to consider is the phase lag of the model at the bandwidth frequencies, for decentralized control
we want to pair on variables where the phase lag is as small as possible, and it should be less
than −180○ (see [89]).

2.7.1 Controllability of thermally-coupled columns

Mostly used indexes in papers were the Niederlinski index (NI), which must be positive, the
Morari resiliency index (MRI), the larger its value, the better the control, the Relative gain
array (RGA), the diagonal elements close to unity indicate weak interaction, and the condition
number (CN), the smaller this number, the better the control [90]. There are of course many
other indices proposed in literature. For example, He et al. [91] proposed a new loop-pairing
criterion based on a new interaction measurements for the control structure con�guration of the
multivariable process. Decomposed relative interation array (DRIA) was de�ned to evaluate all
possible interactions among loops, and General Interaction(GI) based on the concept of inter-
action energy [92]. An algorithm which combines RGA, NI, and GI rules was developed that
can solve the loop con�guration problem [93]. Below, some of the papers, which dealt with
controllability of thermally-coupled columns, are reviewed.

Hernandez et al. [94, 95, 96] have conducted a comparison between controllability proper-
ties for three of the complex columns, namely thermally coupled distillation systems with side
strippers (TCDS-SS) and side recti�ers (TCDS-SR) and Petlyuk column. Results from singular
value decomposition indicate that systems with side columns o�er better dynamic properties
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than Petlyuk systems. Also, there is an e�ect, however, of the relative di�culty between the two
splits of the ternary mixture. When the a/b split is more di�cult than the b/c split (ESI<1), the
TCDS-SS o�ers the best control properties; otherwise, the TCDS-SR provides the best option
from a dynamic point of view. The only cases for which both economic and dynamic performance
factors agree are when the feed mixture has a low composition of the intermediate component
and ESI>1 (TCDS-SR) and when the mixture with low composition of intermediate component
has an ESI<1 (TCDS-SS). They have also compared dynamic responses under a closed loop in
thermally coupled distillation sequences with side columns or prefractionators [97]. They have
mentioned that the dynamic responses in the TCDS schemes can be improved by exploring alter-
native control loop pairings. They have also claimed that the control properties of the nonoptimal
cases are better [98]. By "optimal" they mean the minimum energy case which depends strongly
on the amount of intermediate component in the three-component mixture they have studied.
They have said that a reduction in the number of interconnections does not necessarily provide
the operational advantages originally expected given the resulting simpler structural design [99].

Wang et al. [100] investigated the e�ects of liquid split and vapour split ratios on the energy
e�ciency and controllability of a dividing-wall column. There is a trade-o� between energy
e�ciency and controllability of end-product composition. They have overcome such a trade-o�
by using a temperature + composition cascade control scheme. Liquid and vapour splits between
di�erent column sections are treated as disturbances.

Annakou et al. [73] compared the controllability of the conventional heat-integrated column
sequences and the Petlyuk Column for the separation of ternary mixtures. Through degrees of
freedom analysis and steady-state multivariable control synthesis tools they have shown that
both investigated schemes could be controlled by conventional decentralized control structures,
although interactions among control loops is smaller for the conventional heat integrated systems.

Mizsey et al. [75] have also claimed that conventional heat-integrated schemes have less
interactions compared to Petlyuk column by measuring steady state control indices. The dynamic
behaviour shows longer settling time and higher overshoots for the Petlyuk column comparing to
conventional heat-integrated schemes, detuning is necessary due to strong interaction between
its control loops. The main issue which should be considered is that the design and control part
are inter-related. As Skogestad says in his book [101] that We can not make a Ferrari out of
Volkswagen. A paper from Skogestad [102] is an example of how design a�ects the easiness of
control. It is mentioned that it is better to have many stages. He mentioned that in terms of
composition control, the best design to make feedback control easier is probably to add extra
stages. This has two potential advantages:

� It makes it possible to over-purify the products with only a minor penalty in terms of
energy cost; recall the expression for Vmin =

1
1−αF which is independent of the purity. The

control will then be less sensitive to disturbances.

� If we do not over-purify the products, then with too many stages a pinch zone will develop
around the feed stage. This pinch zone will e�ectively stop composition changes to spread
between the top and bottom part of the column, and will therefore lead to a decoupling of
the two column ends, which is good for control.

This concept is tested by Serra et al. [103]. Controllability of di�erent optimal DWC designs
with di�erent number of trays is compared in the paper. According to controllability indices, the
optimal designs have the same sets of preferred manipulated variables. It was seen that high CN
is a problem associated to 'DB' inventory control (Distillate rate is used to control condensate
level and Bottom �ow rate is used to control reboiler level), which is improved using DWC with
more trays. On the contrary, for 'LV' inventory control, addition of trays has not been found to
be a good option from a control point of view. In other work, Serra et al. [104] compared the



2.8. Control 19

controllability of di�erent multi-component distillation arrangements and discussed the operation
conditions that favour controllability for the DWC.

2.8 Control

The lack of widespread use of complex columns can partly be attributed to their more di�cult
control properties. Understanding control properties of columns with thermal couplings for the
separation of ternary mixtures is an issue of extreme importance since designs with economic
incentives often con�ict with their operational characteristics. One issue which should be con-
sidered is the model on which the control structure is built. Cao et al. [105] have re�ned the
model of a plant and they showed that the model a�ects the control structure selection.

The study on the control of the Petyluk column, which is thermodynamically equivalent
to the dividing-wall column, was �rst reported by Wol� et al. [106, 24]. The pioneering
dividing-wall control paper is the 1995 work of Wol� and Skogestad [24], where they stud-
ied the ethanol/propanol/butanol ternary system. They looked at both three-point control, in
which the purities of the three products are controlled, and four-point control, in which both of
the impurities in the sidestream are controlled in addition to the purities of the distillate and
bottoms. The three-point structure controlled distillate purity by manipulating re�ux �ow rate,
sidestream purity by manipulating sidestream �ow rate, and bottoms purity by manipulating
vapour boilup. They also tested switching the last two loop pairings but claimed this pairing is
unworkable. In the four-point structure, an additional loop to control the ratio of impurities in
the sidestream by manipulating the liquid split was added. They demonstrated that �holes� in
the steady-state feasibility space made the four-composition control structure infeasible at some
operating conditions. These authors used several linear analysis methods and nonlinear dynamic
simulations to evaluate control e�ectiveness for feed �ow rate, feed composition, and product
purity set-point disturbances.

Wol� and Skogestad [24] examined possible control schemes of the column and suggested that
controlling the tray temperature close to the most critical composition measurement gives better
performance than the direct composition control. Temperature measurement provides a more
reliable and faster means of measuring the changes that take place in the distillation column
during transient conditions. However, it is well known that a temperature measurement is not
an accurate method of inferring product composition. In order to overcome such limitations,
techniques have been proposed by several researchers, which include over re�uxing the column
or using multiple temperature measurements.

Abdul et al. [107] studied the operation and control of Petlyuk Column. They suggested
that both liquid and vapour splits are maintained constant at their nominal values. Two control
structures are considered in their work: L-S-V and D-S-V. The steady-state Relative Disturbance
Gain (RDG) of the two control structures are calculated to make an interaction analysis. Ac-
cording to the RDG results, that D-S-V control structure resulted in better control than L-S-V
control structure.

Abdul Mutalib, Zeglam, and Smith [107] reported simulation and experimental studies of
the same system using temperatures instead of compositions as the controlled variables. These
authors attempted to control only two temperatures in the system. They also kept the sidestream
�ow rate constant. Product composition o�set took place as di�erent feed compositions entered
the column. This is due to the fact that controlling temperature at the two locations does not
guarantee the product compositions to be kept at speci�cation.

Hernandez [108] presented a comparative analysis of the feedback control responses to set-
point changes of three thermally-coupled distillation schemes and two conventional distillation
sequences for the separation of ternary mixtures. Designs for the thermally-coupled schemes
were obtained and optimized for energy consumption to link their energy characteristics to their
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dynamic behaviour. For the comparison of the dynamic behaviour, responses to setpoint changes
under closed loop operation with proportional-integral controllers were obtained. The e�ects of
feed composition and of the ease of separation index were considered. The dynamic tests showed
that in many cases the thermally coupled distillation schemes outperformed the dynamic re-
sponses of the conventional distillation sequences. The results indicate that there exist cases in
which the energy savings provided by the thermally coupled systems do not con�ict with their
dynamic properties.

Serra [109] has also done the study of feedback diagonal control of DWC. Di�erent control
structures have been systematically analyzed and compared under performance and robustness
considerations. In order to study the e�ect of the energy optimization on the controllability of
the DWC, a column at optimal nominal operating conditions is compared to a column under
non-optimal operation. Finally, a complete control strategy is proposed.

Adrian et al. [30] reported experimental studies of the butanol/pentanol/hexanol system in
the BASF mini-plant laboratory. They used a three-temperature control scheme. One tempera-
ture was located in the prefractionator side of the wall above the feed tray to prevent the heavy
boiling component from passing the upper edge of the dividing-wall. The second temperature
was above the side-stream draw-o� tray in the main column side of the wall to monitor the
separation between the lightest and the intermediate components. The third temperature was in
the stripping section to ensure that none of the intermediate component drops out the bottom
of the column. At the same time, holding this temperature constant helps to keep the lightest
component from passing the lower edge of the wall on the prefractionator side. They compared
the conventional PID control with MPC. Their experimental results showed that stable regula-
tory temperature control was achieved for both feed �ow rate and feed composition disturbances.
However, they do not report what happened to product compositions.

Ling et al. [110] have proposed a control structure for dividing-wall column using four com-
position loops to control the purities of the three product streams and also achieve minimum
energy consumption for both feed �ow rate and feed composition disturbances. The numerical
example studied the separation of benzene, toluene, and o-xylene. The four manipulated vari-
ables were re�ux �ow rate, side-stream �ow rate, reboiler heat input, and liquid split at the top
of the wall. In another paper [111], they explored the use of temperatures to avoid expensive
and high-maintenance composition analyzers. Two types of temperature control structures were
studied. In the �rst, three temperatures located in the main column and one temperature on
the prefractionator side of the wall are used to adjust the four manipulated variables. Feed �ow
rate disturbances are well handled with this structure, but product purities start to deviate sig-
ni�cantly from their desired values for feed composition changes greater than about 10%. In the
second control structure, four di�erential temperature control loops are used. Performance is im-
proved and disturbances of 20% in feed composition are well handled with only small deviations
in product purities. This structure also handles large changes in column operating pressure.

The ideas related to self-optimizing control have been presented repeatedly in the process
control literature, but the �rst quantitative treatment was that of Morari et al. [112]. Skogestad
de�ned the problem more carefully, linked it to previous work, and also was the �rst to include
the implementation error. As de�ned by Skogestad [2], self-optimizing control is when we can
achieve an acceptable loss (in terms of energy or in terms of purity) with constant setpoint values
for the controlled variables. In most processes there are some extra degrees of freedom that can
be used for optimisation purposes. The optimal operation point can be di�cult to maintain if
disturbances and model uncertainty are present. Self-optimising control is an approach to solve
this problem by turning the optimisation problem into a set-point problem. The key idea is to
�nd a measurable variable with constant value at optimal operation. If this variable can be found,
a feedback control loop is closed to keep the variable at the set point, and to keep indirectly the
process at optimal operation. Since self-optimising control results in a feedback control loop, it
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will be robust against disturbances and model uncertainties compared to any open loop model
based optimisation methods. The idea of self-optimizing variables has been used several times
to design the best control structure for di�erent types of distillation columns [113][114].

The application of self-optimising control to the Petlyuk distillation column was studied
by Halvorsen et al. [115, 116, 117]. Some candidate measurable feedback variables for the
Petlyuk distillation column were proposed and analysed. Three output feedback variables give
very good robust control of the column in a self-optimising control scheme. They are fractional
recovery of the intermediate b-component leaving the prefractionator top (β), DTS (a measure
of the temperature pro�le symmetry de�ned in the paper) and the c-composition of the net �ow
from the prefractionator distillate to the main column yD1,c. For robustness against �ow feed
disturbances, β and DTS are better than the third one, because this last variable is a composition
and not a recovery. For feed composition disturbances, β is the variable which maintains V closer
to the minimum. However, DTS and yD1,c have also acceptable results. Facing feed vapour
fraction disturbances, yD1,c is the best of the three but the other two are not far from it. Facing
set point changes in the product compositions, DTS is again the best feedback variable, being β
very close and yD1,c the worst of them. Lastly, DTS and yD1,c behave better in response to bad
measurements of themselves than β. They have mentioned that in a real case, one of the three
variables should be selected depending on the information about what are the more probable
disturbances. Also technical aspects have to be considered. It has to be remarked, for example,
that DTS can be calculated with only temperature measurements, which is a great advantage
and on the contrary, the measurement of yD1,c and β involve composition measurements.

The full count of all possible combinations between potential manipulated and controlled
variables may become very large especially for plant-wide control system design. Thus, the
complete enumeration of all possible sets of controlled and manipulated variables would require
great computational e�ort. There are some works on formulating this problem in the context of
optimization (e.g. [118, 119, 120, 121] .

2.9 Conclusions

In this chapter, thermally-coupled columns were reviewed. A number of important issues must
be considered during the design, for example, �exibilities to operating condition changes, and
relation of design to process dynamics and controllability. They impose strict constraints on the
energy e�ciency that can be achieved. Therefore, trade-o� between process design economics
and process operation appears to be very important and has to be carried out with great caution.

It is important to recognize that the key to improving the design and energy e�ciency of
distillation systems is how their 'e�ciency' is de�ned. If a column operates at a re�ux ratio of 10%
above the minimum re�ux ratio it is generally considered reasonably e�cient because the reboiler
and condenser loads are close to the minimum for the particular separation. However, a much
better indication of e�ciency is found from thermodynamic considerations which take proper
account of the degradation of energy in a process. When the column is operated optimally, the
in�nitestaged Petlyuk column always consumes less energy than the corresponding conventional
solution. However, this optimal operation may be di�cult to achieve in practice because the
optimal operation depends strongly on the feed properties and the remaining degrees of freedom.
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Chapter 3

Optimal Operation of Kaibel

Distillation Columns

The objective of this chapter is to study the Kaibel distillation column from an oper-
ability point of view. Two di�erent objectives, namely minimizing energy requirement
at �xed product purities and maximizing product purities with a �xed boilup are con-
sidered. We have visualized the objective functions for the two cases as a function
of operational degrees of freedom and conclude that operation with �xed product
purities is the more di�cult case from control point of view.

3.1 Introduction

The tight integration in the thermally-coupled columns make the design and control the column
challenging, compared to the conventional sequence of simple columns. The design challenges
have been mostly solved, but operation and control remains largely an open issue.

There are two main issues in terms of operation and control. First, the column, and in
particular the column pro�le, needs to be "stabilized" to avoid drift [122]. This dynamic issue is
not studied here. Second, the column needs to be operated as close to its optimum as possible in
terms of minimum energy. This is mainly a steady-state issue and is our focus. It is important
because a main motivation behind the Kaibel column is to save energy. Figure 3.1 and Table
3.1 show the alternatives which can be used for separating four products in conventional column
arrangements and a comparison with energy requirement in the Kaibel arrangement. These are
based on minimum energy requirement for the separations with 95% recovery. As an example,
in the following, the Vmin diagrams of all the columns in one of the alternatives, namely direct
sequence, are presented in Figure 3.2. The idea of Vmin diagram is presented by [123]. This will
be described in detail in the next section.

23
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Table 3.1: Energy requirements for 95% recovery with di�erent simple column con�gurations
and Kaibel arrangement.

V
F for Col.1 V

F for Col.2
V
F for Col.3 Sum

Direct sequence 1.2109 0.6984 0.6133 2.5227
Indirect sequence 1.1021 0.9471 0.8793 2.9285

Direct-Indirect sequence 1.2109 0.8732 0.6361 2.7202
Indirect-Direct sequence 1.1021 0.9372 0.6270 2.6663

Prefractionator 1.0376 0.6137 0.8795 2.5308
Kaibel (Figure 3.12) 1.8007
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Figure 3.1: Simple column con�guration for a four-component mixture
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Fig. 2 – Vmin diagram for direct sequence of columns for
separating the 4 components under study. The operating
point for each column is shown with (*).

In  terms of optimal operation, it is usually assumed that
the objective is to make products of given purity using the
minimum energy. However, in practical operation this is often
not the issue, but rather to make the purest possible prod-
ucts with a given energy, especially when there is a bottleneck
in the plant. In the paper we  discuss both these cases. We
are going to study how the mode of operation is going to
affect the behavior of the column and as a result the ease
of operating the column. Controllability has been studied by
some researchers (Diggelen et al., 2010; Ling and Luyben,
2009; Serra et al., 2003) for a three-product dividing wall col-
umn. The four-product Kaibel column is more  complex and
the analysis in this paper addresses the more  basic prob-
lem of understanding the column behavior at and around
the optimal operating point. The insight gained can be used
to select a suitable operation target and optimizing control
strategy.

So, the two modes of operation which are going to be stud-
ied here are as below:

Mode 1: minimize energy requirement for fixed product puri-
ties.
Mode 2: maximize the product purities with constant boilup
(i.e., minimize impurity sum).

2. System  under  study

The system under study is shown in Fig. 3 and is considered for
separation of the first four simple alcohols (methanol, ethanol,
1-propanol, 1-butanol) and the feed is equimolar. Fig. 3(b)
shows the schematic of the Kaibel column built in NTNU
(Strandberg, 2011). This process is simulated as a 4-column
model in UNISIM. It allows flexibility regarding the specifica-
tions in different column sections. The pumps and valves are
placed to compensate the pressure difference between two
column sections in two sides of the wall. In reality different
packing structures are used for this purpose. As it is clear from
Fig. 4(c), there are 12 trays in each subsection in the main col-
umn. The number of trays in the prefractionator is equal to
the number of trays in the other side of the wall. It is assumed
that the number of trays in all sections are fixed and they are
not included in optimization.

To achieve the liquid split, a practical solution would be to
draw off all liquid above the partitioning wall and transfer it
to an intermediate holdup-tank before pumping and metering
the liquid back to the column on either side of the dividing
wall. Some alternative methods have been reported by the
industrial manufacturers (Strandberg et al., 2010). Note that
liquid split (Rl) is defined as the ratio of the liquid entering the
top of the prefractionator to the liquid coming from the top
of the main column to the liquid splitter and vapor split (Rv)
is defined as the ratio of the vapor entering the bottom of the
prefractionator to the vapor entering the vapor splitter from
bottom of the main column.

In the case of the vapor split, the situation is quite different.
Except for Strandberg (2011),  there are no reports of adjustable
vapor splits in the literature, nor has it been reported in any
industrial implementations. Usually the detailed design will
determine the best position of the wall and the pressure drop
either side of the partitioning will determine the vapor split
ratio. One can argue that if the desired vapor split ratio is not
achieved it can be compensated by adjusting the liquid split.
This is true up to a point, but if the ratio is too far off from the

(c) Vmin diagram of Column 3 in Direct
sequence

Figure 3.2: Vmin diagram for direct sequence of columns for separating the four components
under study. The operating point for each column is shown with (*)

3.2 Vmin Diagrams

The Vmin diagram can be constructed for any mixture by simulating a column with a large
number of stages, but it is most easily constructed for ideal mixtures based on the Underwood
equations. In this section, the Vmin diagram concept is shortly described (for more information
please refer to [123], [124]). V is the vapour �ow in the column, and subscript "min" is used
because we consider the limiting case with in�nite number of stages. The Vmin diagram gives a
lot of insight for design, operation and control of the column and has been successfully used to
design thermally coupled columns (e.g. [125]).

3.2.1 Vmin diagram basis

The basis for the Vmin diagram is a conventional two-product distillation column with an in�nite
number of stages. With a given feed, such a column has two steady-state degrees of freedom. So,
the entire operating range can be visualized in two dimensions, even with an arbitrary number
of feed components. In the Vmin diagram, these two dimensions are chosen to be vapour �ow per
unit feed (V/F) and the product split, expressed by the distillate (D/F). The choice of vapour
�ow rate on the ordinate provides a direct visualization of the energy consumption and column
load. So, for every possible operating point given by the set of recoveries, we want to �nd the
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normalized vapour �ow rate (V/F), the overall product split (D/F or B/F), and the product
distribution.

The Vmin-diagram in Figure 3.3 illustrates how the feed components for a ternary feed (with
components a, b and c) are distributed to the top and bottom products in a simple two-product
�in�nite stage� distillation column as a function of the product split (D/F). The "mountain-like"
boundary ([0,0]-Pab-Pac-Pbc-[1,1 − q]) gives V/F when we have pure products. For values above
the boundary, we are actually wasting energy. So, an important boundary is the transition from
V > Vmin above boundary to V = Vmin. The peak values give the vapour �ow requirement for the
corresponding sharp neighbour component splits. The knots (bottom of the valleys) are Vmin
for the so-called �preferred splits� where we specify sharp split between two key components
(components a and c), while we allow intermediate components (component b in this example)
to be freely distributed. As the vapour �ow V is reduced below the boundary for a given D,
we no longer have sharp splits. Note that the Vmin diagram is as exact as the method used to
calculate the internal streams. For example, if the Underwood method is used for the shortcut
calculation of the internal �ows, the underlying assumptions of constant relative volatilities and
constant molar �ows are required for the Vmin diagram too. However, the Vmin diagram can
also be generated by simulations for real mixtures (see section 5). In a general case with Nc

components, there are Nc(Nc − 1)/2 peaks and knots: Nc − 1 cases with no intermediates (e.g.,
a/b, b/c, c/d, ...) which are the peaks in the Vmin diagram, Nc − 2 cases with one intermediate
(e.g., ac, bd, ce, ...), which are the knots between the peaks. On a �rst glance of Figure 3.3, we
can say that the b/c split is the most di�cult separation, since it is the highest peak.
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Figure 3.3: Vmin diagram for a ternary feed

3.2.2 Vmin diagram for Conventional Column Sequences

The peaks show the energy needed for the sharp split of two consequent components, e.g. a/b,
b/c and c/d from the right for four-component system, and the valleys show the energy needed
for non-consequent components, i.e. a/c and b/d for four-component system. The down-most
valley is for the so-called "preferred split" ([126]), that is the minimum energy operating point
for the a/d split. The diagrams are based on sharp splits and the operating point for each
column is shown by a star (∗), which is 95% recovery in our study. Figure 3.2(a) shows the Vmin
diagram for the �rst column. Here, we have a separation between components a and b with 95%
recovery. So, the star shows the operating point for column 1. The distillate �ow of column 1
is around 25% of the original feed. The next column has a feed of 75% of the original feed and
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di�erent feed composition. The task of second column is to separate components b and c with
95% recovery. The �rst peak in Figure 3.2(b) is because of the non-sharp split in the previous
column. In the case of sharp splits, we will have only two peaks for the second column and 1 for
the third column. The energy demand for separating the four components will be the sum of V

F1
in all the columns. The minimum energy requirement for a full extended Petlyuk arrangement is
simply given by the highest peak in the Vmin diagram in Figure 3.2(a). Since we have to add the
contributions from the peaks in Figures 3.2(b) and 3.2(c) for obtaining the direct split sequence,
we clearly see that it is outperformed by the Petlyuk arrangement. For the Kaibel column, the
resulting Vmin diagram is shown in Figure 3.11. The dashed peaks are obtained by computing
a new Vmin diagram for the upper and lower part of the product columns in the prefractionator
arrangement shown in Figure 3.1(e), assuming the equivalent liquid fraction obtained with a fully
thermally coupled connection from the prefractionator when it performs the sharp ab/cd split.

3.2.3 Vmin diagram for 4-product Petlyuk arrangement

Here, we consider the separation of four components. Before deriving the overall minimum vapour
�ow for the Kaibel column, let us consider the more complex but more energy-e�cient extended
Petlyuk arrangement for separating four products shown in Figure 3.4. The feed speci�cations
and relative volatilities used to sketch the minimum energy diagram in Figure 3.4 are:

zF = [ 0.25 0.25 0.25 0.25 ]

q = 1, (Liquid feed)

α = [ 6.704 4.438 2.255 1 ]

The minimum total vapour �ow requirement in a Petlyuk arrangement is given by the high-
est peak in the Vmin diagram [123]. For example, the minimum vapour requirement for a 4-
component feed (abcd), which is separated into 3 products (a/b/cd) will be

VT,min,Petlyuk (a/b/cd) = max (Vmin,2P (a/b) , Vmin,2P (b/cd))

where the subscript T refers to the vapour �ow in the top of the Petlyuk column, and the
subscript 2P refers to conventional columns with two products (Figure 3.3a). This expression
requires that every internal column in the arrangement is operated at its preferred split [126].
All the internal �ows can also be obtained from Vmin diagram [41]. Note that the minimum
energy which should be provided by the reboiler for the case with constant molar �ows is

VB,Petlyuk = VT,Petlyuk − (1 − q)F

where q is the liquid feed fraction.
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Figure 3.4: Vmin diagram for a 4-product Petlyuk column

3.2.4 Vmin diagram for a Kaibel column

In the Kaibel-arrangement, the prefractionator is not operated at the preferred split, but performs
a sharp ab/cd split. The succeeding �main column� performs the a/b split in the top and the c/d
split in the bottom. The middle section between the b and c outlet should be operated at full
re�ux (V ≈ L) without any net transport of components, since the b/c split is already obtained
in the prefractionator. The minimum vapour �ow requirement in the main column is given by
the highest requirement from the a/b or the c/d split. The minimum vapour �ow requirement
in the Kaibel column is always outperformed by the full Petlyuk arrangement. This di�erence
can be high or small depending on feed properties [43].

The Vmin diagram in Figure 3.5 (which is identical to the one in Figure 3.4) is the Vmin
diagram for the prefractionator of the Kaibel column. As mentioned earlier, the task of the
prefractionator is to perform a sharp b/c split. So, the important information to be obtained
from the Vmin diagram in Figure 3.5 is the vapour �ow V1t, and the net �ow D1 associated with
the peak P ′

bc.

While for the Petlyuk arrangement, all information can be obtained from the standard Vmin
diagram, the Kaibel column requires additional computations for the main column, from which
we obtain the corresponding vapour �ows V2t and V3b (see Figures 3.6 and 3.7). These are
obtained using the approach explained in [43] (see Appendix).
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Figure 3.5: Vmin diagram for the prefractionator of Kaibel distillation column (b/c split)
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Figure 3.8 shows the �nal Vmin diagram for a 4-product Kaibel column made by combining
Figures 3.5, 3.6 and 3.7. As it is seen from the �gure, the most di�cult split is taking place in
the top main section where we perform the a/b split. So, the total vapour requirement of the
column is dictated by the peak P ′

ab and we have Vmin = V2t. This will lead to excess energy in
the other section of the column. Note that from this point on, for the sake of simplicity, we have
kept only those parts of the diagram which are speci�c for the Kaibel distillation column, which
correspond to the upper solid line in Figure 3.8.
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Figure 3.8: Vmin diagram for Kaibel distillation column

As it is reported in Table 3.1, Kaibel column is the winner of all the alternatives from energy
requirement point of view. The value reported in the table for Kaibel column comes from the
assumption of sharp split between b and c in the prefractionator. In practice, there will be some
allowance for the impurities of the key components b and c in top and bottom of prefractionator,
which leads to even less amount of vapour requirement for the whole column. This can simply
be checked by sketching the objective function (here: total amount of vapour fed to the Kaibel
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column) as a function of impurities in the top and bottom of the prefractionator from a rigorous
simulation.

3.2.5 Vmin diagram for Kaibel column using Underwood equation

In this section, we show how to obtain the minimum vapour �ow requirements for Kaibel dis-
tillation column from the Underwood equation. This assumes constant relative volatility (α)
and constant molar �ows. The minimum vapour �ow rate at the top of the prefractionator is
expressed analytically by the Underwood expression [127]:

V
b/c
1t

F
=
αa za
αa − θb

+
αb zb
αb − θb

Here θb is the middle common Underwood root found from the feed equation:

αa za
αa − θ

+
αb zb
αb − θ

+
αc zc
αc − θ

+
αd zd
αd − θ

= 1 − q

The actual roots of the prefractionator will be the common roots for the next section. The
following equations show the minimum requirements in the top and bottom of the main column
[43].

