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Summary

Optimal operation is important to improve productivity to be more compet-
itive, and therefore, increase profitability. Optimal operation can be viewed
to constitute the control layer (supervisory layer plus regulatory layer) and
optimization layer in the hierarchical decomposition of plantwide control.
The task of control layer is to keep controlled variables at given set points
and the task of optimization layer is to provide optimal set points. For sim-
ple implementation, we want to update the set points less frequently while
obtaining an acceptable loss in the presence of disturbances. This can be
achieved by appropriate controlled variables selection and keeping them at
constant set points. This approach is termed as “self-optimizing control” as
this approach automatically lead the operation close to optimal operation.
Physically, in self-optimizing control, the selected controlled variables can
be seen as the set of variables whose optimal values are insensitive to distur-
bances and controlling these (at constant set point) would reduce the need
for frequent set point updates. The selected controlled variables obtained
in “self-optimizing control” link the optimization layer and the control layer.

Self-optimizing control provides a mathematical framework and we use this
framework to select the controlled variables c as linear combinations of mea-
surements y, c = Hy, with the aim to minimize the steady state loss from
optimal operation. In “self-optimizing control”, we keep the controlled vari-
ables c at constant set points using feedback, and this feedback introduces
implementation errors. The focus of this thesis is to devise systematic and
good methods to arrive at controlled variables by finding optimal H that
minimize the steady state loss of optimality in the presence of both distur-
bances and implementation errors.

There are three main contributions in this thesis. The first contribution
is to provide (i) a convex formulation to find the optimal combination ma-
trix H for a given measurement set, and (ii) a Mixed-Integer Quadratic
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ii Summary

Programming (MIQP) methodology to select optimal measurement subsets
that result in minimal steady state loss in the presence of disturbances.
The methods provided in this thesis are exact for quadratic problems with
linear measurement relations. The MIQP methods can handle additional
structural constraints compared to the Branch and Bound (BAB) methods
reported in literature for these problems. The MIQP methods are evalu-
ated on a toy example, an evaporator example, a binary distillation column
example with 41 stages and a Kaibel column example with 71 stages.

Second contribution is to develop convex approximation methods that incor-
porate structural constraints to improve the dynamic controllability prop-
erties, such as fast response, control loop localization and to reduce time de-
lays between the manipulated variables (u) and the controlled variables (c).
For these cases, H is structured, for example, decentralized H or triangular
H. The decentralized H is to obtain c as combination of measurements
of a individual process unit. These structured H cases in self-optimizing
control are non-convex. Hence, we propose a few new ideas and convex ap-
proximation methods to obtain good upper bounds for these structured H
problems. The proposed methods are evaluated on random cases, an evap-
orator case study and a binary distillation column case study with 41 stages.

Third contribution is to extend the self-optimizing control ideas to find
optimal controlled variables in the regulatory layer. The regulatory layer is
designed to facilitate stable operation, to regulate and to keep the operation
in the linear operating range. The regulatory layer performance is quanti-
fied using the state drift criterion. Quantitative method for the regulatory
layer selection with one, two or more closed loops is proposed to minimize
the drift in states. The proposed quantitative methods are evaluated on a
distillation column with 41 stages and a Kaibel column with 71 stages case
studies.

To summarize, in self-optimizing control, for selecting the controlled vari-
ables c as linear combinations of measurements y, c = Hy, (a) we developed
MIQP methods that belong to a convex sub class to find globally optimal H
and optimal measurement subsets; (b) we developed convex approximation
methods to find good upper bounds to find optimal decentralized/triangular
H and optimal measurement subsets; (c) we extended the self-optimizing
control concepts to find c in the regulatory layer and proposed a quantita-
tive method that minimizes the state drift to arrive at optimal regulatory
layer with 1, 2 or more closed loops.
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In conclusion, we developed quantitative methods for controlled vari-
ables selection in both supervisory layer and regulatory control layer. We
demonstrated the developed methods on a few representative case studies.
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Andreas Linhart, Johannes Jäschke, H̊akon Dahl-Olsen, Magnus Glosli Ja-
cobsen, Deeptanshu Dwivedi, Maryam Ghadrdan, Esmaeil Jahanshahi and
Ivan Dones and I admire them for their wisdom, humility and attitude.
I was fortunate to share office with Andreas Linhart, Mehdi Panahi and
Naresh Doni Jayavelu during my graduate studies.

Equally cherishable are the moments I spent with my Telugu friends Venkat,
Ravindra, Madhu, Giri, Chandra, Dheeraj, Kishore, Naresh, Prabandh,
Srikanth, Phani, Gireesh, Sree Ganesh, Praveen and lunch mates Martin,
Michal, Nagaraj, Ralf, Pierre, Vinod, Katherina, Elena, Chiara, Simone
and Camilla during my stay in Trondheim. My wonderful friends other

v



vi Acknowledgements

than those mentioned above, to list whose names would be endless, have
been a great source of solace in times of need besides the enjoyment they
had given me in their company. I am thankful to my friends in making me
feel at home in Trondheim.

Thanks to my parents and my wife Swapna, for bestowing their support,
love, affection and for the trust on me. I am always indebted to my sib-
lings and cousins for their encouragement, support, affectionate love and
friendship.

Ramprasad Yelchuru

Trondheim, May, 2012



Table of Contents

1 Introduction 1

1.1 Motivation and scope . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Brief overview of control structure design and methods 9

2.1 Control structure design . . . . . . . . . . . . . . . . . . . . . 9

2.2 Plantwide control . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Real-time optimization . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Self-optimizing control . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Previous work on self-optimizing control . . . . . . . . . . . . 15

2.5.1 Brute force optimization method . . . . . . . . . . . . 15

2.5.2 Other methods . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Local methods . . . . . . . . . . . . . . . . . . . . . . 16

2.5.4 Solution to minimum loss problem . . . . . . . . . . . 19

2.5.5 Qualitative requirements for self-optimizing CV . . . . 22

2.5.6 Minimum singular value rule . . . . . . . . . . . . . . 23

2.5.7 Minimum loss method . . . . . . . . . . . . . . . . . . 24

2.5.8 Null space method . . . . . . . . . . . . . . . . . . . . 24

2.6 Thesis contribution in self-optimizing control framework . . . 25

2.6.1 Measurement subset selection with full H . . . . . . . 25

2.6.2 Measurement subset selection with structured H . . . 25

vii



viii Table of Contents

2.7 Other related concepts . . . . . . . . . . . . . . . . . . . . . . 26

2.7.1 Experimental methods . . . . . . . . . . . . . . . . . . 26

2.7.2 Necessary conditions of optimality tracking . . . . . . 27

2.7.3 Extremum seeking control . . . . . . . . . . . . . . . . 27

2.7.4 Optimizing controllers based on economics . . . . . . . 27

2.7.5 Model predictive control . . . . . . . . . . . . . . . . . 27

2.7.6 Regulatory control layer . . . . . . . . . . . . . . . . . 28

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Convex formulations for optimal CV using MIQP 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Minimum loss method . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . 42

3.2.2 Solution to minimum loss problem . . . . . . . . . . . 46

3.3 Convex formulations of minimum loss method (Problem 3.1) 50

3.4 Globally optimal MIQP formulations (Problem 3.2) . . . . . . 52

3.4.1 Optimal measurement selection . . . . . . . . . . . . . 53

3.4.2 Specific cases . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Examples (Problem 3.2) . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Example 1: measurement selection for toy problem

(Case 3.2.2) . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Example 2: measurement selection for evaporator pro-

cess (Case 3.2.2) . . . . . . . . . . . . . . . . . . . . . 60

3.5.3 Example 3: evaporator process with structural con-

straints (Case 3.2.4) . . . . . . . . . . . . . . . . . . . 61

3.5.4 Example 4: measurement selection for distillation col-

umn (Case 3.2.2) . . . . . . . . . . . . . . . . . . . . . 62

3.5.5 Example 5: measurement selection for Kaibel column

(Cases 3.2.4 and 3.2.5) . . . . . . . . . . . . . . . . . . 67

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 Structured H with specified zero elements (Problem

3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.2 Use of average loss 1
2‖M‖2F . . . . . . . . . . . . . . . 71



Table of Contents ix

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Convex approximations for optimal CV with structured H 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Convex formulations of minimum loss method (Problem 4.1) 81

4.3 Convex approximations for structured H (Problem 4.3) . . . 83

4.3.1 Convex approximation method 1: matching the ele-

ments in HGy to J
1/2
uu . . . . . . . . . . . . . . . . . . 85

4.3.2 Convex approximation method 2: relaxing the equal-

ity constraint to HGy ≤ J
1/2
uu . . . . . . . . . . . . . . 87

4.3.3 Convex approximation method 3: imposing constraint

on J
1/2
uu (HGy)−1 to have structure of D . . . . . . . . 88

4.4 MIQP formulations . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Optimal measurement selection (Problem 4.2) . . . . . 88

4.4.2 CV as combinations of a fewer measurement subsets

with the particular structure (Problem 4.4) . . . . . . 90

4.5 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 Random tests . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.2 Evaporator case study . . . . . . . . . . . . . . . . . . 93

4.5.3 Distillation case study . . . . . . . . . . . . . . . . . . 98

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Quantitative methods for Regulatory control layer selection115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Justification for considering steady-state state drift . . . . . . 119

5.3 Minimization of state drift (Problem definition) . . . . . . . . 120

5.3.1 Classification of variables . . . . . . . . . . . . . . . . 120

5.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.3 Problem formulation . . . . . . . . . . . . . . . . . . . 121

5.3.4 Selection of the variables u . . . . . . . . . . . . . . . 123

5.3.5 Shifting of integrators . . . . . . . . . . . . . . . . . . 124

5.4 Minimizing the state drift (optimal H2) . . . . . . . . . . . . 124



x Table of Contents

5.4.1 Finding optimal H2 for case with no noise (Previous

work)(Skogestad and Postlethwaite, 2005; Hori et al.,

2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.2 Loss as a function of d, ny and control policy H2 . . . 125

5.4.3 Optimal full H2 . . . . . . . . . . . . . . . . . . . . . 126

5.4.4 Optimal H2 with CV2 as individual measurements . . 126

5.4.5 Optimal H2 for partial control with CV2 as measure-

ment combinations . . . . . . . . . . . . . . . . . . . . 127

5.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Distillation column case study . . . . . . . . . . . . . . . . . . 128

5.6 Dynamic simulations . . . . . . . . . . . . . . . . . . . . . . . 132

5.7 Kaibel column . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Dynamic simulations with self-optimizing CV 147

6.1 Distillation column . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2 Open loop simulations . . . . . . . . . . . . . . . . . . . . . . 149

6.3 Dynamic simulations . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Conclusions and future work 159

7.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 159

7.1.1 Optimal selection of controlled variables and measure-

ment subsets with full H . . . . . . . . . . . . . . . . 160

7.1.2 Optimal selection of controlled variables and measure-

ments with structured H . . . . . . . . . . . . . . . . 160

7.1.3 Regulatory layer selection . . . . . . . . . . . . . . . . 160

7.1.4 Dynamic simulations with measurement combinations

as CV . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 Directions for future work . . . . . . . . . . . . . . . . . . . . 161

7.2.1 Integrated process design and operation . . . . . . . . 161

7.2.2 Robust optimal controlled variable selection methods . 161



Table of Contents xi

7.2.3 Fixed CV for all active constraint regions . . . . . . . 161

7.2.4 Experimental validation of proposed methods . . . . . 162

7.2.5 Economic optimal CV selection based on dynamics . . 162

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A Vectorization procedure 165

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B Evaporator model equations 171

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C Distillation column model and assumptions 177

C.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.3 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.4 Column data . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D Steady state model between inputs for distillation column 183

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

E Kaibel column model and assumptions 187

E.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . 187

E.2 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . 187

E.3 Kaibel column model . . . . . . . . . . . . . . . . . . . . . . . 189

E.3.1 Vapour-liquid equilibria . . . . . . . . . . . . . . . . . 189

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



xii Table of Contents



List of Figures

2.1 Control system hierarchy for plantwide control in chemical

plants (Findeisen et al., 1980; Skogestad and Postlethwaite,

1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Feedback implementation of optimal operation with separate

layers for optimization and control (Kassidas et al., 2000)

(Engell, 2007). The controller K could be any controller in-

cluding MPC. Self-optimizing control framework deals with

selection of the controlled variables c = Hy . . . . . . . . . . 11

2.3 Cost function as a function of disturbances d∗ and d and

inputs u; Illustration of loss by keeping input u constant at

u = uopt(d
∗) when there is a disturbance d . . . . . . . . . . 14

2.4 Feedback diagram . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Feedback implementation of optimal operation with separate

layers for optimization and control (Kassidas et al., 2000)

(Engell, 2007). The controller K could be any controller in-

cluding MPC. Self-optimizing control deals with selection of

the controlled variables c = Hy . . . . . . . . . . . . . . . . . 40

3.2 Cost function as a function of disturbances d∗ and d and

inputs u; Illustration of loss by keeping input u constant at

u = uopt(d
∗) when there is a disturbance d . . . . . . . . . . 45

3.3 Feedback diagram . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 The loss vs the number of included measurements (n) for “toy

problem” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Evaporator process . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



xiv List of Figures

3.6 Evaporator: loss vs the number of included measurements (n) 62

3.7 Distillation column using LV-configuration . . . . . . . . . . . 64

3.8 Distillation column: loss vs the number of included measure-

ments (n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Distillation column: CPU time requirement for computations

in Figure 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.10 The 4-product Kaibel column . . . . . . . . . . . . . . . . . . 68

4.1 Feedback implementation of optimal operation with separate

layers for optimization and control . . . . . . . . . . . . . . . 79

4.2 Feedback diagram . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 The evaporator system . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Evaporator case study: loss vs the number of included mea-

surements (n) for (i) fullH, (ii) block diagonal H with convex

approximation method 1, (iii) block diagonal H with convex

approximation method 2 . . . . . . . . . . . . . . . . . . . . . 96

4.5 Distillation column using LV-configuration . . . . . . . . . . . 100

4.6 The loss vs. the number of included measurements (n) for

(i) full H, (ii) block diagonal H with convex approximation

method 1, (iii) block diagonal H with convex approximation

method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Distillation column case study: CPU time requirement for

computations for (i) full H, (ii) block diagonal H with convex

approximation method 1, (iii) block diagonal H with convex

approximation method 2 in Figure 4.6 . . . . . . . . . . . . . 102

4.8 The loss vs. the number of included measurements (n) for (i)

full H, (ii) triangular H with convex approximation method

1, (iii) triangular H with convex approximation method 2 . . 105

4.9 Distillation column case study: CPU time requirement for

computations for (i) full H, (ii) triangular H with convex

approximation method 1, (iii) triangular H with convex ap-

proximation method 2 in Figure 4.8 . . . . . . . . . . . . . . 106



List of Figures xv

4.10 Transient response with +5% step change in V for c1 =

−0.0369T12+0.6449T30+0.6572T31, c2 = −1.2500T12+0.2051T30+

0.1537T31 as combination of 3 temperature measurements

with full H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.11 Transient response with +5% step change in V for c1 =

0.63T30+0.6229T31, c2 = 0.9675T12 as combination of 3 tem-

perature measurements with decentralized H . . . . . . . . . 109

5.1 Control system hierarchy for plantwide control in chemical

plants (Skogestad and Postlethwaite, 2005) . . . . . . . . . . 116

5.2 State drift J2 for distillation column as a function of temper-

ature controller gain k . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Regulatory control layer with control of variables c = H2y . . 122

5.4 Distillation column using LV-configuration . . . . . . . . . . . 130

5.5 Distillation column state drift in the presence of disturbances

F,zF , qF : (a) optimal policy (minimum achievable state drift),

(b) optimal zero-loop policy, (c) optimal one-loop policy, (d)

optimal two-loop policy. Effect of a measurement noise on

state drift is shown with + in subplots (b),(c) and (d) . . . . 131

5.6 Distillation case study: The reduction in loss in state drift

vs number of used measurements, top: loss with one loop

closed, bottom : loss with two loops closed . . . . . . . . . . . 133

5.7 Distillation case study: transient responses of state drift, J

with two temperature loops closed (c1 = T27, c2 = T15) with

inputs L, V for +20% disturbance in F at time 10 min, +20%

disturbance in zF at time 120 min and +10% disturbance in

qF at time 200 min . . . . . . . . . . . . . . . . . . . . . . . . 134

5.8 Kaibel column with 7 sections . . . . . . . . . . . . . . . . . . 137

5.9 Kaibel column state drift in the presence of disturbances in

V, RV and F, (a) optimal policy (minimum achievable state

drift), (b) optimal two-loop policy, (c) optimal three-loop pol-

icy, (d) optimal four-loop policy. Effect of one measurement

noise on state drift is shown with + in subplots (b), (c) and

(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



xvi List of Figures

5.10 The reduction in loss vs number of used measurements, top:

loss with one loop closed, bottom : loss with two loops closed 140

5.11 The reduction in loss vs number of used measurements, top :

loss with three loop closed, bottom: loss with four loops closed140

6.1 Distillation column using LV-configuration . . . . . . . . . . . 148

6.2 Controlled variables as individual temperature measurements

(T30, T12): step change +5% in L . . . . . . . . . . . . . . . . 150

6.3 Controlled variables as individual temperature measurements

(T30, T12): step change +5% in V . . . . . . . . . . . . . . . . 150

6.4 Controlled variables as combinations of 3 temperature mea-

surements: step change +5% in L . . . . . . . . . . . . . . . . 151

6.5 Controlled variables as combinations of 3 temperature mea-

surements: step change +5% in V . . . . . . . . . . . . . . . 151

6.6 Transient responses of cost (J), c1, c2 as individual measure-

ments, L, V, xD, xB for a step disturbance of +20% magni-

tude in feed rate F . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Transient responses of cost (J), c1, c2 as individual measure-

ments, L, V, xD, xB for a step disturbance of +20% magni-

tude in feed composition zF . . . . . . . . . . . . . . . . . . . 153

6.8 Transient responses of cost (J), c1, c2 as individual measure-

ments, L, V, xD, xB for a step disturbance of +10% magni-

tude in feed liquid fraction qF . . . . . . . . . . . . . . . . . . 153

6.9 Transient responses of cost (J), c1, c2 as combinations of 3

temperatures, L, V, xD, xB for a step disturbance of +20%

magnitude in feed rate F . . . . . . . . . . . . . . . . . . . . 154

6.10 Transient responses of cost (J), c1, c2 as combinations of 3

temperatures, L, V, xD, xB for a step disturbance of +20%

magnitude in feed composition zF . . . . . . . . . . . . . . . 155

6.11 Transient responses of cost (J), c1, c2 as combinations of 3

temperatures, L, V, xD, xB for a step disturbance of +10%

magnitude in feed liquid fraction qF . . . . . . . . . . . . . . 155

B.1 Evaporator process . . . . . . . . . . . . . . . . . . . . . . . . 171



List of Figures xvii

C.1 Distillation column using LV-configuration . . . . . . . . . . . 178

E.1 The 4-product Kaibel column . . . . . . . . . . . . . . . . . . 188



xviii List of Figures



List of Tables

3.1 Evaporator example: optimal measurement sets as a function

of the number of measurements with associated losses and

computational times . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Distillation column example: optimal measurements and op-

timal controlled variables with loss . . . . . . . . . . . . . . . 67

3.3 Kaibel column: optimal measurement sets and loss using op-

timal combination of these measurements . . . . . . . . . . . 70

4.1 Performance of proposed convex approximation methods on

a illustrative random case . . . . . . . . . . . . . . . . . . . . 92

4.2 Performance (% of locating local minimum) of proposed three

convex approximation methods on 1000 random cases . . . . 92

4.3 Comparison of proposed methods with the methods of Heldt

(2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Evaporator case study: the optimal measurements c′s with

their associated losses and computational times . . . . . . . . 98

4.5 Distillation case study: the self optimizing variables c as (i)

full H (ii) triangular H (iii) block diagonal H with their as-

sociated losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Distillation column case study: the self optimizing variables

c′s as combinations of 2, 3, 4, 5, 41 measurements with their

associated losses in state drift . . . . . . . . . . . . . . . . . . 132

5.2 Kaibel column: the regulatory CV2 as combinations of 4, 5, 6

and 77 measurements with their associated losses . . . . . . . 139

xix



xx List of Tables

6.1 Distillation column: optimal measurements and optimal con-

trolled variables with loss . . . . . . . . . . . . . . . . . . . . 149

B.1 Evaporator example: variables at nominal optimum point . . 173



Chapter 1

Introduction

Optimal operation of plants under various disturbances is crucial for the
profitability of the integrated process plants. The research objective of
this thesis is to provide systematic methods to automatically propagate the
business objectives of a process plant to the selection of controlled variables.
In this chapter, motivation and scope of the thesis are discussed in the broad
area of plantwide control. An overview of the thesis, author’s contributions
and a list of publications emerged from this thesis are given.

1.1 Motivation and scope

Efficient process operation is important to improve the operating margins,
to be more competitive, and therefore profitability. Efficient operation often
requires higher process automation. In most cases, process outputs (con-
trolled variables) are assumed to be known during automation or controller
design. The higher automation in process systems with the assumed con-
trolled variables may make it difficult to stay agile in the dynamic market
conditions and to translate the business objectives for optimal operation.
The business objectives can be energy efficiency, environmental impact or
sustainability of process plant. The cost function could be anyting, e.g.
environmental impact. The scope of the thesis is to find the controlled vari-
ables that allow automatic propagation of the business objectives to process
operation and a control policy that is simple, easy to implement in prac-
tice. The simple control policies are derived explicitly based on the overall
business objectives such as minimizing the costs or maximizing the profits
and allow for automatic propagation of the business objectives.

Skogestad has formulated a self optimizing control method (Skogestad,
2000) to find controlled variables (CV) by explicitly accounting for the eco-

1
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nomic objectives. By controlling these CV at constant set points, the oper-
ation is kept close to the economic steady state optimum in the presence of
disturbances and implementation errors. As the appropriate selection of CV
and controlling them (at constant set point) automatically lead the opera-
tion close to optimal operation, this method is termed as “self-optimizing
control”. The ideas of “self-optimizing control” dates back to (Morari et al.,
1980), who stated that “we want to find a function c of the process variables
which when held constant, leads automatically to the optimal adjustments
of the manipulated variables, and with it, the optimal operating condition”.
Mathematically, we can write it as c = f(y), where c are controlled variables,
f is a function of measurements y. In this thesis, we want to find c as linear
combination of measurements, that is, c = Hy and H is measurement com-
bination matrix. In summary, the self-optimizing control framework may
be used to select combination matrix H, and there by controlled variables
c, that minimize the deviation of process operation from the optimum on
steady state basis.

1.2 Thesis overview

In Chapter 2, we briefly describe the previous results on self-optimizing con-
trol and the contribution of the thesis. We also describe other alternative
approaches to optimizing control briefly.

Chapter 3, we present the convex formulations for optimal controlled vari-
able combinations and optimal measurement selection using Mixed Inte-
ger Quadratic Programming (MIQP) method. We evaluated the developed
methods on a toy problem, an evaporator case study, a binary distillation
column case study with 41 stages and a Kaibel column with 71 stages. The
simplicity of formulating MIQP is demonstrated on a toy problem. The ad-
vantages of MIQP methods in handling some practically relevant structural
constraints over the existing methods are demonstrated on an evaporator
case study and a Kaibel column.

Chapter 4, the controlled variable (c = Hy) selection problems with a par-
ticular structure in H (i.e. a few elements in H are zero) are non-convex in
self-optimizing control. Hence, we present an MIQP based convex approxi-
mation method to find an upper bound to find particular structured H and
controlled variables c = Hy. The particular structure in H is of immense
practical significance to improve the dynamical controllability (i.e. fast re-
sponse, control loop localization). An example of particular structured H
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is decentralized H or block diagonal H, where each controlled variable is a
combination of measurements of a process unit. The MIQP based convex
approximation methods are evaluated on an evaporator case study and a
binary distillation column case study with 41 stages. The presented convex
approximation methods are observed to provide good upper bounds, which
are of significant practical importance.

Chapter 5, the ideas of self-optimizing control are extended to find optimal
controlled variables (c = Hy) that minimize state drift in the regulatory
layer based on steady state analysis. The regulatory layer that minimizes
the state drift with 1, 2 or more closed loops for process plants is studied.
Based on the acceptable state drift threshold the minimum number of closed
loops (minimum regulatory layer) is obtained. The developed methods are
evaluated on a binary distillation column case study with 41 stages and a
Kaibel column case study with 71 stages to arrive at regulatory layer with
1, 2 or more closed loops.

Chapter 6 presents the ease and practicality of controlling the measure-
ment combinations in dynamic simulations. The dynamic performance in
terms of rejecting the disturbances is evaluated for a distillation column
with 41 stages.

Chapter 7 sums up and concludes the thesis. Finally, we discuss the di-
rections for future work.

1.3 Thesis contributions

There are three main contributions in this thesis to select controlled vari-
ables for a process plant in self-optimizing control framework.

(1) Convex formulations for optimal controlled variable combinations and
optimal measurement selection using Mixed Integer Quadratic Program-
ming (MIQP)(Chapter 3).

(2) An MIQP based convex approximation to obtain an upper bound in
finding controlled variables, c = Hy, whereH has a particular structure
(Chapter 4).

(3) Extending the self-optimizing control to find optimal controlled vari-
ables that minimize state drift in the regulatory layer based on steady
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state analysis and to find regulatory layer with 1, 2 or more closed loops
(Chapter 5).
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Chapter 2

Brief overview of control
structure design and
methods

Optimal operation of the process plants is vital for improved productivity
and profitability in the presence of disturbances. The objective of control
structure selection is to automatically propagate the business objectives to
process operation. In this chapter, we present a method to find controlled
variables explicitly based on business objectives in self-optimizing control
framework. We focus on the self-optimizing control based methods in this
thesis. The self-optimizing control framework, the previously established
methods for self-optimizing control framework and the thesis contributions
are presented briefly. A short overview of other methods for optimal oper-
ation are presented.

2.1 Control structure design

The control structure design plays a vital role in operating the process plant
optimally. Control structure design deals with the selection of controlled
variables (CV/outputs) and manipulated variables (MV/inputs), and the
pairings or interconnections between these variables. The control structure
design is vital issue that needs to be addressed by control engineers in
process plants. The control community was criticized for the dearth of
theory to address control structure design (Foss, 1973). Morari & co-workers
(Morari et al., 1980; Morari and Stephanopoulos, 1980a,b) have introduced
interesting theories on hierarchical control, multilevel optimization and on

9
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control structure design.

2.2 Plantwide control

Plantwide control deals with the control philosophy of the overall plant and
on the structural decisions. Structural decisions include selection of con-
trolled variables and set points, c and cs, selection of measured variables
y, selection of manipulated variables u, selection of control configurations
(the structure interconnecting measurements and manipulated variables),
selection of type of controller (the control law) (Skogestad, 2000). The se-
lection of control structure based on economics is stressed by Narraway and
co-workers for the effect of disturbances (Narraway et al., 1991; Narraway
and Perkins, 1993).

The scope of this thesis is limited to the selection of controlled variables
and measurements for optimal operation. The plantwide control system for
an overall plant is organized in a hierarchical structure (Figure 2.1), based
on the time scale separation between the layers.

?

Scheduling
(weeks)

Site-wide optimization
(day)

A
A
A
A
AU

Local optimization
(hour)

?

�
��	

?

CV1

Supervisory
control

(minutes)








�

������

C
C
C
C
CW

CV2

Regulatory
control

(seconds)

�
�
��

�
�

��+

�����9Control
layer

Figure 2.1: Control system hierarchy for plantwide control in chemical
plants (Findeisen et al., 1980; Skogestad and Postlethwaite, 1996)

The typical time scale separation of various layers (Figure 2.1) in plantwide
control (Findeisen et al., 1980) are Scheduling (weeks), Site-wide optimiza-
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tion (days), Local optimization (hours), Control layer (minutes and seconds)
(Skogestad and Postlethwaite, 1996). The business objectives, like economic
profitability or cost (J) of plant operation are achieved by cascading the ob-
jectives down from scheduling to the control layer. The interaction between
the layers is through the set points from upper layer to bottom layer. The
interaction between the optimization layer and control layer is through the
set points that are updated only once in an hour, whereas the control layer
operates continuously.

A review of plantwide control is presented and control structure design is
viewed as a subtask of plantwide control procedure (Larsson and Skogestad,
2000). The selection of controlled variables is important in control struc-
ture design to operate the process plant optimally. The local optimization
layer can be either real time optimization (RTO) (Forbes and Marlin, 1996)
or optimizing controller (Engell, 2007) or NCO tracking (Srinivasan et al.,
2003; Kadam et al., 2007) or extremum seeking methods (Srinivasan et al.,
2003; Ariyur and Krstic, 2003; Guay and Zhang, 2003). The interaction of
controlled variables selection and the local optimization layer is depicted in
Figure 2.2. When a disturbance (d) affects the process, the controller K

d

H

c
cs

Plant

(Gy,Gd
y)

Controller

K

Real Time 

Optimization (RTO)

+

-

y

u

+ ny

Figure 2.2: Feedback implementation of optimal operation with separate
layers for optimization and control (Kassidas et al., 2000) (Engell, 2007).
The controller K could be any controller including MPC. Self-optimizing
control framework deals with selection of the controlled variables c = Hy

tries to keep the controlled variables c at their set points cs. The distur-
bances affecting the process are estimated by the optimizer from the process
measurements. Then the optimizer provides new optimal set points cs for
the control layer based on a model of the plant and are implemented in the
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control layer using local feedback loop.

