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Batch process challenges

Process
- Low volume and high value products
- Unsteady-state operation
- Inter - and Intra - batch variation

Instrumentation
- No or Infrequent or less accurate measurements

Modeling
- Good kinetic models are rare
- Poor models
- Reproducibility less than 5 %

Optimization objectives
- Economic objective —>Modeling and engineering effort should pay off
- Guarantee high reproducibility and high yield despite of the uncertainties
- Incorporate safety constraints without losing significant optimization potential
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Modeling

% First principle modeling

e Mass, energy & momentum balance equations
> Require physical insight
> Valid over a wide range with better predictability

» Modeling and maintenance are both time and resource intensive

O/

% Emperical modeling

e input - output data
» Valid over a short range

» Poor predictability
s Hybrid Modeling

e Combination of both modeling methods
» Minimum modeling effort

» Covers a range of operation
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Uncertainties and their characterization

Simplifications and inaccuracies in modeling and disturbances result in
variations from the real plant

Mathematically these variations are treated as uncertainties

Uncertainties are treated as random variables that follow a specific probability
distribution

Characterization: involves the selection of probability distribution function and
their associated parameters, for example, for a normally distributed random
variable, mean and variance are the parameters
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Batch process optimization : Problem formulation

min J = 4(x(t,))

te,u(t)
st. Xx=F(x,u)
S(x,u)<0

Srinivasan et al., 2003
Feehery and Barton, 1998

www.nthu.no
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Batch process optimization : Pontryagin Maximum Principle

min J = 4(x(t,))

ty,u(t)
st. Xx=F(x,u) x(0)=x,
S(x,u)<0  T(x(t;)) <0

Reformulation using Pontryagin Maximum Principle
with adjoint variables A and Lagrange multipliers p,v

min H(t) = ATF(x,u) + ' S(x,u)

t,u(t)

st. x=F(x,u) X(0) =X,
P AL R, O L) VL
OX OX |, OX |y

u'S=0 VIT=0
require solving Two Point Boundary Value Problem @ NTNU

Norwegian University of
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Nominal optimization: Numerical solution approaches

o Piecewise constant u(t) -

Control vector iteration (CVI)

decision variables : discretized u in the intervals T
e Polynomial u(t) or u(x) Controlled ]
variable

Control vector parameterization (CVP) \\r\,‘

decision variables : polynomial coefficients

e Polynominal x(t) and u(t)

decision variables : polynominal coefficients of both x . l_ [ .
and u
Time — »
Bryson and Ho, 1969; Hicks and Ray, 1971; Ray, 1981; NTNU
Biegler, 1984; Vassiliadis et al., 1994 . . .
Norwegian University of
Science and Technology
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Nominal optimization: Numerical solution approaches

e Piecewise polynomial x(t) and
u(t)

decision variables: polynominal coefficients of x and u ‘

in each stage Control
Variable

« Discrete charges u.

decision variables: stage end times, discrete jumps

inu

1] tl 2 e YNS-1) u(NS)

Time

Path constraints cannot be handled with-in the stages

In addition to parameterization, numerical integration is also replaced
with polynominal approximations to reduce computational burden @ NTNU

Norwegian University of

Bryson and Ho, 1969; Hicks and Ray, 1971; Ray, 1981; Science and Technology

Biegler, 1984; Vassiliadis et al., 1994
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Nominal optimization: Numerical solution approaches

State and mmput handhing

Problem formulation

Direct PMP
States — parameterized Simultaneous approach (NLP) State and adjoint parameterization (NR, QL)
Inputs— parameterized
States —contnuous Sequental approach (CVP) Gradient method (CVI)
Inputs— parameterized
States —continuous Analytical parametenization approach  Shooting method (BCI)
Inputs —contnuous

PMP : pontryagin maximum principle
BCI : boundary condition iteration
NR : newton -raphson

QL : quasi-linearization

Srinivasan et al., 2003

www.nthu.no

NTNU
Norwegian University of
Science and Technology

Ramprasad Yelchuru, Optimization of batch processes under model uncertainty, 18/34




Summary of nhumerical solution approaches

Numerical approaches accuracy ¢ # of stages, # of coefficients

Adaptive control vector parameterization techniques are developed by
including stage times also as decision variables in optimization

, NTNU
Terwiesch et al., 1994 Norwegian University of
Schlegel, 2005 Science and Technology
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Interpretation optimal solution