V
a/b
2t

F
=

αa za
αa − θ2ta

=
αa za
αa − φa

V
c/d
3b

F
=

αd zd
αd − θ3ba

=
αd zd
αd − ψc

3.2.6 Vmin diagram from rigorous simulation

In this section, we study the minimum energy diagram with a �nite (but large) number of stages
using rigorous simulations. This is to check the validity of the Vmin diagrams which are obtained
by ideality assumptions.

Table 3.2 shows the procedure for obtaining the Vmin diagram using rigorous simulations.
Each row in Table 3.2 corresponds to one line in the Vmin diagram. For each line, one recovery is
�xed. The simulations are done for a conventional column with four components. The recovery
can be used as one of the two speci�cations which are needed to specify the column using the
simulator ([128]). The other speci�cation is chosen to be the distillate �ow rate. So, by keeping
a recovery constant and increasing the distillate �ow rate, the points on each line are obtained.
When the recovery speci�cations for the peaks or valleys are reached, the recovery speci�cations
for the next line should become active to continue the simulation (see Table 3.2).

In the ideal Vmin diagram, it is only the peaks and valleys which are calculated. The boundary
lines to separate di�erent regions come from connecting these points. This is why the lines go
to the origin. For a real column, we should start with a feasible point. This is because it may
not be possible to get a certain recovery with any amount of distillate �ow. We need to start
from higher distillate �ow rates if the recovery speci�cation is high. The �rst boundary line is
made by specifying the recovery of component b in the bottom (Rb,bot) at the upper bound (UB).
The distillate �ow rate is increased until the point where the recovery of component a in the
top (Ra,top) reaches the speci�ed value. The speci�cations for other boundary lines are given in
Table 3.2.

The infeasible area should be avoided. The area below the line V = D is infeasible since all
liquid and vapour streams above and below the feed have to be positive. So, in every step, we
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Table 3.2: Procedure of constructing the Vmin diagrams using rigorous simulations

Line Speci�cations

0 - a/b, Rb,bot = UB, Increase D while Ra,top < UB
a/b - a/c, Ra,top = UB, Increase D while Rc,top < LB
a/c - b/c, Rc,bot = UB, Increase D while Rb,top < UB
b/c - b/d, Rb,top = UB, Increase D while Rd,top < LB
b/d - c/d, Rd,top = UB, Increase D while Rc,top < UB
c/d - end, Rc,top = LB, Increase D while Ra,bot < LB

R =Recovery UB =Upper bound LB =Lower bound

should check if the operating point hits the infeasible region or not. The net liquid molar �ow
in the top section (second stage) is the criterium and it should not become negative. When the
V = D line is crossed, we discontinue the current line and the line V = D is followed up to the
point where the criterium of the next line is met.

Figure 3.9 shows the Vmin diagrams for a four-component column with �fty stages for di�erent
recoveries. It is shown that the di�cult split changes depending on the product recoveries. Figure
3.10 shows the Vmin diagrams for 99% recovery for all the main products and with di�erent
numbers of stages. As the number of stages become larger, the Vmin diagram becomes more
similar to the ideal Vmin diagram. As expected, when the number of stages gets relatively low,
the peak V increases sharply. It would go to in�nity as we reach Nmin for the section in question.

3.3 Operation

In terms of optimal operation, it is usually assumed that the objective is to make products of
given purity using the minimum energy. However, in practical operation this is often not the
issue, but rather to make the purest possible products with a given energy, especially when there
is a bottleneck in the plant. Both these cases are discussed here. We are going to study how
the mode of operation is going to a�ect the behaviour of the column and as a result the ease of
operating the column. Controllability has been studied by some researchers ([129];[111];[104]) for
a three-product dividing wall column. The four-product Kaibel column is more complex and the
analysis in this chapter addresses the more basic problem of understanding the column behaviour
at and around the optimal operating point. The insight gained can be used to select a suitable
operation target and optimizing control strategy.

So, the two modes of operation which are studied here are as below:

� Mode 1: minimize energy requirement for �xed product purities.

� Mode 2: maximize the product purities with constant boilup (i.e., minimize impurity sum).

3.4 System under study

The system under study is shown in Figure 3.12 and is considered for separation of the �rst four
simple alcohols (methanol, ethanol, 1-propanol, 1-butanol) and the feed is equi-molar. Figure
3.12(b) shows the schematic of the Kaibel column built in NTNU ([130]). This process is simu-
lated as a 4-column model in HYSYS. It allows �exibility regarding the speci�cations in di�erent
column sections. The pumps and valves are placed to compensate the pressure di�erence between
two column sections in two sides of the wall. In reality di�erent packing structures are used for
this purpose. As it is clear from Figure 3.12(c), there are twelve stages in each subsection in the
main column. The number of stages in the prefractionator is equal to the number of stages in
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Figure 3.9: Vmin diagrams for di�erent recoveries using rigorous simulations
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the other side of the wall. It is assumed that the number of stages in all sections are �xed and
they are not included in optimization.

To achieve the liquid split, a practical solution would be to draw o� all liquid above the
partitioning wall and transfer it to an intermediate holdup-tank before pumping and metering
the liquid back to the column on either side of the dividing wall. Some alternative methods have
been reported by the industrial manufacturers ([131]). Note that liquid split (RL) is de�ned
as the ratio of the liquid entering the top of the prefractionator to the liquid coming from the
top of the main column to the liquid splitter and vapour split (RV ) is de�ned as the ratio of
the vapour entering the bottom of the prefractionator to the vapour entering the vapour splitter
from bottom of the main column.

In the case of the vapour split, the situation is quite di�erent. Except for [130], there are no
reports of adjustable vapour splits in the literature, nor has it been reported in any industrial
implementations. Usually the detailed design will determine the best position of the wall and the
pressure drop either side of the partitioning will determine the vapour split ratio. One can argue
that if the desired vapour split ratio is not achieved it can be compensated by adjusting the liquid
split. This is true up to a point, but if the ratio is too far o� from the optimal value the product
purities or at least the column e�ciency will su�er. However, in case of manipulating vapour
split, we have an extra degree of freedom for control that could be used to increase purities or
make the separation more energy e�cient in the face of process disturbances ([131]). Figure
3.11 shows the minimum energy diagram for the case under study. For every possible operating
point, the normalized vapour �ow rate (V /F ), the overall product split (D/F or B/F ), and the
distribution (given by a set of recoveries) is shown. Note that the peaks and valleys are only
valid. They are calculated based on the Underwood equations.
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Figure 3.11: Minimum energy diagram (solid lines) for the equimolar mixture of methanol,
ethanol, 1-propanol, 1-butanol. The highest peak (Pab) gives the minimum boilup for petlyuk
arrangement. The dotted line is for the Kaibel column and the highest peak (P ′

ab) gives the
minimum biolup.

The peaks at the dashed lines in Figure 3.11 give the vapour �ow rate requirement to separate
a/b and c/d in a Kaibel column, when the prefractionator does a sharp ab/cd split. The highest
peak (here Pab) determines the overall energy requirement of the Kaibel column, so the lower
part of the column has more energy available than required. This can be utilized to obtain
somewhat higher purity in the other section of the column or to reduce the number of stages.
The other point is that unlike Petlyuk con�guration where we normally have a certain slack in
the prefractionator operation regarding distribution of the intermediate components (b and c),
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the Kaibel-column prefractionator must perform a relatively sharp split between streams ab and
cd, given by the Pbc in the Vmin-diagram. We can �nd a certain slack if we allow nonsharp split
in the Kaibel con�guration, but this is limited by the product speci�cations. Prefractionator
operation with higher vapour rate than at Pbc could give us some slack also for sharp ab/cd split,
but this will lead to higher vapour requirement to split a/b and c/d in the succeeding sections.

Figure 3.13 shows an alternative structure which could be used for obtaining good estimates
for �ows as initial values using the information from Vmin-diagram. The number of degrees of
freedom in this structure is again six and all of them are for the main column (four product
compositions and two �owrates of the streams going back to the prefractionator). We use the
minimum rates from minimum energy diagram together with the pinch point compositions [123]
at the ends of the prefractionator from the ideal model as an initial guess. The �ow rates and
compositions of the returning streams (R2 and VB2) to the prefractionator should match the
ones entering the prefractionator column (R1 and VB1). So, by setting the compositions of
the entering streams (R1 and VB1) from pinch point calculations, and the �ow rates of the
returning streams from the Vmin diagram, we will have some iteration to adjust the �ow rates
of the entering streams, so that the compositions of the returning streams match the ones of the
entering streams. The split values from this simulation are used in the original model to �nd the
minimum energy required for the separation. This model is mainly used for the cases where we
had problem in convergence, especially for the mode of minimizing energy requirement.

3.5 Minimize energy requirement (mode 1)

The objective is here to minimize the energy requirement with given purities of the four products.
The cost function J to be minimized is therefore selected to be the boilup rate

J = V

For mode 1 where the products purities are �xed, there remain two degrees of freedom (vapour
and liquid splits) which should be used to minimize energy requirement. The other degrees of
freedom are used to satisfy the product purities speci�cations. Since the product purities are
constraints, the splits are inter-related and cannot be changed independently as optimization
variables to get to the minimum energy requirement. So, it is di�cult to run the optimization
program as it is done for the other mode. Therefore, to get a feeling about where the optimum is,
the minimum vapour rates is found from the Vmin-diagram ([43]). Figure 3.14 shows the optimal
composition and temperature pro�les for the nominal case and di�erent disturbances. We will
discuss about Figure 3.14(b) more in the next section.

Visualization of the cost function gives a qualitative insight into the problem at hand. Since
there are two optimization variables, the solution surfaces can be shown in two-dimensional plots.
The contours of the objective value are shown in Figure 3.15. In the 3-dimensional graph, they
are like thin bended cones. The cross-sectional area of the cone will increase as boilup �ow rate
increases. This �gure also shows that for the case which feed quality is zero, RL is greater than
RV , especially near the optimal point. The opposite is seen for the case of q = 1. The reason
is quite obvious (e.g. for q = 0, since a part of vapour needed for separation is provided by the
feed itself, so it needs more liquid than vapour to contact). Note that this cannot be generalized.
For other feed compositions or relative volatilities, this is not followed.

There exists multiplicity in the solution. This can be seen in Figure 3.16(a) as we get two
di�erent boilups when all the speci�cations are set and the system is de�ned. This is due to
two di�erent ways for impurity �ows to go to products ([24]), namely from top or bottom of the
prefractionator (see Figure 3.16(b)).

Figure 3.17 shows the dependency of boilup rate on the vapour split as the liquid split changes
over a wide range. It shows the general trend of change of the minimum vapour as the splits are
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Figure 3.12: (a) 4-Product dividing-wall column schematic, (b) schematic of the lab Kaibel
column at NTNU, and (c) HYSYS simulation
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Figure 3.13: HYSYS simulation that uses the information from Vmin diagram to obtain initial
estimates for the detailed simulation.
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Figure 3.14: Mode 1: optimal composition and temperature pro�les. (a) Optimal composition
pro�le for nominal case, prefractionator: dashed lines; main column: solid lines (feed liquid
fraction = 1). (b) Optimal temperature pro�les for nominal case and various disturbances in
feed compositions (5%), liquid fraction (10%) and feed �owrate 10%), prefractionator: blue lines;
main column: black lines (feed liquid fraction = 1).



38 Optimal Operation of Kaibel Distillation Columns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R V

RL

V = 1.5 Vmin ——
V = 1.3 Vmin ——
V = 1.14 Vmin ——
Vmin = 1.139 F  ——
q = 0

V = 1.14 Vmin ——
V = 1.08 Vmin ——
Vmin= 1.576 F  ——
q = 1

V = 1.3 Vmin ——
V = 1.14 Vmin ——
V = 1.07 Vmin ——
V = 1.306 F  —
q = 0.5
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liquid and vapour splits for liquid feed (q = 1), two-phase feed (q = 0.5) and vapour feed (q =
0).
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Figure 3.16: Mode 1 (�xed purities of 95% for all products): (a) boilup rate as a function of
vapour split (Rv) with �xed liquid split. (b) Impurities of C2 and C3 in the ends of prefraction-
ator, red for C3 and black for C2 respectively. The solid lines in �gure (a) correspond to the
solid line in �gure (b) (feed liquid fraction = 0).
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Figure 3.17: Mode 1 (�xed purities of 95% for all products): boilup rate versus vapour split (Rv)
at di�erent values of liquid split (feed liquid fraction = 0).

changing and the span for one split value in which there is a feasible solution as the other one is
�xed. Also, the location of minimum is clearer in this �gure.

As mentioned previously, in industrial practice it is not common to adjust the vapour split
online. It will normally be given by the dividing wall placement and �ow/pressure characteristics
of the packings and the liquid load on each side. The results show that the optimal operating
region (somewhat close to minimum energy point) is narrow and we are actually forcing the
process to go through a very restricted area to reach the purity speci�cations. So, the liquid split
has to be adjusted carefully to obtain minimum energy.

3.6 Maximize product purities with �xed boilup rate (mode 2)

The objective function is here to maximize the purity of the products with a given energy, that
is, with �xed boilup (V). The cost function J to be minimized can be de�ned as the sum of the
impurities in the products,

J =D(1 − xD) + S1(1 − xS1) + S2(1 − xS2) +B(1 − xB)

Two di�erent cases that will lead to this mode are ([131]:

1. If all the prices for the products are equal, but we get paid for the main component only
in each product.

2. If products S1 (upper side stream) and B (bottom product) have zero value (or same
value as the feed) and for the valuable products S2 and D we only get paid for the main
component. In this case all impurities give losses.

The optimal steady state solution is reached with a speci�ed boilup rate and with the other
degrees of freedom optimized such that the products will be as pure as possible. Table 3.3 shows
the results of optimization for the two cases studied. The numbers in bold in each column are �xed
during the optimization. The optimal composition and temperature pro�les for the nominal case
and di�erent disturbances are shown in Figure 3.18. It is seen that the temperatures in the middle
stages (stages 15-33) of main column and middle of the prefractionator remain constant after
optimizing for di�erent disturbances. So, these temperatures are good candidates as controlled
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Table 3.3: Optimal steady-state solution (equimolar feed of 100 kmol/h which is saturated liquid).

Mode 1 Mode 2

RL 0.42 0.4009

RV 0.635 0.6179

Re�ux ratio 6.127 6.375

D �ow rate (kmol/h) 25.33 24.43

B �ow rate (kmol/h) 25.68 24.41

S1 �ow rate (kmol/h) 24.32 24.93

S2 �ow rate (kmol/h) 24.67 26.22

V (kmol/h) 157 157

Q (kW 1842 1842

Objective value 157 157

Purity of methanol in D 95 % 97.66 %

Purity of ethanol in S1 95 % 94.19 %

Purity of 1-propanol in S2 95 % 93.48 %

Purity of 1-butanol in B 95 % 99.28 %
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of fixed product purities and we are actually forcing the 
process to go through a very restricted area to reach the 
purities set (Ghadrdan, Halvorsen et al. 2010). Therefore, the 
liquid split has to be adjusted carefully to obtain minimum 
energy. In this work, we are going to set the vapour split as a 
manipulated variable. The vapor split is set to be 
manipulatable for the Kaibel laboratory setup which was built 
at NTNU (Strandberg, Skogestad et al. 2008). 

The model used for this study is simulated in UNISIM. The 
feed stream is an equimolal mixture of Methanol, Ethanol, 1-
Propanol, 1-butanol and saturated liquid. The optimal boilup 
is about 40-50% higher than a theoretical minimum boilup 
with infinite number of stages. The value set for the boilup 
rate is derived from the minimum energy diagram (Halvorsen 
and Skogestad 2006). The nominal optimal solution is found 
as it is shown in  Table 1. All the optimal operating points for 
different sets of the disturbances (d) are found by applying an 
optimisation solver in MATLAB with the full non-linear 
model in UNISIM. The table also show nominal values (bold 
numbers) for each input when the column model is in optimal 
operation. 

 
Table 1. Optimal values for the variables  

Variable   Nominal 
value  

Unit 

L  Reflux  155.8 kmol/h 
V  Vapor boil-up  157  kmol/h 
S1  Side stream 1  24.567 kmol/h 
S2  Side stream 2  26.27 kmol/h 
RL  Liquid split  0.4009        <ratio> 
RV  Vapor split  0.610  <ratio> 
F  Feed stream  100.0  kmol/h 
zF  Feed composition [1 1 1 1]/4  mol/mol 
q  Feed quality  1.0  - 

 

2.4  Control Variable Selection 

It is most common that distillation columns are controlled by 
use of temperatures as measurements. The temperature at a 
stage in a distillation column is a good indication of its 
composition. Skogestad (Skogestad and Postlethwaite 2007) 
presents some benefits of using temperature loops for 
controlling the composition: 

1. Stabilizes the column composition profile along the 
column 

2. Gives indirect level control: Reduces the need of level 
control 

3. Gives indirect composition control: Strongly reduces 
disturbance sensitivity 

4. Makes the remaining composition problem less interactive 
and thus makes it possible to have good two-point 
composition control 

5. Makes the column behave more linearly 
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Fig. 3. Optimal composition profile (a). Optimal temp-
erature profiles for various disturbances in feed 
compositions (5%), liquid fraction (10%) and boilup 
flow setpoint (5%) (b) 

 

The optimal composition and temperature profiles are shown 
in  Fig. 3.  Fig. 3 b includes also the temperature profiles after 
reoptimizing when different disturbances happen. This gives 
us some insight about where is the proper place to pick the 
measurements from. The points with less sensitivity to 
disturbances and more sensitivity to changes in manipulated 
variables are preferred. This means that the temperature 
measurements in the range of 15th tray to ca. 33rd tray in the 
main column are among the best options. These temperatures 
are good candidates to be control variables. Combinations of 
measurements which show self-optimizing properties can be 
also considered as control variables, which is not studied in 
this paper (Alstad, Skogestad et al. 2009). 

Control variable (CV) selection is based on the exact local 
method (Halvorsen, Skogestad et al. 2003; Kariwala V. and 
Y. 2009). The CVs are given as  

y
d

y

edd

HGHGG

eHWdWGGuHyc
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                                         (2) 

The loss due to controlling CVs at constant setpoint is 
defined as  

(b)

Figure 3.18: Mode 2: optimal composition and temperature pro�les for nominal case. (a) Opti-
mal composition pro�le for nominal case, prefractionator: dashed lines, main column: solid lines
(feed quality = 1). (b) Optimal temperature pro�les for nominal case and various disturbances
in feed compositions (5%), liquid fraction (10%), boilup �ow setpoint (10%) and feed �owrate
10%), prefractionator: blue lines; main column: black lines (feed quality = 1).
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Figure 3.19: Mode 2 with �xed boilup: Impurities in each product and sum (cost J) as a function
of the degrees of freedom (vapour split, liquid split, re�ux, side stream �ow rates) with the other
variables kept constant at their original optimal values.
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Figure 3.20: Mode 2 with �xed boilup: 3-D surfaces and contour plot of impurity sum (cost J)
as a function of degrees of freedom with the other variables �xed at their optimal values.
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variables. Combinations of measurements which show self-optimizing properties can also be
considered as controlled variables [121].

Note that it is possible to increase some of the products purities with the same amount of
energy (vapour). Some of the products will easier obtain higher purity than the other, which is
due to both the actual selected number of stages and to the extra energy available in the parts
of the column related to the lowest peak in the Vmin-diagram (here the bottom split related
to Pcd). Thus, this should be considered when specifying the individual product purities with
the minimum energy objective since only the most di�cult split is actually setting the energy
requirement.

For control purposes it is interesting to know how the manipulated variables a�ect the process.
Figure 3.19 shows the dependency of product compositions and the objective value on each of
the �ve degrees of freedom while all the others are kept constant at their nominal point. The
objective value shows a linear dependency on the variables away from the optimum. The degree
of e�ect of a change in each variable on the objective value is clear in these �gures. For example,
the deviation of S1 from the optimal point has more e�ect on the objective value than S2. It
can be seen that any change in re�ux (L) and side streams �ow rates (S1, and S2) a�ect mainly
the purities below. For example a change in the S1 �ow rate does not have any e�ect on the
purity of the distillate stream. Likewise, the change in S2 �ow rate does not have any e�ect on
the purity of the distillate and S1 streams. By considering each of the four parts as separate
columns, we can easily con�rm the results by analyzing the amounts of internal �ows in each
part and how they a�ect separation. Often in distillation, the internal �ows, re�ux and boilup,
are used as control degrees of freedom.

Since there are �ve degrees of freedom, it is di�cult to sketch the solution surface in this
case. Figure 3.20 includes 3-dimensional surfaces which show how the objective value is a�ected
by splits and side stream �ow changes. Like the previous case, there is "bad" direction for both
of them, along which a small change in one of the variables will result in a large change in the
objective value.

3.7 Conclusions

In this chapter, two modes of operating a Kaibel column are studied. The �rst mode, which is
minimizing vapour �ow rate at given product purities, is more di�cult to handle. This di�culty
is due to the very narrow solution surface and also multiplicity problem. However, the second
mode, where the product purities are free, seems to be easier to operate. This case is not as
common as the �rst objective, but can be relevant for re�neries where the product purities do
not play a vital role or when there is a bottleneck in the process.
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Chapter 4

A Shortcut Design for Kaibel Columns

Based on Minimum Energy Diagrams

In this chapter, a shortcut procedure is proposed to design a 4-product dividing-wall
column. It is based on the information derived from Vmin diagram. This has the
advantage of having more meaningful guesses for energy requirements and impurity
�ows in the column. An example is used for illustration.

4.1 Introduction

The dividing-wall column is a single-shell column, divided into two parts with a prefractionator
and a main section with a side-stream product, which is capable of separating mixtures into
three high-purity products. Compared to conventional schemes with two columns in sequence,
it needs less energy, capital and space. We study the Kaibel column, which has been modi�ed
to have two side-stream products and can separate the feed into four high-purity products using
a single shell.

In terms of design, there are twelve degrees of freedom for the Kaibel column. These are the
number of theoretical stages in each of the six sections plus the 6 operational DOFs. This is for
a given feed rate (e.g. F=1 mol/s) and the column diameter will depend on the chosen feed rate.

Some shortcut methods have been proposed for design of 3-product columns ([26]; [132]). One
approach is to extend the existing methods of conventional columns to dividing wall columns
by representing the Petlyuk column by three conventional columns. Another approach is to use
more direct insight into the properties of the Petlyuk column and make use of the Vmin diagram
[1]. We use this approach.The method consists of the following steps: First, the Vmin diagram
is sketched. The advantages of using Vmin diagram in design are discussed in detail in section
3. In section 4, the minimum �owrates in all parts of the column will be calculated. Assuming
that actual vapour �ow is somewhat higher (around 10%) than the minimum value, the actual
�ows will be calculated. Nmin will be calculated based on Underwood equation, except for the
section between two side streams for which the Fenske equation is used.

4.2 Vmin diagrams

Figure 4.1 shows the Vmin diagram for the methanol-ethanol-propanol-butanol system (abcd)
which is the example considered here. The peaks Pab, Pbc and Pcd represent minimum energy for
sharp product splits of the original mixture in the Petlyuk con�guration. Each peak is related to
each of the common Underwood roots (θa, θb, θc). For a Petlyuk arrangement, the prefractionator
performs the "easy" split between components a and d (Pad). However, in a Kaibel-arrangement

45
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the prefractionator performs the more di�cult split between components b and c. For the Kaibel
column we must compute the new peaks P ′

ab and P
′
cd (determined by the actual Underwood roots

(φa, ψc)). The minimum energy in the Kaibel arrangement is given by the highest of the new
peaks (here P ′

ab). It is obvious from this diagram that the Kaibel arrangement always consumes
more energy than the full Petlyuk arrangement since P ′

ab > Pab, P
′
cd > Pcd and trivially: P ′

ab

> Pbc and P
′
cd > Pbc. It is also simple to see that the di�erence between Kaibel- and Petlyuk-

arrangements can become small when peak Pbc is quite low [43]. In case of unequal peaks in
the Petlyuk con�guration, there will be an optimality region which is a line from preferred split
point to the point where the two peaks become equal [123]. The optimality region will be like
a square below b/c peak, which is impurity allowance in prefractionator. We assume that the
recovery of component a in the top of prefractionator and the recovery of c4 in the bottom of
prefractionator are 1 and 0 respectively (ra,T = 1, rb,T = β1, rc,T = β2, rd,T = 0). The net �ow
rates which enter the main column for the top and bottom will be calculated from ∑ ziFβi and

∑ ziF (1 − βi) respectively. The common underwood roots in the prefractionator are calculated
from

1 − q = ∑(
αizi
αi − θ

) (4.1)

Vmin,F = ∑(
αiziF

αi − θ
) × βi (4.2)

The vapour �ow rate which corresponds to θ2 will be the minimum requirement for prefrac-
tionator.
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Figure 4.1: HYSYS simulation that uses the information from Vmin diagram to obtain initial
estimates for the detailed simulation.

4.3 Select product purities

Selection of product purities is based on the economical analysis and customer needs. Note that
the minimum vapour �ow for the Kaibel column is the same as the maximum of the minimum
energy required for any pair of product splits, and the highest peak shows the most di�cult split.
It is clear that we can think of extra energy in one section and then talk about either increasing
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the product recovery or designing with lower number of trays. It is shown that overfractionating
one of the products makes it possible to bypass some of the feed and mixing it into the product
while retaining the constraints on the products [133]. In addition, the impurities in products can
be guessed from Vmin diagram. For example, the highest peak in the Vmin diagram determines
the component that may appear as impurity in the side stream during optimal operation. So,
care should be taken in specifying the product impurities.

Figure 4.2 shows the trends of changes in side-stream impurity ratios as functions of splits
and impurities coming from the prefractionator for the example studied. This proves the fact
about the impurity �ows which go to the side-stream and also helps to put some feasible values
in mass balance equations. By writing the total and component mass balances for the whole
column to get the minimum allowable �ows inside each section we will have eight equations
(component balances) and twenty unknowns, which means that twelve variables should be set in
order to solve the mass balance equations.

Fzci =Dxci,D + S1xci,S1 + S2xci,S2 +Bxci,B ∑xi,Strj = 1

where xm,n means mole fraction of component m in Product N. We assume that the com-
position of the component in two sections away from which it is the main product, is nearly
zero, e.g. the compositions of the lightest component in side stream S2 and bottom stream. By
doing so and also specifying the composition of the main product in each product stream, there
remains two DOF to be speci�ed. It is shown that specifying two composition speci�cations in
a product stream may lead to problems [24]. This means that the impurity can not be chosen
as an arbitrary value. Figure ?? shows the contours of the ratios of impurities in side streams
around the optimum as functions of vapour and liquid split. It can be read from the �gures
that for example the specifying two ratios as 1 is not possible. So, one important issue is the
allowable variables which can be set for product impurities so that the mass balance equations
lead to feasible solution.

4.4 Minimum allowable and actual internal �ows

The other internal �ow rates for the prefractionator section and main column will be calculated
easily from balances around di�erent junctions. The common roots in the prefractionator section,
will be the active roots in the main section. The minimum vapour �ow rate value for each section
in the main column can be calculated from equation (2), by simply substituting the proper feed
�ow, feed composition and recovery values for each section (for example zi,2 = (F /D1) × βizi,F ,
q2 = −Lmin,p/D1, βi(sec2) = DzD/D1zD1 for top section of the main column). Now, we can
continue with assuming the actual vapour �ow needed for the whole column to some extent (we
assume 10%) higher than the minimum value and then calculate the actual internal �ows.
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Figure 4.2: Objective value and side streams impurities as functions of impurities of C2 and C3
from bottom and top of the prefractionator respectively
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Figure 4.3: Contours of the impurity ratios in side streams as functions of liquid and vapour
split

The liquid and vapour splits are de�ned as the ratio of the streams going to the prefractionator
to the amount coming to the joint.

RL =
L1

L2

RV =
V̄1
V̄3

The other internal �ows on two sides of the wall will be calculated based on the splits. Since
the internal �ows should be greater than the minimum �ows, there are some constraints which
should be met. Otherwise, the equations will not have proper roots related to relative volatilities.

RL <
L2 − L̄min,2

L2

RL >max(
Lmin,1

L2
,
(L̄min,1 − qF )

L2
)

RV >max(
V̄min,1

V̄3
,
(Vmin,1 − (1 − q)F )

V̄3
)

RV <
V̄3 − V3,min

V̄3

Section four is the section between two side-streams and it is considered to have total re�ux
and the number of trays will be calculated directly from Fenske equation. Since Fenske equation
is based on assuming equal compositions of liquid and vapour streams at top and bottom of
prefractionator, -which is not the case for DWC-, we derive the minimum number of trays from
Underwood equation. A few iterations are done to reach a desired value for number of trays
and energy requirement. The equation below is used for calculating the number of trays in each
section. xi,L is the composition of the entering stream to prefractionator, which is calculated
from pinch point equations [123].