In this setup, there are two classes of systems, Constrained systems,
Fully or partially unconstrained systems. At the optimal point, all degrees
of freedom are used for satisfying constraints in constrained systems and
one or more the degrees of freedom are unconstrained in fully or partially
unconstrained systems. For the constrained systems, active constraint con-
trol is used for controlling the optimally active constraints (Maarleveld and
Rijnsdorp, 1970). Whenever the active constraints are not measurable, in-
direct measurements are used to infer the actual value of the constraint. An
adaptive active constraint policy (Arkun and Stephanopoulos, 1980) can
be used, when the optimally active constraints sets vary in the presence of
disturbances. In presence of unconstrained degrees of freedom at optimal
point, it is not clear on how to utilize these unconstrained degrees of freedom
to meet the economic objectives. The focus of this thesis is to devise meth-
ods to find c that minimize the steady state loss in the economic objectives
for these unconstrained degrees of freedom.

2.3 Real-time optimization

The integration of Real-Time Optimization (RTO) with the control layer
can be viewed as Figure 2.2 with optimization layer being RTO. RTO uses
the steady state process model online. The steady state process model pa-
rameters are partitioned as varying parameters and fixed parameters and
the process measurements are used to estimate the varying parameters of
the process model online. The model with the newly estimated parameters
is used for optimization. Then the optimization gives the optimal set points
cs to the control layer (Forbes and Marlin, 1996; Marlin and Hrymak, 1997).
The usage of approximate process models is studied to facilitate faster con-
vergence in optimization (Loeblein and Perkins, 1998). RTO operates at a
slower time scale as it involves parameter estimation and optimization and is
costly. The uncertainties in entities of RTO in the presence of disturbances
are addressed (Zhang et al., 2001, 2002; Zhang, 2010). Dynamic versions
of the RTO-framework are also presented (Kadam et al., 2003). But a very
limited work is reported on the interaction of the RTO and control layer (the
controlled variables)(Marlin and Hrymak, 1997; Adetola and Guay, 2010).
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2.4 Self-optimizing control

Economically optimal operating point

The steady state optimization problem defining the plant’s economic oper-
ating point is formulated as

min
us

J(x,us,d)

st. g1(x,us,d) = 0

g2(x,us,d) ≤ 0

(2.1)

Where J is a scalar cost function to be maximized (i.e. profit, yield,
selectivity) or minimized (i.e. production cost, by-products), x ∈ R

nx ,
us ∈ R

nus and d ∈ R
nd are states, steady state degrees of freedom and

disturbances, respectively. Steady state degrees of freedom (us) are different
from available DOF (uT ), as few available DOF are associated with variables
such as levels do not have any effect on steady state operation. Hence
the steady state DOF must be chosen suitably. The equality constraint
g1 represents the steady state process model expressing the relationship
between x and independent variables (us,d). The inequality constraints
g2 represents the limits that must be satisfied during operation such as
safety limits, saturation limits of actuators, equipment capacity limits and
environmental aspects. The steady state model equation g1 is solved to
express x = f(us,d) and the active constraints of optimization problem
in (2.1) are implemented to result in the optimization problem in reduced
space as

min
u

J(u,d) (2.2)

Where u are the unconstrained degrees of freedom. In order to keep
the operation at optimum, the optimization problem (2.2) should be solved
for u = uopt(d) for any disturbance d and the resulting optimal cost is
Jopt(uopt(d),d). The cost function J as a function of input u and distur-
bance d is shown in Figure 2.3. The optimal inputs for disturbances d∗

(solid), and d (dotted) are uopt(d
∗) and uopt(d), respectively. In other

words the input u should be updated according to the disturbance affecting
the system to keep the operation optimal. The loss by keeping the input u
constant at u = uopt(d

∗) when there is a disturbance d is also illustrated in
Figure 2.3. Hence, for any disturbance d, if we update the input to any u
then we will incur loss from optimal operation as shown in Figure 2.3. The
associated loss can be quantified as (Skogestad and Postlethwaite, 1996)

L = J(u,d) − Jopt(uopt(d),d) (2.3)
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Figure 2.3: Cost function as a function of disturbances d∗ and d and inputs
u; Illustration of loss by keeping input u constant at u = uopt(d

∗) when
there is a disturbance d
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In self optimizing control framework, input u is manipulated to keep
Hym at constant set point cs using a feedback diagram as in Figure 2.4 and
the associated loss is defined as

Lc = J( u
︸︷︷︸

to keep Hym at cs

,d)− Jopt(uopt(d),d) (2.4)

Note that the feedback in the self-optimizing control framework intro-
duces implementation errors and the loss (2.4) is a function of both distur-
bances and implementation errors (i.e. Lc = f(d,nc), where nc = Hny).
In this self-optimizing control framework, the emphasis is on the controlled
variables, c = Hy, selection as individual/combination of measurements
and to keep them at constant set points by adjusting the unconstrained
degrees of freedom in a feedback fashion.

2.5 Previously proposed methods for selection of
self-optimizing controlled variables

2.5.1 Brute force optimization method

Brute force optimization methods are used in self-optimizing control frame-
work to select CV earlier, where the loss for various alternatives of se-
lected measurements as CV are calculated directly and are compared. In
these brute force methods, disturbances d and implementation errors nc are
treated as random variables and the Lc,wc, Lc,av are obtained by considering
various realizations of d ∈ D and nc ∈ E for each alternative. D ,E denote
the allowable sets of d and nc. Note that for each realization, two opti-
mization problems (i.e. equation (2.1) and equation (2.1) with additional
constraint as selected CV at constant set point) are solved. These steps
are repeated for all the possible alternatives and the one with the smallest
worst-case loss and the average loss are selected as the optimal candidate
CV.

Lc,wc(d,n
c) = maxd∈D,nc∈E Lc(d,n

c) (2.5)

Lc,av(d,n
c) = E [Lc(d,n

c)] ∀d ∈ D , ∀nc ∈ E (2.6)

where E[.] is expectation operator. Note that the active constraints can
change in the brute force approach.
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2.5.2 Other methods

Mahajanam et al. (2001) proposed a short-cut method for CV selection
to remove the poor choices and to generate prospective alternatives with-
out solving the non-convex optimization problems (i.e. equation (2.1) with
additional constraint as selected CVs at constant set points). The short-
cut method uses scaling on CV to have similar effect on the steady state
process economics. This short-cut method is scaling dependent and can-
not consider linear combinations of disturbances in the allowed disturbance
space. Cao (2003) proposed to use analytical gradient of the optimization
problem (equation (2.1)) as controlled variables. Although gradient as con-
trolled variable and controlling it at a constant set point zero guarantees
optimal operation, it suffers a few drawbacks for practical usage. The draw-
backs are the complexity to obtain analytical gradient and the requirement
of information on states, unmeasured disturbances.

2.5.3 Local methods

As the brute force evaluation for all the possible measurement alternatives as
controlled variables is intractable, local methods are developed to pre screen
and identify the promising CV. Local methods are developed based on the
local analysis of loss and linearized steady state model at an operating point
(see section 2.4), with an assumption that the plant economics are governed
by the plant pseudo/steady state behavior.

A key idea in the self-optimizing framework of Skogestad and co-workers
(Skogestad and Postlethwaite, 1996) is to minimize the loss (L = J−Jopt(d))
rather than directly minimizing the cost J . In the subsequent discussions,
we term this local method with loss minimization as the minimum loss
method.

Problem formulation

Classification of variables

• u - unconstrained steady state degrees of freedom (inputs) for opti-
mization (it does not actually matter what they are as long as they
form an independent set).

• d - disturbances, including process parameter changes.

• y - all available measurements. The manipulated variables (MV, often
the same as the inputs u) are generally included in the measurement
set y. This will allow, for example, for simple control policies where
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the inputs are kept constant. Of course, the set y can also include
measured disturbances (dm, a subset of d).

• ny - measurement noise (error) for y, ym = y + ny.

• c ∈ R
nc where nc = nu - selected controlled variables c = Hy.

Cost function

We consider an unconstrained optimization problem, where the objective is
to adjust the input u to minimize a quadratic cost function at steady-state

J(u,d) = J(u∗,d∗) +
[
J∗
u J∗

d

]
[
∆u
∆d

]

+
1

2

[
∆u
∆d

]T [
J∗
uu J∗

ud

J∗T

ud J∗
dd

] [
∆u
∆d

]

(2.7)

Here ∆u = u − u∗ and ∆d = d − d∗ represent deviations from the
nominal optimal point (u∗,d∗). J∗

u and J∗
d are first derivatives of J with

respect to u and d, J∗
uu, J

∗
ud and J∗

dd are second derivatives of J with respect
to u, u and d, and d, respectively at (u∗,d∗). The nominal point is assumed
to be optimal, which implies that J∗

u = 0. To further simplify notation, we
assume that the variables have been shifted so that the nominal optimal
point is zero (u∗,d∗) = (0, 0) and also y∗ = 0, then we have u = ∆u,
d = ∆d and y = ∆y. From the derivation below, we find that the values of
J∗
d and J∗

dd are not needed for finding the optimal H, because they do not
affect the optimal input u.

Measurement model

A linear steady-state model is assumed for the effect of u and d on the
measurements y

y = Gyu+Gy
dd = G̃y

[
u
d

]

(2.8)

In Figure 3.1, Gy and Gy
d are transfer functions, but in this thesis only

steady-state gains in (2.8) are used for selecting H.

Further assumptions

• Any active constraints are controlled and u spans the remaining un-
constrained subspace.
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• We want to find as many controlled variables c as there are degrees of
freedom, that is, nc = dim(c) = dim (u) = nu. Then HGy is a square
nu × nu matrix.

• We need at least as many independent measurements y as there are
degrees of freedom u (rank(Gy) = nu) to get offset free control of all
CV (c). This requires ny ≥ nu = nc.

• We write d = Wd d′ where Wd is a diagonal matrix giving the ex-
pected magnitude of each disturbance and d′ is of unit magnitude (see
below for further definition of “unit magnitude”).

• Similarly, ny = Wny ny′ where Wny is a diagonal matrix with the
magnitude of the noise for each measurement, and the vector ny′ is of
unit magnitude (see below).

Problem

Keeping the inputs u constant at uopt(d
∗) for a new disturbance d will give

a loss as illustrated in Figure 2.3. Instead in this thesis, the u is adjusted in
a feedback fashion (see Figures 2.2 and 2.4) to keep the measured controlled
variables c at a constant set point cs = 0. Mathematically, we have

cm = H (y + ny)
︸ ︷︷ ︸

ym

= cs = 0 (2.9)

The problem can now be stated as: Find the optimal matrix H such that
“magnitude” of the loss

L = J(u,d)− Jopt(d) (2.10)

is minimized for the expected d and ny, when u is adjusted such that cm = 0
in (2.9) is satisfied.

The “magnitude” of the loss and the “unit magnitude” of the expected
d′ and ny′ still needs to be defined. Two possibilities are considered.

• Worst-case loss, Lwc, when the combined normalization vectors for
disturbances and measurement noise have 2-norm less than 1,

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1 (2.11)

• Average or expected loss, Lavg = E(L), for a normal distributed set
[

d′

ny′

]

∈ N (0, 1). E(.) is expectation operator.
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It is sometimes argued that the worst-case loss is not likely to occur,
but this is not really true in this case since we use the combined 2-norm for
disturbances and noise in (2.11). This means that the “unlikely” combina-
tion with all d′s and ny′s being 1 at the same time will not occur. This is
discussed in more detail in the Appendix of Halvorsen et al. (2003).

2.5.4 Solution to minimum loss problem

The objective is to derive the solution to the above problem. This solution
has previously been called the “exact local method” (Halvorsen et al., 2003).

Expression for uopt(d)

We find the optimal input u for a given disturbance d (Halvorsen et al.,
2003). Expanding the gradient Ju around the nominal optimal point (u∗,d∗) =
(0, 0) gives

Ju(u,d) = J∗
u(u

∗,d∗)
︸ ︷︷ ︸

=0

+J∗
uuu+ J∗

udd (2.12)

where Ju(u
∗,d∗) = 0 because the nominal point is assumed to be optimal.

We assume that we change the input to remain optimal, i.e. we have u =
uopt(d) and Ju(u,d) = 0, and we get

uopt = −J∗−1

uu J∗
udd (2.13)

Note that we are considering a quadratic problem (2.7), where the Hessian
matrices are assumed constant, i.e. Juu = J∗

uu and Jud = J∗
ud.

Expression for the loss L in terms of u− uopt(d)

Consider a given disturbance d and a non-optimal input u. A second or-
der Taylor’s expansion of the cost J around the “moving” optimum point,
uopt(d), gives

J(u,d) = J(uopt(d),d)
︸ ︷︷ ︸

Jopt(d)

+ Ju,opt
︸ ︷︷ ︸

=0

(u− uopt(d))

+
1

2
(u− uopt(d))

TJuu,opt(u− uopt(d))

(2.14)

Note that for a truly quadratic problem, this is an exact expression and
Juu,opt = J∗

uu = Juu. Because we are expanding around an optimal point
Ju,opt = 0 and we get the following expression for the loss

L(u,d) = J(u,d)− Jopt(d) =
1

2
zT z =

1

2
‖z‖22 (2.15)



20 Brief overview of control structure design and methods

where we have introduced

z , J1/2
uu (u− uopt(d)) (2.16)

This simple expression for the loss is a key result that allows us to end up
with a convex optimization problem.

Optimal sensitivities

Note from (2.13) that we can write uopt = Fud where Fu = −J−1
uuJud. More

generally, we can write
yopt = Fd (2.17)

where F is the optimal sensitivity of the outputs (measurements) with re-
spect to the disturbances. Here, F can be obtained using (2.8) and (2.13),

yopt = Gyuopt +Gy
dd = (−GyJ−1

uuJud +Gy
d)d

that is,
F = (−GyJ−1

uuJud +Gy
d) (2.18)

However, (2.18) is not generally a robust way to obtain F, for example
Juu,Jud can be difficult to obtain numerically, and taking the difference
in (2.18) can also be unreliable numerically. Thus, for practical use it is

usually better to obtain F directly from its definition, F =
dyopt

dd . This
typically involves numerical re-optimization for each disturbance.

The loss L as a function of disturbances and noise

We here just present the derivation of the main result (Halvorsen et al.,
2003; Alstad et al., 2009). We start from the loss expression in (2.15),

L = 1
2‖z‖

2
2 where z = J

1/2
uu (u − uopt). We want to write z as a function of

d and ny, given that the input u should be adjusted to satisfy (2.9). We
start by writing u− uopt as a function of c− copt. We have c = Hy, so

c = Hy = HGyu+HGy
dd

copt = Hyopt = HGyuopt +HGy
dd

Thus, c− copt = HGy(u− uopt), or

(u− uopt) = (HGy)−1(c− copt) (2.19a)

where HGy is the square gain matrix from the inputs u to the selected
controlled variables c.
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The next step is to express (c − copt) as a function of d and ny. From
(2.17) we have that

copt = HFd (2.19b)

From (2.9) we have that H(y + ny) = cs (constant), or

c = Hy = −Hny + cs (2.19c)

Here, cs = 0, since we assume the nominal point is optimal. Since the signs
for ny and d do not matter for the expressions we derive below (from (2.11)
we can have both positive and negative changes), we can write

u− uopt = (HGy)−1H(Fd+ ny)

= (HGy)−1H(FWdd
′ +Wnyny′)

= (HGy)−1HY

[
d′

ny′

] (2.19d)

where we have introduced

Y = [FWd Wny ] (2.20)

Note that Wd and Wny are usually diagonal matrices, representing the
magnitude of the disturbances and measurement noises, respectively.

In summary, we have derived that for the given normalized disturbances
d′ and for the given normalized measurement noises ny′ the loss is given by
(Halvorsen et al., 2003)

L =
1

2
zT z (2.21)

where

z = J1/2
uu (u− uopt) = J1/2

uu (HGy)−1HY
︸ ︷︷ ︸

M(H)

[
d′

ny′

]

(2.22)

Worst-case and average loss for a given H (analysis using loss
method)

The above expressions give the loss for a given d′ and ny′ , but the goal is
the find the “magnitude” of the loss L for the expected set for example as
given in (2.11). Here “magnitude” can be defined in different ways, and
for a given H the worst-case loss (Halvorsen et al., 2003) and average loss
(Kariwala et al., 2008) are given by

Lwc =
1

2
σ̄(M)2 (2.23)
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Lavg = E(L) =
1

2
‖M‖2F (2.24)

where
M(H) = J1/2

uu (HGy)−1HY (2.25)

Here σ̄(M) denotes the maximum singular value (induced 2-norm) of the

matrix M(H), and ‖M‖F =
√
∑

i,j M
2
ij denotes the Frobenius norm of the

matrix M. Use of the norm of M to analyze the loss is known as the “exact
local method” (Halvorsen et al., 2003). Note that these loss expressions are
for a given matrix H.

The controlled variable selection problem using self-optimizing control
framework based on local analysis is to select the matrix H and associated
controlled variables, c = Hy, that results in the minimum worst-case loss
(2.23) and/or average loss (2.24). The CV selection problem by selecting
H based on local methods (2.23) was originally believed to be non-convex
(Halvorsen et al., 2003). Hence, previously few qualitative requirements,
minimum singular value rule (Halvorsen et al., 2003), minimum loss method
(Halvorsen et al., 2003) and null space method (Alstad and Skogestad, 2007)
are proposed to find the controlled variables that minimize the deviation
from optimal operation.

2.5.5 Qualitative requirements for self-optimizing CV

Skogestad (2000) presents several qualitative requirements for a good self-
optimizing controlled variable c:

Requirement 1: Its optimal value should be insensitive to disturbances,
i.e. copt(d) small.

Requirement 2: It should be easy to measure and control accurately (its
implementation error should be small).

Requirement 3: Its value should be sensitive to changes in the manipu-
lated input (u), that is, the gain from u to c should be large.

Requirement 4: For cases with two or more controlled variables, the se-
lected controlled variables should not be closely correlated.

The first requirement deals with sensitivity to disturbances, while require-
ments 2-4 deal with the implementation errors. All these requirements need
to be fulfilled in order to guarantee a good self-optimizing controlled vari-
able. Note that requirement 1 says that the copt should be insensitive to
disturbances and not c.
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2.5.6 Minimum singular value rule

The minimum singular value rule is to select the controlled variables based
on a scaled steady-state gain from the inputs to the candidate outputs
(Skogestad and Postlethwaite, 1996; Halvorsen et al., 2003; Alstad, 2005).
From (2.21) and (2.25) we have that

L =
1

2
‖z‖22 (2.26)

where

z = J1/2
uu (u− uopt) = J1/2

uu G−1(c− copt) = J1/2
uu G−1ec (2.27)

The J
1/2
uu matrix exists as Juu is positive definite (Horn and Johnson, 1991),

ec = c− copt and ‖z‖2 denotes the 2-norm of the vector. The variables are
scaled as follows:

• Scale each candidate controlled variable ci such that the optimal varia-
tion for the considered disturbances and implementation errors bounds
is unity. Then the combined scaled error norm for each candidate con-
trolled variables is ‖e′c,i‖2 = ‖c′i − ci,opt

′‖2 ≤ 1.

• Scale each ui such that a unit change in each input has the same effect
on the cost function (J).

Now let G′ be the scaled steady-state gain and from eq. (2.26) we have that
the worst-case loss is

Lwc = max
‖e′c‖2≤1

L = max
‖e′c‖2≤1

1

2
‖z‖22

=
1

2
(σ̄(J1/2

uu G′−1
))2 =

1

2
(σ̄(α1/2G′−1

)))2 =
α

2

1

σ((G′)2

(2.28)

where the constant α = σ̄(Juu) is independent of the choice of the con-
trolled variable and σ(G′) denotes the minimum singular value of G′. The
maximum singular value σ̄ is the induced 2-norm of a matrix. As we scaled
the u to have same effect on cost function, Juu is unitary. The last equality
holds as the maximum singular value of G′−1 is the minimum singular value
of G′ (i.e. σ̄(G′−1) = 1

σ(G′)). Hence to minimize the worst-case loss (2.28),
we should select controlled variables that result in the largest minimum
singular value for the scaled steady state gain.
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This method requires appropriate scaling of the inputs and outputs.
Selecting an exact scaling is difficult as we cannot study each and every
possible combination of disturbances and implementation errors bounded

by

∣
∣
∣
∣

∣
∣
∣
∣

[
d
ny

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1. For a more detailed discussion of the minimum singular

value and illustrating examples, see Halvorsen et al. (2003). The singular
value method has been applied to many case studies, see e.g. Skogestad
(2000) and the references therein.

2.5.7 Minimum loss method

The optimal H can be found by minimizing either the worst-case loss (2.23)
or the average loss (2.24). Fortunately, Kariwala et al. (2008) prove that the
H that minimizes the average loss in equation (2.24) is super optimal, in the
sense that the same H minimizes the worst-case loss in (2.23). Hence, only
minimization of the Frobenius norm in (2.24) is considered in this thesis.
The square does not effect the optimal solution and can be omitted. In
summary, the problem is to find the combination matrix H that minimizes
the Frobenius norm of M:

Theorem 1 Minimum loss method (Alstad et al., 2009) To min-
imize the average and worst-case loss for expected combined disturbances
and noise, (‖[d′,ny′ ]T ‖2 6 1), find the H that solves the problem

min
H

∥
∥
∥J1/2

uu (HGy)−1HY
∥
∥
∥
F

(2.29)

where Y = [FWd Wny ].

The objective in (2.29) is to find the non-square nu×ny matrix H (note
that nu = nc).

2.5.8 Null space method

The null space method of selecting H such that HF = 0 (Alstad and Skoges-
tad, 2007) follows if we neglect measurement noise such thatY = [FWd 0],
where 0 is zero matrix of ny×ny size, and assume that we have enough mea-
surements to make HF = 0. In the presence of measurements, ny ≥ nd+nu,
it is always possible to find a non trivial H in the left-null space of F to
result in zero loss.

This method is useful, when controlled variables are selected as combina-
tion of measurements ny ≥ nu+nd and to get perfect disturbance rejection.
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Selection of optimal measurements does not play any role in this method as
every measurement set with greater than nu+nd measurements give perfect
disturbance rejection.

2.6 Thesis contribution in self-optimizing control
framework

The major focus of this thesis to find an optimal H that minimizes the
loss (2.24) from optimal operation in the presence of disturbances. The
optimal H selection for a given measurement set is shown as a constrained
QP (Alstad et al., 2009). Using the method (Alstad et al., 2009) gives
an optimal H for a chosen measurement set, but still finding an optimal
measurement subset is an important problem.

2.6.1 Measurement subset selection with full H

Measurement subset selection with full H for optimal CV is an important
problem. To solve this problem, customized branch and bound methods
are developed (Kariwala and Cao, 2009, 2010a). In this thesis, alterna-
tively, we formulated a standard Mixed Integer Quadratic Programming
approach to find the optimal measurement subsets. The developed MIQP
based method is discussed in detail in Chapter 3. The developed MIQP
based method allows for additional structural constraints compared to the
bidirectional branch and bound methods (Kariwala and Cao, 2009, 2010a).
MIQP method takes longer time than the bidirectional branch and bound
methods, but are acceptable as the measurement subset selection is done of-
fline. Including more number of measurements for CV combination averages
out the measurement noise contribution in the loss.

2.6.2 Measurement subset selection with structured H

Combining the measurements from different sections in a process with full
H may result in poor controllability and dynamic properties. To overcome
these, it may be desirable to have structured H. Structured H imposes
limitation, that is, we may require some elements in H to be zero. For
example, for dynamic reasons we may want to combine measurements from
given process section, and we require a (decentralized) block diagonal (BD)
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(2.30) or triangular (T) H (2.31).

HBD =








H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hniu








(2.30)

HT =








H11 H12 · · · H1niu

0 H22 · · · · · ·
...

...
. . .

...
0 0 · · · Hniuniu








(2.31)

The optimization problem here is to minimize (2.24) with a structure in
H. This is a non-convex optimization problem and an iterative method is
proposed (Heldt, 2010). In this thesis, we propose various convex approxi-
mation methods to find structured H that provides a sub optimal solution
and serve as good upper bounds. We further extend the convex approxi-
mation methods to find optimal measurement subset with a structure in H
using MIQP framework. These methods are discussed in detail with two
representative case studies in Chapter 4.

2.7 Other related concepts

A short overview of other methods for ensuring optimal process operation
are given. As uncertainties are unavoidable in process systems, the effects
of uncertainty for optimal operation are also presented. We provide only a
brief overview of the methods and for comprehensive details, we refer the
reader to the references provided at the end of this chapter.

2.7.1 Experimental methods

Experimental methods require carefully designed experiments to measure
or infer the objective function to operate the plant optimally (Box, 1957).
The experiments are designed to facilitate the estimation of the gradient
information. Based on the estimated gradient information, a new set of
experiments are designed until the estimated gradient converges to zero
(i.e. to the optimum). Requirement of frequent experiments in the pres-
ence of disturbances make experimental methods impractical for continuous
process plants for optimal operation. In addition, performing the carefully
designed experiments are often resource intensive and introduces additional
disturbance to process operation.
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2.7.2 Necessary conditions of optimality tracking

In Necessary conditions of optimality (NCO) tracking, the inputs are up-
dated directly to maintain the analytical gradient of the Lagrangian func-
tion associated with the optimal process operation at zero (Srinivasan et al.,
2003; Kadam et al., 2007). For steady state optimization, iterative input up-
dates are used to converge to optimal steady state operating point (François
et al., 2005; Gros et al., 2009). Slow speed of convergence caused by inac-
curate gradient information usually makes these difficult to use in practice.

2.7.3 Extremum seeking control

Extremum seeking control is an experimental method. The process is driven
towards optimum by imposing an excitation signal to the process. Hence in
these methods both the identification of process states and obtaining opti-
mal inputs are combined (Ariyur and Krstic, 2003). This method is based on
the direct measurement of objective function or based on the dependency of
states and disturbances to objective function. Adaptive extremum seeking
controller is proposed to minimize an objective function as penalty on both
the performance error and control action (El-Farra and Christofides, 2001).
The drawbacks of extremum seeking methods are the convexity of the dis-
turbance space to guarantee the convergence of estimation, the assumption
of state feedback and slow speed of convergence.

2.7.4 Optimizing controllers based on economics

In contrast to minimizing the tracking error as in classical control theory, an
optimization problem is solved online by using the process economics as the
objective function in optimizing controllers (Kassidas et al., 2000; Engell,
2007). These are useful but slow speed of convergence make these difficult
to use in practice.

2.7.5 Model predictive control

Model predictive control (MPC) has gained importance in control com-
munity (Garcia et al., 1989; Mayne et al., 2000). Numerous versions of
linear/nonlinear MPC and their industrial installations are reported (Qin,
2003; Maciejowski, 2002; Rawlings and Mayne, 2009). MPC works based
on a moving horizon philosophy, a sequence of control actions is chosen ac-
cording to a prediction of future trajectory of the system and applied to the
plant until new measurement is available. Then a new input sequence is de-
termined at the next sampling time. The advantages of MPC are the ability
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to handle input, output constraints and interactions. The MPC controllers
can be formulated to track set points or to drive the controlled variables to
a desired range. Robust MPC implementation can be found in Camacho
and Bordons (1998).

Nonlinear MPC (NMPC) uses a nonlinear process model to predict the
future trajectory of the system. NMPC is applied for chemicals, polymers
and air and gas processing plants (Qin, 2003).

Linear MPC solve a quadratic optimization problem and nonlinear MPC
solve a nonlinear optimization problem online. The computation require-
ment can inhibit the usage of these controllers in practice. To overcome the
online optimization solving in MPC, explicit MPC is proposed, where the
inputs are calculated using an explicit state feedback controller developed
offline (Pistikopoulos et al., 2000; Grancharova et al., 2004). The idea in
explicit MPC is to divide the state space into regions and to form an explicit
state feedback control law for each region. But these methods fail as the
number of regions grow with the process dimensions.

2.7.6 Regulatory control layer

The plantwide control system for the overall plant is in most cases organized
in a hierarchical structure (Figure 2.1), based on time scale separation be-
tween the layers. The main objective of the upper slower “supervisory” layer
is to keep the “economic” or primary controlled variables CV1 close to their
economic optimal set points. On the other hand, the objectives of the lower
faster “regulatory” layer is to facilitate stable operation, to regulate and to
keep the operation in the linear operating range (Skogestad and Postleth-
waite, 2005) without the need to reconfigure the loops in the regulatory
layer. Ideally, we would like to have a tool that based on a process model,
automatically selects structure of the regulatory control layer, including the
controlled variables (CV2) and pairing with manipulated variables (valves).

The regulatory control layer has received the attention of various re-
searchers, for example, Buckley (1964), Lee and Weekman (1976), Arkun
and Stephanopoulos (1980), Shinnar (1981), Narraway and Perkins (1993),
Hovd and Skogestad (1993), Narraway and Perkins (1994), Luyben (1996),
Luyben et al. (1998), Wang and McAvoy (2001), Kookos and Perkins (2002),
Konda et al. (2005), de Araújo et al. (2007), Kariwala and Cao (2010b).
These are either based on heuristic, procedural or mathematical methods. A
few mathematical approaches formulate mixed integer non linear program-
ming (MINLP) problems (Narraway and Perkins, 1993, 1994; Kookos and
Perkins, 2002) to find suitable controlled variables CV2 and their pairings
with MV. These are combinatorial in nature and are very time consuming
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and generally global optimality cannot be guaranteed.

Thesis contribution: Controlled variables selection for regula-
tory control layer

In this thesis, we quantify the regulatory layer performance with state
drift criterion and propose quantitative methods to identify regulatory layer
controlled variables CV2. The quantitative methods are described and eval-
uated for representative case studies in detail in Chapter 5.