Path Terminal
Constraints u'S(x, u) =0 I T(x(z)) =0
Sensitivities J.T(ﬁFfﬁu) + 1" (08 /Ou) =0 A1) — (D /0x)|, — vI(0 T/ox)|, =0, H(z)=0

Lagrange multipliers p and v capture the cost deviations t . .
in not meeting the active constraints 0J = Iy oSdt+v oT
0
The cost in not meeting sensitivity constraints 0d = HUSU =0 asH,=0

Uncertainties are inevitable in the modeling and optimization, methods that
handle uncertainties are needed
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Classification of Batch process optimization approaches

Problem: Dynamic Optimization
Uncertainty: Nominal Optimization iiﬁ?rmzaticwm Uncertainty
Information: No Measurements Measurements

StochasticOptimization Measurement-based Optimization

Implementation: Model-based Model-free
Explicit Optimization Implicit Optimization

NTNU
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Optimization with uncertain models

Stochastic optimization

Offline optimization

Given uncertain parameters 6 M - model with uncertain parameters 6
Q - specified product quality
g - product quality requirements
a - specified level of confidence for quality

Best expected value  max, E(J(M))
Minimum variance min, E{[Q - QJ’}

Threshold max, P(g(u,8)) <0
Variable threshold max, P(g(u,0)) <«
Best worst case max, min,, J
Best best case max, max,, J

No need for measurements
Typically conservative @ NTNU

Norwegian University of

Terwiesch et al., 1994 Science and Technology
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Optimization with uncertain models in parameters 6

Online optimization approaches

Dealing uncertainty through feedback - Explicit uncertainty accounting -
Measurements are used to estimate x Measurements are used to estimate x,
and 6 6, P(6)

. N 1. Minimum effort for specified
1. Online reoptimization confidence of feasible operation
2. Optimal singular feedback control ~ Final state unr(]:ertainty is precfh'cted by
. . propogating the covariance of uncertain
3. Optimal nonsingular feedback control parameters through system equations and a-
4. Necessary conditions of optimality confidence ellipsoid is constructed
Ki - u(t) is optimized to locate the desired x, at
tracking the centre of confidence ellipsoid

- does not account for future parameter
estimation accuracy

2. Dual control

- also accounts for future parameter estimation
accuracy

3. Differential Game
Two player game

- Engineer vs Nature

- lufu(t),v(t)] Iv[u(t),v(t)]
Super structure of stochastic optimization

Reduces conservatism and
improves performance
Bryson and Ho, 1969; Palanki et al., 1993; Terwiesch et al., 1994 @ NTNU

Astroom and Wittenmark, 1989; Meadows and Rawlings, 1991; Norwegian University of
Gupta and Leondes, 1981 Science and Technology
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Optimization approach 1

Dealing uncertainty through feedback

Online reoptimization J,
» model is updated at each sampling
Modeling instant
Model >
Update Process 'I\/Iodel
1 Numerical > re-optimization is performed at
Optimization each sampling instant

» computationally intensive and
require high effort in modeling

Optimal i Inputs

Real Process

!

Optimal Performance

NTNU
Norwegian University of
Welz et al., 2008 Science and Technology

Wirth et al., 2009

Measurements
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Optimization approach 2
Dealing uncertainty through feedback

Online singular feedback J, » Optimal control problem is singular
, when Hamiltonian is linear in control
Modeling u

Process | Model
Numerical > In singular feedback control u(x,A,t) is
Optimization a function of adjoint variables A on
singular arcs, which are solutions of
TPBVP

Singular feedback
dH/ou =0; u(x,A,t)
)

\ 4

» For practical purpose A is replaced
Estimation of ;
x and 0 Optimal | Inputs WIth Avor,
Real Process > It is shown to work well practically but
Measurements
l cannot always guarantee better

performance with uncertainties
Optimal Performance

NTNU
Norwegian University of
Terwiesch et al., 1994 Science and Technology
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Optimization approach 3
Dealing uncertainty through feedback

Online nonsingular feedback > It requires online computation effort
l of a P controller
Modeling » time-variant corrector gains K(t) is