N = log((∑
αixi,D
αi−φ2

/∑

αixi,D
αi−φ1

)/(∑
αixi,L
αi−φ2

/∑

αixi,L
αi−φ1

))/log(φ2
φ1

) (4.3)
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4.5 Conclusion

Designing the complex columns is not as straightforward as the conventional columns. In this
chapter, we have presented a method for shortcut design of Kaibel column based on Vmin diagram.
The next step is to start simulating the model using the data from shortcut design as �rst guess.
By plotting the contours of the objective value as a function of the two operational DOFs, we
can get more information about the behaviour of the column close to the optimum and do the
optimal design based on the rigorous model.
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Chapter 5

Manipulation of Vapour Split in the

Kaibel Distillation Arrangements

In this chapter, we want to show how we can gain more from a Kaibel distillation
column by considering a degree of freedom which is normally not used. Two methods
are used to study the e�ect of vapour split manipulation, namely a shortcut method
and rigorous simulations. Using a case-study, we show that we may not be able to
operate close to minimum energy requirement for some feed disturbances as we have
the vapour split �xed.

5.1 Introduction

The vapour split ratio (see Figure 5.1) is one of the degrees of freedom in a dividing-wall column.
It is usually set at the design phase by determining the location of the wall and the pressure drop
in the divided sections, but it is not adjustable during operation (e.g. [134]). There is no report
from industry of an adjustable vapour split and a degree of freedom is lost. However, to reduce
energy usage, several authors including Wol� et al. [24], Halvorsen et al. [117] and Ghadrdan et
al. [135] have shown that it is important to set the liquid and vapour splits at their right values.

The Kaibel laboratory setup at NTNU [130] is probably the only implementation of active
manipulation of the vapour split. Figure 5.2 shows a picture of the lab column with manipulatable
vapour and liquid splits. The vapour split valve in this implementation is rudimentary and not
very precise, but Dviwedi et al. [136] showed that this can be corrected with a simple temperature
feedback action, and the column can be operated and stabilized using the vapour split[136]. The
issue of this chapter is to further study the potential savings of manipulating the vapour split
in the Kaibel arrangements. We study two approaches: First, the Vmin diagram [123] is used to
study the e�ect of vapour split on the energy requirement. Then, we have con�rmed the results
by rigorous simulations in HYSYS.

5.2 Degrees of Freedom in the Kaibel Arrangement

Figure 5.1 shows a schematic of a Kaibel dividing-wall distillation column and its thermodynamic
equivalent with separate sections. Assuming that the distillate (D) and bottom (B) �ows are
used for level control, there are six remaining degrees of freedom (u) in a Kaibel distillation
column: boilup rate (V), re�ux (L), side stream �ows (S1, S2), liquid split (RL) and vapour split
(RV ).

u = [ RL RV L V S1 S2 ]

53
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Table 5.1: The optimal values of RV for di�erent composition disturbances in three main direc-
tions

Disturbance Feed composition V1t V2t V3b Optimal RV

a/b change

[ 0.20 0.30 0.25 0.25 ] 1.160 1.995 1.670 0.5815

[ 0.25 0.25 0.25 0.25 ] 1.121 1.918 1.633 0.5846

[ 0.30 0.20 0.25 0.25 ] 1.081 1.838 1.594 0.5882

b/c change

[ 0.20 0.30 0.25 0.25 ] 1.059 1.7399 1.671 0.6086

[ 0.25 0.25 0.25 0.25 ] 1.121 1.918 1.633 0.5846

[ 0.30 0.20 0.25 0.25 ] 1.180 2.089 1.591 0.5649

c/d change

[ 0.20 0.30 0.25 0.25 ] 1.081 1.886 1.508 0.5733

[ 0.25 0.25 0.25 0.25 ] 1.121 1.918 1.633 0.5846

[ 0.30 0.20 0.25 0.25 ] 1.160 1.949 1.753 0.5952

(a)

a

c

b

d

a
b
c
d

Liquid 
split

Vapour 
split

(b)

a

c

b

d

a
b
c
d

Liquid split 
(side draw)

Vapor split 
(side draw)

V1

L1

Figure 5.1: A schematic of Kaibel dividing-wall distillation column (left) and its thermodynamic
equivalent (right)

Note that liquid split (RL) is de�ned as the ratio of the liquid entering the top of the
prefractionator (L1) to the overall liquid (L) coming from the top of the main column and
the vapour split (RV ) is de�ned as the ratio of the vapour entering the bottom (V1) of the
prefractionator to the overall vapour (V) from the bottom of the main column. Assuming
that the objective of the separation is to reach speci�c product purities, four of the degrees of
freedom are used to satisfy the product purity speci�cations: Top (xD,a), side-stream 1 (xS1,b),

side-stream 2 (xS2,c), bottom (xB,d). The two remaining degrees of freedom can be used for
optimization, e.g. for minimizing energy consumption.

5.3 Optimal Vapour split in Kaibel columns

5.3.1 Sharp Split Separation

We �rst consider the case of a sharp split separation, which means that the lines in Vmin diagram
are for 100% recovery of a component. The following equation is used to calculate the optimal
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Figure 5.2: Laboratory Kaibel distillation column at the chemical Engineering department at
NTNU, Norway [130]
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Figure 5.3: Vmin diagram for the Kaibel distillation columns for di�erent feed disturbances. red:
zi/zj = 0.20/0.30, Black: zi/zj = 0.25/0.25, Blue: zi/zj = 0.30/0.20

vapour split.

RV =
V1t/F

VM/F
(5.1)

where

VM/F = max (V2t/F,V3b/F )

The values of V1t/F (P ′
bc), V2t/F (P ′

ab) and V3b/F (P ′
cd) can be obtained from Vmin diagram.

Figure 5.3 shows the Vmin diagram for three feed composition disturbances, and the corresponding
optimal RV for each case is given in Table 5.1. It seems that a constant RV may work �ne for
a/b feed composition changes, since the vapour requirement in both the prefractionator and
main column (peaks P ′

bc and P ′
ab) seem to change with about the same ratio. This is shown

more clearly in Table 5.1, where we see that the RV value is mostly a�ected by the composition
disturbance in the direction of b/c.

In the case when we have a �xed RV , we need to make sure that the minimum vapour
requirement for a b/c sharp separation in the prefractionator is guaranteed. Since the Vmin
diagram is for the optimal RV , having a �xed RV means that the vapour requirement for the
prefractionator should increase, so that the the ratio of V1t and the corresponding requirement



5.3. Optimal Vapour split in Kaibel columns 57

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

D/F

V
/F

P'
bc

P'
cd

P'
ab

Figure 5.4: Vmin diagram for the nominal feed properties (black, RV = 0.5649) and new feed
composition (b/c composition change to 0.30/0.20) with optimal (blue, RV = 0.5846) and �xed
RV (red, RV = 0.5649)

for the main section of the column (VM ) equals the �xed value which is set for RV . Figure 5.4 is
an example which shows the vapour requirement for the column for a change in feed composition.
The optimal RV for the new feed composition leads to less requirement (In this case: VM,RV,opt =

2.089), compared to �xed RV scenario (VM,RV,fixed = 2.1535). This is done by increasing the
vapour in the prefractionator (V1t). This in turn will a�ect the actual Underwood roots and so
the vapour requirements in the top and bottom sections of the column (see Appendix).

5.3.2 Non-sharp Separation

The analysis becomes more di�cult for non-sharp separations. Here, the compositions of compo-
nent b in the top and c in the bottom of the prefractionator are not zero. We can �nd a certain
slack if we allow non-sharp split in the Kaibel con�guration, but this is limited by the product
speci�cations. So, there will be a small region below Pbc from which any point could be chosen
as the prefractionator's operating point. An optimization can be done to �nd the best operating
point of the prefractionator. Figure 5.5 shows an example of non-sharp separation with 95%
recoveries for the main products.

The recoveries of the components in all products should be speci�ed in order to sketch the
Vmin diagram. For example, a recovery of 95% for component a in the distillate �ow rate does
not give any information about the possible existence and the amount of b in this stream. The
recoveries of the main products are usually set by the customer needs. By writing the component
mass balances around the column and assuming that at optimal operation, the component which
is to be drawn at a product stream will only appear in the adjacent product streams and not in
the ones away from it (for example, component b which is the main product of S1 stream, will
appear as impurity in streams D and S2), we need to estimate two variables to get a feasible
solution for mass balance equations. The impurities in products can be guessed from the Vmin
diagram. These issues are dealt in [137]. The highest peak in the Vmin diagram determines the
component that may appear as impurity in the side stream during optimal operation.
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Figure 5.5: Nonsharp separation with recovery of 95% for products: Equimolar (black) and feed
composition of [0.20 0.30 0.25 0.25] (red)

5.4 Rigorous Simulation

5.4.1 Kaibel case-study

Figure 5.6 shows the HYSYS simulation �owsheet of a Kaibel column separating four simple
alcohols (methanol, ethanol, 1-propanol, 1-butanol). Pumps and valves are needed in the simu-
lations to compensate for the pressure di�erence between the column sections on the two sides of
the wall. In reality, these are not required. With a given feed, there are six steady-state degrees
of freedom. In our case, four degrees of freedom are used to satisfy the four product purities
speci�cations. The remaining two degrees of freedom, here selected as vapour and liquid splits,
are used to minimize the energy requirement. Figure 5.7 shows contours of constant boilup (V)
as a function of the vapour and liquid splits. In a 3-dimensional �gure, this looks like a thin
bended cone.

Note that the contours for V > Vmin do not encircle the optimal point for RL and RV
corresponding to V = Vmin. This is surprising, and implies that there are two solutions for
RL and RV , where one is undesirable. In Figure 5.7 the lower parts of each contour will be
undesirable. This may be understood from Figure 5.8, which shows a cut of the solution surface
at �xed vapour split.

From Figure 5.8a, we see that the optimal value for RL is obtained at a minimum value. We
also see the multiplicity in the solution, where the upper branch is the undesirable solution. This
is further described by Figure 5.8(b) and Figure 5.9, which shows that there are two di�erent
ways for the components to go to the side-streams and satisfy the product speci�cations.
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Figure 5.9: Paths of component b �ow to upper side streams

In Figure 5.10, we study one of the contours and show how the impurities in the top and
bottom of the prefractionator and the impurity ratios in the side streams change along the
contour. By impurity ratios, we mean xa

xc
in the S1 stream and xb

xd
in the S2 stream. That

a/b is the most di�cult split can also be seen here, so that impurities of b in the bottom of
prefractionator are greater than the impurity of c in the top. This leads to larger ratios of
impurities in side stream 1 compared to the impurity ratio in side stream 2. This information
could also be obtained from the Vmin diagram, by �nding the column section where we have
energy surplus (see Figure 3.8). Figure 5.10b actually shows many di�erent points that could be
picked as the prefractionator's operating point. This was discussed in section 5.3.2 and is shown
schematically in Figure 5.11.

An important point to investigate is to check how much we may lose by keeping RV constant.
To study this, we have plotted in Figure 5.12 contours of boilup +2% above the optimal point
corresponding to each set of feed compositions for three main directions of composition change.
We assume that operating within 2% of minimum energy is still acceptable. The red dots in
this �gure show the optimum point for each set of feed composition. From Figure 5.12, we �nd
that with RV constant at its nominal value RV = 0.6295, it is possible to operate within 2% of
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the minimum energy requirement when there are disturbances in the a/b direction and almost
possible in the c/d direction. However, as seen from Figure 5.12C, this is not the case for a
disturbance in the b/c direction. In the �gures, we have shown the ranges for RV that keeps V
inside +2% of Vmin for the disturbances, and for the c/d and b/c disturbances the nominal value
of RV is not in this range.

These �gures also show that the value of a constant vapour split should be chosen carefully
so that it covers most of the expected disturbances. As we go further from the minimum re-
quirement, a wider range of disturbances is covered by a �xed RV , as is shown in Figure 5.13,
and in this case, the c/d disturbance can be handled by keeping RV at its nominal value, when
we allow for V vary 10% above the minimum.

Figure 5.15 shows the comparison between three values of vapour splits: one is the optimal
value for the nominal case and the others are some lower and higher value which is chosen by the
insight obtained from Figures 5.12 and 5.13. The values in the Figure show the percentage of loss
compared to the case that we re-optimize and RV is a manipulatable variable. It is con�rmed
that if some lower value is chosen for the constant RV , the disturbances in b/c direction are
handled better.

The analysis we have done in Figures 5.12 and 5.13 is with the assumption of using additional
energy and check if this is su�cient. Another approach would be to check how much additional
energy is needed to handle a given a disturbance. Figure 5.14 shows plots of boilup (V) versus
RL with �xed RV . For various feed disturbances, as shown in Figure 5.15, the di�erence in
minimum energy consumption is relatively small for the disturbances in a/b (V + 0.8%) and c/d
directions (V + 2.8%). However, the loss is larger if we �x RV when there are large disturbances
in b/c direction (V + 16.4%). A large adjustment for RL is needed to stay at Vmin (see Figure
5.14 C). However, this may be easy by controlling the composition in the prefractionator.

5.5 Conclusion

We have shown that the realization of the energy saving potential of thermally coupled columns
may require on-line adjustment of the vapour split in order to handle expected feed property
variations and still maintain minimum energy operation. In particular, this applies to cases
where the optimal operating window with a �xed vapour split is narrow, like in a 4-product
Kaibel column, and also in some 3-product dividing-wall columns with high purity in the side
product. We should pay special attention to disturbances that make the peaks sequence change
from one section of the column to the other.
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Figure 5.12: Contours for boilup +2% above optimal value for di�erent feed composition dis-
turbances. Optimum points for each feed composition in red
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Chapter 6

A short review on self-optimizing

control

6.1 Control Structure Design

Implementation of a control system is necessary to operate chemical plants economically optimal,
safe and stable in the presence of disturbances which may frequently occur during operation.
Control structure design includes the design of controllers as well as selecting the potential control
variables, manipulated variables and the way they should be connected. There is generally a time
scale separation between di�erent control layers which are connected through control variables
[138] (see Figure 6.1). At each layer, the setpoint for controlled variables is given by the upper
layer and implemented by the lower layer.

The following procedure includes a top-down analysis to optimize the process for various
disturbances and identify primary self-optimizing controlled variables and a bottom-up analysis
to identify secondary controlled variables and �nd the structure of the control system (pairing).
Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values,
for the controlled variables ([2]). The procedure is as follows:

I Top-down (focus on steady-state economics)

(a) De�ne operational objectives (optimal operation):

-i- Scalar cost function J (to be minimized)

-ii- Constraints

(b) Objective: Find regions of active constraints

-i- Identify steady-state degrees of freedom and

-ii- expected disturbances.

-iii- Optimize the operation with respect to the degrees of freedom for the expected
disturbances (o�-line analysis)

(c) Select location of throughput manipulator (TPM) (Decision 3)

� Some plants, e.g., with parallel units, may have more than one TPM

� One may consider moving the TPM depending on the constraint region

II Bottom-up (focus on dynamics)

(d) Select structure of regulatory control layer (including inventory control):

-i- Select 'stabilizing' controlled variables CV2 (Decision 2)
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-ii- Select inputs (valves) and 'pairings' for controlling CV2 (Decision 4)

� Stabilizes the process and avoids drift

� If possible, use same regulatory layer for all regions

(e) Select structure of supervisory control

-i- Controls primary CV1's

-ii- Supervises regulatory layer

-iii- Performs switching between CV1s for di�erent regions

(f) Select structure of (or need for) optimization layer (RTO)

� Updates setpoints for CV1 (if necessary)

The Top-down analysis focuses on steady-state economics where an economical optimization
problem is formulated. Optimization is performed both at nominal point and for important
disturbances. Based on the optimization results, a self-optimizing analysis is done for �nding
the active constraint regions and selecting the best controlled variables in di�erent operational
regions. The Bottom-up analysis focuses on dynamic control of the process. Dynamic model of
the process is necessary to validate implementation of the proposed controlled variables from the
top-down analysis. In this part, �rst stabilizing controlled variables (secondary CVs) are selected
and paired with the proper manipulated variables and then the structure of the supervisory
control layer (pairing of the primary CVs with the remained manipulated variables) is determined.

6.2 Self-optimizing Control

A key step in the design of control systems is to �nd the appropriate set of control variables (CVs).
A collection of methods dealing with CV selection is available in the survey article by van de
Wal [139]. Self-optimizing control is a useful method for �nding the appropriate set of controlled
variables. It is assumed that the economics of the plant are characterized by the scalar objective
function J(u,d), where u and d represent the inputs (or unconstrained degrees of freedom) and
the disturbances, respectively. For the nominal disturbances d∗, let uopt(d

∗) denote the optimal
inputs. When the disturbances change from d∗, the optimal operation policy is to update uopt(d)
according to d. This usually requires using an online optimizer, which provides the optimal value
of the objective functional denoted as Jopt(d) [140]. A simpler strategy results when u can be
indirectly adjusted using a feedback controller. In this case, the feedback controller manipulates
u to hold the CVs close to their speci�ed setpoints.

6.3 Solution to the CV selection problem

To present the local method, let the linearized model of the process, obtained around the nomi-
nally optimal operating point, be given as

x = Gxu +Gd
xWd +Wnn (6.1)

Figure 6.3 shows the feedback diagram for the linearized model. The diagonal matrices Wd and
Wn contain the magnitudes of expected disturbances and implementation errors associated with
the individual measurements, respectively. The matrices Gx and Gd

x are the steady-state gains
from inputs and disturbances to measurements, which are obtained by linearizing the system
around the operating point.

The objective function J around uopt (d) is

J (u,d) = J (uopt(d),d) + Ju (u − uopt) +
1

2
(u − uopt)

T Juu (u − uopt) (6.2)
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By de�ning loss as L(u,d) = J(u,d) − Jopt(d), and knowing that the derivative of the objective
function is zero at optimum, we will have

L(u,d) = J(u,d) − Jopt(d) =
1

2
zT z =

1

2
∥z∥22 (6.3)

where

z = J1/2uu (u − uopt(d)) (6.4)

uopt(d) is obtained by expanding the gradient around the nominal point

Ju = J∗u + J∗uuu + J∗udd = J∗u
®
=0

+ [ J∗uu J∗ud ] [
u
d

]

To remain optimal, we must have Ju = 0, so

uopt = −J−1uuJudd (6.5)

We have assumed a linear relation between inputs and outputs. So,

xopt = Gxuopt +Gd
xd = (−GxJ−1uuJud +Gd

x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

F

F is de�ned as the optimal sensitivity matrix. The main objective in self-optimizing control is to
�nd a linear combination of measurements, c = Hx, such that control of these indirectly leads to
close-to-optimal operation with a small loss, in spite of unknown disturbances and measurement
noise.

c = Hx = HGxu +HGd
xd

copt = Hxopt = HGxuopt +HGd
xd

So,

u − uopt =
⎛
⎜
⎝

HGx
²

G

⎞
⎟
⎠

−1

(c − copt)
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We need to write c − copt as a function of d and nx.

H (x + nx) = cs
®
0

We also have copt = HFd. So,

c − copt = H (Fd + nx) = H (FWdd
′
+Wnxn

x′
) = H [ FWd Wnx ] [

d′

nx
′ ]

So, the �nal loss term will be

L =
1

2
J1/2uu (HGx)

−1 H[ FWd Wnx ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F̃

[
d′

nx
′ ] (6.6)

By assuming that [
d′

nx
′ ] ≤ 1, the focus is on minimizing the rest. This method is called "Exact

Local Method" and was introduced �rst by Halvorsen et al. [141].
Steady state control error is assumed to be zero, because it is assumed that all controllers

have integral action. So, the implementation error is caused by measurement error. The other
assumption is that the set of active constraints for the nonlinear optimization problem does
not change with d. In general, the use of an online optimizer may be advantageous in case of
frequent changes in the active constraint set. It is also assumed that there are at least as many
measurements as degrees of freedom. Plus, the number of control variables is equal to the number
of inputs.

Alstad et al. [121] have reformulated the exact local method problem to make it convex.

They have de�ned Mn ≡ J
1/2
uu (HGx)

−1, which may be viewed as the e�ect of implementation
error on z. Using the fact that the solution to the original loss problem is not unique, so that if
H is an optimal solution, then another optimal solution is H1 = DH, where D is a nonsingular
matrix of nu×nu. They have used the degree of freedom to choose Mn freely. By setting Mn = I,

it can be reformulated as minH ∥HF̃∥ subject to HGx = J
1/2
uu . They provided a explicit solution

to this problem.

HT
= (F̃F̃T )

−1
Gx (G

T
x (F̃F̃T )

−1
Gx)

−1
J1/2uu

As the minimum singular value has the monotonic property, we can use a branch and bound
algorithm to search for the con�guration with largest minimum singular value, avoiding the
evaluation of all possible con�gurations [105]

6.3.1 Maximum Gain rule

The Maximum Gain Rule (or Minimum Singular Value) is a criterion for the selection of con-
trolled variables, which is based on the scaled steady-state input-output gain [141]. To derive
the maximum gain rule, we return to the loss expression

J =
1

2
zT z (6.7)

where
z = J1/2uu (u − uopt) = J1/2uu G−1

(c − copt) (6.8)

and
G = HGx (6.9)



74 A short review on self-optimizing control

It is assumed that c − copt = Wcc
′, where Wc is the expected optimal variation matrix. It is

assumed that ∥c′∥2 ≤ 1 are allowed. It is required to make u − uopt small. The largest value of

∥z∥2 for any allowed ∥e′c∥
2 ≤ 1 is equal to σ (J

1/2
uu G−1Wc). Loss is de�ned to be [141]

Lmax = max
∥[ d′ nx

′

]
T
∥≤1
L =

1

2 (σ (S1GS2))
2

(6.10)

where S1 = W−1
c = diag ( 1

∣ci−copt,i∣)and S2 = J
−1/2
uu . S1 includes the sum of optimal variation (as

given by F matrix) and the expected measurement error.
In the simpli�ed maximum gain rule, we do not need to evaluate Hessian. This is done

by choosing the input variables in a way that Juu is close to unity. Maximum gain rule gives
considerable insight when we want to compare di�erent alternatives of individual measurements.

6.3.2 Null Space Method

The null-space method, which was proposed by Alstad et al. [142], focuses on minimizing the
loss caused by disturbances. If we assume that there is no implementation error, i.e. Wnx = 0,
then F̃ = F (see equation 6.6), then it is possible to �nd H such that HF̃ = 0. The null space
method can be applied if

nx ≥ nu + nd (6.11)

6.3.3 Extended Null Space Method

The concept of Extended Null Space method is to �rst minimize the loss with respect to distur-
bances, and then, if there is any remaining degrees of freedom, minimize the loss with respect to
measurement error [121]. Two reason which are mentioned for doing this are:

� Disturbances are the reason for introducing optimization and feedback in the �rst place

� It may be easier later to reduce measurement errors than to reduce disturbances.

An error term is de�ned as below

E = MnHG̃x − J̃ (6.12)

where J̃ = [ J
1
2
uu J

1
2
uuJ

−1
uuJud ] and G̃x = [ Gx Gd

x ]

By writing the optimal sensitivity as F = −G̃x [
J−1uuJud
−I

] and combining with M ≜ [ Md Mnx ] =

MnH [ FWd Wnx ], the following expression is obtained.

Md = MnHG̃x [
J−1uuJud
−I

]Wd = (E + J̃) [
J−1uuJud
−I

]Wd

Since J̃ [
J−1uuJud
−I

] = 0,

Md = E [
J−1uuJud
−I

]Wd (6.13)

The explicit equation for H is derived which is by minimizing E ,which in turn minimizes
Md, is as below

H = M−1
n J̃ (W−1

nxG̃x)
�
W−1

nx (6.14)
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� For just-enough measurements, G̃x is invertible and H will be the same as original null-
space method.

� For Extra measurements:

� Select just-enough subset: use nx = nu +nd before forming c and obtain H to achieve
Md = 0 and use the rest to minimize Lwc = max

∥n′x∥2≤1
L = 1

2σ (Mnx)
2

� Use all measurements: will give solution that minimizes measurement noise subject
to zero disturbance loss. (� for H in equation 6.14 is left inverse)

� For too few measurements: The optimal H is not a�ected by noise weight. To minimize

E, solve H = M−1
n J̃ (G̃x)

�
, where � is right inverse. However, the objective is to minimize

∥Md∥F. So, the problem is formulated as below:

H = arg min
H

∥HFWd∥2

HGx = J1/2uu

6.4 Perfect Indirect Control

Indirect control is when we control a combination of measurements such that there is no e�ect
of disturbances on the primary outputs at steady-state[143]. In indirect control, the loss is
deviation from setpoint of the primary variables (instead of an economical loss). It is a special
case of self-optimizing control. The control error including measurement noise is ignored in their
work. The linear models for measurements x and primary variables y are

x = Gxu +Gd
xd (6.15)

y = Gyu +Gd
yd (6.16)

substituting the above equations in c = Hx and rearranging for u, we will have

u = (HGx)
−1 c − (HGx)

−1 HGd
xd (6.17)

So,
y = Gy (HGx)

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pc

c + (Gd
y −Gy (HGx)

−1 HGd
x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pd

d (6.18)

Pc gives the e�ect of changes in control variables c on primary variables y , and Pd gives the
e�ect of disturbances on the primary variables. Acceptable indirect control is achieved if Pd is
su�ciently small. There are some assumptions included:

� nc = nu

� linear models

� control error is ignored (we achieve c = cs at steady state)

� Nominal operating point is optimal (at nominal point: y = ys)

� ny = nc
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Based on the number of measurements, there are three cases considered by Hori et al. [143]:

1. For just-enough measurements (if nx = nu + nd): We want to �nd H such that Pd = 0
(Pc = Pc0). So,

y = [ Gy Gd
y ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G̃y

[
u
d

] = Pc0HG̃x [
u
d

]

So H = P−1
c0 G̃yG̃−1

x .
Note: Since c = Hx, the e�ect of measurement error on controlled variables c is nc =

Hnx. The corresponding error in the primary variables will be y = PcHnx. So, the e�ect
of measurement error will be large if the norm of PcH is large. With indirect control,
PcH = G̃yG̃

−1
x , which is large if the measurements are closely correlated and G̃x is close

to singular.

2. For extra measurements:

� Select just-enough subset (nx = nu + nd): Measurements should be selected such that
the e�ect of measurement noise be minimized. Solve max

∥nx∥2≤1
∥y∥2 = σ (G̃yG̃

−1
x ). Note

that measurements should be scaled.

� Use all measurements: this will average out the measurement error e�ect. With Pc = I,
H = G̃yG̃

�
x, where � is left inverse.

3. For too few measurements: Prefect indirect control is impossible. To minimize E = P−1
c0 G̃y−

HG̃x, solve H = G̃yG̃
�
x, where � is right inverse.

Relation to Self-optimizing

The objective function is de�ned as J = 1
2 (y − ys)

T
(y − ys). By di�erentiation, we will have

Ju = (Gyu +Gd
yd)

T
Gy

Juu = GT
y Gy

Jud = GT
y Gd

y

6.5 Summary

In this chapter, a short review of self-optimizing methods are given. They are based on local
analysis of loss and linearized steady state model at an operating point with an assumption that
the plant economics are governed by the plant pseudo/steady state behavior. An explicit solution
is presented for loss method. This method is used in the next chapter to �nd the appropriate
control variables for Kaibel distillation column.
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Chapter 7

Economically Optimal Control of

Kaibel Distillation Column: Fixed

boilup rate

In this chapter, a control structure is designed for a 4-product dividing wall (Kaibel)
distillation column, based on the plant-wide control procedure by [2]. Unlike the
common approach, vapour split is considered as a degree of freedom. The exact
local method is used to �nd the best control variables as single measurements or
combination of measurements.

7.1 Introduction

The choice of control structures for thermally-coupled columns is an important issue for practical
industrial operation. There are some literature on controllability study and control of dividing-
wall columns, which were mostly on 3-product columns (e.g. [144], [116], [145] and [110]). In
this work, we have presented the approach of self-optimizing control for selecting the appropriate
control variables for 4-product divided-wall distillation column. In addition, we have considered
the vapour split as a degree of freedom which can be used for control. As it was shown earlier,
the ability of the column to handle disturbances will be enhanced by having RV manipulated
([146]). The performance of the controlled system is shown by dynamic simulations in face of
various process disturbances.