2.8 Conclusions

The control hierarchy of plantwide control problems is described. The con-
text of control structure design problem for the process plant is described.
The self-optimizing framework is used to develop a controlled variable se-
lection method, which explicitly account for the business objectives is de-
scribed. The previous work on self-optimizing control, namely maximum
gain rule, exact local method, null space method are described. The contri-
bution of the thesis in self optimizing control framework is briefly described.
Various other methods for optimal operation are briefly mentioned.
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Chapter 3

Convex formulations for
optimal selection of
controlled variables and
measurements using Mixed
Integer Quadratic
Programming

Based on an accepted paper in
Journal of Process Control

The appropriate selection of controlled variables is important for oper-
ating a process optimally in the presence of disturbances. Self-optimizing
control provides a mathematical framework for selecting the controlled vari-
ables as combinations of measurements, c = Hy, with the aim to minimize
the steady state loss from optimal operation. In this paper, we present (i)
a convex formulation to find the optimal combination matrix H for a given
measurement set, and (ii) a Mixed-Integer Quadratic Programming (MIQP)
methodology to select optimal measurement subsets that result in minimal
loss. The methods presented in this paper are exact for quadratic prob-
lems with linear measurement relations. The MIQP methods can handle
additional structural constraints compared to the branch and bound (BAB)
methods reported in literature. The MIQP methods are evaluated on a toy
test problem, an evaporator example, a binary distillation column example
with 41 stages and a Kaibel column with 71 stages.
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3.1 Introduction

Control structure selection deals with the selection of controlled variables
(CVs/outputs) and manipulated variables (MVs/inputs), and the pairings
or interconnections of these variables (Foss, 1973; Skogestad, 2000). A com-
prehensive review of input/output selection methods was provided by van de
Wal and de Jager (2001). These input/output selection methods use desir-
able control system properties, (state, structural, input-output) controlla-
bility, achievable performance as criteria to arrive at CVs that are easy
to control. However, these CV selection criteria fail to take into account
more overall objectives, like economic profitability or cost (J). The selec-
tion of control structure based on economics is stressed by Narraway and
co-workers (Narraway et al., 1991; Narraway and Perkins, 1993) for the ef-
fect of disturbances, but they do not formulate rules or procedures to select
controlled variables.

In this paper, we consider the link between (economic) optimization and
control as illustrated in Figure 3.1. Self-optimizing control (SOC) (Skoges-
tad, 2000) aims at achieving acceptable operation by maintaining selected
CVs (c in Figure 3.1) at constant or slowly varying set points. The idea dates
back to (Morari et al., 1980), who stated that “we want to find a function c
of the process variables which when held constant, leads automatically to the
optimal adjustments of the manipulated variables, and with it, the optimal
operating condition”. Self-optimizing control makes use of the degrees of
freedom in c = Hy, which link the optimization and control layers. There
are three elements in the self-optimizing control approach. They are off-
line static optimization to compute H to find controlled variables c = Hy,
on-line slow time-scale static RTO to compute cs and fast time-scale feed-
back control that adjusts u. In this paper, we present the off-line static
optimization approach to select H, based on steady-state economics, but
because the variables c are controlled in the feedback layer, one gets much
faster updates in the inputs u than with the online slow time-scale RTO
that computes cs. The dynamic performance of control structures obtained
from self-optimizing control for various processes are reported (de Araújo
et al., 2007; Vasudevan et al., 2009; Panahi and Skogestad, 2011). The idea
of self-optimizing control is to put as much optimization as possible into
the control layer. That is, when there is a disturbance, we want the sys-
tem “go in the right direction” on the fast time scale, and not have to wait
for optimization layer (RTO) to take the optimal action, which may take a
long time, since RTO needs to estimate the disturbances (e.g., using data
reconciliation) before taking action.
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For example, consider the process of cake baking. The (original) phys-
ical degree of freedom is the oven heat input (u = Q). However, baking
the “optimal” cake is difficult when using the heat input directly for opti-
mization (with the human as the RTO), and would require frequent changes
in Q. However, we have available other measurements, including the oven
temperature T . Consider the two candidate “measurements”

y = [Q T ]T

Clearly, the best variable to keep constant is T , so we choose c = Hy =
h11Q+ h12T = T as the controlled variable, that is, we choose H = [0 1].
With a temperature controller (thermostat), we (the human RTO) may use
the temperature set point (cs) as the optimization variable. Clearly, the
introduction of the self-optimizing variable c = T , simplifies the real-time
optimization effort and requires less frequent changes than when using Q.

Instead of the two layer structure in Figure 3.1, one could combine the
layers and use real time optimization more directly by using a dynamic or
steady state process model online to obtain an optimal input uopt(d) for
a disturbance d. However, such a centralized solution would be costly in
terms of modeling, implementation and maintenance (Forbes and Marlin,
1996) and would normally operate at a slower time scale than the feedback
layer in Figure 3.1. A related alternative is optimizing controllers where the
MVs (u) are updated directly to maintain the gradient of the Lagrangian
function associated with the optimal process operation at zero (Srinivasan
et al., 2003). Based on how the gradient is obtained, these methods are
categorized as Necessary conditions of optimality (NCO) tracking (Srini-
vasan et al., 2003; Kadam et al., 2007) or extremum seeking approaches
(Ariyur and Krstic, 2003; Guay and Zhang, 2003). The former approaches
use analytical gradients, whereas the latter use operational data to estimate
gradients. Although these optimizing controllers may be useful, slow speed
of convergence caused by inaccurate gradient information usually makes
these difficult to use in practice.

Importantly, self-optimizing control which deals with the selection of H
should not be viewed as an alternative to these other methods, including
real time optimization or model predictive control (MPC), but rather as a
complement, as illustrated in Figure 3.1. By appropriate selection of the
variables c = Hy, we may reduce or eliminate the need for reoptimizing cs
independently of the approach we use for online optimization.

To quantify “acceptable operation” we introduce a scalar cost function
J which should be minimized for optimal operation. In this paper, we as-
sume that the (economic) cost mainly depends on the (quasi) steady-state
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Figure 3.1: Feedback implementation of optimal operation with separate
layers for optimization and control (Kassidas et al., 2000) (Engell, 2007).
The controller K could be any controller including MPC. Self-optimizing
control deals with selection of the controlled variables c = Hy

.

behavior, which is a good assumption for most continuous plants in the
process industry. When selecting c = Hy, the cost function J is further
assumed to be quadratic and the steady-state process model is assumed
linear. Almost all steady-state unconstrained optimal operation problems
can be approximated this way, usually by linearizing at the nominally op-
timal point. The scope of this paper is to provide systematic and good
methods to select controlled variables (CVs, c ∈ R

nc) associated with the
unconstrained steady state degrees of freedom (u ∈ R

nu) that minimize the
loss, L(u,d) = J(u,d)−Jopt(d), from economically optimal operation. The
number of selected CVs is equal to the number of steady state degrees of
freedom (nc = nu).

More specifically, the objective is to find a linear measurement combi-
nation,

c = Hy (3.1)

such that control of these indirectly leads to acceptable operation with a
small loss L(u,d) = J(u,d)−Jopt(d), in spite of unknown disturbances, d,
and measurement noise (error), ny. If the original optimization problem is
constrained, then we assume that all optimally active constraints are kept
constant (controlled) and we consider the lower-dimensional unconstrained
subspace. Depending on the disturbance range considered, there may be
several constrained regions, and the procedure of finding H needs to be
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repeated in each constrained region.

In this paper, we consider three problems related to finding optimal
controlled variables, c = Hy,

Problem 3.1 Full H, where the CVs are combinations of all measurements
y.

Problem 3.2 Measurements selection problems, where some columns in H
are zero.

Case 3.2.1 Given subset of measurements.

Case 3.2.2 Optimal subset of measurements.

Case 3.2.3 Best individual measurements for decentralized control.

Compared to previous work (Kariwala and Cao, 2010), some ad-
ditional restrictions are allowed for:

Case 3.2.4 Restriction on number of measurements from specified sections
of the process.

Case 3.2.5 Addition of extra measurements to a given set.

Problem 3.3 Structured H, where specified elements in H are zero; for
example a block diagonal H.

The problem of finding CVs as optimal measurement combinations (Prob-
lem 3.1) in the presence of disturbances and measurement noise was orig-
inally believed to be non convex and thus difficult to solve numerically
(Halvorsen et al., 2003), but later it has been shown that this problem may
be reformulated as a quadratic optimization problem with linear constraints
(Alstad et al., 2009). The same problem was solved using generalized sin-
gular value decomposition method (Kariwala, 2007; Heldt, 2010). However,
the problems of selecting individual measurements or linear combinations
of a subset of measurements as controlled variables (Problems 3.2 and 3.3)
are more difficult because of their combinatorial nature.

To solve Problem 3.2, effective partial bidirectional branch and bound
(PB3) methods have been developed (Kariwala and Cao, 2009) that ex-
ploit the monotonicity properties. However, these methods are cannot be
used directly in the presence of the restrictions in Cases 3.2.4 and 3.2.5 as
the monotonicity is not guaranteed. In this paper, we propose a different
method to solve Problem 3.2 by reformulating the minimum loss method
problem as a Mixed-Integer Quadratic Programming (MIQP) problem. The
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MIQP formulations are simple and intuitive. The proposed MIQP formu-
lations solve a convex quadratic optimization problem at each node in the
search tree. These form a subclass of MIQP that are convex and hence
these methods give globally optimal H that results in measurement combi-
nations as CVs. The additional restrictions Cases 3.2.4 and 3.2.5 can easily
be handled with the MIQP based methods, whereas the branch and bound
methods (Kariwala and Cao, 2009) would require further customization.
Problem 3.3 is non-convex and cannot be solved by the methods presented
in this paper and will be the topic of future work.

This paper is organized as follows: A self-contained summary of the
minimum loss method formulation for SOC is presented in Section 3.2. The
transformation of non-convex SOC problem to convex QP problem is dis-
cussed in Section 3.3 (Problem 3.1). The MIQP formulation for CV selection
in SOC is presented in Section 3.4 (Problem 3.2). The evaluation of devel-
oped methods is performed on a toy problem, on an evaporator example,
on a binary distillation column example with 41 stages and on a 4-product
Kaibel column with 71 stages and are discussed in Section 3.5. A discussion
on Problem 3.3 is presented in Section 3.6. The conclusions from this work
are discussed in Section 3.7.

3.2 Minimum loss method

The key idea in the self-optimizing framework of Skogestad and co-workers
(Skogestad and Postlethwaite, 1996) is to minimize the loss (L = J−Jopt(d))
from optimal operation when there are disturbances.

To find the minimum cost for a given disturbance Jopt(d), we first find
an expression for uopt(d). We then evaluate the steady-state loss from this
policy when u is adjusted in a feedback fashion such that c = Hy is kept
constant.

3.2.1 Problem formulation

Classification of variables

• u ∈ R
nu - unconstrained steady state degrees of freedom (inputs) for

optimization (it does not actually matter what they are as long as
they form an independent set).

• d ∈ R
nd - disturbances, including parameter changes.

• y ∈ R
ny - all available measurements. The manipulated variables

(MVs, often the same as the inputs u) are generally included in the



3.2. Minimum loss method 43

measurement set y. This will allow, for example, for simple control
policies where the inputs are kept constant. Of course, the set y can
also include measured disturbances (dm, a subset of d).

• ny - measurement noise (error) for y, ym = y + ny.

• c ∈ R
nc where nc = nu - selected controlled variables c = Hy.

Cost function

We consider an unconstrained optimization problem, where the objective is
to adjust the input u to minimize a quadratic cost function for a steady-state
process

J(u,d) = J(u∗,d∗) +
[
J∗
u J∗

d

]
[
∆u
∆d

]

+
1

2

[
∆u
∆d

]T [
J∗
uu J∗

ud

J∗T

ud J∗
dd

] [
∆u
∆d

]

(3.2)

Here ∆u = u − u∗ and ∆d = d − d∗ represent deviations from the
nominal optimal point (u∗,d∗). J∗

u and J∗
d are first derivatives of J with

respect to u and d, J∗
uu, J

∗
ud and J∗

dd are second derivatives of J with respect
to u, u and d, and d, respectively at (u∗,d∗). The nominal point is assumed
to be optimal, which implies that J∗

u = 0. To further simplify notation, we
assume that the variables have been shifted so that the nominal optimal
point is zero (u∗,d∗) = (0, 0) and also y∗ = 0, then we have u = ∆u,
d = ∆d and y = ∆y. From the derivation below, we find that the values of
J∗
d and J∗

dd are not needed for finding the optimal H, because they do not
affect the optimal input u.

A special case of (3.2) is indirect control, which is further studied for a
distillation column in Example 4, where y1 are the primary variables. Here,
the cost function is

J = (y1 − y1s)
TWT

1 W1(y − y1s) (3.3a)

where W1 is a weighting matrix, y1s are set points for y1, and with a linear
model for y1

y1 = Gy
1u+Gy

d1
d (3.3b)

where Gy
1 and Gy

d1
are steady state gains, further we get

Juu = Gy
1
T
WT

1 W1G
y
1, Jud = Gy

1
T
WT

1 W1G
y
d1

(3.3c)
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Measurement model

A linear steady-state model is assumed for the effect of u and d on the
measurements y

y = Gyu+Gy
dd = G̃y

[
u
d

]

(3.4)

In Figure 3.1, Gy and Gy
d are transfer functions, but in this paper only

steady-state gains in (3.4) are used for selecting H.

Further assumptions

• Any active constraints are controlled and u spans the remaining un-
constrained subspace.

• We want to find as many controlled variables c as there are degrees of
freedom, that is, nc = dim(c) = dim (u) = nu. Then HGy is a square
nu × nu matrix.

• We need at least as many independent measurements y as there are
degrees of freedom u (rank(Gy) = nu) to get offset free control of all
CVs (c). This requires ny ≥ nu = nc.

• We write d = Wd d′ where Wd is a diagonal matrix giving the ex-
pected magnitude of each disturbance and d′ is of unit magnitude (see
below for further definition of “unit magnitude”).

• Similarly, ny = Wny ny′ where Wny is a diagonal matrix with the
magnitude of the noise for each measurement, and the vector ny′ is of
unit magnitude (see below).

Problem

For any disturbance d, having inputs u other than uopt(d) will result in a
loss. For example, keeping the inputs u constant at uopt(d

∗) when there
is a disturbance d will result in a loss as illustrated in Figure 3.2. In this
paper, we use a sub-optimal policy, which is to adjust inputs u in a feedback
fashion (see Figures 3.1 and 3.3) to keep the measured controlled variables
cm at a constant set point cs = 0. Mathematically, we have

cm = H (y + ny)
︸ ︷︷ ︸

ym

= cs = 0 (3.5)
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Figure 3.2: Cost function as a function of disturbances d∗ and d and inputs
u; Illustration of loss by keeping input u constant at u = uopt(d

∗) when
there is a disturbance d

.

With this policy, there are two problems of interest. First, to find the
“magnitude” of the loss, L = J(u,d)− Jopt(d), for a given H (see solution
in Section 3.2.2) and second to find the optimal H with a minimum loss (see
Theorem 2 in Section 3.2.2) for the expected d′ and ny′ , when u is adjusted
such that cm = 0 in (3.5) is satisfied.

The “magnitude” of the loss and the “unit magnitude” of the expected
d′ and ny′ still needs to be defined. Two possibilities are considered.

• Worst-case loss, Lwc, when the combined normalization vectors for
disturbances and measurement noise have 2-norm less than 1,

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1 (3.6)

• Average or expected loss, Lavg = E(L), for a normal distributed set
[

d′

ny′

]

∈ N (0, 1) (3.7)
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E(.) is expectation operator.

It is sometimes argued that the worst-case loss is not likely to occur,
but this is not really true in this case since we use the combined 2-norm for
disturbances and noise in (3.6). This means that the “unlikely” combination
with all d′s and ny′s being 1 at the same time will not occur. This is
discussed in more detail in the Appendix of (Halvorsen et al., 2003).

3.2.2 Solution to minimum loss problem

The objective is to derive the solution to the above problem. This solution
has previously been called the “exact local method” (Halvorsen et al., 2003).

Expression for uopt(d)

We first want to find the optimal input u for a given disturbance d. Ex-
panding the gradient Ju around the nominal optimal point (u∗,d∗) = (0, 0)
gives

Ju(u,d) = J∗
u(u

∗,d∗)
︸ ︷︷ ︸

=0

+J∗
uuu+ J∗

udd (3.8)

where J∗
u(u

∗,d∗) = 0 because the nominal point is assumed to be optimal.
We assume that we change the input to remain optimal, i.e. we have u =
uopt(d) and Ju(u,d) = 0, and we get

uopt = −J∗−1

uu J∗
udd (3.9)
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Note that we are considering a quadratic problem (3.2), where the Hessian
matrices are assumed constant, i.e. Juu = J∗

uu and Jud = J∗
ud.

Expression for the loss L in terms of u− uopt(d)

Consider a given disturbance d and a non-optimal input u. A second or-
der Taylor’s expansion of the cost J around the “moving” optimum point,
uopt(d), gives

J(u,d) = J(uopt(d),d)
︸ ︷︷ ︸

Jopt(d)

+ Ju,opt
︸ ︷︷ ︸

=0

(u− uopt(d))

+
1

2
(u− uopt(d))

TJuu,opt(u− uopt(d))

(3.10)

Note that for a truly quadratic problem, this is an exact expression and
Juu,opt = J∗

uu = Juu. Because we are expanding around an optimal point
Ju,opt = 0 and we get the following expression for the loss

L(u,d) = J(u,d)− Jopt(d) =
1

2
zT z =

1

2
‖z‖22 (3.11)

where we have introduced

z , J1/2
uu (u− uopt(d)) (3.12)

This simple expression for the loss is a key result that allows us to end up
with a convex optimization problem.

Optimal sensitivities

Note from (3.9) that we can write uopt = Fud where Fu = −J−1
uuJud. More

generally, we can write
yopt = Fd (3.13)

where F is the optimal sensitivity of the outputs (measurements) with re-
spect to the disturbances. Here, F can be obtained using (3.4) and (3.9),

yopt = Gyuopt +Gy
dd = (−GyJ−1

uuJud +Gy
d)d

that is,
F = (−GyJ−1

uuJud +Gy
d) (3.14)

However, (3.14) is not generally a robust way to obtain F, for example
Juu,Jud can be difficult to obtain numerically, and taking the difference
in (3.14) can also be unreliable numerically. Thus, for practical use it is

usually better to obtain F directly from its definition, F =
dyopt

dd . This
typically involves numerical reoptimization for each disturbance.
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The loss L as a function of disturbances and noise

We present the derivation of the main result (Halvorsen et al., 2003). We

start from the loss expression in (3.11), L = 1
2‖z‖

2
2 where z = J

1/2
uu (u−uopt).

We want to write z as a function of d and ny, given that the input u should
be adjusted to satisfy (3.5). We start by writing u − uopt as a function of
c− copt. We have c = Hy, so

c = Hy = HGyu+HGy
dd

copt = Hyopt = HGyuopt +HGy
dd

Thus, c− copt = HGy(u− uopt), or

(u− uopt) = (HGy)−1(c− copt) (3.15a)

where HGy is the square gain matrix from the inputs u to the selected
controlled variables c.

The next step is to express (c − copt) as a function of d and ny. From
(3.13) we have that

copt = HFd (3.15b)

From (3.5) we have that H(y + ny) = cs (constant), or

c = Hy = −Hny + cs (3.15c)

Here, cs = 0, since we assume the nominal point is optimal. Since the signs
for ny and d do not matter for the expressions we derive below (from (3.6)
we can have both positive and negative changes), we can write

u− uopt = (HGy)−1H(Fd+ ny)

= (HGy)−1H(FWdd
′ +Wnyny′)

= (HGy)−1HY

[
d′

ny′

] (3.15d)

where we have introduced

Y = [FWd Wny ] (3.16)

Note that Wd and Wny are usually diagonal matrices, representing the
magnitude of the disturbances and measurement noises, respectively.

In summary, we have derived that for the given normalized disturbances
d′ and for the given normalized measurement noises ny′ the loss is given by
(Halvorsen et al., 2003)

L =
1

2
zT z (3.17)



3.2. Minimum loss method 49

where

z = J1/2
uu (u− uopt) = J1/2

uu (HGy)−1HY
︸ ︷︷ ︸

M(H)

[
d′

ny′

]

(3.18)

Worst-case and average loss for a given H (analysis using loss
method)

The above expressions give the loss for a given d′ and ny′ , but the goal is
to find the “magnitude” of the loss L for the expected set for example as
given in (3.6). Here “magnitude” can be defined in different ways, see (3.6)
and (3.7), and for a given H the worst-case loss (Halvorsen et al., 2003) and
average expected loss (Kariwala et al., 2008) are given by

Lwc(H) =
1

2
σ̄(M)2 (3.19)

Lavg(H) = E(L) =
1

2
‖M‖2F (3.20)

where

M(H) = J1/2
uu (HGy)−1HY (3.21)

Here σ̄(M) denotes the maximum singular value (induced 2-norm) of the

matrix M(H), and ‖M‖F =
√
∑

i,j M
2
ij denotes the Frobenius norm of the

matrix M. Use of the norm of M to analyze the loss is known as the “exact
local method” (Halvorsen et al., 2003). Note that these loss expressions are
for a given matrix H.

Comment : A uniform distribution for d′ and ny′ is sometimes assumed,
resulting in an average loss 1

6(ny+nd)
‖M‖2F (Kariwala et al., 2008). However,

as discussed in the Section 3.6.2, this is not meaningful from an engineering
point of view.

Null space method and maximum gain rule

Two special methods for analyzing or finding H can be derived from the
expression for H in (3.21). First, the null space method of selecting H such
that HF = 0 (Alstad and Skogestad, 2007) follows if we neglect measure-
ment noise such that Y = [FWd 0], where 0 is zero matrix of ny×ny size,
and assume that we have enough measurements to make HF = 0. Second,
the approximate maximum gain rule (Skogestad and Postlethwaite, 1996)
of maximizing the norm of S1HGyS2 follows from (3.21) if we select the

scaling factors as S2 = J
−1/2
uu and the appropriate S1 as a diagonal matrix
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with the elements of S−1
1 equal to the expected optimal variation in each c

variable (the norm of the corresponding rows in HY).

Loss method for finding optimal H

The objective of this paper is to find methods for obtaining the optimal H
by minimizing either the worst-case loss (3.19) or the average loss (3.20).
Fortunately, (Kariwala et al., 2008) proves that the H that minimizes the
average loss in equation (3.20) is super optimal, in the sense that the same
H minimizes the worst-case loss in (3.19). Hence, only minimization of the
Frobenius norm in (3.20) is considered in the rest of the paper. Note that
square does not effect the optimal solution and can be omitted. In summary,
the problem is to find the combination matrix H that minimizes ‖M‖F :

Theorem 2 Minimum loss method (Alstad et al., 2009). To min-
imize the average and worst-case loss, Lavg(H) and Lwc(H), for expected
combined disturbances and noise, find the H that solves the problem

min
H

∥
∥
∥J1/2

uu (HGy)−1HY
∥
∥
∥
F

(3.22)

where Y = [FWd Wny ].

The objective in (3.22) is to find the non-square nc × ny matrix H.

Here, H may have a specified structure and we consider the three prob-
lems mentioned in the introduction. For the full H case (Problem 3.1), it
may be recast as a convex optimization problem as discussed in Section 3.3.
For the measurement selection problem (Problem 3.2), where some columns
inH are zero, convex formulations in each MIQP node are derived in Section
3.4 .

3.3 Convex formulations of minimum loss method
(Problem 3.1)

We here consider the standard “full” H case with no restriction on the
structure of the matrix H (Problem 3.1), that is we want to find optimal
combination of all the measurements.

Theorem 3 Convex reformulation for full H case (Alstad et al.,
2009). The problem in equation (3.22) may seem non-convex, but for the
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standard case where H is a “full” matrix (with no structural constraints), it
can be reformulated as a convex constrained quadratic programming problem

min
H

‖HY‖F

s.t. HGy = J1/2
uu

(3.23)

Proof. From the original problem in equation (3.22), we have that the
optimal solution H is non-unique because if H is a solution then H1 = DH
is also a solution for any non-singular matrix D of size nc×nc. This follows
because

J1/2
uu (HGy)−1HY = J1/2

uu (HGy)−1D−1DHY = J1/2
uu (H1G

y)−1H1Y

One implication is that we can freely choose G = HGy, which is a nc × nc

matrix representing the effect of u on c (c = Gu). Thus, in (3.22) we may
use the non-uniqueness of H to set the first part of the expression equal to

the identity matrix, which is equivalent to setting HGy = J
1/2
uu . This must

be added as a constraint in the optimization as shown in (3.23). �

Theorem 4 Analytical solution (Alstad et al., 2009)
For a “full” H in (3.22) and (3.23), an analytical solution is

HT =
(
YYT

)−1
Gy
(

GyT
(
YYT

)−1
Gy
)−1

J1/2
uu (3.24)

Comment: We also require that YYT is full rank, which is always sat-
isfied if we have nonzero measurement noise.

Theorem 5 Simplified analytical solution (new result)
For a full H, another analytical solution to (3.22) is

HT =
(
YYT

)−1
GyQ1 (3.25)

where Q1 is any non-singular matrix of nc × nc, for example Q1 = I.
Proof. This follows trivially from Theorems 3 and 4, since if HT is a

solution then so is HT
1 = HTDT and we simply select

DT = J−1/2
uu (GyT (YYT )−1Gy)Q1

which is a nc × nc matrix. �

Corollary 1 Important insight (new result) Theorem 5 gives the very
important insight that Juu is not needed for finding the optimal full H in
(3.22) and (3.23).
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This means that in (3.22) we can replace J
1/2
uu by any non-singular ma-

trix Q, and still get an optimal H. This can simplify practical calculations,
because Juu may be difficult to obtain numerically because it involves the
second derivative and becauseQmay be in some cases be selected for numer-
ical reasons. On the other hand, we have that F, which enters in Y, is rela-
tively straightforward to obtain numerically (de Araújo et al., 2007; Panahi

and Skogestad, 2011), because it only needs first derivative, F =
dyopt

dd , as
mentioned earlier. Although Juu is not needed for finding the optimal H, it
would be required for finding a numerical value for the loss, and it is needed
if H is structured (Problems 3.2 and 3.3) as discussed below.

Vectorized QP formulation: As the numerical software packages,
such as Matlab, cannot deal with the matrix formulations, the problem
(3.23) is vectorized (see Appendix A). First, the decision matrix

H =








h11 h12 . . . h1ny

h21 h22 . . . h2ny

...
...

. . .
...

hnu1 hnu2 . . . hnuny








is vectorized along the rows of H to form a long vector

hδ =
[
h11 . . . h1ny h21 . . . h2ny . . . hnu1 . . . hnuny

]T
∈ R

nuny×1

The equivalent QP is then formulated as

min
hδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(3.26)

where hδ ∈ R
nuny×1, jδ ∈ R

nunu×1,GyT

δ ∈ R
nunu×nynu ,Fδ ∈ R

nuny×nuny .

3.4 Globally optimal MIQP formulations (Prob-

lem 3.2)

We here consider the optimal measurement selection of finding the opti-
mal H with some zero columns (Problem 3.2). To address the measurement
selection, we introduce a binary variable σj ∈ {0, 1} to complement jth mea-
surement (jth column in H). If measurement j is present in the selected
measurements, then σj = 1 and jth column in H may have non-zero ele-
ments, otherwise σj = 0 and jth column in H has only zero elements. The
binary variables column vector for ny candidate measurements is denoted
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as σδ =
[
σ1 σ2 . . . σny

]T
. The restrictions on elements in H based on

the the presence or not of the jth candidate measurement are incorporated
as mixed integer constraints. Overall, the idea in optimal measurement
selection is to use the quadratic programming formulation in Theorem 3,
and add additional mixed integer constraints to deal with the measurement
selection.

3.4.1 Optimal measurement selection

The mixed integer constraints on the columns in H are formulated using
the standard big-m approach used in MIQP formulations (3.27c) (Hooker
and Osorio, 1999) and are added to (3.26). The constraints on the binary
variables can be written in the form

Pσδ = s

For example, in order to select n optimal measurements out of ny mea-
surements, we have

∑ny

j σj = n, which can be written in this form with

P = 1T 1×ny
, and s = n, where 1 is a column vector of ones.

Starting from the vectorized formulation in (3.26), we then have the im-
portant result that the generalized MIQP problem in the decision variables
hδ and σδ with big-m constraints becomes

min
hδ,σδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(3.27a)

Pσδ = s (3.27b)







−m
−m
...

−m







σj ≤








h1j
h2j
...

hnuj







≤








m
m
...
m







σj , ∀j ∈ 1, 2, · · · , ny (3.27c)

where hδ =
[
h11 . . . h1ny h21 . . . h2ny . . . hnu1 . . . hnuny

]T
∈

R
nuny×1; σδ =

[
σ1 σ2 . . . σny

]T
; σj ∈ {0, 1}. The dimension of matrix

P varies based on the integer constraints we impose, if we impose k number
of integer constraints then P will have a dimension of k×ny. The constraints
in (3.27c) is the standard big-m approach that we used to make the jth col-
umn of H zero when σj = 0 and at the same time to bound the decision
variables in H. The m value should be chosen small to reduce the compu-
tational time, but it should be sufficiently large to avoid that it becomes
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an active constraint. Selecting an appropriate m is problem dependent and
appropriate selection of m can become an iterative method and can increase
the computational intensiveness of the big-m based MIQP formulations. In
such cases, one can use indicator constraints in MIQP problem to set the
columns in H directly to zero, when σj = 0. This can be done by replacing
the constraints in (3.27c) with indicator constraints as

indicator constraints : σj = 0 =⇒








h1j
h2j
...

hnuj







= 0nu×1 ∀j ∈ 1, 2, · · · , ny

(3.28)
where 0 is a column vector of zeros. For MIQP, theoretically, indicator con-
straint approach (3.28) would be faster than using big-m approach (3.27c).
This is because in MIQP, indicator constraint approach (3.28) solves an
equality constrained QP at each node, whereas big-m approach (3.27c)
solves an inequality constrained QP.

