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Abstract

The main focus of this thesis is to find simple ways ofimplementingoptimal op-
eration of process plants. The work is in the spirit of “self-optimizing control”,
which can be summarized as [Skogestad, 2000b]:

“The goal is to find a self-optimizing control structure where accept-
able operation under all conditions is achieved with constant setpoints
for the controlled variables. More generally, the idea is to use the
model off-line to find properties of the optimal solution suited for
(simple, model-free) on-line implementation.”

In the first part of the thesis, the problem of static output feedback is addressed.
This is one of the open problems in control [Syrmos et al., 1997], and we de-
rive a novel approximation to this problem by using links to self-optimizing con-
trol. The approximation can be used to calculate multiple input− multiple output
proportional-integral-derivative (MIMO-PID) controllers, which canbe of great
practical interest.

We further extend parts of the theory of self-optimizing control to cover changes
in the active set. This is done by using results from explicit model predictive
control (MPC) and the results are exact for a quadratic approximation around the
optimum. By using an ammonia production plant as an example, we show that
the results may also be applied to more general processes, and that the method is
particularly interesting for cases where the set of active constraints is expected to
change frequently.

Thereafter we develop a mathematical framework for analysis of the perfor-
mance loss when “speedups” are applied to an MPC formulation. Such speedups
can be model reduction, move blocking, shortening the horizon in the controller or
changing the sample time of the internal model in the MPC. By using the method
on a model of a distillation column, we find that the so-called “delta-move block-
ing” has a good performance to speed ratio.

We then use the same mathematical program to prove stability of simple con-
trol schemes by calculating the maximum distance to a robust controller; if the
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iv Abstract

distance is within the robustness margin of the robust controller, then the simple
controller is proven to be stable. Several “simple controllers” can be analyzed in
this scheme, for example partial enumeration of an explicit MPC and the linear
quadratic regulator with saturation.

Finally, in the appendices of the thesis, we give mathematical links between
the problem of self-optimizing control and explicit MPC, and we give some means
of simplification of the implementation of explicit MPC. In addition we give some
extra information regrading the static output feedback problem.
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Chapter 1

Introduction

1.1 Motivation

The main focus of this thesis is to find simple implementations of solutions to
optimal control of process systems. In order words, the focus ifnotonhow to solve
an optimal control problem, but onhow to implement the solution to an optimal
control problem. One can identify two different paradigms for implementation of
the solution to an optimal control problem [Narasimhan and Skogestad, 2007]:

Paradigm 1. On-line optimizing control where measurements are primarily used
to update the model. With arrival of new measurements, the optimization
problem is resolved for the inputs.

Paradigm 2. Pre-computed solutions based on off-line optimization. Typically,
the measurements are used to (indirectly) update the inputs using feedback
control schemes.

Open-loop optimization is typically used in Paradigm 1, while closed-loop solution
is the preferred alternative for Paradigm 2.

An open loop approach to Paradigm 1 may however be quite conservative, as
is addressed by many authors in the context of robust model predictive control
(MPC), see e.g. the survey paper by Mayne et al. [2000]. The approach is con-
servative because the open-loop optimization problems needs to take into account
disturbances that in closed loop will be attenuated by the controller, but notin
the open loop predictions of the optimization problem, see e.g. [Bemporad, 1998,
Bemporad and Morari, 1999]. One would therefore like to use closed-loop opti-
mization also in Paradigm 1, but in practice it is usually difficult to take feedback
into account in on-line optimization, so in most cases one would be content with
an open-loop formulation.

1



2 Introduction

In this thesis we are mostly interested in Paradigm 2, however combinations of
the two are also interesting.

Let us consider the following example to better understand the differencesbe-
tween the paradigms:

Example: Linear quadratic control. Consider the quadratic optimization prob-
lem

J∗(x0) =min
u,x

x′NQNxN +
N−1

∑
i=0

x′iQxi +u′iRui (1.1)

s.t.xk+1 = Axk +Buk, k = 0,1, · · · ,N−1 (1.2)

whereu= (u0,u1, · · · ,uN−1) is a sequence of inputs andx= (x1,x2, · · · ,xN) is a se-
quence of states. We assume thatQN,Q,Rare symmetric matrices and thatQN > 0,
Q≥ 0, R> 0. Further,xk+1 = Axk +Buk is a linear model of some plant we want
to control. There exists many solvers [Wang and Boyd, 2010] that can beimple-
mented on-line such that when a new measurement ofx0 occurs, problem (1.1)-
(1.2) is resolved for the inputsu. The idea of receding horizon control [Richalet
et al., 1978, Cutler and Ramaker, 1980] is to implement only the first part of the
sequenceu, and then resolve the optimization problem when new measurements
of the statexk becomes available. This solution, whereopen-loop optimizationis
used in closed loop, belongs to Paradigm 1.

However, by using dynamic programming, one can find afeedback policy uk =
K0xk that is optimal foranystatexk, in order words, the feedback gainK0 does not
depend on the current state. For the quadratic program (1.1)-(1.2) one can define
the backward Riccati iteration [Rawlings and Mayne, 2009]

Πk−1 = Q+A′ΠkA−A′ΠkB(B′ΠkB+R)−1B′ΠkA, k = N,N−1, . . . ,1 (1.3)

with terminal condition
ΠN = QN. (1.4)

The optimal gain at timek is computed from the Riccati matrix at timek+1:

Kk =−(B′Πk+1B+R)−1B′Πk+1A, k = N−1,N−2, . . . ,0. (1.5)

All these calculations can be performedoff-line and implementation, by using re-
ceding horizon control, is simply

uk = K0xk. (1.6)

Implementation of thisstate feedbackdoes not depend on any online optimization
and belongs to Paradigm 2.
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Once the state-feedbackuk = K0xk is found one may also use this as a re-
parameterization of the open loop problem by introducing [Rossiter et al., 1997]:

uk = K0xk +wk (1.7)

and rewriting the plant model to

xk+1 = (A+BK0)
︸ ︷︷ ︸

Ac

xk +Bwk

= Acxk +Bwk. (1.8)

An open loop optimization in the re-parameterized inputswk should now converge
to a solution close tow = 0 for any disturbance, hence finding initial values and
consequently solving the re-parameterized problem should be easier thanthe orig-
inal formulation (1.1)-(1.2) [Mayne et al., 2005].

In the last decade, parts of the control community have investigatedexplicit
solutionsto model predictive control, see e.g. the recent survey by [Alessio and
Bemporad, 2008]. In order to compute an explicit MPC one usually first formu-
lates anopen-loopproblem, for example on the form of problem (1.1)-(1.2), but
with constraints added on inputs and states. Then one solves this problem para-
metrically [Bemporad et al., 2006] to get a piece-wise affine feedback law on the
form

uk := K ixk +ci if xk ∈ Pi , (1.9)

wherePi represent a polytopic division of the state space andK i , bi are correspond-
ing state feedback laws.

Implementation of explicit and on-line MPC will yield the same value of the
cost function, as their solutions are equivalent. However, the explicit solution can
itself be very complicated (with many polytopesPi in (1.9)), and researches have
therefore started to look for simplifications of the explicit control law, see for ex-
ample the double description method by Jones and Morari [2008]. In this thesis
Chapter 7 is devoted to analysis for such simplifications.

When one does a simplification a non-negative loss is introduced [Skogestad,
2000b]:

L(u,d) = J(u,d)−Jopt(d), (1.10)

whereJ(u,d) is the cost of a particular policy andJopt(d) is the optimal cost for a
given disturbanced. The idea of self-optimizing control, which has been a major
source of inspiration for this thesis, is to [Skogestad, 2004]:

”Find a self-optimizing control structure where acceptable operation
under all conditions is achieved with constant setpoints for the con-
trolled variables. More generally, the idea is to to use the model
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off-line to find properties of the optimal solution suited for (simple,
model-free) on-line implementation”

Here “acceptable operation” can imply that the lossL(u,d) is below some ac-
ceptable value. The idea of self-optimizing control can be applied to controlof
complex systems, as described in the following example, which is borrowed from
[Skogestad and Postlethwaite, 2005]:

Example: Long-distance running. Consider the optimal operation of a long-
distance runner. The manipulated input is the muscle power. The objective isto
minimize the time of the race. Using paradigm 1, on-line optimization, is clearly
very difficult, because we would need to identify a model of the many complex
mechanisms that occur in the human body and re-optimize this model online when
disturbances occur. Probably just getting a model that is suitable for on-line op-
timization would take a very long time. We therefore consider the approach of
Paradigm 2, to look for some feedback strategy that will give acceptable operation
in closed loop. Moreover, let us search for someconstant setpoint policythat we
can use in closed loop. The question in thus: Can we find some variablec that
when controlled to a constant setpointcs yields acceptable operation?

It is clear that running at maximum power is not a good strategy. This would
give a high speed at the beginning, but a slower speed towards the end with an
overall low average speed. A better policy would be to keep constant speed. The
trainer will then choose an optimal setpoint for the speed, and this is implemented
by the runner. Alternative strategies, which may work better in a hilly terrain,are
to keep a constant heart rate or a constant lactate level.

Chapter 5 is devoted to self-optimizing control, where we extend some results
to cover changes in the active set. However in a broader sense, most ofthe the-
sis is based on the general idea of findingsimple solutionsthat givesacceptable
performance in closed loop.

1.2 Outline of thesis

In Chapters 2-4, we give a convexapproximationto the static output feedback
problem, which is one of the open problems in control [Syrmos et al., 1997].We
do this by exploiting a link to self-optimizing control, where we minimize the
loss from an optimal controller. Since we only find an approximation, the prob-
lem still remains open, but we show that our approximation may be used to syn-
thesize multi input− multi output proportional-integral-derivative (MIMO-PID)
controllers, which can be of great practical interest.
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In Chapter 5, we extend the ideas of self-optimizing control to handle changes
in the active set, by using results from explicit MPC.

In Chapter 6, we formulate a mathematical program that can analyse different
speedups in MPC, such as move blocking. InChapter 7, we use a similar program
to analyse different low-complexity controllers.

In Appendices A-B, we give some ideas on simplification of explicit MPC and
extensions to output feedback.

In Appendix C, we give some more details on the static output feedback prob-
lem.

1.3 Publications

During the work on my thesis I was the main author the publications given in
Table 1.1. In addition I was a co-author on the papers listed in Table 1.2. I was
also working on the papers listed in Table 1.3, which were related to my Master’s
thesis, but not to the work reported in this thesis.
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Chapter 2

Convex approximation of the
static output feedback problem
with applications to design of multivariable PID
controllers

In this chapter we derive a convex approximation to theH 2-optimal static
output feedback problem and show how the approximation can be used to
synthesize multiple input− multiple output proportional-integral-derivative
(MIMO-PID) controllers. The approximation is done in two steps. First,
instead of minimizing directly the quadratic cost, we find the static output
feedback controller that minimizes the “loss” compared to the optimal state
feedback controller. Use of this modified cost seems to have asmall effect
on the resulting controller. Second, we approximate the resulting noncon-
vex problem by a convex quadratic program (QP). This approximation intro-
duces some sub-optimality, but numerical examples show that the controller
is close to the optimal in most cases, except for cases where the control-
lability using output feedback is far away from the optimal state feedback.
Alternatively, we can use it as initial value for a nonlinearsearch.

2.1 Introduction

Consider the linear process

xk+1 = Axk +Buk (2.1)

yk = Cxk +Duk (2.2)

x0 ∽ N(0,W1/2
x0 ) (2.3)

9
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where equation (2.3) means that the initial statex0 is a normally distributed random
variable with zero mean and covariance matrixWx0. The objective is to find astatic
output feedback

uk =−Kyyk (2.4)

that minimizes theexpected value E{J∞}, where the cost

J∞ = lim
T→∞

{

1
T

T

∑
i=0

x′iQxi +u′iRui

}

. (2.5)

Here Q = Q′ = C′zQ
yCz, whereQy ≥ 0 is a quadratic weight on the controlled

outputszk = Czxk, andR= R′ > 0 is a weight on input usage. The infinite horizon
objective function may be approximated by a finite horizon cost function (see e.g.
Chmielewski and Manousiouthakis [1996] and Scokaert and Rawlings [1998]),

J = x′NQNxN +
N−1

∑
i=0

x′iQxi +u′iRui . (2.6)

Remark 2.1. There are several ways of choosing the final state cost matrix QN

such that the finite horizon problem corresponds as closely as possible tothe infi-
nite horizon problem. In this chapter we use the method of first finding the corre-
sponding linear quadratic regulator uk = −KLQRxk, which can be found by stan-
dard software, and further we let AK = A−BKLQR, Qf = Q+K′LQRRKLQR, and let
QN > 0 satisfy the Lyapunov equation

A′KQNAK +Qf = QN (2.7)

With this method, the cost functions of the infinite horizon and finite horizon prob-
lems are the same for any value of prediction horizon N if full information state
feedback is used, see [Chmielewski and Manousiouthakis, 1996, Scokaert and
Rawlings, 1998].

Example: MIMO-PID. A controller of great practical interest that can be cast
into a static output feedback problem is the multiple input− multiple output
(MIMO) proportional-integral-derivative (PID) controller. To see this, let σk de-
note the integrated output and consider the augmented plant with augmented state
dynamics

[
xk+1

σk+1

]

=

[
A 0
C I

][
xk

σk

]

+

[
B
D

]

uk, (2.8)

and augmented outputs




yP
k

yI
k

yD
k



 =





C 0
0 I

1
Ts

C(A− I) 0





[
xk

σk

]

+





D
0
B



uk. (2.9)
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The PID-controller can then be written on the form (2.4) with

Ky =
[
KP KI KD

]
. (2.10)

In (2.9) we have used the forward difference to approximate the derivative,
∂yk
∂t ≈

yk+1−yk
Ts

, which gives a direct feed through term in the model. We can also use
other approximations of the derivative including filters, but the filter constant needs
to be set a priori and is not considered a degree of freedom for the optimization.
The MIMO-PID is covered in more details in the examples.

Remark 2.2. Rather than only integrating the outputs as in equation(2.8) one
could also add integrators on the inputs to get better performance for integrating
disturbances at the inputs. Then one would need to estimate these disturbances
by for example a Kalman filter, and include the output of the Kalman filter as
an additional model output, to be used in the controller design. Issues regarding
offset-free tracking and disturbance rejection for MPC are treated in [Muske and
Badgwell, 2002, Pannocchia and Rawlings, 2003], where rank-requirements for
the matrices in the estimator are given.

By augmenting the plant as shown above, any fixed structure control problem
may be posed as a static output feedback problem. In process control aninteresting
controller could bedecentralizedPI-control, but the fixed structure problem may
also be interesting in other fields, see e.g. Gadewadikar et al. [2009] which studied
static output feedback control for rotorcraft and Maithripala et al. [2005] which
considered static output feedback of an electrostatic microelectromechinalsystem.

Difficulty of solving static output feedback. In the literature, it is proved that
problems closely related to static output feedback belongs a class of problems that
cannot be solved by polynomial time algorithms (NP-hard problems), and it is
therefore conjectured that also the SOF problem is an NP-hard problem [Blondel
and Tsitsikilis, 1997]. For a survey of different approaches to this problem the
reader is referred to Syrmos et al. [1997].

There is still active research in this topic, see for example Bara and Boutayeb
[2005], which addresses static output feedback stabilization withH∞ performance,
Fujimori [2004], which approaches static output feedback with a substitutive LMI
formulation, and Maruta et al. [2009] which addresses fixed-structuresynthesis
using particle swarm optimization. For applications to uncertain systems see e.g.
[Shu et al., 2010, Wu, 2008], and for an application to stabilization and control of
networks see [Menon and Edwards, 2009]. The subject of static output feedback
is also still frequent at conferences, see e.g. the Conference on Decision and Con-
trol [Pakshin and Peaucelle, 2009, Nagashio and Kida, 2009, Mukadidani and Xu,
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2009, Qiu et al., 2009, Bouarar et al., 2009] and American Control Conference
[Haidar et al., 2009, Du and Yang, 2009, Ding and Yang, 2009a,b].

It is interesting to note that a fixed structure feedforward control design prob-
lem can at least for some cases be posed as a convex problem. This is demonstrated
by van der Meulen et al. [2008], who investigated fixed structure controller design
by exploiting iterative trials. They demonstrated their method on a wafer stage and
a desktop printer.

Contribution of this chapter. Rather than solving for the output feedback con-
troller that directly minimizes the expected value of the cost function (2.5), in this
chapter we derive a convex approximation to the problem of minimizing the ex-
pected lossE{L}, where the non-negative loss is given by

L(uk =−Kyyk,x0) = J(uk =−Kyyk,x0)−Jopt(x0), (2.11)

whereJ(u,x0) is the cost function (2.6) evaluated for a static output feedback con-
troller andJopt(x0) is the optimal value of the objective function for any given dis-
turbancex0, which can be realized with a LQ-optimal full-information controller
(i.e. state feedbackuk = −KLQRxk). Note that minimizing the loss (2.11) may be
more reasonable from an engineering point of view, as we avoid penalizing devi-
ations that cannot be handled even with the best controller. In some sensewe get
“for free” a reference model which is often used as a tuning factor in controller
design, see e.g. [Skogestad and Postlethwaite, 2005]. In any case, numerical evi-
dence suggests that the differences are small.

Chapter overview. The rest of this chapter is organized as follows: First, we re-
view background material on the finite horizon linear quadratic regulator, infinite
horizon static output feedback, and finite horizon static output feedback. Then we
give our main result, which is a convex approximation to the problem of minimiz-
ing the expected loss from optimal control. Thereafter two examples are given,
and we finally discuss our findings.

2.2 Background material

2.2.1 Finite horizon linear quadratic regulator

Let us consider the finite horizon optimal control problem, also known as thelin-
ear quadratic regulator (LQR) problem (see for example [Kalman, 1960]and ref-
erences therein). This problem can be posed as anopen-loopproblem in the inputs
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u = (u0,u1, · · · ,uN−1) by first writing the linear modelxk+1 = Axk +Buk as








x1

x2
...

xN








︸ ︷︷ ︸

x

=








A
A2

...
AN








︸ ︷︷ ︸

Gx
x0

x0 +








B
AB B
...

. . .
AN−1B · · · · · · B








︸ ︷︷ ︸

Gx
u

u (2.12)

By further definingQ̄ = diag(Q, · · · ,Q,QN), and R̄ = diag(R, · · · ,R), the LQR
problem can be written as

Jopt(x0) = min
u

[
u
x0

]′[
Juu Jux0

J′ux0
Jx0x0

][
u
x0

]

(2.13)

with

Juu = Gx
u
′Q̄Gx

u + R̄, (2.14)

Jux0 = Gx
u
′Q̄Gx

x0
, (2.15)

Jx0x0 = Gx
x0

′Q̄Gx
x0

. (2.16)

This is not formulated as a feedback problem, but if we assume a moving
horizon problem and only implement the first move (of the input vectoru), then
by the principle of optimality [Bellman, 1954] an optimal feedback policy results.
Actually, without knowledge of dynamic programming, one can deduce that the
solution can be written as a feedback policy by solving the first-order optimality
conditions, which giveu = −J−1

uu Jux0x0, and since a new disturbancex0, which
can be observed by the states, can happen at every sample time, we simply keep
implementing the first part of this vector (corresponding to the first inputu0) and
we have solved the moving horizon control problem. Note that a Riccatti-iteration
can be used to findKLQR, which is the first part of the matrixJ−1

uu Jud, see e.g.
[Rawlings and Muske, 1993].

The optimal value of the cost function (denoted “value function”), which we
get by inserting the optimal inputu =−J−1

uu Jux0x0 into problem (2.13) is

Jopt(x0) =−x′0J′ux0
J−1

uu Jux0x0 +x′0Jx0x0x0. (2.17)

Remark 2.3. The finite horizon linear quadratic regulator problem as presented
above isnotset up as a feedback problem and at the first glance it may therefore not
seem to be very interesting from a control point of view, where one is mostlylook-
ing for feedback controllers (that has a good trade-off between performance and
robustness). However, since the solution can be written on the form uk =−KLQRxk,
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where KLQR = J−1
uu Jux0, and all information about the past disturbances can be as-

sumed to be accumulated into the states x0, we in fact get a feedback solution when
we implement the solution in a moving horizon fashion. Note however that in the
problem formulation there is no information about any moving horizon, but using
the solution as a moving horizon strategy happens to give good results. In sum-
mary, the LQR problem itself (posed as an open-loop problem in u) is not very
interesting from a practical point of view, but it’simplementationas a state feed-
back is what makes this problem interesting.

We further remind the readers about the guaranteed robustness margins of
linear quadratic Gaussian control (LQG), for which “there are none” [Doyle,
1978], so using the state feedback with a Kalman filter in the loop should be done
with care. Other researches have pointed out that this limitation of no guaranteed
margins is not too important in practise, see e.g. [Pannocchia et al., 2005]. The
practitioner should nevertheless be aware of this limitation.

2.2.2 Infinite horizon static output feedback

The problem of finding the static output feedback that minimizes the expected
value of the infinite-horizon objective functionJ∞ in equation (2.5) may be posed
as minimizing theH 2-norm of the lower fractional transformFl (P,Ky) = P11 +

P12(I−P22Ky)−1P21
S
=

[
AFl BFl
CFl DFl

]

whereP is given by e.g., [Skogestad and Postleth-

waite, 2005]:

P =

[
P11 P12

P21 P22

]

S
=








A W1/2
x0 B

Q1/2 0 0
0 0 R1/2

C 0 0








. (2.18)

TheH 2-norm‖Fl (P,Ky)‖2 can be computed by first solving a Lyapunov equation
to obtain the “state covariance” matrixS [Bryson and Ho, 1975]:

S= AFl SA′Fl
+BFl B

′
Fl
, (2.19)

The “output covariance” is then given by

R= CFl SC′Fl
+DFl D

′
Fl

(2.20)

and finally
‖Fl (P,K

y)‖2 = trace(R). (2.21)

This problem is nevertheless believed to be NP-hard [Blondel and Tsitsikilis, 1997],
and the “brute-force” approach is to optimize directly on the gain matrixKy, which
works well as long as we have a good initial guess. A minimal requirement from
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our experience is that the initial guess should stabilize the plant, as theH 2-norm is
only defined for stable plants.

Remark 2.4. (Interpretation ofH 2-norm) The problem of regulating a system that
is driven by white noise back to origin may seem a bit restrictive from the practi-
tioner’s point of view, since the dominating disturbances in e.g. a chemicalprocess
plant look more like sinusoids than white noise. By [Skogestad and Postlethwaite,
2005, Tables A.1-A.2, page 540] we have that one should minimize theH 2-norm if

1. The input signal is assumed to be (series of) impulses and the error signal is
evaluated by the 2-norm (energy).

2. The input signal is assumed to be bounded by it’s energy (2-norm) and the
error signal is evaluated by the∞-norm (peak magnitude).

In order to cover sinusoids one must use the maximum singular value, but espe-
cially point 2, energy bounded input and peak magnitude as a measure of error
signal, should be quite interesting from a practical point of view.

2.2.3 Finite horizon static output feedback

Let us analyze the problem of minimizing the expected value of the finite horizon
objective functionJ given in equation (2.6). For a givenx0 the objective function
can be written as

J(x0) = z′z (2.22)

with

z= G1/2x0 (2.23)

G = (AN
c )′QNAN

c +
N−1

∑
i=0

(Ai
c)
′(Q+(KC)′RKC)Ai

c (2.24)

where the dependence onKy enters through the state matrixAc,

Ac = A−BKyC. (2.25)
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Note thatAi
c is Ac raised to the poweri, and further note thatG is symmetric under

the assumption thatQ andR are symmetric matrices. It now follows that

E{J}= E
{

z′z
}

= E
{

trace(zz′)
}

= E
{

trace(G1/2x0x′0G1/2)
}

= E
{

trace(G1/2G1/2x0x′0)
}

= trace(G1/2G1/2E
{

x0x′0
}
)

= trace(G1/2G1/2W1/2
x0 W1/2

x0 )

= trace((G1/2W1/2
x0 )′(G1/2W1/2

x0 ))

= ‖G1/2W1/2
x0 ‖2F

where we have used thatE{x0x′0} = var(x0) = Wx0 and the identify trace(AB) =
trace(BA).

In order to synthesize a static output feedback controller one may use a non-
linear search to minimize the norm‖G1/2W1/2

x0 ‖2F , but this problem is expected to
be NP-hard [Blondel and Tsitsikilis, 1997].

2.3 Minimization of expected loss from optimal control

In this section we first analyse the problem of minimizing the expected loss

E{J(u,d)−Jopt(d)} (2.26)

and then we derive an upper bound for this problem that may be found byconvex
optimization.

2.3.1 Analysis

Let the plant model (2.1)-(2.2) be written in the fromx = Gx
x0

x0 +Gx
uu as in equa-

tion (2.12) and let

Gy
u = C̄Gx

u + D̄, Gy
x0

= C̄Gx
x0

, (2.27)

where

C̄ = diag(C, . . . ,D), D̄ = diag(D, . . . ,D). (2.28)

Further, lety denote the stacked vector of outputs,

y =






y0
...

yN




 . (2.29)
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Consider now the augmented linear model

ỹ =

[
u
y

]

=

[
I

Gy
u

]

︸ ︷︷ ︸

Gỹ

u+

[
0

Gy
x0

]

︸ ︷︷ ︸

Gỹ
d

Wdd
︸︷︷︸

x0

(2.30)

whered is a normally distributed random variable with zero mean and unit covari-
ance, andWd = W1/2

x0 , such thatx0 = Wdd. Note that

var(x0) = var(Wdd) = var(W1/2
x0 d) = Wx0 (2.31)

as expected. The static output feedback constraintu =−diag(Ky, . . . ,Ky)y can be
written as

[
I diag(Ky, . . . ,Ky)

]

︸ ︷︷ ︸

H

ỹ = 0. (2.32)

Here, the block diagonal structure diag(Ky
0,K

y
1, . . . ,K

y
N−1) is required to have causal-

ity whereasKy = Ky
0 = Ky

1 = · · ·= Ky
N−1 gives a time invariant controller.

Halvorsen et al. [2003] show that the lossJ(u,d)− Jopt(d) for a givend of
adding a constraintHỹ = 0 to an otherwise unconstrained optimization problem is
given by

L(u,d) = J(u,d)−Jopt(d) =
1
2

q′q (2.33)

with

q =−XHFWdd, (2.34)

X = J1/2
uu (HGỹ)−1, (2.35)

F =−(GỹJ−1
uu Jux0−Gỹ

x0
). (2.36)

By exactly the same deviation as for the finite horizon static output feedback prob-
lem in section 2.2.3 we find that the expected value of the loss is

E{L}=
1
2
‖J1/2

uu (HGỹ)−1HF
︸ ︷︷ ︸

G

Wd‖2F . (2.37)

This expression is also derived by Kariwala et al. [2008].
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2.3.2 Solution

Problem (2.37) of minimizing the expected loss can be restated as:

min
H

E{L}= ‖XHFWd‖2F (2.38)

s.t. X = J1/2
uu (HGỹ)−1 (2.39)

H on the formH =
[
I diag(Ky, . . . ,Ky)

]
(2.40)

This problem is non-convex due to the inversion ofHGỹ, and moreover it is
probably as difficult as the original static output feedback problem of minimizing
the cost (2.6), as the only difference is that we subtract a reference controller in the
objective function.

However, if we for the moment letH be a full matrix, meaning thatu could
be a function of all outputsy (in general, non-causal), there exists a reformulation
which makes the problem convex:

Theorem 2.1. (Convex reformulation for full H [Alstad et al., 2009]) The optimal
full H that minimizes the expected loss in equation(2.37)can be found by solving
theconvexoptimization problem

min
H
‖HFWd‖F

subject to X= (HGy) being any fixed full rank matrix (e.g., X= J1/2
uu )

(2.41)

The reason why we can omitX = J1/2
uu (HGy)−1 is that the expression for the

loss is not affected by a non-singular matrixD in front of H. That is, if H is an
optimal solution that minimizes‖XHF‖F , then so isH1 = DH whereD is any
non-singular matrix of appropriate dimensions [Alstad et al., 2009].

For our case, where we know that we are looking for a feedback solution, it
can be satisfied by requiring thatH1 =

[
I K

]
where use of the identity matrix

guarantees full rank and where the remainingK is a full matrix. This gives no loss
because we may choose the non-singularD to getH1 = DH.

Remark 2.5. Actually, [Alstad et al., 2009] require X= I which is one way of
guaranteeing that X has full rank. This can be relaxed even more as X does not
need to be the identity matrix (I), but can be any full rank matrix Yelchuru [2010].
This also means that the matrix Juu is not needed, and from this we finally get the
result in Theorem 2.1 that it is enough to require that HGy has full rank. Explicit
knowledge about Juu is not actually required when finding the optimal H using
(2.41), but it would be required to find a numerical value for the loss.

Theorem 2.1 does not apply for the case of a structuredK = diag(Ky, . . . ,Ky).
However, a suboptimalKy is obtained by solving the following problem:
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Definiton 2.1. (Upper bound on the loss by using static output feedback) The
following convex problem can be used to find an upper bound for the optimalstatic
output feedback:

min
H
‖HFWd‖2F

s.t. H on the form H=
[
I diag(Ky, . . . ,Ky)

]
,

(2.42)

where F is given by(2.36).

As we demonstrate in the examples, we have numerical evidence that indicates
that for some interesting cases, we get solutions that are close enough to the true
solution such that we can use the resulting controller as an initial condition fora
nonlinear search (or simply use the sub-optimal controller directly).

Problem (2.42) can be solved as a quadratic program (QP) by vectorization. A
so-called “large-scale algorithm” is a good candidate to solve the resulting QP, as
the problem is structured and only equality constraints are present [Mat].

Remark 2.6. Note that problem(2.42)differs from the original static output feed-
back problem in two ways: First, we minimize the loss from the LQR controller,
rather than the cost function(2.6)directly. Second, we neglect X= J1/2

uu (HGy)−1

which gives the effect of the term X= J1/2
cc . Neglecting X is not expected to have a

large effect as we conclude that it is exact for the case when K is full.

2.4 Examples

We here give two examples of application of the static output feedback design
method. First we discuss proportional-integral (PI) LQ-optimal control of a set of
second-order underdamped plantsg(s) = k/(τ2s2 + 2τζs+ 1), where we change
the damping coefficientζ in the rangeζ ∈ [0,1]. As a second example we discuss
multivariable PID control of a distillation column.

2.4.1 PI control of underdamped plant

Consider the following second-order system:

g(s) =
k

τ2s2 +2τζs+1
. (2.43)

We want to design a proportional-integral (PI) LQ-optimal controller for this
plant, and we want to investigate our design method for different values ofthe
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damping coefficientζ. For plants with small values ofζ a PI controller is not ex-
pected to work very well, and thus the problem of finding PI parameters is expected
to be difficult.

Using the observer canonical form, see e.g. [Skogestad and Postlethwaite,
2005], we write the system on state-space form:

ẋ =

[
0 1

1/τ2 −2ζ/τ

]

︸ ︷︷ ︸

A

x+

[
0

k/τ2

]

︸ ︷︷ ︸

B

u, ym =
[
1 0

]

︸ ︷︷ ︸

C

z
(2.44)

To design a PI controller, we augment the system with an integrated output, to get

ż=

[
ẋ
σ̇

]

=




A

0
0

1 0 0





︸ ︷︷ ︸

Ã

[
x
σ

]

+

[
B
0

]

︸︷︷︸

B̃

u

ym =

[
yP

yI

]

=

[
1 0 0
0 0 1

]

︸ ︷︷ ︸

C̃

z

(2.45)

We here considerτ = k = 1, and sample the plant withTs = 0.1 to get a discrete-
time model which we use for design of different static-output feedback controllers.