7.2 Steady-State Optimal Operation

The idea behind self-optimizing control is to �nd a variable which characterizes operation at the
optimum, and the value of this variable at the optimum should be less sensitive to variations in
disturbances than the optimal value of the remaining degrees of freedom.

7.2.1 Process Description

The model used for this study is simulated in HYSYS. The feed stream is an equimolar mixture
of methanol, ethanol, 1-Propanol, 1-butanol and saturated liquid. The constant value assigned
to boilup rate is obtained from the minimum energy diagram (see [43]). The nominal optimal
solution is found as it is shown in Table 7.1. All the optimal operating points for di�erent sets
of the disturbances are found by applying an optimization solver in MATLAB with the full non-
linear model in HYSYS. The nominal values for inputs are shown in bold numbers. In this study,

79
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Table 7.1: Optimal values for the variables

Var. Nominal value Unit

RR Re�ux Ratio 6.375 ratio
V Vapor boilup 157 kmol/h
Q Reboiler duty 1842 kW
D D �ow rate 24.43 kmol/h
B B �ow rate 24.41 kmol/h
S1 S1 �ow rate 24.93 kmol/h
S2 S2 �ow rate 26.22 kmol/h
Rl Liquid split 0.388 ratio
Rv Vapor split 0.597 ratio
F Feed �ow 100.0 kmol/h

zF Feed composition [ 1 1 1 1 ] /4 mol/mol

q Feed quality 1.0 -
xD C1 composition in D 97.66 mol%
xS1 C2 composition in B 94.19 mol%
xS2 C3 composition in S2 93.48 mol%
xB C4 composition in B 99.28 mol%
J Objective value 0.0011

we assume that the design is �xed and we only consider the operational degrees of freedom to
optimize the process.

7.2.2 De�nition of the Objective Function

De�ning an objective function for optimal operation depends on the purpose of the process.
In terms of operation of Kaibel distillation column, there are two di�erent ways to operate a
distillation column. One approach is to specify the product purities and use the remaining
degrees of freedom for minimizing the vapor consumption, which is the motivation to introduce
thermally-coupled columns. The other approach is to �x the column boilup at the maximum
and try to get the most out of the column. This case happens in the situations when energy is
relatively cheap. So, in this case the objective is to make the purest products possible with a
given energy. It is shown that the �rst option is the more di�cult case to handle, which is due to
the very narrow solution surface and also multiplicity problem ([135]). By multiplicity we mean
that there are two values for boilup �ow as all the degrees of freedom are kept constant. The
physical interpretation of multiplicity in this case is that there are two ways for the internal �ow
streams to get to the outlet streams and to satisfy the speci�cations.

In this chapter, we focus on the second objective. The Objective function is de�ned as the
summation of impurities in the product streams (Eq. 7.1). Two di�erent cases will lead to this
de�nition ([130]).

1. If all the prices for the products are equal and we only get paid for the main component.
J is then the loss compared to the pure products.

2. If products 2 (�rst side stream) and 4 (the bottom product) are as valuable as feed and the
distillate and second side stream are the valuable products. In this case, loss compared to
the ideal pro�t (pure products) is de�ned as the previous case.
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Figure 7.1: Optimal composition and temperature pro�les for Kaibel column

J = D (1 − xD) + S1 (1 − xS1)

+ S2 (1 − xS2) +B (1 − xB)
(7.1)

7.2.3 The Degrees of Freedom

Degrees of freedom used for stabilization

Before talking about the steady-state degrees of freedom, we should make sure that a consistent
inventory control is applied and hence remove the manipulated variables which are used in this
layer (see the guidelines proposed by Aske et al [147]). The Throughput Manipulator (TPM) is
the feed to the column. TPM is a degree of freedom that a�ects the network �ow and is not
directly or indirectly determined by the control of the individual units, including their inventory
control. The common LV con�guration is used here, where D and B are used for level control
and L and V remain as degrees of freedom. Pressure in the top of the column is controlled by the
heating duty of the condenser. An additional inventory issue for distillation columns is related
to the split between light and heavy components (component inventory). One is not really free
to set the split between D and B, and to avoid a 'drifting' composition pro�le (with possible
'breakthrough' of light component in the bottom or of heavy component in the top). A quality
(e.g., temperature) loop should be closed to achieve component local consistency ([147]). In this
work, we have tried to use the same temperature loops in the upper layer as for stabilization. So,
it is important that the single measurements are chosen from di�erent sections of the column.

Remaining degrees of freedom

We are left with six degrees of freedom: boilup duty, re�ux rate, side stream �ows, liquid split
and vapor split. Since boilup rate is assumed to be constant by manipulating the reboiler heat
duty (and since we do not have any constraint on product composition speci�cation), there will
remain 5 variables for optimization purposes. Changes in the setpoints of controllers, feed �ow
rate (F ), feed composition (zF ) and feed liquid fraction (q) are considered as disturbances. In
this work, the vapor split is used as a manipulated variable.
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Table 7.2: Expected disturbances

Disturbances Wd

Feed �ow rate 10%

Feed quality 0.1

Boilup �ow rate 10%

Feed composition (for each component) 0.05

7.2.4 Control Variable Selection

Control variable (CV) selection is based on the exact local method ([141]; [120]; [121]). This
method is based on 2nd order approximation of the objective function around the operating
point. So the cost function behaviour should be quadratic around the optimal point, which is
the case for our process if the steps are small enough. Table 7.2 shows the expected values for
disturbances in the process.

The controlled variables are considered to be a combination of measurements:

c = Hx (7.2)

Since we want to use single measurements, matrix H contains nc number of columns with a
single 1 and rest of the columns are zero. Note that we have also tried the combination of all
the measurements, which means that the measurements from all the temperature sensors in the
column are combined to be controlled by the manipulated variables. The matrix H is full and
the rows are the measurements from those speci�c trays on which we have sensors let's say every
fourth tray in the column. H is found by minimizing the frobenius norm of the loss:

min
H

∥J1/2
uu (HGx)

−1 HF̃∥
2
F (7.3)

where F̃ = [ FWd Wnx ]. F is the optimal sensitivity matrix. It can be found numerically
from its de�nition or using

F = −GxJ
−1
uuJud +Gd

x

The second derivatives can be di�cult to obtain, especially if one relies on numerical methods,
and also taking the di�erence can introduce numerical inaccuracy. Therefor we obtained F from
its de�nition (shown below), by numerically re-optimizing the model for the disturbances.

F = dxopt/dd (7.4)

It is most common that distillation columns are controlled using temperatures as measure-
ments. The temperature at a stage in a distillation column is a good indication of its composition.
Skogestad et al. [101] present some bene�ts of using temperature loops for controlling the com-
position:

1. Stabilizes the column composition pro�le along the column

2. Gives indirect level control: Reduces the need of level control

3. Gives indirect composition control: Strongly reduces disturbance sensitivity

4. Makes the remaining composition problem less interactive and thus makes it possible to
have good two-point composition control

5. Makes the column behave more linearly

In this work, we have used the column temperatures as candidate control variables. Note that
the implementation error is considered to be 0.1 degree centigrade for the temperature sensors.



7.3. Results and Discussions 83

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S1 , xB, S1 

 LC 

L 
D, x A, D 

V

B, xD, B 

F 

S2 , xC, S2 

FC 

TC

TC

TC

 LC

RV 

RL 

 XC 

 XC 

Figure 7.2: Kaibel column control con�guration with controlling compositions at prefractiona-
tor's ends

7.3 Results and Discussions

The required matrices are obtained by linearizing the plant around the operating point. Calcu-
lation of F matrix is done by re-optimizing the process for di�erent disturbances. The Genetic
Algorithm toolbox in MATLAB has been used for this purpose.

7.3.1 Composition control in prefractionator

Before going to the results of control variable selection by systematically combining the tem-
perature measurements, we would like to comment about the selection of appropriate control
variables from engineering point of view. As mentioned earlier, the task of the prefractionator in
Kaibel column is to separate the two middle components. The impurities from top and bottom
of prefractionator will end up in the side streams and will lead to less pure side products. So, it
is wise to limit the impurity �ows from prefractionator to the main column. To avoid this, we
need to control the composition of the heavy impurity in the top and the light impurity in the
bottom of the prefractionator (see Figure 7.2). It is assumed that the compositions are directly
controlled with the composition controllers. Figures 7.3 and 7.4 show the dynamic response of
the closed-loop system to some of the disturbances. However, composition measurement is al-
ways with delay and of course composition of the internal trays are not accessible. A soft-sensor
should be designed to give the estimate of the required compositions.

7.3.2 Control structure based on Exact Local method

Single measurements

Figure 7.5 shows the temperature pro�les after re-optimizing when di�erent disturbances happen.
This gives us some insight about where is the proper place to pick the measurements from.
The points with less sensitivity to disturbances and more sensitivity to changes in manipulated
variables are preferred. This means that the temperature measurements in the range of top
part in the main column are among the best options for this process. This argument is true
when our goal is to select single measurements to be controlled by the manipulated variables.
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Figure 7.3: Product compositions of Kaibel column; Impurities estimation in the ends of pre-
fractionator are controlled
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Figure 7.4: Responses of controlled estimated compositions of prefractionator ends
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of fixed product purities and we are actually forcing the 
process to go through a very restricted area to reach the 
purities set (Ghadrdan, Halvorsen et al. 2010). Therefore, the 
liquid split has to be adjusted carefully to obtain minimum 
energy. In this work, we are going to set the vapour split as a 
manipulated variable. The vapor split is set to be 
manipulatable for the Kaibel laboratory setup which was built 
at NTNU (Strandberg, Skogestad et al. 2008). 

The model used for this study is simulated in UNISIM. The 
feed stream is an equimolal mixture of Methanol, Ethanol, 1-
Propanol, 1-butanol and saturated liquid. The optimal boilup 
is about 40-50% higher than a theoretical minimum boilup 
with infinite number of stages. The value set for the boilup 
rate is derived from the minimum energy diagram (Halvorsen 
and Skogestad 2006). The nominal optimal solution is found 
as it is shown in  Table 1. All the optimal operating points for 
different sets of the disturbances (d) are found by applying an 
optimisation solver in MATLAB with the full non-linear 
model in UNISIM. The table also show nominal values (bold 
numbers) for each input when the column model is in optimal 
operation. 

 
Table 1. Optimal values for the variables  

Variable   Nominal 
value  

Unit 

L  Reflux  155.8 kmol/h 
V  Vapor boil-up  157  kmol/h 
S1  Side stream 1  24.567 kmol/h 
S2  Side stream 2  26.27 kmol/h 
RL  Liquid split  0.4009        <ratio> 
RV  Vapor split  0.610  <ratio> 
F  Feed stream  100.0  kmol/h 
zF  Feed composition [1 1 1 1]/4  mol/mol 
q  Feed quality  1.0  - 

 

2.4  Control Variable Selection 

It is most common that distillation columns are controlled by 
use of temperatures as measurements. The temperature at a 
stage in a distillation column is a good indication of its 
composition. Skogestad (Skogestad and Postlethwaite 2007) 
presents some benefits of using temperature loops for 
controlling the composition: 

1. Stabilizes the column composition profile along the 
column 

2. Gives indirect level control: Reduces the need of level 
control 

3. Gives indirect composition control: Strongly reduces 
disturbance sensitivity 

4. Makes the remaining composition problem less interactive 
and thus makes it possible to have good two-point 
composition control 

5. Makes the column behave more linearly 
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Fig. 3. Optimal composition profile (a). Optimal temp-
erature profiles for various disturbances in feed 
compositions (5%), liquid fraction (10%) and boilup 
flow setpoint (5%) (b) 

 

The optimal composition and temperature profiles are shown 
in  Fig. 3.  Fig. 3 b includes also the temperature profiles after 
reoptimizing when different disturbances happen. This gives 
us some insight about where is the proper place to pick the 
measurements from. The points with less sensitivity to 
disturbances and more sensitivity to changes in manipulated 
variables are preferred. This means that the temperature 
measurements in the range of 15th tray to ca. 33rd tray in the 
main column are among the best options. These temperatures 
are good candidates to be control variables. Combinations of 
measurements which show self-optimizing properties can be 
also considered as control variables, which is not studied in 
this paper (Alstad, Skogestad et al. 2009). 

Control variable (CV) selection is based on the exact local 
method (Halvorsen, Skogestad et al. 2003; Kariwala V. and 
Y. 2009). The CVs are given as  

y
d

y

edd

HGHGG

eHWdWGGuHyc





                                         (2) 

The loss due to controlling CVs at constant setpoint is 
defined as  

Figure 7.5: Optimal temperature pro�les for disturbances in feed compositions, liquid fraction
and boilup �ow setpoint

Table 7.3: Proposed control structure

MV CV Setpoints

Liquid split (RL) T15 83.63
Vapour split (RV ) T36 103.7

Re�ux T39 65.46
S1 �ow T54 77.76
S2 �ow T75 100.9

However, it is not clear from the temperature pro�les that what will be the case for combination
of measurements.

Table 7.3 shows the set of measurements selected by the exact local method as best control
variables and their nominal values.

RGA is a measure of interactions between the loops. RGA elements larger than one means
that the corresponding loop will have a smaller gain by closing other loops, and vise versa. One
should select pairings such that RGA ≈ I at the crossover for the rearranged system. In addition
the steady-state RGA should be considered. We found the steady state 5 × 5 matrix of RGA:

Rl Rv RR Side1 Side2
T15
T36
T39
T54
T75

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31 0.72 0.49 −0.06 −0.47
−0.74 0.42 10.37 0.33 −9.38
2.18 −0.78 4.16 −1.50 −3.07
−1.13 0.77 −4.22 2.31 3.27
0.38 −0.13 −9.81 −0.08 10.64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where steady-state RGA is calculated as

RGA(G) = G × (G−1
)
T (7.5)

The pairing is done based on the RGA rules

� Avoid pairing on negative steady-state relative gain, otherwise you get instability if one of
the loops become inactive.

� Choose pairings corresponding to RGA-elements close to 1 (actually only at bandwidth
frequency).
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Figure 7.6: Control structure of Kaibel column with single measurements

� Prefer pairing on variables with good controllability (=small e�ective delay).

From this we see that the pairing given in Table 7.3 and shown in Figure 7.6 is acceptable
and the �nal control structure and the dynamic response to some disturbances are shown
in Figures 7.7 and 7.8. The temperature controller on S2 had to be detuned. One of the
drawbacks of using HYSYS as the simulation tool is that the steady-state and dynam-
ics environments are separated from each other. When converting to dynamic mode, the
steady-state speci�cations will be deactivated and controllers should do the task of stabi-
lization and keeping variables at their speci�cations. Choosing the right control structure
to get to the same pro�les as the steady-state model in important. This is done by closing
composition loops at the ends of the prefractionator (xC3 in top and xC2 in bottom of
prefractionator), the distillate product composition (xC1) and ratios of impurities in side
streams (xC1

xC3
in side stream 1 and xC2

xC4
in side stream 2).

As mentioned previously, we would like to use the same control loops in the supervisory
layer as the stabilizing layer. So, the measurements should be picked from all sections
of the column. In addition, it would be interesting to control a controlled variable with
a manipulated variable in the same part of the process. So, we need to exert structural
constraint in the H matrix ([148]).

Combination of measurements

Figure 7.9 shows the trend of H values along the column. We assume we have temperature
sensors in every 4th tray. From this �gure, we can get idea about which temperatures in
the column play more important role and how we can use structured H. For example, a
section of a column which does not have a major e�ect can be removed. The loss will be
larger when all the measurements are not used, but the dynamic properties are better. The
calculated average loss in this case is 2.34e-4 compared to 0.1791 which is the loss for single
temperature measurements. This shows that the e�ect of measurement error is averaged
out.
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Figure 7.7: Product compositions of Kaibel column; Responses of control structure by self-
optimizing method
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Figure 7.8: Responses of control structure by self-optimizing method
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Figure 7.9: H values for combination of measurements (every 4th tray)

7.4 Conclusions

In this work, we applied a systematic method to select the control variables for a Kaibel
distillation column. The objective was to maximize the product purities with �xed boilup
rate. This is when there are some limitations for the boilup �owrate in some plants be-
cause of the utility limitations or bottlenecks. For better performance, it's better to use a
combination of measurement as control variables.
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Chapter 8

A Short Review on the steady-state

estimation methods

In this chapter, a short review of steady-state estimation methods is presented.
The focus is more on the methods that has been used in this thesis

8.1 Introduction

It happens frequently in process control that some important variables are not measurable.
Sometimes they are expensive to measure and include delay. The value of primary variable
can be inferred by using some secondary variable measurements. The task of soft sensors
is the maximal exploitation of transforming the information of secondary measurements
into more useful process knowledge. They provide frequent on-line estimates of quality
variables on the basis of their correlation with real-time process measurements. Such
predictive models devoted to producing real-time estimates of desired plant variables can
help to reduce the need for measuring devices, improve system reliability, and develop tight
control policies.

There are several advantages of inferential sensors in comparison with traditional instru-
mentation, including easy implementation, no capital cost and more information from the
existing data. At a very general level, these �elds can be divided into three broad categories
[149]:

1. Process monitoring

� Substituting/complimenting on-line instrumentation

� Predicting process quality variables or key performance indicators

� Monitoring and analysis of process trends

� Fault detection

2. Process control

� Development of advanced control strategies, such as model predictive control

� Heuristics and logic in planning and scheduling of process operations

3. O�-line operation assistance

� Diagnosis of process operations

� Knowledge based engineering design

� Development of plant simulator

93
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Both dynamic and static estimators may be used, but the simpler static estimators are
most common in the process industry. Since our method is a static estimator, our litera-
ture survey is limited to this group. There are many approaches that have been used to
obtain the static estimators, including multivariate regression [150, 151], arti�cial neural
networks [152], support vector machine regression [153], etc. At a very general level one
can distinguish two di�erent classes of Soft Sensors, namely model-driven and data-driven.
In the next section, we will shortly describe these two categories.

8.2 Data-based Estimators

Process data analysis is the initial step in the design of inferential sensors. The careful
investigation of laboratory and operational data enables us to extract relevant informa-
tion contained in historical data, select in�uential variables, and assess data quality (e.g.
reliability, accuracy, completeness, and representativeness).

The collected process data is often divided into two subsets: the calibration data-set and
the validation data-set. The calibration data-set is used for inferential model identi�cation
purposes, while the validation data-set is used for evaluating the performance of the de-
veloped inferential sensor. It is noteworthy that the distribution of calibration data within
the process operating region is crucial to ensure the quality of inferential sensors. This will
be seen in the next chapter's example.

Principle Component Regression (PCR) [154] and Partial Least Squares (PLS) [155] are
two of the most used data analysis tools in chemometrics. These methods are based on
projecting the solution to a lower-dimensional subspace. These methods are discussed in
the following sections. Here, we start from the observations collected in the matrices X
and Y. We want to obtain a linear relationship between the data sets.

Y = XB +B0 (8.1)

where B and B0 as optimization variables. B0 is normally zero if the data are centered.
The least-square solution to this problem is

B = YX� (8.2)

8.2.1 Principal Component Regression (PCR) Method

It starts with a principal component singular value analysis of the data matrix X, to remove
directions in X data with little information. The matrix is truncated to rank a, where a
is the number of principal components, and gives X̃ = ŨaΣ̃aṼ

T
a . The optimal estimator is

then
BPCR = YX̃�

where X̃� is the inverse of the truncated SVD of the matrix X.

8.2.2 Partial Least Square (PLS) Method

This method is used to compress the predictor data matrixX, into a set of latent variable or
factor scores. The orthogonal factor scores are used to �t a set of observations to dependent
variables Y . The main attraction of the method is that it �nds a parsimonious model even
when the predictors are highly collinear or linearly dependent.
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In its general form, PLS creates orthogonal score vectors (called latent vectors or compo-
nents) by maximizing the covariance between di�erent sets of variables. There are several
di�erent algorithms generating bases which all give the same predictor, when there is one
Y variable. Rosipal et al. present a review of the di�erent forms [156]. Some of them are
described in more detail below.

Nonlinear Iterative Partial Least Squares (NIPALS)

The �rst PLS approach was nonlinear iterative partial least squares (NIPALS), which
was proposed by Wold et al. [157]. The �rst step is to center the data matrices X and
Y. The predictor data matrix X = [x1,x2, . . . ,xr], containing the values of r predictors
for N samples is compressed into a set of a orthogonal factor scores T = [t1, t2, . . . , ta],
where A ≤ r. The factor scores U = [u1,u2, . . . ,ua] are calculated from companion matrix
Y = [y1,y2, . . . ,ym]. The �rst factors t1 and u1 are weighted sums of the centered variables:
t1 = Xw1 and u1 = Yq1. The next factors are determined sequentially using NIPALS. The
sequence is as below

w1 ∝ X′u1 (8.3)

t1 = Xw1 (8.4)

q1 ∝ Y′t1 (8.5)

u1 = Yq1 (8.6)

Here, the symbol ∝ not only indicates proportionality, but it also implies the subsequent
normalization of the resultant vector. Thus, the weight vectors w1 and q1 have length 1.
The iteration sequence starts by choosing for u1 some columns of Y, e.g. the one having
maximum variance. Once the �rst X block factor t1 is obtained, the matrices X and Y
are de�ated

X1 = X0 − t1p
′
1 (8.7)

Y1 = Y0 − b1t1q
′
1 (8.8)

where

p1 =
X′

0t1
t′1t1

(8.9)

The scalar b1 is the estimated regression coe�cient for the inner relation between the two
datasets. There are some assumptions which are inherent in the problem de�nition or some
in the solution procedure, which are as follows [158]:

1. Assume centered data generated according to the latent variable model

2. Weight matrices should have orthonormal column vectors

3. The number of y variables is less than the number of components (m ≤ A)

4. Components of measurement variables and response variables are independent, i.e.
diagonal expectations E (xk,x

T
k ) = 0 and E (yk,y

T
k ) = 0

5. The most important assumption is that the outputs and the input data have linear
relationship.

The NIPALS method includes various iterative orthogonalization (de�ation) processes. In
addition, since the weight vectors used for de�ning the associated factor scores are applied
to a residual matrix, the interpretation of the factors is di�cult. It is also possible that the
method does not converge to a solution. The NIPALS does not converge if two or more of
the eigenvectors of the matrix X are almost identical.
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SIMPLS

To avoid de�ation steps at each iteration of PLS1 and PLS2, de Jong [159] has introduced
another form of PLS denoted SIMPLS. They have put this name on their algorithm, since
it is a straightforward implementation of a Statistically Inspired Modi�cation of the PLS
method according to the simple concept given in Table 1. The SIMPLS approach directly
�nds the weight vectors which are applied to the original not de�ated matrix X. It has
been shown that SIMPLS is equal to PLS1 but di�ers from PLS2 when applied to the
multidimensional matrix Y [159]. It is shown that upon convergence the weight vectors w1

and q1 correspond to the �rst pair of left and right singular vectors obtained from singular
vector decomposition of the matrix X′Y [160]. SIMPLS starts with computing the matrix
S = X′Y and computing the SVD of this product. We will have the scores and loadings as
below

t = Xr

p =
Xt

t′t

where r is the �rst left singular vector. The loadings and scores in the next rounds are
obtained by calculating the SVD of S −P (P′P)

−1
P′S.

So,
BPLS = RT�Y (8.10)

where, R = [r1, r2, . . . , ra].

In the context of process industry, measurement noise, missing measurements, outlying
observations, multi-rate data, measurement delay, and drifting data are the common factors
a�ecting the quality of process data. The satisfactory performance of inferential sensors can
be achieved only if such challenging issues are addressed. As a preliminary step, thus, data
pre-processing is often required in order to obtain a data-set which adequately represents
the characteristic properties of process under investigation [161].

Non-iterative PLS

Di Ruscio et al. have presented a new interpretation and description of the basic PLS
solution which is non-iterative, which is more interesting for control community [162].
This solution can be expressed in terms of some weighting vectors only. The equivalence
between this method and the NIPALS version of the PLS method is demonstrated by Elden
et al. by proving that they give the same sequence of orthogonal basis vectors [163]. The
weight matrix Wa is of size r×a (so the number of components, a, should of course �rst be
speci�ed). They have �rst calculated the weight vectors by an orthogonalization process.
The solution is parameterized as B = Wap, where the vector p is chosen to minimize the
Frobenius norm of Y −X ×B = Y −X ×Wa × p for some speci�ed weighting matrix Wa.

The orthogonalization process for calculating the weight vectors is not unique. It is evident
that any weighting matrix de�ned as Wa ∶= WaD (where D ∈ Ra×a is de�ned as a non-
singular transformation matrix) can be a solution for this problem, as mentioned by Di
Ruscio et al. [162]. So, by taking the weights Wa from the Krylov subspace or from the
space which span the Krylov subspace, the optimal weights will be found in the sense that
an iterative Ordinary Least square (OLS) converges the fastest to the OLS solution, i.e. in
a minimum number of iterations [162].
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Theorem 1. (PLS1: a non-iterative solution). [162]: Given data matrix X ∈ RN×rand
Y ∈ RN , the PLS solution is given by

BPLS = Kap
∗r (8.11)

where Ka ∈ Rr×a is the reduced controllability (Krylov) matrix for the pair (XTX,XTY)

de�ned as

Ka = [ XTY XTXXTY (XTX)
2
XTY . . . (XTX)

a−1
XTY ]

where 1 ≤ a ≤ r, and the polynomial coe�cient vector p∗ ∈ Ra is determined as the LS
solution to

p∗ = arg min ∥V (p)∥2F (8.12)

where
V (p) = ∥Y −XKap∥

2
p (8.13)

Hence
p∗ = (KT

aXTXKa)
−1

KT
aXTY (8.14)

which gives the PLS solution

BPLS = Ka (K
T
aXTXKa)

−1
KT
aXTY (8.15)

with the assumption that (KT
aXTXKa)

−1
is non-singular for some 1 ≤ a ≤ r. The PLS

prediction of Y is given by
YPLS = XKap

∗ (8.16)

where p∗ is given by (8.14). Furthermore, the minimum is

V (p∗) = trace (YTY) − trace (YTXKa (K
T
aXTXKa)

−1
KT
aXTY) (8.17)

Proof. From Cayley-Hamilton Theorem we have that XTX satis�es its own characteristic
equation, i.e.

(XTX)
r
+ p2 (X

TX)
r−1

+ . . . + prX
TX + pr+1Ir = 0 (8.18)

where p2, . . . , pr+1are the coe�cients of the characteristic polynomial det(λIr− XTX). This
can be used to form the matrix inverse

(XTX)
−1

= −
1

pr+1
(prIr + pr−1X

TX + . . . + p2 (X
TX)

r−2
+ (XTX)

r−1
) (8.19)

which is derived by post-multiplying (8.18) with (XTX)
−1
and then solving for the inverse.

When this equation is substituted into the OLS solution (XTX)
−1

XTY gives the truncated
solution

B (p) = Kap (8.20)

where Ka is the controllability matrix and p ∈ Ra is the coe�cient vector. We know that
∥A∥2F = trace(ATA) = ∑

m
i=1∑

n
j=1 a

2
ij , So

V (p) = trace (YTY) − 2trace (pTKaX
TY) + trace (pTKT

aXTXKap) (8.21)

Letting the gradient
dV (p)

dp
= −2KT

aXTY + 2KT
aXTXKap (8.22)

equal to zero gives the optimal solution (8.14), which when substituted into (8.11) gives
(8.15). Furthermore, the minimum value (8.17) can be found by substituting the optimal
truncated polynomial coe�cient into (8.21).
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By �Non-iterative� they meant that there is no need for any de�ation (rank one reduction)
process in computing the PLS solution. The following theorem is an extension of PLS1 to
incorporate multivariate Y data.

Theorem 2. (CPLS: Controllability PLS solution). [162] . Given data matrix X ∈

RN×rand Y ∈ RN×m, the PLS solution is given by

BCPLS = [ XTY (XTX)XTY . . . (XTX)
a−1

XTY ] ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1Im
p2Im
⋮

paIm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (p1Ir + p2X
TX + p3 (X

TX)
2
+ . . . + pa (X

TX)
a−1

)XTY

= ∑
a
i=1 pi (X

TX)
i−1

XTY

(8.23)

where the vector of polynomial coe�cients

p∗ = [ p1 p2 . . . pa ]
T
∈ Ra (8.24)

is found from the solution to the LS problem

p∗ = arg min
p

∥vec (Y) −Xpp∥2F (8.25)

where vec (Y) is the vectorization of the matrix Y. The minimizing solution is given by

p∗ = (XT
p Xp)

−1
Xpvec (Y) (8.26)

where

Xp = [ vec (XXTY) vec (XXTXXTY) . . . vec (X (XTX)
a−1

XTY) ]

∈ RNm×a
(8.27)

Proof. Using that V (p) = ∥ε∥2F , where ε is the prediction error, gives the optimal LS
solution (8.26) by letting the gradient dV

dp = 0.