For the solution of the MIQP problem with (3.27c) or (3.28), Theorem
3 applies. This statement is proven as follows : At each node in the MIQP
search tree, we could use Theorem 3. This will preserve the loss ordering
between different nodes in the MIQP search tree, because in Theorem 3,

meeting the constraint HGy = J
1/2
uu implies J

1/2
uu (HGy)−1 = I and the loss

value in (3.22) is equal to ‖HY‖F .

3.4.2 Specific cases

We consider five specific cases of Problem 3.2 and show how they can be
solved using the MIQP formulation in (3.27). The integer constraint in
(3.27b) is modified for each case. Note that Cases 2.1,2.2 and 2.3 can
alternatively be solved using the branch and bound approaches (Kariwala
and Cao, 2010). However, Cases 3.2.4 and 3.2.5 can only be solved using
our MIQP formulation.

Case 3.2.1 Given subset of measurements. For example, assume we
have two inputs and 5 measurements of which we will not use mea-

surements 1 and 3, then H =

[
0 h12 0 h14 h15
0 h22 0 h24 h25

]

. The resulting
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constraints can be written in the form in (3.27b) with

P =





0 1 0 0 0
0 0 0 1 0
0 0 0 0 1



 , s =





1
1
1





This is a very simple case, and we may use Theorem 3, which im-
plies that Juu is not needed. The fact that Theorem 3 hold is quite
obvious since it corresponds to simply deleting some measurements
(deleting rows in Gy and Y), and keeping H full for the remaining
measurements.

Case 3.2.2 Optimal subset of measurements. Here the objective is to
select a certain number (n) of measurements (i.e. ny − n columns in
H are zero). The constraint in the binary variables is

ny∑

j=1

σj = n (3.29)

which can be written in the form in (3.27b) with

P = 1T 1×ny
, s = n

where 1 is a column vector of ones.

Case 3.2.3 Best individual measurements for decentralized con-
trol. This is the case where we want to select n = nc measurements,
which is the minimum feasible number of measurements, if we want
offset free control of c = Hy. For example, one candidate H is

H =

[
h11 0 0 0 0
0 0 0 h24 0

]

(3.30)

The constraints to be used in (3.27b) are
∑ny

j=1 σj = nu = nc and in
addition the off diagonal elements for the selected nc measurements
should be zero (for this candidate H the selected measurements are 1,
4 and the off-diagonal elements h21 and h14 are zero).

Fortunately, Theorem 3 which requires H to be a full matrix may
be used at each node in the MIQP, because the last restriction (off-
diagonal elements are zero) may be omitted. The reason is that we
can first find the optimal measurement subset for this selected nc

measurements, for example, H =

[
h11 0 0 h14 0
h21 0 0 h24 0

]

, and we can
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then use the extra degrees of freedom D to make the off diagonal
elements in H zero.

To prove this, let Hnc be the optimal solution for the best nc measure-

ments combination matrix, for example, Hnc =

[
h11 h14
h21 h24

]

. The

objective function is unaffected by D, so as in the proof of Theorem
3 we choose D = H−1

nc , to arrive at a diagonal H as in (3.30).

Case 3.2.4 Restriction on measurements from different process
sections. For example, consider a process with ns sections with nyk

measurements in section k (i.e. the total number of available mea-
surements is ny =

∑ns

k=1 nyk). If we want to select rk measurements
from each section k, the constraints (3.27b) become

nyk∑

j=1

σ(
∑k−1

p=1 nyp+j) = rk, ∀k ∈ 1, 2, . . . , ns (3.31)

and Theorem 3 applies for the MIQP formulation.

Case 3.2.5 Adding extra measurements to a given set of measure-
ments. This case may be very important in practice. For example,
consider a process with ny = 5 measurements, where we have decided
to use the measurements {2, 3}, and in addition want 2 other mea-
surements (total 4 measurements). These constraints can be written

σj = 1, ∀j = 2, 3
ny∑

j=1

σj = 4
(3.32)

which can be written in the form (3.27b) with

P =





0 1 0 0 0
0 0 1 0 0
1 1 1 1 1



 , s =





1
1
4





and Theorem 3 applies at each MIQP node.
All of the above five cases belong to the optimal measurement selection

(Problem 3.2) and can be easily solved using MIQP formulations. This is
discussed in more details for the examples below. Note that the Cases 3.2.4
and 3.2.5 cannot be dealt by BAB methods (Kariwala and Cao, 2010), at
least not without changing the algorithms.
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3.5 Examples (Problem 3.2)

3.5.1 Example 1: measurement selection for toy problem
(Case 3.2.2)

To illustrate the problem formulation for (3.27) for Case 3.2.2, consider
a “toy problem” from Halvorsen et al. (2003) which has two inputs u =
[u1 u2]

T , one disturbance d and two measured outputs z = [z1 z2]
T . The

cost function is

J = (z1 − z2)
2 + (z1 − d)2

where the outputs depend linearly on u, d as

z = Gzu+Gz
dd

with Gz =

[
11 10
10 9

]

; Gz
d =

[
10
9

]

. The disturbances are of magnitude 1

and the measurements noise is at magnitude 0.01.

At the optimal point we have z1 = z2 = d and Jopt(d) = 0. Both the
inputs and outputs are included in the candidate set of measurements

y =







z1
z2
u1
u2







and we have ny = 4, nu = 2. This gives

Gy =







11 10
10 9
1 0
0 1






, Gy

d =







10
9
0
0







Furthermore,

Juu =

[
244 222
222 202

]

, Jud =

[
198
180

]

Wd = 1, Wny = 0.01







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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and J
1/2
uu =

[
11.59 10.46
10.46 9.62

]

. The resulting sensitivity matrix is

Y = [FWd Wny ] =







−1 0.01 0 0 0
−1 0 0.01 0 0
9 0 0 0.01 0
−9 0 0 0 0.01







After vectorization (see Appendix A) we generate the matrices in (3.26).
The resulting matrices to be used in MIQP problem (3.27) are

Fδ =















2 2 −18 18 0 0 0 0
2 2 −18 18 0 0 0 0

−18 −18 162 −162 0 0 0 0
18 18 −162 162 0 0 0 0
0 0 0 0 2 2 −18 18
0 0 0 0 2 2 −18 18
0 0 0 0 −18 −18 162 −162
0 0 0 0 18 18 −162 162















∈ R
8×8

GyT

δ =







11 10 1 0 0 0 0 0
10 9 0 1 0 0 0 0
0 0 0 0 11 10 1 0
0 0 0 0 10 9 0 1






∈ R

4×8, jδ =







11.59
10.46
10.46
9.62






∈ R

4×1.

To obtain the optimal n < 4 measurement subset the constraint (3.27b) is

ny∑

j=1

σj = n

We used m = 120 for the big-m in (3.27) and with n = 3 we find by solv-

ing MIQP problem that the optimal solution isH =

[
1.02 0 0.40 0.28
0.76 0 2.06 1.98

]

,

that is measurement 2 is not used. We can always choose the degrees of
freedom in the matrix D, for example, to have identity in measurements 1

and 3 to get, for example, H =

[
1 0 0 −0.11
0 0 1 1

]

. The minimized loss

(3.20) as a function of the number of measurements n is shown in Figure
3.4. As expected, the loss is reduced as we use more measurements, but
the reduction in loss is very small when we increase the number of measure-
ments from 3 to 4. Based on Figure 3.4, we conclude that using CVs as a
combination of a 3 measurement subset is the best for this toy problem.
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Figure 3.4: The loss vs the number of included measurements (n) for “toy
problem”

.
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3.5.2 Example 2: measurement selection for evaporator pro-
cess (Case 3.2.2)

The main purpose of this example is to evaluate the MIQP method (3.27)
for Case 3.2.2 on a simple but realistic process. We consider the evaporator
example of Newell and Lee (1989) (Figure 3.5) as modified by Kariwala
et al. (2008). The process has 2 steady-state degrees of freedom (inputs),
10 candidate measurements and 3 disturbances.

u = [F200 F1]
T

y = [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1]
T

d = [X1 T1 T200]
T

Note that we as usual have included the inputs in the candidate measure-
ments. The economic objective is to maximize the operating profit [$/h],
formulated as minimization of the negative profit (Kariwala et al., 2008).

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (3.33)

The objective in self-optimizing control is to find optimal CVs that minimize
the loss, L = J − Jopt(d), in presence of disturbances and implementation
errors. We formulated the problem (3.27) for this evaporator example and
solved the MIQP to find the optimal CVs as the combinations of the best
measurement subset size from 2 to 10. The YALMIP toolbox (Lofberg,
2004) is used to solve the MIQP problem with m = 200 in the big-m con-
straints in (3.27). To compare, the same problem was also solved by the
downwards branch and bound (Downwards BAB) method and the partial
bidirectional branch bound (PB3) method (Kariwala and Cao, 2009). The
three methods gave the same results and the loss as a function of the num-
ber of measurements (n) used is shown in Figure 3.6. The corresponding
optimal measurements sets for the 9 subsets are given in Table 3.1. We
note that F200 is included in all cases. From Figure 3.6, we see that the
loss decreases rapidly when the number of measurements is increased from
2 to 3, but from 3 measurements and on the loss decrease is smaller. Based
on Figure 3.6, Table 3.1 and acceptable loss CVs can be found as combina-
tions of optimal measurement subsets for this 10-measurement evaporator
example.

The average computational times (CPU time) using a Windows XP
SP2 notebook with Intel R©CoreTM Duo Processor T7250 (2.00 GHz, 2M
Cache, 800 MHz FSB) using MATLAB R©R2009a for the MIQP, Downwards
BAB, PB3 methods and in addition the exhaustive search method are also
tabulated in Table 3.1. Note that the exhaustive search was not actually
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Figure 3.5: Evaporator process

performed and the given CPU time is an estimate based on assuming 0.001
s for each evaluation.

From Table 3.1, it can be seen that the MIQP method finds the optimal
solution about one order of magnitude faster than the exhaustive search
method, whereas the PB3 and Downwards BAB methods are even one or-
der of magnitude faster than MIQP. In conclusion, even though the MIQP
method is not as fast as that of Downwards BAB and PB3 methods; it is
still acceptable as the optimal CVs selection is performed off-line. The ad-
vantage of MIQP method is that the method is simple, intuitive and can
easily incorporate structural constraints which cannot be included with the
BAB methods. This is considered in the next example.

3.5.3 Example 3: evaporator process with structural con-
straints (Case 3.2.4)

This example considers optimal measurement selection using MIQP formu-
lations with the additional restrictions (3.31). As above, there are 3 tem-
perature measurements, 6 flow measurements and 1 pressure measurement.
The task is to use only 5 out of 10 measurements, more specifically, we want
to use 1 pressure (among 1), 2 temperatures (among 3) and 2 flows (among
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Figure 3.6: Evaporator: loss vs the number of included measurements (n)

6). These constraints can easily be incorporated in the MIQP formulations,
whereas these can not be incorporated directly in the Downwards BAB and
PB3 methods. For the constraint (3.27b) we have

P =





1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0
0 0 0 1 1 0 1 1 1 1



 , s =





1
2
2





The optimal loss with these structural constraints is 12.9096 and the optimal
measurement set is [F2 F100 T201 T2 P2]. To compare the loss with
five measurements without any structural requirements is 8.0960 and the
optimal measurements are [F2 F100 F3 F200 T201].

3.5.4 Example 4: measurement selection for distillation col-
umn (Case 3.2.2)

This example is included to apply the MIQP (3.27) formulations on a case
with a large number of measurements and to highlight the computational
effectiveness of the developed methods over the exhaustive search methods.
We also include the computational effectiveness of both big-m approach
(3.27c) and indicator constraint approach (3.28) for MIQP (3.27). We con-
sider indirect composition control of a binary distillation column with 41
stages (Skogestad, 1997; Hori and Skogestad, 2008) and reflux (L) and boil-
up (V) as the remaining unconstrained steady state degrees of freedom (u).
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Table 3.1: Evaporator example: optimal measurement sets as a function
of the number of measurements with associated losses and computational
times

No. Meas Optimal Measurements Loss* CPU time (sec)
n 1

2‖M‖2F MIQP Downwards BAB PB3 Exhaustive

2 [F3 F200] 56.0260 0.0235 0.0028 0.0023 0.045
3 [F2 F100 F200] 11.7014 0.0350 0.0013 0.0028 0.12
4 [F2 T201 F3 F200] 9.4807 0.0400 0.0016 0.0025 0.21
5 [F2 F100 T201 F3 F200] 8.0960 0.0219 0.0011 0.0014 0.252
6 [F2 F100 T201 F3 F5 F200] 7.7127 0.0204 0.0016 0.0017 0.21
7 [P2 F2 F100 T201 F3 F5 F200] 7.5971 0.0289 0.0009 0.0016 0.12
8 [P2 T2 F2 F100 T201 F3 F5 F200] 7.5756 0.0147 0.0005 0.0009 0.045
9 [P2 T2 F2 F100 T201 F3 F5 F200 F1] 7.5617 0.0110 0.0008 0.0009 0.01
10 [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] 7.5499 0.0008 0.0011 0.0009 0.001

*The results are the same as in (Kariwala et al., 2008), but the loss given
in (Kariwala et al., 2008) is a factor 3(n + nd) smaller, see Section 3.6.2.

The considered disturbances are in feed flow rate (F ), feed composition (zF )
and liquid fraction (qF ), which can vary between 1±0.2, 0.5±0.1 and 1±0.1,
respectively. As online composition measurements are assumed unavailable,
we use stage temperatures inside the column to control the compositions in-
directly. The boiling points difference between light key component (L) and
heavy key component (H) is 10 oC. We assume constant relative volatility of
the components, constant pressure, no vapour hold up, equilibrium on each
stage and constant molar flow rate. Under these assumptions only mass and
component balances are included in this binary distillation column model
and temperatures are approximated as linear functions of mole fractions.
The temperature Ti (

oC) on stage i is calculated as a simple linear function
of the liquid composition xi on each stage (Skogestad, 1997).

Ti = 0xi + 10(1 − xi) (3.34)

The candidate measurements are the 41 stage temperatures which are mea-
sured with an accuracy of ±0.5oC. Note that we do not include the inputs
(flows L and V) in the candidate measurements for this example because we
would like to use only temperature combinations for control. The cost func-
tion J for the indirect composition control problem is the relative steady-
state composition deviation,

J =

(

xHtop − xHtop,s

xHtop,s

)2

+

(

xLbtm − xLbtm,s

xLbtm,s

)2

(3.35)

where xHtop and xLbtm denote the heavy key component (H) composition in
top product and light key component (L) composition in bottom product
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T1, T2, T3,…, T41

Tray temperatures
qF

Figure 3.7: Distillation column using LV-configuration

and xHtop = xLbtm = 0.01(99% purity). The specification or set point value
is denoted with subscript ‘s’ (Hori and Skogestad, 2008). This cost can be
written in the general form in (3.3).

The MIQP formulation described in Case 3.2.2 in Section 3.4 is used to
find 2 CVs as the optimal subset combinations of 2 to 41 stage tempera-
tures. An MIQP is set up for this distillation column with the choice m = 2
for the big-m constraints in equation (3.27). To obviate the need to select
an appropriate m, another MIQP is set up by replacing big-m constraints
(3.27c) with indicator constraint approach (3.28). The constraint in (3.27b)
becomes

∑ny

j=1 σj = n, where n varies from 2 to 41. The IBM ILOG Op-
timizer CPLEX solver is used to solve the MIQP problem. The minimized
loss function with the number of measurements is shown in Figure 3.8.

The optimal controlled variables (measurement combination matrix H)
for the cases with 2, 3, 4 and 41 measurements are shown in Table 3.2.
For the case with 2 measurements, we just give the measurement, and not
the combination, because we can always choose the D matrix to make, for
example, H = I (identity). For the case with 3 and 4 measurements, we
choose to use the degrees of freedom in D to make selected elements in H
equal to 1.

The same problem was also solved by the downwards branch and bound
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Figure 3.8: Distillation column: loss vs the number of included measure-
ments (n)

and partial bidirectional branch bound methods (Kariwala and Cao, 2009).
The computational times (CPU time) taken by MIQP with big-m approach,
MIQP with indicator constraint approach, Downward BAB and PB3 meth-
ods and also the exhaustive search method are compared in Figure 3.9.
Note that exhaustive search is not performed and instead we give an esti-
mate assuming 0.01 s for each evaluation. From Figure 3.9, it can be seen
that the MIQP finds the optimal solution 6 orders of magnitude faster than
the exhaustive search methods. Contrary to theory, MIQP with indicator
constraints take slightly higher computational times than MIQP with big-
m approach, this could be due to the branching strategy used in CPLEX
solver resulting in exploration of higher number of nodes. On an average,
the MIQP with the big-m or the indicator constraint approach is about 1
order of magnitude slower than the PB3 and Downwards BAB methods.
The MIQP method is relatively quick for measurement subset sizes between
25 and 41, but slower for subset sizes from 10 to 23. This is reasonable be-
cause subset sizes (10 to 23) have a very high number of possibilities (

(
41
10

)

to
(41
23

)
). In conclusion, even though the MIQP methods are not as compu-

tationally attractive as Downwards BAB and PB3 methods, the differences
are not excessive.
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Table 3.2: Distillation column example: optimal measurements and optimal
controlled variables with loss

No. Meas c′s as combinations of measurements Loss
n 1

2‖M‖2F

2
c1 = T12

c2 = T30
0.5477

3
c1 = T12 + 0.0446T31

c2 = T30 + 1.0216T31
0.4425

4
c1 = 1.0316T11 + T12 + 0.0993T31

c2 = 0.0891T11 + T30 + 1.0263T31
0.3436

41
c1 = f(T1, T2, . . . , T41)
c2 = f(T1, T2, . . . , T41)

0.0813

3.5.5 Example 5: measurement selection for Kaibel column
(Cases 3.2.4 and 3.2.5)

The Kaibel column example is included to show the optimal measurement
selection using MIQP formulations with additional restrictions as given in
(3.31) and (3.32). The 4-product Kaibel column shown in Figure 3.10 has
high energy saving potential (Halvorsen and Skogestad, 2003), but presents
a difficult control problem. The given 4-product Kaibel column arrangement
separates a mixture of methanol (A), ethanol (B), propanol (C), butanol
(D) into almost pure components. The economic objective function J is to
minimize the impurities in the products.

J = D(1− xA,D) + S1(1− xB,S1
) + S2(1− xC,S2

) +B(1− xD,B) (3.36)

where D,S1, S2 and B are the distillate, side product 1, side product 2 and
bottom flow rates (mol/min) respectively. xi,j is mole fraction of component
i in product j.

The Kaibel column has 4 inputs (L,S1, S2, RL) and 71 temperature mea-
surements (7 sections with each section having 10 tray temperatures plus 1
temperature for reboiler), which we included as the candidate measurements
(y) and are measured with an accuracy of ±1oC. The considered distur-
bances are in vapor boil up (V), vapor split (RV ), feed flow rate (F), mole
fraction of A in feed stream (zA), mole fraction of B in feed stream (zB),
mole fraction of C in feed stream (zC) and liquid fraction of the feed stream
(qF ), which vary between 3 ± 0.25, 0.4 ± 0.1, 1 ± 0.25, 0.25 ± 0.05, 0.25 ±
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Figure 3.10: The 4-product Kaibel column

0.05, 0.25 ± 0.05 and 0.9 ± 0.05, respectively. The reader is referred to
Strandberg (2006) for further details on this example.

We consider the selection of the control variables as individual measure-
ments or combinations of a measurement subset with measurements from
specified sections of the column as structural constraints. Such structural
constraints may be important for dynamic reasons, for example, at least
one temperature in the prefractionator should be used in the regulatory
layer (Strandberg, 2006). The 4-product Kaibel column is divided into 4
segments with 20, 20, 10 and 21 measurements, respectively. The measure-
ments in the four segments are T1 − T20, T21 − T40, T61 − T70 and T41 − T60

plus T71, respectively (Figure 3.10). Note that segment 4 includes reboiler
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temperature T71. The candidate measurements y and given inputs u are

y = [T1 T2 T3 · · · T71]
T

u = [L S1 S2 RL]
T

We formulate an MIQP using (3.27) to find four CVs for the following three
cases

(i) Optimal combinations of 4, 5, 6 and 71 measurements with no con-
straint on sections (Case 3.2.2)

(ii) Single measurements from each of the four segments (Case 3.2.4)

(iii) Including extra measurements to a given set of measurements (Case
3.2.5). In this case, {T12, T25, T45, T62} are taken as the given set of
measurements, which could have been selected based on considerations
for stabilizing the column profiles.

The constraint for (i) is
ny∑

j=1

σj = n

for n = 4, 5, 6 and 71. This can alternatively be written in the general form
in (3.27b) with

P = 1T 1×ny
, s = n

where 1 is a column vector of ones and n is 4, 5, 6 and 71.
The constraints for (ii) can be written in the general form (3.27b) with

P =







1T 1×20 0T 1×20 0T 1×20 0T 1×10 0
0T 1×20 1T 1×20 0T 1×20 0T 1×10 0
0T 1×20 0T 1×20 1T 1×20 0T 1×10 1
0T 1×20 0T 1×20 0T 1×20 1T 1×10 0






, s =







1
1
1
1







where 1 is a column vector of ones and 0 is a column vector of zeros.
(iii) We consider including 1, 2 and 3 extra measurements to the given

set {T12, T25, T45, T62}. The constraints for this case are

σj = 1, ∀j = 12, 25, 45, 62

71∑

j=1

σj = n

where n = 5, 6 or 7.
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Table 3.3: Kaibel column: optimal measurement sets and loss using optimal
combination of these measurements

Case No. Meas Optimal measurements Loss CPU time
n 1

2‖M‖2F (min)

(i) 4 [T12 T40 T51 T66] 11.6589 34.23
(i) 5 [T12 T51 T62 T65 T66] 2.9700 120
(i) 6 [T12 T20 T23 T57 T60 T64] 1.0140 120
(i) 71 [T1 T2 . . . T71] 0.0101 0.0007

(ii) 4* [T12 T40 T51 T66] 11.6589 1.19

(iii) 4† [T12 T25 T45 T62] 1328.6691 0.0005
(iii) 5** [T12 T25 T45 T62 T69] 65.7180 0.096
(iii) 6** [T12 T25 T45 T55 T62 T71] 3.5646 0.19
(iii) 7** [T12 T25 T45 T51 T62 T65 T67] 0.9450 2.21

* (ii) Case 3.2.4; **(iii) Case 3.2.5 ; †given non-optimal measurement set

The optimal measurements sets for cases (i),(ii),(iii) together with the
loss and computational times are reported in Table 3.3. Note that for Case
(i) with 5, 6 measurements, the reported solutions are not optimal solu-
tions as the computational time required for these cases exceeded the set
maximum computational time limit of 120 min. The measurements sets for
n = 4 are the are same for (i) and (ii) because it happens that the opti-
mal measurements in Case (i) have the desired distribution. However, the
computational time is about 30 times higher for Case (i) as the number of
possibilities is higher in (i) than in (ii). For Case (iii), the loss decreases as
we add 1, 2, and 3 extra measurements to the given set.

3.6 Discussion

3.6.1 Structured H with specified zero elements (Problem
3.3)

Unfortunately, the convex formulation in Theorem 3 used in the above ex-
amples, does not generally apply when specified elements in H are zero.
Some examples are

(I) Decentralized structure. This is the case, where we want to com-
bine measurements from a individual unit/section alone in a plant,
so the measurement sets are disjoint. This can be viewed as select-
ing CVs for individual units/sections in the plant. As an example,
consider a process with 2 inputs (degrees of freedom) and 5 measure-
ments with 2 disjoint measurement sets {1,2,3}, {4,5}; the structure
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is

HI =

[
h11 h12 h13 0 0
0 0 0 h24 h25

]

(II) Triangular structure. More generally, H may have a triangular
structure. As an example, consider a process with 2 degrees of free-
dom and 5 measurements with partially disjoint measurement sets as
{1, 2, 3, 4, 5} for one CV and {4, 5} for another CV, the structure is

HII =

[
h11 h12 h13 h14 h15
0 0 0 h34 h35

]

Since Theorem 3 does not hold for these cases with specified structures, we
need to solve non-convex problems. This is outside the scope of this paper,
where convex formulations are considered.

3.6.2 Use of average loss 1
2
‖M‖2F

For the measurement selection problem, using an uniform distribution for d′

and ny′ with

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1 results in the average loss L̂avg = 1
6(ny+nd)

‖M‖2F

(Kariwala et al., 2008). Although this loss expression is mathematically cor-
rect, the use of a uniform distribution is not meaningful from an engineering
point of view. Specifically, the reduction in the loss by the factor 3(ny+nd)
is not meaningful. To illustrate this, note that we can add dummy mea-
surements and thus set ny to any number, and then choose to not use these
dummy measurements when selecting c = Hy, simply by setting the corre-
sponding columns in H to zero. As the Frobenius norm of a matrix is the
same if we add columns of zeros, ‖M‖F will be unchanged, but ny increases
and the loss L̂avg decreases. Since the loss should not change by adding
dummy measurements that we do not use, the use of uniform distribution
of the two-norm is not physically meaningful. Hence, in this paper, we
choose to use the more common normal distribution for d′ and ny′ which
gives the average loss (expected loss) Lavg = 1

2‖M‖2F in (3.20).

3.7 Conclusions

The problem of finding optimal CV measurement combinations that mini-
mize the loss from optimal operation is solved. The optimal CV selection
problem from self optimizing control framework is reformulated as a QP and
the optimal CV selection for measurement subsets is formulated as an MIQP
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problem. The developed MIQP based method allows for additional struc-
tural constraints compared to the bidirectional branch and bound methods
reported in literature. The MIQP based method was found to use about 10
times more CPU time than the bidirectional branch and bound methods,
but this is acceptable as the optimal CV selection problem is done offline.
In addition, the MIQP method can be used on some problems where the
branch and bound methods do not apply, as shown for the Kaibel column
example.
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Chapter 4

Convex approximation
methods for optimal
controlled variables with
structural constraints in
Self-optimizing control

Based on the published conference papers in
American Control Conference, 2011, San Francisco, USA. pp. 342–347 &

IFAC World Congress, 2011, Milano, Italy. pp. 4977–4982

Control structure selection is vital to keep the process operation optimal
in the presence of disturbances. In this paper we briefly review the controlled
variable selection, c = Hy, with the aim to minimize the loss from optimal
operation. Selecting c′s that obey structural constraints are important for
dynamic reasons and for ease in practical implementation. The structural
constraints are (i) to find c′s as combinations of the same measurement
subsets; (ii) to find c′s as combinations of measurements with (decentral-
ized) block diagonal/triangular H. Structural constraints of first kind are
reformulated to convex quadratic optimization problems and Mixed Integer
Quadratic Programming methods are developed to select optimal measure-
ments to arrive at globally optimal H, but the second kind are non-convex.
Hence, we propose a few new ideas and convex approximation methods for
the second type. The proposed methods are evaluated on random cases, an
evaporator case study and a binary distillation column case study with 41
stages and are observed to provide good upper bounds.

77
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4.1 Introduction

Control structure selection deals with the selection of controlled variables
(CV/outputs) and manipulated variables (MV/inputs), and the pairings or
interconnections of these variables (Foss, 1973; Skogestad, 2000). Gener-
ally, the controlled variables (c) are selected as individual measurements or
combinations of measurements.

c = Hy (4.1)

where c ∈ R
nc are the controlled variables, u ∈ R

nu are the manipulated
variables, y ∈ R

ny are the measurements and H ∈ R
nc×ny is the measure-

ment combination matrix, which is to be selected.

The overall goal of control structure design is to reflect the business
objectives. In this paper, the focus is on selecting CV (c) to aid the pro-
cess plant to operate optimally even in the presence of disturbances. A
comprehensive review of input/output selection methods was provided by
(van de Wal and de Jager, 2001), but these focused on controllability issues
and failed to account for the business objectives, like minimizing the cost
(J). A comprehensive review of heuristic and mathematical methods for
plantwide control are presented (Larsson and Skogestad, 2000).

The idea in self-optimizing control (SOC) is to use the degrees of free-
dom in selecting c to get some degree of “self-optimization” into the fast
control layer, such that less frequent updates of cs are required by the opti-
mization layer. The ideas of “self-optimizing control” dates back to (Morari
et al., 1980), who stated that “we want to find a function c of the process
variables which when held constant, leads automatically to the optimal ad-
justments of the manipulated variables, and with it, the optimal operating
condition”. A few other alternatives of optimal operation are real time op-
timization (Forbes and Marlin, 1996), necessary conditions of Optimality
tracking (Srinivasan et al., 2003; Kadam et al., 2007), extremum seeking
control (Ariyur and Krstic, 2003; Guay and Zhang, 2003) and optimizing
controllers (Kassidas et al., 2000; Engell, 2007). However, SOC is based on
pseudo-steady state approximation of process that uses feedback policy to
keep c at constant set point cs to counteract the disturbances effectively and
reduces the frequency of optimization. In this context SOC can be viewed
as a complement. This is illustrated in Figure 4.1.