We define the quadratic weights for the controller design as:

Q =





0
0

1



 , R= 1 (2.46)

In addition we assume that the disturbances are equally distributed on all the states
and therefore useWx0 = W2

d = I .
Figure 2.1 shows closed loop norms‖Fl (P,Ky)‖2 for the following controllers:

1: Optimal finite horizon PI for original cost function For a horizon ofN = 100
we used nonlinear optimization to minimize the norm‖G1/2W1/2

x0 ‖F as given
in section 2.2.3.

2: Convex approximation of minimizing the expected lossFor the same hori-
zon ofN = 100 we solve the convex problem (2.42).

3: Optimal infinite horizon PI for original cost function Here we used a non-
linear solver to solve the problem posed in section 2.2.2, i.e. we search for
aKy such that the norm‖Fl (P,Ky)‖2 in equation (2.21) is minimized.
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1: Optimal finite horizon PI
2: Upper bound by convex approximation
3: Optimal infinite horizon PI
4: LQR

Figure 2.1: Closed-loop norms‖Fl (P,Ky)‖2 for different design methods.

4: Optimal PI for loss formulation For an input horizon ofN = 100 was prob-
lem (2.38)-(2.40) too time-consuming to solve. We discuss the properties of
this solution for a smaller horizon after this example.

5: LQR controller An infinite horizon linear quadratic controller for the aug-
mented plant.

Corresponding closed-loop responses for a damping coefficientζ = 0.101 are
shown in Figure 2.2, and the specific controller gains for the same damping co-
efficient are given in Table 2.1. As already mentioned we usedN = 100 in the
design of the finite horizon controllers, which in this plot corresponds to 10time
units. For such a underdamped system, it seems like the prediction horizon is abit
too small. Nevertheless, we conclude that the controllers are comparable, and that
they can be ranked as shown by the closed-loop norms in Figure 2.1, namelythat
optimal infinite horizon PI controller is the best static output feedback controller,
but that the optimal finite horizon PI controller and the convex approximation are
quite similiar with respect to closed-loop performance.

We observe that the LQR controller for the same process is superior in perfor-
mance to the static output feedback controllers. This is expected as we herechose
a “difficult” plant to control with the PI-structure of the controller. The LQRcon-
troller use a measurement of the whole state vector and does not suffer from the
same controllability issues.

For both optimal control problems, which need to be solved by nonlinear op-
timization, we started withζ = 1, for which initial conditions can easily be found,
and incrementally decreased the damping coefficientζ to trace the optimum to-
wardsζ = 0.
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1: Optimal finite horizon PI
2: Upper bound by convex approximation
3: Optimal infinite horizon PI
4: LQR

Figure 2.2: Closed loop responses for PI control with damping coefficient ζ =
0.101. Disturbance at timet = 0 isx0 = (1,0,0).

Case Controller gain

Optimal finite horizon PI
[
0.411 0.167

]

Upper bound by convex approximation
[
0.372 0.173

]

Optimal infinite horizon PI
[
0.389 0.124

]

LQR
[
0.879 1.151 0.942

]

Table 2.1: Output feedback (PI) controllers for damping coefficientζ = 0.101.
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Expected value to be mini-
mized

Controller gain Closed loop norm
(= infinite horizon
cost)

Finite horizon costJ in (2.6)
[
0.643 0.335

]
13.74

Approximated loss in (2.42)
[
0.413 0.232

]
11.12

Exact loss in (2.37)
[
0.345 0.161

]
10.95

Infinite horizon costJ∞ in
(2.5)

[
0.447 0.190

]
10.81

LQR
[
0.899 1.085 0.946

]
6.78

Table 2.2: Output feedback (PI) controllers for damping coefficientζ = 0.15 with
a smaller horizon for the finite horizon costs,N = 20, compared to the rest of the
example, where we usedN = 100.

From Figure 2.1 we observe that in the range of processes forζ ∈ [0.058,1] is
the convex approximation very close to the optimal finite horizon PI controller.For
the very underdamped processes in the range[0,0.058] neither of the finite horizon
PI controllers resulted in stable closed loop. This might have been improved by
using a larger prediction horizonN in the design problem. However, even by
taking an infinitely long prediction horizon there is a point where the “forced” PI
structure of the controller is simply not suited for the process. This is illustrated
by the infinite horizon PI controller, for which the closed-loop norm increases
and eventually becomes infinity asζ→ 0. This is because derivative action (PID
controller) is required to stabilize a process on the form 1/s2.

Comparison with exact loss minimization

In Table 2.2 we show the results of the different design methods when we use a
shorter horizon,N = 20, for the finite horizon approximations. Minimizing the
expected loss function in equation (2.37) is quite complicated, so we could not
include this result in the rest of the example, where we used an horizon ofN = 100
in the finite horizon approximations.

The results in Table 2.2 are quite interesting; we observe that in terms of the
closed loop norm, our convex approximation of minimizing the loss is actually
better than directly minimizing the finite horizon approximation. This may be
related to the fact that in the convex approximation we are minimizing the loss
to an LQR controller, which does not degenerate when the horizon is small. The
static output feedback controller that directly minimizes the cost should be more
sensitive to a short horizon, because the weight on the final state in the cost function
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assumes an LQR controller, which is not correct. The weight matrix for the final
statexN was

QN =





14.73 9.58 14.16
9.58 11.17 10.01
14.16 10.01 20.08



 , (2.47)

derived by the method of Remark 2.1.
We further notice that the exact loss is quite close in performance to minimiz-

ing directly the infinite cost. Then there is an additional (small) increase in the cost
by using the approximated loss function, this is due to the convex relaxation ofthe
problem.

2.4.2 Binary distillation

In this example we consider MIMO-PI and -PID control of “Column A” in [Sko-
gestad, 1997]. The model is based on the following assumptions:

• binary separation,

• 41 stages, including reboiler and total condenser,

• each stage is at equilibrium, with constant relative volatilityα = 1.5,

• linearized liquid flow dynamics,

• negligible vapor holdup,

• constant pressure.

A sketch of the column is shown in Figure 2.3. The feed enters on stage 21.
We here consider theLV-configuration, whereD andB are used to control the

levels. With level controllers implemented (P-control withKc = 10) the rest of the
column is stable.

The model is first linearized around the nominal operating point given in Table
2.3. Balanced reduction was used to reduce the number of states from 82 to16,
with a largest neglected Hankel singular value of 8.067· 10−5. Then integrated
outputs were added to the model, resulting in a model with 18 states. If we let the
outputs of the model be P, I, and D, we get a model with the following structure:

[
ẋ
σ̇

]

=

[
A 0
C 0

][
x
σ

]

+

[
B
0

]

u





yP

yI

yD



 =





C 0
0 I

CA 0





[
x
σ

]

+





0
0

CB



u

. (2.48)
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Figure 2.3: Sketch of distillation column.

Type Description Variable Nominal Value

Input Reflux flow L (u1) 1.87
Vapor flow V (u2) 2.37

Disturbance Feed flow F (d1) 1.0
Feed composition zF (d2) 0.5
Liquid feed fraction qF 1.0

Output Overhead compositionxD (y1) 0.95
(light component)
Bottoms composition xB (y2) 0.05
(light component)

Table 2.3: Variables for distillation example. Variable names in parenthesis indi-
cate corresponding deviation variables, for exampleu1 = L−1.87. The liquid feed
fractionqF is assumed constant.
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Description Control equation ‖Fl (P,K)‖2
Upper bound
PI

uk =−
[

16.2850−4.5264
0.0938 −8.2969

]
yP

k −
[

2.8640−0.6262
0.3900−2.5700

]
yI

k 3.654

Optimal PI uk =−
[

15.6967−4.9955
1.2471 −9.9017

]
yP

k −
[

2.6874−0.6987
0.4058−2.7756

]
yI

k 3.650

Upper bound
PID

uk = −
[

16.7001−4.6139
0.1694 −8.6518

]
yP

k −
[

2.9048−0.5948
0.3192−2.6017

]
yI

k−[
1.0589 −0.4309
−1.4951−1.2063

]
yD

k

3.650

Optimal PID uk =−
[

16.5929 −5.2730
2.3102 −11.0965

]
yP

k −
[

2.6510−0.6209
0.1020−2.7143

]
yI

k−[−2.4821−3.8819
−7.0188−8.4573

]
yD

k

3.630

LQR Given by equation (2.50) 3.610

Table 2.4: Controller gains for the upper bound PI and PID controllers found by
solving problem (2.42) and optimal controller for the distillation column example.

This model is sampled withTs = 1 to get a discrete time model. We use the weights

Q = C′
[

0
I

0

]

C, andR = 0.1 · I . For the finite horizon approximation we use a

prediction horizon ofN = 80, and we also for this example assumeWd = I .
We now look for controllers on the form

uk =−
(
KPyP

k +KI yI
k +KDyD

k

)
(2.49)

and we assume measurements of the compositions with a sample time of 1 minute
is available.

Table 2.4 shows the result of using the approximation given by problem (2.42)
and the assumed global optimum of the original problem for both MIMO-PI and
-PID designs. In particular for the PI case is the solution of the convex approxima-
tion quite close to the optimal PI controller. The LQR controlleruk = −KLQRxk,
with gain

KLQR =
[
k1 k2 k3

]
,

wherek1 =
[−0.0022 0.0002−0.0004−0.0007 0.0016−0.0097

0.0008 0.0015−0.0016−0.0037 0.0079−0.0074

]
,

k2 =
[−0.0036 0.0048 0.0116−0.0011−0.0213 0.0305
−0.0066 0.0262 0.0610 0.0044 0.0093 −0.0148

]
,

k3 =
[

0.0149 0.0521 0.1349 0.1034 2.6897 −0.5975
0.0233−0.0372−0.1607 0.0895−0.1350−2.5939

]
,

(2.50)

has a closed loop gain which is in the same range as the static output feedback
controllers. We also notice with interest that adding derivative action doesnot
improve the closed loop norm much, even for the optimal PID controller.

Figure 2.4 shows responses to step disturbances for the different controllers.
The optimal PID controller seems to be a bit too aggressive, however this is ex-
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Figure 2.4: Closed loop responses for distillation example. Disturbances: step in
feed rate att = 10 and step in feed composition att = 100.

pected as we did not include any penalty on the rate of change(uk−uk−1). Nev-
ertheless, the controllers are quite comparable in performance, which is what we
wanted to demonstrate with this example.

2.5 Proposed procedure

For plants where a MIMO-PID or another “fixed-structure” controller isdesired,
we propose the following design procedure in order to use the results in thischap-
ter:

1. Design a good LQR controller by modifying the weightsQ and R in the
quadratic objective function (2.5).

2. Propose asimplefixed-structure controller, for example a diagonal PI con-
troller, and use convex approximation (2.42) to find the controller gains.

3. Evaluate the difference in closed-loop costs between the LQR and the pro-
posed simple controller.
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(a) If the difference large, increase the complexity of the controller by
for example allowing for interactions in the controller (i.e. add off-
diagonal elements). In addition one can add filters in the PID formula-
tions to change the dynamic properties of the controller.

(b) If the difference is acceptably small, finish.

In the procedure above we solve at each iteration a static decentralized control
problem (where static in this chapter allows for MIMO-PID and other fixed-structure
designs). For a given decentralized controller, we compare the cost to the LQR
controller, and we add complexity if needed. Note that decentralized control is
known to have non-unique solutions, see for example [Hovd and Skogestad, 1994,
Example 6] and [Lundström and Skogestad, 1991]. It seems therefore likely that
the convex approximation of the minimization of expected loss may perform badly
for a controller with many zero elements. Investigation of this phenomenon is
planned further work in this project. However, for a structure that is well-suited
for the plant, the method should work satisfactory.

2.6 Discussion

2.6.1 Loss versus finite horizon objective

We observed in the example of PI control of an underdamped plant that theconvex
approximation of minimizing the loss actually performedbetter in terms of the
closed-loop norm than minimizing a finite-horizon objective function. As already
mentioned this is probably due to that the finite horizon cost function is not a good
approximation for the infinite horizon cost for small horizonsN when static output
feedback is used. Minimizing the loss seems to be less sensitive to small horizons,
and this is probably due to that we are approximating the cost function of the linear
quadratic controller described in section 2.2.1 which is independent ofN.

The problems with the finite horizon objective function for controller design
may also be brought back to the issues with the moving horizon controller itself;
usually when a moving horizon control problem is posed feedback is not taken
into account, subsequently by only implementing the first move we have a differ-
ence between the controller used on the plant and the one found by the optimizer.
These limitations have been acknowledged in the terms of robust model predictive
control, see e.g. [Bemporad and Morari, 1999], but are often not addressed.

The limitations with the finite horizon approach further justifies our approach
of minimizing the expected loss from the cost of using an optimal controller. The
approximation may be as valid as simply using a finite horizon cost for output
feedback design, and this is indeed demonstrated by the results of Table 2.2for the
example of controlling an underdamped plant.
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2.6.2 Solution method

Recall the convex approximation (2.42):

min
H
‖HFWd‖F

s.t.H on the formH =
[
I diag(Ky, . . . ,Ky)

]
.

We chose to solve this as a quadratic program by vectorization. Vectorization of
the problem can be done by first defining

H , Z′ =








z′1
z′2
...
z′n








(2.51)

and then

z=








z1

z2
...
zn








(2.52)

and finally

Fdiag =








FWd

FWd
. . .

FWd








(2.53)

We now rewrite the objective function as:

‖HFWd‖2F = ‖Z′FWd‖2F = ‖








z′1
z′2
...
z′n








FWd‖2F = ‖








z′1FWd

z′2FWd
...

z′nFWd







‖2F =

= ‖
[
z′1FWd z′2FWd · · · z′nFWd

]
‖2F = ‖z′Fdiag‖2F =

= trace(z′FdiagF
′
diagz) = z′FdiagF

′
diagz

(2.54)

Here we used the following identity:‖A‖F = ‖A′‖F = trace(A′A) = trace(AA′).
In addition we add equality constraints onzsuch thatH is constrained to be on

the formH =
[
I diag(Ky, . . . ,Ky)

]
, let Az= b denote these constraints. In order

to solve the convex approximation we therefore chose to solve the following QP:

min
z

z′FdiagFdiagz

s.t.Az= b
(2.55)
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CPU time [minutes]

N size of optimization vectorz CPLEX QUADPROG

80 102400 elements 1.4 1.4
100 160000 elements 5.0 5.3
120 230400 elements 43 out of memory

Table 2.5: CPU times for MIMO-PID design for the distillation example.

The optimization vectorzhas lengthN2nu(nu+ny), and the length ofb is such that
the remaining degrees of freedom (if we were to substitute the equality constraints
into the objective function) are equal to the number of elements in the static output
feedback gainKy. Even though this is a convex QP we experienced that it took
quite long time to solve the problem, as the following example illustrates.

Example: MIMO-PID design for distillation column. Let us consider the
MIMO PID design in for the distillation example in section 2.4.2. In Table 2.5
we report CPU times for the commercial QP solver CPLEX version 12.1 called
through the “IBM ILOG CPLEX Matlab connector” on a Dell PowerEdge 1950
with an Intel Xenon CPU E5410 at 2.33 GHz with 8GB RAM, running CentOS
Linux release 5.2. In addition we tried to use Matlab’s QUADPROG in “large-scale
mode”, which handles sparse Hessian and equality constraints. We observe that for
smallN the solvers have the same solution time, but QUADPROGcauses Matlab to
go out of memory for largeN.

There is probably a significant potential to improve the solution of this QP
by using a tailor-made solver. For instance, the “IBM ILOG CPLEX Matlab
connector” converts sparse matrices to full matrices before it sends the problem
to CPLEX. This is clearly not beneficial for our problem, as the Hessian matrix
FdiagF ′diag is a block diagonal matrix withFF ′ on the diagonal and zeros on the rest
of the matrix. We leave improvements of the solution as further research for now.

2.6.3 Iterative method

The expected loss minimization,

min
H
‖J1/2

uu (HGy)−1HFWd‖F
s.t.H on the form

[
Hy Hu

]
=

[
diag(Ky) I

]
,
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can be solved iteratively as

min
Hk

‖ZkFWd‖F

s.t.H on the form
[
Hy Hu

]
=

[
diag(Ky) I

]

Zk = Nk−1Hk

(2.56)

with
Nk−1 = J1/2

uu (Hk−1Gy)−1. (2.57)

However, we identified two problems with using this method. First, the method
did not converge to the optimal solution of the nonlinear problem. This is due to
that for a givenNk−1, the objective functions

J1(Hk) = ‖J1/2
uu (HkG

y)−1HkFWd‖F

and
J2(Hk) = ‖Nk−1HkFWd‖F

arenot the same. In the examples covered in this chapter this was not too important
asJ1/2

uu (HkGy)1/2 was close to unitary at the optimal point.
Second, we solved this problem as a quadratic program (QP) by vectorizing

problem (2.56). For a large prediction horizon, just performing the vectorization
takes a very long time (> 1 hour). This can most likely be fixed by paying more
attention to the coding, as we used “standard” Matlab code (sparse matrix func-
tionality) to define the problem.

We therefore recommend to ignore the termNk−1 and rather solve the convex
approximation, as this can be solved with considerably larger prediction horizon
N for the same computational effort as the iterative scheme.

2.6.4 Static decentralized control

A static decentralized control problem may readily be posed as in problem (2.42),
as one only has to add additional constraints that some parts of the static output
feedbackKy should have zero elements. For example, one could search for a
diagonal PI structure. As already mentioned in the design procedure, investigation
of synthesis of diagonal controllers if planned further work in this project.

2.7 Conclusion

We have given a convex initialization for the static output feedback problemwhich
can be used to initialize a non-linear search for finite and infinite horizon optimal
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Variable Value

LossL∗ = 1
2σ̄2(J1/2

uu (HGy)−1HF) 46.28
Corresponding input vectordmax

[
−0.05 0.83 0.56

]′

Finite horizon cost forKy
convex approximation

starting fromx0 = dmax

68.42

Finite horizon cost forKLQR starting from
x0 = dmax

22.14

Difference in costs 46.28
Bound on relative maximum loss by equa-
tion (2.58)

209%

Table 2.6: Loss calculation by the 2-norm forζ = 0.101.

static output feedback controllers. However, as examples indicate, the method may
also be used on it’s own, as the sub-optimal static output feedback controllers are
quite close to the optimal ones for the examples studied.

We finally stress that this is a heuristic method with no guarantee of success
for a given linear system, but that it performed well on the examples investigated
in the chapter.

2.8 Appendix: Bounds on the loss

In this appendix we give some numerical verifications on our calculations and cal-
culate a relative bound to the LQR controller by using the maximum singular value
for the loss function. The maximum singular value will occur if we consider the
worst case value of the loss function when the augmented disturbanced̃′=

[
d′ n′

]

is bounded in the 2-norm, see e.g. [Kariwala et al., 2008]. In this chapter we con-
sider the expected loss (denoted as “average loss” by Kariwala et al. [2008]) when
the augmented disturbance vectord̃ is assumed to be a random variable drawn from
a normal distribution, and we showed that the resulting norm to be minimized is
the Frobenius norm. Kariwala et al. [2008] showed that for the case of afull H
(i.e. where the structural constraint “H on the form

[
Hy Hu

]
=

[
diag(Ky) I

]
” )

will an H that minimizes the Frobenius norm of the loss also minimize the max-
imum singular value, hence the optimalH is “super-optimal”. This result cannot
be applied to our case, since we have added the structural constraint that of static
output feedback, but the norms should still be related.
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Method Loss Japprox(dmax) Bound

Upper bound PI 0.295 8.96 3.4%
Upper bound PID 0.252 8.90 2.9%

Table 2.7: Bounds of sub optimality for upper bound PI and PID controller calcu-
lated by expression (2.58).

2.8.1 Bound for the underdamped system

The loss can be used to calculate a relative bound between a static output feedback
controllerKy and the optimal state feedback (finite horizon LQR) controllerKLQR.
This is done in Table 2.6 for the case of damping coefficientζ = 0.101. We first
use the singular value decomposition to find the maximum singular value of 9.62
and the corresponding worst-case disturbancedmax =

[
−0.05 0.83 0.56

]′
. We

then calculate the finite horizon objective withN = 100 withx0 = dmax for both the
static output feedback controller and the LQR controller, and we observethat the
difference in objective functions is indeed equal to the loss. Hence, a tight bound
on the relative worst-case loss from optimality is:

J(Ky,dmax)−Jopt(dworst case)

Jopt(dmax)
=

L∗

J(Ky,dmax)−L∗
(2.58)

Remark 2.7. The results in Table 2.6 gives bounds on the worst-case error for the
given Ky that we found by using the convex approximation. Note however that we
in this chapter use the Frobenius norm, and since H is not full it is not given that
an optimal H in the Frobenius norm also minimizes the worst-case error, asis the
case for full H, see [Kariwala et al., 2008].

2.8.2 Bounds for distillation example

Also for the distillation case can we calculate the worst case relative difference in
cost functions between optimal control and the static output feedback by equation
(2.58). The results are reported in Table 2.7, and we observe that the relative
difference between state feedback and static output feedback are a lotless that
what was the case for the underdamped system. In this in accordance with the
closed loop simulations in Figures 2.2 and 2.4.
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Chapter 3

Static output feedback with noisy
measurements

In this chapter we generalize the results in Chapter 2 to noisy measurements.
This generalization has the following implications:

• The reference controller, which for the noise-free case wasa finite
horizon linear quadratic regulator, is for this case a non-causal con-
troller which depends on information about the current and future dis-
turbances.

• We need to consider disturbances on all the states over the time win-
dow of interest, because otherwise the noise will dominate the opti-
mization.

The inclusion of noise gives us one extra tuning parameter, the noise weight
Wn. This weight may be useful in applications, for example to reduce the
derivative action in a multivariable PID controller, whichcan be achieved by
simply adding more “fictitious” noise on the derivate output.

3.1 Introduction

Consider the linear process

xk+1 = Axk +Buk +dk (3.1)

yk = Cxk +Duk +nk (3.2)

We assume that the disturbancesdk and noise termsnk are normally distributed
random variables with zero means and variancesW,V, respectively.

Remark 3.1. The difference in assumptions on model(3.1)-(3.2)from model(2.1)-
(2.3) in Chapter(2) is that we have additional normally distributed disturbances

35
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dk on all the states (and not only on the initial state x0) and also allow for normally
distributed noise nk on all the measurements (while in Chapter 2 we neglected the
noise).

The objective is to find astatic output feedback uk =−Kyyk that minimizes the
expected valueof the objective

J∞ = lim
T→∞

{

1
T

T

∑
i=0

x′iQxi +u′iRui

}

, (3.3)

with Q=C′zQ
yCz whereQy≥ 0 is a quadratic weight on the controlled outputszk =

Czxk andR> 0 is a weight on input usage. The infinite horizon objective function
may be approximated by a finite horizon cost function (see e.g. Chmielewski and
Manousiouthakis [1996] and Scokaert and Rawlings [1998]) to

J = x′NQNxN +
N−1

∑
i=0

x′iQxi +u′iRui . (3.4)

Contribution of this chapter. In this chapter we derive a convex approximation
to the problem of minimizing theexpected valueof the non-negative loss

L(u,d,n) = J(u,d,n)−Jopt(d) (3.5)

whereJ(u,d,n) is the value of the cost function (3.4) evaluated and for a given
static output feedback policy for a specific realization of the disturbance

d =








d0

d1
...

dN−1








(3.6)

and noise

n =








n1

n2
...

nN−1








(3.7)

For more background information is the reader referred to Chapter 2.
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Chapter overview. The rest of the chapter is organized as follows: First, we
show how the background material in Chapter 2 needs to be adjusted in order to
account for noise. That is, we first present the reference controller that is used in
this chapter (corresponding to the linear quadratic regulator for the caseof no noise
in Chapter 2). Then some modifications to the problem of infinite and finite hori-
zon static output feedback are discussed. Thereafter we present our main result,
which is a convex approximation of the problem of finding a static output feedback
such that the expected loss from an optimal controller is minimized. Finally, we
demonstrate the method on a simple example.

3.2 Background material

3.2.1 Optimal non-causal control

Let us consider the extension from the finite horizon linear quadratic regulator in
Chapter 2, section 2.2.1, when we let the optimal inputu = (u0,u1, · · · ,uN−1) be a
function of all disturbancesd (and not only the initial disturbancex0 as in Chapter
2). (The resulting reference will then no longer be a causal controller.)First, let
the linear modelxk+1 = Axk +Buk +dk be written on the form








x1

x2
...

xN








︸ ︷︷ ︸

x

=








B
AB B
...

. . .
AN−1B . . . . . . B








︸ ︷︷ ︸

Gx
u

u+








I
A I
...

. ..
AN−1 . . . . . . I








︸ ︷︷ ︸

Gx
d

d.
(3.8)

By substitution of the model (3.8) into the finite horizon objective function (3.4)
we obtain

J =

[
u
d

]′[
Juu Jud

J′ud Jdd

][
u
d

]

(3.9)

where

Juu = Gx
u
′Q̄Gx

u + R̄ (3.10)

Jud = Gx
u
′Q̄Gx

d (3.11)

Jdd = Gx
d
′Q̄Gx

d (3.12)

Q̄ = diag(Q,Q, · · · ,Q,QN) (3.13)

R̄= diag(R,R, · · · ,R) (3.14)

The optimizer of problem (3.9) may be found by simply completing the squares
[Åström and Wittenmark, 1984] and is given by:

uopt =−J−1
uu Judd (3.15)
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The optimal cost (for a givend) is then given by

Jopt(d) =−d′J′udJ−1
uu Judd+d′Jddd. (3.16)

The optimal inputuopt = −J−1
uu Judd cannot be realized as a feedback controller

since it depends on the full disturbance vectord, including future disturbances.
The optimal cost (3.16) is therefore a measure of how well we can controlthe
plant with any controller, non-causal included.

Remark 3.2. In Chapter 2, where only disturbances on x0 were allowed, we found
a nice interpretation of the resulting optimal input u, namely that it can be im-
plemented as the solution to a finite horizon linear quadratic regulator problem.
Unfortunately the corresponding expression for the case of more disturbances,
equation(3.15), does not have such an interpretation, as we cannot realize the
control action by a feedback controller. Nevertheless, it is this optimal controller
that we will use as reference for the loss minimization when noise is present, be-
cause this reference lets us derive a convex approximation similar to what we did
in Chapter 2.

3.2.2 Infinite horizon static output feedback with noise

The problem of minimizing the expected value of the infinite-horizon objective
function J∞ in equation (2.5) may be posed as minimizing theH 2-norm of the

lower fractional transformFl (P,Ky) = P11+P12(I−P22Ky)−1P21
S
=

[
AFl BFl
CFl DFl

]

where

P is given by e.g., [Skogestad and Postlethwaite, 2005]:

P =

[
P11 P12

P21 P22

]

S
=







A W1/2 0 B
Q1/2 0 0 0

0 0 0 R1/2

C 0 V1/2 0







. (3.17)

The reason we can use theH 2-norm is that this may be interpreted as the response
to input signals that are white noise (by for example following a normal distribu-
tion as in this case) [Skogestad and Postlethwaite, 2005]. For more background
material see Chapter 2.

Note that the only difference between the plant (3.17) and the corresponding
plant in equation (2.18), Chapter 2, is that we have added an extra input channel to
account for the measurement noise.

3.2.3 Finite horizon static output feedback with noise

Let us analyze the problem of minimizing the expected value of the finite horizon
objective functionJ in equation (3.4) when noise is present. First, for a given static



3.2. Background material 39

output feedbackuk =−Kyyk we have that








x1

x2
...

xN








︸ ︷︷ ︸

x

=








I
Ac I
...

. . .
AN−1

c . . . . . . I








︸ ︷︷ ︸

Gx
d

d−








BKy

AcBKy BKy

...
. ..

AN−1
c BKy . . . . . . BKy








︸ ︷︷ ︸

−Gx
n

n, (3.18)

which on a compact form can be written as

x =
[
Gx

d Gx
n

]

︸ ︷︷ ︸

Gx
d̃

[
d
n

]

︸︷︷︸

d̃

= Gx
d̃d̃. (3.19)

where
Ac = A−BKyC. (3.20)

In addition, the inputuk is given by

uk =−Kyyk =−Ky(Cxk +nk), (3.21)

which means that the vector of stacked inputsu can be expressed as

u =−(KyC)x−Kyn

=−(KyC)Gx
d̃d̃−Kyn

=−
[
(KyC)Gx

d (KyC)Gx
n +Ky

]
[
d
n

]

=−Gu
d̃d̃

where

(KyC) = diag(KyC, · · · ,KyC) (3.22)

Ky = diag(Ky, · · · ,Ky) (3.23)

and

Gu
d̃ =

[
Gu

d Gu
n

]
(3.24)

Gu
d =−(KyC)Gx

d (3.25)

Gu
n =−(KyC)Gx

n +Ky (3.26)
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The finite horizon objective functionJ = x′Q̄x+ u′R̄u, with Q̄ and R̄ given by
equations (3.13)-(3.14), can be written as

J(x,u) = x′Q̄x+u′R̄u

= d̃′Gx
d̃
′Q̄Gx

dd̃+ d̃′Gu
d̃
′R̄Gu

d̃d̃′

= d̃′(Gx
d̃
′Q̄Gx

d̃ +Gu
d̃
′R̄Gu

d̃)d̃

The problem of finding a static output feedbackuk = −Kyyk that minimizes the
expected valueof the objectiveJ in equation (3.4) can now be analyzed by first
defining

J(Ky, d̃) = z′z (3.27)

with

z= G1/2d̃ (3.28)

G = Gx
d̃
′Q̄Gx

d̃ +Gu
d̃
′R̄Gu

d̃ (3.29)

Let

Z =

[
diag(W)

diag(V)

]

(3.30)

be the covariance matrix for the random variabled̃ = [d
n ]. Now, by the same deriva-

tions that are used in Chapter 2, page 16, we can show that the expected value of
the cost function for a given value ofKy is:

E{J}= ‖G1/2Z1/2‖2F . (3.31)

In order to synthesize a static output feedback controller one could use anonlinear
search to minimize the norm in equation (3.31), but this problem is expected to be
NP-hard [Blondel and Tsitsikilis, 1997].