Remarks

The literature review by Wenzell et al. [164] compared PCR and PLS methods, covering
both experimental and simulation studies. In short, the advantage of PLS is that the
method obtains a small prediction error with fewer principal components compared to
PCR.

The main drawback of this method is that there are several realization of the same method
which do not lead to the same result for a speci�c problem for the case of multivariate set
of dependent variables.

In SIMPLS and Di Ruscio's methods, it's not necessary to de�ate the data matrices as in
NIPALS, which may result in faster computation. All factors are equally easy to interpret,
namely as simple linear combinations of the original variables.
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8.3 Model-based Estimation

8.3.1 Brosilow Estimation

The simplest model-based static estimator is the "inferential estimator" of Brosilow and
coworkers [165]. Let ũ = [ u d ] represent the vector of independent variables, including
the inputs u and the disturbances d. Let x represent the process measurements and y the
variables we want to estimate. Let the linear static model in deviation variables be

x = X ũ (8.28)

y = Y ũ (8.29)

The "Brosilow" estimator is then simply the following least squares estimate of y

ŷ = Hxm (8.30)

where
H = YX� (8.31)

and X� is the pseudo inverse of the matrix X.

Joseph and Brosilow [165] discuss some of the weaknesses of this estimator. For "ill-
conditioned" plants with large condition number of X , they �nd that the estimate may
be improved in some cases by removing measurements, because this reduces the condition
number. Intuitively, removing measurements cannot be the optimal way of dealing with
these problems, because we are throwing away information. This is also clear when we
consider the popular "data-based" regression estimators, like Partial Least Squares (PLS)
regression, where one does not remove measurements, but instead removes weak "direc-
tions" in the data.

A fundamental problem with the Brosilow inferential estimator is that it fails to take into
account measurement noise in an explicit manner. The main goal of our estimation method
is to include the e�ect of measurement noise in the derivation of the optimal model-based
static estimator. This means that we handle in an optimal manner the "high condition
number problem", which has been a major concern in previous work[165, 150, 143, 166, 167].
The derivation is straightforward, but surprisingly it seems it has not been presented before.

Another issue is that the Brosilow least squares estimator does not take into account
whether the estimator is used only for monitoring or for closed-loop operation. Actually,
the latter is a shortcoming of most existing data-based estimators.

8.3.2 Kalman �ltering

The Kalman �lter estimates process states by using a form of feedback control. The
linearity of state dynamics and observation process, as well as the normal distribution of
noise in state dynamics and measurements are the assumptions of kalman �lter. A linear
di�erence equation xk = Axk−1 +Buk−1 +wk−1 with a measurement that is zk = Cxk + vk,
de�ne the linearized process. The random variables wk and vk represent the process and
measurement noise respectively. They are assumed to be independent of each other and
with normal distributions.

p (w) ∼ N (0,Q) (8.32)

p (v) ∼ N (0,R) (8.33)
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The objective is to minimize the estimation error. By writing a posteriori state estimate as
a linear combination of an a priori estimate and the di�erence between actual measurement
and measurement prediction weighted by kalman gain, K is calculated to minimize the a
posteriori estimation error covariance. Since the focus of our work is on chemical processes,
the time scales at which the sensor noise characteristics change are much larger than the
time scale at which we study the system. Thus we assume the system and noise covari-
ances are time-invariant. In addition, as mentioned previously, our proposed estimator is
categorized as static estimator. So, the steady-state of kalman �lter is interesting. The
steady-state kalman gain is calculated as

K∝ = P −
∝H

T (HP −
∝H

T
+R) (8.34)

Figure 8.1 shows the block diagram of kalman �lter estimation.
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nx
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C
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Figure 8.1: Block diagram of Kalman �lter

The algorithm of Kalman �lter requires knowledge of the process noise varianceW and the
measurement noise variance V [168]. If state-feedback control is used, the overall controller
is optimal because of the separation principle. If an output-feedback controller (u = Ky) is
used, then it is generally not optimal to use the ŷ = Cx̂ estimated by Kalman �lter. In our
estimation method, the primary variable comes directly from combination of measurements
(c = Hx). Since the measurements do not contribute similarly in the estimation of primary
variable, it is expected that by putting weights on the state error terms, the estimation of
primary variable will be improved. Another point is that we should think of what to use
the estimation for. Kalman Filter is said to be used for control, but if R approaches in�nity,
then it means that there is no control. Mejdell et al. [169] have shown that the kalman-
�lter might be better than a simple PCR in open-loop performance, which is because of
the recursive nature of the �lter, but PCR performs similarly if it is used for closed loop.
We can model slowly-varying disturbances by adding states of the noise model. This gives
the augmented kalman �lter [170]. Here, we use non-stationary noise. So zero steady-state
is not reached.

It is noteworthy that all conclusions drawn from the evaluation of posterior distributions
depend on the quality and extent of the prior information included in Bayesian inference
processing. In the limit of the large data-set and non-informative priors (e.g. uniform),
the MAP estimates are identical to the Maximum Likelihood (ML) estimators which can
be expressed as follows:

XML
= argmax p(D∣X)X

from review paper shima sepehr
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8.4 Our estimation method

In the next chapter, we derive optimal estimators for four cases. Case S1 is the direct
extension of the Brosilow inferential estimator to include measurement noise. In case S2,
the inputs u are used to control the variables y at given setpoint ys. It is similar to case S1,
except that the setpoint ys takes the role of the inputs. Case S3 is a generalization where
we control the variables z. Cases S1, S2 and S3 are practically relevant if the estimator is
used for monitoring only, because the estimate ŷ is not used for control. Finally, case S4 is
the relevant case when we use the estimator in closed loop (for control purposes). Whereas
the optimal estimators for cases S1, S2 and S3 are least-square estimators with a similar
structure to the Brosilow estimator in (8.31), the structure for case S4 is quite di�erent
and the mathematics to derive it are more complex. The derivation is based on results for
optimal measurement combination for self-optimizing control [121] and is the main new
contribution of the next chapter.

For data preparation we have two ways: If we have data, small directions in the measure-
ment space should be deleted by SVD. We should ensure that all important directions are
su�ciently exposed. We can also use exactly the same data that we get in loss method. X
and Y in PLS method are the �rst and second row of Yall matrix respectively.

Yall = [
Y
X

] = [
Gy 0
Gx Xopt

] (8.35)

where Xopt = [ FWd Wnx ].

We need to know the expected �optimal variation� in X as given by the matrix Xopt. Here
�optimal� means that y is constant (see the second column in Yall). In addition, we also
need to obtain Gx and Gy from the data, which means that the data must contain �non-
optimal� variations in u, and not only contain optimal data where u = uopt (d)- see the �rst
column in Yall. This is called Closed-Loop Regressor (CLR) [171]. CLR su�ers from the
same weakness as LS, giving poor results for ill-conditioned matrices and underdetermined
systems. Performing a principal component analysis on the X data will remove the weaker
directions containing noise resulting in a well-conditioned matrix. Then, CLR can be
applied to the data. We call this �truncated CLR�.

outliers should be removed. This is the thing which does not exist in our method. We get
just enough data from the model to calculate the estimator parameters.

In the paper, we derive optimal estimators for four cases as illustrated in Figure 9.1. Case
S1 is the direct extension of the Brosilow inferential estimator to include measurement
noise. In case S2, the inputs u are used to control the variables y at given setpoint ys.
It is similar to case S1, except that the setpoint ys takes the role of the inputs. Case S3
is a generalization where we control the variables z. Cases S1, S2 and S3 are practically
relevant if the estimator is used for monitoring only, because the estimate ŷ is not used
for control. Finally, case S4 is the relevant case when we use the estimator in closed loop
(for control purposes). Whereas the optimal estimators for cases for cases S1, S2 and S3
are least-square estimators with a similar structure to the Brosilow estimator in (8.31), the
structure for case S4 is quite di�erent and the mathematics to derive it are more complex.
The derivation is based on results for optimal measurement combination for self-optimizing
control [121] and is the main new contribution of this paper.
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8.5 Summary

In this chapter, a short review of the static estimation methods which are used in this thesis
are given. In the next chapter, four estimators will be derived for di�erent applications
and will be compared with other well-known estimators. Four scenarios are used to get the
calibration data. Our emphasis is on the fact that we should be aware of what we want to
use the estimator for.
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Chapter 9

A new class of model-based static

estimators

Static estimators are commonly used as "soft-sensors" in the process industry. The
performance of the estimators depend on whether it is used for monitoring (open-loop)
or for closed-loop control applications. In this work, we propose to design estimators
specialized for each case. The approach is to minimize the estimation error for expected
disturbances and measurement noise. The main extension compared to previous work is
to include measurement noise and to provide explicit formulae for computing the optimal
static estimator. We also compare the results with standard existing estimators, e.g.
PLS. The approach is applied to estimation of product composition in a distillation
column from combination of temperature measurements.

9.1 Introduction

The derivation of the new static estimators is presented in section 2. The concept of some well-
known data-based estimators are described in section 3. In section 4 we discuss how we can use
our new ideas for optimal model-based to derive new data-based estimator. Finally, in section 5,
we compare the new static estimators with previous work, including the Brosilow estimator and
regression based estimators on distillation case-studies.

9.2 Derivation of Model-based Static Estimators

9.2.1 Problem de�nition

We de�ne the following variables:

� u: inputs (degrees of freedom); these may include setpoints to lower-layer controllers

� d: disturbances, including parameter changes.

� x: all available measured variables.

� nx: measurement noise (error) for x.

� y: primary variables that we want to estimate

� z: secondary variables, which we may control, dim (z) = dim (u)

All variables are assumed to be deviation variables (away from the nominal or centered values). In
this section, we derive optimal "open-loop" and "closed-loop" static estimators. By "optimal", it
is meant that we for a linear estimator of the form

ŷ = Hxm (9.1)

105
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(a) S1: Monitoring case where u is a free variable
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(b) S2: Monitoring case where u is used to control the primary variable y
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Figure 9.1: Block diagrams for di�erent cases
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Figure 9.2: Block diagram for the linearized plant

want to minimize the expected prediction error

e = y − ŷ (9.2)

The measurement signals xm, corrupted by measurement noise nx, are

xm = x + nx (9.3)

We use linear static models for the primary variables y, measurements x, and secondary variables
z (see Figure 9.2)

y = Gyu +Gd
yd (9.4)

x = Gxu +Gd
xd (9.5)

z = Gzu +Gd
zd (9.6)

In terms of the notation used for the Brosilow inferential estimator in (8.28) we have

X = [ Gx Gd
x ] (9.7)

Y = [ Gy Gd
y ] (9.8)

In addition, the expected magnitude variables of the independent variables for each case (see Figure
9.1) is quanti�ed by weighting matrices (Wu, Wd, Wnx ,Wys , Wzs), as explained in detail below.

9.2.2 Estimators used for monitoring (cases S1, S2 and S3)

With the term �open-loop�, it is implied that the predicted variables ŷ = Hxm are used for moni-
toring, that is, they are not used for control purposes. It should be noted that this is not the same
as implying that the variables in a given system are uncontrolled. We can think of three main
types of open-loop monitoring estimators are illustrated in Figure 9.1:

Case S1. Predicting primary variables from a system with no control, i.e. the inputs u are free variables.

Case S2. Predicting primary variables from a system where the primary variables y are measured and
controlled, i.e. the inputs u are used to keep y = ys.

Case S3. Predicting primary variables from a system where the inputs u are used to control the sec-
ondary variables z, i.e. z = zs.

We �rst consider case S1 in detail. Cases S2 and S3 are then straightforward extensions.
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Case S1

Case S1 is the direct extension of the Brosilow estimator to include noise. To �nd the optimal
estimator for open-loop operation, the prediction error has to be expressed as a function of the
system and the estimator.

Lemma 1. For a given linear estimator , when applied to the system de�ned in equations (9.1)-
(9.5), and considering that u is a free variable, the prediction error can be expressed as

e (H) = [ (Gy −HGx) (Gd
y −HGd

x) −H ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u
d
nx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(9.9)

Proof. An expression of ŷ as a function of u, d and nx can be obtained by substituting equations
(9.3) and (9.5) into equation (9.1).

ŷ = H (Gxu +Gd
xd + n

x)

Using the de�nition of prediction error and substituting the expression for ŷ, we will have

e (H) = (Gy −HGx)u + (Gd
y −HGd

x)d −Hnx

which is the same as equation (9.9). Q.E.D.

Next, we derive an expression for the expected prediction error, assuming that u, d, nx are normally
distributed with given weight matrices.

Lemma 2. Expected prediction error. Let the disturbance and noise be normalized on the form

u = Wuu′

d = Wdd
′

nx = Wnxnx
′

where the elements u′, d′ and nx
′

of the normalized vectors u′, d′ are assumed to be normally
distributed with zero mean and unit standard deviation;

u′ ∼ N (0,1)
d′ ∼ N (0,1)

nx
′

∼ N (0,1)

The diagonal scaling matrices Wu, Wd and Wnx contain the standard deviations of the elements
in u, d and nx respectively.

From Lemma 1 the prediction error can be expressed as

e = [ (Gy −HGx)Wu (Gd
y −HGd

x)Wd −HWnx ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M(H)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u′

d′

nx
′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The expected value of the 2-norm of the prediction error (variance) then becomes

E (∥e∥2) = ∥M (H) ∥
2
F

Proof. Let d̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u′

d′

nx
′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. Then, e = Md̃, and noting that ∥e∥2 = tr (eeT ), the expected value of

the 2-norm of the prediction error can be written as

E (∥e∥2) = E [tr (Md̃d̃TMT )]

= E [tr (MTMd̃d̃T )]

= tr (MTME [d̃d̃T ])



9.2. Derivation of Model-based Static Estimators 109

where tr (.) denotes the trace of the matrix and E [.] is the expectation operator.

Since

XXXXXXXXXXXXXX

⎡
⎢
⎢
⎢
⎢
⎢
⎣

u′

d′

nx
′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXX

∼ N (0, Inu+nd+nx), by substituting the normal distribution in the de�nition of

expected value we have
E [d̃d̃T ] = Var (d̃)

In addition, we know that the square root of the trace of the matrix MTM is actually the de�nition
of Frobenius norm of matrix M. So,

E (∥e∥2) = tr (MTM) = ∥M∥
2
F

Q.E.D.

From Lemma 2, the expected value of the 2-norm prediction error (variance) is minimized by
selecting H to minimize ∥M∥F . This leads to the following theorem

Theorem 3. The optimal "open-loop" estimator following the linear relationship

ŷ = Hxm

that minimizes the variance of the prediction error (Lemma 1 and 2)

e = y − ŷ

when u is a free variable, is

H1 = Y1X
�
1 (9.10)

where X� is the pseudo-inverse of X, and

Y1 = [ GyWu Gd
yWd 0 ]

X1 = [ GxWu Gd
xWd Wnx ] (9.11)

If X1 has full column rank, we have X�
1 = (XT

1 X1)
−1

XT
1 . If X1 has full row rank, we have

X�
1 = XT

1 (XT
1 X1)

−1
. For the general case, where X1 has neither full row nor column rank, the

pseudo-inverse may be obtained using the singular value decomposition

Proof. In Lemma 2, we showed that minimizing ∥e (H) ∥2 is equivalent to minimizing ∥M (H) ∥2F
for the expected prediction error. M(H) can be rewritten as

M = Y1 −HX1

The optimization problem then becomes

min
H

∥Y1 −HX1∥

and we recognize that this is the least squares problem with the known optimal solution.

H1 = Y1X
�
1

Q.E.D.

Figure 9.3 shows an interpretation of Theorem 1, which is a direct generalization of the Brosilow
estimator, when we also include noise. Note that the elements in Y1 corresponding to nx

′

is zero.

This estimator is optimal for the case where the process input u are truly independent variables,
that is, when we have no control (case S1 in Figure 9.1).
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xm †
1X 1Y

ŷ

d

u

n x

 
  
  

Figure 9.3: Interpretation of Theorem 1

Case S2

We now consider the case where the inputs u are used to keep the outputs y at given setpoints ys.
This means that ys replaces u as independent variables. It is assumed that dim (y) = dim (u).

Theorem 4. The optimal �open-loop� estimator H for closed-loop operation, where the degrees of
freedom u are adjusted such that the primary variables y are kept at the setpoints ys, that minimizes
the variance of the prediction error y − ŷ for normally distributed setpoint changes, disturbances
and noise (of magnitudes Wys , Wd and Wnx respectively) is

H2 = Y2X
�
2

where

Y2 = [ Wys 0 0 ]

X2 = [ Gcl
xWys FWd Wnx ] (9.12)

where Gcl
x = GxG

−1
y and F = Gd

x −GxG
−1
y Gd

y

Proof. We assume that u is used to keep y = ys (with no control error). Solving equation (9.4)
with respect to u when y = ys gives

u = G−1
y ys −G−1

y Gd
yd

By combining equations (9.5), (9.3) and (9.1) with the above equation, the following expression for
ŷ as an explicit function of ys, d and nx is obtained,

ŷ = H [GxG
−1
y ys + (Gd

x −GxG
−1
y Gd

y)d + n
x]

Here, (Gd
x −GxG

−1
y Gd

y) = ( ∂x
∂d

)
y=ys

is the optimal sensitivity F [121], and GxG
−1
y = ( ∂x

∂ys
)
d
is

known as the closed-loop gain Gcl
x . So, the above equation becomes

ŷ = H [Gcl
x ys +Fd + nx]

With the assumption that y = ys, the prediction error becomes

e = y − ŷ = [ (I −HGcl
x ) −HF −H ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ys
d
nx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Proceeding analogous to Lemmas 1 and 2 and Theorem 1, using ys = Wsy′s results in the given
preposition. Q.E.D.
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Case S3

The following theorem generalizes theorems 1 and 2.

Theorem 5. The optimal �open-loop� estimator H for closed-loop operation where the degrees
of freedom u are adjusted such that the secondary variables z are kept at the setpoints zs, that
minimizes the variance of the prediction error y − ŷ for normally distributed setpoint changes,
disturbances and noise (of magnitudes Wzs , Wd and Wnx respectively) is

H3 = Y3X
�
3

where

Y3 = [ Gcl
y Wzs F′

yWd 0 ]

X3 = [ Gcl
xWzs F′

xWd Wnx ]

where Gcl
y = GyG

−1
z , Gcl

x = GxG
−1
z , F′

y = Gd
y −GyG

−1
z Gd

z and F′
x = Gd

x −GxG
−1
z Gd

z

Proof. We assume that u is used to keep z = zs (with no control error). Solving equation (9.6) with
respect to u when z = zs gives

u = G−1
z zs −G−1

z Gd
zd

By combining equations (9.4) and the above expression for u, we have

y = GyG
−1
z

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
Gcl

y

zs +
⎛

⎝
Gd
y −GyG

−1
z Gd

z

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⎞

⎠

F ′
y

d

Introducing the optimal sensitivity F′
y and the closed-loop gain Gcl

y we get

y = Gcl
y zs +F′

yd

By combining equations (9.5), (9.3) and (9.1), the following expression for ŷ as an explicit function
of ys, d and nx is obtained.

ŷ = H

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

GxG
−1
z

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
Gcl

x

zs +

⎛
⎜
⎜
⎜
⎝

Gd
x −GxG

−1
z Gd

z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F ′
x

⎞
⎟
⎟
⎟
⎠

d + nx

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Using the de�nition of prediction error with the expression for ŷ and y gives

e (H) = [ (Gcl
y −HGcl

x ) (F′
y −HF′

x) −H ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

zs
d
nx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Proceeding analogous to Lemma 2 and Theorem 1, will result in the given proposition. Q.E.D.

Note that Theorem 3 is a generalization of Theorems 1 and 2, since setting z = u gives Theorem 1
and setting z = y gives Theorem 2.

9.2.3 The "closed-loop" estimator (Case S4)

In this section, we derive an expression for the optimal estimator under the assumption that the
prediction ŷ = Hxm is used for controlling the primary variables, that is, we have ŷ = ys (assuming
integral action in the controller). It is assumed that dim (y) = dim (u).
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Theorem 6. The optimal "closed-loop" estimator H (denoted HCL) following the linear relation-
ship

ŷ = Hxm (9.13)

that minimizes the variance of the prediction error

e = y − ŷ

for normally distributed sets of d,nx and ys (of magnitudes Wd, Wnx and Wys , respectively)
assuming that the degrees of freedom u are adjusted to keep the prediction at the setpoint (ŷ = ys ),
is

HCL = arg(min
H

∥H [ FWd Wnx ]∥
F
) (9.14a)

s.t. HGx = Gy (9.14b)

where the sensitivity matrix F is de�ned as

F = (
∂x

∂d
)
y=0

= Gd
x −GxG

−1
y Gd

y (9.14c)

Comment: Note that (9.14b) is equivalent to HGcl
x = I

Proof. An expression for the prediction as an explicit function of u, d and nx is achieved by
combining Equations (9.5), (9.3) and (9.1) to get

ŷ = H (Gxu +Gd
xd + nx) (9.15)

Using a controller with integral action, the prediction ŷ is held at the setpoints ys by manipulating
u. Solving equation (9.15) with respect to u when ŷ = ys, gives

u = −(HGx)
−1

H (Gd
xd + nx) + (HGx)

−1
ys (9.16)

and inserting this into (9.4) yields

y = −Gy (HGx)
−1

H [Fd + nx] +Gy (HGx)
−1

ys (9.17)

where F = (Gd
x −GxG

−1
y Gd

y) is the optimal sensitivity. Inserting the expression for y into the
prediction error e, remembering that the prediction is kept at the setpoint (ŷ = ys), gives

e = y − ŷ = y − ys = −Gy (HGx)
−1

H (Fd + nx) + [Gy (HGx)
−1
− I]ys (9.18)

Introducing normalized (weighted) variables, gives

e = −Gy (HGx)
−1

H [ FWd Wnx ] [
d′

nx
′ ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e1(H)

+ [Gy (HGx)
−1
− I]ys

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e2(H)

(9.19)

In the �rst term of equation (9.19), we have extra degree of freedom, because if we pre-multiply H
by a matrix D, we will have

e1 (H) = e1 (DH)

where D is any nonsingular square matrix. This follows because

(DHGx)
−1

DH = (HGx )
−1

D−1DH = (HGx )
−1

H

Since D can be chosen freely without a�ecting e1 (H), we may choose it such that the last term
is zero, e2 (H) = 0, corresponding to having HGx = Gy. This means that the optimal H can be
found by minimizing the �rst term (e1) in equation (9.19), subject to the constraint HGx = Gy.
This problem is equivalent to solving the constrained minimization problem (9.14) which is convex
[121]. Q.E.D.
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Comment: The optimization problem in equation (9.14) is expressed with open-loop gains (Gx

and Gy), but can also be expressed with closed-loop gains by just substituting the open-loop gains
for the closed-loop gains. This can easily be shown by postmultiplying the constraint HGx = Gy

with G−1
y on both sides of the equality, to get HGxG

−1
y = HGcl

x = I.

Analytical Solution for H

If F̃ ≜ [ FWd Wnx ] is full rank, which is always the case if we include independent measurement
noise (so that Wnx is full rank), then we may alternatively use the analytic expression in Theorem
7.

Theorem 7. Under the assumption that F̃F̃T is full rank, an analytical solution for the problem
(9.14) is

HT
CL = (F̃F̃T )

−1
Gx (G

T
x (F̃F̃T )

−1
Gx)

−1

Gy (9.20)

Proof. The proof is in the paper written by Alstad et al.[121] and is based on �rst vectorizing the
problem and then using standard results from constrained quadratic optimization. Q.E.D.

Remark 1. One special case, when the expression for H in equation (9.20) applies also for
Wnx = 0, is when there are more independent than measurements, because F̃F̃T then remains full
rank [121].

Remark 2. The solution (9.20) is equivalent to the following [171]

HCL = D ((F̃F̃T )
−1

Gx)
T

(9.21)

where

D = Gy (G
T
x (F̃F̃T )

−1
Gx)

−1

(9.22)

The following example shows the e�ect of noise for various cases.

9.2.4 Example 1

We consider a scalar case with one input (u), one disturbance (d), one measurement (x), one output
y, and with the following model matrices

Gx = Gd
x = 1

Gy = Gd
y = 1

Wu = Wd = Wys = 1

This corresponds to the case where y = x and we have F = 0.

For case S1, Theorem 1 gives

Y1 = [ 1 1 0 ]

X1 = [ 1 1 Wnx ]

and we �nd

H1 =
2

W2
nx + 2

For case S2, Theorem 2 gives

Y2 = [ 1 0 0 ]

X2 = [ 1 0 Wnx ]
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Table 9.1: Optimal H matrix for di�erent values of the measurement noise in Example 1

Wnx H1 H2 HCL

0 1 1 1
1 0.67 0.5 1
5 0.074 0.038 1
∞ 0 0 1

and we �nd

H2 =
1

W2
nx + 1

For case S4, Equation 9.20 gives
F̃F̃T = (Wnx)

2

and we have HCL = 1 for all values of the measurement noise Wnx .

Table 9.1 shows the optimal H for the three cases for some values of the measurement noise. For
the "monitoring" cases (H1 and H2), the optimal estimator gain H approaches zero when the
measurement noise goes to in�nity, but this does not occur for the closed-loop estimator (HCL).
The reason is that the estimate ŷ = HCLxm is used for control, that is, u is changed such that ŷ is
equal to ys. If we used an estimator where HCL → 0 then we would need u to go to in�nity, which
is not optimal.

9.3 New data-based estimation

We want to use our results for the optimal model-based estimators, to derive data-based estimators.
The �rst step is to obtain the required model to use for cases S1-S4 in Theorems 1-4.

9.3.1 Monitoring cases

For cases S1-S3, all the optimal estimators are on the form H = YX�, so we may use the data
directly. The result will be identical to the conventional least squares solution, which from our
derivation should be the optimal estimator for the case when there is no measurement noise for y.

9.3.2 Closed-loop estimator

Let us now consider the more interesting case S4, where we want to �nd the optimal estimator
to be used for closed-loop operation. To use Theorem 4, we need to have information about
F̃ = [ FWd Wnx ] and GxG

−1
y = Gcl

x .

This information can be obtained by transforming the original data in Y and X, to match the
"closed-loop" form as given by the matrices Y2 and X2 in (9.12):

Y2 = [ Wys 0 ]

X2 = [ Gcl
xWys F̃ ]

This may be done as follows. Collect all the experimental data in the big matrix Yall.

Yall = [
Y
X

] (9.23)

Then

1. Perform a singular value decomposition on the data matrix Y = UΣVT

2. Multiply the data matrix Yall with the unitary matrix V to get YallV on the desired form
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YallV = [
Wys 0

Gcl
xWys F̃

] (9.24)

where F̃ = [ FWd Wnx ]. F̃ is denoted Xopt in the following.

Note that F is de�ned as ( ∂x
∂d

)
y=0

. Since V is a unitary matrix, the magnitude of the prediction

error does not change when it is multiplied by V, so ∥YV −HXV∥F = ∥Y −HX∥F . This follows
because the singular vectors satisfy VT = V−1, so we have

YV = UΣ = [ U1 U2 ] [
Σ1

0
] = [ U1Σ1 0 ]

Gcl
x can be easily calculated. To �nd Gx and Gy, which are needed to calculate the optimal H

matrix (denoted by BCL in the following), we assume that the degrees of freedom are chosen to be
the primary variables. This will result in Gy = I.

The closed-loop data-based estimator (BCL) su�ers from the same weakness as ordinary least-
squares, giving poor results for ill-conditioned matrices and underdetermined systems. Performing
a principal component analysis on the X data will remove the weaker directions containing noise
resulting in a well-conditioned matrix. Then, closed-loop data-based estimator can be applied to
the data. We call this �truncated closed-loop estimator� (B�

CL).