Mathematically, the optimal H that minimizes the average or worst-
case steady state loss from optimum may be obtained by solving the follow-
ing steady-state optimization problem (see theorem 6 for details)(Halvorsen
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.

et al., 2003; Kariwala et al., 2008)

min
H

‖J1/2
uu (HGy)−1HY‖F (4.2)

where Y = [FWd Wny ], F =
dyopt

dd is the optimal sensitivity matrix with
respect to disturbances, Wd and Wny are diagonal matrices with elements
equal to the expected magnitude of disturbances and measurement noises
(errors), Gy is the measurement gain matrix and Juu is the Hessian of the
cost function J with respect to the degrees of freedom u.

In general, (4.2) is a non-convex optimization problem in the decision
variable H. However, in the standard case when H is a “full” matrix, it
may be reformulated as a convex problem. This follows because the optimal
H is not unique and we have enough “extra” degrees of freedom in H to
impose a constraint on the matrix HGy and we get an equivalent quadratic
programming (QP) problem which is convex (see theorem 7) (Alstad et al.,
2009).

min
H

‖HY‖F

s.t. HGy = J1/2
uu

(4.3)
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However, in real applications we may want to impose limitations on the
structure of H, that is, we may require some elements in H to be zero. For
example, for dynamic reasons we may want to combine measurements from
given process section, and we require a (decentralized) block diagonal (BD)
or triangular (T) H.

HBD =








H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hniu








(4.4)

HT =








H11 H12 · · · H1niu

0 H22 · · · · · ·
...

...
. . .

...
0 0 · · · Hniuniu








(4.5)

In such cases, because of all the zeros in H, we do not have enough

“extra” degrees of freedom in H to impose the constraint HGy = J
1/2
uu .

Instead, we discuss in this paper how to introduce various convex approx-

imations, for example by having HGy matching selected elements in J
1/2
uu .

In this case, the term J
1/2
uu (HGy)−1 in (4.2) is not truly the identity matrix,

so minimizing ‖HY‖F with this “partial” constraint will result in a sub
optimal H (upper bound).

To sum up, in terms of finding the optimal solution H in (4.2), we may
consider four problems, of which the last two are the focus in this paper:

Problem 4.1 Full H, where the CV are combinations of all measurements
y. This is a convex QP problem (4.3) and is solved (Alstad et al.,
2009)

Problem 4.2 Full H with optimal measurements selection, where there are
some zero columns in H. This may be solved using a partial branch
and bound method PB3 (Kariwala and Cao, 2009, 2010) or alter-
natively a mixed integer quadratic programming (MIQP) (Yelchuru
et al., 2010). These methods are all convex.

Problem 4.3 Structured H with some specified zero elements in H (see
(4.4),(4.5)). This results in a non-convex nonlinear programming
(NLP) problem.

Problem 4.4 Structured H with measurements selection (there are spec-
ified zero elements and some zero columns in H). This results in a
non-convex mixed integer nonlinear programming (MINLP) problem
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Problems 4.3 and 4.4 are non-convex and cannot be addressed with both
PB3 (Kariwala and Cao, 2010) or MIQP methods (Yelchuru et al., 2010).
An iterative method has been proposed to obtain an upper bound for the
Problems 4.3 and 4.4 (Heldt, 2010), but this method is also non-convex.

This paper is organized as follows: In Section4.2, we review how to
transform the original problem (4.2) to a convex QP (4.3) for the case when
H is a full matrix (Problem 4.1). The proof is included because it provides
the starting point for the subsequent convex approximations in Section 4.3
(Problem 4.3). In Section 4.4, we briefly review the MIQP formulations
for CV selection (Problem 4.2) and the new MIQP methods to address
Problem 4.4. In Section 4.5, the developed methods are evaluated on some
artificial random examples, on an evaporator case study and on a binary
distillation column case study with 41 stages and the results are discussed.
The conclusions are given in Section 4.6.

4.2 Convex formulations of minimum loss method
(Problem 4.1)

Consider the feedback system in Figure 4.2, where the input u (degrees of
freedom) is adjusted to keep the variables c = Hy at a constant set point in
spite of disturbances. We consider only the (pseudo)-steady state behavior
where perfect control of c is possible if the controller has integral action.
The objective is to select H such that this control policy minimizes the
steady-state loss L = J(u,d)−Jopt(d) for the expected disturbances. Here,
J(u,d) is the cost function and Juu is its Hessian.

Theorem 6 Minimum loss method (exact local method) (Halvorsen
et al., 2003; Kariwala et al., 2008; Alstad et al., 2009) To min-
imize the average and worst-case loss for expected combined disturbances
and noise, (‖[d′ ny′ ]T ‖2 ≤ 1), find the H that solves the problem

min
H

∥
∥
∥J1/2

uu (HGy)−1HY
∥
∥
∥
F

(4.6)

where Y = [FWd Wny ].

We first consider the standard “full” H case with no restriction on the
structure of the matrix H (Problem 4.1), that is we want to find optimal
combination of all the measurements.

Theorem 7 Reformulation as a convex problem (Alstad et al., 2009)
The problem in equation (4.6) may seem non-convex, but for the standard
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Figure 4.2: Feedback diagram
.

case where H is a “full” matrix (with no structural constraints), it can be
reformulated as a convex constrained quadratic programming problem.

min
H

‖HY‖F

s.t. HGy = J1/2
uu

(4.7)

Proof. From the original problem in equation (4.6), we have that the
optimal solution H is non-unique because if H is a solution then H1 = DH
is also a solution for any “full” non-singular matrix D of size nc × nc. This
follows because

J1/2
uu (HGy)−1HY = J1/2

uu (HGy)−1D−1DHY = J1/2
uu (H1G

y)−1H1Y

One implication is that we can freely choose G = HGy, which is a nc × nc

matrix representing the effect of u on c (c = Gu). Thus, in (4.6) we may
use the non-uniqueness of H to set the first part of the expression equal

to the identity matrix, which is equivalent to setting HGy = J
1/2
uu . This

identity must then be added as a constraint in the optimization as shown
in (4.7). �

As present numerical software packages such as Matlab cannot deal di-
rectly with the matrix formulation in (4.7), the decision matrix

H =








h11 h12 . . . h1ny

h21 h22 . . . h2ny

...
...

. . .
...

hnu1 hnu2 . . . hnuny








is vectorized along the rows of H to form a long vector

hδ =
[
h11 . . . h1ny h21 . . . h2ny . . . hnu1 . . . hnuny

]T
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The equivalent QP is then formulated as (see Appendix A)

min
hδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(4.8)

where hδ ∈ R
nuny×1, jδ ∈ R

nunu×1,GyT

δ ∈ R
nunu×nynu ,Fδ ∈ R

nuny×nuny .

4.3 Convex approximations for structured H (Prob-
lem 4.3)

We consider the problem

min
H

‖J1/2
uu (HGy)−1HY‖F

s.t.H = [particular structure]
(4.9)

where, for example, H may have a block diagonal or triangular structure as
given in (4.4) or (4.5). Unfortunately, (4.9) cannot be reformulated into a
convex QP as in (4.7) because we do not have enough degrees of freedom

in D to make DHGy = J
1/2
uu , which requires that D can be any full matrix.

The reason is that we need H1 = DH to have a particular structure, which
implies that D must have a structure corresponding to H. For example, if
H is block diagonal then D must be block-diagonal, and if H is triangular
then D must be triangular. Hence for Problem 4.3, a non-convex problem
(4.9) need to be solved.

Nevertheless, using the ideas from Theorem 7, we will derive convex
approximations for (4.9) (Problem 4.3). The idea is to make use of the
extra degrees of freedom in D as given by the requirement

structure DH = structure H

where H has a given structure.
In addition, there are degrees of freedom in selecting u, which may be

used. These degrees of freedom are related to the fact that the solution is
unchanged if we redefine the inputs. Let

u1 = Du
−1u or u = Duu1 (4.10)

where Du is any non-singular nu × nu matrix. In terms of the new input
variables u1, the following matrices will change

Gy1 = GyDu

Ju1u1
= Du

TJuuDu

(4.11)
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The matrix F is unchanged. The degrees of freedom Du were not used in
the full H case (Problem 4.1) because it was sufficient to use D to get a
convex problem formulation. With the degrees of freedom in D and Du,
the problem (4.6) becomes

min
H,D,Du

‖(DT
uJuuDu)

1/2(DHGyDu)
−1DHY‖F (4.12)

where D has a certain structure and Du is a full matrix. However, note
that the solution of this problem is identical to (4.6) and we will use the
extra degrees of freedom in (4.12) to derive convex approximations. We
will mainly focus on the use of the degrees of freedom in D. The degree
of freedom in Du will mainly be used to make the resulting optimization
problem well posed.

The idea as in Theorem 7 is to exclude the matrix J
1/2
uu (HGy)−1 in

front of HY (4.9). However, when H has a particular structure, we do

not generally have enough degrees of freedom to make J
1/2
uu (HGy)−1 = I

or equivalently HGy = J
1/2
uu . To proceed, we have considered the following

three convex approximation methods.

Method 1 Use the number of non-zero (nnz) elements in D (that preserve
the particular structure in H,H1 = DH) to match up to nnz num-

ber of elements in HGy to J
1/2
uu (Yelchuru and Skogestad, 2011) and

minimize ‖HY‖F .

Method 2 Introduce an inequality constraintHGy ≤ J
1/2
uu instead of equal-

ity constraint in (4.7) and minimize ‖HY‖F . This assumes that J
1/2
uu

has some negative elements such that the trivial solution H = 0 is

avoided. If J
1/2
uu does not have negative elements, then the inputs

need to be modified as in (4.10) and (4.11).

Method 3 Impose a constraint to let J
1/2
uu (HGy)−1 have a structure similar

to the D that preserves the structure in DH and minimize ‖HY‖F .

These three convex approximation methods have been observed to provide
good upper bounds to the Problem 4.3 and in particular Method 1 has been
found to work well. These three methods are tested for various random
cases with particular structure in (4.4) and are discussed in Section 4.5.1.
Even though the Method 3 give a reasonable upper bound to Problem 4.3,
we consider only convex approximation methods 1 and 2 for Problem 4.4
later.
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4.3.1 Convex approximation method 1: matching the ele-

ments in HGy to J
1/2
uu

The optimal solution to equation (4.9) is non-unique, so if H is a solution
then H1 = DH is also a solution for any non-singular matrix D of nc × nc

size that preserves the particular structure of H. For example, for a block
diagonal H (4.4), a block diagonal D matrix preserves the structure in
H and H1 = DH. We denote the number of non-zero elements in extra
degrees of freedom D by nnz. Then nnz non-zero elements of D can be used

to match up to nnz elements of HGy to elements of J
1/2
uu . To avoid a trivial

solution where H = 0, we make sure that all elements in Juu are non-zero.
This may be done by using the degrees of freedom in Du. The choice of Du

could have been used even more systematically, but this has so far not been
done.

The HGy matrix should have full rank (nc = nu) as its inverse should
exist for the loss (4.9) evaluation. Hence, to have HGy as full rank matrix,
we can match between nu and nnz number of elements and the selection of
elements to be matched is a combinatorial problem.

To facilitate the analysis, we introduce βδ = [β1 β2 . . . βnunu]
T ,

βl ∈ {0, 1}, binary variables vector to complement nunu number of elements
in column wise vectorized HGy matrix (i.e. vec(HGy)). The lth element
is represented by |l and βl is used to complement it. Whenever we match

an element l in vec(HGy) to vec(J
1/2
uu ), the associated binary variable βl is

1, and vice versa. We use the non-zero elements in D to match between

nu and nnz elements of vec(HGy) to vec(J
1/2
uu ) and

∑nunu

l=1 βl is between nu

and nnz. The unmatched elements in vec(HGy) can vary between −b to b,
and these are formulated (4.14b) using big-m approach (Hooker and Osorio,
1999).

Based on the particular structure in H, for a selected non-zero element

in D, the elements of HGy that can be matched to J
1/2
uu are restricted. For

illustration, consider an example of a process with 5 measurements and 2
inputs. Let the gain from u to y be Gy and consider a block diagonal H
with disjoint measurement sets {1,2,3},{4,5}, then

Gy =









g11 g12
g21 g22
g31 g32
g41 g42
g51 g52









, H =

[
h11 h12 h13 0 0
0 0 0 h24 h25

]

(4.13a)
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and a diagonal matrix D =

[
d11 0
0 d22

]

can preserve the structure in H

and H1 = DH.

H1 = DH =

[
d11h11 d11h12 d11h13 0 0

0 0 0 d22h24 d22h25

]

(4.13b)

and the associated

HGy =

[
h11g11 + h12g21 + h13g31 h11g12 + h12g22 + h13g32

h24g41 + h25g51 h24g42 + h25g52

]

(4.13c)

and

H1G
y = DHGy

=

[
d11(h11g11 + h12g21 + h13g31) d11(h11g12 + h12g22 + h13g32)

d22(h24g41 + h25g51) d22(h24g42 + h25g52)

]

(4.13d)

The non-zero elements in D are d11 and d22. From (4.13d), the non-zero
element d11 can only be used to match either vec(HGy)|1 or vec(HGy)|3
and the non-zero element d22 can only be used to match either vec(HGy)|2
or vec(HGy)|4. These would result in mixed integer constraints (4.14b).

Starting from (4.7) and incorporating the element matching constraints
with particular structure constraint on H result in MIQP formulation

min
H,βδ

‖HF‖F (4.14a)

s.t.− b(1− βl) ≤ vec(HGy − J1/2
uu )|l ≤ b(1− βl), ∀l = 1, 2, · · · , nunu

nu ≤
nunu∑

l=1

βl ≤ nnz

nuk
≤

nu−1∑

p=0

∑
k nuk∑

j=
∑

k nuk−1
+1

βnup+j ≤ nnzk , ∀k = 1, 2, . . . ,number of blocks

(4.14b)

H = [particular structure] (4.14c)

where nuk
,nnzk are the number of inputs, number of non-zero elements in

D in block k respectively.
Note that quadratic programming problem that need to be solved at

each node in MIQP (4.14) search tree is a convex approximation to (4.9).
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The convex approximations arise due to the less degrees of freedom we have
available in D that preserve the particular structure in H and H1 = DH
and causes the sub optimality in (4.14). This convex approximation will
give an upper bound for (4.9). The formulation in (4.14) is vectorized (see
Appendix A) to result in controlled variables c′s with particular structure
in H as

min
hδ,βδ

hT
δ Fδhδ

s.t.
(4.15a)

−b(1− βl) ≤ (GyT

δ hδ − jδ)|l ≤ b(1− βl), ∀l = 1, 2, · · · , nunu

nu ≤
nunu∑

l=1

βl ≤ nnz

nuk
≤

nu−1∑

p=0

∑
k nuk∑

j=
∑

k nuk−1
+1

βnup+j ≤ nnzk , ∀k = 1, 2, . . . ,number of blocks

(4.15b)

hδ(ind) = 0, ind is for 0 in particular structure H (4.15c)

where

hδ =
[
h11 . . . h1ny h21 . . . h2ny . . . hnu1 . . . hnuny

]T
∈ R

nuny×1

βδ = [β1 β2 . . . βnunu ]
T , βl ∈ {0, 1}. nuk

,nnzk are the number of
inputs, number of non-zero elements in D in block k respectively. The
constraints in (4.15b) are to bound the unmatched elements of vec(HGy)
between −b and b as the big-m constraints.

4.3.2 Convex approximation method 2: relaxing the equal-

ity constraint to HGy ≤ J
1/2
uu

In this method, the affine constraint HGy = J
1/2
uu in H is relaxed to inequal-

ity constraint HGy ≤ J
1/2
uu (element wise), where the degrees of freedom in

Du are used to make sure that J
1/2
uu to contain negative elements in each row.

Negative elements in each row are required to obviate the trivial solution.
Then the convex approximation to (4.9) can be written as

min
H

‖HY‖F

s.t. HGy ≤ J1/2
uu

H = [particular structure]

(4.16)
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The sub optimality in (4.16) from (4.9) is due to relaxation of equality
constraint to inequality constraint. The formulation in (4.16) is vectorized
(see Appendix A) to result in a formulation in (4.17).

min
hδ

hT
δ Fδhδ

s.t. GyT

δ hδ ≤ jδ

hδ(ind) = 0, ind is for 0 in particular structure H

(4.17)

where hδ ∈ R
nuny×1, jδ ∈ R

nunu×1,GyT

δ ∈ R
nunu×nynu ,Fδ ∈ R

nuny×nuny .

Solving (4.17) results in controlled variables c′s as combinations of mea-
surements with particular structure in H.

4.3.3 Convex approximation method 3: imposing constraint

on J
1/2
uu (HGy)−1 to have structure of D

In this method, we try to make the matrix J
1/2
uu (HGy)−1 to have a structure

of D that preserves the structure in DH. Then the constraint becomes

HGy − D−1J
1/2
uu = 0. We introduce a new matrix Di = D−1 to make a

convex approximation as

min
H,Di

‖HY‖F

s.t. HGy −DiJ
1/2
uu = 0

H = [particular structure]

(4.18)

4.4 MIQP formulations

We consider Problem 4.2, where there are some zero columns inH and Prob-
lem 4.4, structured H with measurement subsets, where there are specified
zero elements and some zero columns in H. In Problems 4.2 and 4.4, we
do not want to use all measurements and the mixed integer constraints are
formulated using the standard big-m approach used in MIQP formulations
(Hooker and Osorio, 1999). The m value should be chosen suitably in these
big-m approaches.

4.4.1 Optimal measurement selection (Problem 4.2)

Let us first recall the results from (4.6). The idea is to use quadratic pro-
gramming formulation in Theorem 7 and add to them additional mixed
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integer constraints to deal with the measurement selection. Each measure-
ment is complemented with a binary variable to describe the mixed integer

constraints suitably. Let σδ =
[
σ1 σ2 . . . σny

]T
, σj ∈ {0, 1}, be the ny

binary variables vector. σj is used to represent the presence or not of the
jth candidate measurement (jth column in H matrix) of a process plant.
σj = 0 implies hij = 0; ∀i = 1, 2, . . . , nu in H. The chosen measurements
j will take σj = 1. The corresponding decision variables h1j , h2j , . . . , hnuj

(i.e. the jth column in combination matrix H) are chosen to have a value
between −m to m, these bounds are formulated as big-m constraints. The
constraints on the binary variables can be written in the form

Pσδ = s

and the resulting generalized MIQP problem in the decision variables hδ

and σδ is

min
hδ,σδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(4.19a)

Pσδ = s







−m
−m
...

−m







σj ≤








h1j
h2j
...

hnuj







≤








m
m
...
m







σj, ∀j ∈ 1, 2, · · · , ny

(4.19b)

where hδ =
[
h11 . . . h1ny h21 . . . h2ny . . . hnu1 . . . hnuny

]T
∈

R
nuny×1; σδ =

[
σ1 σ2 . . . σny

]T
; σj ∈ {0, 1} and s is the vector with

numbers of measurements. The m value should be chosen small to reduce
the computational time, but it should be sufficiently large to avoid that it
becomes an active constraint. Selecting an appropriate m is an iterative
method for a problem and can increase the computational intensiveness of
the big-m based MIQP formulations. In such cases, one can use indica-
tor constraints in MIQP problem to set the columns in H directly to zero,
when σj = 0. This can be done by replacing the constraints in (4.19b) with
indicator constraints as

indicator constraints : σj = 0 =⇒








h1j
h2j
...

hnuj







= 0nu×1 ∀j ∈ 1, 2, · · · , ny

(4.20)
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where 0 is a column vector of zeros. For MIQP, theoretically, indicator con-
straint approach (3.28) would be faster than using big-m approach (3.27c).
This is because in MIQP, indicator constraint approach (3.28) solves an
equality constrained QP at each node, whereas big-m approach (3.27c)
solves an inequality constrained QP.
We provide examples on how to formulate Pσδ = s. For

H =

[
0 h12 0 h14 h15
0 h22 0 h24 h25

]

The resulting constraints can be written with

P =





0 1 0 0 0
0 0 0 1 0
0 0 0 0 1



 , s =





1
1
1





4.4.2 CV as combinations of a fewer measurement subsets
with the particular structure (Problem 4.4)

This is the case where we have a structured H and do not want to use all
measurements. This is an extension of Problem 4.3, so here only convex
approximation based formulations are studied. The idea is to use quadratic
programming with convex approximations (Problem 4.3) and add to it ad-
ditional mixed integer constraints to deal the measurement selection. To
describe these mixed integer constraints suitably, we complement each mea-

surement with a binary variable. Let σδ =
[
σ1 σ2 . . . σny

]T
,σj ∈

{0, 1}, be the ny binary variables vector. σj is used to represent the pres-
ence or not of the jth candidate measurement (jth column in H matrix) of
a process plant. σj = 0 implies hij = 0; ∀i = 1, 2, . . . , nu in H. This is
the case where we do not want to use all measurements and the mixed inte-
ger constraints are formulated using the standard big-m approach (Hooker
and Osorio, 1999). The m value should be chosen suitably in these big-m
approaches.

Convex approximation method 1: Matching the elements in HGy

to J
1/2
uu with measurement subsets

It is easy to extend the problem formulation in (4.9) to find CV as best com-
binations of a fewer measurements with particular structured H by adding
big-m constraints (4.19b) to (4.14). A few more constraints such as select-
ing nk measurements from a block k, where nuk

and nyk are the number
of inputs and measurements in the block k, (i.e.

∑

k nuk
= nu;

∑

k nyk =
ny;
∑

k nk = n), can be formulated by appropriate modification of Pσδ = s.
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Convex approximation method 2: Relaxing the equality constraint

to HGy ≤ J
1/2
uu with measurement subsets

It is easy to extend the problem formulation (4.17) to find CV as best
combinations of a fewer measurements with particular structured H by
adding big-m constraints (4.19b) to (4.16). A few more constraints such
as selecting nk measurements from a block k, where nuk

and nyk are the
number of inputs and measurements in the block k, (i.e.

∑

k nuk
= nu;

∑

k nyk = ny;
∑

k nk = n), can be formulated by appropriate modification
of Pσδ = s.

4.5 Case studies

4.5.1 Random tests

The main purpose of the random tests is to see how well the proposed
methods are performing in finding a local minimum for the non-convex
optimization (4.9) (Problem 4.3). We consider a process with 2 inputs, 6
measurements and 3 disturbances to find a block diagonal H.

H =

[
h11 h12 h13 0 0 0
0 0 0 h24 h25 h26

]

For illustration, out of 1000 random cases, we present a typical case with

G
y

=















1.5815 0.7408

0.2926 −0.8407

−1.1876 −0.3495

1.0759 0.0296

−1.2974 1.9524

−0.1218 0.4590















,G
y

d
=















−0.3993 0.2406 0.6326

−0.2254 −0.0946 1.9033

−0.2803 0.7932 −1.1600

1.3067 0.9594 −0.3473

−0.2844 1.0871 −1.6951

−0.7917 0.6472 0.9194















,

,

Juu =

[

7.2120 −0.9842

−0.9842 0.9595

]

,Jud =

[

1.3803 0.7609 −0.2084

−0.9415 0.2379 0.0247

]

Wd =





0.5074 0 0

0 0.3662 0

0 0 0.2266



 ,Wn =















0.0535 0 0 0 0 0

0 0.0290 0 0 0 0

0 0 0.0068 0 0 0

0 0 0 0.0085 0 0

0 0 0 0 0.0068 0

0 0 0 0 0 0.0410















The results for the convex approximation methods 1, 2 and 3 with block
diagonal H are denoted by L1, L2 and L3. The minimum loss with 10 ran-
dom initial guesses is denoted by L4. The solutions of convex approxima-
tion methods are given as initial guesses to NLP to find the local optimums
L∗
1, L

∗
2 and L∗

3. The best solution of non-convex problem using NLP solver
(fmincon in Matlab R2009a) with 10 random initial guesses is denoted by
L∗
4. In addition, the best local minimum is denoted by L∗

local, which is the
minimum of L∗

1, L
∗
2, L

∗
3 and L∗

4. For the typical case all the three methods
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Table 4.1: Performance of proposed convex approximation methods on a
illustrative random case

Random case Convex approximation methods Original non-convex problem
1 2 3 4 (best of 10 initial guesses)

Original (Li) 0.1287 0.1313 0.1328 0.8274
After re-optimization (L∗

i ) 0.1136 0.1136 0.1136 0.1136

Table 4.2: Performance (% of locating local minimum) of proposed three
convex approximation methods on 1000 random cases

Random cases (1000) Convex approximation methods Original non-convex problem
1 2 3 4 (best of 10 initial guesses)

Original (Li) 54% (5.9215†) 5% (17.3463) 41% (6.5061) 0% (19.5423)
*After re-optimization (L∗

i ) 82% (0.1800††) 75% (0.2276) 77% (0.1926) 12 % (0.0172)

*Sum greater than 100% because methods are converging to same local
optimum after reoptimization in many cases
L∗
local = min(L∗

1, L
∗
2, L

∗
3, L

∗
4)

Average absolute deviations from best local minimum
∑N

i=1

(
Li−L∗

local

N

)

is

shown in the brackets
† 410 random cases are 0.1 magnitude away from best local optimum
†† 900 random cases are 0.1 magnitude away from best local optimum

converge to same local solution (Table 4.1). From Table 4.1, the convex
approximation method 1 performs better before re-optimization and gives
a solution close to the best local solution.

The analysis is repeated for N = 1000 random cases and the results
are tabulated (Table 4.2). Later, NLP is solved with the convex approxi-
mation methods solution as initial guess (4.9) and the percentages of the
absolute deviation from best local minimum L∗

local within 0.001 tolerance are
reported. The numbers in the brackets are the average absolute deviations,
∑N

i=1

(
Li−L∗

local

N

)

, of the methods from the best local optimum. From Table

4.2 and based on the average relative deviation the convex approximation
method 1 is the best and when not best it is still not “poor”. Even though
convex approximation method 1 is better, we cannot discard the other two
methods as the other two can also locate a local optimum in few cases.
Overall, the proposed methods can be used to find reasonable initial guess
for the NLP (Problem 4.3) to arrive at better solutions even if the absolute
deviation is significantly high.
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4.5.2 Evaporator case study

The main purpose of case study is to evaluate the convex approximation
based MIQP methods in Section 4.4.2 for particular structured H (Problem
4.4). We consider the evaporator case study (Newell and Lee, 1989) (Figure
4.3) as modified by (Kariwala et al., 2008). The process has 2 inputs and
10 candidate measurements and 3 disturbances. Candidate measurements
y and inputs u are

y = [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1]
T

u = [F200 F1]
T

d = [X1 T1 T200]
T

Note that inputs u are also included in measurements y. The economic ob-
jective is to maximize the operating profit [$/h], formulated as minimization
of the negative profit (Kariwala et al., 2008).

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (4.21)

The objective in self-optimizing control is to find optimal CV that min-
imize the loss, L = J(u,d) − Jopt(d), in the presence of disturbances
and implementation errors. The measurements associated to evaporator
are {T2, F2, F100, F3, F1} and the measurements associated to the condenser
and separator units are {P2, T3, T201, F5, F200}. For the case studies M =

J
1/2
uu (HGy)−1HY and loss is evaluated as L = 1

2‖M‖2F . The matrices re-
quired for (4.6) are (Kariwala et al., 2008)

G
y

=































−0.0930 11.6780

−0.0520 6.5590

−0.0470 5.9210

0 0.1410

−0.0010 1.1150

−0.0940 2.1700

−0.0320 6.5940

0 0.8590

1.0000 0

0 1.0000































,G
y

d
=































−3.6260 0 1.9720

−2.0360 0 1.1080

−1.8380 0 1.0000

0.2670 0 0

−0.3170 −0.0180 0.0200

−0.6740 0 1.0000

−2.2530 −0.0660 0.6730

−0.2670 0 0

0 0 0

0 0 0































,

,

Juu =

[

0.0060 −0.1330

−0.1330 16.7370

]

,Jud =

[

0.0230 0 −0.0010

−158.3730 −1.1610 1.4840

]

, Wd =





0.25 0 0

0 8 0

0 0 5





Wn =































1.285 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0.0270 0 0 0 0 0 0

0 0 0 0 0.1890 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0.4940 0 0 0

0 0 0 0 0 0 0 0.1630 0 0

0 0 0 0 0 0 0 0 4.3550 0

0 0 0 0 0 0 0 0 0 0.1890
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Figure 4.3: The evaporator system
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Table 4.3: Comparison of proposed methods with the methods of Heldt
(2010)

No. Meas Disjoint meas. sets Structure
c′s from Convex approximation methods c′s from (Heldt, 2010)

1 2 3

4 {F2 F100}, {F200 F1}
c1 = −6.259F2 + F100
c2 = F200 − 21.723F1

c1 = −6.259F2 + F100
c2 = F200 − 21.723F1

c1 = −7.904F2 + F100
c2 = F200 − 128.004F1

c1 = −6.27F2 + F100
c2 = F200 − 23.3F1

Loss 1
2‖M‖2F 11.864 11.864 1458.176 11.907

4 {F3}, {T2 T3 T201}
c1 = F3

c2 = T2 + 0.894T3 − 1.313T201

c1 = F3

c2 = T2 + 0.894T3 − 1.313T201

c1 = NaN
c2 = NaN

c1 = F3

c2 = 0.36T2 + 0.33T3 + 0.87T201

Loss 1
2‖M‖2F 60.367 60.367 NaN 62.378

NaN - not a number;

We benchmark/compare the performance of the proposed convex ap-
proximation methods with the results reported in (Heldt, 2010) for the
reported block diagonal H structures for this evaporator case study (Table
4.3). From Table 4.3, it can be seen the proposed convex approximation
methods 1 and 2 are comparable to the methods reported (Heldt, 2010).
For the solution of method 3, the HGy matrix does not have a full rank
and results in NaN (Not a Number).