3.3 Minimization of expected loss

In this section, we first analyse the problem of minimizing the expected value of
the loss

L(u,d,n) = J(u,d,n)−Jopt(d) (3.32)

whereu is the result of a given static output feedback law. Then we derive a convex
approximation for the problem of finding an optimal static output feedback.
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3.3.1 Analysis

Similar to Chapter 2, section 2.3.1, we consider an augmented linear model

ỹ =

[
u
y

]

=

[
I

Gy
u

]

︸ ︷︷ ︸

Gỹ

u+

[
0

Gy
d

]

︸ ︷︷ ︸

Gỹ
d

d̄+

[
0

Wn

]

n̄ (3.33)

where
Gy

u = diag(C)Gx
u, Gy

d = diag(C)Gx
d, (3.34)

andGx
u, Gx

d are defined by equation (3.8). Herēd andn̄ are normally distributed
random variables with

Wd = diag(W1/2), Wn = diag(V1/2), (3.35)

such that the equalities
d = Wdd̄, n = Wnn̄ (3.36)

hold. The static output feedback constraintu =−diag(Ky)y can be written as
[
I diag(Ky)

]
ỹ = 0. (3.37)

Halvorsen et al. [2003] derived an expression for the lossL(u, d̄, n̄) = J(u, d̄, n̄)−
Jopt(d̄) whereu is used to fulfill the static output feedback constraint (3.37):

L(u, d̄, n̄) = J(u, d̄, n̄)−Jopt(d̄) =
1
2

z′z, (3.38)

where

z=−XHF̃

[
d̄
n̄

]

(3.39)

X = J1/2
uu (HGỹ)−1 (3.40)

F̃ =
[
FWd Wn

]
(3.41)

F =−(GỹJ−1
uu Jud−Gỹ

d) (3.42)

whereJuu, Jud are given by (3.10)-(3.11).
By following the derivation in Chapter 2, section 2.2.3, we find that the ex-

pected value of the loss is

E{L}=
1
2
‖J1/2

uu (HGy)−1HF̃‖2F . (3.43)

This expression is also derived by Kariwala et al. [2008].
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3.3.2 Solution

In order to minimize the expected loss, one could solve the following non-convex
problem

min
H

E{L}= ‖XHF̃‖2F (3.44)

s.t. X = J1/2
uu (HGỹ)−1 (3.45)

F̃ =
[
FWd Wn

]
(3.46)

H on the formH =
[
I diag(Ky, · · · ,Ky)

]
(3.47)

but this is expected to be as difficult as the original static output feedback prob-
lem. We therefore, by the same arguments as in Chapter 2, section 2.3.2, propose
to solve the followingconvexprogram which gives an upper bound on the best
possible static output feedback:

Definiton 3.1. (Upper bound on noisy static output feedback) The following con-
vex problem can be used to find an upper bound for the optimal static outputfeed-
back:

min
H
‖HF̃‖2F

s.t. H on the form H=
[
I diag(Ky, · · · ,Ky)

]
,

(3.48)

whereF̃ =
[
FWd Wn

]
and F is given by(3.41).

This problem can be vectorized and solved as a quadratic program.

Remark 3.3. Note that this problem differs from the original static output feed-
back problem in two ways: First, we are as in Chapter 2 minimizing the loss from
an optimal controller, and this controller happens to be non-causal with thefor-

mulation used in this chapter. Second, we neglect the term X= J1/2
uu (HGy)−1 when

minimizing‖XHF̃‖, which gives a convex problem, but the resulting H is then
suboptimal.

3.4 Example

Consider proportional (P) control of the discrete plant

xk+1 = 0.5xk +uk +dk, (3.49)

yk = xk +nk, (3.50)
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Figure 3.1: Gains for example of noisy process.

wheredk is a normally distributed variable with zero mean and unit variance. We
want to study the effect of changing the varianceV for the normally distributed
noisenk (which also has zero mean) on the resulting proportional gains.

We use a quadratic objective function to describe the trade-off between ro-
bustness and stability of the resulting controller, and we assume that the weights
(Q,R) = (1,1) give a good trade-off. We use an prediction lengthN = 20. By
using the method outlined in Remark 2.1, Chapter 2, we calculate the final weight
matrix asQN = 1.13.

Figure 3.1 shows the resulting gains for the following design methods:

1: Convex approximation. Design a P-controller by solving the convex problem
(3.48).

2: Optimal finite horizon P-control. Found by minimizing the norm

‖G1/2Z1/2‖F

in equation (3.31).

3: Optimal infinite horizon P-control. Found by minimizing theH 2-norm of the
plant found by taking the lower fractional transform of the plantP in equa-
tion (3.17) with the P-controller.

It is clear from the figure that the gain resulting from the convex approximation
is similar to both optimal controllers for the range of noise to disturbance ratios
studied.
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3.5 Conclusion

In this chapter we have formally extended the results of Chapter 2 to include noisy
measurements. As in Chapter 2, we minimize the expected loss to an optimal
controller, which unfortunately is non-causal for the noisy case because of the
need to include future disturbances to avoid that the noise dominates and makes it
optimal to useKy = 0 as the optimal controller. Nevertheless, the method seems
interesting also for the case of noisy measurements, and we hope to conduct larger
case studies in the future.



Chapter 4

Additional results regarding the
static output feedback problem

In this chapter we review implementation of the first move of aseries of open
loop optimal inputs, as is done in moving horizon control. Weshow that for
the case of full state information, there existlinear relationships between the
states and the inputs such that when added to the original open loop problem,
the solution does not change. We call these relationships “invariants”. For
state feedback, one invariant isu0 = −K0x0, i.e. that the first move can be
written as a linear function of the initial statex0, and thatK0 is nota function
of x0. We then show that the same does not hold for static output feedback,
and consequently that the moving horizon idea does not work very well for
static output feedback.

We further give a rule for how the optimal gains varies with increasing noise
in the measurements. The rule is not exact due to the same reasons as for
static output feedback, namely that the result cannot in general be imple-
mented as a moving horizon controller. However, we show by anexample
that it gives reasonable approximations to the optimal controller.

4.1 Introduction

In this Chapter we discuss some additional results that we found when exploiting
the link between self-optimizing control and static output feedback (that leadto the
results in Chapters 2-3). First, we prove the existence of a state feedback imple-
mentation to the open loop problem normally posed in model predictive control:
“Find a sequence of inputsu such that a linear system is regulated back to the ori-
gin while minimizing quadratic penalties on both inputs and outputs.” Second, we
discuss how this insight may be used to make an approximation to the static output
feedback problem, but that implementing only the first part of the corresponding

45
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input sequence does not work as good as for state feedback.
Finally we derive a short-cut method for how one should change the gain ifone

has designed a state feedback controller based on noise-free measurements and one
wants to apply this controller to a plant where there are noisy state measurement
available. The controller is not optimal, since we, as for noise-free state feedback,
only implement the first part of a sequence of inputs, but it has the advantage
of being very easy to compute, and may be used as initial condition for further
nonlinear optimization.

4.2 Finite horizon linear quadratic regulator

Let us again look at the problem of regulating the linear systemxk+1 = Axk +Buk

from an initial statex0 to the origin when we have full information about the states
available for feedback. As shown in section 2.2.1 in Chapter 2, this problemcan
be written on the form

Jopt(x0) = min
u

[
u
x0

]′[
Juu Jux0

J′ux0
Jx0x0

][
u
x0

]

, (4.1)

where the expressions for the matrices in the cost function can be found inChapter
2. By using the method of completing the squares [Åström and Wittenmark, 1984],
the optimal input can be written on the formu = −J−1

uu Jux0x0. Interestingly, the
same result can be found by using the following Theorem:

Theorem 4.1.(Linear invariants for quadratic optimization problem [Alstad et al.,
2009]) Consider an unconstrained quadratic optimization problem in the variables
u (input vector of length nu) and d (disturbance vector of length nd)

min
u

J(u,d) =

[
u
d

]′[
Juu Jud

J′ud Jdd

][
u
d

]

. (4.2)

In addition, there are “measurement” variables y= Gyu+Gy
dd. If there exists ny≥

nu + nd independent measurements (where “independent” means that the matrix
G̃y =

[
Gy Gy

d

]
has full rank), then the optimal solution to(4.2)has the property

that there exists nc = nu linear variable combinations

c = Hy (4.3)

that are invariant to the disturbances d, meaning that their optimal value (c= 0)
is independent of d. The corresponding measurement combination matrix H can
be found by selecting H such that

HF = 0, (4.4)
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That is, H is in the left nullspace of F, where F= ∂yopt

∂d is the optimal sensitivity
matrix which can be obtained from

F =−(GyJ−1
uu Jud−Gy

d). (4.5)

In the notion of Theorem 4.1, let the measurement variables be

y =

[
u
x0

]

=

[
I
0

]

︸︷︷︸

Gy

u+

[
0
I

]

︸︷︷︸

Gy
d

x0, (4.6)

whereu is a vector of stacked inputs(u0,u1, · · · ,uN−1). Further, we assume that
all disturbances can be represented by the initial statex0, hence we treat the dis-
turbanced in Theorem 4.1 as the initial statex0. We observe that the matrix
Gỹ =

[
Gy Gy

d

]
has full rank, so by Theorem 4.1 there exists a variable combi-

nationc= Hy that is optimally invariant to the disturbancesx0 (which implies that
we can add the constraintc= Hy= 0 to the original problem (4.1) and the solution
will not change).

Let us find this measurement combination by the method outlined in Theorem
4.1: First, we form the optimal sensitivity matrixF :

F =−(GyJ−1
uu Jux0−Gy

d) =−
([

J−1
uu Jux0

0

]

−
[
0
I

])

=

[
−J−1

uu Jux0

I

]

. (4.7)

Second, letH =
[
Hu Hx0

]
. In order to avoid a trivial solutionH should have full

column rank, however there is some degree of freedom in choosing suchan H,
because for a givenH such thatHF = 0 we also have that forH1 = DH with D
square and full rank, thatH1F = 0. This means that we can specify some parts of
H, for exampleHu = I (This corresponds to normalizing the vectors that span the
left nullspace ofF .) With this choice ofHu, we have that

HF =
[
I H x0

]
[
−J−1

uu Jux0

I

]

=−J−1
uu Jux0 +Hx0 = 0

m
Hx0 = J−1

uu Jux0

This means that the optimal variable combination is

Hy = 0 ⇔
[
I J−1

uu Jux0

]
[

u
x0

]

= 0 ⇔ u =−J−1
uu Jux0x0 (4.8)
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as expected. Let us analyze this solution. By settingK =−J−1
uu Jux0 we have that

u0 = K0x0,

u1 = K1x0,

...

uN−1 = KN−1x0,

whereK′ =
[
K′0 K′1 · · · K′N−1

]
. We notice that neither of these gains are a

function of the initial statex0, only of the problem parametersJuu andJux0, and
therefore can we use this solution in a moving horizon strategy by implementing
only the first moveuk = K0xk as we get new state measurements (xk). This is
further discussed in Chapter 2, section 2.2.1.

We finally notice thatK0 can also be found from a Riccatti equation that can
be derived from the structure ofJuu andJud, i.e. without forming the inverse ofJuu

[Rawlings and Muske, 1993].
For long horizonsN we further have that

u1 = K1x0 = K1(A+BK0)
−1

︸ ︷︷ ︸

=K0

x1 = K0x1, (4.9)

u2 = K2x0 = K2(A
2 +ABK0 +BK1)

−1

︸ ︷︷ ︸

K0

x2 = K0x2 (4.10)

u3 = K3x0 = · · ·
...

that is, the gain remains constant also throughout the horizon, however this is not
the case for short horizons. (I.e. first move implementation coincides with the
open loop solution.)

Remark 4.1. It may not be so surprising that Theorem 4.1 gives the same result
as completing the squares, if we got some other result then we would be doing
something wrong. Theorem 4.1 may however be used in a more generalmanner,
for example we can let a measurement be x1 = Ax0 +Bu0 and use the Theorem to
prove that there must exists an optimallinearrelationship between u1 and x1. The
linear model is for then

y =

[
u
x1

]

=

[
I
B̂

]

︸︷︷︸

Gy

u+

[
0
A

]

︸︷︷︸

Gy
d

x0, (4.11)
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where
B̂ =

[
B 0 · · · 0

]
. (4.12)

The augmented plant̃Gy =
[
Gy Gy

d

]
has full rank in this case (given that A has

full rank), so Theorem 4.1 holds, and may be used to find an H such that when the
constraint c= Hy = 0 is added to problem(4.1) the solution will not change.

For a problem with relatively long input horizon, this linear relationship should
correspond to K0 above. Actually, we can use Theorem 4.1 to prove many such
optimal linear relationships that when added as constraints to the original problem
does not change the solution. The reason we considered x0 as a measurement
above it that this is the usual assumed available measurement in recedinghorizon
control.

4.3 First move output feedback

Let us slightly change the problem formulation from state feedback as in the pre-
vious section to output feedback, where an outputy0 = Cx0 is available, but not
the full state vector. Following the notation of Theorem 4.1 we consider the aug-
mented measurement vector as

y =

[
u
y0

]

=

[
I
0

]

︸︷︷︸

Gy

u+

[
0
C

]

︸︷︷︸

Gy
d

x0 (4.13)

Since the dimension of thedisturbance x0 is larger than the dimension of the output
y0 is not the assumption that “there existsny > nu + nd measurements” fulfilled,
and Theorem 4.1 cannot be applied to this case. However, Theorem 2.1 inChapter
2 can be applied. As above, let

H =
[
Hu Hy0

]
=

[
I H y0

]
, (4.14)

whereHy0 is a full matrix. With this normalization ofH we have that

HGy =
[
I H y0

]
[

I
0

]

= I ,

which is always full rank, so finding theH that minimizes the expected loss from
adding the constraintHy= 0 to problem (4.1) is given by theH that minimizes the
norm

‖HFWd‖F , (4.15)

where as in Chapter 2 isWd = W1/2
x0 the square of the variance ofx0. Note that we

are now trying to combine the input vectoru with the outputy0 on a form such that
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when a constraintHy= 0 is added to the original problem the loss from optimality
is minimized. Thereafter, the goal is to implement only the first part of the input
vector in a moving horizon strategy, as was the case for the state feedbackabove.

Remark 4.2. This is not the same as what we did in Chapters 2-3, where we
explicitly added the constraint uk =−Kyyk. That approach is different in two ways;
first we are requiring that Ky is constant throughout the horizon and second, since
all output yk are included in the vector of “measurements” (inỹ) we had to add
structural constraintsin the form of zeros in the H matrix, such that one uk is only
a function of one yk (and not for example yk−1 and yk+1).

Let us analyse the resulting problem. First, the sensitivity matrixF is

F =−(GyJ−1
uu Jux0−Gy

d) =

[
−J−1

uu Jux0

C

]

, (4.16)

and therefore
‖HFWd‖F = ‖(−J−1

uu Jux0 +Hy0C)Wd‖F . (4.17)

We can find anH that minimizes an upper bound to this expression by choosing

Hy0 = J−1
uu Jux0C

†, (4.18)

so that

‖HFWd‖F ≤ ‖(−J−1
uu Jux0 +J−1

uu Jux0C
†C)‖F

≤ ‖J−1
uu Jux0‖F · ‖I −C†C‖F · ‖Wd‖F (4.19)

Clearly, if C has full row rank, then will the choice ofH in (4.16) make the ex-
pected loss from optimality zero, which is expected as we regain the state feedback
problem in this case.

The resulting sequence of inputs is thus

u0 = K0C
†y0

u1 = K1C
†y0

...

uN−1 = KN−1C
†y0,

whereK is the same gain as for the case of state feedback in the previous section.
Unfortunately, we find that the first input of this sequence is not well suited in

a moving horizon strategy. For the case of state feedback the controller has full
information about at the disturbances, and then the implementationuk = K0xk is
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1: Sequence of open loop inputs
2: First move output feedback
3: Linear quadratic regulator

Figure 4.1: Comparison of open and closed loop implementations of the output
feedback design method termed “first-move”. The simulation starts fromx0 =
(1,1), with outputy0 = 1.

valid. However, the corresponding output feedbackuk = K0C†yk does not benefit
from full information about the disturbances, and thus it should not be “reset” at
every time-step. Moreover, the upper bound on the loss in equation (4.19)assumes
that the whole sequence ofu’s is implemented, and it does not hold for the case
of implementing only the first move in a moving horizon strategy. This is further
illustrated in the following example section.

4.3.1 Examples

Open loop versus first move as closed loop.Consider the processg(s)= 1/(s2+
2·0.4s+1), sampled withTs = 0.1 to get

xk+1 =

[
0.9951 0.0959
−0.0959 0.9184

]

xk +

[
0.0049
0.0959

]

uk

yk =
[
1 0

]
xk.

(4.20)

We use a finite horizon quadratic objective function withQ = I , R= 1, andN =
100. For such a long input horizon will the final weight matrix not influencethe
solution, so we setQN = I as well. We compare three different controllers:

1: Sequence of open-loop inputs.The inputs are calculated for the first value of
the output,u = −J−1

uu Jux0C
†y0, and then we implement these inputswithout

taking any feedback into account.

2: First move output feedback. This controller uses the first part ofJ−1
uu Jux0C

† as
a feedback controller,uk = K0C†yk, with K0C† =−0.3608.
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3: Linear quadratic controller. State feedback controller as discussed in Section
4.2,uk = K0xk, with K0 =−

[
0.3608 0.7309

]
.

Results for an initial step disturbance in the states ofx0 = [1
1] is shown in Figure

4.1. It is evident that the open loop inputs do not coincide with the first move
output feedback (as would be the case for state feedback if the input horizon is
long enough), and moreover we observe that the open-loop controller performs
better than the first move controller.

This simulation is of course a function of the initial state, for disturbances that
can be seen “directly” on the outputs, for example a disturbance on the first state
for this example, we will get that the sequence of open loop inputs and the LQR
implementation are coinciding. However, for disturbances that does not affect the
initial outputy0, the open loop sequence of inputs will be kept to zero, and the first-
move implementation will be better. Nevertheless, in the average case we found
that the open loop sequence was performing better than using only the firstmove
as a feedback implementation, and this is illustrated by this example.

Comparison with controllers from Chapter 2. In Chapter 2 we investigated
control of the underdamped plant

g(s) =
k

τ2s2 +2τζs+1

for different values of the damping coefficientζ. For the same design parameters
as in Chapter 2 we designed a first move output feedback controller based on the
first part of−J−1

uu Jux0C
†. The resulting closed loop gains are shown in Figure 4.2,

were we observe that the closed loop gain using the first move output feedback
controller is significantly higher than for the other design methods for the highly
underdamped plants, and that for plants with a damping factorζ less than 0.28 did
the first move output feedback actually destabilize the plant.

4.3.2 Discussion

The first move output feedback as derived in this chapter is easy to compute, as we
simply use the pseudo inverse of the measurement matrixC, so no optimization
problem needs to be solved. This controller has the nice property that it for a
full rank measurement matrixC coincides with the finite horizon linear quadratic
regulator. However, whenC is not full rank we observe that implementing only the
first move of a sequence of “open loop optimal” inputs does not work verywell.
This may be explained in two ways; First, we are not solving a feedback problem
in the original problem, see equation (4.1), so even though the sequence of outputs
u may give a good transient performance, we are not guaranteed that implementing
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1: Optimal finite horizon PI
2: Upper bound by convex approximation
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5: First move output feedback

Figure 4.2: Closed loop norms‖Fl (P,Ky)‖2 for different output feedback (PI) con-
trollers

only the first part of this sequence gives a good closed-loop behaviour. Second, for
state feedback, when we have full information about the disturbances, the problem
can be restarted at every time sample, and it therefore makes sense to implement
only the first move in a moving horizon strategy. However, for output feedback do
we not have full information, and we would need some steps in order to estimate
the states, but the problem is not set up to handle this. On the other hand, the
static output feedback controllers that we synthesise in Chapters 2-3 areset up as
feedback problems to begin with and do not suffer from the problem that we are
trying to implement parts of an open loop solution as a feedback. (But we do the
approximation of ignoringX = J1/2

uu (HGy)−1 when minimizing‖XHFWd‖F .)

In appendices B and C is it discussed how we can use the ideas presentedin
this paper to find controllers which uses past and present information about the
outputs. The performance of these controllers are better than using only present
information, but they suffer from the same problem as discussed in this chapter,
namely that they are implementations of a part of an open loop sequence. One
could also use the framework presented in Chapters 2-3 to synthesise controllers on
this form, with an expected better closed-loop performance, since we are solving
a feedback problem. These results are not discussed further here because we now
want the focus to be on thefundamental propertiesof the controllers derived the



54 Additional results regarding the static output feedback problem

current chapter and Chapters 2-3.

4.4 Gain reduction rule

We here consider the special case of the following plant

xk+1 = Axk +Buk, (4.21)

yk = xk +nk, (4.22)

x0 ∽ N(0, I), (4.23)

wherenk is a normally distributed random variable with zero mean and variance
W = αI . The objective is to find a static output feedbackuk = Kyyk and to relate
this controller to the corresponding linear quadratic controller for the same system.
The controller should minimize some finite horizon objective function (see e.g.
equation (2.6), Chapter 2):

J = x′NQNxN +
N−1

∑
i=0

x′iQxi +u′iRui .

Consider now an augmented “measurement”y of

y =

[
y0

u

]

=

[
0
I

]

︸︷︷︸

Gy

u+

[
C
0

]

︸︷︷︸

Gy
d

x0

LetJuu andJux0 be defined as in Chapter 2, Section 2.2.1. By the results from Chap-
ters 2-3 we be pose the problem of finding a combination matrixH =

[
Hy0 Hu

]

that minimizes the expected loss from an finite horizon linear quadratic controller
when the constraintc = Hy = 0 is added to the problem as

min
H
‖XHF̃‖F (4.24)

s.t.X = J1/2
uu (HGy)−1 (4.25)

F̃ =
[
FWd Wn

]
, (4.26)

whereWd = I andWn =
√

αI . In this problem, the disturbance only occurs on the
initial state and we do not have any structural constraints onH from the causality
requirement. We can then actually solve problem (4.24)-(4.26) analytically by
using an expression from [Alstad et al., 2009] and show that the first move can
optimally be written as:

uk =− 1
1+α

K0xk,

whereK0 is the first part ofJ−1
uu Jux0.
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Proof. Problem (4.24)-(4.26) can be solved analytically by [Alstad et al., 2009]:

H ′ = (F̃F̃ ′)−1Gy(
Gy′(F̃F̃ ′)−1Gy)−1

J1/2
uu (4.27)

Let the combination matrixH be partitioned asH =
[
Hy0 Hu

]
for which we have

Gy =

[
0
I

]

, Gyd =

[
I
0

]

, (4.28)

andJuu andJux0 are derived in Chapter 2, Section 2.2.1. Now, let

Wn =

[√
αInx √

βINnu

]

(4.29)

where the upper left part corresponds to the noise onx0 and the lower left part cor-
responds to noise onu. (We will show thatβ does not affect the solution.) Define
Y =−J−1

uu Jux0. We have that̃FF̃ ′ = FWdW′dF ′+WnW′n. By the above assumptions
we get that

F WdW′d
︸ ︷︷ ︸

I

F ′ = FF ′ =

[
I Y ′

Y YY′

]

(4.30)

Due to the assumptions onWn we get

F̃F̃ ′ = FWdW′dF ′+WnW
′
n =

=

[
(1+α)I Y ′

Y YY′+βI

]
(4.31)

This matrix has to be inverted. This can be done using Lemma A.2 (Inverse of a
partitioned matrix) in Skogestad and Postlethwaite [2005], withA11 = (1+ α)I ,
A12 =Y′, A21 =Y, A22 =YY′+βI . Further we haveX = A22−A21A

−1
11 A12 = · · ·=

( α
1+αYY′+βI

)
. We observe that the inverse ofX exists. Using the Lemma, we get

that the inverse of̃FF̃ ′ is:

(
F̃F̃ ′

)−1
=

[
1

1+α I + 1
(1+α)2Y′X−1Y − 1

1+αY′X−1

− 1
1+αX−1Y X−1

]

(4.32)

We now need to evaluateGy′(F̃F̃ ′)−1Gy. For the current problem formulation we
have thatGy′ =

[
0 I

]
, and after doing the multiplication we get that

Gy′(F̃F̃ ′)−1Gy = X−1 ⇒
(

Gy′ (F̃F̃ ′
)−1

Gy
)−1

= X (4.33)
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Further,

(
F̃F̃ ′

)−1
Gy =

[
− 1

1+αY′X−1

X−1

]

(4.34)

and finally we get that

H ′ =
(
F̃F̃ ′

)−1
Gy

(

Gy′ (F̃F̃ ′
)−1

Gy
)−1

J1/2
uu (4.35)

=

[
1

1+α(J−1
uu Jux0)

′J1/2
uu

J1/2
uu

]

, (4.36)

or

H =
[

1
1+αJ1/2

uu J−1
uu Jux0 J1/2

uu

]

(4.37)

We now scaleH matrix byJ−1/2
uu to decouple the inputs and to get an expression

for the controller gains:

(J1/2
uu )−1H =

[ 1
1+αJ−1

uu Jux0 I
]
, (4.38)

and we observe that optimally we should reduce the controller gains by 1/(1+α)
when there is noise on the states with varianceαI . To see this, remember that
y = (x,u), and hence we getc’s on the form

c = Hy =
1

1+α
J−1

uu Jux0x0 +u, (4.39)

Note that we are not solving the original problem in terms of the costJ, but
rather to find the output feedback which is closest to the optimal state feedback
solution. What is more serious, is that we cannot apply the “moving horizon”
argument because each move is no longer optimal. Thus simply implementing the
first move is not optimal and the gains will vary, that is, we not not haveK0 = K1

or K0 = K2 as is the case for state feedback, see equations (4.9)-(4.10).

4.4.1 Example

Figure 4.3 shows that the gain reduction rule used on the plant

xk+1 = Axk +Buk +dk

yk = xk +nk

studied in Chapter 3, Section 3.4, with the same controller weights as used in
Chapter 3 is quite close to the gains found by the convex approximation, however
this method is a lot simpler as no optimization problem needs to be solved (except
for a Riccatti equation to find the state feedback gain) in other to calculate the gain.
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Figure 4.3: Gains for example of noise process

4.5 Conclusions

In this chapter we have discussed the existence of a state feedback on theform
uk = K0xk as an implementation to the typical problem formulation used in model
predictive control, where one formulates an optimization problem to regulate a
system from an initial statex0 to the origin (or more general to some pre-defined
trajectory). Further we showed that such a solution does not exist for output feed-
back, i.e. that using only the first part of an open loop optimal sequence isnot very
good for feedback control when the full state vector is not available formeasure-
ment.

Finally we derived a simple rule for reduction of the gain for the special case
when a noisy state measurement is available for feedback, and one wants touse a
static controller from this measurement in closed loop. The solution has the same
problem as the “first move output feedback”, i.e. that we don’t solve a feedback
problem, but it may still be interesting a fast way of calculating initial conditions
for further nonlinear optimization.
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Chapter 5

Self-optimizing control with
active set changes

In this chapter we extend the “nullspace method” by Alstad and Skoges-
tad [2007] to cover changes in active set. The extension in based on recent
results from explicit model predictive control by Baotic̀ et al. [2008]. The
nullspace method is a method for selecting controlled variables, assuming
that the set of active constraints does not change. With the extension pre-
sented here, we show that by applying the nullspace method for several dif-
ferent regions, where the regions are found by a parametric program, we can
use the value of the controlled variables for each region to decide when to
switch regions.

The proposed method is demonstrated on a simple model of an ammonia
production plant, and the results are comparable to real-time optimization of
the same plant.

5.1 Introduction

In this chapter we extend some recent results on implementation of quadratic pro-
grams [Alstad et al., 2009] to cover changes in the active set. The work is inthe
field of “self-optimizing control”, where the focus is to select the right variables
c to control, such that acceptable operation under all conditions is achievedwith
constant setpoints for the controlled variables [Skogestad, 2000a].

A more direct approach for ensuring optimal operation is real-time optimiza-
tion (RTO) [Marlin and Hrymak, 1996]. Using RTO, the optimal values (setpoints)
for the controlled variablesc are computed online based on online measurements,
and a model of the process [Alstad et al., 2009]. In control of chemical processes
an hierarchal structure [Findeisen et al., 1980] is often used. RTO is then used
to calculate setpointscs for the controlled variablesc for the supervisory control

59



60 Self-optimizing control with active set changes
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Figure 5.1: Interconnection between RTO and supervisory control layer.

layer. In the supervisory layer model predictive control (MPC) [Morari and Lee,
1999, Mayne et al., 2000] is often used.

A typical hierarchical structure is outlined in Figure 5.1. In the RTO frame-
work, the degree of freedomH is not exploited as an optimization variable, while
for “self-optimizing control” finding a goodH is the main focus. The two ap-
proaches are therefore complementary. In generalH can be any non-linear map
from measurementsy to controlled variablesc, but until now the focus has been
mostly on static maps, i.e.H is astatic combination matrixor aselection matrix.

One can identify at least four ways of choosing the combination matrixH for
the controlled variablesc = Hy:

1. Usec = u0, i.e. open loop control. This is not expected to work very well
unless the static optimization layer is updated rapidly.

2. Usec = y0, wherey0 are presently used controlled variables in the super-
visory layer. Also this choice is not expected to give a good performance
unless the static optimization problem is resolved frequently. In fact, it does
not have any particular advantage over choosingc = u0.

3. Usec = Hy, wherey is all available measurements, includingu0 and y0.
If H is chosen carefully, this choice is expected to give better performance
between samples of the RTO than the choices above. In particular,H should
be chosen such that even though we have large disturbances, the optimal
valuescs of the controlled variablesc does not change much. Such a choice
of H may be beneficial in at least two ways. First, since RTO is in general a
non-convex problem, the starting values for the optimization are important,
and thus if the optimal values do not change much, such a choice ofc should
aid the success of a RTO implementation. Second,cs can be updated less



5.1. Introduction 61

frequent and the system will work better should the RTO be out of service. In
the ideal “self-optimizing” case one identifies controlled variables such that
the RTO layer may be eliminated altogether. During the last decade several
methods for finding “good” controlled variables have been developed, such
as the maximum gain rule [Hori and Skogestad, 2008], exact local method
[Halvorsen et al., 2003], and the nullspace method [Alstad and Skogestad,
2007].

4. Even more general; we may choose to change the controlled variablesc as
operating conditions change. This is equivalent to letting the mapH be a
function of the operating conditions.

In this chapter we consider the last approach and develop a method for changing
the combination matrixH when changes in the active set occur. The results are
exact for quadratic problems, but an example of an ammonia production plant will
show that the method may be applicable also to more general processes by local
linearization.

The approach we use is to exploit a link between self-optimizing control and
linear-quadratic explicit MPC [Manum et al., 2008b]. The link is exact forquadratic
approximations of the self-optimizing control problem, because then the static op-
timal operation problem of self-optimizing control and explicit MPC have the same
equation structure.

Using parametric programming [Kvasnica et al., 2004] and recent results from
explicit MPC [Baotìc et al., 2008] on implementation of the optimal solution, we
show that combination matricesH i , found by using the nullspace method, can be
used to track changes in the active set using only information about the outputs. In
the multivariable case, a scalar function of the outputs is enough to track changes
in the active set. We have already proposed similar results earlier, see [Manum
et al., 2008b,c], where we used controlled variables (invariants) from the nullspace
method to track changes in the optimal active set. However, we proposed to keep
track of the whole vectorc = Hy ∈ R

nc, wherenc is the number of controlled
variables, and not the considerably simpler method of trackingm′Hy∈ R.

The rest of the chapter is organized as follows: First, we review theory from
self-optimizing control and implementation of solutions to quadratic optimization
problems usingdescriptor functions. Then we show how continuous piecewise-
affine (PWA) descriptor functions from measurements can be constructed by using
the nullspace method. We then discuss how to match constraints between mea-
sured constraints and constraints in the model. Thisconstraint matchingmay in
some cases have a significant effect on the economical operation of a given plant.
Thereafter we collect our findings in an algorithm for design of a controlstructure
that handles changes in the active set, and finally we show how this method can be
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used on an example of an ammonia production plant.