9.4 Examples

9.4.1 Example 2

To investigate the performance of the estimators, they were applied to a linear approximation of
a binary distillation column model - Column A [172] - subjected to di�erent control cases. Full
information about the model and the source codes are online. There are two inputs, namely the
re�ux �ow and the boilup, and one disturbance, which is the change in feed composition. The
linearized model for open-loop system for the two primary variables is

y = [
0.8754 −0.8618
1.0846 −1.0982

]u + [
0.8812
1.1188

]d (9.25)

where the primary variables are compositions of the two main components in the top and bottom
products. The model for the eight measurements (temperatures) is

xm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−64.665 65.413
−171.884 173.569
−226.276 227.842
−130.878 130.911
−195.132 193.623
−142.092 140.419
−55.816 55.013
−11.818 11.634

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

u +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−67.174
−180.728
−242.622
−146.618
−207.430
−146.928
−56.667
−11.897

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

d + nx (9.26)

These measurements are chosen from the top and bottom sections in the column. The two secondary
variables, which are re�ux �ow and a temperature measurement from 25th tray of column, are given
by

z = [
1 0

−195.132 193.623
]u + [

0
−207.4297

]d (9.27)

This means that the re�ux �ow rate and the temperature measurement from 25th tray are controlled
and their setpoints are the degrees of freedom. The disturbance and noise variances are as below
for all cases:

d ∼ N (0,0.052I2)
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nx ∼ N (0,0.52I8)

Since there is no control in the �rst case, the standard deviation in u (σ ≈ 0.05) was selected to
give a small standard deviation in y. The resulting standard deviations in the primary variables
for all cases are the same.

Table 9.2: Four operation cases

Operation Estimator Input variables Variable distribution

Open-loop H1 u u ∼ N (0,0.082I2)

y = ys H2 G−1
y (ys −Gd

yd) ys ∼ N (0,0.0052I2)

z = zs H3 G−1
z (zs −Gd

zd) zs ∼ N (0, [ 0.052 22 ] I2)

ŷ = ys HCL (HGx)−1 [H (Gd
xd + nx) + ys] ys ∼ N (0,0.0052I2)

For the data-based estimators, calibration data was generated by drawing 32 random values for u,
d, ys and zs with the distributions given in Table 9.2, and calculating the corresponding output
variables xm and y for the respective cases (except case 4). This gave one set of calibration data
with 32 experiments: X (8 × 32) and Y (2 × 32). The median of the prediction error for 150
runs are used to assess the estimators' performances because noise and variation in input variables
resulted in a distorted picture of estimator performance by outliers.

Model-based estimators

Table 9.3 shows the results of validation for model-based for di�erent cases. For each case (S1, S2,
S3 and S4), the matrix H is obtained �rst, using theorems 1-4. For example for case S4 we obtain

HCL =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0024 0.0008
0.0004 −0.0041
−0.0001 −0.0017
−0.0025 −0.0001
0.0011 0.0004
0.0003 0.0013
0.0007 −0.0026
−0.0037 0.0005

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, they were validated on the data generated randomly for each case (S1, S2, S3, S4), with
the given standard deviations for nx, u, zs, ys (see Table 9.2). The validation is done by �rst
calculating u for the given case and then substituting into the model. The reported data in Table
9.3 shows the median of the prediction errors. In Table 9.3, the diagonal elements correspond to the
optimal estimators for the intended cases, and, as expected, the prediction error is smallest along
the diagonal. Note that the cases are not comparable along the rows because of di�erent variances
for di�erent cases. Calibrating with one case and validating with another is mostly applicable to
the last case. So, the shaded cells are actually showing the more interesting data.

The prediction errors are equal for all the cases for S4 due to the constraint Gy = HGx. The
closed-loop estimator generally gives the best performance.

Data-based estimators

Table 9.4 shows the results of validation for data-based estimators. As mentioned in the previous
section, the dashed cells are the more interesting data.
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Table 9.3: The mean prediction error of the model-based estimators applied to four operation
cases

Cases

Estimator S1 S2 S3 S4

S1 0.0168 0.0248 0.0177 0.1972
S2 0.271 0.0156 0.035 0.0221
S3 0.0207 0.0224 0.0176 0.1021

S4= CL 0.0187 0.0187 0.0187 0.0187

Table 9.4: The mean prediction error of the data-based estimators applied to four operation
scenarios

Loss

C
a
li
b
ra
ti
o
n
D
a
ta

Operation Estimator S1 S2 S3 S4
S1 BLS,1 0.017 0.019 0.018 0.02
S2 BLS,2 0.316 0.016 0.061 0.173
S3 BLS,3 0.077 0.022 0.017 0.054
S1 BPCR,1 0.017 0.018 0.017 0.018
S2 BPCR,2 0.379 0.015 0.069 0.192
S3 BPCR,3 0.091 0.023 0.016 0.065
S1 BPLS,1 0.016 0.018 0.017 0.018
S2 BPLS,2 0.352 0.014 0.067 0.192
S3 BPLS,3 0.077 0.021 0.016 0.055
S1 BCL,1 0.018 0.02 0.018 0.020
S2 BCL,2 0.132 0.018 0.028 0.067
S3 BCL,3 0.077 0.022 0.017 0.053

S1 B�CL,1 0.017 0.019 0.017 0.019

S2 B�CL,2 0.130 0.016 0.028 0.066

S3 B�CL,3 0.088 0.024 0.016 0.061

Figure 9.4 shows the "closed-loop" performance with two di�erent data sets. The number of
measurements is increased from 8 to 41 (the total number of stages). All estimators are trained on
calibration data from case 2 and validated on case 4. The performance of new closed-loop estimator
(shown with BCL in Figure 9.4) and the ordinary least square estimator (shown with BLS in Figure
9.4) was deteriorated when then the system was over-determined with low number of data. This
is because they were forced to use the weak directions and assimilate noise and collinearity. Since
the truncated closed-loop estimator (B�

CL in Figure 9.4) �lters out the noise, it results in better
performance. Comparing the two �gures in Figure 9.4, we will see that if the data-based estimators
are given enough data they will approach their model-based counterparts.
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(a) Median prediction error for 150 data set with 32
samples
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(b) Median prediction error for 150 data set with 200
samples

Figure 9.4: Median prediction error for two sample sizes (validated for S4)

9.4.2 Example 3

The next example is from a multi-component distillation column (4 components) which is simulated
rigorously. The schematic of the distillation process with estimator is shown in Figure 9.5.

ABCD

ABCD

ABCD

1
2
3
4
.
.
.

36

Estimator

PID

PID

Figure 9.5: Schematic of the distillation process with estimator

The two lightest and the two heaviest products are supposed to be separated in the column. The
feed stream is a saturated liquid mixture of methanol, ethanol, 1-propanol, 1-butanol. Disturbances
are composition, �ow rate, quality, Pressure in the feed stream and also condenser pressure.The
composition setpoints for 1-propanol in the top (xC3 inD) and ethanol in the bottom (xC2 in B) of
prefractionator are 0.0095 and 0.038 respectively.

Here we show how simple the closed-loop model-based estimator can be derived by choosing the
right variables as manipulated variable. We can actually consider u to be any two variables from
the process. For the sake of simplicity and because we can use the close-loop information of the
system, we select the inputs to the estimation model to be equal to the product compositions, in
our case

u = y = [ xC3inD xC2inB ]
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This will make the case easier and the matrices will be as below:

Gy = I

Gd
x = F

Gd
y = 0

We use exactly the same information for PLS method. X and Y in PLS method are the �rst
and second row of Yall matrix (Equation (9.23)) respectively. We have assumed that we have
temperature sensors in every 4th tray. The matrices in the following show the �tting matrices for
the two methods (B for PLS and HCL is from equation 9.20).

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0045 0.0075
0.0113 −0.0076
−0.0036 0.0037
−0.0038 −0.0013
0.0074 −0.0092
−0.0055 0.0152
−0.0022 0.0057
0.0011 −0.0140

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

HCL =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0038 0.0080
0.0104 −0.0082
−0.0028 0.0041
−0.0035 −0.0011
0.0059 −0.0101
−0.0049 0.0156
−0.0019 0.0059
0.0010 −0.0141

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Figure 9.6 shows the dynamic behaviour of the model as disturbances happen and also of the
estimators. It is shown that the estimated values can track the real composition very well. It
should be noted that the steady state value is more in focus since the methods under study are
static estimators. The dynamic behaviour can be corrected by feedback.

9.4.3 Further Examples

Some additional examples are provided by Skogestad et al. [171], where the new closed-loop
estimator is compared with PCR and PLS. It is also suggested that adding "arti�cial noise" may
provide additional degrees of freedom for our method. This is particularly relevant when there
are a large number of measurement (x), but relatively few samples, for example, for spectroscopic
data, because it is then di�cult to obtain a good estimate of Wnx using equation (30). The idea
is to add an extra diagonal matrix W′

nx to the end of Xopt = F̃, which contains the expected noise
for each measurement x along its diagonal.

9.5 Discussion

9.5.1 Relationship to self-optimizing control

This work originated from considering the "indirect control problem" [143] using the "exact local
method" in self-optimizing control. In "indirect control" the objective is to �nd a set of controlled
variables c = Hx such that by keeping c constant, we indirectly keep the primary variables y constant
(or more speci�cally, at their desired setpoints ys), in spite of disturbances d and measurement
noise nx. This can be viewed as a special case of "self-optimizing control" with cost function
J = ∥y − ŷ∥2. We can then apply the theory that has been developed for "self-optimizing" control,
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Figure 9.6: Estimated and model Composition values for the case with two temperature controls
and with the consideration of 8 measurements
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which includes the "exact local method". This directly leads to the result in Theorem 4, when the
"extra degrees of freedom" in H are selected such that c = ŷ. This requires some explanation. In
indirect control, we adjust the inputs u by feedback to keep c = Hx = 0 (constant). Note that we
will generate the same inputs u (for a given d and nx), also if we keep c′ = Dc = 0 where D is any
invertible matrix. The matrix D is the so-called "extra degrees of freedom" in H.

It is clear that one good variable c = Hx to use for indirect control of y is the estimate ŷ. However,
if we look the other way around, then the optimal c will not necessarily correspond to an estimate
of y (ŷ). However, there are extra degrees of freedom in selecting c = Hx, we can use these extra
degrees of freedom (i.e., the D-matrix), to make c = Hx equal to ŷ, which is in fact done when we
select H such that HGx = Gy (see Theorem 4).

9.5.2 Comparison with work of Pannocchia and Brambilla

Our paper provides an extension of the results of Pannocchia and Brambilla [166] on "steady-
state closed-loop consistency" to include also measurement noise. In addition, we have shown, in
agreement with the results in the paper by Hori et al. [143], that we can always achieve "perfect
consistency" for setpoint changes, that is, the use of the "extra degrees of freedom" in H, makes
it possible to always have the norm from ys to the prediction error (y − ŷ) equal to zero, without
sacri�cing the norm from disturbances (d) to the prediction error. In the notation of Pannocchia
and Brambilla [166] this means that we can always make εr = 0 without sacri�cing the norm of εd.

The inclusion of measurement noise is important, because this is often a critical factor. As
an example, consider the estimation of the two product compositions in a distillation column
(y = [ xD xB ]) based on temperature measurements (x = T). For a binary distillation column
with constant pressure, temperature and compositions are uniquely related. So, if there were no
measurement noise (nx = 0), one could in theory have a perfect estimate of y by measuring the
temperature at the two columns ends (x = [ TD TB ]), irrespective of any disturbances in feed
composition or feed rate (which may a�ect stage e�ciency). However, in practice, the estimate will
be poor because of measurement error, especially for high-purity columns. For example, assume
the bottom product of a methanol/water distillation column should be about 99.99% water. At
1 atm, the boiling point of this mixture will be approximately (0.9999×100 ○C + 0.0001× 65 ○C =

99.9965 ○C, whereas the boiling point of 100% water is 100.00 ○C. Thus, if we have a measurement
error of more than 0.0035 ○C (which we certainly will have), then the temperature measurement
will be useless to infer composition as it would lead to predicting negative compositions. Thus, due
to measurement error (nx), we need to locate the temperature sensor away from the column end,
and the optimal location can be found using the methods presented in this chapter which include
measurement noise.

9.5.3 Measurement selection

The results presented in this chapter also provide the basis for optimal measurement selection,
which extends Algorithm 1 in Pannocchia and Brambilla [166] to include measurement noise. For
example, assume there are 10 candidate measurements, and there are 2 outputs that we want to
estimate (i.e, we have 2 y's and 2 u's). Assume that we want to use 4 out of these 10 measurements.
There are then 210 candidate measurement sets, and we �nd the best set by computing for each
set the prediction error using Theorem 4. To avoid checking all sets, we can also use the branch
and bound method developed by Kariwala and Cao[173].

9.5.4 Comparison to standard data-based estimators

1. In least squares regression (LS), one gets B = YX−1, or more generally B = YX�, where
X� denotes the pseudo inverse of X. In principal component regression (PCR), one uses B =

YX�
a where X�

a = ∑
a
i=1

1
σi
νiu

H
i denotes the pseudo inverse of X = UΣVH with only a principal

components included. Thus, in both LS and PCR one inverts the X-matrix, while with the new
estimation method, see equation (9.21) in Theorem 3, one considers only a part Xopt = F̃ of the
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transformed X-matrix. It is optimal because the corresponding Y data are zero. The proposed
method seems a bit similar to PLS in that we use the data for Y to a�ect the X-data (we get Xopt

from X by using the SVD of Y).

2. Comparing the regression equations of our new estimator and PLS, we realize that the PLS
method has one more degree of freedom (B0), which provides an optimal centering of the data. We
may include this degree of freedom into our method as follows: By assuming deviation variables,
we may write

Y −Y0 = H (X −X0) (9.28)

or
Y = HX +H0 (9.29)

where H0 = Y0 −HX0. By writing

H0 = diag (H0) × 1 − vector (9.30)

Equation (9.29) then can be written as

Y′
= H′X′ (9.31)

where H′ = [ H diag (H0) ] and X′ = [ X 1 − vector ].

Thus, by just adding 1's to the end of the X-data, one can optimize to �nd H′, and then �nd H
and H0.

3. The general equation for B in PLS is [174]

BPLS = Wa (W
T
aXTXWa)

−1
WT

aw1 (9.32)

Comparing this with H for our closed-loop estimator in equation (9.21), we see that Xopt = F̃ is a
variation of WaX. Xopt is actually XV in our method, where V is the right singular vector. It
acts as some sort of Wa.

We must assume that Xopt = F̃ is full rank (invertible) to use the analytic expression in equation
(9.21). If F̃ does not have full rank one may use some pseudo-inverse of F̃ (similar to PCR). This
adds degrees of freedom to the method, which in PLS is the size of the matrix Wa and is speci�ed
in the �rst step (the number of components in PLS). The problem of invertibility is solved by
manipulating Wa matrix.

4. The PLS method for univariate data is optimal in the prediction error sense [162]. However,
the PLS algorithm for multivariate data is not optimal in the same way as the PLS algorithm for
univariate data. There are reports that from the literature that the PLS solution using di�erent
approaches are not equivalent. For example de Jong's SIMPLS [159] is not equivalent to Herman
Wold's NIPALS.

5. As mentioned before, the reports from di�erent studies showed that PLS always give a higher
coe�cient of determination (denoted R2 in statistics) than PCR (Table 1 in the paper by Wentzell
et al. [164]). However, some authors [175, 176, 177] have taken a closer look on the shrinkage
properties of PLS and have shown that PLS nearly always can be improved in principle, so the
regression method as such is not optimal.

9.6 Conclusion

In this chapter, we have introduced a new class of static estimators based on minimizing the
prediction error. We have considered four di�erent cases, where the �rst three (S1-S3) correspond
to cases where the estimator is used for monitoring, and the fourth case (S4) is when the estimator
is used in closed-loop. The new estimators (Theorems 1-5) are derived based on the assumption
that we have available a linear process model. If only we have data available, then these may
directly be used for the three monitoring estimators (S1-S3). For the closed-loop estimator (S4),
we have proposed a method to extract the data, see equations (9.23) and (9.24). For the data-based
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case, the new estimators have been compared with the established PCR and PLS estimators, and
the results were found to be comparable (see Figure 9.4). For a speci�c case, our new estimators
should be better as they are optimal in terms of minimizing the prediction error, but PCR and
PLS are found to generally give good predictions.
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Chapter 10

Control of Kaibel Column Using

Estimated compositions

In this chapter, control of Kaibel distillation column with the objective of minimizing
the energy requirement is studied. This is done by estimating the compositions of the
light and heavy keys at the ends of the prefractionator. The static estimator which we
have developed previously [178] is used for this purpose.

10.1 Introduction

It is discussed in the previous chapters that it is important to control compositions of the streams
coming from top and bottom of the prefractionator. This is because the impurities coming from
top and bottom of the prefractionator will end up in the side streams and will lead to less pure side
products. In this chapter, the compositions of heavy key in the top and light key in the bottom
of the prefractionator are estimated and controlled at their optimal nominal values. These values
are estimated from a simpler case which is a conventional column with the same speci�cations and
pro�les (excluding the stages at both ends) as the prefractionator. The resulting values are applied
to the Kaibel column.

A schematic of the Kaibel column is shown in Figure 10.1. The two lightest and the two heaviest
products are separated in the prefractionator and the products are separated further and drained in
the main column. As it is obvious, the most di�cult separation is taking place in the prefractionator
and the other sections are performing close to binary separation with small light or heavy impurity.

10.2 Estimation of impurities at prefractionator's ends

Impurities from top and bottom of prefractionator end up in sidestreams making them o�-spec.
This is the reason that we need to keep track of what is going out from the prefractionator's ends.
Our idea is to estimate the compositions of the impurities at the ends of the prefractionator and
control them. Figure 10.2 shows the temperature and composition pro�les for the prefractionator
of the Kaibel column and a conventional column that is made with the same feed properties and
the same compositions. Due to mixing e�ects by the condenser and the reboiler in the conventional
column, the �nal product purities of the two cases should not be the same because they don't refer
to the same internal pro�les. The simpli�ed problem which will be solved is shown in Figure 10.3.

Degrees of Freedom

Considering a Kaibel arrangement, four of the degrees of freedom, namely boilup rate (V), re�ux
(L), side stream �ows (S1, S2), are used for controlling product compositions. The two remaining

125
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Figure 10.1: Schematic of Kaibel distillation column with composition pro�les in di�erent sections
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(a) Change in Re�ux rate
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Figure 10.4: Temperature and composition pro�les for changes in the degrees of freedom re�ux
and boilup by ±1%

degrees of freedom (liquid split (RL) and vapour split (RV )) can be considered as inputs for
the estimation problem. Expected ranges for disturbances in feed �ow rate, feed and product
compositions, feed quality and boilup �ow should be considered. The problem will become smaller
by focusing on prefractionator section. Re�ux and boilup in the conventional column, which
represent Kaibel prefractionator, function as splits in the Kaibel column. Figure 10.4 shows the
temperature pro�les for the column when Re�ux and boilup are varied ±1% away from nominal
values. We note that the variation of the temperatures towards the ends of the column are small.
Also, changes in feed composition have a large e�ect on the temperatures inside the column even
though the product compositions are constant. Figures 10.5 and 10.6 show the pro�les as a result
of disturbance variations.

10.3 Our estimation method

Figure 10.7 shows a general structure for loss minimization (irrespective to what H is used for),
which is a simple presentation of the linear matrices needed from the plant to do the calculations,
and not the speci�c application. Details of deriving 4 scenarios are given in Chapter 9. In this
chapter, H is derived from scenario 4. The validation is done for the fully open-loop, closed-loop
(the estimates are controlled) and the case were the stabilization loops are closed.

The optimal sensitivity matrix F, which is de�ned as F =
∂yopt

∂d
, is simply obtained numerically by
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Figure 10.5: Temperature pro�les of the conventional column for changes in the light and heavy
keys in products

re-optimizing the model for di�erent disturbances. We have assumed 0.1 ○C as the expected noise.

As mentioned earlier, it is scenario four which is under our focus. We assume �rst that we use
a controller to set the manipulated variables that brings the real product compositions y to the
speci�ed values ys. In the steady state model of HYSYS, this can be obtained simply by specifying
product compositions. The manipulated variables, here re�ux and boilup, do normally not enter the
estimation scheme, but these may actually be treated as measurement along with temperatures and
possibly column pressure. Mejdell [179] has shown that they are not good choices for measurements.

We can consider u to be any two variables from the process. For the sake of simplicity and because
we can use the closed-loop information of the system, we select the inputs to the estimation model
to be equal to the product compositions. The matrices will become simpler as shown below:

Gy = I

Gd
x = F

Gd
y = 0

Note the trivial Gy and Gd
y since we have chosen u = y. Figure 10.8 shows the calculated H values

for this case. The end temperatures were not considered as measurements.

[
∆ŷ1

∆ŷ2
] = [ H1 H2 ] ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆T5

∆T6

⋮

∆T32

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10.1)

10.4 Evaluation of Estimators

The estimators are tested for three cases: "Open-loop" case (Scenario 1), where the input variables
are free, "Open-loop" case (Scenario 3), where the secondary variables are controlled and "Close-
loop" case (S4), where the estimates are controlled. The SIMC tuning rules are used [180].

10.4.1 Monitoring the composition ("Open-loop estimation")

Figure 10.9 shows the response of the primary variables and their estimates to a change in an input
(boilup). In Figure 10.10, the response of the primary variables and their estimates to di�erent
disturbances for the case where two temperature loops are closed, are shown.
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(a) Change in feed �ow rate
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(b) Change in feed quality
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(c) Change in feed composition xC1
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(d) Change in feed composition xC2
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(e) Change in feed composition xC3
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(f) Change in feed composition xC4

Figure 10.6: Temperature pro�les of column as a result of disturbance variations; ±5% change
in feed compositions, ±20% change in feed vapour fraction
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Figure 10.7: A general structure for loss minimization
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Figure 10.9: Top (right) and bottom (left) estimate with -1 percent change in boilup
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As mentioned previously, the task of the column is to perform the sharp split of the second and
third components in the feed. There will be a very small operation range for the prefractionator.
This is because if we do not perform the sharp split, the impurities will end up in the side streams
and the purity speci�cations of the side streams will be violated. So, we want to ensure sharp
split separation in prefractionator. This can be done with 1-point temperature control, but if we
want to handle feed condition changes, we will probably need to have 2-point control to be able to
stay close to minimum energy consumption. This is the reason that 2-point temperature control is
considered for Scenario 3. In Figure 10.10, the estimated compositions were compared to the true
primary variables.

10.4.2 "Closed-loop" estimation

In Figure 10.11, the response of the primary variables and their estimates to di�erent disturbances
for the case where the estimated variables are controlled, are shown. In this case, 1 temperature
loop is closed in the stabilisation layer.
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Figure 10.10: Composition pro�le for di�erent disturbances validated for Scenario 3 (the sec-
ondary variables are controlled)
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Figure 10.11: Composition pro�le for di�erent disturbances validated for Scenario 4 (the esti-
mated variables are controlled) with 1 stabilizing controller

Figure 10.12 shows the comparison of controlled estimated composition with the controlled true
variables where there are two stabilizing loops. The �gures show that the overshoots in estimated
composition control responses will be much higher than those in the true composition control
responses.

0 500 1000 1500 2000
0.0115

0.012

0.0125

0.013

time(min)

xC
3 

in
 D

is
til

la
te

Feed disturbance: +10%

 

 

yD est. from comb.
yD of model

0 500 1000 1500 2000
0.027

0.0275

0.028

0.0285

0.029

time(min)

xC
2 

in
 B

ot

Feed disturbance: +10%

 

 

yD est. from comb.
yD of model

(a) Change in feed �ow



10.4. Evaluation of Estimators 135

0 500 1000 1500 2000
0.008

0.01

0.012

0.014

time(min)

xC
3 

in
 D

is
til

la
te

z
F1

 disturbance: −4%

 

 

yD est. from comb.
yD of model

0 500 1000 1500 2000
0.025

0.026

0.027

0.028

0.029

time(min)

xC
2 

in
 B

ot

z
F1

 disturbance: −4%

 

 

yD est. from comb.
yD of model

(b) Change in zF1

0 500 1000 1500 2000
0.008

0.01

0.012

0.014

0.016

time(min)

xC
3 

in
 D

is
til

la
te

z
F2

 disturbance: −4%

 

 

yD est. from comb.
yD of model

0 500 1000 1500 2000
0.026

0.027

0.028

0.029

0.03

time(min)

xC
2 

in
 B

ot

z
F2

 disturbance: −4%

 

 

yD est. from comb.
yD of model

(c) Change in zF2

0 500 1000 1500 2000
0.008

0.01

0.012

0.014

time(min)

xC
3 

in
 D

is
til

la
te

z
F3

 disturbance: +4%

 

 

yD est. from comb.
yD of model

0 500 1000 1500 2000
0.026

0.027

0.028

0.029

time(min)

xC
2 

in
 B

ot

z
F3

 disturbance: +4%

 

 

yD est. from comb.
yD of model

(d) Change in zF3

0 500 1000 1500 2000
0.01

0.012

0.014

0.016

time(min)

xC
3 

in
 D

is
til

la
te

z
F4

 disturbance: +4%

 

 

yD est. from comb.
yD of model

0 500 1000 1500 2000
0.024

0.026

0.028

0.03

0.032

time(min)

xC
2 

in
 B

ot

z
F4

 disturbance: +4%

 

 

yD est. from comb.
yD of model

(e) Change in zF4



136 Control of Kaibel Column Using Estimated compositions

0 500 1000 1500 2000
0.012

0.0125

0.013

0.0135

time(min)

xC
3 

in
 D

is
til

la
te

q
F
 disturbance: −1%

 

 

yD est. from comb.
yD of model

0 500 1000 1500 2000
0.0265

0.027

0.0275

0.028

0.0285

time(min)

xC
2 

in
 B

ot

q
F
 disturbance: −1%

 

 

yD est. from comb.
yD of model

(f) Change in feed quality

0 200 400 600 800 1000 1200 1400
0.011

0.012

0.013

0.014

0.015

time(min)

xC
3 

in
 D

is
til

la
te

P
con

 disturbance: +4%

 

 

yD est. from comb.
yD of model

0 200 400 600 800 1000 1200 1400
0.026

0.028

0.03

0.032

time(min)

xC
2 

in
 B

ot

P
con

 disturbance: +4%

 

 

yD est. from comb.
yD of model

(g) Change in Condenser pressure

Figure 10.12: Composition pro�les for di�erent disturbances validated for Scenario 4; the con-
trolled estimated variables are compared to controlled primary variables

10.4.3 Filtered variable controlled

Figure 10.13 shows the dynamic responses of the system with controlled �ltered estimates of column
ends' key compositions to di�erent disturbances. The �lters are �rst-order low-pass with τF = 100.
They are applied to 5th, 6th, 16th, 17th and 26th measurements. These are the measurements
with negative contributions to the calculated estimate.
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Figure 10.13: Composition pro�le for di�erent disturbances validated for Scenario 4: Filters
controlled and corresponding primary variable and its estimation

10.5 Control of Kaibel column using estimates

As mentioned earlier, we have made the complex case simple by considering only the prefraction-
ator. Here, we want to test the estimators on the Kaibel column. Figure 10.14 shows the control
structure for the Kaibel column. As shown in Figure 10.1, the pro�les in the main sections are
binary. So, it seems that single temperature loops for each section is enough. Figures 10.15-10.16
show the product compositions in the Kaibel column for various disturbances. Figures 10.17-10.18
show the comparison of three control structures, namely the case with controlled compositions of
the key components at prefractionator ends, the case with controlled estimated compositions at
prefractionator ends and the case with controlling two temperatures in the prefractionator, while
in all three cases have temperature controls in the main section.

10.6 Conclusion

In this chapter, control of Kaibel distillation column is studied. This is done by estimating the
compositions of key components in the ends of the prefractionator. The performance of this control
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Figure 10.14: Control structure for the Kaibel distillation column

system is compared to the case where the true compositions in the ends of prefractionator are
controlled and the case where two sensitive temperatures in prefractionator are controlled. The
systems with composition or estimated composition control in the prefractionator perform better
compared to the system with temperature control.
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Figure 10.15: Product compositions of Kaibel column; Impurities estimation in the ends of
prefractionator are controlled
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Figure 10.16: Responses of controlled estimated compositions of prefractionator ends
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Figure 10.17: Comparison of product compositions for three control structures: Two tempera-
ture loops in prefractionator, compositions of impurities at prefractionator ends are controlled,
estimated compositions of impurities at prefractionator ends are controlled
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(e) Change in zF4

Figure 10.18: Comparison of prefractionator end compositions and their estimated values for
three control structures: Two temperature loops in prefractionator, compositions of impurities
at prefractionator ends are controlled, estimated compositions of impurities at prefractionator
ends are controlled; blue: true value, black: estimated value
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Chapter 11

Dynamic compensation of static

estimators

In this chapter, we study di�erent possibilities to overcome the inverse response problem
which is caused by combining di�erent measurements with fast and slow dynamics to
form the static estimator which was developed in Chapter 9. Our goal is to obtain a
response with "No inherent limitation".