We study Problems 4.2 and 4.4 to find c′s as combinations of

(i) Best subset of measurements (Problem 4.2): An MIQP is set up for
Problem 4.2 for this evaporator case study (4.19) with structural con-
straints to select measurements from different process units. The struc-
tural constraints are to select n measurements, ⌊n/2⌋ number of mea-
surements should be selected from the evaporator measurements and
the rest of the measurements should be selected from the condenser
and separator units measurements. This is the full H case with the
following structural constraints. For illustration

(a) to select 2 measurements, ⌊n/2⌋ = 1 measurement is from the
evaporator measurement set and other measurement is from the
condenser and separator measurement set.

(b) to select 5 measurements, ⌊n/2⌋ = 2 measurements are from the
evaporator measurement set and other 3 measurements are from
the condenser and separator measurement set.

The IBM ILOG Optimizer CPLEX solver is used to solve the MIQP
problem (4.19) to find the CV with m = 200. The minimized loss as a
function of number of measurements used between 2 and 10 is plotted
in Figure 4.4.

(ii) Disjoint measurement sets with a fewer measurements (Problem 4.4):
For this evaporator case study, two disjoint measurement subsets are



96 Convex approximations for optimal CV with structured H

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

No. of measurements used (n)

Lo
ss

 1
/2

||M
||

F2

 

 

full H
Convex relaxation method 1
Convex relaxation method 2

Figure 4.4: Evaporator case study: loss vs the number of included measure-
ments (n) for (i) full H, (ii) block diagonal H with convex approximation
method 1, (iii) block diagonal H with convex approximation method 2
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evaporator measurements {T2, F2, F100, F3, F1}, condenser and separa-
tor units measurements {P2, T3, T201, F5, F200}. This is block diagonal
H (4.4) with c1 as combination of measurements in the evaporator
unit and c2 as combination of measurements in the condenser and sep-
arator units and is desirable mainly for dynamic reasons. The block
diagonal H for this case is

H =

[
0 h12 0 h14 h15 0 h17 0 0 h110
h21 0 h23 0 0 h26 0 h28 h29 0

]

In addition to the disjoint measurement sets constraints, the following
structural constraints are also incorporated. To select n number of
measurements, ⌊n/2⌋ number of measurements should be selected from
the evaporator measurements and the rest of the measurements should
be selected from the condenser and separator units measurements; for
illustration

(a) to select 2 measurements, ⌊n/2⌋ = 1 measurement is from evapo-
rator measurement set and other 1 measurement is from condenser
and separator measurement set.

(b) to select 5 measurements, ⌊n/2⌋ = 2 measurements are from the
evaporator measurement set and other 3 measurements are from
the condenser and separator measurement set.

The convex approximation methods 1 and 2 are formulated for Problem
4.4 with block diagonal H and the above structural constraints with m =
200, b = 100 in big-m constraints as described in Section 4.4.2. IBM ILOG
Optimizer CPLEX solver is used for MIQP solution. The minimized loss
with the number of measurements used between 2 and 10 are plotted in
Figure 4.4. From the Figure 4.4, it can be seen that the loss with the convex
approximation methods 1 and 2 for block diagonal H for subset size 6 and
above are closer to full H than for the subset size from 2 to 5. Note that
the convex approximation methods 1 and 2 give exactly the same results for
this evaporator case study, but this may not be true for all the problems.

From the Figure 4.4, the loss ‖J
1/2
uu (HGy)−1(HY)||F behaves irregularly,

that is for n = 5 loss is higher than for n = 4. This is because we are
minimizing the convex formulation in (4.16) and the ‖HY‖F is smaller for
n = 5 than n = 4 but the loss is higher. The optimal controlled variables
for full H and block diagonal H with convex approximation methods 1 and
2 with their associated loss and computational times to solve MIQP using
Windows XP SP2 notebook with Intel R©CoreTM Duo Processor T7250 (2.00
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Table 4.4: Evaporator case study: the optimal measurements c′s with their
associated losses and computational times

Meas Structure
Full H Block diagonal H

Convex approximation method 1 Convex approximation method 2

2 CV
c1 = F3

c2 = F200

c1 = T2

c2 = T201

c1 = T2

c2 = T201

Loss 1
2‖M‖2F 56.026 65.324∗ 65.324∗

CPU time 0.015 0.013 0.009

3 CV
c1 = F2 − 0.007F200

c2 = F5 − 0.037F200

c1 = T2

c2 = F5 − 0.038F200

c1 = T2

c2 = F5 − 0.038F200

Loss 1
2‖M‖2F 17.737 58.655∗∗ 58.655∗∗

CPU time 0.014 0.018 0.014

4 CV
c1 = F2 − 0.001F3 − 0.007F200

c2 = T201 − 1.8F3 + 0.457F200

c1 = −6.259F2 + F100

c2 = F5 − 0.039F200

c1 = −6.259F2 + F100

c2 = F5 − 0.039F200

Loss 1
2‖M‖2F 9.481 11.935∗∗ 11.935∗∗

CPU time 0.086 0.096 0.062

5 CV
c1 = F2 + 0.0005F3 + 0.105F5 − 0.012F200

c2 = T201 − 2.046F3 − 13.275F5 + 1.028F200

c1 = P2 + 117.795F5 − 4.945F200

c2 = F2 − 0.032F3

c1 = P2 + 117.795F5 − 4.945F200

c2 = F2 − 0.032F3

Loss 1
2‖M‖2F 8.615 31.748∗∗ 31.748∗∗

CPU time 0.028 0.068 0.036

10 CV
c1 = f(y)
c2 = f(y)

c1 = f(y)
c2 = f(y)

c1 = f(y)
c2 = f(y)

Loss 1
2‖M‖2F 7.550 9.245∗∗ 9.245∗∗

CPU time 0.001 0.008 0.001

∗ clearly not optimal because with nu measurements, all structures of H
must give same solution
∗∗ are the convex approximations solutions to structured H

GHz, 2M Cache, 800 MHz FSB) using MATLAB R©R2009a are tabulated
in Table 4.4. In conclusion, for the evaporator case study, the proposed
convex approximation based MIQP methods give reasonably good upper
bounds for CV with block diagonal H structure.

4.5.3 Distillation case study

This case study is included to apply the methods of finding structured H
with fewer measurements (Section 4.4.2) on a case with large number of
measurements. We considered particular structures as block diagonal H
(4.4) and triangular H (4.5). We consider indirect composition control of
a binary distillation column case study with 41 stages (Skogestad, 1997;
Hori and Skogestad, 2008) and reflux (L) and boil up (V) as the remain-
ing unconstrained steady state degrees of freedom (u). Stage numbers are
counted from bottom to top. The main disturbances are in feed flow rate
(F ), feed composition (zF ) and vapor fraction (qF ), which can vary between
1 ± 0.2, 0.5 ± 0.1 and 1 ± 0.1, respectively. As online composition mea-
surements are assumed unavailable, we use stage temperatures inside the
column to control the compositions indirectly (Hori and Skogestad, 2008).
The boiling points difference between light key component (L) and heavy
key component (H) is 10 oC. Then temperature Ti (

oC) on each stage i is
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calculated as a simple linear function of the liquid composition xi on each
stage (Skogestad, 1997).

Ti = 0xi + 10(1 − xi) (4.22)

The candidate measurements are the 41 stage temperatures that are mea-
sured with an accuracy of ±0.5oC. Note that we do not include the inputs
(flows L and V) in the candidate measurements for this case study. The
cost function J for the indirect composition control problem is

J =

(

xHtop − xHtop,s

xHtop,s

)2

+

(

xLbtm − xLbtm,s

xLbtm,s

)2

(4.23)

where J is the relative steady state composition deviation and xHtop, x
L
btm

denote the heavy key component (H) composition in top product, light key
component (L) composition in bottom product. The specification or set
point value is denoted with subscript ‘s’.

MIQP problems for Problem 4.2 (4.19) and convex approximations meth-
ods (Section 4.4.2) for Problem 4.4 for block diagonal H and triangular H
as particular structures are formulated as described in Section 4.4. For this
case study, m = 2, b = 100 are used for the big-m constraints.

Measurements selection problems (Problem 4.2)

The optimal measurements selection (4.19) problem is formulated with ad-
ditional structural constraints. The additional constraints are to select n
number of measurements, ⌊n/2⌋ number of measurements from top part
{21 to 41} and rest of the measurements from any stages {1 to 20}; for
illustration

(i) to select 2 measurements, ⌊n/2⌋ = 1 should be selected from top part
and the other from bottom part of the column

(ii) to select 9 measurements, ⌊n/2⌋ = 4 should be selected from top part
and the rest from bottom part of the column

The formulated MIQP problem is solved on Windows XP SP2 notebook
with Intel R©CoreTM Duo Processor T7250 (2.00 GHz, 2M Cache, 800 MHz
FSB) using MATLAB R©R2009a using IBM ILOG Optimizer CPLEX solver
to find 2 CV as the optimal subset combinations of 2 to 41 stage tempera-
tures. The minimized loss as a function of the number of used measurements
(n) is shown in both Figure 4.6 and Figure 4.8.
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Figure 4.5: Distillation column using LV-configuration
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Figure 4.6: The loss vs. the number of included measurements (n) for (i)
full H, (ii) block diagonal H with convex approximation method 1, (iii)
block diagonal H with convex approximation method 2

.

The optimal controlled variables (measurement combination matrix H)
for full H with 2, 3, 4 and 41 measurements are shown in Table 4.5. For
the case with 2 measurements, we just give the measurements, and not the
combination, because we can always choose the D matrix to make H = I
(identity). For the case with 3 and 4 measurements, we use the degrees of
freedom in D to make selected elements in H equal to 1.

Block diagonal H

The block diagonal H (4.4) structure is desirable mainly for dynamic rea-
sons. In this structure one combined measurement c1 is selected from the
top section (stages 21 to 41) and one combined measurement c2 is selected
from the bottom section (stages 1 to 20). In addition structural constraints
such as, to select n number of measurements, ⌊n/2⌋ number of measure-
ments from top stages {21 to 41} and rest of the measurements from bottom
stages {1 to 20} are included; for illustration

(i) to select 2 measurements, ⌊n/2⌋ = 1 should be selected from top part
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Table 4.5: Distillation case study: the self optimizing variables c as (i) full
H (ii) triangular H (iii) block diagonal H with their associated losses

Meas Structure
Full H Triangular H Block diagonal H

Convex approximation method 1 Convex approximation method 2 Convex approximation method 1 Convex approximation method 2

2 CV
c1 = T12

c2 = T30

c1 = T12

c2 = T30

c1 = T12

c2 = T30

c1 = T12

c2 = T29

c1 = T12

c2 = T29

Loss 1
2‖M‖2F 0.548 0.548 0.548 0.553∗ 0.553∗

3 CV
c1 = −0.0369T12 + 0.6449T30 + 0.6572T31

c2 = −1.2500T12 + 0.2051T30 + 0.1537T31

c1 = T30 + 0.9898T31

c2 = T11 + 0.7365T30 + 0.7812T31

c1 = T30 + 0.9887T31

c2 = T11 + 0.7365T30 + 0.7812T31

c1 = 0.63T30 + 0.6229T31

c2 = 0.9675T12

c1 = 0.63T30 + 0.6229T31

c2 = 0.9675T12

Loss 1
2‖M‖2F 0.443 0.464∗∗ 0.464∗∗† 0.443∗∗ 0.443∗∗

4 CV
c1 = 0.01T11 − 0.0460T12 + 0.6450T30 + 0.6574T31

c2 = −0.6576T11 − 0.6548T12 + 0.2011T30 + 0.1413T31

c1 = 0.6301T30 + 0.6237T31

c2 = −0.3463T10 − 0.3484T11 − 0.2390T30 − 0.2680T31

c1 = 0.6300T30 + 0.6229T31

c2 = −0.3463T10 − 0.3484T11 − 0.2390T30 − 0.2680T31

c1 = 0.63T30 + 0.6229T31

c2 = −0.5151T11 − 0.5110T12

c1 = 0.63T30 + 0.6229T31

c2 = −0.5151T11 − 0.5110T12

Loss 1
2‖M‖2F 0.344 0.353∗∗† 0.353∗∗† 0.344† 0.344†

41 CV
c1 = f(T1, T2, . . . , T41)
c2 = f(T1, T2, . . . , T41)

c1 = f(T21, T2, . . . , T41)
c2 = f(T1, T2, . . . , T41)

c1 = f(T21, T22, . . . , T41

c2 = f(T1, T2, . . . , T41)
c1 = f(T21, T22, . . . , T41)
c2 = f(T1, T2, . . . , T20)

c1 = f(T21, T22, . . . , T41)
c2 = f(T1, T2, . . . , T20)

Loss 1
2‖M‖2F 0.081 0.094† 0.141† 0.105† 0.127†

∗ clearly not optimal because with nu measurements all structures of H
must give same solution
∗∗ clearly not optimal because optimal solution with triangular H is at
least as good as block diagonal H
† Small differences in the optimal solution in convex approximation
methods 1 and 2 for triangular H and block diagonal H
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Figure 4.7: Distillation column case study: CPU time requirement for com-
putations for (i) full H, (ii) block diagonal H with convex approximation
method 1, (iii) block diagonal H with convex approximation method 2 in
Figure 4.6

.
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and the other from bottom part of the column

(ii) to select 9 measurements, ⌊n/2⌋ = 4 should be selected from top part
and the rest from bottom part of the column

The minimized loss associated to disjoint H (4.4) and structural con-
straints with the number of included measurements (n) is shown in Figure
4.6. To highlight the small differences in the solutions obtained in convex
approximation methods 1 and 2, semi log plot is used. The loss in terms
of the relative composition deviation (4.23), decreases as the number of in-
cluded measurements increases from 2 to 41. From Figure 4.6, we see that
the losses with the particular structures are very close to the loss with c′s
as combinations of all the included measurements. For each number of mea-
surements, the actual measurements set is obtained as part of the MIQP
solution.

The optimal controlled variables for n = 2, 3, 4 and 41 measurements
are shown in Table 4.5. For the case with 2 measurements, we just give the
measurements, and not the combination, because we can always choose the
D matrix to make H = I (identity). For the case with 3 and 4 measure-
ments, we use the degrees of freedom in D to make selected elements in H
equal to 1.

The computational time required to solve the MIQP using a Windows
XP SP2 notebook with Intel R©CoreTM Duo Processor T7250 (2.00 GHz,
2M Cache, 800 MHz FSB) using MATLAB R©R2009a to find the optimal
H with full, decentralized (4.4) in convex approximation methods 1 and 2
for each subset size are plotted in in Figure 4.7. The computational time
taken for block diagonal H (4.4) with convex approximation method 2 is 2.5
and 2.6 orders of magnitude faster than full H and convex approximation
method 1, respectively.

Triangular H

The triangular H (4.5) is to obtain CV, where c1 is selected from top stages
temperatures and c2 is selected from all stages temperatures. Triangular H
is dynamically desirable to avoid the large time delays between c1 and L
that can arise by including the bottom tray temperatures in c1. In addition
to the triangular H structure, the following structural constraints are also
incorporated. To select n number of measurements, ⌊n/2⌋ number of mea-
surements from top stages {21 to 41} and rest of the measurements from
any stages {1 to 41}; for illustration
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(i) to select 2 measurements, ⌊n/2⌋ = 1 should be selected from top part
and the other from any part of the column

(ii) to select 9 measurements, ⌊n/2⌋ = 4 should be selected from top part
and the rest from any part of the column

The minimized loss associated to triangular H (4.5) by including the
structural constraints with number of measurements (n) included is shown
in Figure 4.8. Figure 4.8 show that the minimized loss in terms of the
relative composition deviation (4.23) decreases as the number of included
measurements increases from 2 to 41. For each number of measurements, the
actual measurements set is determined as part of the MIQP solution. Semi
log plot is used to highlight the small differences in the solutions obtained in
convex approximation methods 1 and 2. The loss decreases as the number of
measurements increases from 2 to 41. The loss with triangular H for n = 5
is higher than for n = 4. The reason is that we are only minimizing the
convex formulation (4.16) for the triangular H structure and at the optimal
solution, ‖HY‖2F is smaller for triangular H for n = 5 than n = 4 but the

original loss ‖J
1/2
uu (HGy)−1HY‖2F is higher for n = 5 than n = 4. From

Figure 4.8, we see that the losses with the triangular H in both convex
approximation methods 1 and 2 are very close to the loss with full H.

The actual optimal controlled variables (measurement combination H)
for the cases with 2, 3, 4 and 41 measurements for both convex approxima-
tion methods 1 and 2 for triangular H are also reported (Table 4.5). For
the case with 2 measurements, we just give the measurement, and not the
combination, because we can always choose the D matrix to make H = I
(identity). For the case with 3 and 4 measurements, we use the degrees of
freedom in D to make selected elements in H equal to 1.

The computational time required to solve MIQP using Windows XP SP2
notebook with Intel R©CoreTM Duo Processor T7250 (2.00 GHz, 2M Cache,
800 MHz FSB) using MATLAB R©R2009a in finding full H, triangular H
(4.5) with convex approximation methods 1 and 2 are shown in Figure 4.9.
The computational times are almost equivalent for full H, triangular H in
convex approximation methods 1 and 2.

For the case with best nu independent measurements all the structures
should give same optimal set. The proposed methods for full H and trian-
gular H in (4.16) gave optimal measurement set {T12, T30}, but for block
diagonal H (4.4) the optimal measurement set {T12, T29} found is not op-
timal. The reason for this is the sub optimality of the proposed convex
approximation methods. The loss with particular structure as triangular H
should at least be as good as block diagonal H, but in Table 4.5 the loss with
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Figure 4.8: The loss vs. the number of included measurements (n) for (i) full
H, (ii) triangular H with convex approximation method 1, (iii) triangular
H with convex approximation method 2
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Figure 4.9: Distillation column case study: CPU time requirement for com-
putations for (i) fullH, (ii) triangularH with convex approximation method
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.
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triangular H is higher than block diagonal H case. The reason is that we
are only minimizing the convex formulation (4.16) for the given H structure
and at the optimal solution, ‖HY‖2F is smaller for triangular H than block

diagonal H, but when we evaluate the original loss ‖J
1/2
uu (HGy)−1HY‖2F

the block diagonal H has smaller loss.

Interestingly, for the measurement subset size 3 and 4, the optimal mea-
surement sets are same for both full H and block diagonal H cases in both
convex approximation methods 1 and 2 (Table 4.5). However, since we
are restricted in how we can combine measurements in the decentralized
case, there is a small difference in the associated losses. In conclusion con-
vex approximation methods for structured H problems are observed to give
practically acceptable upper bounds for distillation column case study.

We include open loop transient response for a step change to highlight
the advantages of controllability and dynamics for decentralized H over full
H. The response with controlled variables as combination of 3 temperature
measurements for a step change of +5% in V for full H (c1 = −0.0369T12 +
0.6449T30+0.6572T31 , c2 = −1.2500T12+0.2051T30+0.1537T31) and decen-
tralized H (c1 = 0.63T30 + 0.6229T31 , c2 = 0.9675T12) are shown in Figure
4.10 and 4.11. For full H, the transient response may have lead-lag behavior
as seen for c2 in Figure 4.10, which may be difficult to control. For a change
in V, the lead-lag behavior in c2 occur as the measurements of bottom sec-
tion with faster dynamics are combined with measurements of top section
with slower dynamics. For decentralized H, the lead-lag behavior may be
eliminated as seen in Figure 4.11 as we combine measurements from only
one section and the decentralized H may inherit better controllability and
dynamic properties.

4.6 Conclusions

The optimal CV selection in self-optimizing control, c = Hy, as measure-
ment combinations that minimize the loss from the optimal operation is
given. For ease of implementation and better dynamic controllability, we
included particular structures in H in self-optimizing control and these form
non-convex problems. We presented a few new ideas and two convex ap-
proximation methods for structured H problems in self-optimizing control
to find practically significant upper bounds. The proposed convex approx-
imation methods are extended to find optimal fewer measurements with
MIQP formulations. Both of the proposed convex approximation methods
are observed to provide reasonably good upper bounds for the true optimal
solution in the considered block diagonal H and triangular H structures for
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Figure 4.10: Transient response with +5% step change in V for c1 =
−0.0369T12+0.6449T30+0.6572T31, c2 = −1.2500T12+0.2051T30+0.1537T31

as combination of 3 temperature measurements with full H
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evaporator and distillation column case studies.
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Chapter 5

Quantitative methods for
Regulatory control layer
selection

Based on the paper submitted for publication in
Journal of Process Control

In this paper, we extend the self-optimizing control ideas to find optimal
controlled variables in the regulatory layer. The regulatory layer is designed
to facilitate stable operation, to regulate and to keep the operation in the
linear operating range and its performance is here quantified using the state
drift criterion. Quantitative method for the regulatory layer selection with
one, two or more closed loops is proposed to minimize the drift in states.
The proposed quantitative methods are evaluated on two distillation column
case studies.

5.1 Introduction

The plantwide control system for the overall plant is in most cases organized
in a hierarchical structure (Figure 5.1), based on time scale separation be-
tween the layers. As shown in Figure 5.1, the control layer is usually divided
in two parts. The main task of the upper slower “supervisory” layer is to
keep the “economic” or primary controlled variables CV1 close to their eco-
nomic optimal set points.

J1 = ‖CV1 − CV1s‖
2 (5.1)
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Here, the controlled variables are a subset or combination of the measure-
ments y, and usually we can write CV1 = H1y, where H1 is a real-valued
matrix, which generally is selected based on economics.

On the other hand, the task of the lower faster “regulatory” layer is
to avoid that the process drifts too far away from its desired steady state.
More specifically, it should stabilize any unstable modes, provide for local
(fast) disturbance rejection and keep the operation in the linear operating
range. The controlled variables in the regulatory layer are CV2 = H2y,
where H2 is a real-valued matrix, and the selection of H2 is based on the
arguments related to “stabilization” and disturbance rejection.

Ideally, we would like to have a tool that based on a process model,
automatically selects the optimal structure of the regulatory control layer,
including the controlled variables (CV2) and the pairing with manipulated
variables (usually valves). However, this requires a detailed dynamic model
and a carefully defined problem that also includes economics. Perkins and
co-workers (Narraway and Perkins, 1993, 1994; Heath et al., 2000; Kookos,
2011) and others (Hamid et al., 2010) suggested to formulate a mixed-integer
nonlinear programming (MINLP) problem which involves also finding the
optimal controller for the selected structure. Because of the combinatorial
nature this is very time consuming and generally global optimality cannot
be guaranteed.

In this paper, we focus on the selection of controlled variables CV2 for
the regulatory control layer, and we will quantify the regulatory objectives
in terms of a scalar function J2, which is the weighted state drift away from
the desired nominal point,

J2 = ‖Wx‖22 (5.2)

Here, W is a weighting matrix and x are the states. More precisely, we
should write ∆x, because x denotes the deviation from the nominal value
of the state, but we usually drop the ∆ to simplify notation. Wx is a
vector, which generally is a function of time or frequency. Many norms
may be used, but we will consider the 2-norm where x(jω) is evaluated at
a selected frequency ω. We will in the application consider steady-state,
ω = 0.

Another objective is that the regulatory layer should be “simple”, and
we will quantify this by the number of loops that need to be closed, that
is, by the number of physical degrees of freedom (usually valves) that are
used by the regulatory layer. This can be related to the partial control idea,
where we control the process reasonably well with only a subset of process
variables (Shinnar, 1981; Kothare et al., 2000).

One may question the division of the control layer into a supervisory
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(economic) and regulatory (stabilizing) layer, but this paradigm is widely
used and is the basis for this paper. The main justification is that the two
tasks of stabilization and optimal operation are fundamentally different and
also that trying to do both at the same time is much more complex as has
limited benefit.

This paper focuses on selecting controlled variables (CV2) in the regula-
tory layer. Another important decision in the regulatory layer is the pairing
of selected outputs (CV2) with available inputs (valves). However, this issue
is not treated in this paper because we make the simplifying assumption of
perfect control of the selected controlled variables (CV2), that is, we do not
consider how this is done. This is obviously a limitation, but on the other
hand it greatly simplifies the selection problem (CV2).

Traditionally, the regulatory layer decisions are based on heuristic meth-
ods using process insight (e.g., (Luyben, 1996) and references therein). Typ-
ical variables that are selected for control (CV2) are inventories such as liq-
uid levels, and other “sensitive” variables such as selected pressures and
temperatures. All of these variables are related to drift in the process and
thus to the state drift criterion in (5.2). For example, any accumulating
trace component will also be detected by the state drift criterion, as will
any unstable mode which gives an infinite state drift. The minimization
of weighted steady-state state drift from nominal point at steady state was
considered in the absence of measurement noise (Skogestad and Postleth-
waite, 2005; Hori et al., 2005). In this paper, we provide a justification
for looking at the steady state drift and using self-optimizing control ideas
(Skogestad, 2000; Halvorsen et al., 2003), we extend the results to the more
realistic case with measurement noise.

The rest of the paper is organized as follows: Section 5.2 provides the
justification to use state drift at steady state as a criterion for regulatory
layer. Section 5.3 describes the problem for optimal regulatory layer selec-
tion. Section 5.4 extends the self-optimizing control concepts to state drift
and various cases to find optimal H2 are described. Section 5.5 presents
evaluation on a distillation column case study with 41 stages to find regula-
tory layer with optimal CV2 as individual/combinations of measurements.
Section 5.6 is included to describe the ease of implementing the controlled
variables in dynamic simulations in practice. Section 5.7 presents evaluation
on a Kaibel column case study with 71 stages to find regulatory layer with
optimal CV2 as individual/combinations of measurements. The conclusions
are given in Section 5.8.
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Figure 5.2: State drift J2 for distillation column as a function of temperature
controller gain k

5.2 Justification for considering steady-state state

drift

To illustrate how J2(jω) = ‖Wx(jω)‖22 typically depends on frequency in
process control application, we consider a distillation column where the liq-
uid levels are controlled using the product flows, D and B. This is known
as LV-configuration, but as noted later the choice of configuration (u) does
not actually matter for the results in this paper. In Figure 5.2, the solid red
curve (k = 0) gives the expected state drift J2 as a function of frequency
with no composition or temperature control (L and V constant) for com-
bined disturbances in feed rate (F), feed composition (zF ) and feed liquid
fraction (qF ). The other curves show the effect when boil-up V is used for
temperature control

V = V0 + k(y − y0) (5.3)

for increasing value of the controller gain k. L remains constant. As k
increases, we get tight control of y temperature on stage 12, and the value
of k = 10 gives close to “perfect control”, where y(jω) = 0.

From Figure 5.2, it is clear that for a given controller gain k, the
state drift is almost constant over the frequency band from 0.0001 to 0.02
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rad/min. Also note that the state drift is reduced by a factor 27 (from 12 to
0.45) by closing the temperature loop. We conclude that for this example,
a steady state analysis for state drift alone would be sufficient.

More generally, in process control J2 = ‖Wx(jω)‖22 as a function of
frequency is often flat at lower frequencies and drops at higher frequencies
similar to Figure 5.2, which means that we often get very good results by
considering steady state (ω = 0). If J2 has a higher peak at a different
frequency, then the methods of this paper can be used to find optimal CV2

to minimize the state drift by considering the frequency corresponding to
the peak.

5.3 Minimization of state drift (Problem defini-

tion)

5.3.1 Classification of variables

• x: States (usually deviation variables)

• Wx: Weighted states, which characterizes the drift of the system away
from its steady state.

• u: Set of nu independent variables (inputs).

Note 1: In our approach, it does not really matter what these variables
are as long as they form an independent set, e.g. one may close loops
and instead introduce the new set points as the variables u. The
reason is that we assume perfect control of the selected controlled
variables and closing lower-level loops will not change the problem.

• u0: Set of nu0
physical degrees of freedom (inputs) which may or may

not be constant in the regulatory layer. For example, for a distillation
columns with given feed and given pressure, the physical degrees of
freedom are the two product flows (D,B) plus the reflux (L) and
boilup (V), that is u0 = {L, V,D,B}.

Note 2: One may select u = u0, but this is not required. In particular,
at steady state there may be degrees of freedom with no steady-state
effect and these may be eliminated (i.e., nu < nu0

) to simplify the
problem.

• ym: Set of measurements (in addition to measured or known values
of u0).
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• d: Set of disturbances

• y = [ym u0]: Combined set of measurements and physical inputs
that we consider as candidates for including in CV2, c = H2y.

• c = CV2 = H2y: Selected set of nc = nu independent controlled
variables in the regulatory layer. The selection or combination matrix
H2 is here assumed to be a constant real-valued matrix.

Note 3: Since nc = nu the specification of c will uniquely determine
u.

Note 4: Since u0 is included in the set y, controlling c = H2y also
includes open-loop and partially controlled systems.

5.3.2 Assumptions

• A linear model is used at the nominal operating point, this model may
at each frequency ω be written

x = Gx(jω)u+Gx
d(jω)d (5.4a)

y = Gy(jω)u +Gy
d(jω)d + ny (5.4b)

where Gx(jω),Gx
d(jω) and Gy(jω),Gy

d(jω) are frequency-dependent
gain matrices.

• To avoid the need to explicitly design the controller, we assume that
the selected variables in c are perfectly controlled at the frequency
ω, i.e. c(jω) = 0. At steady state (ω = 0) this is not a limitation
since perfect control can always be achieved by using integral action,
provided the system is operable in the first place. At other frequencies,
we may assume perfect control, but the feasibility of this (including
closed-loop stability) then needs to be addressed separately.