Process | Model performed offline

Numerical
Optimization » dynamic feedback can also be used
Nonsingular feedback > t ti lity i f I
U(D)=Unom () +KOXO-Xnom (D} [ guarantees optimality in case of sma
K(t) calculated offline uncertainties
*
Estimation of o )
x and 0 _ > large uncertainties are handled with
Optimal | Inputs . . . .
v multiple nominal profiles and time-
Real Process variant corrector gains
Measurements
Optimal Performance NTNU
@ Norwegian University of
Terwiesch et al., 1994 Science and Technology

Ramprasad Yelchuru, Optimization of batch processes under model uncertainty, 28/34

www.nthu.no




Optimization approach 4: Necessary conditions of optimality tracking

Necessary Conditions of Path Terminal
Optimality (NCO) tracking Constraints ulS(x, u)=0 VT (x(1;) =0

Sensitivities J.T(HF;’BH) + ;JT(ﬁS;’Bu) = /".T(f[-) o (Bgﬁ';’ﬁx)hl_ — v (D Tfﬁx)L,r =0, H(z)=0
» Optimal inputs are partitioned as arcs
Modeling n(t) for constraints and parameters m
for sensitivities

Nominal tProcess Model

A

f 3

Numerical ____I}J_qfr_liq_ql _____ ) ]
Optimization ioptimal Solution > Solution model is developed as the
sequence of arcs
Control
Design .
» Control laws are developed to adjust
,l, the arcs n(t) and parameters 1 to
Self-optimizing meet the NCO conditions
Optimal llnputs D

> Large uncertainties are dealt by

Real Process

Measurements including switching times of arcs as
l new decision variables in optimization
Optimal Performance NTNU
@ Norwegian University of
Science and Technology

Welz et al., 2008
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NCO illustration on a fed-batch bioreactor

S - substrate concentration

S > X _ X - biomass concentration
Reactions N J =max P(tf ) P - product concentration
S >P u(t) u - feed rater o
My Vs huh K{': )
X — WX — E}[’. X(0) = Xy, - Kinetic parameters
Voo " Yx, Yp -yield coefficients
. X vX u B
Model S o Y, o },—F + F{Sr}r _ S} S{D} S{II_-.
equations _ oy
P =vX _FP’ P(0) = Py,
V=wu, V(0)=V,,
with
PI.FHS
.H{S} - o2
LI.FHS
1 S —
S =57x
NTNU
@ No_rvvegian University of
Kadam et al., 2007 Science and Technology
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NCO illustration

a
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Path Terminal
Constraints  uTS(x, u) =0 VIT(x(r)) =0
Sensitivities }.T(BF/BH) + 4" (DS /Ou) =0 ATy — (¢ /0x), — (@ T/ox)|, =0, H(z:)=0

b 1 o — ,
odl N2(8,8rer2), T <t <,
s - | Umin » Ty St < 13,
3 04l ! uit) = . '
0.4 ‘; B ( ) < ,_‘fq_(X.__Xmﬂx}F T:‘; < II, {: 1_4-
0-2_Uma$( Usens Umin patr:ﬁusens \ '-'1'-5(S:Srct'.5)g T4 < I < Ts,
00 1:1 2' Py s éer ) 1 Hmin_-. T_'q 'i:‘ [ g "'t'
t[h] Ty =1 s.t. 8(t) = Sero,
b Ta =1 S.t Xprea(t) = 0.95X sy,
T3 =1 s.t. X(f) = X,
2.5¢ T4 =1 s.t. 8(t) = Sers,
3 5 Ts — ?93
s Xoprealt) = X (1) — o(1.258s 2 — S(1)),
1.57
1
0
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NCO tracking implementation

ld

w
>
0 Terminal Trajectory | © y
_.O_. ; 0 Pat] n - Process >
= ﬂ Controllers —.O—- ath L] Generator
_ Controllers
v P
On-line! .
esseeeeneest Construction [
ccsssesencss  Of NCO' |
Off-line:

Path and terminal controllers can be either decentralized Pl or Multivariable controllers
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Conclusions

» Batch process challenges and numerical solution approaches for nominal optimization are
discussed

» Stochastic methods for optimization under uncertainty are presented
» Measurement based optimization approaches are described
» NCO tracking is illustrated on an example

Research opportunities

» Better technique for estimation of states and parameters for a given parameter probability
distribution is vital as extended kalman filter is sub-optimal for non-gausian random variables

» Developing methods that quantify the lost economic value with various approaches
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