11.1 Introduction

Reliable and accurate measurement of product compositions is one of the important issues in
distillation column control. Commonly, simple linear relationships, ŷ = Hx, are used to estimate
composition (y) based on temperature measurements (x). Ghadrdan et al. [178] have presented the
optimal estimators for di�erent control applications. They are optimal in the sense that they give
minimum error for the estimation of primary variables at steady-state in the presence of disturbance
and noise.

Using a combination of measurements leads to a better steady-state estimate compared to single
measurements. However, dynamically it may give rise to right-half plane zeros (inverse response
behaviour) in the transfer function from input u to the estimate ŷ (G = HGx), which limit the
closed-loop performance for SISO systems. We have ŷ = Hx = HGxu (see Figure 11.1). The
appearance of a RHP zero in the square transfer function HGx(s) from u to ŷ is common when
the measurements (Gx(s)) have di�erent dynamics, i.e. fast or slow, as they are located at di�erent
sections in the plant. This is noted by [181] with a simple example with two measurements and
one input.

ŷ(s) = HGx(s)u(s) = h1g1(s)u(s) + h2g2(s)u(s) (11.1)

It is assumed that Gx is modeled as a rational transfer function on the form gi(s) =
ngi
(s)

dgi(s)
, thus

the resulting plant is:

ŷ(s) = (h1g1(s) + h2g2(s))u(s)

= (h1
ng1(s)

dg1(s)
+ h2

ng2(s)

dg2(s)
)u(s)

= (
h1ng1(s)dg2(s) + h2ng2(s)dg1(s)

dg1(s)dg2(s)
)u(s)

The poles of the resulting plant are identical to the poles of the two subsystems, while the zeros
are changed. For systems where h1g1 and h2g2 have opposing e�ects, this may lead to right-hand
plane zeros.

We have studied three approaches to overcome this problem:

145
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� Cascade Control:
The idea is to close a fast inner loop based on a single measurement with no RHP-zero and
adjust the setpoint on a time scale which is slower than the RHP-zero.

� Use of measurements from the same section of the process:
If the dynamic behaviour of the selected measurements are similar, then it is less likely to get
RHP-zero. However, this gives a larger steady-state error.

� Filters:
Low-pass �lters will keep the system optimal at steady state. The idea is to �lter the mea-
surements before they are combined to give the estimate. The �ltered measurements are
ŷ = HHFu

11.2 Motivating example

We �rst illustrate the ideas with a simple example. Afterwards, we will give some guidelines for
the case study of a distillation column.

Consider a system with two measurements x and one input u

Gx = [
g1
g2

] = [
1

3s+1
1
s+1

]

Assume the estimator matrix H is

H = [ 2 −1 ]

11.2.1 No dynamic compensation

The transfer function from u to ŷ is

G = HGx =
2

3s + 1
−

1

s + 1
=

1 − s

(3s + 1)(s + 1)

x
Gx

u(s)
H

ŷ

Figure 11.1: Block diagram of the estimation

The RHP zero in G(s) will limit the achievable closed-loop performance. Thus, we have introduced
an unnecessary limitation on performance.

11.3 Cascade control

Now we consider if we can avoid the e�ect of the RHP zero using cascade control. We assume
that we control the faster measurement x2 ( 1

s+1
) in an internal loop. The desired closed-loop time

constant is assumed to be τc = 0.1 (time units).
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H

d

u
K1

ŷ
x1

x2s
GxK2 x2

Figure 11.2: Block diagram of the estimation with a cascade loop

Using the SIMC 1 PI-tuning rules [180] with θ = 0, we have

Kc =
1

k

τ1
τc + θ

= 10

τI = min(τ1,4(τc + θ)) = 0.4

The resulting controller and loop transfer functions become

K1(s) =
Kc

τIs
(τIs + 1) =

10

0.4s
(0.4s + 1)

L1(s) =K1(s).g2(s) =
25(0.4s + 1)

s(s + 1)

and

x2 =
L1

L1 + 1
x2s =

0.4s + 1

(0.1283s + 1)(0.3117s + 1)
x2s

and with
u = g−12 x2

we can �nd x1 and then

ŷ = Hx =
(0.4s + 1)(−s + 1)

(0.1283s + 1)(0.3117s + 1)(3s + 1)
x2s

We see that the RHP zero still remains. This is explained from the following theorem.

Theorem 1. Cascade (inner-loop) control can not move the zero of HGx

Proof. The expression for the estimated primary variable is

ŷ = h1x1 + h2x2

where
x1 = g1u

x2 = g2u

Assume we control x2 in an inner cascade loop.

u =K(s)(x1s − x1)

So,

x2 =
K(s)g2

1 +K(s)g2
x2s

x1 =
g1
g2

x2

The transfer function from x2s to ŷ is

ŷ = (h1
g1
g2

+ h2)
Kg2

1 +Kg2
x2s (11.2)

The term (h1g1 + h2g2), which includes the RHP zero, is unchanged.

1Skogestad's IMC
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11.4 Selection of a subset of measurements

To improve the dynamic controllability, one idea is to put structural constraints on the measure-
ments. This is done to reduce the time delay between the MVs to CVs, and also to have mea-
surements of the same dynamics to avoid inverse response. Yelchuru et al. [148] have studied the
optimal solution for measurement combinations with structural constraints. In our simple example,
it means that we need to choose only the measurements which are closer to the corresponding MV.
In this way, better controllability is achieved at the expense of less accurate estimation.

11.5 Filtering

Here we use individual compensators (or �lters) on the measurements as illustrated by the block
HF in Figure 11.3 The diagonal matrix HF is applied on the measurements to improve the dynamic
behavior. It is required that HF (0) = I. This means that the steady-state gain should not change,
because it is already optimal. Each of the �lters are simple �rst-order low-pass or lead-lag, e.g.

HF = [

1
τF1s+1

0

0 1
τF1s+1

]

or

HF = [

τF1ns+1
τF1ds+1

0

0 τF2ns+1
τF2ds+1

]

Di�erent �lters are used for the case-study in Table 11.1. Figure 11.4 shows the step responses of
di�erent �lters introduced. We can make the transfer function from x to ŷ as fast as we want.

Plant
HF(s)

d

u

y

x
K

+

nx

ŷ

xmys

-

H

Hdyn

Figure 11.3: Block diagram of the estimation system including �lter (H)

Table 11.1: Di�erent �lters and the �nal transfer functions

Filter matrix Transfer function from u to ŷ

HF1 = [
1
s+1 0

0 1
3s+1

] G1 = HHF1Gx =
1

(3s+1)(s+1)

HF2 = [
1 0

0 1
3s+1

] G2 = HHF2Gx =
2s+1

(3s+1)(s+1)

HF3 = [
1 0

0 s+1
3s+1

] G3 = HHF3Gx =
1

3s+1

HF4 = [
3s+1
s+1 0
0 1

] G4 = HHF4Gx =
1
s+1

From this example, it is seen that the lead-lag �lters are performing better in making the response
faster than the low-pass �lters. One can optimize the �lter parameters to get the best performance.
In this particular example, it is not clear what the best performance means. The transfer function
from x to ŷ is at most second order and does not have any limitations on control performance.
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11.5.1 Distillation Case-study

We have designed a steady-state estimator H for a multi-component distillation column based on
data from the simulator in HYSYS. Figure 11.5 shows the value of H from each tray in the column
for the two estimated values.
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Figure 11.5: Steady-state contribution of temperatures to the estimates (H), Dashed: top com-
position estimate, Solid: bottom composition estimate

Figure 11.6 show the open-loop response of the primary variables and the estimated values to a
change in boilup rate. An inverse response is seen in the estimate of the top composition. To
check why this is happening, the contribution of the temperatures to the �nal estimate is studied.
Figures 11.7-11.8 show the temperature changes as boilup rate is perturbed, and the contribution
of each of the trays to the estimate of the top composition. Figure 11.8 is actually obtained by
multiplying H to each of the time-series vectors of the measurements. The perturbation is small
enough so that the results in the negative and positive directions are similar.
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Figure 11.8: Contributions to the top compo-
sition estimate with -1% change in boilup and
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Figure 11.6: Top and bottom estimates with -1% change in boilup

As a simple trial, by adding �rst-order �lters on the 6th, 16th and 17th stages which show fast
dynamics (see the �rst 100 minutes in Figure 11.8) when boilup �ow is perturbed, we see in Figure
11.9 that the inverse response is removed.

11.6 Optimization of the �lters

The �lter time constants can be optimized to give the best performance. The objective function
can be de�ned as

min
HF

∥Gref −HFHGx∥∞ (11.3)

where Gref is the desired transfer function from input to the estimate. For monitoring purpose,
the best performance means the closest response to the actual compositions. So, in this case Gref

would be the transfer function from the inputs to the real primary variables. Figure 11.10 shows
the optimized �ltered top estimate together with the real primary value and the un�ltered estimate
which is obtained from the steady-state calculations. We have focused on the �rst 100 min, since
we don't want to let the steady-state o�set value be part of the objective function value. As it is
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Figure 11.9: Estimated composition in the top and the �ltered estimate. Filters are on 6th, 16th
and 17th measurements

seen in Figure 11.10, the �ltered estimate matches perfectly the real primary variable value in the
�rst 100 minutes and it diverges to get to the steady state value of the un�ltered estimate (note
that these are LP �lters with no change in steady-state). Table 11.2 shows the values of the �lter
time constants for this optimization.
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Figure 11.10: Estimated composition with optimized �lters

11.6.1 Explicit solution for the optimization problem

In this section, we want to solve the optimization problem as a model-matching problem. The
problem is to compute an upper bound γ and then compute a �lter Q such that

∥T1 −T2QT3∥∞ ≤ γ

Here, we have T3 = I. An optimal Q exists if the ranks of the two matrices T2(jω) and T3(jω)
are constant for all 0 < ω < ∞ [182]. The reason to use this method is shown by the motivating
example. We saw that we can not be sure about the structure of the �lters, i.e. being lead-lag or
LP, etc.

In the following section, the optimal �lters derived for scalar and matrix-valued cases are presented
from [182, 183].
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Table 11.2: The time constants of the �lters from optimization

Tray no. H for top comp. τF

5 -0.0043 1039.8

6 -0.0013 1338.3

7 0.0012 33.6

8 0.0028 514.1

9 0.0037 1209.1

10 0.0036 55.0

11 0.0029 1211.4

12 0.0018 1589.6

13 0.0004 554.6

14 -0.0010 1976.2

15 -0.0021 909.4

16 -0.0030 1424.3

17 -0.0032 466.6

18 -0.0025 1640.2

19 -0.0006 278.2

20 0.0023 19.8

21 0.0015 8.3

22 0.0005 1577.0

23 -0.0003 484.9

24 -0.0008 1158.8

25 -0.0010 1026.5

26 -0.0009 925.0

27 -0.0005 860.4

28 0.0000 1992.7

29 0.0006 868.7

30 0.0009 1404.7

31 0.0005 831.4

32 -0.0009 477.4
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11.6.2 Nehari problem

For a model-matching problem, performing an inner-outer factorization of T2, we have,

∥T1 −T2Q∥∞ = ∥T1 −T2iT2oQ∥∞

= ∥T2i (T
−1
2i T1 −T2oQ) ∥∞

= ∥ (T−1
2i T1 −T2oQ) ∥∞

= ∥R −X∥∞

where R ∶= T−1
2i T1 and X ∶= T2oQ

The third equality comes from the property of inner functions, ∣T2i(jω)∣ = 1. Nehari theorem is to
�nd the distance between the function R ∈ RL∞ from X ∈ RH∞

2

∥R −X∥∞ = ∥ΓR∥ (11.4)

where ΓR is the hankel operator with symbol R. The model-matching problem can be solved by
�nding ∥ΓR∥.

Calculations of the Hankel operator

Here, we study the Hankel operator with the special symbol

F(s) = [A, B, C, 0]

where A is antistable (all eigenvalues in Re s > 0). Such F belongs to RL∞. The inverse bilateral
Laplace transform of F(s) is

f(t) = −CeAtB, t < 0

f(t) = 0, t ≥ 0 (11.5)

The time domain analog of Hankel operator (Γf ) maps a function u in L2[0,∞) 3 to the function
y in L2(−∞,0]

y(t) = ∫
∞

0
f(t − τ)u(τ)dτ, t < 0

= −CeAt ∫
∞

0
e−AτBu(τ)dτ, t < 0 (11.6)

Controllability and observability operators are de�ned as

Ψc ∶ L2[0,∞) →Cn

Ψcu = −∫

∞

0
e−AτBu(τ)dτ (11.7)

Ψo ∶ C
n
→ L2(−∞,0]

(Ψox)(t) = CeAtx, t < 0 (11.8)

From equation 11.6, we have
Γf = ΨoΨc (11.9)

The next theorem is about calculating ∥ΓF ∥. Before that, a concept of the adjoint of an operator
in Hilbert space is de�ned: The adjoint of an operator Φ ∶X → Y is Φ∗ ∶ Y →X satisfying

⟨Φx,y⟩ = ⟨x,Φ∗y⟩, x ∈X, y ∈ Y

2RH∞ consists of those real-rational matrices which are stable and proper, and RL∞ consists of those real-
rational matrices which are proper with no poles on imaginary axis

3RL2 consists of those real-rational vectors which are strictly proper with no poles on imaginary axis, and RH2

consists of those real-rational vectors which are strictly proper and stable
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The operator Φ∗Φ from X to X is self-adjoint, i.e. it equals its adjoint. So,

∥Φ∥
2
= ∥Φ∗Φ∥ (11.10)

where * denotes complex-conjugate transpose.
A complex number λ is de�ned as an eigenvector of Φ if there is a nonzero x in X satisfying

Φx = λx

Theorem 2. [182] The eigenvalues of Γ∗FΓF are real and nonnegative and the largest of them
equals ∥Γ∗FΓF ∥

Proof. This theorem together with equation 11.10 says that

∥ΓF ∥ = λmax(Γ
∗
FΓF )

1
2

By de�ning the controllability and observability gramians

Lc = ∫
∞

0
e−AtBBT e−A

T tdt (11.11)

Lo = ∫
∞

0
e−A

T tCTCe−Atdt (11.12)

It's easy to show that Lc and Lo are the unique solutions of the Lyapunov equations

ALc +LcA
T
= BBT (11.13)

ATLo +LoA = CTC (11.14)

Also, by showing that Lc and Lo are matrix representations of ΨcΨ
∗
c and Ψ∗

oΨo respectively and
they have the same nonzero eigenvalues, the theorem is proved.

11.7 Scalar problem

In this section, the model-matching problem for the scalar case is described. The following lemma
and theorem describe the approach to calculate the optimal �lter. We start with factorizing R as

R = R1 +R2

with R1 strictly proper and R2 in H∞.

R1(s) = [ A B C 0 ] (11.15)

de�ning the following functions

f(s) = [ A w C 0 ]

g(s) = [ −AT λ−1Low BT 0 ]

where λ2 is the largest eigenvalue of LcLo and w is the corresponding eigenvector.

Lemma 1. [182] The functions f and g satisfy the equations

ΓRg = λf (11.16)

Γ∗Rf = λg (11.17)
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Proof. For the �rst equation, start with equation 11.13. By adding and subtracting sLc on the
left-hand side and then pre-multiplying by C(s −A)−1 and post-multiplying by (s +AT )−1v, we
have

−CLc(s +AT
)
−1v +C(s −A)

−1Lcv = C(s −A)
−1BBT

(s +AT
)
−1v

The �rst function in the left hand side belongs to H2 space. The second function equals λf . From
equations 11.15 and 11.14, the right hand side is equal to R1(s)g(s). By projecting both sides
onto H�

2 we get
λf = ΓR1g

But ΓR1 = ΓR, so equation 11.16 holds. Proving the second equation is similar to the �rst one.

Theorem 3. [182] The in�mal model-matching problem error equals ∥ΓR∥, the unique optimal X
equals R − α f

g
.

Proof. It is claimed that
(R −X)g = ΓRg (11.18)

To prove this, de�ne h ∶= (R −X)g and look at the L2-norm of h − ΓRg:

∥h − ΓRg∥
2
2 = ⟨h − ΓRg, h − ΓRg⟩

= ⟨h,h⟩ + ⟨ΓRg,ΓRg⟩

− ⟨h,ΓRg⟩ − ⟨ΓRg, h⟩

Being in H�
2, ΓRg is orthogonal to the H2-component of h. Thus,

⟨h,ΓRg⟩ = ⟨Π1h,ΓRg⟩

where Π1 is the orthogonal projection from L2 to H⊥2, and

Π1h = Π1(R −X)g

= Π1Rg

= ΓRg

The methodology is summarized as below:

Step 1 Factorize R as
R = R1 +R2

with R1 strictly proper and R2 in H∞.

R1(s) = [ A B C 0 ]

with A anti-stable. The controllability and observability gramians are the unique solutions
of equations 11.13 and 11.14.

Step 2 De�ne

f(s) = [ A w C 0 ]

g(s) = [ −AT λ−1Low BT 0 ]

where w is the eigenvector corresponding to the maximum eigenvalue λ2 of LcLo. Note that
f ∈ RH�

2 and g ∈ RH2.

Step 3 X = R − α f
g
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11.7.1 Uniqueness of the solution

Theorem 4. [184] If M is a closed convex set in a Hilbert space H and h ∈ H then there exists a
unique y ∈ M such that

d(h,M) = ∥h − y∥

Proof. We choose a sequence (yn) in M such that δn → δ, where δn = ∥x − yn∥ (by de�nition of
in�mum). We will show that (yn) is a Cauchy sequence and then we can make some deductions.
Using the parallelogram law,

∥yn − ym∥
2
= ∥(yn − x) − (ym − x)∥2

= 2 ∥yn − x∥2 + 2 ∥ym − x∥2 − ∥(yn − x) + (ym − x)∥2

= 2 δ2n + 2 δ2m − 22 ∥
1

2
(yn + ym) − x∥2

But 1
2
(yn + ym) ∈ M so that ∥ 1

2
(yn + ym) − x∥2 ≥ δ2. As n and m tends to in�nity, we have

∥yn − ym∥ ≥ 0, which implies that (yn) is a Cauchy sequence. Now since M is complete, the
sequence (yn) will converge to a limit say y0 ∈M so that ∥x − y0∥ ≥ δ. Also

∥x − y0∥ = ∥(x − yn) − (yn − y0)∥ ≤ ∥x − yn∥ + ∥yn − y0∥ = δn + ∥yn − y0∥

As n tends to in�nity, ∥yn − y0∥ tends to zero and δn tends to δ. Hence ∥x − y0∥ ≤ δ and we
conclude that ∥x − y0∥ = δ

For uniqueness, we assume that y1 ∈M and y2 ∈M both satisfy ∥x− y1∥ = δ and ∥x− y2∥ = δ.
We show that y1 = y2. By the parallelogram equality,

∥y1 − y2∥
2
= ∥(y1 − x) − (y2 − x)∥2

= 2 ∥y1 − x∥2 + 2 ∥y2 − x∥2 − ∥(y1 − x) + (y2 − x)∥2

= 2 δ2 + 2 δ2 − 22 ∥
1

2
(y1 + y2) − x∥2

But 1
2
(y1 + y2) ∈M so that ∥ 1

2
(y1 + y2) − x∥2 ≥ δ2, which implies that

2 δ2 + 2 δ2 − 22 ∥
1

2
(y1 + y2) − x∥2 ≤ 4 δ2 − 4 δ2

Hence
∥y1 − y2∥ ≤ 0

Clearly ∥y1 − y2∥ ≥ 0, which means that y1 = y2

11.7.2 Example: Scalar problem

In this case, T matrices are de�ned as below:

T1 ∶ Desired transfer function (Gref)

T2 ∶ Current transfer function (HGx)

Q ∶ Filter transfer function (HF )

In our example, we have the following inputs:

T1 =
1

0.5s + 1

T2 =
−s + 1

3s2 + 4s + 1
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Figure 11.11: Step response of un�ltered and �ltered estimates

Since the rank of T2 is not constant for all 0 ≤ ω ≤ ∞, a transfer function

V = (s + 1)l

with l being the relative degree of T2, is multiplied by T2. So, we have

γ = ∥T1 −Tp2VQ∥ (11.19)

Since the steady-state values should not be a�ected by �ltering, a weight function is multiplied to
both T1 and T2. The weight function is de�ned as

W =
0.01ω−1s + 1

0.1ω−1s + 1

Figure 11.11 shows the desired, un�ltered and �ltered responses. The resulting �lter will be

Q =
19.82s2 + 2042s + 678.5

s2 + 1002s + 2000
(11.20)

11.8 Matrix-valued model matching problem

In this section, the model-matching problem for the matrix-valued case is described. In the case
we have R as a vector/matrix, this method should be used.

Lemma 2. Let U be an inner matrix and de�ne

E = [
U∼

I −UU∼
]

Then, ∥EG∥∞ = ∥G∥∞

Proof. It su�ces to show that E∼E = I

Lemma 3. Suppose F and G are matrices with no poles on imaginary axis with equal number of
columns. If

∥ [
F
G

] ∥∞ < γ (11.21)

then

∥G∥∞ < γ (11.22)

and

∥FG−1
o ∥∞ < 1 (11.23)
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Proof. Equation (11.22) follows immediately from (11.21), because

∥G∥∞ ≤ ∥ [
F
G

] ∥∞

γ2 −G∼G has a spectral factorization:

γ2 −G∼G = G∼oGo (11.24)

where Go, G−1
o ∈ RH∞

De�ne

ε ∶= γ − ∥[
F
G

] ∥∞ (11.25)

and
g ∶= G−1

o f (11.26)

where f is a L2-vector of unit norm. Starting from (11.25), we have

∥ [
F
G

] g∥2 ≤ (γ − ε)∥g∥22

⟨[
F
G

] g, [
F
G

] , g⟩ ≤ (γ − ε)2⟨g, g⟩

⟨g,F∼Fg⟩ ≤ γ2⟨g, g⟩ − ε(2γ − ε)∥g∥22

⟨g,F∼Fg⟩ ≤ ⟨g, (γ2 −G∼G)g⟩ − ε(2γ − ε)∥Go∥
−2
∞

The last step used the inequality

1 = ∥Gog∥ ≤ ∥Go∥∞∥g∥2

Now using (11.24) we get
∥Fg∥22 ≤ ∥Gog∥

2
2 − ε(2γ − ε) ∥Go∥

−2
∞

Hence,
∥FG−1

o f∥
2
2 ≤ 1 − ε(2γ − ε) ∥Go∥

−2
∞

Since f was arbitrary, we �nd that

∥FG−1
o ∥

2
2 ≤ 1 − ε(2γ − ε) ∥Go∥

−2
∞

Since ε(2γ − ε) > 0, we arrive at equation11.23

Theorem 5. [182]

(i) α = inf {γ ∶ ∥Y∥∞ < γ,dist (R,RH∞) < 1}

(ii) Suppose γ > α, G,X ∈ RH∞

∥R −X∥∞ ≤ 1

X = T2oQY−1
o

(11.27)

Then ∥T1 −T2Q∥∞ ≤ γ

Proof. (i) Let
γinf = inf {γ ∶ ∥Y∥∞ < γ,dist (R,RH∞) < 1}

choose ε > 0 and then choose γ such that α + ε > γ > α. Then there exist Q in RH∞ such that

∥T1 −T2Q∥∞ < γ
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From Lemma 2 we have:

∥ [
T∼2i

I −T2iT
∼
2i

] (T1 −T2Q) ∥∞ ≤ γ (11.28)

This is equivalent to

∥ [
T∼2iT1 −T2oQ

Y
] ∥∞ < γ (11.29)

This implies from Lemma 3 that
∥Y∥∞ < γ (11.30)

∥T∼2iT1Y
−1
o −T2oQY−1

o ∥∞ < 1 (11.31)

The latter inequality implies
dist (R,T2oRH∞Y−1

o ) < 1 (11.32)

T2o is right-invertible in RH∞ and Yo is invertible in RH∞. So, (11.33) gives

dist (R,RH∞) < 1 (11.33)

Lemma 4. [182] For R in RL∞

dist (R,RH∞) = dist (R,H∞) = ∥ΓR∥

Proof. We have
dist (R,RH∞) ≥ dist (R,H∞) = ∥ΓR∥

The latter is the Nehari's theorem. Choose ε > 0 and set β ∶= ∥ΓR∥. Then

dist [(β + ε)
−1

R,H∞] = (β + ε)
−1

∥ΓR∥

= β/ (β + ε)

< 1

This inequality implies that there exists X in RH∞ such that

∥ (β + ε)
−1

R −X∥∞ ≤ 1

Thus,

dist (R,RH∞) ≤ β + ε

= dist (R,H∞) + ε

So,

dist (R,RH∞) ≤ dist (R,H∞)

The general algorithm to obtain Q is as follows

Step 1 Compute Y and ∥Y∥∞

Step 2 Find an upper bound α1 for α (∥T1∥∞ is the simplest choice)

Step 3 Select a trial value for γ in the interval (∥Y∥∞,α1]

Step 4 Compute R and ∥ΓR∥. Then ∥ΓR∥ < 1 i� α < γ. Change the value of γ correspondingly to
meet this criteria

Step 5 Find a matrix X such that ∥R −X∥∞ ≤ 1.

Step 6 Solve X = T2oQY−1
o for Q

Note that if the measurements do not have any delay or right half plane zeros, ΓR will be
zero.
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11.9 Matrix-valued model matching problem with matrix-
valued R

If R is matrix-valued, the algorithm will be as below. This is with the assumption of R being
strictly proper (if not, we need to factorize it as R = R1 +R2 where R1 is proper), and ∥ΓR∥ < 1
We start with some de�nitions.

De�nition Let X and Y be two Hilbert spaces. Their external direct sum X ⊕ Y consists of
all such vectors as x ranges over X and y over Y. Vector addition and scalar multiplication are
de�ned component-wise, and the inner product is de�ned as

⟨(
x1

y1
)(

x2

y2
)⟩ ∶= ⟨x1,x2⟩ + ⟨y1,y2⟩

De�nition Inde�nite inner-product on X⊕Y is

[(
x1

y1
)(

x2

y2
)] ∶= ⟨x1,x2⟩ − ⟨y1,y2⟩

This is inde�nite because [z, z] can be negative, zero or positive. A more compact way of de�ning
this is to introduce the operator J on X⊕Y

J(
x
y

) ∶= (
x
−y

)

The external direct sum X ⊕ Y together with inde�nite inner-product is called a Krein space.
Before going to the theorem, we need the following facts:

Lemma 5. [182] Let S ∈ RL∞. Then ∥S∥ ≤ 1 i� GS is negative, and R − S ∈ RH∞ i� GS ⊂

G(H2 ⊕H2), where G = [
I R
0 I

] and GS = [
S
I

]H2

Proof. Suppose that ∥S∥∞ ≤ 1. A vector in GS has the form (
Sf
f

) for some f in H2. This vector

is negative.

[(
Sf
f

) ,(
Sf
f

)] = ∥Sf∥22 − ∥f∥22

≤ (∥S∥
2
∞ − 1)∥f∥22

≤ 0

Now suppose R − S ∈ RH∞. So,

GS = [
S
I

]H2

= [
I R
0 I

] [
S −R

I
]H2

⊂ [
I R
0 I

] (H2 ⊕H2)

The converse is easy to prove.