5.3.3 Problem formulation

The objective is to find what to control in the stabilizing layer,

c = H2y (5.5)

given that we want to minimize the state drift (5.2) for the expected dis-
turbances (d) and implementation error (measurement noise, ny), and that
we want to close k loops, ∀k = 1, 2, . . . , nu. This is explored in more detail
next.
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Figure 5.3: Regulatory control layer with control of variables c = H2y

In the frequency domain, the problem can be stated as follows (Figure
5.3): Assuming perfect control of the selected c (5.5), i.e. c(jω) = 0, we
want to find the optimal H2 that minimizes the state drift J2(x(jω)) for
a given frequency range ω ∈ [ωB1

, ωB2
], when there are disturbances. In

the rest of this paper, we consider steady state only (ωB1
= ωB2

= 0), but
more generally it will be the frequency range over which we need regulatory
control.

We use the self-optimizing control concepts (Skogestad, 2000; Halvorsen
et al., 2003) and we consider minimization of the loss rather than the cost,
because loss minimization can be formulated as a convex optimization prob-
lem inH2 (Alstad et al., 2009). The loss is L = J2−J2,opt(d), where J2,opt(d)
is the minimum state drift achievable with the given degrees of freedom. In
our case, this gives the same optimal H2 as minimizing the cost J2, be-
cause minimizing the state drift loss L on an average basis, e.g. using the
Frobenius norm, is exactly the same as minimizing the cost J2. In Figure
5.3, K(s) is the regulatory controller, but since we make the assumption
of perfect control (c(jω) = 0), it does not actually matter what K(s) is.
Our task is to select what to control, c = H2y, where H2 is a constant real
matrix.

We want to close as few loops as possible, that is we want to select in
c = H2y as many variables as possible from the set u0 physical degrees of
freedom (valves). Let

H2 = [Hy Hu]

c = H2y = Hyym +Huu0
(5.6)

and we want to find the best controlled variables for various possibilities for
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closing loops

• Close 0 loops: In the set c, select nc variables from the set u0 (Hy = 0,
nc columns in Hu are nonzero)

• Close 1 loop (Partial control): In the set c, select nc−1 variables from
the set u0 (one column in Hy is nonzero, the rest are zero)

• Close 2 loops (Partial control): In the set c, select nc − 2 variables
from the set u0 (two columns in Hy are nonzero, the rest are zero)

• Close k loops (Partial control): In the set c, select nu − k variables
from the set u0

• Close all nc loops: In the set c, select 0 variables from the set u0

In addition, we can have restrictions on the set c such as selecting only
single measurements (each column in H2 containing one 1 and the rest 0’s).

We can make use of mixed integer quadratic programming methods
(Yelchuru et al., 2010) or partial branch and bound methods (Kariwala
and Cao, 2010) to find optimal H2 to arrive at optimal regulatory layer
with 1, 2 and more closed loops.

5.3.4 Selection of the variables u

We have mentioned that it does not really matter what the “base” variables
u are as long as they form an independent set. Mathematically, the require-
ment of an independent set is that we can make rank(H2G

y) = nc, so that
H2G

y is invertible. It may seem surprising that it does not matter what
the variables are, and it is because we consider the frequency domain and
assume perfect control at a given frequency ω, c(jω) = 0. With given c(jω)
and given d, all other variables are then uniquely determined, including
u(jω).

To show this, let the linear model for the effect of u and d on the selected
states x and y be

y = Gyu+Gy
dd (5.7a)

x = Gxu+Gx
dd (5.7b)

c = H2y (5.7c)

with the c = 0 we find u = −(H2G
y)−1(H2G

y
d)d and with this input the

states are

x = Pdd (5.7d)
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where Pd = (Gx
d −Gx(H2G

y)−1H2G
y
d). With d given and c = 0, u and x

are uniquely determined, so Pd is independent of the choice for u. However,
we note that we must select u so that H2G

y is invertible.

5.3.5 Shifting of integrators

We just stated it does not matter what the base variables u are. Therefore,
to avoid numerical problems with poles on the jω-axis in Gy (including
integrators), one may introduce proportional controllers to shift (stabilize)
these modes. For example, one may use u = k(y−ys), where y is integrating
mode and k is proportional controller gain, and the set points ys (e.g, level
set points) are then chosen as new independent variable in the set u.

At steady state the set point ys may have no effect, for example for
liquid levels, and we may reduce the number of independent variables in u,
such that the number in u0 with this reduced base set u (e.g. u = {L, V } for
distillation). One may use the steady-state model to obtain the linearized
effect of u and the d on the original degrees of freedom in u0. For example,
a distillation column with the LV-configuration has u0 = {L, V,D,B} and
u = {L, V }. This is explained in more detail in the distillation column case
study.

5.4 Minimizing the state drift (optimal H2)

Assume we want to find the matrix H2 that minimizes at a given frequency
the state drift, J2 = ‖Wx‖22, where x is the deviation of states from the de-
sired operating point and W is the square diagonal state weighting matrix.
The selection of appropriate square weighting matrix W allows the user to
easily study the state drift in certain states only.

For a disturbance d, the input that gives minimum state drift is denoted
uopt(d). Any input u that is different from uopt(d) will result in the loss in
state drift (i.e. the deviation from the optimum state drift), which can be
defined as

L = J2(u,d)− J2,opt(uopt(d),d) (5.8)

A second order accurate Taylor expansion of the state drift gives (noting
that Ju = 0)

L = (u− uopt(d))
TJ2uu(u− uopt(d)) (5.9)

with the linear model in (5.7),

J2uu ,
∂2J2
∂u2

= 2GxTWTWGx (5.10)
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5.4.1 Finding optimal H2 for case with no noise (Previous
work)(Skogestad and Postlethwaite, 2005; Hori et al.,
2005)

In the absence of measurement noise (ny), the optimal choice for H2 when
the number of measurements ny ≥ nu + nd (Skogestad and Postlethwaite,
2005; Hori et al., 2005).

H2 = (WGx)T [WGx WGx
d ]
[
Gy Gy

d

]†
(5.11)

where W is state weighting matrix, † represents the pseudo inverse of the
matrix, .

In the following, we use newer results from self-optimizing control (Al-
stad et al., 2009; Yelchuru et al., 2010; Kariwala and Cao, 2010; Kariwala
et al., 2008) to generalize this by allowing for measurement noise, elimi-
nating the requirement ny ≥ nu + nd and allowing for CV2 as individual
measurements and not only combination as given in (5.11).

5.4.2 Loss as a function of d, ny and control policy H2

To include measurement noise, we need to quantify its expected magnitude.
Let the linear model be

y = Gyu+Gy
dWdd

′ +Wnn
y′ (5.12a)

x = Gxu+Gx
dWdd

′ (5.12b)

c = H2y (5.12c)

where the usually diagonal matrices Wd and Wn represent the magnitudes
of disturbances and measurement noises, and d′, ny′ denote normalized
disturbances and noise.

The average or expected loss resulting from keeping (5.5) at constant set

point, for a normal distributed set

[
d′

ny′

]

∈ N (0, 1) is given by (Kariwala

et al., 2008; Alstad et al., 2009)

Lavg = E(L) =
1

2
‖M2‖

2
F (5.13)

where
M2(H2) = J

1/2
2uu

(H2G
y)−1H2Y2 (5.14)

Y2 = [F2Wd Wn] ; F2 =
∂yopt

∂d
= GyJ−1

2uu
J2ud −Gy

d (5.15)

where J2ud , ∂2J2
∂u∂d = 2GxTWTWGx

d , ‖M2‖F =
√
∑

i,j M2
2
ij denotes the

Frobenius norm of the matrix M2.
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5.4.3 Optimal full H2

Finding the optimal H2 in (5.13) is a convex optimization problem for the
case where H2 is a full matrix (Alstad et al., 2009; Yelchuru et al., 2010).
For the case when Y2Y

T
2 is full rank matrix, an analytical solution for H2

is (Alstad et al., 2009)

H2
T =

(
Y2Y2

T
)−1

Gy
(

GyT
(
Y2Y2

T
)−1

Gy
)−1

J
1/2
2uu

(5.16)

However, when H2 has a particular structure, the loss minimization
(5.13) for H2 is a non-convex optimization problem (Heldt, 2010).

5.4.4 Optimal H2 with CV2 as individual measurements

The optimal H2 with CV2 as individual measurements, e.g.

H2 =

[
0 1 0 0 0 0
0 0 0 0 1 0

]

, gives an MIQP that require us to solve a

convex QP at each node. This is because we may use a “trick” where H2 is
full in the selected measurements (Yelchuru et al., 2010).

For a system where nu < nu0
(like the distillation example with nu =

nc = 2 and nu0
= 4), the regulatory layer with 0 loops closed is such a

problem and with nu0
inputs and nu steady state degrees of freedom, we

need to explore
(nu0
nc

)
possibilities. The partial control problem with 1 closed

loop is to find (5.6) with one column in Hy nonzero and nc − 1 columns in
Hu nonzero, and we need to explore

( nu0
nc−1

)(ny

1

)
possibilities. The partial

control problem with 2 closed loops is to find (5.6) with two columns in Hy

nonzero and nc−2 columns inHu nonzero, and we need to explore
( nu0
nc−2

)(
ny

2

)

possibilities. The regulatory layer with k closed loops is to find (5.6) with k
columns in Hy nonzero and nc − k columns in Hu nonzero, and we need to
explore

( nu0
nc−k

)(ny

k

)
possibilities. The regulatory layer with nc closed loops

is to find (5.6) with nc columns in Hy nonzero, and we need to explore
(ny

nu

)

possibilities. The total possibilities are
(nu0
nc

)
+
( nu0
nc−1

)(ny

1

)
+
( nu0
nc−2

)(ny

2

)
+

· · · +
( nu0
nc−k

)(ny

k

)
+ · · · +

(ny

nc

)
. For a case with nu0

= 4, nu = nc = 2, and
ny = 41, the total possibilities are 990.

In the regulatory layer with i loops closed require us solve (5.13) to find
the best CV using mixed integer quadratic programming (MIQP) (Yelchuru
et al., 2010). Hence, the regulatory layer with 0, 1, 2 and more closed loops
can be obtained by solving (nu + 1) mixed integer quadratic programming
problems. For example, for a case with nu0

= 4, nu = 2, and ny = 45, the
total MIQP problems that need to be solved are 3. Even though the number
of MIQP problems need to be solved increase with nu, the regulatory layer
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selection problem is tractable as it is an offline method. Later, depending on
the allowable state drift threshold set by the user, the minimum regulatory
layer is obtained. Generally, in the regulatory layer, CV2 are individual
measurements, if the state drift loss is very large then CV2 can be selected
as measurement combination.

5.4.5 Optimal H2 for partial control with CV2 as measure-
ment combinations

We now consider the partial regulatory control problem where we allow for
measurement combination for the controlled variables in CV2. This can be
viewed as solving (5.13) with a particular structure in H2, which is generally
a non-convex problem. For example, a partially controlled system with 3
process measurements and 2 inputs, resulting in 5 candidate measurements
in y, is

H2 =

[
h11 h12 h13 0 0
0 0 0 0 1

]

or H2 =

[
h11 h12 h13 0 0
0 0 0 1 0

]

(5.17)

To solve (5.13) with this particular structure, we propose a two step
approach which may not be optimal but which is convex. The first step is
to partition the system inputs into two sets u1 and u2 (u = {u1∪u2}) where
we keep the inputs in the set u2 ∈ u0 constant. The matrix for such a partial
control system Gy,partial ∈ R

ny×nu1 is obtained by picking the columns
associated to input set u1 and Jpartial

uu,x ∈ R
nu1

×nu1 , Jpartial
ud,x ∈ R

nu1
×nd has

elements associated to the inputs in the input set u1. The disturbance gain
matrix Gy

d ∈ R
ny×nd , disturbance magnitude matrix Wd ∈ R

nd×nd and
measurement noise magnitude matrix Wn ∈ R

ny×ny will remain the same.
The second step is to solve (5.13) with the matrices obtained in the first
step as a convex optimization problem (Yelchuru et al., 2010) to obtain

Hpartial
2 as a full matrix for the partially controlled system. For a case with

nu inputs, there are totally 2nu − 2 partially controlled systems.

As u2 ∈ u0 varies in each partial controlled system, we cannot directly
compare the losses obtained from different partial control systems. Hence,
in order to compare the losses on an equivalent basis, the loss value is
calculated for the full system with the optimal controlled variables CV partial

2

obtained for the partially controlled system and the constant inputs in u2

as the other CV2.
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5.4.6 Summary

Step 1 Define states x as the deviations from the nominal value of states
and define the weighted state drift (5.2).

Step 2 Obtain the linear gain matrices from u to y, Gy, and d to y, Gy
d

(5.7), and define the magnitudes for disturbances d and implementa-
tion errors ny as Wd and Wn. The second derivatives of the weighted
state drift with respect to u, and u and d as Juu and Jud.

Step 3 Define the state drift loss (5.13) using the matrices in Steps 1 and
2 using self-optimizing control concepts (Skogestad, 2000; Halvorsen
et al., 2003).

Step 4 Use the new results of self-optimizing control (Alstad et al., 2009;
Yelchuru et al., 2010; Kariwala and Cao, 2010; Kariwala et al., 2008) to
find an optimalH2 that minimizes (5.13) to find the optimal controlled
variables as individual measurements in the partial regulatory control
problem with one, two and more closed loops (Section 5.4.4).

Step 5 If the state drift is higher than what is acceptable, then find the
regulatory layer CV2 as combination of measurements (Section 5.4.5).

5.5 Distillation column case study

The main purpose of this case study is to illustrate the proposed methods
on a binary distillation column with 41 stages where we want to choose
best temperature loop(s) to avoid state drift. The analysis is based on
the LV-configuration (Skogestad, 1997; Hori and Skogestad, 2008), where
distillate flow (D) and bottoms flow (B) are used to control the integrating
levels (MD,MB) and reflux (L) and boilup (V) are the remaining steady-
state degrees of freedom (u) (Figure 5.4). However, note that we would
obtain identical results if we started with another configuration, e.g. the
DV-configuration.

The considered disturbances are in feed flow rate (F ), feed composition
(zF ) and feed liquid fraction (qF ), which can vary between 1± 0.2, 0.5± 0.1
and 1± 0.1, respectively. In summary, we have

u0 =







L
V
D
B







, u =

(
L
V

)

, d =





F
zF
qF



 , ym =








T1

T2
...

T41
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We assume a binary mixture with constant relative volatility α between
the components, constant pressure, no vapour hold up, equilibrium on each
stage and constant molar flows. The column has 41 stages and the feed
on stage 21. At the steady state operating point, L = 2.706 mol/min,
V = 3.206 mol/min, F = 1mol/min, zF = 0.5, qF = 1, α = 1.5, xD = 0.99,
xB = 0.01. The linearized relationship between the two base degrees of
freedom u and the four physical degrees of freedom u0 can be obtained
based on steady state mass balances (see Appendix D)

u0 = Guu+Gu
dd (5.18)

where

Gu =







1 0
0 1
−1 1
1 −1






, Gu

d =







0 0 0
0 0 0
0 0 −1
1 0 1







The boiling points difference between the light key component (L) and
heavy key component (H) is 13.5 oC. For simplicity, the temperature Ti(

oC)
on each stage i is calculated as a linear function of the liquid composition
xi (Skogestad, 1997)

Ti = 0xi + 13.5(1 − xi) (5.19)

The 41 stage temperatures (ym) and the manipulated input flows u0 =
{L, V,D,B} are taken as candidate measurements. The measurement error
for temperatures is ±0.5oC and it is ±10% for the flows. The state drift J2
in the compositions on all 41 stages is

J2 = ‖Wx‖22 (5.20)

where we select W = I
41×41 (identity matrix) to have equal weights on the

mole fraction x.
The distillation column case study has nu0

= 4 physical inputs, nu = 2
steady state degrees of freedom and ny = 45 candidate measurements. For
each i closed loops we need to solve an MIQP. With single measurements
in CV2 with 0, 1 and 2 closed loops, there are nu + 1 = 3 MIQP problems.
The MIQP problems are solved using IBM ILOG CPLEX solver in Matlab
R©R2009a on a Windows XP SP2 notebook with Intel R©CoreTM Duo Pro-
cessor T7250 (2.00 GHz, 2M Cache, 800 MHz FSB). The QP that needs to
be solved at each node in MIQP is convex and the initial conditions do not
play any role.

The presence of integrating modes requires that we first close two loops
for integrating levels (MD,MB). Next, in addition to these, we want to
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T1, T2, T3,…, T41

Tray temperatures
qF

Figure 5.4: Distillation column using LV-configuration

close loops to minimize the state drift. In general, the loss decreases as we
close more loops, but for simplicity we want to close as few loops as possible
in the regulatory layer, that is we want to select in y as many variables
as possible from the set u0. This is a multi-objective problem involving a
trade-off between the loss (magnitude of the state drift) and the number of
loops closed. There is no simple mathematical solution to such problems, so
the best is to provide the results and let the engineer make the decision. The
loss with 0 loops closed (2 flows from u0 are constant), 1 loop closed (one
flow from u0 is constant), 2 loops closed (no flows from u0 are constant) are
tabulated in Table 5.1 (upper part with 2 measurements used). From Table
5.1, the best system with zero temperature loops closed (that is with only
liquid level loops closed) is to keep {V,B} constant, with a loss 109.669.
The best single temperature loop policy is to keep L constant and control
tray temperature T18 with a much lower loss of 0.188. The best policy with
two temperature loops is to control tray temperatures T15 and T27 with a
loss of 0.026. This should be compared with the minimal achievable state
drift of 0.0204 obtained when allowing for measurement combinations. The
loss reduction by closing one loop is very large (from 109.7 to 0.188), but
the further reduction by closing two loops (from 0.188 to 0.026) is probably
not significant from a state drift J2 (regulatory) point of view. This is
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(d) Optimal two−loop policy

Figure 5.5: Distillation column state drift in the presence of disturbances
F,zF , qF : (a) optimal policy (minimum achievable state drift), (b) optimal
zero-loop policy, (c) optimal one-loop policy, (d) optimal two-loop policy.
Effect of a measurement noise on state drift is shown with + in subplots
(b),(c) and (d)

further illustrated by comparing the composition state drift profiles with an
optimal, zero-loop, one-loop and two-loop policies are shown in Figure 5.5
(a), (b), (c) and (d) in the presence of disturbances F, zF , qF , respectively.
Note that the contribution of one measurement noise is also included in
Figure 5.5 (b),(c) and (d).

We next study the effect of using temperature measurement combina-
tions. For the distillation case study, we have nu = 2 and the number of
partial control systems are 2nu − 2 = 2 for each additional measurement
and require us to solve 2nu − 2 = 2 more MIQP problems. The optimal
CV2 for the partial control systems with CV2 as combination of 3, 4, 5 and
41 measurements while closing 1, 2 loops are also tabulated in Table 5.1.
The reduction in loss with the number of measurements, when one loop,
two loops are closed is shown as a bar chart in Figure 5.6. From Table
5.1, the best single loop control CV2 with 3 measurements is to control
1.072T15 + T26 while keeping L constant. In conclusion, based on the ac-
ceptable steady state drift loss defined by the user, minimum regulatory
layer can be obtained by finding CV2 as individual measurements or mea-
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Table 5.1: Distillation column case study: the self optimizing variables c′s
as combinations of 2, 3, 4, 5, 41 measurements with their associated losses in
state drift

No. of loops closed † No. of meas. used Optimal meas. c′s Loss (J − Jopt(d)) (
1
2‖M2‖

2
F ) J = ‖Wx‖22

0 2 [V B]
c1 = V
c2 = B

109.669†† 109.690

1 2 [T18 L]
c1 = L
c2 = T17

0.188 0.209

2 2 [T15 T27]
c1 = T15

c2 = T27
0.026 0.047

1 3 [T15 T26 L]
c1 = L
c2 = 1.072T15 + T26

0.129* 0.150

2 3 [T15 T26 T28]
c1 = T15 − 0.1352T28

c2 = T26 + 1.0008T28
0.020 0.040

1 4 [T15 T16 T27 L]
c1 = L
c2 = 0.6441T15 + 0.6803T16 + T27

0.126* 0.146

2 4 [T14 T16 T26 T28]
c1 = T14 − 6.1395T26 − 6.3356T28

c2 = T16 + 6.2462T26 + 6.2744T28
0.014 0.034

1 5 [T15 T16 T26 T27 L]
c1 = L
c2 = 1.1926T15 + 1.1522T16 + 0.9836T26 + T27

0.123* 0.144

2 5 [T14 T16 T26 T27 T28]
c1 = T14 − 4.9975T26 − 5.0717T27 − 4.9813T28

c2 = T16 + 5.1013T26 + 5.0847T27 + 4.9166T28
0.011 0.032

1 41 [T1, T2, . . . , T41, L, V,D,B]
c1 = L
c2 = f(T1, T2, . . . , T41, L, V,D,B)

0.118* 0.138

2 41 [T1, T2, . . . , T41]
c1 = f(T1, T2, . . . , T41)
c2 = f(T1, T2, . . . , T41)

0.003 0.023

† In addition to two closed level loops
The loss is minimized to obtain H2

The optimal state drift Jopt(d) = 0.0204
1 loop closed : 1 c from ym, 1 c from u0

2 loops closed: 2 c from ym

The loss is minimized to obtain H2

†† Such a high value is not physical, but it follows because our linear
analysis is not appropriate when we close 0 loops
* used partial control idea to find optimal H2 in two step approach

surement combinations.

5.6 Dynamic simulations

The dynamic simulations for this distillation column alone are included
to show the ease of implementing the regulatory layer controlled variables
obtained using the methods of this paper in practice. The open loop gain
and time constants with controlled variables c1 = T27, c2 = T15 are obtained
based on transient responses of +5% steps in L and V . A Proportional
Integral (PI) controller between L and c1 with tuning parameters kc1 =
−0.5191, τI1 = 8 min and an another PI controller between V and c2 with
tuning parameters kc2 = 0.6307, τI2 = 8 min are obtained using SIMC
tunings (Skogestad, 2003) with τc = 2 min.

Dynamic simulations are performed with these settings to evaluate the
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Figure 5.7: Distillation case study: transient responses of state drift, J
with two temperature loops closed (c1 = T27, c2 = T15) with inputs L, V
for +20% disturbance in F at time 10 min, +20% disturbance in zF at time
120 min and +10% disturbance in qF at time 200 min

disturbance rejection performance with the controlled variables c1 = T27 and
c2 = T15. The disturbances are +20% disturbance in feed rate F at time
10 min, +20% disturbance in feed composition zF at time 120 min, and
+10% disturbance in feed liquid fraction qF at time 200 min are shown in
Figure 5.7. The transient responses of the state drift, J , selected controlled
variables, c1 = T27, c2 = T15, with their set points, manipulated variables,
L, V , are shown in Figure 5.7 in the presence of disturbances d.
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5.7 Kaibel column

The main purpose of the Kaibel column case study is to evaluate the pro-
posed methods on a case with more inputs and states. The Kaibel column
can separate four components into four products in a single column shell
with a single reboiler (Kaibel, 1987). The Kaibel column is an extension
of the Petlyuk column (Petlyuk et al., 1965). The capital savings in the
separation of four products with Kaibel column compared to conventional
three columns in series makes it an attractive alternative (Halvorsen and
Skogestad, 2003; Adrian et al., 2004).

The given 4-product Kaibel column arrangement separates a mixture
of methanol (A), ethanol (B), propanol (C), butanol (D) into almost pure
components. The Kaibel column is modeled using a stage-by-stage model
with the following simplifying assumptions: Constant pressure, equilibrium
stages and constant molar flows. The vapor-liquid equilibrium is modeled
using the Wilson equation. The Kaibel column is modeled with 7 sections
and we indicate the temperature measurements of each section in Figure
5.8. Sections 1 and 2 make up the prefractionator, while the main column
consists of sections 3 - 7. Each section has 10 stages and the reboiler is
counted as an additional stage, which gives Kaibel column with 71 stages
in total. Each stage has 3 compositions, 1 holdup and 1 temperature state
resulting in a total of 355 states. The economic objective function J1 is to
minimize the sum of impurities in the products.

J1 = D(1− xA,D) + S1(1− xB,S1
) + S2(1− xC,S2

) +B(1− xD,B) (5.21)

where D,S1, S2 and B are the distillate, side product 1, side product 2 and
bottom flow rates (mol/min) respectively. xi,j is mole fraction of component
i in product j.

The objective of the regulatory layer is to minimize the state drift in the
225 mole fractions of A, B and C components of the process streams (213
mole fractions for 71 trays plus 12 mole fraction states for streams L, D, S1

and S2)
J2 = ‖Wx‖2 (5.22)

where W = I
225×225 (identity matrix) to have equal weights on mole frac-

tions of A,B and C components in process streams.
The considered Kaibel column then has 6 inputs, u0 = {L,S1, S2, RL,D,B}

with 4 steady state degrees of freedom (u = {L,S1, S2, RL}) and 71 temper-
ature measurements (7 sections with each section having 10 tray tempera-
tures plus 1 temperature for reboiler). We included the 71 temperature mea-
surements and the 6 inputs as candidate measurements (y) and ny = 77. We



136 Quantitative methods for Regulatory control layer selection

assume that the temperatures are measured with an accuracy of ±1oC and
flows are measured with an accuracy of ±10%. The considered disturbances
are in vapor boil up (V), vapor split (RV ), feed flow rate (F), mole fraction of
A in feed stream (zA), mole fraction of B in feed stream (zB), mole fraction
of C in feed stream (zC), liquid fraction in feed stream (qF ), which vary be-
tween 3±0.25, 0.4±0.1, 1±0.25, 0.25±0.05, 0.25±0.05, 0.25±0.05, 0.9±0.05,
respectively. The reader is referred to Strandberg (2006) for further details.
We optimize the system for the products impurity (5.21) and we operate
the plant around that optimal operating point.

The Kaibel column has nu0
= 6 physical inputs, nu = 4 steady state de-

grees of freedom and ny = 77 candidate measurements. An MIQP needs to
be solved for each i closed loops. To obtain CV2 as individual measurements
with 0, 1, 2, 3 and 4 closed loops, we need to solve nu + 1 = 5 MIQP prob-
lems. These five MIQP problems are solved using IBM ILOG CPLEX solver
in Matlab R©R2009a on a Windows XP SP2 notebook with Intel R©CoreTM

Duo Processor T7250 (2.00 GHz, 2M Cache, 800 MHz FSB). The QP that
needs to be solved at each node in MIQP is convex and initial conditions
do not play any role.

The presence of integrating modes result in infinite state drift, so first
we close 2 loops for integrating levels (MD,MB). Next, we want to close
additional loops to minimize the state drift. The loss with 0 loops closed
(4 flows in u0 constant), 1 loop closed (3 flows in u0 constant), 2 loops
closed (2 flows in u0 constant), 3 loops closed (1 flow in u0 constant), 4
loops closed (no flows in u0 constant) are tabulated in Table 5.2. The best
measurements for 0, 1, 2, 3 and 4 loops closed are shown in Table 5.2 (upper
part with 4 measurements). From Table 5.2, the “best” system with zero
loops closed is to keep {S1, RL,D,B} constant with a loss 8018.243. The
best single-loop policy is to keep {S1, S2, RL} constant and control T56 with
a loss of 1628.773. The best two-loop policy is to keep {S1, S2} constant
and control {T13, T42} with a loss of 469.941. The best three-loop policy is
to keep S1 constant and control {T7, T39, T51} with a loss of 33.150. Finally,
the best four-loop policy is to control {T9, T31, T51, T66} with a loss of 0.089.
This should be compared with the minimal achievable state drift of 0.347
obtained when allowing for measurement combinations. The loss reduces by
every additional closed loop and the reduction ratio is very high when we
close the final (4th) loop. This is further illustrated by the composition state
drift profiles for the optimal, two-loop, three-loop and four-loop policies are
shown in Figures 5.9 (a), (b), (c) and (d).

We next study the effect of using temperature measurement combina-
tions. For Kaibel column case study, we have nu = 4 and to find CV2 as
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Figure 5.9: Kaibel column state drift in the presence of disturbances in V,
RV and F, (a) optimal policy (minimum achievable state drift), (b) optimal
two-loop policy, (c) optimal three-loop policy, (d) optimal four-loop policy.
Effect of one measurement noise on state drift is shown with + in subplots
(b), (c) and (d)

measurement combinations, the number of partial control systems (number
of MIQP problems) further increase by 2nu − 2 = 14 for every additional
measurement included to obtain CV2 as a combination. The optimal mea-
surements to find CV2 as combinations of 5, 6 and 77 measurements for 1,
2, 3 and 4 loops closed are also tabulated in Table 5.2. The reduction of
loss with number of measurements, when one loop, two loops, three loops
and four loops closed is shown as bar charts in Figures 5.10 and 5.11. From
the Table 5.2 and the acceptable steady state drift loss defined by the user,
the minimum regulatory layer can be obtained.