5.2 Background

5.2.1 Quadratic approximation to RTO

We consider the problem

min
x,u0

J0(x,u0,d0)

s.t. f0(x,u0,d0) = 0

g0(x,u0,d0)≥ 0

(5.1)

wherex∈ R
nx are states,u0 ∈ R

nu0 are steady state degrees of freedom andd0 ∈
R

nd0 are disturbances. Using the model equationsf0(x,u0,d0) = 0 to formally
eliminate the internal statex, we can rewrite problem (5.1) on the form

min
u0

J(u0,d0)

s.t.g(u0,d0)≥ 0
(5.2)

Unconstrained case. Assume that for the nominal disturbancēd0 the optimal in-
putu∗0 is such that none of the inequality constraintsg(u∗0, d̄0)≥ 0 are exactly equal
to zero (i.e. they are not active). Further, introduce the following substitutions:

u = u0−u∗0 (5.3)

d = d0− d̄0 (5.4)

Mu =− ∇u0g|u∗0,d̄0
(5.5)

Md = ∇d0g|u∗0,d̄0
(5.6)

M = g(u∗0, d̄0) (5.7)

By a quadratic expansion of the objective function around the nominal optimum
(∇J(u∗0, d̄0) = 0) can we give the following quadratic approximation to problem
(5.1), which we will use throughout the chapter:

min
u

1
2

[
u
d

][
Juu Jud

J′ud Jdd

][
u
d

]

s.t.Muu≤M +Mdd

(5.8)

Here the notationJuu means the second derivative of the matrixJ with respect to
the inputsu, and so on.
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Extension to constrained case. The case of nominally constrained optimum can
also be posed on the form of problem (5.8), which we will now demonstrate.The
only difference from the unconstrained case is that we do a change of variables to
“eliminate” the effect of a non-zero first derivateJu at the optimum.

First we define a Lagrangian as:

L (u0,d0,λ) = J(u0,d0)−λ′g(u0,d0) (5.9)

whereλ are the Lagrange multipliers. Then we make a quadratic approximation
of the nonlinear program (5.2) around the optimal point(u∗0,λ∗) as [Nocedal and
Wright, 1999, Ying and Joseph, 1999]:

min
u0

∇u0J|u∗0,d̄0
︸ ︷︷ ︸

Ju

(u0−u∗0)+
1
2

[
u0−u∗0
d0− d̄0

]′[
Lu0u0 Lu0d0

L ′u0d0
Ld0d0

][
u0−u∗0
d0− d̄0

]

s.t.g(u∗0, d̄0)+∇[u0
d0

] g|u∗0,d̄0

[
u0−u∗0
d0− d̄0

]

≥ 0

(5.10)

where we have cancelled the term∇Jd0(d0−d∗0) which can not be affected by the
degrees of freedomu0. All first and second derivatives are evaluated at the nominal
optimum,(u∗,d0). Under the assumption thatLu0u0 is positive definite (second-
order optimality conditions) we introduce the following change of variables for
the degrees of freedomu0:

u = u0−u∗0 +L −1
u0u0

Ju (5.11)

Note that this definition ofu is not in conflict with definition (5.3) used for the
unconstrained case, because for an unconstrained minimumJu = 0 and the two
definitions coincide. Now, bydefining Juu,Jud andJdd as

[
Juu Jud

J′ud Jdd

]

,

[
Luu Lud

L ′ud Ldd

]

(5.12)

can also the nominally constrained case be written exactly on the form of problem
(5.8). Note again the analogy to the unconstrained case: for the unconstrained
optimum is the Hessian of the quadratic approximation equal to the Hessian of
the objective function at the nominal operating point, while for the constrained
case is the Hessian of the quadratic approximation equal to the Hessian of the
Lagrange function of the original problem at the nominal point. Further note that
the unconstrained case is a special case of the constrained case and is included
here only to ease the presentation of the material, and because in the example we
consider in this chapter the nominal optimum happens to be unconstrained.

Remark 5.1. The matrix Jdd is not needed and may be set to zero.
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5.2.2 Nullspace method

The nullspace method by Alstad and Skogestad [2007] deals with the optimal se-
lection of linear measurement combinations as controlled variables,c = Hy. In a
recent chapter by the same authors [Alstad et al., 2009], their results areinterpreted
more generally as deriving linear invariants for quadratic optimization problems.
More specifically, a key result is the following Theorem:

Theorem 5.1. (Linear invariants for quadratic optimization problems [Alstad and
Skogestad, 2007]) Consider an unconstrained quadratic optimization problem in
the variables u∈ R

nu, parameterized in d∈ R
nd :

J∗(d) = min
u

{

J(u,d) =

[
u
d

]′[
Juu Jud

J′ud Jdd

][
u
d

]}

. (5.13)

In addition, there are “measurement” variables y= Gyu+ Gy
dd. If there exists

ny ≥ nu + nd independent measurements (where “independent” means that the
matrix G̃y = [Gy Gy

d] has full row rank), then the optimal solution to(5.13) has
the property that there exists nc = nu linear variable combinations (constraints)
c = Hy that are invariant to the disturbances d, meaning that their optimal value
(c = 0) is independent of d. Here, H may be found from the nullspace method
using H= null(F ′), where

F =−(GyJ−1
uu Jud−Gy

d) (5.14)

5.2.3 Implementation of solution to parametric quadratic programs

In this section we follow Baotic̀ et al. [2008] unless otherwise noted. This im-
plies that all Theorems, Lemmas, Algorithms and Definitions are taken from the
reference unless otherwise noted.

Definiton 5.1. Two polyhedra Pi ,Pj ∈R
nx are calledneighboring polyhedraif their

interiors are disjoint and Pi ∩Pj is (nx−1)-dimensional (i.e. is a common facet).

Let {Pi}Np

i=1 be a polyhedral partition. For each polyhedronPi we denote with
Ci the list of all its neighbors,

Ci :=

{

j

∣
∣
∣
∣
∣

Pj is a neighbor ofPi ,

j = 1, . . . ,Np, j 6= i

}

(5.15)

Throughout the chapter we assume that every facet is shared by only two neigh-
boring polyhedral partitions, i.e. that the facet-to-facet property [Spjøtvold et al.,
2006] holds.
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descriptor function

parameterx

P1 P3P2

1 2

f1

f2
f3

Figure 5.2: A scalar descriptor function over three polyhedra.

Definiton 5.2. (PWA descriptor function) A scalar continuous real-valued PWA
function f : Xf 7→ R,

f (x) := fi(x) = A′ix+Bi if x ∈ P i , (5.16)

with Ai ∈ R
nx, Bi ∈ R, is called adescriptor functionif

Ai 6= A j , ∀ j ∈Ci , i = 1, . . . ,Np, (5.17)

where∪iP i = Xf ⊂ R
nx, and Ci is the list of neighbors ofP i .

See Figure 5.2 for an example of a scalar PWA descriptor function. This kind
of function can be used to track changes in the optimal active set. We can do
this because the sign offi(x)− f j(x) changes only when the pointx crosses the
separating hyperplane betweenP i andP j . Thus for allx∈ P i , the differencefi(x)−
f j(x) has the same sign.

In the figure, letf1 = −2x+ 5, f2 = 3, and f3 = 0.5x+ 2. Assume that the
parameterx is in P2 and we want to detect whenx crosses into eitherP1 or P3

without measuringx itself (but we have a measurements available off1, f2, f3).
We can do this using the descriptor function

f := fi if x∈ P i , i = 1,2,3.

For x ∈ P2 we have that sign( f2− f1) = 1 and sign( f2− f3) = 1. Now, if either
sign( f2− f1) or sign( f2− f3) changes sign, we deduce thatx has moved toP1 or
P3, respectively.

Definiton 5.3. (Ordering function) Let f(x) be a PWA descriptor function on the

polyhedral partition{P i}Np

i=1. An ordering function Oi(x) is defined as

Oi(x) := [Oi, j(x)] j∈Ci
(5.18)
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where

Oi, j =

{

+1 if f i(x)≥ f j(x)

−1 if f i(x)≤ f j(x)
(5.19)

with i ∈ {1, . . . ,Np}, j ∈Ci .

Theorem 5.2. Let f(x) be a PWA descriptor function on the polyhedral partition

{Pi}Np

i=1. Letξi ∈ R
nx be any point in the interior ofP i , and define

Si, j := Oi, j(ξi)

Si := Oi(ξi),
(5.20)

with i = 1, . . . ,Np, j ∈Ci . Then the following holds:

x∈ int(P i) ⇔ Oi, j(x) = Si, j ∀ j ∈Ci

⇔ Oi(x) = Si
(5.21)

Theorem 5.2 states that the ordering functionOi(x) and the vectorSi uniquely
characterizeP i . Therefore, to check on-line if the polyhedral regionP i contains
the statex, it is sufficient to compute the binary vectorOi(x) and compare it toSi .

VectorsSi are calculated off-line fori = 1, . . . ,Np, by comparing the values
of fi(x) and f j(x), ∀ j ∈ Ci , in a point that belongs to int(P i), for instance, the
Chebysev center ofP i .

Algorithm 5.1 GLOBAL . (Used for initialization and recovery)
1: I = {1, . . . ,Np}
2: i← I
3: I = I\{i}, C = Ci

4: while C 6= /0 do
5: j ←C, C = C\{ j}
6: ComputeOi, j(x)
7: if Oi, j(x) 6= Si, j then
8: if j /∈ I then
9: GOTO step 2

10: else
11: i = j andGOTO step 3
12: end if
13: end if
14: end while
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Algorithm 5.2 LOCAL.
Require: Current regioni

1: C = Ci and NotLost= 1
2: while NotLostdo
3: Compute vectorOi(x)
4: if Oi(x) 6= Si then
5: if the difference is at element corresponding toj only then
6: Seti = j andGOTO step 1.
7: else
8: Set NotLost= 0.
9: end if

10: end if
11: end while

Algorithm 5.3 Main program.
1: Run Algorithm 5.1 GLOBAL to find current regioni.
2: while System is operationaldo
3: Run Algorithm 5.2 LOCAL.
4: if NotLost= 0 then
5: Run Algorithm 5.1 GLOBAL to find current regioni.
6: end if
7: end while
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Locating the current state. Algorithm 5.1 was proposed by Baotic̀ et al. [2008]
to find the current statex(t) for explicit MPC. Here we extend this method by
adding Algorithm 5.2 as a “local” algorithm that for the current polyhedralregion
only monitors the corresponding ordering function (and thus only “looks”at the
neighboring regions). If one element of this vector changes sign, the algorithm
updates the current region to the regioncorrespondingto the element of the vector
that changed sign. However, if more elements changed sign we deduce that the
process did not change to a neighboring region and we must run Algorithm5.1
again. This logic is covered in the main program in Algorithm 5.3. A similar logic
is published in [Narasimhan and Skogestad, 2010].

Finding a scalar PWA descriptor function. A vector-valued PWA descriptor
function is defined as:

Definiton 5.4. (Vector-valued PWA descriptor function) A continuous vector-valued
piece-wise affine (PWA) function

m(x) := Āix+ B̄i if x ∈ P i (5.22)

is called a vector-valued PWA descriptor function if

Āi 6= Ā j ∀ j ∈Ci , ∀i = 1, · · · ,Np, (5.23)

whereĀi ∈ R
s×nx, B̄i ∈ R

s, s∈ N, s≥ 2, and Ci is the list of neighbors ofP i .

Next, the following Theorem gives a method for constructing a scalar PWA
descriptor function from a vector-valued one.

Theorem 5.3. ([Baotic̀ et al., 2008]) Let m: R
nx 7→ R

s be a vector valued PWA
descriptor function defined over a polyhedral partition{P i}Np

i=1. Then there exists
a w∈ R

s such that f(x) := w′m(x) is a PWA descriptor function over the same
polyhedral partition.

Algorithm for finding w. For a given vector-valued PWA descriptor function
we form a set of vectorsak ∈ R

s, ‖ak‖= 1, k = 1, · · · ,Na, by taking one (and only
one) nonzero column from each matrix(Āi − Ā j), ∀ j ∈ Ci , i = 1, · · · ,Np. Here
Na := ∑i |Ci |/2≤NH , and|Ci | denotes the cardinality of setCi . The vectorw∈R

s

satisfying the set of equationsw′ak 6= 0, k = 1, · · · ,Na, can be constructed using
Algorithm 5.4.
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Algorithm 5.4 Construct the vectorw.
1: w← [1, · · · ,1]′

2: while k≤ Na do
3: d← w′ak

4: if 0≤ d≤ R then
5: w← w+ 1

2(R−d)ak, R← 1
2(R+d)

6: else if−R≤ d≤ 0 then
7: w← w− 1

2(R+d)ak, R← 1
2(R−d)

8: end if
9: end while

Properties of the solution of a parametric QP. Consider again the quadratic
problem (5.8):

min
u

1
2

[
u
d

]′[
Juu Jud

J′ud Jdd

][
u
d

]

s.t. Muu≤M +Mdd

From [Baotìc et al., 2008] we have the following properties of the solution to this
problem:

Theorem 5.4. Consider the parametric QP in(5.8) and let Juu > 0. Then the set
D of feasible parameters d is convex, the optimal input u∗ :D 7→R

nu is continuous
and piecewise affine.

In addition the following Lemma is provided:

Lemma 5.1. Let the optimal solution (“optimizer”) be written on the form

u = K i
dd+ki

d if d ∈ P i (5.24)

Then, for two neighboring polyhedraP i ,P j the gains Ki
d 6= K j

d.

5.3 Measurement based descriptor function

From now on, the results are new unless otherwise noted.
Lemma 5.1 states that the optimizer to problem (5.8) can be written on the

form
u = K i

dd+ki
d if d ∈ P i . (5.25)

We now want to eliminate the need of information about the disturbancesd, but
rather rely on plant outputym.
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Assuming a parametric solution exists, we form the following problem for a
given set of active inequality constraints:

min
[u1
u2 ]

J(u1,u2,d) =

1
2





u1

u2

d





′



Ju1u1 Ju1u2 Ju1d

⋆ Ju2u2 Ju2d

⋆ ⋆ Jdd









u1

u2

d





subject toMu1u1 +Mu2u2 = M +Mdd,

(5.26)

where we chooseu1 (as a subset of the input vectoru) such thatMu1 is invertible.
This implies that we can write

u1 =−Mu1
−1Mu2

︸ ︷︷ ︸

Ku2

u2 +Mu1
−1Md

︸ ︷︷ ︸

Kd

d+Mu1

−1M
︸ ︷︷ ︸

K

. (5.27)

We can now do the following manipulations in order to get the problem on a form
suitable for Theorem 5.1: First, we definez= u2 +J−1

zz Jz and

Jzz= Ku2 ′Ju1u1K
u2 +Ju2u2 +2Ku2′Ju1u2 (5.28)

Jzd = Ku2 ′Ju1u1K
d +Ju1u2

′Kd +Ku2′Ju1d +Ju2d (5.29)

Jz = K′Ju1u1K
u2 +K′Ju1u2 (5.30)

With these definitions it can be shown that the objective function with the active
equality constraints substituted into the objective can be written as

J(z,d) =
1
2

z′Jzzz+z′Jzdd. (5.31)

In addition, we write the linear model as





u1

u2

ym



 =





I 0
0 I

Gym
u1 Gym

u2





[
u1

u2

]

+





0
0

Gym
d



d (5.32)
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Using (5.27) we find that





u1

u2

ym



 =








Ku2

I
Gym

u1
Ku2 +Gym

u2
︸ ︷︷ ︸

=G̃ym
u2








u2 +








Kd

0
Gym

u1
Kd +Gym

d
︸ ︷︷ ︸

=G̃ym
d








d+





K
0

Gym
u1 K



 (5.33)

=





Ku2

I
G̃ym

u2





︸ ︷︷ ︸

Gy

(z−J−1
zz J′z)+





Kd

0
G̃ym

d





︸ ︷︷ ︸

Gy
d

d+





K
0

Gym
u1 K





︸ ︷︷ ︸

K̃

(5.34)

= Gyz+Gy
dd+ K̃−GyJ−1

zz J′z
︸ ︷︷ ︸

γ

. (5.35)

Now, let ȳ = y− γ and letF̄ = −(GyJ−1
zz Jzd−Gy

d) and further letH̃ be a full rank
matrix that fulfills H̃F = 0. Due to Theorem 5.1 we have that optimallyH̃ȳ =
H̃(y− γ) = 0, hence the invariants arec = H̃y with cs = H̃γ. Due to the “extra”
degrees of freedom iñH can we write the combination matrix on the form̃H =
[
I H ym

]
. The extra degrees of freedom inH arise from the fact that ifHF = 0,

then alsoDHF = 0. By lettingD be a non-singular square matrix we can use this
to scale the entries inH, or as above to introduce an identity matrix. This is further
discussed in [Alstad et al., 2009]. Finally, we can show that this invariant can be
written on the form:

u =−Hymym+

[
(K−Ku2)
−I

]

J−1
zz J′z+Hym[Gym

u1
(K−Ku2)+Gym

u2
]J−1

zz J′z. (5.36)

We observe that for a given set of active constraints, there is an affine optimal
relationship between the inputu and the measurementym. For several regions we
can therefore pose the following optimal relationship:

u = K i
ym

ym+ci
s, if d ∈ P i , (5.37)

whereK i
ym

and ci
s can be found by using the procedure above. The following

Lemma shows that this functional relationship from measurementym to input u
can be used as a vector-valued PWA descriptor function.

Lemma 5.2. The invariants defined byinvi := H iy− ci
s can be used as a vector-

valued descriptor function

Proof. Theorem 5.2 states that the optimizer for for problem (5.2.3) can be written
on the form of equation (5.25). According to Lemma 5.1, for two neighboring
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polyhedraP i ,P j , K i
d 6= K j

d, and hence the disturbance feedback law (5.25) is a
vector-valued descriptor function.

We now consider the invariants invi := H iy−ci
s, and we assume that we have

a perfect measurement of the input vector included iny on the form:

y =

[
u
ym

]

=

[
I

Gym
u

]

u+

[
0

Gym
d

]

d (5.38)

With this partition ofy we accordingly writeH i =
[
Hu,i Hym,i

]
. By assumption

Juu is positive definite (second-order optimality conditions), and hence the optimal
input u must by Theorem 5.2 be unique and continuous. This has the following
implications: First, we can form an equivalent invariant by

invi
fb = u− (Hu,i)−1Hym,i

︸ ︷︷ ︸

K i
ym

ym+(Hu,i)−1ci
s

︸ ︷︷ ︸

ki
ym

. (5.39)

For optimality, by Theorem 5.1, this invariant should be controlled to zero, hence
we have the measurement feedback form

u = K i
ym

ym+ki
ym

if d ∈ P i , ∀i = 1, . . . ,Np (5.40)

Inserting the equality constraint (5.38), we have that

u = K i
ym

(Gymu+Gym
d d)+ki

ym
,

= K i
ym

Gymu+KymGym
d d+ki

ym
,

⇒ (I −K i
ym

Gym)u = K i
ym

Gym
d d+ki

ym
,

⇒ u = (I −K i
ym

Gym)−1K i
ym

Gym
d d

+(I −KymGym)−1ki
ym

.

(5.41)

Second, due to the uniqueness of the optimal inputu, we have that the inverse of
(I −K i

ym
Gym) must exist and further that

(I −K i
ym

Gym)−1K i
ym

Gym
d = K i

d ∀i = 1, . . . ,Np (5.42)

Since both(I −K i
ym

Gym)−1 and Gym
d have full rank, we must have that ifK i

d 6=
K j

d, thenK i
ym
6= K j

ym. Finally, sinceu is continuous we conclude that the function
K i

ym
ym+ki

ym
can be used as a vector-valued PWA descriptor function.

Remark 5.2. To use the nullspace method we do not need to include a perfect
measurement of u in y; it is sufficient that we have enough independent measure-
ments ny ≥ nu + nd. Here we include u because it is then easier to prove that the
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ymax

y0

(
u
d

)(
u0

d0

)

dy
c

ym
ea

su
re

d

y= y0+
G

y (u−
u0)

+G
y
d
(d−

d0)

Figure 5.3: Additional disturbancedy
c to match the model with the measured con-

straint.

resulting set of invariants can be used as a vector-valued PWA descriptor func-
tion. This means that we can use the method described in this chapter to construct
a descriptor function as a function of measurements ym, and include other mea-
surements in the controlled variable selection problem. The only requirement is
that the controlled variables gives zero loss from optimality when controlled to
constant setpoints ci

s.

5.4 Constraint matching

The linear approximation of the constraints as used in problem (5.8) may, as any
model based scheme, lead to infeasibility when used on a real plant. However,
this can to some extent be accounted for if the constraints are measured. Wecan
then simply estimate a disturbancedc as illustrated in Figure 5.3 and treat this as
a measured disturbance in the problem formulation (problem (5.8)). For anoutput
constraint we then have

ymin≤ ymeasured≤ ymax

m
ymin≤ y+dc≤ ymax

m
ymin−dc≤ y≤ ymax−dc

One should realize that this method can (and should) also be used on important
manipulated variablesu, where important here means inputs that have a strong
economic effect, for example inputs that are affecting the throughput of aplant.
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umax

u

umeasured−du
c

Figure 5.4: Matching of an input constraint by additional disturbancedu
c .

Say, that for some values of the disturbances it is optimal to implement a certain
input at its maximum value, but that there is some mismatch between the model
and the reality, as illustrated in Figure 5.4. If a measurement of the actual value of
u is available, then can this be corrected for by adding an extra disturbancedu

c as
indicated in the figure, and by using the procedure outlined above for the inputs to
effectively change the value ofumax in the internal model of the controller.

5.5 Procedure for structure selection

We summarize our findings in the following procedure that may be used to find
controlled variables for an economic problem that can be approximated as aquadratic
program:

1. Define the optimal control problem, consisting of objective functionJ0(x,u,d),
process modelf0(x,u,d) = 0, and operational constraintsg0(x,u,d).

2. Approximate this problem around the nominal optimum as a QP by the
method outlined in section 5.2.1:

(a) Eliminate the model from the nonlinear problem.

(b) Solve the resulting optimization problem for nominal disturbanced0

to get optimal inputsu∗ and optimal Lagrange multipliersλ∗.
(c) Approximate this problem as a QP around(u∗,λ∗).

3. Add extra disturbancesdc as illustrated in section 5.4 for important con-
straints.

4. Solve the resulting problem as a parametric QP where the disturbancesd are
parameters. The solution will consist of a set of polyhedral regionsP i in the
disturbance space and a list of active constraints for each region.
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5. Identify available measurements and linearize to get

ym = Gy
mu+Gym

d d.

6. In each region (in the disturbance space), use the nullspace method ofThe-
orem 5.1 to find invariants invi := H iy−ci

s.

7. Use Lemma 5.2 to make vector-valued PWA descriptor function.

8. Use Algorithm 5.4 to construct a scalar PWA descriptor function to be used
for region detection.

9. Use Algorithm 5.3 for region detection.

5.6 Example: Ammonia production plant

n2 n3

TFlash

Reactor
3H2 +N2 = 2NH3

cooling unit

Flash

n4

n5

n7n6

P−∆PP
Split

recycle
compressor

n1

P0

P
feed

compressor

R

Figure 5.5: Sketch of an ammonia synthesis loop.

Consider the ammonia synthesis loop in figure 5.5. The objective is to maxi-
mize the produced ammonia in stream 4, while at the same time to minimize the
use of compressor work and cooling with a given reactor temperature. The cost
function is

profit = PWfeedWfeed+PWrecycleWrecycle+PWcoolingWcooling+PNH3n
NH3
4 , (5.43)

with prices given in Table 5.1.
In addition we must satisfy some operational constraints, namely a lower limit

on the possible cooling (Tflash) and a high limit on the recycle (R) in the loop.
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Price variable Value [e/unit]

PWfeed −0.4
PWrecycle −10
PWcooling −0.5
PNH3 104

Table 5.1: Prices for ammonia example.

There are three steady state degrees of freedom, which can be chosento be the
pressure, recycle ratio and flash temperature, and the temperature in the reactor is
assumed constant.

The feed consists of a mix of H2 and N2, and the main disturbances are feed
rate and feed composition.

5.6.1 Model

The model we use in this example is a nonlinear model of the ammonia plant that
should explain the most dominant effects that influence the economic operation of
the plant at steady state. The main properties of the model are:

• Equilibrium reactor.

• Henry’s law (H2,N2) and Raoult’s law (NH3) describe the flash-tank.

• Ideal compressor works.

• Cooling work efficiency given by a Carnot factor.

The model consists only consist of a mass balance. The variables are the mole
vector for each stream,ni , i = 1, . . . ,n7 and extent of reactionξ. In addition we use
as secondary variablex j

i to indicate the mole fraction of componentj in streami.
The components are ordered by H2,N2,NH3.

Table 5.2 shows a list of constants used in the modelling. All constants are
found in the book by Skogestad [2003b].

The mathematical model is given below:

Reactor feed. Mass balance over the feed point:

n2 = n1 +n6 (5.44)
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Variable Value Unit

Keq 6.36·10−5

HH2
0 210688

HH2
T −656

HN2
0 110816

HN2
T −342

A 4.4854
B 926.132
C −32.98
d0

1 5.1 mole/time
d0

2 0.8 mole fraction

Table 5.2: Constants for the ammonia plant example.

Equilibrium reactor. Let Pi = Px3 be the partial pressures in stream 3. The
equilibrium relation is then

P2
NH3

P3
H2

PN2

= Keq. (5.45)

Further, by using the extent of reactionξ, we have that

n3 = n2 +Sξ, (5.46)

where the stoichiometric matrixS=
[
−3 −1 2

]′
.

Flash tank. We here assume Henry’s law for H2 and N2 and Rault’s law for NH3.
TheK-values are given by

kH2 =
HH2

0 +HH2
T Tflash

P
(5.47)

kN2 =
HN2

0 +HN2
T Tflash

P
(5.48)

kNH3 =
10

A− B
Tflash+C

P
(5.49)

Let K = diag(kH2,kN2,kNH3) and we have that

x5 = Kx4. (5.50)

In addition we use the Rachford-Rice equation to find the ratior =
(∑n5)/(∑n3):

∑
i={H2,N2,NH3}

xi
3(ki−1)

1+ r(ki−1)
= 0. (5.51)
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Now,

e′n5 = re′n3 (5.52)

e′n4 = (1− r)e′n3, (5.53)

wheree′ =
[
1 1 1

]
.

Split. The mass balance around the split is

n5 = n6 +n7 (5.54)

In addition we have that
n6 = f n5. (5.55)

The reader may observe that the model depends on the temperatureTflash in the
flash-tank and the pressureP in the reactor and flash-tank. We here treat the vari-
ablesP,Tflash and the recycle ratiof as steady state degrees of freedom.

For the compressors we have the following models:

Feed compressor. The feed compressor increases the pressure in the feed from
the nominal pressureP0 to the reactor pressureP by

Wfeed= ∑(n2)RTln
P
P0

(5.56)

Recycle compressor. This compressor should counteract pressure drop in the
system by

Wrecycle= ∑(n6)RTflashln
P

P−∆P
(5.57)

Cooling water. We assume that there is cooling water free of charge that can
cool the product stream down to 15◦ C = 288 K. For further cooling, we have to
use a cooling unit with the following work associated:

Wsub cool= ∑n3CP(T0−T)(
T0

Tc
−1), (5.58)

whereTc =
T0−T

ln(T0/T)
. (5.59)

This means that the overall energy usage for cooling is

Wcooling =

{

0 if Tflash> 288 K

Wsub cool otherwise
(5.60)
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5.6.2 Disturbances

The only disturbances acting on the system are the feed rate (d1) and composition
(d2). The feed streamn1 can therefore be expressed as

n1 = (d0
1 +d1)





d0
2 +d2

(1−d0
2)−d2

0



 , (5.61)

with d0
1 = 5.1 mole/time as the nominal feed flow andd0

2 = 0.8 as the nominal
mole fraction of hydrogen in the feed. The disturbances are assumed to bein the
set

D =
{

d ∈ R
2
∣
∣
∣ |d1|< 1, |d2|< 0.02

}

. (5.62)

This corresponds to a maximum relative change in the feed rate of about 20% and
a change in the composition of about 4%.

5.6.3 Operational constraints

There are two operational constraints that we need to address. First, thecooling
unit can only cool the reactor product to−7◦ C = 266 K, therefore

Tflash≥ 266K. (5.63)

We assume that this constraint can be implemented exactly, i.e. that an unbiased
measurement of this temperature exists.

In addition is there an upper bound on the maximum flow of recycle. For this
constraint, we include an extra disturbance (d3 = dc) as explained in Section 5.4
to make sure that we satisfy the upper limit on recycle at all times. (Note that this
maximum recycle constraint is motivated by the fact that the recycle compressor
has a high limit on the amount of fluid it can process.) We include this correction
by the following procedure: First, we find a linear model from(u,d) to n6 on the
form

n6≈ n6,0 +Gn6u+Gn6
d d, (5.64)

using for example finite differences. The we add the “constraint matching”distur-
banced3 = dc to get the following inequality that bounds the maximum recycle in
the plant:

Rmeasured≤ Rmax ⇔ e′Gn6u+e′Gn6
d d+1′n6,0 +d3≤ rmax

so finally we have

e′Gn6u≤ (rmax−e′n6,0)+
[
−e′Gn6

d −1
]
[

d
d3

]

, (5.65)
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Steady state degree of freedom Nominal optimal value

Split-factor (recycle ratio) 0.6875
PressureP in reactor 342.17 bar
TemperatureTflash in flash-tank 266.53 K

Table 5.3: Nominal optimal inputs.

n2 n3 n4 n5 n6 n6




6.8473
1.2163
0.0314









4.0455
0.2837
1.8995









0.0176
0.0011
1.8589









4.0279
0.2826
0.0427









2.7683
0.1953
0.0304









1.2586
0.0883
0.0133





Table 5.4: Nominal optimal stream data.

whered are the “economic” disturbances(d1,d2), andd3 is the “constraint match-
ing” disturbance.

5.6.4 Control structure selection

Nominal operating point. We used TomlabTM under MatlabTM to find the
nominal operating point, as reported in Tables 5.4 and 5.3. The inputsu used in
the sequel are deviation variables from this nominal operating point.

Approximation to a QP. At the nominal optimum no constraints are active, so
we can use the Hessian of the nonlinear problem (rather than using the Lagrangian)
to findJuu andJud. The resulting matrices are:

[
Juu Jud

J′ud Jdd

]

=









55720.17 −8.01 2.62 59.53 340268.50
−7.95 0.08 −0.08 0.02 75.11
2.61 −0.08 1.31 −0.00 7.70
59.52 0.02 −0.00 0.04 15695.24

340081.83 74.33 7.73 15575.95 1702546.66









(5.66)

This Hessian is found by finite differences. We observe that the matrix is not fully
symmetric because of numerical inaccuracy, but it is close enough to symmetric
for our purposes. We used the upper right part asJud in the calculations.
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The linearized constraints are:

[maxR : ]
[min Tflash : ]

[
9.6295 −0.0033 0.0015

0 0 −1.0000

]

︸ ︷︷ ︸

Mu





u1

u2

u3



≤

[
0.51
0.53

]

︸ ︷︷ ︸

M

+

[
−0.59 −23.76 −1.00

0 0 0

]

︸ ︷︷ ︸

Md





d1

d2

d3





(5.67)

In addition there are non-negative constraints on all the compositions and alower
limit on the pressure in the system, but these constraints are not active for the dis-
turbance space we chose to study, so we do not add them explicitly to the problem
formulation.

Measurements for region detection. We have three disturbances, but one of
them is assumed to be measured (the constraint matching for maximum recycle),
hence we need to identify two measurements that we can use for region detection
(see Theorem 5.1). Since the goal here is to demonstrate how to use this methodol-
ogy, we simply chose the two first entries of the stream-vectorn2 as measurements,
that is the flow of H2 and N2 in the reactor feed. This gives the following “mea-
surements”y (in deviation variables) that we use for region detection:

y =











u1

u2

u3

nH2
2

nN2
2
d3











=





1 0 0
0 1 0
0 0 1

9.6773 −0.0024 0.0002
−0.1411−0.0008 0.0002

0 0 0





︸ ︷︷ ︸

Gy





u1

u2

u3



+





0 0 0
0 0 0
0 0 0

1.3468 33.8399 0
0.2371−10.3119 0

0 0 1





︸ ︷︷ ︸

Gy
d





d1

d2

d3



 (5.68)

where the matricesGy andGy
d come from linearization around the nominal optimal

point.