De�nition A square matrix M in RL∞ having the property M∼JM = J 4 is said to be J-unitary,

where J = [
I 0
0 −I

]

4M∼ =M(−s)T
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Lemma 6. [182] Let F ∈ RL∞. Then FH2 ⊂ H2 i� F ∈ RH∞. If F is square and FH2 = H2, then
F−1 ∈ RH∞

Lemma 7. [182] Let X be a matrix in RL∞ and ∥X∥∞ ≤ 1. Suppose M is a J-unitary matrix
having the properties

MGX ⊂ L2 ⊕H2 (11.34)

0⊕H2 ⊂ M(L2 ⊕H2)

Then there exists Y in RL∞ such that ∥Y∥∞ ≤ 1 and GY = MGX

Proof. see [182]

Theorem 6. [182] The set of all matrices S in RL∞ such that ∥S∥∞ ≤ 1 and R−S ∈ RH∞ is given
by

S = X1X
−1
2

[
X1

X2
] = L [

Y
I

]

Y ∈ RH∞

∥Y∥∞ ≤ 1

5

Proof. Suppose that S ∈ RL∞, ∥S∥∞ ≤ 1 and R − S ∈ RH∞. From Lemma 5, GS is negative and

GS ⊂ L(H2 ⊕H2) (11.35)

By de�ning M ∶= L−1, from equation 11.35, we will have

MGS ⊂ (H2 ⊕H2)

So, equation 11.34 holds. Noting that M is J-unitary, invoke Lemma 7 to get the existence of Y
in RL∞ such that

∥Y∥∞ ≤ 1, GY = MGS

Since GY ⊂ H2 ⊕H2 from equation 11.34, we have by Lemma 6 that actually Y ∈ RH∞. De�ne

[
X1

X2
] ∶= L [

Y
I

]

so,

[
X1

X2
]H2 ∶= LGY (11.36)

= GS (11.37)

= [
S
I

]H2 (11.38)

(11.39)

Pre-multiplying 11.9 by [ 0 I ], we will have X2H2 = H2. Thus X−1
2 ∈ RH∞ by Lemma 6.

Pre-multiplying 11.9 by [ I −S ], we will get S = X1X
−1
2 . The inverse is not proved here.

The formula is Theorem shows S as a linear fractional transformation of Y. By partitioning
L as

L = [
L1 L2

L3 L4
]

Then
S = (L1Y +L2)(L3Y +L4)

−1

One possible candidate for Y is Y = 0. The method to calculate the �lter is summarized as below

5 L is de�ned as L ∶=GG−1
− where G− is the spectral factor.
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Figure 11.12: Comparison of �ltered and desired responses for matrix-valued example

Step 1 Find a minimal realization of R: R(s) = [A, B, C, 0]

Step 2 Solve the Lyapunov equations to �nd controllability and observability gramians and set N =

(I −LoLc)
−1

Step 3 Set

L1(s) = [ A −LcNCT C I ]

L2(s) = [ A NTB C 0 ]

L3(s) = [ −AT NCT −BT 0 ]

L4(s) = [ −AT NLoB
T BT I ]

Step 4 Select Y in RH∞ with ∥Y∥∞ ≤ 1 (for example Y = 0) and set X = R−(L1Y +L2) (L3Y +L4)

11.9.1 Example: Matrix valued problem

In this example, T matrices are de�ned as below:

T1 ∶ Desired transfer function (Gref)

T2 ∶ Not combined transfer function (HGx)

Q ∶ Filter transfer function (HF )

In our example, we have the following inputs:

T1 =
1

0.5s + 1

T2 = [
2 0
0 −1

] [
1

3s+1
1
s+1

]

This means that we want to put �lter on each of the measurements. The �lter is calculated as
below.

Q =

⎡
⎢
⎢
⎢
⎢
⎣

0.92308(s+2)2(s+0.67)(s+0.3333)(s−0.9431)2(s−1)
(s+2)3(s+0.67)(s+0.6202)(s−0.6202)(s−0.9431)2

−1.3846(s+2)2(s+0.67)(s+0.3333)(s−0.3333)(s−0.9431)2

(s+2)3(s+0.67)(s+0.6202)(s−0.6202)(s−0.9431)2

⎤
⎥
⎥
⎥
⎥
⎦

To reduce the rank of the �lters, we need to apply one of the model reduction methods on the
obtained �lter. The following �gure shows the comparison of the desired and �ltered combined
measurements.
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11.9.2 Distillation Example:

For the distillation case, T1 is the transfer function Gref from input to the primary variables. T2

is the transfer function Gx from input to the measurements (a matrix of 28×1 matrix of transfer
functions which are the temperature changes), if �lters are applied to each of the measurements.
It is also possible to apply �lter on the estimated primary variable.In this case, T = HGx.

The inner-outer factorization of T2 matrix is possible if D in state-space representation be
nonzero. This is possible if at least one of the transfer functions in T2 has the same degree in
numerator and denominator. This is possible since some of the measurements include delay which
can be interpreted as RHP zero (e−θs = 1 − θs). The calculated Qf for the scalar case, where the
�lter is applied on the estimated composition and the desired primary variable is calculated from
11.41, is as below

Qf =
3.7e6s3 + 3.8e5s2 + 433.1s + 0.00657

s3 + 2.001s2 + 1.003s + 0.00135
(11.40)

and
∥ΓR∥ = 0.0421

11.10 Discussion

Specifying Gref for control purpose is not that easy. When the system is not only stabilizable
but also controllable, one can make the closed-loop eigenvalues arbitrarily fast [185]. We need to
know what is the fastest response we can get. One idea is to specify a �rst-order transfer function
with the smallest time constant in the process as the desired transfer function from inputs to the
estimates. From [186] we know that the internal time constants are smaller than the external time
constants. These can be found from changing the two inputs boilup and re�ux rate at the same
time such that the external �ows remain constant. This is very di�cult to do in practice. The
responses to internal �ow changes, while the external �ows are constant, are shown in Figure 11.13.
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(a) Top composition, ∆L =∆V , ∆D =∆B = 0
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Figure 11.13: Internal time constants for our distillation example

The transfer functions of the compositions, when the internal �ows are changed so that the
external �ows remain constant, are as below. For high purity distillation, the product compositions
are sensitive to changes in external �ows and the e�ect of internal �ows may not be seen since the
gain is small.

∆yD = (exp(−2s) ×
−7.99e − 5

s + 0.00135
)∆V (11.41)

∆xB = (exp(−0.33s) ×
−4.92e − 4

s + 0.0073
)∆V (11.42)
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11.11 Conclusion

In this chapter, we have discussed di�erent methods to overcome the band-width limitations caused
by combining di�erent measurements with di�erent dynamics to build the static estimators. We
have shown that adding �lters is the best option. By using �lters, we will correct the dynamic
behavior while keeping the optimal steady-state estimator untouched. Two approaches were used.
First, we suggested �ltering some of the measurements based on the insight from the process.
Then, we useed a more systematic way to construct a �lter. The scalar case has been used for our
distillation case-study.
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Chapter 12

Concluding Remarks

12.1 Main Conclusions

This thesis reports results of the studies on control and operation of Kaibel distillation column.
These arrangements are realized at industrial scale using a dividing-wall in a single columns shell.
Compared the other alternatives which can be used for separating four products, Kaibel column is
more energy and cost e�cient. Two operational objectives are studied in this thesis.

1. maximizing the purities in the products with �xed boilup

2. minimizing energy with speci�ed product purities

First, the optimal operation of the column is studied. This task included optimizing the
process for each of the operational objectives using the remaining degrees of freedom and analysing
the results in terms of ease of operation. It was shown that operating the column with the second
objective is more challenging.

Vmin diagram was used as a useful tool to give us ideas on design and operation of columns
based on feed properties, namely, composition, quality and relative volatilities. It takes very little
e�ort to get so much information about a separation system. Chapters 4 and 5 show the application
of this tool in design and operation of Kaibel column.

In industrial practice, it is not common to adjust the vapour split online. It is normally given
by the dividing wall placement and �ow/pressure characteristics of the packing and the liquid load
on each side. We have shown that manipulating the vapour split will give us more freedom to be
in the optimal region and to handle feed composition disturbances.

Self-optimizing control strategy is used to �nd the proper control variables for the �rst opera-
tional objective. The dynamic performance of the system is compared to the case where impurities
coming out of prefractionator, i.e. propanol in the top and ethanol in the bottom, are controlled.
The structure with composition control in the prefractionator wins. This is because the impurities
going out from prefractionator will end up in the side streams and make them o�-spec.

One of the drawbacks of using HYSYS as the simulation tool is that the steady-state and
dynamics environments are separated from each other. When converting to dynamic mode, the
steady-state speci�cations will be deactivated and controllers should do the task of stabilization
and keeping variables at their speci�cations. Choosing the right control structure to get to the
same pro�les as the steady-state model in important. This is done by closing composition loops
at the ends of the prefractionator (xC3 in top and xC2 in bottom of prefractionator), the distillate
product composition (xC1) and ratios of impurities in side streams (xC1

xC3
in side stream 1 and xC2

xC4
in

side stream 2). In the other hand, the positive points are avoiding programming and debugging and
a rigorous thermodynamic package. By connecting HYSYS to MATLAB through ActiveX server,
optimization is done in MATLAB in order to make use of Optimization toolbox in MATLAB.

A static estimator is made based on reformulating self-optimizing method. This estimator
was derived for "open-loop" and "closed-loop" scenarios. These scenarios are when

167
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� the system is fully open,

� the primary variables are controlled,

� the secondary variables are controlled,

� the estimate of the primary variables are controlled

The last two scenarios are more applicable. However, all of the four scenarios are presented
to cover all possibilities. Frequency of updating H depend on how fast the system's steady-state
changes. The estimators were proved to be the best for each of the scenarios. Since they are
calculated based on steady-state information, it is possible that the dynamic performance is not
good. The reason is that the measurements which are combined to give the estimate are from
di�erent sections and have di�erent dynamics. They are multiplied by H values with positive and
negative signs, which may lead to inverse response. To solve this issue, di�erent approaches were
suggested. They are as below:

� Cascade Control:
The idea is to close a fast inner loop based on a single measurement with no RHP-zero and
adjust the setpoint on a time scale which is slower than the RHP-zero.

� Use of measurements from the same section of the process:
If the dynamic behaviour of the selected measurements are similar, then it is less likely to get
RHP-zero. However, this gives a larger steady-state error.

� Filters:
The Low-pass �lters will keep the system optimal at steady state. The idea is to �lter the
measurements before they are combined to give the estimate. It's also possible to put �lter
on the obtained estimator.

It is shown by an example that one can design a �lter to make the transfer function from x
to ŷ as fast as one wants. This is done by using lead-lag �lters. In this work, the desired transfer
function is de�ned based on an experiment to �nd the internal time constants of the system. In
order to �nd the explicit solution, the model matching problem is converted to Nehari problem.
The calculation is easy for the scalar case, but includes some iteration for the matrix-valued model-
matching problem. The �lter obtained by Nehari method is not necessarily low-pass. Since the
steady-state values should not be a�ected by �ltering, a weight function is multiplied to the matrices
T1 and T2.

The estimator proposed in this thesis takes a di�erent approach compared to dynamic esti-
mators, where the calculations are started from an initial point and iterations were done through
time. The positive points of our estimator are the ease and speed of calculations. Inverse response
problems which might happen, can be taken care of in di�erent ways which were discussed in the
thesis. It is seen that Kalman �lters is computationally intensive, and for some cases it might be
impossible to implement the estimator real time. It is also not guaranteed to get a good estimate
of steady-state values from Kalman �lter.

12.2 Further work

The following points are suggested to be further investigated:

� The study on manipulating vapour split is done with one set of feed properties (compositions,
relative volatilities) and the focus was on feed composition changes and if a column with �xed
vapour split can be operated economically with regards to energy consumption. It is suggested
to further study di�erent possibilities and give a general guideline about this issue.

� There is no report of experimental work in this thesis. It is suggested to implement the
estimator on the pilot column at NTNU. This was planned to be done. However, it did
not come through because of the constructions in the chemistry buildings and the control
experiments by other colleagues.



12.2. Further work 169



170 Concluding Remarks



Joint Declaration

Chapter 3 in the doctoral thesis, "Optimal Operation of Kaibel Distillation Columns", by Maryam
Ghadrdan is a joint work which has been submitted as the following article:

M. Ghadrdan, I.J. Halvorsen, S. Skogestad, "Optimal Operation of Thermally-Coupled
Kaibel Distillation Columns", Chemical Engineering Research and Design, doi:10.1016/j.cherd.2011.02.007

The contribution of each co-worker is as follows:

� Maryam Ghadrdan (Author 1): Wrote model for simulation studies, performed all the simu-
lations and wrote the manuscript.

� Ivar J. Halvorsen (Author 2): Supervised the overall work and helped in analysis of results.

� Sigurd Skogestad (Author 3): Supervised the overall work, helped in analysis of results and
in revision of the manuscript.

(Maryam Ghadrdan) (Ivar J. Halvorsen) (Sigurd Skogestad)
PhD Candidate Senior Scientist Professor

NTNU SINTEF ICT NTNU

171



172 Concluding Remarks

Chapter 5 in the doctoral thesis, "Manipulation of Vapour Split in Thermally-Coupled Dis-
tillation Arrangements", by Maryam Ghadrdan is a joint work which has been submitted as the
following article:

M. Ghadrdan, S. Skogestad, I.J. Halvorsen, "Manipulation of Vapour Split in Thermally-
Coupled Distillation Arrangements", Chemical Engineering and Processing 72 (2013) 10-23

The contribution of each co-worker is as follows:

� Maryam Ghadrdan (Author 1): Wrote model for simulation studies, performed all the simu-
lations and wrote the manuscript.

� Ivar J. Halvorsen (Author 2): Supervised the overall work and helped in analysis of results.

� Sigurd Skogestad (Author 3): Supervised the overall work, helped in analysis of results and
in revision of the manuscript.

(Maryam Ghadrdan) (Ivar J. Halvorsen) (Sigurd Skogestad)
PhD Candidate Senior Scientist Professor

NTNU SINTEF ICT NTNU



12.2. Further work 173

Chapter 9 in the doctoral thesis, "A New Class of Model-Based Static Estimators", by
Maryam Ghadrdan is a joint work which has been submitted as the following article:

M. Ghadrdan, C. Grimholt, S. Skogestad, "A New Class of Model-Based Static Estima-
tors", Ind. Eng. Chem. Res., 2013, 52 (35), pp 12451-12462, DOI: 10.1021/ie400542n

The contribution of each co-worker is as follows:

� Maryam Ghadrdan (Author 1): Wrote model for simulation studies, performed all the simu-
lations and wrote the manuscript.

� Chriss Grimholt (Author 2): Wrote model for simulation studies, performed some of the
simulations and wrote part of the manuscript.

� Sigurd Skogestad (Author 3): Supervised the overall work, helped in analysis of results and
in revision of the manuscript.

(Maryam Ghadrdan) (Chriss Grimholt) (Sigurd Skogestad)
PhD Candidate PhD Candidate Professor

NTNU NTNU NTNU



174 Concluding Remarks



Appendix A

The case-study of the thesis

A.1 Simulation of Kaibel column in HYSYS

The case-study used in this thesis is simulated in Aspen HYSYS 2006.5 using the custom column
unit. This is done step by step. First, the prefractionator is simulated as a conventional column,
by putting a "Tray section" unit, a condenser and reboiler. There are 4 streams going in and out
of the ends of the column section. The feed stream is added in the "Optional Feeds" section in the
design tab. The speci�cations of the column come from Vmin diagram.

Figure A.1 shows the second step of simulation, where a column is added in the bottom of
the prefractionator. The �owrate of Aux1 stream, which is an extra degree of freedom, is set to
zero in the beginning and is increased gradually to reach a reasonable composition in the bottom
product. The same is done for the top section and Aux2 stream (see Figure A.2). The last step is
to add the middle column in the main section. This will add two degrees of freedom to the system.
Changes should be done gradually. So, at each step, the new degree of freedom should be speci�ed
such that there will be no abrupt change from the previous point.
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Figure A.1: Step 2 of simulating Kaibel column
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Figure A.2: Step 3 of simulating Kaibel column
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Figure A.3: Final step of simulating Kaibel column

The �nal model will be optimized to get to the nominal point which is the basis for the study
in this thesis. Two objectives are studied:
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� Maximizing product compositions with a �xed boilup

� Minimizing vapour consumption with a speci�ed product compositions

The �rst optimization is done using non-gradient based optimization tools in MATLAB. However,
optimizing the second case-study is not as simple as the �rst one. The solution surface is sketched
manually in order to �nd the optimum. Further details are given in Appendix B.

A.2 MATLAB - HYSYS Linking

In this thesis, MATLAB is used as a tool for optimization and control structure design calculations.
MATLAB is linked to HYSYS using OLE (Object Linking and Embedding). The code below shows
how to link HYSYS to MATLAB and read some basic information from HYSYS.

serv = actxserver('Hysys.Application.2006.5');
HyCase = serv.SimulationCases.Open([pwd,filename]);
HyCase.Activate;
Col = HyCase.Flowsheet.Operations.Item('T−100');
Specs = Col.ColumnFlowsheet.Specifications;
% read compositions of Distillate and bottom streams and Feed flow rate
D = Col.Flowsheet.MaterialStreams.Item('D');
B = Col.Flowsheet.MaterialStreams.Item('B');
xDs = D.ComponentMolarFractionValue;
xBs = B.ComponentMolarFractionValue;
FFlowS = HyCase.Flowsheet.MaterialStreams.Item('F').MolarFlowValue;

This piece of code shows how to write information from MATLAB to HYSYS

%% temperature profile as function of Feed flow rate changes
F_Flow = HyCase.Flowsheet.MaterialStreams.Item('F').MolarFlowValue;
F_new = [0.98*F_Flow,1.02*F_Flow];
for i = 1:length(Frng)

HyCase.Flowsheet.MaterialStreams.Item('F').MolarFlowValue = F_new;
Col.ColumnFlowsheet.Run
T = Col.ColumnFlowsheet.TemperaturesValue;

end

Changing Feed compositions is not so straightforward. This is done by recording a script �rst (in
HYSYS: Tools → Script Manager → New). There will be an *.SCP �le in the working directory
which is generated by saving the script. Compositions can be changed by opening the SCP �le,
seeking the locations of composition values and substituting the values by desired values. The code
below shows how to call, edit and play the modi�ed script.Below is a piece of code which changes
one of the 4 compositions and normalizes the compositions, so that the sum of composition become
unity.

%% Changes in feed composition
Compfrac = ...

HyCase.Flowsheet.MaterialStreams.Item('F').componentMolarFractionValue;
step_za = 0.02;
compositionDisturbance(Compfrac, step_za);
HyCase.Application.PlayScript([pwd,'\compChange.SCP'])

function compositionDisturbance(x, Compfrac, stp_z)
for i = 1:4

if i ~= x
Compfrac_d(i) = Compfrac(i) − stp_z * Compfrac(i) / ...

(sum(Compfrac) − Compfrac(x));
else
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Compfrac_d(i) = Compfrac(i) + stp_z;
end

end

fid = fopen('compChange.scp', 'r+');
fseek(fid, 179, 'bof');
fprintf(fid, '%1.7e',Compfrac_d(1));
fclose(fid);

fid = fopen('compChange.scp', 'r+');
fseek(fid, 332, 'bof');
fprintf(fid, '%1.7e',Compfrac_d(2));
fclose(fid);

fid = fopen('compChange.scp', 'r+');
fseek(fid, 485, 'bof');
fprintf(fid, '%1.7e',Compfrac_d(3));
fclose(fid);

fid = fopen('compChange.scp', 'r+');
fseek(fid, 638, 'bof');
fprintf(fid, '%1.7e',Compfrac_d(4));
fclose(fid);

Below is the text of the SCP �le saved for this purpose

Message "FlowSht.1/StreamObject.400(F)" "view"
Message "FlowSht.1/StreamObject.400(F)" "View EditCompositionsView"
Specify "FlowSht.1/StreamObject.400(F)" ":ExtraData.520.0.0" ...

2.6333341e−001
Specify "FlowSht.1/StreamObject.400(F)" ":Index.500" 1.000000000000e+000
Specify "FlowSht.1/StreamObject.400(F)" ":ExtraData.520.0.1" ...

2.6333335e−001
Specify "FlowSht.1/StreamObject.400(F)" ":Index.500" 2.000000000000e+000
Specify "FlowSht.1/StreamObject.400(F)" ":ExtraData.520.0.2" ...

2.6333330e−001
Specify "FlowSht.1/StreamObject.400(F)" ":Index.500" 3.000000000000e+000
Specify "FlowSht.1/StreamObject.400(F)" ":ExtraData.520.0.3" ...

2.0999994e−001
Message "FlowSht.1/StreamObject.400(F)" "Normalize"
Message "FlowSht.1/StreamObject.400(F)" "AcceptComp"
SpecWhileSolving Message "FlowSht.1/StreamObject.400(F)" "CloseView"
SpecWhileSolving Message "FlowSht.1/StreamObject.400(F)" "CancelComp"

Feed quality is set by the feed temperature. The reason is that we can not set values below
zero or over one.

% temperature profile of the column as function of feed quality

vrng = [−0.02,0.02];
for i = 1:length(vrng)

temptoset = fsolve(@reachq,100,[],HyCase,1+vrng(i));
HyCase.Flowsheet.MaterialStreams.Item('F').VapourFraction.Erase
HyCase.Flowsheet.MaterialStreams.Item('F').Temperature.Value = ...

temptoset;
Col.ColumnFlowsheet.Run
T = Col.ColumnFlowsheet.TemperaturesValue;
riteTofile
HyCase.Flowsheet.MaterialStreams.Item('F').Temperature.Erase
HyCase.Flowsheet.MaterialStreams.Item('F').VapourFraction.value = 0;

end
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function q = calcq(HyCase,temperature)
% This function calculates 'q' for a stream with the specified temperature
% and Pressure and composition as stream 'F'
HyCase.Application.PlayScript([pwd,'\definefromother.SCP'])
HyCase.Flowsheet.MaterialStreams.Item('7').TemperatureValue = temperature;
HyCase.Solver.CanSolve = 1;
hf = HyCase.Flowsheet.MaterialStreams.Item('7').MolarEnthalpyValue;

HyCase.Flowsheet.MaterialStreams.Item('7').Temperature.Erase

HyCase.Flowsheet.MaterialStreams.Item('7').vapourFractionValue = 1;
HyCase.Solver.CanSolve = 1;
hv_sat = HyCase.Flowsheet.MaterialStreams.Item('7').MolarEnthalpyValue;

HyCase.Flowsheet.MaterialStreams.Item('7').vapourFractionValue = 0;
HyCase.Solver.CanSolve = 1;
hl_sat = HyCase.Flowsheet.MaterialStreams.Item('7').MolarEnthalpyValue;

q = (hv_sat − hf)/(hv_sat − hl_sat);

HyCase.Flowsheet.MaterialStreams.Item('7').vapourFraction.Erase
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Appendix B

Contour plots

In this appendix, the idea of how to sketch the contours of boilup as a function of vapour and
liquid split using HYSYS is discussed.

B.1 Contour plots with RV manipulated

For a Kaibel column with a �xed feed, there are 6 degrees of freedom. Four degrees of freedom
are used to satisfy the four product purities speci�cations. The remaining two degrees of freedom,
here selected as vapour and liquid splits, are used to minimize energy requirement. So, contours of
boilup with vapour and liquid splits show the solution surface.

We start from one of the end points. In HYSYS, the four main product composition plus
the vapour boilup and one of the splits are set as speci�cations. Let's assume we have RL as
a speci�cation and we have found the bottom point as the starting point. The next step is to
increase the value of RL stepwise, till it reaches the other end, above which there is no feasible
solution. Since there is multiplicity in the solution, we have two di�erent ways to reach the other
end. There is no guarantee which one is obtained in this procedure. The column "current values" in
the speci�cations tab in HYSYS is actually the initial points. So, when a speci�cation is changed,
the operating point is also a�ected by the current values, speci�cally when there is multiplicity in
the solution. We will elaborate more in our case-study. Consider Figure B.1, which shows one of
the curves in the boilup contour. Note that if we decrease RV , The closest value of RL which is on
the contour plot, will be on the bottom curve, which is the desired curve to obtain. So, to continue
on the bottom line, we decrease RV by a step size and then continue decreasing it till the other
end point.

The same strategy is used for the cases we have the starting point in the top of the contour
plots (see Figures B.3 and B.4).

B.2 Solution plots with �xed RV

In this case, RV is �xed. We need to plot the boilup �ow as a function of the liquid split RL.
There is multiplicity in the solutions because of di�erent paths that the impurities take to get to
the side-streams. In HYSYS, we use this aspect to �nd the two curves of the solution plots. We
start with a high value of boilup and then the value of RL is decreased till it gets to the minimum
feasible value. Note that one of the impurity speci�cations in the prefractionator ends has a very
small value in the beginning. Figure B.5 shows the solution for RV = 0.5968 and nominal feed
conditions (equimolar feed at boiling point). Assume that we get the dotted curve in the �rst
round. This is obtained with very little ethanol in the bottom of the prefractionator as the initial
point. In order to get the other curve, we �rst move the operating point to a relatively high value
of boilup and then specify a very little value of propanol in the top of prefractionator, say 1e − 5
and activate the speci�ed variable as one of the speci�cations in HYSYS. With this initial point, if
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Figure B.3: A contour plot
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we start iterating on RL we will get the operating points corresponding to the other curve in the
solution plot.
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Appendix C

Unscented Kalman Filter

The Unscented Transformation (UT) is founded on the intuition that it is easier to approximate a
probability distribution than to approximate an arbitrary nonlinear function [187]. A set of sigma
points are chosen. Then, the nonlinear function is applied to each sigma point. An estimate of
the nonlinearly transformed mean and covariance are calculated. The procedure is summarized as
below:

1. Choosing the sigma points and propagation through the nonlinear function:
Some weights are de�ned as

W (0)
m =

λ

λ + n

W (0)
c =

λ

λ + n
+ (1 − α2

+ β)

W (i)
m =

λ

2(λ + n)
, i = 1, ...,2n

W (i)
c =

λ

2(λ + n)
, i = 1, ...,2n (C.1)

A set of 2n + 1 sigma points is computed

xk−1 = [ x̂k−1 x̂k−1 + [
√

(n + λ)Pk−1]
i=1∶n

x̂k−1 − [
√

(n + λ)Pk−1]
i=n+1∶2n

] (C.2)

The initial estimates are set to be 10% higher than the initial points for the simulation. These
points are transferred through the nonlinear model f(.)

x̂
(i)
k = f(x

(i)
k−1) (C.3)

So,

x̂−k =
2n+1

∑
i=0

W (i)
m x̂

(i)
k (C.4)

P −
k = (x̂k − x̂−k)wc(x̂k − x̂−k)

T
+Q (C.5)

where

wc = diag ([ W
(0)
c ... W 2n

c ])

2. Measurement update
The following initial points is transformed through the nonlinear measurement function g(.)
to give the updated measurements.

Xk = [ x̂−k x̂−k + [
√

(n + λ)P −
k ]i=1∶n

x̂−k − [
√

(n + λ)P −
k ]i=n+1∶2n

]
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y
(i)
k = g(X

(i)
k ) (C.6)

So,

ŷ−k =
2n+1

∑
i=0

W (i)
m y

(i)
k (C.7)

Pxkyk
= (Xk − x̂k)wc(Yk − ŷk)

T

Py−
k
y−
k
= (Yk − ŷk)wc(Yk − ŷk)

T
+R

The observer gain will be calculated by

Kk =
Pxkyk

Py−
k
y−
k

(C.8)

So the estimated state in each iteration will be

x̂k = x̂−k +Kk(yk − ŷ−k) (C.9)

Note that the size of yk is equal to the number of sensors in the process.

Pk = P
−
k −KkPy−

k
y−
k
KT
k (C.10)

No linearization is needed in this method. However, many samples are required. This means
that as the number of states increases, the computational burden will be more. This leads to the
question of whether the samples can be chosen wisely and thus much fewer samples are required.
This is the concept of the sigma point �lter. You pick 2n+1 points and weights for an n dimensional
distribution. For example, a two dimensional Gaussian would require 5 points (one being the mean).
The points would be chosen to preserve the covariance and mean of the distribution. If f is linear
or quadratic, this sampling yields the exact moment of the distribution.

The following �gures show the dynamic trends of compositions and temperatures and their
estimates. The initial values of the estimated states are set to be 10% higher than the initial
values of the states. It is observed that all the estimates are tracking the states very nicely. The
computational time is almost 5 times the simulation time, e.g. 4.63 hours for 1 hour of simulation.
This is due to the high number of states (164 states). The functions for state and measurement
calculations are called 658 times for each iteration.



187

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

time(min)

x A
 in

 B
ot

.

0 20 40 60 80 100 120 140 160 180
30

40

50

60

70

80

90

100

time(min)

x A
 in

 D
is

ti
ll

at
e

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

time(min)

x B
 in

 B
ot

.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

time(min)

x B
 in

 D
is

ti
ll

at
e

Figure C.1: Compositions in the product streams and their estimates; blue: true values, red:
estimated values
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