5.8 Conclusions

The self optimizing control concepts are extended to select optimal con-
trolled variables that minimize the state drift in the presence of distur-
bances. In process control, ‖Wx(jω)‖22 is often flat at lower frequencies
and drops at higher frequencies, so minimizing the state drift for steady-
state (ω = 0) yields good results. We presented a framework on how to use
self-optimizing control minimum loss method to minimize the state drift
to arrive at optimal regulatory layer with 1, 2 and more closed loops. The
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Table 5.2: Kaibel column: the regulatory CV2 as combinations of 4, 5, 6 and
77 measurements with their associated losses

No. of loops closed † No. of meas. used Optimal meas. Loss 1
2‖M2‖

2
F Cost J = ‖Wx‖22

0 4 [S1 RL D B] 8018.243†† 8018.590
1 4 [T56 S1 S2 RL] 1628.773 1629.121
2 4 [T15 T43 S1 S2] 469.037 469.385
3 4 [T7 T39 T51 S1] 33.150 33.497
4 4 [T9 T31 T51 T66] 0.089 0.437

1 5 [T54 T61 S1 S2 RL] 1605.107∗ 1605.455
2 5 [T8 T39 T51 S1 S2] 454.122∗ 454.470
3 5 [T9 T29 T51 T65 S1] 31.379∗ 31.727
4 5 [T9 T29 T31 T51 T66] 0.075 0.422

1 6 [T15 T39 T51 S1 S2 RL] 1603.225∗ 1603.572
2 6 [T9 T29 T51T65 S1 S2] 454.017∗ 454.364
3 6 [T9 T31 T51 T66 S1 D] 31.368∗ 31.715
4 6 [T10 T31 T51 T66 D B] 0.052 0.400

1 77 f(T1, T2, . . . , T71, L, S1, S2, RL,D,B) 1603.161∗ 1603.508
2 77 f(T1, T2, . . . , T71, L, S1, S2, RL,D,B) 453.975∗ 454.322
3 77 f(T1, T2, . . . , T71, L, S1, S2, RL,D,B) 31.319∗ 31.666
4 77 f(T1, T2, . . . , T71, L, S1, S2, RL,D,B) 0.009 0.357

† In addition to two closed level loops
The loss is minimized to obtain H2

The optimal state drift Jopt(d) = 0.347
1 loop closed : 1 c from ym, 3 c from u0

2 loops closed: 2 c from ym, 2 c from u0

3 loop closed : 3 c from ym, 1 c from u0

4 loops closed: 4 c from ym

The optimal state drift Jopt(d) = 0.347
†† Such a high value is not physical, but it follows because our linear analysis
is not appropriate when we close 0 loops
∗ used partial control system idea to find optimal H2 in to step approach
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Figure 5.10: The reduction in loss vs number of used measurements, top:
loss with one loop closed, bottom : loss with two loops closed
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proposed method to find both optimal individual and combination of mea-
surements as controlled variables was evaluated on a distillation column case
study with 41 stages and Kaibel column case study with 71 stages to arrive
at optimal regulatory layer with 1, 2 and more closed loops. We included the
dynamic simulations for the distillation column to show the ease of using
these methods in practice.
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Chapter 6

Dynamic simulations with
self optimizing controlled
variables

The purpose of this chapter is to show the ease of using measurement com-
binations c = Hy as controlled variables in dynamic simulations and same
analysis is also reported in Alstad (2005). In addition, the dynamic perfor-
mance in rejecting the process disturbances with these controlled variables
is evaluated. The dynamic simulations with individual measurements and
measurement combinations as controlled variables are also performed for a
binary distillation column case study with 41 stages.

6.1 Distillation column

The distillation column (Figure 6.1) is included to show the ease of im-
plementing measurement combinations as controlled variables in dynamic
simulations. For this distillation column case study, we consider indirect
composition control of a binary distillation column with 41 stages (Skoges-
tad, 1997; Hori and Skogestad, 2008) and reflux (L) and boil-up (V) as the
remaining unconstrained steady state degrees of freedom (u). The consid-
ered disturbances are in feed flow rate (F ), feed composition (zF ) and liquid
fraction (qF ), which can vary between 1± 0.2, 0.5± 0.1 and 1± 0.1, respec-
tively. As online composition measurements are assumed unavailable, we
use stage temperatures inside the column to control the compositions indi-
rectly. The boiling points difference between light key component (L) and
heavy key component (H) is 10 oC. We assume constant relative volatility
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T1, T2, T3,…, T41

Tray temperatures
qF

Figure 6.1: Distillation column using LV-configuration

of the components, constant pressure, no vapor hold up, equilibrium on each
stage and constant molar flow rate. Under these assumptions only mass and
component balances are included in this binary distillation column model
and temperatures are approximated as linear functions of mole fractions.
The temperature Ti (

oC) on stage i is calculated as a simple linear function
of the liquid composition xi on each stage (Skogestad, 1997).

Ti = 0xi + 10(1 − xi) (6.1)

The candidate measurements are the 41 stage temperatures which are mea-
sured with an accuracy of ±0.5oC. Note that we do not include the inputs
(flows L and V) in the candidate measurements for this example because we
would like to use only temperature combinations for control. The cost func-
tion J for the indirect composition control problem is the relative steady-
state composition deviation,

J =

(

xHtop − xHtop,s

xHtop,s

)2

+

(

xLbtm − xLbtm,s

xLbtm,s

)2

(6.2)

where xHtop and xLbtm denote the heavy key component (H) composition in
top product and light key component (L) composition in bottom product.
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Table 6.1: Distillation column: optimal measurements and optimal con-
trolled variables with loss

No. Meas c′s as combinations of measurements Loss
n 1

2‖M‖2F

2
c1 = T12

c2 = T30
0.5477

3
c1 = −0.0369T12 + 0.6449T30 + 0.6572T31

c2 = −1.2500T12 + 0.2051T30 + 0.1537T31
0.4425

4
c1 = 0.0100T11 − 0.0459T12 + 0.6450T30 + 0.6574T31

c2 = −0.6576T11 − 0.6548T12 + 0.2010T30 + 0.1413T31
0.3436

41
c1 = f(T1, T2, . . . , T41)
c2 = f(T1, T2, . . . , T41)

0.0813

The specification or set point value is denoted with subscript ‘s’ (Hori and
Skogestad, 2008). The optimal controlled variables (measurement combi-
nation matrix H) for the cases with 2, 3, 4 and 41 measurements using
the methods of Chapter 3 are given in Table 6.1. Note that the controlled
variables given here are directly the solutions from MIQP whereas the con-
trolled variables are scaled to make the selected elements in H as 1 in Table
3.2.

6.2 Open loop simulations

To find the open loop dynamics of the distillation column in LV-configuration
from reflux L, boil-up V to different controlled variables sets, the transient
responses for a +5% step change in L and V at time 50 units, with controlled
variables (i.e. c1 = T30, c2 = T12) are shown in Figures 6.2 and 6.3, respec-
tively. The transient responses for a +5% step change in L and V with
controlled variables as combinations of 3 temperature measurements (i.e.
c1 = −0.0369T12 + 0.6449T30 + 0.6572T31, c2 = −1.2500T12 + 0.2051T30 +
0.1537T31) are also shown in Figures 6.4 and 6.5. The open loop transient
responses (Figures 6.2 - 6.5) are used to find process gain, time constant
from L to c1 and V to c2 approximately.

6.3 Dynamic simulations

Controlled variables as individual measurements

From the open loop transient responses of controlled variables (i.e. c1 =
T30, c2 = T12) in Figures 6.2 and 6.3, a Proportional Integral (PI) con-
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Figure 6.2: Controlled variables as individual temperature measurements
(T30, T12): step change +5% in L
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Figure 6.3: Controlled variables as individual temperature measurements
(T30, T12): step change +5% in V
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Figure 6.4: Controlled variables as combinations of 3 temperature measure-
ments: step change +5% in L
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Figure 6.5: Controlled variables as combinations of 3 temperature measure-
ments: step change +5% in V
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Figure 6.6: Transient responses of cost (J), c1, c2 as individual measure-
ments, L, V, xD, xB for a step disturbance of +20% magnitude in feed rate
F

troller between L and c1 with tuning parameters kc1 = −0.5449, τI1 = 8
and an another PI controller between V and c2 with tuning parameters
kc2 = −11.5129, τI2 = 8 are obtained using SIMC tunings (Skogestad, 2003)
with τc = 2. The set points for the controlled variables c1 and c2 are
based on the temperatures at nominal optimal point, i.e. c1,s = 343.74 and
c2,s = 350.06. The performance of decentralized PI controllers in rejecting
disturbances in feed rate F , feed composition zF and feed liquid fraction qF
are shown in Figures 6.6, 6.7, and 6.8, respectively.

The transient responses of the cost (J), selected controlled variables
(c1, c2) with their set points, manipulated variables (L, V ) and the product
compositions (xD, xB) with their specifications are shown in each of the
Figures 6.6, 6.7, and 6.8 in the presence of disturbances d.

Controlled variables as combinations of 3 temperature measure-
ments

From the open loop transient responses of controlled variables (i.e. c1 =
−0.0369T12+0.6449T30+0.6572T31, c2 = −1.2500T12+0.2051T30+0.1537T31)
in Figures 6.4 and 6.5, a PI controller between L and c1 with tuning param-
eters kc1 = −0.5933, τI1 = 8 and an another PI controller between V and
c2 with tuning parameters kc2 = −0.7249, τI2 = 8 are obtained using SIMC
tunings (Skogestad, 2003) with τc = 2. The set points for these controlled
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Figure 6.7: Transient responses of cost (J), c1, c2 as individual measure-
ments, L, V, xD, xB for a step disturbance of +20% magnitude in feed
composition zF
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Figure 6.8: Transient responses of cost (J), c1, c2 as individual measure-
ments, L, V, xD, xB for a step disturbance of +10% magnitude in feed
liquid fraction qF
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Figure 6.9: Transient responses of cost (J), c1, c2 as combinations of 3
temperatures, L, V, xD, xB for a step disturbance of +20% magnitude in
feed rate F

variables c1 and c2 are based on the temperatures at nominal optimal point,
c1,s = 434.46 and c2,s = −314.28. The performance of the decentralized PI
controllers in rejecting disturbances in feed rate F , feed composition zF and
feed liquid fraction qF are shown in Figures 6.9, 6.10, and 6.11, respectively.

The transient responses of the cost (J), selected controlled variables
(c1, c2) with their set points, manipulated variables (L, V ) and the product
compositions (xD, xB) with their specifications are shown in each of the
Figures 6.9, 6.10, and 6.11 in the presence of disturbances d. The dynamic
performance analysis is also repeated for controlled variables as combina-
tions of 4 measurements (the transient responses are not shown). From the
Figures 6.6 - 6.11, it can be seen that using more measurements in controlled
variable combinations inherit better self optimizing properties in rejecting
the same magnitudes of disturbances d.

6.4 Conclusions

We showed the ease of implementing measurement combinations as con-
trolled variables in dynamic simulations. The performance in rejecting the
main disturbances is studied using dynamic simulations. The better self op-
timizing abilities with controlled variables as combination of measurements
is demonstrated.
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Figure 6.10: Transient responses of cost (J), c1, c2 as combinations of 3
temperatures, L, V, xD, xB for a step disturbance of +20% magnitude in
feed composition zF
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Figure 6.11: Transient responses of cost (J), c1, c2 as combinations of 3
temperatures, L, V, xD, xB for a step disturbance of +10% magnitude in
feed liquid fraction qF
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Chapter 7

Conclusions and future work

7.1 Concluding remarks

Optimal operation of process plants is the main focus of this thesis and we
precisely address the optimal controlled variables selection problem in self-
optimizing control. The self-optimizing control is a simple feedback strat-
egy with appropriate controlled variables selection and controlling them at
constant set point to result in an acceptable steady state loss from opti-
mality. The mathematical formulation of controlled variables selection as
linear measurement combinations, c = Hy, (Halvorsen et al., 2003) that
minimize the steady state loss from optimality for a combined disturbance
and implementation error space is the precursor for our research. Solving
for an optimal H is main focus of this thesis.

The formulations with controlled variables, c = Hy, for acceptable steady
state loss are originally believed to be non-convex and are assumed to be
difficult to solve numerically (Halvorsen et al., 2003). Hence, previously
few qualitative requirements, minimum singular value rule (Halvorsen et al.,
2003), minimum loss method (Halvorsen et al., 2003) and null space method
(Alstad and Skogestad, 2007) are proposed to find the controlled variables
that minimize the steady state deviation from optimal operation. Later,
the problem of finding optimal H was reformulated as a convex quadratic
optimization problem (Alstad et al., 2009) .
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7.1.1 Optimal selection of controlled variables and measure-
ment subsets with full H

The problem of finding an optimal CV as measurement combinations that
minimize the loss from optimal operation is solved. The optimal CV selec-
tion problem from self optimizing control framework is reformulated as a
QP and the measurement subset selection is formulated as an MIQP prob-
lem. The developed MIQP based method allows for additional structural
constraints compared to the bidirectional branch and bound methods re-
ported in literature. The MIQP based method was found to use about 10
times more CPU time than the bidirectional branch and bound methods,
but this is acceptable as the optimal CV selection problem is done offline.
In addition, the MIQP method can be used on some problems where the
branch and bound methods do not apply, as shown for the Kaibel column
example.

7.1.2 Optimal selection of controlled variables and measure-
ments with structured H

For ease of implementation and better dynamic controllability, we included
particular structures in H in self-optimizing control and these form non-
convex problems. We presented a few new ideas and two convex approxi-
mation methods for structured H problems in self-optimizing control to find
practically significant upper bounds. The proposed convex approximation
methods are extended to find optimal fewer measurements with MIQP for-
mulations. The proposed convex approximation methods are observed to
provide reasonably good upper bounds for the true optimal solution in the
considered (decentralized) block diagonal H and triangular H structures for
evaporator and distillation column case studies.

7.1.3 Regulatory layer selection

The self optimizing control concepts are extended to select optimal con-
trolled variables that minimize the state drift in the presence of distur-
bances. In process control, ‖Wx(jω)‖22 is often flat at lower frequencies
and drops at higher frequencies, so minimizing the state drift for steady-
state (ω = 0) yields good results. We presented a framework on how to
use self-optimizing control minimum loss method that minimize the state
drift to arrive at optimal regulatory layer with 1, 2 or more closed loops.
The proposed method to find both optimal individual and combination of
measurements as controlled variables was evaluated on a distillation column
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case study with 41 stages and on a Kaibel column case study with 71 stages
to arrive at optimal regulatory layer with 1, 2 or more closed loops.

7.1.4 Dynamic simulations with measurement combinations
as CV

We showed the ease of implementing measurement combinations as con-
trolled variables in dynamic simulations. The disturbance rejection ability
is assessed for main disturbances. We demonstrated the better self optimiz-
ing abilities with controlled variables as combination of measurements.

7.2 Directions for future work

7.2.1 Integrated process design and operation

Arriving at an optimal operating point for a integrated process plant with
recycles is difficult due to the recycles, nonlinear behavior and multiple local
minimums with in the range of process operation. Performing an integrated
process design without accounting for the ease in optimal operation can
make the gains of integrated process design only partially realizable. Hence
efficient process models should be developed that result in a single local
minimum and new methods that account for integrated design and ease in
operation should be developed.

7.2.2 Robust optimal controlled variable selection methods

Uncertainties in process modeling are inevitable. To account for these uncer-
tainties, robust controlled variables selection methods based on economics
should be developed. These uncertainties can be either structured or un-
structured uncertainties. To address these, we can introduce part of struc-
tured uncertainties that cannot be represented as linear combinations of
the considered disturbances as new disturbances and part of unstructured
uncertainties that cannot be represented as linear combinations of the con-
sidered implementation errors as new implementation errors. The open
research area here is the characterization of the new disturbances and new
implementation errors due to the uncertainties.

7.2.3 Fixed CV for all active constraint regions

The self-optimizing control provides systematic and good methods to find
optimal controlled variables for a chosen active constraints set. But it should
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be repeated for all the possible different active constraints sets over the dis-
turbance space. The resulting controlled variables in different active con-
straint regions may require reconfiguration of control loops that are difficult
to implement in practice. To obviate this, new methods need to be devel-
oped to arrive at fixed controlled variables for all active constraint regions
with minimal loss in all regions from true optimal solutions. For these
new methods, the controlled variables and the losses obtained for each ac-
tive constraint region with the methods of this thesis can serve as the best
achievable lower bounds.

7.2.4 Experimental validation of proposed methods

The proposed methods in this thesis arrive at optimal controlled variables as
individual /combinations of measurements that minimize the steady state
loss from optimality. The performance of these controlled variables should
be verified by experiments in the presence of disturbances.

7.2.5 Economic optimal CV selection based on dynamics

The thesis assumes that process economics are governed by steady/pseudo
steady state and we obtain optimal controlled variables in self-optimizing
control. Extending these self-optimizing control concepts to arrive at quan-
titative methods that result in economic optimal controlled variables based
on dynamics is an open area of research.
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Appendix A

Vectorization procedure

The vectorization procedure of convex optimization problem in decision
matrix H

min
H

‖HY‖F

s.t. HGy = J1/2
uu

(A.1)

to convex optimization problem in hδ is described (Alstad, 2005; Alstad
et al., 2009). We write

H =








h11 h12 . . . h1ny

h21 h22 . . . h2ny

...
...

. . .
...

hnu1 hnu2 . . . hnuny







=
[
h1 h2 . . . hny

]
=








h̃T
1

h̃T
2
...

h̃T
nu








where

hj = jthcolumn of H, hj ∈ R
nu×1

h̃j = jthrow of H, h̃j ∈ R
ny×1

The transpose must be included because all vectors including h̃i are column

vectors. Similarly, let J
1/2
uu = [j1 j2 . . . jnu]. We further introduce the
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long vectors hδ and jδ,

hδ =







h̃1

h̃2

. . .

h̃nu






=


























h11
h12
...

h1ny

h21
h22
...

h2ny

hnu1

hnu2
...

hnuny


























∈ R
nuny×1

jTδ =
[
jT1 jT2 . . . jTnu

]
∈ R

nunu×1 and the large matrices

GT
δ =









GyT 0 0 · · ·

0 GyT 0 · · ·
...

...
...

. . .

0 0 . . . GyT









; Yδ =








Y 0 0 · · ·
0 Y 0 · · ·
...

...
...

. . .

0 0 . . . Y








Then, HY =







h̃T
1 Y

h̃T
2 Y
. . .

h̃T
nu
Y






and for the Frobenius norm the following equalities

apply.

‖HY‖2F =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣








h̃T
1 Y

h̃T
2 Y
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h̃T
nu
Y








∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
F

= ‖ h̃T
1 Y h̃T

2 Y . . . h̃T
nu
Y ‖F

= ‖hT
δ Yδ‖F = ‖hδY

T
δ ‖F = hT

δ YδY
T
δ

︸ ︷︷ ︸

Fδ

hδ = hT
δ Fδhδ

Because HGy = J
1/2
uu where J

1/2
uu is symmetric matrix, we have HGy =

GyTHT = J
1/2
uu and

[

GyT h̃1 GyT h̃2 . . . GyT h̃nu

]

= [j1 j2 . . . jnu ] =⇒ GT
δ hδ = jδ
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.
The resulting vectorized convex QP is

min
hδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(A.2)
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Appendix B

Evaporator model equations

The evaporator case study is a simple but a realistic process to evaluate
the quantitative methods developed in this thesis. The evaporator is a
“forced-circulation” evaporator and is used to increase the concentration of
dilute liquor by evaporating solvent from the feed stream through a vertical
heat exchanger with circulated liquor. The evaporator process Figure B.1 is
taken from Newell and Lee (1989) and is modified as described in Kariwala
et al. (2008).

Figure B.1: Evaporator process
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The economic objective is to maximize the operating profit [$/h], for-
mulated as minimization of the negative profit (Kariwala et al., 2008).

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (B.1)

The major constraints for this evaporator are product specification, safety
and design limits

X2 ≥ 35 + 0.5%

40kPa ≤ P2 ≤ 80kPa

P100 ≤ 400kPa

0kg/min ≤ F200 ≤ 400kg/min

0kg/min ≤ F1 ≤ 20kg/min

0kg/min ≤ F3 ≤ 100kg/min

(B.2)

The evaporator process is optimized to maximize the profit (B.1) with pro-
cess constraints (B.2) and the optimization data are given in Table B.1 The
modified evaporator model equations are

20
dL2

dt
= F1 − F4 − F2 (B.3)

20
dX2

dt
= F1X1 − F2X2 (B.4)

4
dP2

dt
= F4 − F5 (B.5)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (B.6)

T3 = 0.507P2 + 55 (B.7)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(B.8)

T100 = 0.1538P100 + 90 (B.9)

Q100 = 0.16(F1 + F3)(T100 − T2) (B.10)

F100 =
Q100

36.6
(B.11)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(B.12)

T201 = T200 +
13.68(T3 − T200)

0.14F200 + 6.84
(B.13)

F5 =
Q200

38.5
(B.14)
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Table B.1: Evaporator example: variables at nominal optimum point

Variable Description Value

F1 feed flow rate 9.469 kg/min

F2 product flow rate 1.334 kg/min

F3 circulating flow rate 24.721 kg/min

F4 vapor flow rate 8.135 kg/min

F5 condensate flow rate 8.135 kg/min

X1 feed composition 5.000%

X2 product composition 35.500%

T1 feed temperature 40.000 C

T2 product temperature 88.400 C

T3 vapor temperature 81.066 C

L2 separator level 1.000 m

P2 operating pressure 51.412 kPa

F100 steam flow rate 9.434 kg/min

T100 steam temperature 151.520 C

P100 steam pressure 400.000 kPa

Q100 heat duty 345.292 kW

F200 cooling water flowrate 217.738 kg/min

T200 inlet temperature of cooling water 25.000 C

T201 outlet temperature of cooling water 45.550 C

Q200 condenser duty 313.210 kW
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Appendix C

Distillation column model
and assumptions

The distillation column case study is taken from Skogestad (1997)

C.1 Assumptions

The binary distillation column with 41 stages in LV-configuration is taken
from Skogestad (1997) and reflux (L) and boil-up (V) are the remaining un-
constrained steady state degrees of freedom (u) (Figure C.1). The assump-
tions in the model are binary mixture, constant pressure, constant relative
volatility, constant molar flows, no vapor holdup, linear liquid dynamics,
equilibrium on all stages, total condenser.

C.2 Notation

• Li and Vi - liquid and vapor flow from stage i [kmol/min]

• xi and yi - liquid and vapor composition of light component on stage
i [mole fraction]

• Mi - liquid holdup on stage i [kmol] D and B - distillate (top) and
bottoms product flowrate [kmol/min]

• L and V - reflux flow and boilup flow [kmol/min]

• F and zF - feed rate [kmol/min] and feed composition [mole fraction]

• qF - fraction of liquid in feed
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T1, T2, T3,…, T41

Tray temperatures
qF

Figure C.1: Distillation column using LV-configuration

• i - stage no. (1=bottom. NF=feed stage = 21, NT=total condenser)

• α - relative volatility between light and heavy component

• τl - time constant [min] for liquid flow dynamics on each stage

• λ - constant for effect of vapor flow on liquid flow (“K2-effect”)

C.3 Model equations

We will write the model such that the states are xi andMi ∀i = 1, 2, . . . , NT ,
a total of 2NT states. The basic equations are

1. Total material balance on stage i

dMi

dt
= Li+1 − Li + Vi−1 − Vi (C.1)

2. Material balance for light component on each stage i:

d(Mixi)

dt
= Li+1xi+1 + Vi−1yi−1 − Lixi − Viyi (C.2)
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which gives the following expression for the derivative of the liquid
mole fraction

Mi
dxi
dt

=
d(Mixi)

dt
−

xidMi

dt
(C.3)

3. Algebraic equations : The vapor composition yi is related to the liquid
composition xi on the same stage through the algebraic vapor-liquid
equilibrium

yi =
αxi

1 + (α− 1)xi
(C.4)

where α is the relative volatility. From the assumption of constant
molar flows and no vapor dynamics we have the following expression
for the vapor flows (except at the feed stage if the feed is partly va-
porized), where VNF

= VNF−1 + (1− qF )F :

Vi = Vi−1 (C.5)

4. The liquid flows depend on the liquid holdup on the stage above and
the vapor flow as follows (this is a linearized relationship; we may
alternatively use Francis’ Weir formula etc.):

Li = L0i + (Mi −M0i)τl + (V − V 0)i−1λ (C.6)

where L0i [kmol/min] and M0i [kmol] are the nominal values for the
liquid flow and holdup on stage i. The vapor flow into the stage may
also effect the holdup; λ may be positive because more vapor may
give more bubbles and thus may push liquid off the stage. If λ is large
(larger than 0.5) then the re-boiler holdup “flattens out” for some time
in response to an increase in boil-up, and if λ > 1 we get an inverse
response. λ may also be negative if the increased pressure drop caused
by larger V results in a larger holdup in the down comers - in general
it is difficult to estimate λ for tray columns. For packed columns λ is
usually close to zero.
The above equations apply at all stages except in the top (condenser),
feed stage and bottom (re-boiler).

5. Feed stage, i = NF (we assume the feed is mixed directly into the
liquid at the feed stage):

dMi

dt
= Li+1 − Li + Vi−1 − Vi + F (C.7)

d(Mixi)

dt
= Li+1xi+1 + Vi−1yi−1 − Lixi − Viyi + FzF (C.8)
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6. Total condenser, i = NT (MNT
= MD, LNT

= LT )

dMi

dt
= Vi−1 − Li −D (C.9)

d(Mixi)

dt
= Vi−1yi−1 − Lixi −Dxi (C.10)

7. Re-boiler, i = 1 (Mi = MB , Vi = VB = V )

dMi

dt
= Li+1 − Vi −B (C.11)

d(Mixi)

dt
= Li+1xi+1 − Viyi −Bxi (C.12)

C.4 Column data

• NT = 41 stages including re-boiler and total condenser

• Feed at stage NF = 21 counted from the bottom

• Nominal conditions: Feed rate F = 1 [kmol/min], Feed composition
zF = 0.5 [mole fraction units], Feed liquid fraction qF = 1 (i.e., satu-
rated liquid), Reflux flow LT = 2.706 [kmol/min], Boilup V = 3.206
[kmol/min].

• The nominal liquid holdup on all 41 stages is M0i = 0.5 [kmol] (in-
cluding the re-boiler and condenser; for more realistic studies you may
useM01 = 10 [kmol] (reboiler) and M0NT

= 32.1 [kmol] (condenser)).

• The time constant for the liquid flow dynamics on each stage (except
the reboiler and condenser) is τl = 0.063 min. We assume that the
vapor flow does not effect the liquid holdup, i.e. λ = 0.

This results in a distillate product withD = 0.5 [kmol/min] and composition
yD = xNT

= 0.99 [mole fraction units], and a bottoms product with B = 0.5
[kmol/min] and composition xB = x1 = 0.01 [mole fraction units].
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Appendix D

Steady state model between
inputs for distillation column

Mass balances for binary distillation column assuming for the condenser and
re-boiler at steady state yield (Häggblom and Waller, 1990)

dMd

dt
= 0 = Vtop − L−D (D.1)

dMb

dt
= 0 = Lbtm − V −B (D.2)

Here, at steady state and assuming constant molar flows

Vtop = V + (1− qF )F (D.3)

Lbtm = L+ qFF (D.4)

So we find at steady state

D = V − L+ (1− qF )F (D.5)

B = L+ qFF − V (D.6)

Note that there is no effect of zF in this case. Linearizing gives Gu and Gu
d

as

Gu =







1 0
0 1
−1 1
1 −1






, Gu

d =







0 0 0
0 0 0
0 0 −1
1 0 1
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Appendix E

Kaibel column model and
assumptions

E.1 Model assumptions

The 4-product Kaibel column (Figure E.1) has high energy saving potential
(Halvorsen and Skogestad, 2003), but presents a difficult control problem
and serves as a good example to evaluate the quantitative methods de-
veloped in this thesis. The given 4-product Kaibel column arrangement
separates a mixture of methanol (A), ethanol (B), propanol (C), butanol
(D) into almost pure components. The Kaibel column model uses a stage-
by-stage model (Strandberg, 2011).

E.2 Main assumptions

• Constant molar flows: That is Vi = Vi+1 and Li = Li−1 for stage i
inside a column section.

• Constant pressure P.

• Equilibrium on each stage.

• No heat transfer across dividing wall.

• Linearized flow dynamics: The liquid flow dynamics are modeled as

Li = L0,i +
Mi −M0,i

τL
+ (Vi−1 − V0,i−1)λ (E.1)

where L0,i and M0,i are the nominal values for the liquid flow and
holdup on stage i. τL is the liquid time constant and λ is the effect of
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T71

T51 – T60

T41 – T50

T61 – T70

T11 – T20

T21 – T30

T31 – T40

T1 – T10

L

Figure E.1: The 4-product Kaibel column



E.3. Kaibel column model 189

vapor flow on the liquid flow (“K2”-effect). In this work λ = 0, which
is a good assumption for a packed column (Skogestad, 1997).

E.3 Kaibel column model

The Kaibel column is modeled using 7 column sections. The first two sec-
tions are pre-fractionator column and the rest 5 sections are main column
and each section has 10 stages. Liquid holdup volumes are included for the
condenser, re-boiler, side product draws (S1 and S2) and the liquid split.
We assume that the feed consists of an equimolar mixture of methanol (A),
ethanol (B), propanol (C) and butanol (D). The liquid fraction of the feed
has a nominal value of q = 0.9.

E.3.1 Vapour-liquid equilibria

Ideal vapour phase is assumed and the vapour-liquid equilibrium for com-
ponent j is described by the equation:

Pyj = xjγjP
s
j (E.2)

where

P =

n=NC∑

j=1

xjγjP
s
j [mmHg] (E.3)

The vapour pressures (P s) are given by the Antoine equation

log(P s
j ) = Aj −

Bj

T + Cj
(E.4)

The activity coefficients (γj) are given by the Wilson equation with
description and parameters taken from (Gmehling and Onken, 1997).
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