Parametric solution. Using the “Multi-Parametric Toolbox” (MPT) [Kvasnica
et al., 2004] we identify three regions for the solution of the QP-approximation,
which are described in Table 5.5. We used three parameters in the optimization;
(d1,d2) with search space defined in equation (5.62), and in addition−0.5 < d3 <
0.5.
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Region Description

1 Unconstrained “nominal” region.
2 R= Rmax (maximum throughput of the recycle com-

pressor.)
3 Tflash = Tflash,min (cooling unit can not decrease tem-

perature further.)

Table 5.5: Regions of the parametric solution to the QP-approximation.

Vector-valued PWA descriptor function. Using the nullspace method in each
region (as described in Lemma 5.2), we get the following invariants (which wecan
use also as controlled variables):

u =












−0.28 1.60 0

−76.19 427.31 0

−4.51 25.31 0






[

ym

d3

]

if d ∈ P1






−0.15 0.23 −0.24

−54.97 210.37 −39.94

−3.10 10.98 −2.61






[

ym

d3

]

+






0.12

20.21

1.32




 if d ∈ P2






−0.28 1.58 0

−70.74 396.73 0

−0.00 0.00 0






[

ym

d3

]

+






−0.0004

−0.6408

−0.5305




 if d ∈ P3

(5.69)

In order to check the calculations the reader is referred to section 5.3. Next, using
algorithm 5.4, we identify the following function which can be used for tracking
changes in the active set:

f (ym) :=







f1 =
[

−81.0 454.2 0
]
[

ym

d

]

if d ∈ P1

f2 =
[

−58.2 221.6 −42.8
]
[

ym

d

]

+21.7 if d ∈ P2

f2 =
[

−71.0 398.3 0
]
[

ym

d

]

−1.18 if d ∈ P2

(5.70)

Table 5.6 shows neighbors and correct signs for the functionsfi in equation (5.70).
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Region Neighbor(s) sign(fi− f j )

1 (2,3) (−1,1)
2 1 −1
3 1 1

Table 5.6: Neighbors and correct signs for the scalar PWA descriptorf (ym) as
defined in equation (5.70).
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Figure 5.6: Calculated steady state degrees for freedom for the ammonia example
for various disturbances. In addition we have plotted the resulting recycleR. The
blue line represents the RTO, the red dashed line is the approach of this chapter, and
the black dotted line is the approach of this paperwithoutconstraint matching. The
disturbance axis represent traversing the disturbance space fromdstart= (−1,0.02)
to dend= (1,−0.02) in a straight line.
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Figure 5.7: Relative difference in cost functions with constraint matching imple-
mented.
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5.6.5 Simulation results

Figure 5.6 shows the result of simulating the proposed control structure for a range
of disturbances corresponding to the search-space of the parametric program, that
is−1≤ d1≤ 1 and−0.02≤ d2≤ 0.02. The figure shows a traversal of the distur-
bance space fromdstart = (−1,0.02) to dend = (1,−0.02) by following a straight
line. We chose this representation because this direction was the direction where
the methods differed the most. For comparison we have solved the original non-
linear program for the same disturbances.

From Figure 5.6 we observe that the two methods are quite close, especially
around the nominal disturbance. Figure 5.7 shows the difference in costfunctions
scaled with the absolute value of the optimal cost. We observe that the difference
in this metric is quite small, and less than 1% for the cases studied. Probably this
will be an “acceptable loss” and we therefore have an implementation that is close
to optimal but simple, which is exactly in the spirit of “self-optimizing control.”

Figure 5.8 shows the estimated nonlinear correctiond3. At saturation of the
recycle the actual value is 3.5 mole/time, so the error in predicted recycle by the
linear model is about 1.4% at maximum. We also simulated the system without
this disturbance included as a measurement, and then the constraint on maximum
recycle was violated with about 1%. This can be observed from Figure 5.6.

5.7 Discussion

In this chapter we use the descriptor function defined by Baotic̀ et al. [2008] to
implement the solution of a parametric quadratic program. Our main contribu-
tion is to relate descriptor functions to implementation of static optimization prob-
lems. In particular for quadratic problems, we show that we can identify descriptor
functions based on “linear measurements”y = Gyu+Gy

dd by using the nullspace
method in each region of the parametric quadratic program. As a result we can
make a list of constant setpoint policies, one for each region of the problem at
hand, and a simple method for how to change between these policies, based on the
outputs only.

The results are exact for quadratic problems, but as we have shown withan
example, it seems like the method may also be applied to more general problems
by quadratic approximations. This opens up some interesting research topics, as
it seems like we can use the current method for region detection, and use other
methods, such as the exact local method [Alstad et al., 2009] to account to noise,
too few measurements, and other issues, as long as the loss from optimality is suf-
ficiently small. What “sufficiently” means, and how to construct a control policy
(that handles changes in the active set) that is robust to modelling errors and other
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sources of errors, are open research issues.
In this chapter we have only considered steady state, and in fact the region

detection scheme assumes that the system is at steady state at all times. This
assumption will of course not be valid for real processes, and therefore dynamic
studies of control policies with dynamic controllers and dynamic model of the
plant should be conducted before application.

Static part of MPC. MPC is usually implemented with a static optimization
problem that adjusts the setpoints of the controlled variables such that feasibility
of the dynamic problem is guaranteed. The problem is often referred to as“target
calculation”, and may have the following structure [Rawlings, 2000]:

min
xs,us,η

1
2
(η′Wsη+(us− ū)Rs(us− ū))+q′sη

s.t.




I −A −B 0
C 0 I
C 0 −I









xs

us

η











=
≥
≤











Bd
ȳ− p
ȳ− p





η≥ 0

umin≤ Dus≤ umax

ymin≤Cxs+ p≤ ymax

Hereȳ andū are desired (assumed economically optimal) values for the measure-
ments and inputs, whileη is a slack variable.

However, our method may also guarantee feasibility if we can estimate (by
using “constraint matching”) the deviation from predicted and actual valueof the
output constraints. This is because the controlled variablesc = Hy are by con-
struction feasible at their setpointscs (also for theactual plantwhen “constraint
matching” is used). Hence, the method presented in this chapter may be used as
an alternative to the steady state part of the MPC, with the benefit of improved
economic performance of the plant.

A similar idea is presented in [Ying and Joseph, 1999], but the authors do
not consider “feedback implementations” on the form of controllingc = Hy to a
setpointcs, rather they consider an open loop implementation of the static problem.
Similar to what we do in this chapter, Ying and Joseph also suggest to use the
Hessian of the Lagrangian of a quadratic approximation of the RTO as a quadratic
weight in the feasibility problem of the MPC.

Using self-optimizing control with RTO. In the example we assumed that the
feed composition could change with about 4%. Optimal economic operation of
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Figure 5.9: Left figure: Typical situation when self-optimizing control is not
implemented, the controller should track the optimal values(u0,y0) from the
real-time optimization (RTO).Right figure: A possible implementation of self-
optimizing control with an RTO layer above. The controller is tracking controlled
variables that should give an acceptably small loss from optimality between RTO
updates when disturbances occur.

the plant was found to be a strong function of this disturbance, which is alsoclear
from e.g. Figure 5.6 where one observes that one has to change the inputs con-
siderably when the feed composition changes. For larger disturbances inthe feed
composition, say 10%, the self-optimizing control scheme will generate inputs that
are quite far away from the optimal inputs, and there will be a significant loss. In
these situations it would be fruitful toupdatethe self-optimizing control policy by
using an RTO layer (economic optimization) above the self-optimizing layer. A
flow-sheet of a possible implementation is shown in Figure 5.9. In the figure we
show both a typical scheme where an economic optimization layer sends a desired
target value to the control layer, and a situation where one implements the scheme
presented in this chapter. The scheme on the right hand side of the figure would
typically be interesting if the economic optimization is updated every now and
then (assuming that a fast update is too difficult). Such a scheme should be able
to handle larger disturbances in the feed composition and still have an acceptably
small loss from optimality.
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5.8 Conclusion

Based on a recent contribution by Baotic̀ et al. [2008] we have presented a gener-
alization of the nullspace method [Alstad and Skogestad, 2007] to include changes
in the optimal active set. The method has been demonstrated on a model of an am-
monia production facility. We identified three different regions of operation, and
the method was comparable in performance to real-time optimization of the same
plant.



Chapter 6

Analysis of methods used to
speed up model predictive control

Based on the paper “Bilevel Programming for Analysis of Reduced Modelsfor use
in Model Predictive Control” published inJournal of Cybernetics and Informatics,
pages 3-12, volume 9, 2010.

In this chapter we develop a mathematical program that identifies the dis-
turbance that maximizes the difference between two model predictive con-
trollers, one candidate controller and one reference controller. The reference
controller is assumed to be tuned to give a good trade-off between perfor-
mance and robustness, but it is too computationally demanding to be im-
plemented. The candidate controller is an approximation tothe reference
controller, where some “speedup” has been used. In this paper we consider
move blocking, model reduction and changing the input horizon as possi-
ble speedups. For several different candidate controllers, one may use the
proposed mathematical program to choose which controller gives the best
performance to computational demand ratio.

We apply the proposed method to model predictive control of adistillation
column, and we find that blocking the difference of moves in the MPC is
more efficient that directly blocking the moves. We also find that the reduc-
ing the horizon is not very good, as this gives a high performance loss.

6.1 Introduction

In the literature, one can find numerous variations of discrete-time finite horizon
optimal control, see e.g. the survey by Mayne et al. [2000]. In most implemen-
tations, the optimal sequence of inputs is computed at each time-step, and subse-
quently only the first element of the sequence is applied [Cagienard et al., 2007].

89
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Method CPU-time

Dense quadratic program O ((Nnu)
3)

Interior point method that exploits structureO (N(nx +nu)
3)

Table 6.1: Expected order of magnitudeO (·) for number of operations per step
using either a dense formulation or a structured (sparse) formulation [Raoet al.,
1998, Wang and Boyd, 2010].

At the next time step, the horizon is moved one step and with new measurements
the calculations are repeated. This policy is referred to as model predictive control
(MPC). In a recent paper Wang and Boyd [2010] claim that “a widely recognized
shortcoming of MPC is that it can usually only be used in applications with slow
dynamics”. For an MPC problem with linear model, polytopic constraints, and
quadratic objective, with state dimensionnx, input dimensionnu, and prediction
horizonN, the order of magnitude of expected number of operations per step is
given in Table 6.1. For both methods, the computational time is increasing in
the third power ofnu, but whereas the computational time of a dense program is
increasing in the third power also inN, the computational time for a solver that
exploits structure is linear inN. Finally observe that the states are removed in
the dense formulation, but they are present in the structured formulation, and the
corresponding computational time is increasing in third order withnx.

It is in addition recognized that the expected number of operations is also a
function of the number of constraints of the problem [Qin and Badgwell, 2003].

In order to reduce the computational effort in conventional MPC one can

• Perform amodel reductionof the internal model in the MPC to reduce the
number of statesnx.

• Introducemove blockingstrategies to reduce the number of degrees of free-
dom (given e.g. by the productNnu for a dense formulation). This strategy
is used in numerous industrial implementations, see e.g. the survey by [Qin
and Badgwell, 2003]. For an overview of different move blocking possi-
bilities see [Cagienard et al., 2007]. The effect of move-blocking on the
computational demand is clear in the case of a dense formulation (cubic de-
crease), but less clear when a structure-exploiting method is used. (Though
there should be possible to exploit the extra structure given by the move-
blocking and hence have some decrease in expected number of operations
per step.)

• Reduce theinput horizon N. Though this is an important parameter, there are
few clear guidelines for how to choose it. It is recognized that the constraints
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will only remain active for a finite number of time steps, and for a long
enough horizon one can eventually force the system to an invariant setO∞ =
{

w
∣
∣ (A+BK) jw∈WK , ∀ j ≥ 0

}
such that the unconstrained feedback law

v = Kw is feasible for all future times, see e.g. [Rawlings, 2000]. Denote
such an horizonN∗. Chmielewski and Manousiouthakis [1996] found an
upper bound onN∗, but it is considered to be very conservative in many
cases, see e.g. [Grieder et al., 2004]. Due to this we believe that for many
applications the input horizon is chosen on an ad-hoc basis and may be used
as a tuning to reduce the computational demand for the MPC.

• Reduce thesample time Ts of the model. This may be seen as an alternative
to reducing the input horizon, where one instead uses a coarser model. One
may also use models with different sampling times inside the controller,
typically one would use a small sampling time for the first times, and then
increase the sampling time later. See [Halldorsson et al., 2005] for more
details.

In this work we develop a framework forperformance loss analysisfor such
speed-up schemes by comparing a “candidate controller” with a “reference con-
troller”. The “candidate controller” is an MPC for which one has used somemeans
to reduce the computational load, whereas the “reference controller” is the con-
troller one would like to use. The mathematical method is based on exploiting
the optimality conditions of MPC to rewrite a bilevel program to a mixed-integer
linear program.

Closed-loop simulation of the candidate controller seems to be the normal
way of checking closed-loop performance for industrial implementations [Qin and
Badgwell, 2003]. However, checking all possible constraint combinations is not in
general possible, and there is therefore a need for automatic methods thatidentifies
the worst case disturbances.

With the method developed in this chapter the goal is that the practitioner can
easily scan through different methods to speed up the controller in order toget a
good trade-off between computational effort and performance loss.

An alternative approach is to use an explicit solution of MPC, see e.g. the
recent survey by Alessio and Bemporad [2008]. Here one avoids the problem of
online optimization altogether, but instead one needs to identify the correct state
region. In practise, this approach works well only for systems with small state
and input dimensions (say, no more than five [Wang and Boyd, 2010]). When the
dimensions grow, the number of regions can grow exponentially [Wen et al.,2009],
which implies that both storing all the regions and locating the correct region for a
given state becomes a difficult problem.

Hovland et al. [Hovland et al., 2006, Hovland and Gravdahl, 2008] propose
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a scheme to use reduced models in explicit MPC. They perform a two-step pro-
cedure to analyse the reduced order controller: First, they analyse the model re-
duction using an open loop evaluation of the model mismatch (evaluated by the
H 2-norm). Then, they make a table of model order and resulting number of re-
gions, and choose the model order that gives a satisfactory low number of regions
combined with a low model mismatch. This approach does not take closed-loop
performance explicitly into account, but one may assume that there is a relation
between performance and number of regions in the controller.

Note that the results in this chapter are valid both for on-line and explicit MPC.

The rest of the chapter is organized as follows: First we give background ma-
terial on MPC and two common methods to speed up MPC, namely move block-
ing and model reduction by balanced truncation. Then we give a mathematical
formulation of the problem of identifying the maximum difference between two
controllers in closed loop on the same system. Thereafter we discuss some com-
putational aspects and present some simplifications. Finally, we demonstrate the
proposed method on a linearized model of a distillation column.

6.2 Background

6.2.1 System to be controlled

Consider the linear system

xk+1 = Axk +Buk

yk = Cxk,
(6.1)

wherexk ∈R
nx are the states,uk ∈R

nu are the inputs, andyk ∈R
ny are the outputs.
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6.2.2 Model predictive control (MPC)

We pose the followingopen-loopcontrol problem in order to control the linear
system (6.1):

min
x1,...,xN,u0,...,uN−1

1
2

x′NQNxN +
1
2

N−1

∑
i=0

(u′iRui +x′iQxi) (6.2)

s.t.







xk+1 = Axk +Buk, ∀k = 0, . . . ,N−1

yk = Cxk, ∀k = 0, . . . ,N

Fuu≤ fu, ∀k = 0, . . . ,N−1

Fyy≤ fy, ∀k = 1, . . . ,N−1

FxNxN ≤ fxN ,

x0 = given.

(6.3)

Remark 6.1. We have here included an inequality constraint on the final state xN,
because if this is chosen carefully together with the final weight x′

NQNxN, feasibility
and stability can be guaranteed in closed loop. There are many references on this
subject, see e.g. [Mayne et al., 2000, Rawlings and Mayne, 2009].

Remark 6.2. We assume that the MPC problem at hand is a well-posed problem
with Q≥ 0 and R> 0 and that there exists a non-empty set X0 of initial conditions
x0 such that problem(6.3)has a feasible solution.

Dense formulation. The MPC problem (6.2)-(6.3) can be written on a dense
form, where the states are eliminated by substituting the model equations into
the objective function and constraints: First, we define the following gains with
notationGto

from:








x1

x2
...

xN








︸ ︷︷ ︸

x

=








A
A2

...
AN








︸ ︷︷ ︸

Gx
x0

x0 +








B
AB B
...

. . .
AN−1B . . . . . . B








︸ ︷︷ ︸

Gx
u








u0

u1
...

uN−1








︸ ︷︷ ︸

u

(6.4)








y1

y2
...

yN−1








︸ ︷︷ ︸

y

=








CA
CA2

...
CAN−1








︸ ︷︷ ︸

Gy
x0

x0 +








CB 0
CAB CB 0

...
... 0

CAN−2B . . . . . . CB 0








︸ ︷︷ ︸

Gy
u

u (6.5)
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In addition, we define the following model, corresponding to the last row of (6.4):

xN = AN
︸︷︷︸

G
xN
x0

x0 +
[
AN−1B . . . AB B

]

︸ ︷︷ ︸

G
xN
u

u. (6.6)

We further define the following matrices:

F̂u = diag(Fu, · · · ,Fu) (6.7)

F̂y = diag(Fy, · · · ,Fy) (6.8)

Q̂ = diag(Q, · · · ,Q,QN) (6.9)

R̂= diag(R, · · · ,R) (6.10)

and vectors:

f̂u =






fu
...
fu




 f̂y =






fy
...
fy




 (6.11)

With the above definitions can we rewrite the MPC problem (6.2)-(6.3) as

min
u

[
u
x0

][
Juu Jux0

J′ux0
Jx0x0

][
u
x0

]

s.t.





F̂u

F̂yGy
u

FxNGxN
u





︸ ︷︷ ︸

F

u≤





f̂u
f̂y
f̂xN





︸ ︷︷ ︸

f

+





0
−F̂yGy

x0

−F̂xNGxN
x0





︸ ︷︷ ︸

E

x0
(6.12)

with

Juu = Gx
u
′Q̄Gx

u + R̄, (6.13)

Jux0 = Gx
u
′Q̄Gx

x0
, (6.14)

Jx0x0 = Gx
x0

′Q̄Gx
x0

. (6.15)

First order optimality conditions. The first order optimality conditions (re-
ferred to as Karush-Kuhn-Tucker (KKT) conditions, see [Nocedaland Wright,
1999] for an introduction), for the MPC problem (6.12) are:

Juuu+J′ux0
x0 +F ′λ = 0 (6.16)

Fu≤ f +Ex0 (6.17)

λ≥ 0 (6.18)

λ′(Fu− f −Ex0) = 0 (6.19)
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whereλ are the so-called Lagrange multipliers for the function

L (u,λ) =
1
2

u′Juuu+u′Judd−λ′(−Fu+ f +Ex0) (6.20)

Mixed integer formulation of complimentary constraints. From equation (6.19),
often referred to as a complimentary constraint between the inequalityFu≤ f +
Ex0 and the Lagrange multiplierλ, we see that the KKT-conditions are bilinear in
u andλ. This equation can be replaced with the following two equations:

λ≤Ms (6.21)

Fu≥ f +Ex0−M(1−s) (6.22)

Heres∈ {0,1}nf is a vector of binary variables corresponding to the number of in-
equality constraints in problem (6.12), andM is a constant large enough such that
the solution does not change when equation (6.19) is replaced with the inequalities
(6.21)-(6.22). (This is often referred to as a “big-M” formulation.) Note that even
though some references claim that that the value ofM should be set “arbitrarily
large,” it should only be as large as necessary to not affect the solutionof the equa-
tions, but not larger, as a too largeM will render the problem intractable [Camm
et al., 1990]. This is because both solution time and the reciprocal of the precision
of the solution will increase with an increasing value ofM.

6.2.3 Move blocking

Move blocking schemes comes in many different fashions, see [Cagienard et al.,
2007] for an overview. We here cover “input blocking” and “delta input blocking”.
In addition, one can choose to parameterize the input sequence in terms of devi-
ation from a reference controller, typically the linear quadratic regulator (LQR).
We then haveuk = KLQRxk + ck, where the deviationsck are the new degrees of
freedom, and we add blocking constraints to these new variables. The methods
presented in this chapter can be used also for the latter case, but we do not discuss
this method further here.

Figure 6.1 shows a sketch of input blocking and delta input blocking. A special
case of input blocking would be to keep all moves the same, which would corre-
spond to a single-move MPC. The blocking schemes can be expressed on the from
Wu= 0, and we now give examples for how to findW (the “blocking matrix”) for
input blocking and delta input blocking.

Input blocking. As in [Cagienard et al., 2007], consider a SISO system with
prediction horizonN = 4 and corresponding degrees of freedomu0,u1,u2,u3. We
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Input

past future

Time samples

input blocking,
3 degrees of freedom

delta input blocking,
4 degrees of freedom

Figure 6.1: Different types of move blocking.

want to add a blocking such thatu0 is free, whileu1 = u2 = u3, thus reducing the
degrees of freedom in a dense MPC formulation from 4 to 2. This is achieved by
adding the equation

[
0 1 −1 0
0 1 0 −1

]







u0

u1

u2

u3







=

[
0
0

]

(6.23)

to the control problem.

Delta input blocking. Consider the same example, but now we want to constrain
thedifference between the inputsto remain constant. For the SISO example with
the four degrees of freedomu0,u1,u2,u3 we can reduce the number of degrees of
freedomNnu to 2 by adding the equationsu1−u0 = u2−u1 = u3−u2, which on
matrix from can be written as

[
−1 2 −1 0
0 −1 2 −1

]







u0

u1

u2

u3







=

[
0
0

]

. (6.24)

Optimality conditions for MPC with move blocking. Consider the optimality
conditions (6.16)-(6.19) for the MPC problem (6.12). When move blockingis
introduced we need to augment the Lagrangian function to

L (u,λ,γ) =
1
2

u′Juuu+x′0Jux0u−λ′(−Fu+ f +Ex0)− γ′Wu, (6.25)
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whereγ are the Lagrange multipliers corresponding to the move blocking equality
constraintsWu= 0. The KKT-conditions for the case of move blocking are then:

Juuu+Jux0x0 +F ′λ−W′γ = 0 (6.26)

Wu= 0 (6.27)

Equations (6.17)-(6.19)

6.2.4 Balanced truncation

We here review model reduction by balanced truncation [Moore, 1981] as an exam-
ple of a model reduction scheme that can be analyzed with the proposed method.

The model reduction by balanced truncation consists of two steps: First, we
find a balanced representation of system (6.1), then we remove the states corre-
sponding to the smallest Hankel singular values of the balanced representation.

Balanced representation. The controllability and observability Gramians of a
linear system are defined as

AWc +WcA
′+BB′ = 0 (6.28)

A′Wo +WoA+C′C = 0 (6.29)

A balanced representation of system (6.1) is obtained through a transformation
matrixT, such thatW̄c andW̄o (of the transformed system) are equal. Let ˜zk denote
the states of the balanced system, i.e. ˜zk = Txk. It can be shown that

W̄c = W̄o = diag(σ1,σ2, . . . ,σnx)

W̄c = TWcT
−1

W̄o = (T−1)′WoT
−1

(6.30)

whereσi , k = 1,2, . . . ,nx are the Hankel singular values of the balanced represen-
tation, ordered according to

σ1 > σ2 > · · ·> σnx ≥ 0.

Truncation. Let z̃′k =
[
z′k zres

k
′]. In balanced truncation we simply deletezres

k
from the vector of balanced states ˜xk. DenoteTl andTr as

T =













Tl
︷ ︸︸ ︷




T11 . . . T1n
...

...
Tñ1 . . . Tñn






...
...

Tn1 . . . Tnn













, T−1 =













T−1
11 . . . T−1

1ñ
...

...
T−1

n1 . . . T−1
nñ






︸ ︷︷ ︸

Tr

. . . T−1
1n
...

. . . T−1
nn








(6.31)
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We can now express the balanced and truncated result as

zk+1 = Tl ATrzk +Tl Buk

ȳk = CcTrzk +Duk,
(6.32)

and we note that the map from the full state vectorxk to the balanced and truncated
system (6.32) is given byzk = Tl xk.

6.3 Problem formulation

Consider the controlled system in figure 6.2, where we have included a disturbance
model and a state observer. The objective is to identify a worst-case disturbance
sequencew∗ such that the weighted difference

diff =
Nsim

∑
i=1

‖Q(xc
i −xr

i )‖∞ +‖R(uc
i −ur

i )‖∞ (6.33)

is maximized. Here superscript “c” means “candidate controller,” and “r” means
“reference controller”. The parameterNsim is the length of a time period for which
we are comparing the controllers.

The idea is that the reference controller has been tuned to give a good trade-
off between performance and robustness for the linear system to be controlled,
but that this controller is too computationally demanding to be implemented. The
candidate controller is a simplified alternative, where different simplificationshave
been used, i.e. model reduction or move blocking. The objective is to find the
performance degradation in terms of the weighted difference ’diff’ in equation
(6.33).

6.3.1 Notation

The system to be investigated in Figure 6.2 consists of three linear systems (dis-
turbance model, linear process and state observer) and one optimization problem
(MPC).

Disturbance model. Let the disturbance dynamics be described by

dk+1 = Addk +Bdwk (6.34)

dO
k = CO

d dk (6.35)

dI
k = CI

ddk. (6.36)
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Disturbance
model

Linear
process

State
observerMPC

wk

dO
k

dI
k

uk

yk

x̂k

Figure 6.2: Linear system with MPC controller, state observer and disturbance
model.

For a time-sequence 1, · · · ,Nsim we have








dO
1

dO
2
...

dO
Nsim−1








︸ ︷︷ ︸

dO

=








CO
d Ad

CO
d A2

d
...

CO
d ANsim−1

d








︸ ︷︷ ︸

GdO
x0

d0 +








CO
d Bd

CO
d AdBd CO

d Bd
...

. ..

CO
d ANsim−2

d · · · · · · CO
d Bd








︸ ︷︷ ︸

GdO
w








w0

w1
...

wNsim−1








︸ ︷︷ ︸

w

(6.37)







dI
1

dI
2
...

dI
Nsim−1








︸ ︷︷ ︸

dI

=








CI
dAd

CI
dA2

d
...

CI
dANsim−1

d








︸ ︷︷ ︸

GdI
x0

d0 +








CI
dBd

CI
dAdBd CI

dBd
...

. . .

CI
dANsim−2

d · · · · · · CI
dBd








︸ ︷︷ ︸

GdI
w








w0

w1
...

wNsim−1








︸ ︷︷ ︸

w

(6.38)

Linear process. The linear process

zk+1 = Al zk +Bu
l uk +BdI

l dI
k

yk = Cl zk +DdO
l dO

k

(6.39)
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may have slightly different dynamics than the internal model in the MPC. Over
Nsim sample times we write the model as








y1

y2
...

yNsim








︸ ︷︷ ︸

y

=








Cl Bu
l

Cl Al Bu
l Cl Bu

l
...

. . .

Cl A
Nsim−1
l Bu

l · · · · · · Cl Bu
l








︸ ︷︷ ︸

Gy
u








u0

u1
...

uNsim−1








︸ ︷︷ ︸

u

+








Cl BdI

l

Cl Al BdI

l Cl BdI

l
...

. ..

Cl A
Nsim−1
l BdI

l · · · · · · Cl BdI

l








︸ ︷︷ ︸

Gy
dI

dI

+






DdO

. ..

DdO






︸ ︷︷ ︸

Gy

dO

dO

(6.40)

State observer. We consider a simple Luenberger observer [Luenberger, 1966]
on the form

x̂k+1 = Ax̂k +L(yk− ŷk)+Buk

ŷk = Cxk,
(6.41)

or equivalently

x̂k+1 = (A−LC)
︸ ︷︷ ︸

AO

x̂k +Lyk +Buk (6.42)

and we assume thatAO is stable. OverNsim time samples we have








x̂1

x̂2
...

x̂Nsim








︸ ︷︷ ︸

x̂

=








L
AOL L

...
. ..

ANsim−1
O L · · · · · · L








︸ ︷︷ ︸

Gx̂
y

y+








B
AOB B

...
. ..

ANsim−1
O B · · · · · · B








︸ ︷︷ ︸

Gx̂
u

u.
(6.43)
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MPC. Let KMPC denote the map{KMPC : R
nx 7→ R

nu}, i.e. the first part of the
sequenceu∗ that solves an MPC problem. We then have that

u =






KMPC
. . .

KMPC






︸ ︷︷ ︸

KMPC

x̂, (6.44)

whereKMPC is a variable gain that depends on ˆx, where ˆx =
[
x̂′1 x̂′2 . . . x̂′Nsim

]′
.

6.3.2 Problem statement

The problem we attempt to solve can be summarized as:

max
w∈W

Nsim

∑
i=1

‖Q(yc
i −yr

i )‖∞ +‖R(uc
i −ur

i )‖∞

s.t.dO = GdO

w w, dI = GdI

w w,

yc = Gy
uuc +Gy

dI d
I +Gy

dOdO, yr = Gy
uur +Gy

dI d
I +Gy

dOdO,

x̂c = Gx̂
yy

c +Gx̂
uuc, x̂r = Gx̂

yy
r +Gx̂

uur ,

uc = K
c
MPCx̂c, ur = K

r
MPCx̂r .

(6.45)

HereK
c
MPC indicates that a candidate MPC formulation is used, whereasK

r
MPC

indicates the reference controller. The search space for the disturbances is given
by the polytopeW .

Remark 6.3. Rather than considering a linear state observer as done in problem
(6.45), one may include a finite horizon estimator. Note however that the complex-
ity of the problem increases significantly when a finite horizon estimator is used.

6.3.3 Solution by mixed integer linear programming

Problem (6.45) is referred to as abilevel program[Bard, 1998, Colson et al., 2005]
because we have two “levels” of optimization, the “upper level” of maximizing the
difference between the controllers, and the “lower level” representing the solutions
to the MPC problems (which are themselves optimization problems). If the lower-
level problems happens to be convex and regular, they can be replacedby their first
order optimality conditions, yielding a single-level optimization problem (see for
example [Jones and Morari, 2009]). Under the assumption that we have apositive
semi-definite weightQ≥ 0 on the states and a positive definite weightR> 0 on
the inputs, the MPC formulations will fulfill this assumption. Thus, we do not look
for an explicit solution (controller) to the lower-level problems, but we solve for
the corresponding inputs by using the first-order optimality conditions.
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MPC as mixed integer constraints. We define the operator

KKT : R
nx 7→ {first-order optimality conditions on “big-M form”}, (6.46)

i.e. an operation that writes the KKT-conditions given in section 6.2 for a given
MPC formulation. Further, let the operation

KKT : R
Nsimnx 7→ Nsim independent instances of the KKT operator above (6.47)

have as input the vector of stacked states ˆx. This operation then writes the KKT-
conditions forNsim steps forward in time, i.e.Nsim MPC calculations. We can now
do the following substitution:

(uc = K
c
MPCx̂c, ur = K

r
MPCx̂r)⇔ (KKT

cx̂c, KKT
rxr) (6.48)

We here substitute the lower level problems with linear constraints, and add
new variables, some of which are binary.

Objective function. The objective function is still non-convex, but it can be
made convex by a standard trick, see e.g. [Jones and Morari, 2009, Löfberg, 2004]:
The objective function is on the form “max‖t‖∞”. If we introduce binary variables
ni andpi for each element oft and add the condition that the binary variablepi is 1
if ‖t‖∞ = ti andni is 1 if ‖t‖∞ =−ti , will the remaining problem be a mixed-integer
linear program (MILP). In this work we used YALMIP [L öfberg, 2004] to pose the
problem, and this software has a built-in facility for this “trick”.

Summing up, if we replace the MPC problems with their respective KKT con-
ditions and add binary variables to render the objective function linear do we get
an MILP problem in the end, which we can solve using standard software.In this
work, the commercially available software CPLEX c© was used.

6.4 Computational aspects

After replacing the MPC problems with their respective first order optimality con-
ditions (modelled using binary variables for the complimentary constraints) and
noting that the maximization of an infinity norm can be rendered into a mixed-
integer linear program we are left with an MILP problem:

max
w∈W

Nsim

∑
i=1

‖Q(yc
i −yr

i )‖∞ +‖R(uc
i −ur

i )‖∞

s.t.dO = GdO

w w, dI = GdI

w w,

yc = Gy
uuc +Gy

dI d
I +Gy

dOdO, yr = Gy
uur +Gy

dI d
I +Gy

dOdO,

x̂c = Gx̂
yy

c +Gx̂
uuc, x̂r = Gx̂

yy
r +Gx̂

uur ,

KKT
cx̂c, KKT

r x̂r .
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Origin Number of binary variables

Objective function Nsim(2ny +2nu)
KKT conditions for MPC problems Nsim(Ncnc +Nrnc)

Table 6.2: Number of binary variables by solving problem (6.33) as a MILPprob-
lem. The MPC problems have an input horizon ofNc for candidate controller and
Nr for reference controller, both withnc constraints.

Table 6.2 shows approximately how many binary variables that are used in
the problem formulation. To get some insight into these numbers, consider the
following example:

Example: Distillation column. We consider a typical distillation column, see
e.g. [Skogestad, 1997], with 2 inputs and 2 measurements. Consider the simplest
case of only input constraints on the formul ≤ u≤ ul , so the number of constraints
nc = 2nu = 4. Assume that one decides that a prediction horizon ofN = 20 is
sufficient, and that both reference controller and candidate controllershave this
prediction horizon. Further let us assume that we want to simulate the controlfor
Nsim = 40 time steps. We then get the following number of binary variables in our
formulation:
Origin Number of binary variables

Objective function 40(2·2+2·2) = 320
KKT conditions for MPC problems 40(20·4+20·4) = 51200

A number of binary variables of 51520 corresponds to that the solver used
for finding solving the MILP in the worst case has to explore 251520nodes, which
may take extremely long time. It is well-known that MILP problems are NP-hard
(NP-hard problems belong to a class of problems that cannot be solved in polyno-
mial time [Blondel and Tsitsikilis, 1997]), but nevertheless there exists commercial
software that can solve these problems within reasonable time. What renders the
problem we have posed even more difficult, is probably the structure of thecom-
plimentary constraints originating from the KKT conditions of the lower level of
the bilevel program, because even for the simplest instance of a bilevel program,
the linear bilevel programming problem is shown to be NP-hard [Colson et al.,
2005].
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6.4.1 Simplifications

We now present some simplifications that effectively lets us only find a lower
bound on the maximum difference (rather than the exact value), but that renders
the remaining problem tractable.

Initial state of disturbance model as only disturbance. In the problem formu-
lation shown graphically in Figure 6.2, the “generators”wk drive the disturbance
model. In the equations we have also included the initial stated0 as a degree of
freedom. In optimal control, see for example [Kwakernaak and Sivan, 1972, Theo-
rem 3.9, page 260], is it well-known that for a linear system (without constraints), a
linear feedback that is optimal for rejecting an initial disturbanced0 is also optimal
for sustained white noise disturbances on the formxk+1 = (A−BK)xk +wk.

This result is only valid for linear controllers on linear systemswithout con-
straints, but here we suggest to ignore the generatorswk and only search over
initial states of the disturbance model,d0, which should by the similarity to the
result above from optimal control, lead to the same classification of the candidate
controllers.

Using fewer points in the objective function. With the simplification of con-
sidering only the initial state as our disturbances, we suggest to simplify the prob-
lem by, rather than evaluating the whole trajectory in the objective function, i.e.
∑Nsim

i=1 ‖Q(yc
i − yr

i )‖∞ + ‖R(uc
i −ur

i )‖∞, only considering a few points, for example
the midpoint and the end pointt = Ts ·Nsim. We here assume that an initial distur-
banced∗0, that maximizes the difference between the controllers at the end point,
alsomaximizes the difference over the whole trajectory. However, for long “sim-
ulation times”Nsim, this problem maybe badly posed (as the difference may be
very small at the end point for alld0 in the set of initial disturbances that we want
to investigate), so we then suggest to add some more points, for example the mid
point, as indicated in Figure 6.3.

From Table 6.2 it seems like “simplifying” the objective function as outlined
above, does not have a significant influence on the solution time, as most ofthe
binary variables come from the KKT conditions of the MPCs. However, by nu-
merical experiments we found that this simplification made the problem solve a lot
faster.

Early termination of the MILP solver. While testing the method proposed in
this chapter we found that the MILP solver (CPLEX) actually found an acceptable
solution to the problem of maximizing the difference between two controller quite
fast, but that it took a long time to converge to the actual solution. A typical
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Figure 6.3: Illustration of two closed-loop trajectories, one for the reference con-
troller (blue line) and another for the candidate controller (dashed red line).

1 10 30 60 120 240
0

0.5

1
x 10

−4

Time limit for MILP solver [seconds]

C
al

cu
la

te
d 

er
ro

r

Figure 6.4: Sensitivity to time limit.

example is shown in Figure 6.4, where by changing the time limit on the solver we
get essentially the same solution after 10 seconds as after two minutes. We also
investigated the sensitivity to the tolerances in CPLEX (absolute and relative gaps,
and absolute and relative objective function values), but we found thatthe most
effective solution was to simply add a time-limit to the solver.

6.5 Example: Distillation

We here consider model predictive control of “Column-A” in [Skogestad, 1997],
with the “LV-configuration”. Muske and Badgwell [2002] also used the same col-
umn model as an example for offset-free MPC, and we here use the same operating
point as they did, which is reported in Table 6.3.

In order to use the distillation model in this example, we first linearize the
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Type Description Variable Nominal Value

Input Reflux flow L (u1) 1.87
Vapor flow V (u2) 2.37

Disturbance Feed flow F (d1) 1.0
Feed composition zF (d2) 0.5
Liquid feed fraction qF 1.0

Output Overhead compositionxD (y1) 0.95
(light component)
Bottoms composition xB (y2) 0.05
(light component)

Table 6.3: Variables for distillation example. Variable names in parenthesis indi-
cate corresponding deviation variables, for exampleu1 = L−1.87. The liquid feed
fractionqF is assumed constant.

model around the nominal operating point to get an 82 state model. In addition,
we sample the model to get a discrete system, with sample timeTs = 2 minutes.
We further simplify the model by balanced truncation to find a corresponding16
state model. We propose the following objective function for control:

J = x′16QNx16+
15

∑
i=0

y′iQyi +u′iRui (6.49)

with Q = R= I .
The disturbance space is:

−1≤ di ≤ 1, i = 1,2. (6.50)

By simulation one finds that, with the original formulation, input saturation is
not likely to happen. In order to investigate this effect, we therefore tightenthe
input constraints and use in the following:

−0.02≤ ui ≤ 0.02, i = 1,2. (6.51)

The final state weight matrixQN is found by first finding the LQR feedback
gain uk = −KLQRxk corresponding to an infinite objective function with weights
(C′QC,R) on states and inputs, respectively. Then, we define

AK = (A−BKLQR) (6.52)

Qf = C′QC+K′LQRRKLQR (6.53)
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Figure 6.5: Responses of unconstrained systems from an impulse disturbanced0 =
(−1,1).

and letQN > 0 satisfy the Lyapunov equation

A′KQNAk +Qf = QN, (6.54)

see [Chmielewski and Manousiouthakis, 1996] for details. The matrixQN =




















0.8797 −0.0072 0.0161 −0.0241−0.0191 0.0125 0.0356 −0.0078−0.0023 0.0182 −0.0154 0.0023 0.0130 −0.0074 0.0070 −0.0062
−0.0072 0.0975 −0.0042−0.0082−0.0140−0.0031 0.0156 −0.0039 0.0088 −0.0006−0.0096−0.0118−0.0002−0.0037 0.0050 0.0014
0.0161 −0.0042 0.1009 0.0155 0.0171 −0.0078−0.0258 0.0084 0.0029 −0.0162 0.0106 −0.0039−0.0111 0.0063 −0.0045 0.0056
−0.0241−0.0082 0.0155 0.0442 0.0263 −0.0025−0.0222 0.0126 −0.0138−0.0105 0.0120 0.0059 −0.0092 0.0096 −0.0054 0.0022
−0.0191−0.0140 0.0171 0.0263 0.0221 0.0018 −0.0131 0.0111 −0.0111−0.0054 0.0082 0.0058 −0.0057 0.0066 −0.0039 0.0009
0.0125 −0.0031−0.0078−0.0025 0.0018 0.0138 0.0011 −0.0000−0.0065 0.0066 0.0013 0.0080 0.0042 −0.0001−0.0010−0.0029
0.0356 0.0156 −0.0258−0.0222−0.0131 0.0011 0.0200 −0.0048 0.0057 0.0075 −0.0096−0.0041 0.0055 −0.0055 0.0043 −0.0018
−0.0078−0.0039 0.0084 0.0126 0.0111 −0.0000−0.0048 0.0066 −0.0041−0.0033 0.0031 0.0014 −0.0032 0.0032 −0.0014 0.0007
−0.0023 0.0088 0.0029 −0.0138−0.0111−0.0065 0.0057 −0.0041 0.0110 −0.0024−0.0053−0.0082 0.0001 −0.0031 0.0027 0.0014
0.0182 −0.0006−0.0162−0.0105−0.0054 0.0066 0.0075 −0.0033−0.0024 0.0092 −0.0015 0.0044 0.0056 −0.0025 0.0007 −0.0028
−0.0154−0.0096 0.0106 0.0120 0.0082 0.0013 −0.0096 0.0031 −0.0053−0.0015 0.0058 0.0042 −0.0018 0.0030 −0.0025 0.0001
0.0023 −0.0118−0.0039 0.0059 0.0058 0.0080 −0.0041 0.0014 −0.0082 0.0044 0.0042 0.0082 0.0020 0.0015 −0.0021−0.0019
0.0130 −0.0002−0.0111−0.0092−0.0057 0.0042 0.0055 −0.0032 0.0001 0.0056 −0.0018 0.0020 0.0039 −0.0022 0.0009 −0.0017
−0.0074−0.0037 0.0063 0.0096 0.0066 −0.0001−0.0055 0.0032 −0.0031−0.0025 0.0030 0.0015 −0.0022 0.0023 −0.0014 0.0005
0.0070 0.0050 −0.0045−0.0054−0.0039−0.0010 0.0043 −0.0014 0.0027 0.0007 −0.0025−0.0021 0.0009 −0.0014 0.0012 −0.0000
−0.0062 0.0014 0.0056 0.0022 0.0009 −0.0029−0.0018 0.0007 0.0014 −0.0028 0.0001 −0.0019−0.0017 0.0005 −0.0000 0.0010




















.

Figure 6.5 shows a closed loop simulation of the state feedback controller
(LQR) on the 82 state system and the LQR that minimizes objective (6.49) ap-
plied to the 16 state system. We observe that the input-output relationships of the
two systems in closed loop are almost indistinguishable.
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The reference controller is thus the following MPC:

J∗(x0) = min
uk,xk

x′16Px16+
15

∑
i=0

y′iQyi +u′iRui

s.t.
xk+1 = Axk +Buk, k = 0, . . . ,15

−0.02≤ uk ≤ 0.02, k = 0, . . . ,15

(6.55)

We consider both dense and structured formulations of the MPC problem. From
Table 6.1 we observe that in order to reduce the CPU-time for a structured formu-
lation, we can change the prediction horizon (N) or reduce the model order (nx).
For the dense formulation we can either change the prediction horizonN or the
productNnu, which we can address using move blocking.

Definition of analysis problem. We consider impulse disturbances at time sam-
ple t = 1, and we define the objective to maximize the difference in outputs after 5
time steps (corresponding to 10 minutes), i.e. the difference function is

diff = ‖yr
5−yc

5‖∞.

We use the same linear model as in the reference controller, and we assume that the
state vector is available as a measured variable. For the case of a reducedinternal
model in the MPC, we assume that the state observer is simply given byzk = Tl xk,
see section 6.2.4.

Results. The results for the dense formulation (where we assume a CPU-time in
the order of(Nnu)

3) are shown in Tables 6.4-6.5 and Figure 6.6. The first con-
clusion is that it is significantly better to apply move blocking than to reduce the
horizon of the controller. This may be because the horizon was quite shortin the
reference controller, so the control action is sensitive to changes in the horizon.

The next conclusion is that delta-blocking generally gives better performance.
Notice that for delta input blocking we have one case where we get better per-
formance with less degrees of freedom (3 versus 5 degrees of freedom), and both
blocking schemes seems to be reasonable. This is a bit counter intuitive, buthere
we are maximizing the difference between a candidate controller and a reference
controller at a certain point in time, which is not exactly the same as checking the
performance of the controllers directly (though the problems are expectedto be
related).

We further notice from Figure 6.6 that it seems to be better to keep the original
horizon and block all the moves (corresponding to the original DMC controller
[Cutler and Ramaker, 1980]), than to reduce the horizon to one.
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Blocking type DOF= Nnu−nW
nu

Maximum error

First 13 free, last 2 blocked 14 3.0·10−8

First 12 free, last 3 blocked 13 1.6·10−7

First 11 free, last 4 blocked 12 6.9·10−7

First 10 free, last 5 blocked 11 1.4·10−6

First 9 free, last 6 blocked 10 3.1·10−6

First 8 free, last 7 blocked 9 9.4·10−6

First 7 free, last 8 blocked 8 1.7·10−5

(1,2,2,4,6) 5 7.7·10−6

(1,3,4,7) 4 1.4·10−5

(1,7,7) 3 5.0·10−5

First free, last 14 blocked 2 1.5·10−4

All blocked 1 0.0033

Reference controller 16 0

Table 6.4: Details of input blocking. The notation(1,2,2,4,6) means that the first
input is free, then the next two are blocked (constrained to be the same) and so on.
The degrees of freedom (DOF)(Nnu−nW)/nu are the original degrees of freedom
Nnu minus the number of blocking relationsnW and divided bynu to get a number
that corresponds to an equivalent horizon length. For all the controllers, N = 16
andnu = 2.

Blocking type DOF= Nnu−nW
nu

Maximum error

First 12 free, gradient of last 3 constant 14 1.4·10−9

First 11 free, gradient of last 4 constant 13 8.2·10−9

First 10 free, gradient of last 5 constant 12 2.9·10−8

First 9 free, gradient of last 6 constant 11 7.6·10−8

First 2 free, two gradients 5 8.7·10−6

of length 7 constant
First free, last 14 same gradient 3 8.1·10−6

All have the same gradient 2 0.0017

Reference controller 16 0

Table 6.5: Details of delta input blocking. The degrees of freedom (DOF)(Nnu−
nW)/nu are the original degrees of freedomNnu minus the number of blocking
relationsnW and divided bynu to get a number that corresponds to an equivalent
horizon length. For all the controllers,N = 16 andnu = 2.
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Figure 6.6: Dense formulation with Cpu-time in the order of(Nnu)
3. The normal-

ized Cpu-time in the plot is(Nnu)
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3 where superscriptr refers to the ref-

erence controller. The numbers next to the symbols correspond to the normalized
degrees of freedom DOF= (Nnu−nW)/nu wherenW is the number of blocking
relations applied to the problem.

Order of reduced model
(number of states)

Maximum error

2 2.11·10−4

4 3.61·10−4

6 1.45·10−5

8 1.26·10−5

10 1.24·10−6

12 1.43·10−6

16 (Reference controller) 0

Table 6.6: Details of model reduction.
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Horizon in candidate con-
troller

Maximum error

2 3.65·10−3

4 2.79·10−3

6 1.96·10−3

8 1.20·10−3

10 6.86·10−4

12 3.53·10−4

14 9.12·10−5

16 (Reference controller) 0

Table 6.7: Details of changing the horizon length.

The details of the blocking schemes were selected by intuition and there may
certainly be other schemes that are better given a certain number of degrees of
freedom.

When using a solver that exploits the structure of the problem (with assumed
number of operations per step in the order ofN(nx +nu)

3), we observe from Fig-
ure 6.7 that it is far better to apply model reduction than to reduce the horizon.
Additional details are given in Tables 6.6-6.7.

Finally, we show in Figure 6.8 a closed loop simulation for a candidate con-
troller with reduced horizon ofNc = 2 from the worst-case disturbance

d′0 =
[
1 −0.96

]
.

Though perhaps difficult to observe from Figure 6.8, this gives a worst-case output
difference between the candidate and reference controllers of 3.65· 10−3, which
is the same as the calculated worst case error by the MILP solver (see Table 6.7).
Figure 6.9 shows the result of a gridding over the disturbance space with corre-
sponding errors‖yc

5− yr
5‖∞, and we observe that the worst case error is indeed at

the location where the MILP solver found it, which validates our numerical proce-
dure

Computation time. The resulting MILP needed to generate the results in this
example turned out to take very long time to solve, so in order to get a fast screen-
ing of different methods we added a time-limit of 10 minutes to each optimization
problem. A high computational demand to solve these problems is expected since
they in general are NP-hard.

We did the calculations on a Dell PowerEdge 1950 with Intel(R) Xeon(R) CPU
E5410 @ 2.33GHz and 8GB RAM. The MILP solver was set up in parallel mode,
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using up to 8 of 8 available CPU’s.

6.6 Discussion

6.6.1 Numerical experiences and future work

As stated clearly in the online documentation for YALMIP [L öfberg, 2004], there
are several pit falls when setting up a mixed integer problem. First of all, it is
very important to bound all variables, and the bounds should be fairly tightto
avoid excessive computation times. We added bounds in an iterative manner where
we first solved a problem with quite conservative bounds, checked the solution,
tightened the bounds accordingly, and finally resolved the problem to check that
the solution was unaffected by the added bounds (i.e. that none of the bounds were
active).

In addition, we experienced that the solution was very sensitive to the “big-M”
value, and we found as indicated above acceptable values ofM by iteration. The
sensitivity to the value of the big-M is well known [Camm et al., 1990] and should
always be addressed when setting up an MILP problem.
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Other solution methods. Rather than adding constraints on big-M form and us-
ing an MILP solver as we did in this chapter, there are reports of methods that
branch directly on the KKT conditions, see for example [Bard and Moore,1990,
Bard, 1998]. These methods could be investigated as one may avoid adding(the
numerically dangerous) big-M constraints altogether.

Symmetry. The example in this chapter is actually symmetric in the inputsuk

and disturbancesd0, as we have a linear model with symmetric constraints onuk.
The symmetry can also be seen from the objective function plotted in Figure 6.9. It
seems likely that if this symmetry would be exploited, the solution could be made
faster.

Further, when we have a high and low limit on some variable, we know in ad-
vance that both constraints cannot be active at the same time, and this information
should be used when solving the problem.

6.6.2 Extension to quadratic cost function

Practitioners might prefer to use a weighted 2-norm to judge the differencebe-
tween controllers, rather than the infinity norm as used in this chapter. In thiscase
one can simply use the same objective function in the performance evaluation as
one is using in the MPC itself. A method for how to write this problem as an MILP
is outlined in [Jones and Morari, 2009].

6.7 Conclusions

In this chapter we have presented a framework for analysis of different methods to
speed up MPC. The framework can be used to rank different candidates in terms of
expected performance degradation. The problem we pose is known to beNP-hard
and thus can be very time-consuming. We showed by an example that by intro-
ducing an early stopping constraint on the MILP solver, we got interestingresults
within a reasonable time frame. For a case study, we found for a dense formulation
that move blocking was more efficient than reducing the horizon. We also found
that “delta input blocking” was better than “input blocking.” For a structured for-
mulation on of the same case study, model reduction was significantly better than
reducing the horizon.

Several improvements on the numerical side has been addressed as possible
future work.



Chapter 7

Bilevel programming for analysis
of low-complexity control of
linear systems with constraints

Published in “Proceedings of Conference on Decision and Control 2009, Shanghai,
China.”

In this paper we use bilevel programming to find the maximum difference
between a reference controller and a low-complexity controller in terms of
the infinity-norm difference of their control laws. A nominal MPC for linear
systems with constraints, and a robust MPC for linear systems with bounded
additive noise are considered as reference controllers. For possible low-
complexity controllers we discuss partial enumeration (PE), Voronoi/closest
point, triangulation, linear controller with saturation,and others. A small dif-
ference in the norm between a low-complexity controller anda robust MPC
may be used to guarantee closed-loop stability of the low-complexity con-
troller and indicate that the behaviour or performance of the low-complexity
controller will be similar to that of the reference one. We further discuss
how bilevel programming may be used for closed-loop analysis of model
reduction.

7.1 Introduction

Bemporad et al. [2002] introduced an explicit solution of the model predictive con-
trol (MPC) problem for control oflinear systems with constraintsusing a quadratic
performance index. Later these results have been extended to cover a broader class
of systems and performance objectives, see [Alessio and Bemporad, 2008] for a
survey.

115
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The main drawback of explicit MPC is that the control law, due to the combi-
natorial nature of the problem, can grow exponentially with the size of the optimal
control problem [Wen et al., 2009].

Alessio and Bemporad [2008] proposed to reduce complexity of explicit MPC
by either storing only theL regions with the highest Chebysev radius (if a full ex-
plicit solution is available), or to run extensive simulations of closed-loop MPC
and collect theL most recurrent combinations of active constraints for implemen-
tation, similar to [Pannocchia et al., 2007]. (Storing only a subset of the possible
regions of a MPC and using them for implementation is called partial enumeration
(PE).)

Pannocchia et al. [2007] recently reported that by using a PE policy on an
industrial example with more than 250 states, 32 inputs and a 25-sample control
horizon, small look-up tables with only 25-200 entries gave a control that was less
than 0.01% suboptimal compared to the full model predictive controller (MPC)
for the same example. The MPC could theoretically enter 3800 = 4.977× 10381

regions.
In this paper we use bilevel programming to investigate the PE-schemes de-

scribed above, but also more general low-complexity policies. The main ideais
to calculate the maximum difference between a either a nominal or a robust MPC
and the low-complexity policy, and then, based on this difference, draw conclu-
sions about the proposed low-complexity controller.

In addition to guarantees of feasibility and stability the method can be used
to give bounds on the sub-optimality of the low-complexity scheme, by using the
value of the objective function of the reference controller as a difference-metric of
the reference and low-complexity controller.

7.2 Notation and preliminaries

A polyhedronis the intersection of a finite number of halfspaces and apoly-
tope is a bounded polyhedron. Given two setsS1,S2 ⊆ R

n the Minkowski sum
is defined asS1⊕S2 , {s1 +s2|s1 ∈ S1, s2 ∈ S2}, and the Pontryagin difference
as S1⊖S2 , {s1|s1 +s2 ∈ S1,s2 ∈ S2}. Boldfacex and u means the sequences
x = (x0,x1, . . . ,xN) andu = (u0,u1, . . . ,uN−1), while boldface1 is a vector of 1’s
of appropriate length.

We consider control of the following discrete-time linear system

x+ = Ax+Bu, (7.1)

wherex∈R
nx are the states andu∈R

nu are the inputs, andx+ above is a short-hand
notation forxk+1 = Axk +Buk. In addition we have constraints such thatx∈X and
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u∈ U, whereX = {x | Fx≤ f} ⊂ R
nx andU = {u | Gu≤ g} ⊂ R

nu are polytopic
sets.

The solution of an explicit MPC with quadratic objective, linear process and
polytopic constraints, can be written as a piecewise affine function of the state. A
piecewise affine functionu(x) : X 7→ R

nu, whereX ⊂ R
nx is a polyhedral set, is

piecewise affine if it is possible to partitionX into convex polyhedral regions,CRi ,
andz(x) = K ix+ ci , ∀x ∈CRi [Bemporad et al., 2002]. In this paper “region”
denotesCRi , written “regioni”, and (K i ,ci) is the corresponding optimal control
law, i.e. the part ofu(x) that belongs toCRi . In order to conform with notation
used in [Alessio and Bemporad, 2008], we useLi =

{
x∈ R

nx | Aix≤ bi
}

in the
place ofCRi .

7.3 Bilevel optimization

The main focus of this paper is the application of bilevel optimization for anal-
ysis of low-complexity controllers. Here we give an introduction to bilevel op-
timization and solution methods, following Jones and Morari [2009]. For more
background details the reader is referred to a recent survey [Colsonet al., 2005].

Bilevel problems are hierarchical in that the optimization variables(y,z) are
split into uppery and lowerz parts, with the lower level variables constrained to
be an optimal solution to a secondary optimization problem:

min
y

VU(y,z)

subject toGU(y,z)≤ 0

z= argmin
z

VL(y,z)

subject toGL(y,z)≤ 0

(7.2)

In this paper we will only consider problems where the lower-level problemhas
an unique optimizer. Moreover, we will usually have two low-level problems,one
for the reference controller and one for the low-complexity controller.

7.3.1 Solution methods

If the lower level problem is convex and regular, then it can be replacedby its nec-
essary and sufficient Karush-Kuhn-Tucker (KKT) conditions, yielding a standard
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single-level optimization problem [Jones and Morari, 2009]:

min
y,z,λ

VU(y,z)

subject toGU(y,z)≤ 0

GL(y,z)≤ 0

λ≥ 0

λ′GL(y,z) = 0

∇zL (y,z,λ) = 0

(7.3)

whereL (y,z,λ) := GL(y,z)+λ′GL(y,z) is the Lagrangian function associated with
the lower-level problem. For the special case of linear constraints and a quadratic
cost, all constraints of (7.3) are linear and the complimentary conditionλ′GL(y,z)=
0 is a set of disjunctive linear constraints, which can be described using binary
variables, and thus leads to a mixed-integer linear problem.

7.3.2 Bilevel optimization for analysis of controllers

In this paper we use bilevel programming to find the maximal difference between
a reference controller and a low-order controller. Hence, for a subsetX ⊂ R

nx, we
solve

max
x∈X

d(uref,ulow-complexity)

subject to KKT(reference controller)

KKT(low-complexity controller)

(7.4)

Typically, X is the intersection of the feasible states for the reference and the low-
complexity controller.

Note that explicit solutions of neither the reference nor the low-complexity
controllers are needed, because the solutions are implicitly given by the KKTcon-
ditions.

The distance measured(uref,ulow-complexity) can be, for example, the difference
between the next state,

d(uref,ulow-complexity) =

‖x+
ref(x,uref)−x+

low-complexity(x,ulow-complexity)‖∞ =

‖Buref−Bulow-complexity‖∞,

(7.5)

but also differences between trajectories of either states or inputs.
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Remark 7.1. We observe that(7.5) renders(7.4) non-convex due to the term
max‖t‖∞ (where t is a convex function of(uref,ulow-complexity)) . However, the
problem may be converted into a mixed integer linear program (MILP) using a
standard technique (e.g. [Löfberg, 2004]), in which we introduce binary variables
ni , pi for each element of t and add the condition that the binary variable pi is one
if ‖t‖∞ = ti and ni is one if‖t‖∞ = −ti . The method adds only linear and binary
conditions to(7.4)and therefore the overall problem remains a MILP [Jones and
Morari, 2009].

7.4 Application on analysis of low-complexity controllers

We first present a nominal MPC policy based on optimizing a quadratic perfor-
mance objective subject to a linear model of the process at and a set of polytopic
constraints on both states and inputs. We thereafter present a robust MPC, where
the process is subject to bounded disturbances on the states. Both these schemes
fit into the bilevel problem as a reference controller.

The choice of which reference controller to use depends on the problemat
hand, as this defines a benchmark for control of the process. The robust MPC
scheme can be used to give a feasibility and stability certificate of the low-complexity
scheme. However, in some cases the robust MPC can be quite conservative, and
the nominal MPC may be a better benchmark.

Thereafter we show how several low-complexity polices can be expressed in
the bilevel framework. The main “tool” we use here is to represent any logicand
bilinear terms in the KKT-conditions with mixed integer linear constraints in order
to let the resulting problem be a MILP.
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7.4.1 Nominal MPC as reference controller

Consider the following semi-infinite horizon optimal control problem [Jones and
Morari, 2009]:

min
x,u

J(x,u) =
1
2

x′NPxN + . . .

+
1
2

N−1

∑
i=0

u′iRui +x′iQxi ,

subject toxi+1 = Axi +Bui , ∀i = 0, . . . ,N−1,

xi ∈ X, ∀i = 1, . . . ,N−1,

ui ∈ U, ∀i = 0, . . . ,N−1,

xN ∈ XN,

x0 = x.

(7.6)

Here XN = {x | Hx ≤ h} ⊂ X is a polytopic invariant set for the systemx+ =
Ax+ Bµ(x) for some given control lawµ : R

nx 7→ R
nu. FurtherP ∈ R

nx×nx and
Q∈R

nx×nx are positive definite matrices andR∈R
nu×nu is a positive semi-definite

matrix. We defineX ⊂R
nx to be the set of statesx for which there exists a feasible

solution to (7.6).

If u∗(x) is the optimal input sequence of (7.6) for the statex, andu∗0(x) is
the resulting control law, then stability of the systemx+ = Ax+ Bu∗0(x) can be
established under the assumption thatVN(x) = x′Px is a Lyapunov function for the
systemx+ = Ax+Bµ(x) and that the decay rate ofVN is greater than the stage cost
l(u,x) = u′Ru+x′Qx within the setXN [Jones and Morari, 2009].

By usingxk = Akx0+∑k−1
j=0 A jBuk−1− j the MPC problem (7.6) can be rewritten

as [Bemporad et al., 2002]:

V(x0) =
1
2

x′0Yx0 + . . .

+min
U
{1

2
U ′HU +x′0FU,

subject toGU ≤W+Ex0},

(7.7)

whereU ′ =
[
u′0 u′1 · · · u′N−1

]
.

We want to use (7.7) as a lower-level problem in bilevel programming. The
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following equations define the KKT conditions for this problem:

HU +F ′x0 +G′λ = 0

GU−W−Ex0≤ 0

λ≥ 0

λ≤Ms

GU−W−Ex0≥−M(1−s)

(7.8)

Heres∈ {0,1}nW , wherenW is the number of inequality constraints in (7.7). The
two last equations in (7.8) correspond to the complementary conditionλ′GL(y,z) =
0 in the general bilevel problem, here described with binary variabless. M is
a constant that is large enough such that the solution to (7.8) corresponds to the
solution of (7.7). (This is called a “big-M” formulation.)

7.4.2 Robust MPC as reference controller

In this subsection the results are from Mayne et al. [2005] unless otherwise noted.
Consider control of the linear system (7.1) withadditive disturbances won the

states:

x+ = Ax+Bu+w. (7.9)

The disturbance is assumed to be bounded,

w∈W, (7.10)

whereW is compact and contains the origin (but may not have an interior).
SupposeK ∈R

nu×nx is such thatAK , A+BK is stable. LetZ be a disturbance
invariant set for the controlled uncertain systemx+ = AKx+w satisfying, therefore

AKZ⊕W ⊆ Z. (7.11)

We use the following proposition as a basis for the robust MPC:

Proposition 7.1. Suppose Z is disturbance invariant for x+ = AKx+w. If x∈ x̄⊕Z
and u= ū+K(x− x̄), then x+ ∈ x̄+⊕Z for all w∈W where x+ = Ax+Bu+w and
x̄+ = Ax̄+Bū.

Proposition 7.1 states that the feedback policyu= ū+K(x− x̄) keeps the states
x of the uncertain system (7.9) close to the states ¯x of the so-called nominal system
x̄+ = Ax̄+Bū.
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We can now define the robust MPC problem:

min
x̄,ū

J(x̄, ū) =
1
2

x̄′NPx̄N + . . .

+
1
2

N−1

∑
i=0

ū′iRūi + x̄′iQx̄i ,

subject to ¯xi+1 = Ax̄i +Būi , ∀i = 0, . . . ,N−1,

x̄i ∈ X⊖Z, ∀i = 1, . . . ,N−1,

ūi ∈ U⊖KZ, ∀i = 0, . . . ,N−1,

x̄N ∈ X f ,

x̄0 = x⊕Z.

(7.12)

In order to achieve closed loop robust stability, the terminal constraint setX f

must satisfy the following axioms [Mayne et al., 2005]:

A1 : AKX f ⊂ X f , X f ⊂ X⊖Z, KX f ⊂ U⊖KZ

A2 : Vf (Akx)+ l(x,Kx)≤Vf (x), ∀x∈ Xf ,
(7.13)

whereVf (v) = v′Pvandl(v,z) = v′Qv+u′Ru in the scope of this paper.
Assume thatZ is a polytopic set such that{v∈ R

nx | Hzv≤ kz}.
As for the nominal MPC, we can rewrite the robust MPC problem as:

min
(U,x̄0)

[
U ′

x̄′0

]′[
H F ′

F 2Y

]

︸ ︷︷ ︸

H̃

[
U
x̄0

]

subject to

[
G −E
0 −Hz

]

︸ ︷︷ ︸

G̃

[
U
x̄0

]

≤
[
W
kz

]

︸︷︷︸

W̃

+

[
0
−Hz

]

︸ ︷︷ ︸

Ẽ

x

(7.14)

Let v = (U, x̄0). The KKT-conditions corresponding to (7.14) are

H̃v+ G̃λ = 0

G̃v≤ W̃+ Ẽx

λ≥ 0

λ≤Ms

G̃v≥W+Ex−M(1−s)

(7.15)

Note that the KKT conditions in (7.8) are a special case of the KKT-conditions
above, since above ¯x0 is included as a degree of freedom. For both nominal and
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robust MPC the current statex is a parameter driving the controller, but for the
nominal MPC we have substituted this withx0, asx0 = x is a constraint in the
nominal MPC formulation.

The main motivation for using robust MPC as a reference rather than nominal
MPC is because the robust MPC can be used to prove feasibility and stability of
the low-complexity scheme. Both properties can be established using the following
proposition:

Proposition 7.2. Consider the linear system for which robust stability and feasi-
bility are guaranteed by the robust MPC:

x+ = Ax+Bu+w, w∈W,

and that
W = {w∈ R

nx | ‖w‖∞ ≤ ε}
Let ul-c be the control input from the low-complexity controller, and urMPC the

input from the robust MPC. The following holds for the system controlled by the
low-complexity controller:

x+ = Ax+Bul-c

= Ax+Bul-c−BurMPC +BurMPC

= Ax+BurMPC +B(ul-c−urMPC).

(7.16)

Hence, if
‖B(ul-c−urMPC)‖∞ ≤ ε, (7.17)

the low-complexity controller is both feasible and stable.

7.4.3 Low-complexity controllers as low-level problems in bilevel pro-
gramming

In this section we describe various low-complexity controllers that fit into the
bilevel programming framework. Several more are possible, but not included for
space restrictions.

Linear quadratic regulator with saturation

A simple low-complexity control policy is the linear quadratic regulator (LQR)
with saturation. In the “unconstrained region” this is optimal, and its behaviour
can be modelled using few binary variables. First, we define ˆuLQR = −Kx. For
simplicity we assume that the constraints onu may be written as

ul
i ≤ ui ≤ uh

i , i = 1, . . . ,nu (7.18)
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Now, for each row in (7.18), we define a corresponding binary vectordi ∈ {0,1}3.
The saturation can now be modelled using

ui ≤ uh
i +Mdi

1,

ui ≥ ul
i −Mdi

3,

di
1 +di

2 +di
3 = 1,

−M(1−di
k)≤ sat(ui)−{ui}k ≤M(1−di

k),

k = 1,2,3,

(7.19)

where{ui}=
{

uh
i ,ui ,ul

i

}
, and{ui}k is thek’th element of{ui}.

Partial enumeration (PE)

Here we follow the ideas of Pannocchia et al. [2007] and Alessio and Bemporad
[2008], and we store only a subset of the possible active sets. The controller im-
plementation is here to first locate the closest region to the current statex, and then
use the control law from the corresponding region. In order to satisfyu∈ U, we
saturate the input before applying the input to the plant.

Here we use theminimal-violation distancefrom Christophersen et al. [2007]
to find the closest region for a setL of stored polytopes.

Definiton 7.1. (Minimal-violation distance [Christophersen et al., 2007]) Let the
collectionL be the setL = {Li}NLi=1, where Li :=

{
x∈ R

nx | Aix≤ bi
}

are full-
dimensional polyhedra inRnx. We assume that Aix≤ bi are on Hessian normal
form, i.e. each row[Ai ]r of Ai is normalized with‖[Ai ]r‖2 = 1.

The minimal-violation distance dMV of x toL is given by

dMV := min
i
{α∗i (x)} , (7.20)

where
α∗i (x) = argmin

{
αi ∈ R | Aix≤ bi +αi1

}
, (7.21)

for all i = 1, . . . ,NL and1 = [1 · · · 1]′.

The solution of the LP (7.21) can be found using the KKT conditions:

1−1′λi = 0,

0≤ λi ≤Msi ,

0≤ b+αi1−Aix≤M(1−si),

(7.22)

wheresi ∈ {0,1}nbi is a vector of binary variables of length corresponding to the
number of faces in the polytopeLi =

{
x∈ R

nx | Aix≤ bi
}

.
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Let β ∈ {0,1}nL be binary variables such that

βi = 1↔ αi ≤ α j ∀ j 6= i, (7.23)

which implies that∑βi = 1. We can then define the PE control law as

û = sat

{
nL

∑
i=1

βi
(
K ix+ci)

}

, (7.24)

where(K i ,ci) is the optimal feedback in regioni, and sat{·} is a normal saturation
function. Equation (7.24) is bilinear in the optimization variablesβi ,x, and can
be implemented in the bilevel framework with the following equations (added as
constraints in the problem):

−M(1−βi)≤ û− (K ix+ci)≤M(1−βi). (7.25)

Remark 7.2. The proposed PE-scheme, which follows from Christophersen et al.
[2007], can be implemented on-line as follows:

αi = max
{

Aix−bi} , i = 1, . . . ,L

i∗ = argmin
i
{αi} (7.26)

Delaunay triangulation

Assume that for some points(x1, . . . ,xnL) we precompute a Delaunay triangulation.
In addition we store the optimal input(u∗1, . . . ,u

∗
nL

) at those points. A Delaunay tri-
angulation can be understood by the empty circle method [Aurenhammer, 1991]:
Consider all triangles formed by the points such that the circumcircle of eachtri-
angle is empty of other sites, where the sites in this case are the stored points
(x1, . . . ,xnL).

The Delaunay triangulation of the points(x1, . . . ,xnD) can be used to find an
interpolated control law:

• Denote the triangles from the Delaunay triangulation byL1, . . . ,LnD .

• For a given statex:

1. Find the current triangleLi that containtsx.

2. Expressx as a convex combination of the vertices ofLi , x = ∑λkxi
k,

wherexi
k denotes the vertices ofLi
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• Implement the following interpolated control law:

uDelaunay= ∑λku
∗,i
k , (7.27)

whereu∗,ik are the optimal inputs corresponding to the pointsxi
k.

The Delaunay triangulation itself can be implicitly defined using the following
set of equations, which can be added as mixed-integer linear constraints tothe
overall problem:

x = ∑λixi , ,λi ≥ 0, ∑λi = 1,

λ≤ σi , ∑σi = n+1

‖c−xi‖22≤ ‖c−x j‖22 +Mσ j +M(1−σi),

(7.28)

where the last equation can be rewritten as

��c′c−2x′i
︸︷︷︸

a′i

c+ x′ixi
︸︷︷︸

bi

≤��c′c−2x′j
︸ ︷︷ ︸

a′j

c+ x′jx j
︸︷︷︸

b j

+ . . .

· · ·+Mσ j +M(1−σi)

a′ic+bi ≤ a′jc+b j +Mσ j +M(1−σi)

(7.29)

Herec∈ R
nx is an extra optimization variable,σ ∈ {0,1}nL is a vector of binaries

andM is a large constant.
We note that the last equation of (7.28) is an expression for the “empty-circle

method”.

7.5 Examples

In this section we show two examples where we use the bilevel programming to
identify the worst-case distance between a reference controller and a proposed low-
complexity controller. The calculations where done using ILOG CPLEX R© and the
problems were written in YALMIP [L öfberg, 2004]. Set calculations and explicit
solution of MPC’s were done using Multi-Parametric Toolbox (MPT) [Kvasnica
et al., 2004].

Example 1: Double integrator with nominal MPC as reference con-
troller and PE as low-complexity controller

In this example we consider the double integrator described in [Bemporad etal.,
2002], example 7.3, but with a sample time ofTs = 0.1 in order to match the
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Figure 7.1: Example 1: double integrator.

conditions in [Alessio and Bemporad, 2008]. The process is hence

x+ =

[
1 0.1
0 1

]

︸ ︷︷ ︸

A

x+

[
0

0.1

]

︸ ︷︷ ︸

B

u, −1≤ u≤ 1
(7.30)

The control parameters areN = 8, Q =
[

1 0
0 0

]
andR= 0.1. The final weightP

corresponding to the LQR controller isP =
[

8.98 3.59
3.59 2.86

]

The nominal MPC problem is now:

min
x,u

x′8Px8 +
7

∑
i=0

x′iQxi +Ru2
i

subject toxk+1 = Axk +Buk,k = 0, . . . ,7

x0 = x

−1≤ uk ≤ 1, k = 0,1. . . ,7

(7.31)

We do not add any terminal constraint onxN as we want to compare our results
with [Alessio and Bemporad, 2008].
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We want to compare the nominal MPC to a PE-scheme, hence we want to solve

max
x∈X
‖B(u∗− û)‖∞

subject toαi = argmin
α

α

subject toAix≤ bi +αi1

βi =

{

1, αi ≤ α j ∀ j 6= i

0, otherwise

ũ = ∑
i=1,··· ,L

βi(K
ix+ci),

û = sat(ũ)

u∗ = argmin(7.31)

(7.32)

This problem can be rewritten to a MILP using (7.22) for the minimal violation
distance.

The main focus of this paper is to calculate the difference between two con-
trollers, but we may also use this method for controller synthesis. This can be
achieved by:

• Solve (7.32) to get the worst point in the state spacex∗ and the worst case
norm‖B(u∗− û)‖∞ = ‖x∗,+− x̂+‖∞.

• Add the corresponding region and corresponding optimal control law to the
PE-controller.

• Resolve (7.32) and add the corresponding worst-case region until the worst-
case norm is less than a user-defined value or the number of regions in the
PE is larger than a user-defined value.

This example can be solved explicitly using MPT. The full enumeration is
shown in the upper right part of figure 7.1. In order to test our software we started
out with an initial PE controller using the 3 largest regions, shown in the top-left
part of figure 7.1. The lower part of the figure shows the maximum difference
between the reference controller (nominal MPC) and the PE-controller. We then
performed iterations as described above, at each iteration we added the region
corresponding to the worst case pointx∗. One observes that initially the difference
is equal to the maximum possible difference, asB =

[
0

0.1

]
and‖u‖ ≤ 1. However,

as we add regions to the PE controller the difference decreases to quite lowlevels.
Note that even though the full enumeration was available for this example, we

do not use this solution while solving (7.32), rather we use the KKT-conditions of
the corresponding MPC problem.
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Closed-loop simulations, even from the worst case points, shows very small
difference between the nominal MPC and the PE, also for quite high values of the
worst-case norm, and are not included here for brevity.

Example 2: Double integrator with robust MPC as reference controller

For the same process as in Example 1, with the same objectives for the controller,
we designed a robust MPC using the method described in section 7.4.2, and we
use this one as the reference controller. The motivation for using the robust MPC
rather than the nominal MPC is because we can verify closed-loop stability ofthe
low-complexity scheme, given that‖B(urobust−ulow-complexity)‖∞ ≤ ‖w‖∞.

A box constraint onw was used such that‖w‖∞ ≤ 0.01, and we used the al-
gorithm from Rakovìc et al. [2005] to computeZ, and in order to computeXf

we used MPT. We wanted to use this robust controller to prove closed-loopnom-
inal stability of the PE-controller from Example 1. However, we observed that
maxx∈X ‖B(urobust MPC− unominal MPC)‖∞ was growing faster than‖w‖∞, i.e. the
robust MPC was very conservative with increasing‖w‖∞. Since the PE-controller
from Example 1 is close to the nominal MPC, it is clear that we cannot use the ro-
bust MPC scheme to prove stability of the PE-scheme, moreover we can not even
use it to prove closed-loop stability of the nominal MPC.

One reason for why‖B(urobust MPC− unominal MPC)‖∞ is growing faster than
‖w‖∞ is that the scalar inputu can only act on the process in the directionB, while
the vectorw is acting directly on both states (through the identity transformation
I ). Changing the formulation of the robust MPC to restrictw to act only in the
directionB is planned as further work in this project.

7.6 Conclusions

A bilevel framework for closed loop comparison of different control schemes has
been presented. Many challenges still remain, but it seems like this framework will
be useful for proving stability for some “ad-hoc” low complexity control schemes,
and moreover it seems to have potential in the field of model reduction.
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7.7 Appendix: Further comments to problems of proving
stability

It seems like our method for proving nominal stability of a given controller hasa
fundamental limitation that if the controller is more aggressive than the nominal
controller, then we can never prove its stability.

1

0

−1

ε β

urobust

unominal

ulow-complexity

u

x

γ

Figure 7.2: Different controllers for an example withnx = nu = 1. Full line rep-
resents the nominal MPC, dashed line is the proposed low-complexity controller
and the dotted line is the robust MPC.

Consider figure 7.2 which shows an example fornx = nu = 1. The full line
shows the input form a nominal MPC controller, while the dotted line shows the
input from a robust MPC. We observe that the robust MPC is more conservative
than the nominal MPC. The maximum difference in input occurs atε. Now, assume
that the maximum differenceγ between the nominal MPC and the low-complexity
controller is such that

γ≤ ε. (7.33)

This, however, does not guarantee that the difference between the robust MPC and
the low-complexity controller,β less thanε,

�
��β≤ ε. (7.34)



Chapter 8

Conclusions and suggested
further work

8.1 Conclusions

In this thesis we have given several contributions to the general topic of find-
ing simple implementations that give near-optimal operation in closed loop. In
Chapters 2-4 we developed a convex approximation to the static output feedback
problem, which is one of the open problems in control [Syrmos et al., 1997].
We showed by an example that the method may be useful for designing “fixed-
structure” controllers, such as a multiple input− multiple output proportional-
integral-derivative (MIMO-PID) controller.

In Chapter 5 we extended a method within the field of self-optimizing control,
the nullspace method [Halvorsen et al., 2003], to handle changes in the active set.
This was done by using results from explicit MPC [Baotic̀ et al., 2008].

In Chapter 6 we developed a framework for analysis for different ways of
speeding up model predictive control (MPC), and in Chapter 7 we used the same
approach to analyse simplified controllers, such as controllers which use only parts
of the whole lookup table that is used in explicit MPC.

In Appendices A-C we gave some more information about links between self-
optimizing control and explicit MPC, suggested some simplifications to the point
location problem in explicit MPC, and gave some more details on the static output
feedback problem.
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8.2 Suggested further work

8.2.1 Challenges with real-time optimization (RTO)

It is acknowledged in Chapter 5 that self-optimizing control and RTO are comple-
mentary, so in order to have good economic operation both layers need to operate
as intended. By talking to practitioners we learned that RTO is in practise often
not operational. It would be interesting to get updated information about what
kind of challenges the practitioners are challenging and how these issues can be
solved. After solving these issues one could better understand the interplay be-
tween an operational RTO and a self-optimizing control layer, a project that can
have significant environmental and economic potential.

8.2.2 Mathematical transformations

In control of distillation columns it is well-known that a logarithmic transformation
of the composition makes the resulting control problem linear [Skogestad, 1997].
The methods developed so far in self-optimizing control depend mostly on linear
or quadratic models. Finding a procedure that can transform a nonlinearproblem
into a linear or quadratic problem would be very useful, as this would broaden the
applicability of self-optimizing control.

8.2.3 Convex modelling

When modelling a chemical plant there is usually not much focus on if the resulting
model, when used in economic optimization, results in a convex problem (inter-
estingly, the mass and energy balances arealwayslinear [Haug-Warberg, 2010],
and these equations are the basis for any modelling project where one intends to
use first principles). It would be nice to have a library of convex modellingmeth-
ods that can be used to model a chemical system such that the resulting economic
optimization is convex. Most likely, not all parts of a chemical system can be mod-
elled as convex operations, but by paying attention to the convexity when doing the
modelling one can efficiently pin-point the parts of the model that will introduce
non-convexity in the resulting optimization problem. Once this insight is gained,
one can choose to approximate the non-convex parts by convex approximations,
or one may build the information about thelocationof the non-convexity into the
optimization routine.

Hopefully such an approach would be beneficial for the application of RTO in
process plants.
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8.2.4 Generalization of switching scheme

The switching scheme for implementation of quadratic programs presented in
Chapter 5 can easily be generalized to cover linear programs by using results from
the main reference, the paper by Baotic̀ et al. [2008]. Probably more important,
one should consider to investigate further the general area of “computational alge-
bra” in a lot more depth, perhaps starting by looking at results from explicitMPC,
such as general parametric programming [Kvasnica et al., 2004]. Thereare already
several results on explicit control of hybrid systems (see e.g. the groupof Morari
in ETH and the group of Bemporad in Siena, Italy) that probably can be used on
the static optimization problems that are faced in self-optimizing control.

8.2.5 Improvement of numerical methods

In Chapters 2-4 we show that we can approximate the static output feedback prob-
lem to a quadratic program, but that the resulting quadratic program takes along
time to solve. In order to better investigate the properties of this method it would
be useful to program the method in some language that is more optimized towards
calculation time, rather than using Matlab interfaced to CPLEX as was done until
now. CPLEX itself may be a suited solver, but the interface to Matlab does not
allow for sparse matrices, which makes integration of the two difficult.

Once this is done it would be interesting to investigate how the method can be
used on for example static decentralized control.
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Appendix A

A new approach to explicit MPC
using self-optimizing control

Published in “Proceedings of American Control Conference 2008, Seattle, USA.”

Model predictive control (MPC) is a favored method for handling constrained
linear control problems. Normally, the MPC optimization problem is solved
on-line, but in ‘explicit MPC’ an explicit piecewise affine feedback law is
computed and implemented [Bemporad et al., 2002]. This approach is simi-
lar to ‘self-optimizing control,’ where the idea is to find simple pre-computed
policies for implementing optimal operation, for example,by keeping se-
lected controlled variable combinationsc constant. The ‘nullspace’ method
[Alstad and Skogestad, 2007] generates optimal variable combinations, which
turn out to be equivalent to the explicit MPC feedback laws, that is, c =
u−Kx, whereK is the optimal state feedback matrix in a given region.
More importantly, this link gives new insights and also somenew results.
One is that regions changes may be identified by tracking the variablesc for
neighboring regions.

A.1 Introduction

Consider the general static optimization problem [Alstad and Skogestad, 2007]:

min
u0,x

J0(x,u0,d)

s.t. fi(x,u0,d) = 0, i ∈ E
hi(x,u0,d)≥ 0, i ∈ I ,

(P1)

wherex∈ R
nx are the states,u0 ∈ R

nu0 are the inputs, andd ∈ D ⊂ R
nd are distur-

bances. By discretization and reformulation this may also represent some dynamic
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optimization problems. Usuallyf is a model of the physical system, whilsth is
a set of inequality constraints that limits the operation (e.g., physical limits on
temperature measurements or flow constraints). In addition to (P1) we have mea-
surements on the form

y0 = f y(x,u0,d). (A.1)

In this work the emphasis is onimplementation of the solution to(P1). This
means that the optimization problem (P1) is solved off-line to generate a ‘control
policy’ which is suitable for on-line implementation, with particular emphasis on
remaining close to optimal solution when there are unknown disturbances. That
is, we search for ‘control policies’ such that the costJ0 remains optimal or close to
optimal when disturbances occur without the need to reoptimize.

A.1.1 Self-optimizing control

In our previous work on ‘self-optimizing control’ we have looked for simplecon-
trol policies to implement optimal operation, and in particular ‘what should we
control’ (choice of controlled variables (CV’s)). Using off-line optimization we
may determine regions where different sets of active constraints are active, and
implementation of optimal operation is then in each region to:

1. Control the active constraints.

2. For the remaining unconstrained degrees of freedom: Control ‘self-optimizing’
variablesc= Hy which have the property that keeping them constant (c= cs)
indirectly achieves close-to optimal operation (with a small loss), in spite
of disturbancesd. We here allow for linear measurement combinations,
c = Hy. There are here two factors that should be considered:

(a) Disturbancesd. Ideally, we want the optimal value ofc (copt) to be
independent ofd.

(b) Measurements errorsny. The loss should be insensitive to these.

A.1.2 Relationship to explicit MPC

Consider a simple static optimization problem minuJ(u,d), whereu are the uncon-
strained degrees of freedom and the statesx and the active constraints have been
eliminated by substitution. For the quadratic case

J(u,d) = [u d]TS[u d]

whereS=

[
Juu Jud

J′ud Jdd

]

.
(A.2)
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In addition we have available ‘measurements’y = Gyu+ Gdd. A key result,
which is the basis for this paper, is

For a quadratic optimization problem there exists (infinitely many) linear mea-
surement combinations c= Hy that are optimally invariant to disturbances d.

One sees immediately that there may be some link to explicit MPC, because
the discrete form MPC problem can be written as a static quadratic problem. The
link is: If we let y contain the inputsu and the statesx, then the ‘self-optimizing’
variable combinationc= Hy is the same as the explicit MPC feedback law (control
policy), i.e.c = u−Kx. (This is shown in section A.3.)

Based on this, we provide in this contribution somenewideas on explicit MPC:

1. We propose that tracking the variables c (deviation from optimal feedback
law) for all regions, may be used as a local method to detect when to switch
between regions.

2. We may use our results to include measurement error iny (e.g. inx andu)
when deriving the optimal explicit MPC.

3. We may extend the results to output feedback (c= u−Ky) by including iny
present and past outputs (and not present statesx).

4. We can also extend the results to the case where only a subset of the states
are measured (but in this case there will be a loss, which we can quantify).
This may be of interest even in the unconstrained LQ case.

In this paper the basic framework and issue (1) are discussed. In [Manum et al.,
2008c] it is shown how the results can be extended to handle items (2)-(4),both
with theorems and examples.

A.2 Results from self-optimizing control

A.2.1 Steady state conditions

Once the set of active constraints in (P1) is known we can form the reduced prob-
lem and the unconstrained degrees of freedomu can be determined. The uncon-
strained measurements are

y = Gyu+Gy
dd, (A.3)

andy contain information about the present state and disturbances (y may include
u0 andd, but not the active constraints.) The (measured) value ofym available for
implementation is

ym = y+ny, (A.4)
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combination (H)
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Figure A.1: Block diagram of a feedback control structure including an optimiza-
tion layer [Alstad et al., 2009].

whereny represents uncertainty in the measurement ofy including uncertainty of
implementation inu.

The following theorem describes a method to find linear invariants that yields
zero loss from optimality when the invariants are controlled at constant setpoint.
The theorem is based on the ‘nullspace method’ presented in [Alstad and Skoges-
tad, 2007]. Figure A.1 illustrates how theH matrix is used to linearly combine
measurements (and square down the plant).

Theorem A.1. (Linear invariants for quadratic optimization problem [Alstad et al.,
2009]) Consider an unconstrained quadratic optimization problem in the variables
u (input vector of length nu) and d (disturbance vector of length nd)

min
u

J(u,d) =
[
u d

]
[
Juu Jud

J′ud Jdd

][
u
d

]

(A.5)

In addition, there are ‘measurement variables’ y= Gyu+Gy
dd.

If there exists ny ≥ nu + nd independent measurements (where ‘independent’
means that the matrix̃Gy =

[
Gy Gy

d

]
has full rank), then the optimal solution to

(A.5) has the property that there exists nc = nu linear variable combinations (con-
straints) c= Hy that are invariant to the disturbances d. The optimal measurement
combination matrix H is found by either: (1): Let F= ∂yopt

∂d′ be the optimal sen-
sitivity matrix evaluated with constant active constraints. Under the assumptions
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stated above possible to select the matrix H in the left nullspace of F, H∈ N (F ′),
such that

HF = 0 (A.6)

(2): If ny = nu +nd:

H = M−1
n J̃(G̃y)−1, (A.7)

whereJ̃ =
[

J1/2
uu J−1/2

uu Jud

]

andG̃y =
[
Gy Gy

d

]
is the augmented plant. M−1

n may

be seen as a free parameter. (Note that Mn = Jcc is the Hessian of the cost with
respect to the c-variables; in most cases we select Mn = I for convenience.)

Remark A.1. The sensitivity F matrix can be obtained from

F =−
(
GyJ−1

uu Jud−Gy
d

)
. (A.8)

Remark A.2. An equivalent formulation is: Assume that there exists a set of inde-
pendent measurements y and that the (operational) constraint c, Hy = cs (where
cs is a constant) is added to the problem. Then there exists an H that does not
change the solution to(A.5). In terms of operation, this means that zero loss (opti-
mal operation) is obtained by controlling nc = nu0 variables c= Hy with a constant
set-point policy c= cs, where H is selected according to theorem A.1.

Theorem A.1 may be extended:

Lemma A.1. (Linear invariants for constrained quadratic optimization methods)
Consider an optimization problem of the form

min
u0,x

J0 =
[
x u0 d

]
S





x
u0

d





s.t. Ax+Bu+Cd = 0

Ãx+ B̃u+C̃d≤ 0,

(A.9)

with det(A) 6= 0 and[Ã B̃] full row rank.
Assume that the disturbance space has been partitioned into na critical regions.

In each region there are niu = nu0−ni
A≥ 0unconstrained degrees of freedom, where

ni
A≤ nm is the number of optimally active constraints in region i.

If there exists a set of independent unconstrained measurements yi = (Gy)iui +
(Gy

d)
id in each region i, such that nyi ≥ nui +nd, the optimal solution to(A.9) has

the property that there exists variable combinations ci = H iyi that are invariant to
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the disturbances d in the critical region i. The corresponding optimal Hi may be
obtained from Theorem A.1.

Within each region, optimality requires that ci−ci
s = 0 (where cis is a constant).

From continuity of the solution, we have that ci is continuous across the boundary
of region i. This implies that the elements in the variable vector ci−ci

s will change
sign or remain zero when crossing into or from a neighboring region.

Proof. See internal report [Manum et al., 2007].

A.2.2 Implementation of optimal solution

For the case of no measurement error,ny = 0, Theorem A.1 shows that for the
solution to quadratic optimization problems, variable combinationsc = Hy that
are invariant to the disturbances can be found. In section A.3 this insight will be
used as a new approach to the explicit MPC problem.

A.3 Application to explicit MPC

We will now look at the model predictive control problem (MPC) with constraints
on inputs and outputs. For a discussion on MPC in a unified theoretical framework
see Muske and Rawlings [1993].

The following discrete MPC formulation is based on [Pistikopoulos et al.,
2002]. Consider the state-space representation of a given process model:

x(t +1) = Ax(t)+Bu(t) (A.10)

y0(t) = Cx(t), (A.11)

subject to the following constraints:

ymin≤ y0(t)≤ ymax (A.12)

umin≤ u(t)≤ umax, (A.13)

wherex(t) ∈ R
n, u(t) ∈ R

m, andy(t) ∈ R
p are the state, input and output vectors,

respectively, subscripts min and max denote the lower and upper bounds,respec-
tively, and(A,B) is stabilizable. MPC problems for regulating to the origin can
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then be posed as the following optimization problem:

min
U

J(U,x(t)) = x′t+Ny|yPxt+Ny|t+

+
Ny−1

∑
k=0

[

x′t+k|tQxt+k|t +u′t+kRut+k

]

s.t. ymin≤ yt+k|t ≤ ymax, k = 1, . . . ,Nc

umin≤ ut+k ≤ umax, k = 0,1, . . . ,Nc

xt|t = x(t)

xt+k+1|t = Axt+k|t +But+k, k≥ 0

yt+k|t = Cxt+k|t , k≥ 0

ut+k = Kxt+k|t , Nu≤ k≤ Ny

whereU , {ut , . . . ,ut+Nu−1}, Q = Q′ ≥ 0, R= R′ > 0, P≥ 0, Ny ≥ Nu, andK is
some feedback gain. Pistikopoulos et al. [2002] show that by substitution of the
model equations, the problem can be rewritten on the form

min
U

1
2

U ′HU +x(t)′FU +
1
2

x(t)′Yx(t)

s.t. GU ≤W+Ex(t)
(A.14)

The MPC control law is based on the following idea: At timet, compute the
optimal solutionU∗(t) = {u∗t , . . . ,u∗t+Nu−1} and applyu(t) = u∗t [Bemporad et al.,
2002].

Remark A.3. The trade-off between robustness and performance is included in
the weights in the MPC cost function and in the constraints.

If we let the initial statex(t) be treated as a disturbance, (A.14) can be written
as:

min
U

1
2

[
U ′ d′

]
[
H F
F Y

][
U
d

]

s.t. GU ≤W+Ed,

(A.15)

and we observe that (A.15) is on the same form as (A.9), where the model equa-
tions f (x,u0,d) = 0 have already been substituted into the objective function.

A property of the solution to (A.15) is that the disturbance space (initial state
space) is divided into critical regions. In thei’th critical region there areni

u = nU−
ni

A unconstrained degrees of freedom, whereni
A is the number of active constraints

in regioni.
As we discuss in section A.3.1, a possible set of measurementsy is the current

state and the inputs,y′ =
[
x′ u′

]
. We further note that causality is not an issue

here, as we have the information at the current time.
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A.3.1 Exact measurements of all states (state feedback)

The following theorem is well known, but we will here prove the theorem using
the nullspace method.

Theorem A.2. (Optimal state feedback [Bemporad et al., 2002]) The control law
u(t) = f (x(t)), f : R

n 7→ R
m, defined by the MPC problem, is continuous and

piecewise affine

f (x) = K ix+gi if H ix≤ ki , i = 1, . . . ,Nmpc (A.16)

where the polyhedral sets
{

H ix≤ ki
}

, i = 1, . . . ,Nmpc≤Nr are a partition of the
given set of states X.

In this case causality is not a problem and from Theorem A.1 the optimal
solution is simplyu = Kx+ g (i.e. c = u− (Kx−g)). Note thatnd = nx in this
case.

Proof. We consider the explicit MPC formulation as in (A.15). First we consider
the unconstrained case. Lety = (U,x) be the set of candidate measurements. With
this choice of measurements and disturbances on the present state, we form the
process model:

∆y = Gy∆U +Gy
d∆d (A.17)

Gy =

[
0nx×(nuNu)

I(nuNu)×(nuNu)

]

∈ R
(nx+nuNu)×(nuNu) (A.18)

Gy
d =

[
Inx×nx

0(nuNu)×nx

]

∈ R
(nx+nuNu)×nx. (A.19)

We then get the optimal sensitivity as

F =
∂yopt

∂d′
=−

(
GyJ−1

uu Jud−Gy
d

)
= (A.20)

−
([

0nx×(nuNu)

(J−1
uu Jud)(nuNu)×nx

]

−
[

Inx×nx

0(nuNu)×nx

])

(A.21)

=

[
Inx×nx

−J−1
uu Jud

]

(A.22)

We now search for a matrixH that gives a non-trivial solution toHF = 0:

[

(H1)(nuNu)×nx
(H2)(nuNu)×(nuNu)

][
Inx×nx

J−1
uu Jud

]

= (A.23)

= H1−H2
(
J−1

uu Jud
)

= 0 (A.24)
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To ensure a non-trivial solution we can for example chooseH2 = I(nuNu)×nuNu
. Then

we must haveH1 = J−1
uu Jud, and hence theoptimal combination c of x and Ube-

comes

c = Hy = J−1
uu Judx+U = 0∈ R

(nuNu) (A.25)

In the internal report by Manum et al. [2007] it is shown how the affine term in
(A.16) enters as a function of the active constraints.

Remark A.4. (Comparison with previous results on unconstrained MPC) In(A.25)
the state feedback gain matrix is given as J−1

uu Jud. This is gives the same result as
conventional MPC, see equation (3) in [Rawlings and Muske, 1993].

Remark A.5. These are not new results but the alternative proof leads to some
new insights. The most important is probably that the “self-optimizing” variables
ci = u−(K ix+gi) which are optimally zero in region i, may be used for identifying
when to switch between regions (Theorem A.3) rather than using a “centralized”
approach, for example based on a state tree structure search. This seems to be
new. Another insight is to understand why a simple feedback solution must exist in
the first place. A third is to allow for new extensions.

Theorem A.3. (Optimal region for explicit MPC detection using feedback law)
The variables c= uk− (Kxk +g) can be used to identify region changes.

Proof. See report by Manum et al. [2007].

Remark A.6. Neighboring regions with the same feedback law (including regions
where the feedback law is to keep the input saturated) can be merged (provided that
the regions remain convex or if the “crossings” inside a non-convex region due to
the optimal direction of the process in closed loop only occurs in the convexpart of
the region). This may greatly reduce the number of regions compared topresently
used enumeration schemes. Note that the number of c-variables that need to be
tracked to detect region changes is only equal to the number of inputs nu0 times the
number of distinct merged regions. Because of the merging of regions, this may be
a small number even with a large input or control horizon and with output (state)
constraints.

We present a simple example from Bemporad et al. [2002] that confirms that
our switching policy based on tracking the sign of thec-variables works in practice.

Example A.3.1(Optimal switching). This example is taken from Bemporad et al.
[2002] (with correction), and is included here to demonstrate optimal switching
using the sign change of c= u−Kx as the criterion. The system is:

y(t) =
2

s2 +3s+2
u(t).
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Algorithm A.1 Detect current region and calculateuk

Require: CRk−1, i.e. the region of the last sample time, andxk

1: uk = K(CRk−1)+g(CRk−1)
2: [Regions,α] = Neighbors(CRk−1)
3: for i = 1 to length(Regions)do
4: ck(i) = αi (uk− (K(Regions(i))+g(Regions(i))))
5: end for
6: if sign(ck(i) 6=−1 ) then
7: CRk = Regions(i)
8: else
9: CRk = CRk−1

10: end if
11: return uk = K(CRk)xk +g(CRk), CRk

With a sampling time T= 0.1 seconds the following state-space representation is
obtained:

x(t +1) =

[
0.7326 −0.0861
0.1722 0.9909

]

x(t)+

[
0.0609
0.0064

]

u(t)

y(t) =
[
0 1.4142

]
x(t)

One observes that only the last state is measured, but it will be assumed that
both states are known (measured) in the remainder of this example.

The task is to regulate the system to the origin while fulfilling the input con-
straint

−2≤ u(t)≤ 2. (A.26)

The objective function to be minimized is

minx′t+2|tPxt+2|t +
1

∑
k=0

[

x′t+k|txt+k|t +0.01u2
t+k

]

(A.27)

subject to the constraints and xt|t = x(t).
P solves the Lyapunov equation P= A′PA+Q, where Q= I in this case. The

optimal control problem can be solved for example using the MPT toolbox [Kvas-
nica et al., 2004]. The P-matrix is numerically:

P =

[
5.5461 4.9873
4.9873 10.4940

]
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Figure A.2: Partition of state space for first input. (Example A.3.1.)
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To illustrate ideas a simulation from x0 = (1,1) was done. State space trajec-
tories and inputs are shown in figures A.2 and A.3. As long as the state is in the
input-constrained region where uopt = −2, the linear combination c= uk−Kxk

remains positive. One chooses to leave the input-constrained region whenck be-
comes zero. As one observes, this happens at time instant 8, where theprocess
indeed is on the boundary between the input-saturated region and the center re-
gion. After the switching the controller for the center region is implemented. The
state trajectory is the same as in [Bemporad et al., 2002].

The reason for whyc never becomes negative is because both states are as-
sumed measured at the present time and hence optimal switching is achieved. This
can be understood from the algorithm A.1, where we show how the current critical
region (CRk) is tracked and how the current inputuk is calculated.

Example A.3.2(Double integrator). Consider the double integrator disussed by
Bemporad et al. [2002], y(t) = 1/s2u(t), and its equivalent discrete-time state-
space representation,

xk+1 =

[
1 1
0 1

]

xk +

[
0
1

]

uk, yk =
[
1 0

]
xk,

which is obtained by setting̈y(t)= (ẏ(t+Ts)− ẏ(t))/Ts, ẏ(t)= (y(t+Ts)−y(t))/Ts,
Ts = 1. The control objective is to regulate the system to the origin while min-
imizing the quadratic cost funcion J= ∑∞

t=0y(t)′y(t) + 1
10u2 subject to the input

constraint−1≤ u(t)≤ 1. The infinite horizion control problem can be converted
to a finite horizion problem by solving [Bemporad et al., 2002, Chmielewskiand
Manousiouthakis, 1996]:

KLQ =−(R+B′PB)−1B′PA,

P = (A+BKLQ)′P(A+BKLQ)+K′LQRKLQ +Q

to obtain the unconstrained feedback gain KLQ and the final state weight matrix
P (see example A.3.1). In this case we get KLQ =

[
0.8166 1.7499

]
and P=

[
2.1429 1.2246
1.2246 1.3996

]

. For demonstration purposes we choose Nu = 6, and by solving

the paramteric program we get 73 regions initially. In this case there are 11regions
of unsaturated control actions, which agrees with the general result of(2Nu−1)
regions given in [Bemporad et al., 2002]. Merging all regions where thefirst
optimal input is the same, leaves us with the 11 unsaturated regions, and two
regions for which the optimal input is either at the high or low constraint. The
final partitioning with 13 regions is shown in figure A.4. We note that [Bemporad
et al., 2002] find 57 regions after their merging scheme.
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Figure A.4: Regions for double integrator example (Example 3.2).

Considering figure A.4 one observes that the input-saturated regions are non-
convex. However, optimally, this process moves clockwise in the state space, and
we observe that the “non-convex” crossings will not occur in practise. The re-
maing boundaries then form convex regions (indicated by the dashed linesin the
figure.)

Figure A.5 shows the evolution of the invariants ci in each region when we
start the simulation at x0 = (0,−3) and close the loop by using the optimal inputs.
We start in the input-saturated region u= 1, and need to track the invariants for
regions 1,2,3,4,5, and 6 to determine optimal switching. We should switch to un-
saturated control when one the variables c1 to c6 becomes zero or changes sign. As
one sees, this happens for c3 at t = 6, so we change to this region. After using the
feedback law for region 3 for one sample time, we reach the other input constraint
u=−1 at t = 8. Now, to decide when to leave this constrained region we track the
invariants for regions 1,7,8,9,10,11, and we observe that at t= 9 the invariant for
the center region becomes zero, hence we switch control to this region.

Note that in this example, where we have only input constrained regions, the
challenge is to decide when to leave the input constraints. Note that the converse
crossing can also be tracked using their invariants on the form ck = uk−g.

The idea of using directionality (clockwise movement in this case) to reduce
the number of reigons in explicit MPC can be generalized by using the directional
derivative of the process under optimal control,(A−BKi), together with the nor-
mal vectors to the boundaries of the regions, and by some normalization scheme



148 A new approach to explicit MPC using self-optimizing control

0 5 10 15
−1

0

1

 

 

c1

0 5 10 15
−1

0

1

 

 

c2

c7

0 5 10 15
−1

0

1

 

 

c3

c8

0 5 10 15
−1

0

1

 

 

c4

c9

0 5 10 15
−1

0

1

 

 

c5

c10

0 5 10 15
−1

0

1

 

 

c6

c11

0 5 10 15
−1

0

1

 

 

u

Figure A.5: Invariants for double integrator example.
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we remove all boundaries for which crossings under optimal control will not occur.
HereK i is the optimal feedback gain for regioni.

A.4 Discussion

In this paper we have described the link between self-optimizing control andex-
plicit MPC. This link has been used to propose a new method for detecting region
changes. This new method lets us reduce the number of regions by merging all
regions for which the first input is the same. In its simple form presented in this
paper, it does not handle non-convex regions, but we noted that forsome processes
directionality of the process in closed loops implies that the non-convex crossings
may be ignored.

In a forthcoming contribution [Manum et al., 2008c] we show how the results
can be extended to output feedback and how to find invariants that give minimal
loss when controlled at constant set points also when we have noisy measurements.
We further show how we one choose the order of the controller and we show
by examples that the resulting controller will have performance in the order of
magnitude of LQG controllers.

The most important problem of using results from steady state self-optimizing
control is causality, in steady state optimization all measurements are available at
the current time (i.e.t → ∞), but in dynamic optimization we may need to find
invariants between measurements at current and future times and then switchthe
invariants back to get a casual controller, but this controller will be non-optimal by
construction. Also this is discussed in more detail in [Manum et al., 2008c].
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Appendix B

Explicit MPC with output
feedback using self-optimizing
control

Published in “Proceedings of IFAC World Congress 2008, Seoul, SouthKorea.”

Model predictive control (MPC) is a favored method for handling constrained
linear control problems. Normally, the MPC optimization problem is solved
on-line, but in ‘explicit MPC’ an explicit precomputed feedback law is used
for each region of active constraints [Bemporad et al., 2002]. In this pa-
per we make a link between this and the ‘self-optimizing control’ idea of
finding simple policies for implementing optimal operation. The ‘nullspace’
method [Alstad and Skogestad, 2007] generates optimal variable combina-
tions, c = u−Kx, which for the case with perfect state measurements are
equivalent to the explicit MPC feedback laws, whereK is the optimal state
feedback matrix in a given region. More importantly, this link makes it pos-
sible to derive explicit feedback laws for cases with (1) state measurement
error included and (2) measurement (rather than state) feedback. We fur-
ther show how to generate optimal low-order controllers forunconstrained
optimal control, also in the presence of noise.

B.1 Introduction

Consider the general static optimization problem [Alstad and Skogestad, 2007]:

min
u0,x

J0(x,u0,d)

s.t. fi(x,u0,d) = 0, i ∈ E
hi(x,u0,d)≥ 0, i ∈ I ,

(P1)

151



152 Explicit MPC with output feedback using self-optimizing control

wherex∈ R
nx are the states,u0 ∈ R

nu0 are the inputs, andd ∈ D ⊂ R
nd are distur-

bances. By discretization and reformulation this may also represent some dynamic
optimization problems. Usuallyf is a model of the physical system, whilsth is
a set of inequality constraints that limits the operation (e.g., physical limits on
temperature measurements or flow constraints). In addition to (P1) we have mea-
surements on the form

y0 = f y(x,u0,d). (B.1)

In this work the emphasis is onimplementation of the solution to(P1). This
means that the optimization problem (P1) is solved off-line to generate a ‘control
policy’ which is suitable for on-line implementation, with particular emphasis on
remaining close to optimal solution when there are unknown disturbances.

In our previous work on ‘self-optimizing control’ we have looked for simple
control policies to implement optimal operation, and in particular ‘what should we
control’ (choice of controlled variables (CV’s)). Using off-line optimization we
may determine regions where different sets of active constraints are active, and
implementation of optimal operation is then in each region to:

1. Control the active constraints.

2. For the remaining unconstrained degrees of freedom: Control ‘self-optimizing’
variablesc= Hy which have the property that keeping them constant (c= cs)
indirectly achieves close-to optimal operation (with a small loss), in spite of
disturbancesd.

A key result, which is the basis for this paper, is
For a quadratic optimization problem there exists (infinitely many) linear mea-

surement combinations c= Hy that are optimally invariant to disturbances d.
One sees immediately that there may be some link to explicit MPC, because

the discrete form MPC problem can be written as a static quadratic problem. The
link is: If we let y contain the inputsu and the statesx, then the ‘self-optimizing’
variable combinationc = Hy is the same as the explicit MPC feedback law, i.e.
c = u−Kx. (This is shown in section B.3.)

Based on this, we provide in this contribution somenewideas on explicit MPC:

1. We propose that tracking the variables c (deviation from optimal feedback
law) for all regions, may be used as a local method to detect when to switch
between regions. (This is discussed in Manum et al. [2008b].)

2. We extend the results to output feedback (c = u−Ky) by including in y
present and past outputs.
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3. For unconstrained optimal control, we show how the links can be used to
give low-order controllers that give a small loss from optimality also for
noisy measurements.

4. We also extend the results to the case where only a subset of the states are
measured (but in this case there will be a loss, which we can quantify). This
may be of interest even in the unconstrained LQ case.

B.2 Results from self-optimizing control

In this section we will present results from previous work on self-optimizingcon-
trol and relate them to quadratic optimization problems.

B.2.1 Steady state conditions

Once the set of active constraints is known, we can form the reduced problem and
the unconstrained degrees of freedomu can be determined. The unconstrained
measurements are

y = Gyu+Gy
dd, (B.2)

andy contain information about the present state and disturbances (y may include
u0 andd, but not the active constraints.) The (measured) value ofym available for
implementation is

ym = y+ny, (B.3)

whereny represents uncertainty in the measurement ofy including uncertainty of
implementation inu.

The following theorem describes a method to find linear invariants that yields
zero loss from optimality when the invariants are controlled at constant setpoint.
The theorem is based on the ‘nullspace method’ presented in Alstad and Skogestad
[2007].

Theorem B.1. (Linear invariants for quadratic optimization problem [Alstad et al.,
2009]) Consider an unconstrained quadratic optimization problem in the variables
u (input vector of length nu) and d (disturbance vector of length nd)

min
u

J(u,d) =
[
u d

]
[
Juu Jud

J′ud Jdd

][
u
d

]

(B.4)

In addition, there are ‘measurement variables’ y= Gyu+Gy
dd.
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If there exists ny ≥ nu + nd independent measurements (where ‘independent’
means that the matrix̃Gy =

[
Gy Gy

d

]
has full rank), then the optimal solution to

(B.4) has the property that there exists nc = nu linear variable combinations (con-
straints) c= Hy that are invariant to the disturbances d. The optimal measurement
combination matrix H is found by either: (1): Let F= ∂yopt

∂d′ be the optimal sen-
sitivity matrix evaluated with constant active constraints. Under the assumptions
stated above possible to select the matrix H in the left nullspace of F, H∈ N (F ′),
such that

HF = 0 (B.5)

(2): If ny = nu +nd:

H = M−1
n J̃(G̃y)−1, (B.6)

whereJ̃ =
[

J1/2
uu J−1/2

uu Jud

]

andG̃y =
[
Gy Gy

d

]
is the augmented plant. M−1

n may

be seen as a free parameter. (Note that Mn = Jcc is the Hessian of the cost with
respect to the c-variables; in most cases we select Mn = I for convenience.)

Remark B.1. The sensitivity F matrix can be obtained from

F =−
(
GyJ−1

uu Jud−Gy
d

)
. (B.7)

Theorem B.1 may be extended:

Lemma B.1. (Linear invariants for constrained quadratic optimization methods
[Manum et al., 2008b]) Consider an optimization problem of the form

min
u0,x

J0 =
[
x u0 d

]
S





x
u0

d





s.t. Ax+Bu+Cd = 0

Ãx+ B̃u+C̃d≤ 0,

(B.8)

with det(A) 6= 0 and[Ã B̃] full row rank.
Assume that the disturbance space has been partitioned into na critical regions.

In each region there are niu = nu0−ni
A≥ 0unconstrained degrees of freedom, where

ni
A≤ nm is the number of optimally active constraints in region i.

If there exists a set of independent unconstrained measurements yi = (Gy)iui +
(Gy

d)
id in each region i, such that nyi ≥ nui + nd, the optimal solution to(B.8)

has the property that there exists variable combinations ci = H iyi that for critical
region i are invariant to the disturbances d. The corresponding optimalH i may be
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obtained from Theorem B.1. Within each region, optimality requires that ci−ci
s =

0 (where cis is a constant). From continuity of the solution we have that ci is
continuous across the boundary of region i. This implies that the elements inthe
variable vector ci−ci

s will change sign or remain zero when crossing into or from
a neighboring region.

B.2.2 Including noise

For the noise-free problem, adding the constraintsc = Hy = cs does not change
the optimal solution (Theorem B.1). However with measurement noise there will
be some loss, which can be minimized ifH is selected as given in Theorem B.2.

Theorem B.2. (Loss by introducing linear constraint for noisy quadratic opti-
mization problem [Alstad et al., 2009]) Consider the unconstrained quadratic op-
timization problem in Theorem B.1:

min
u

J(u,d) =
[
u d

]
[
Juu Jud

J′ud Jdd

][
u
d

]

and a set of noisy measurements ym = y+ ny. Assume that nc = nu constraints
c= Hym = cs are added to the problem, which will result in a non-optimal solution
with loss L= J(u,d)−Jopt(d). Consider the disturbances d and the noise ny with
magnitudes:

d = Wdd′; ny = Wnyny′ ; ‖
[

d′

ny′

]

‖ ≤ 1. (B.9)

Then, for a given H, the worst-case loss is Lwc = σ̄(M)2/2, where M= [Md Mny]
is given by

Md =−J1/2
uu (HGy)−1HFWd, (B.10)

Mny =−J1/2
uu (HGy)HWny., (B.11)

and the optimal H that minimizes̄σ(M) is given by

H ′ =
(
F̃F̃ ′

)−1
Gy(Gy′(F̃F̃ ′)−1Gy)−1J1/2

uu , (B.12)

whereF̃ = [FWd Wny]. This solution also minimizes the average loss‖M‖F .

Remark B.2. The optimal H can also be found by solving the constrained opti-
mization problem

H = argmin
H

σ̄(HF̃) subject to HGy = J1/2
uu (B.13)
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B.3 Application to explicit MPC

Pistikopoulos et al. [2002] show that by substitution of the model equations,the
linear MPC problem can be rewritten to the form

min
U

1
2

U ′HU +x(t)′FU +
1
2

x(t)′Yx(t)

s.t. GU ≤W+Ex(t)
(B.14)

The MPC control law is based on the following idea: At timet, compute the
optimal solutionU∗(t) = {u∗t , . . . ,u∗t+Nu−1} and applyu(t) = u∗t [Bemporad et al.,
2002].

If we let the initial statex(t) be treated as a disturbance, (B.14) can be written
as:

min
U

1
2

[
U ′ d′

]
[
H F
F Y

][
U
d

]

s.t. GU ≤W+Ed,

(B.15)

and we observe that (B.15) is on the same form as (B.8), where the model equations
f (x,u0,d) = 0 have already been substituted into the objective function.

A property of the solution to (B.15) is that the disturbance space (initial state
space) will be divided into critical regions. In thei’th critical region there will be
ni

u = nU −ni
A unconstrained degrees of freedom, whereni

A is the number of active
constraints in regioni.

As we will discuss in section B.3.1, a possible set of measurementsy is the
current state and the inputs,y′ =

[
x′ u′

]
. We further note that causality is not an

issue here, as we have the information at the current time.

B.3.1 Exact measurements of all states (state feedback)

The following theorem is well known, but we shown in [Manum et al., 2008b] that
it can be derived using the nullspace method. The proof is left out here due to
space limitations.

Theorem B.3. (Optimal state feedback [Bemporad et al., 2002]) The control law
u(t) = f (x(t)), f : R

n 7→ R
m, defined by the MPC problem, is continuous and

piecewise affine

f (x) = K ix+gi if H ix≤ ki , i = 1, . . . ,Nmpc (B.16)

where the polyhedral sets
{

H ix≤ ki
}

, i = 1, . . . ,Nmpc≤ Nr are a partition of the
given set of states X.
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Remark B.3. (Comparison with previous results on unconstrained MPC) In the
proof shown in Manum et al. [2008b] the state feedback gain matrix is givenas
J−1

uu Jud. This is gives the same result as conventional MPC, see equation (3) in
Rawlings and Muske [1993].

Remark B.4. Our alternative proof of Theorem B.3 leads to some new insights.
The most important is probably that the ‘self-optimizing’ variables ci = u−(K ix+
gi) which are optimally zero in region i, may be used for identifying when to switch
between regions (Theorem B.4) rather than using a ‘centralized’ approach, for
example based on a state tree structure search. This seems to be new. Another
insight is to understand why a simple feedback solution must exist in the firstplace.
A third is to allow for new extensions.

Theorem B.4. (Optimal region for explicit MPC detection using feedback law
[Manum et al., 2008b]) The variables c= uk− (Kxk + g) can be used to identify
region changes.

An algorithm for implementing the region detection scheme is presented in
Manum et al. [2008b].

We present a simple example from Bemporad et al. [2002] that confirms that
our switching policy based on tracking the sign of thec-variables works in practice.

Example B.3.1(Optimal switching). This example is taken from Bemporad et al.
[2002] (with correction), and is included here to demonstrate optimal switching
using c= u−Kx as criterion. For more details on this example see [Manum et al.,
2008b]. The system is:

y(t) =
2

s2 +3s+2
u(t).

With a sampling time T= 0.1 seconds the following state-space representation is
obtained:

x(t +1) =

[
0.7326 −0.0861
0.1722 0.9909

]

x(t)+

[
0.0609
0.0064

]

u(t)

y(t) =
[
0 1.4142

]
x(t)

One observes that only the last state is measured, but it will be assumed that
both states are known (measured) in the remainder of this example.

The task is to regulate the system to the origin while fulfilling the input con-
straint

−2≤ u(t)≤ 2. (B.17)
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Figure B.1: Partition of state space for first input. (Example B.3.1.)

The objective function to be minimized is

minx′t+2|tPxt+2|t +
1

∑
k=0

[

x′t+k|txt+k|t +0.01u2
t+k

]

(B.18)

subject to the constraints and xt|t = x(t).
P solves the Lyapunov equation P= A′PA+Q, where Q= I in this case. The

P-matrix is numerically P=
[

5.5461 4.9873
4.9873 10.4940

]
. The optimal control problem can be

solved for example using the MPT toolbox [Kvasnica et al., 2004].
To illustrate the ideas, we show a simulation where the control objective is to

bring the process from x0 = (1,1) and back to x= (0,0). State space trajectories
and inputs are shown in figures B.1 and B.2 (dotted line). As long as the state
is in the input-constrained region where uopt = −2, the linear combination c=
uk−Kxk remains positive. One chooses to leave the input-constrained region when
c becomes zero. The state trajectory is the same as in Bemporad et al. [2002].

B.3.2 Output feedback with no noise

Consider now the case where all the statesx are not measured. The objective
is to find linear combinationsc = Hy that are optimally constant in each optimal
region. From the nullspace method, this requires that we have as many independent
measurementsy as there are inputs and disturbances.

With no measurement error, the optimal combinationc = Hy can be obtained
from the nullspace method. This requires thatG̃y has full rank, which again implies
that alld’s can be observed from the outputsy. Because of causality,̃Gy will not
be full rank initially (just after the disturbance occurs), but the rank condition will
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be satisfied if we consider a disturbance entering sufficiently long (nx−1 steps)
back in time. From this time and on the solution is the same as the state feedback
solution.

In terms of detecting region changes, we suggested for the state feedback case
to use the deviationc from the optimal feedback lawsc = u−Kx as tracking vari-
ables. This simple strategy may not work as well with output feedback, partly
because output feedback is not truly optimal, and partly because the outputs do not
contain accurate information about the present state. (It can however be applied in
the following example.)

Example B.3.2(Output feedback). Consider the same model and optimal control
problem as in example B.3.1, but assume that only the output y(t) is available (and
not both states). Recall from figure B.1 that the state space is optimally partitioned
into 3 regions with 3 different state feedback laws. As before, let d= xk.

One approach is to find the optimal sensitivity F from F=−(GyJ−1
uu Jud−Gy

d),
where y= (yk,yk+1,U), and

y =







yk

yk+1

uk

uk+1







=







0 0
CB 0
1 0
0 1







︸ ︷︷ ︸

Gy

[
uk

uk+1

]

+

[
C

CA

]

︸ ︷︷ ︸

Gy
d

xk (B.19)

By finding an H such that HF= 0, this method yields feedback gains from the
outputs to the inputs. Note that we can always ‘decouple’ the invariants in the
inputs u when all inputs are included in the candidate vector y. This is because
nc = nu and we have a degree of freedom in H such that multiplying by a non-
singular nc× nc matrix on the left yields the same loss as before. Write H=
[Hy Hu], then a combination matrix that is decoupled in u isĤ = (Hu)−1H.

We here get two invariants, one between(uk+1,yk+1,yk), and one between
uk,yk+1,yk, where only the first one is implementable because of causality.

The controller gains for the central region are(k1,k2) = (−16.7,13.7), with
control equation uk =−(k1yk +k2yk−1).

Another approach for finding F and H is to use the optimal solution uk =
−Kxk a priori, which we did not do above. If we use the knowledge of the optimal
feedback law, we can for example find that

F ′′ =

(
∂[uk yk yk+1]

′

∂xk

)opt

=
[
K′ C′ (C(A+BK))′

]
, (B.20)

and by solving H′F ′ = 0 we get an invariant between(uk,yk,yk+1). This invariant
is not implementable, but by using the same idea we can find another invariant
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Figure B.2: Simulation of output feedback configuration, where the outputfeed-
back law is used both for switching and control. Dotted line is optimal switching
and control when both states assumed measured. (Examples B.3.1 and B.3.2.)

between(yk,yk+1,yk+2), shift this invariant one time-step back and then combine
with the first one. The resulting output feedback law becomes the same as for
the method above, where we did not use the optimal state feedback law in the
derivations.

Figure B.2 shows the result of a simulation of the output feedback control from
x0 = (1,1). Note that we use the output feedback control law for the unconstrained
region to decide when to leave the constrained region. The previous optimal con-
trol with both states assumed measured is shown as the dotted line. One observers
that the optimal control scheme leaves the constrained region one time instant be-
fore the output feedback scheme. This is expected from the discussion above. The
‘discontinuity’ in ck at sample1 is due to initialisation issues.
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B.4 Low-order controllers for optimal control in the pres-
ence of noise

In example B.3.2 we used Theorem B.1 to derive an output feedback law, and
moreover this feedback law could be used for region detection. We will nowfocus
on unconstrained optimization problems and show, by using Theorem B.2, how
we can find optimal invariants betweennoisymeasurementsy. To achieve this we
use the weightsWd andWny, see (B.9). The approach we use is summarized in
algorithm B.1. The algorithm can easily be extended to cover a non-stable system
matrixA by not settinguk = 0 for k≥ N.

Algorithm B.1 Finding low-order controllers. (For stable system matrixA)

1: Define cost function̂J(u,x) = ∑∞
k=0x′kQxk +u′kRuk.

2: ChooseNy, whereuk = 0, k≥ Ny.

3: Rewrite cost function toJ(u,x) = ∑Ny−1
k=0

(
x′kQxk +u′kRuk

)
+ xNyPxNy, where

P = A′PA+Q.
4: Treatx0 as a disturbanced and findJuu andJud.
5: Decide candidate variablesy, for exampley = (yk,uk+1,uk, . . . ,uk+N−1) and

form the “open-loop” modely = GyU +Gy
dd, U = (uk, . . . ,uk+N−1).

6: Decide disturbance weightWd and noise weightWny.
7: Find H̃ by solving either the optimization problem (B.13) or use (B.12).
8: Decouple the inputs iñH = [H̃x H̃u] by settingH = H̃−1

u [H̃x H̃u] = [H̃−1
u H̃x I ].

In step 2 one has to choose the input horizonNy. In practical applications
we found that this should be set rather high to give good performance in the low-
order controllers. In the following example, where we focus on the central region
(unconstrained) for example B.3.2, we had to increaseNy from 1 (as it was in
example B.3.2) to 10 to get acceptable performance. To reduce complexity in
constrained explicit MPC one can decrease the input horizon to get less number of
regions, but the resulting controller will have a poorer performance, soobviously
there is a trade-off. In future work we will investigate the possibility of using
different input horizons for solving the parametric program and for deriving the
controllers in each region.

The disturbance and noise weightsWd,Wny in step 6 should contain information
about the expected variation in disturbances versus measurement noise.

In the following example we compare different low-order controllers found
by using algorithm B.1 with optimal LQG controllers for the central region of
example B.3.2 using output feedback.

Example B.4.1. (Low-order controllers and comparison with LQG: output feed-
back) In this example we investigate the same process as before, but with noisy
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Table B.1: Simulated costs for example B.4.1. Noise levels forwk,vk: (α,β) =
(0.8,1).
Number Control equation J1 J2

0 uk =−[6.08 6.07]xk (noise free, perfect measurement) 2.86 0.284
1 uk =−[6.08 6.07]x̂k 3.40 0.400
2 uk =−(3.25yk) 5.27 0.569
3 uk =−(1.54yk +0.5yk−1) 3.88 0.401
4 uk =−(0.78yk +0.44yk−1−0.03yk−2) 3.88 0.394
5 uk =−(0.39yk +0.28yk−1 +0.12yk−2−0.09yk−3) 4.11 0.416

measurements, i.e.

xk+1 =

[
0.7326 −0.0861
0.1722 0.9909

]

xk +

[
0.0609
0.0064

]

uk +wk

yk =
[
0 1.4142

]
xk +vk, (B.21)

where the process noise wk are two uniformly distributed random numbers drawn
from a uniform distribution on a[−β,β] interval, and the measurement noise vk

is a uniformly distributed random number drawn from a uniform distribution on
a [−α,α] interval. There is no correlation between the noises. This implies vari-

ancesvar(wk) = β2

3 I, andvar(vk) = α2

3 .
The objective is to find low-order controllers that can give comparable perfor-

mance with the well-known LQG controller.
In this example we investigate the following controllers for controlling the

noisy process:

1. LQG from yk to uk.

2. Invariant(uk,yk).

3. Invariant(uk,yk,yk−1).

4. Invariant(uk,yk, . . . ,yk−2).

5. Invariant(uk,yk, . . . ,yk−3).

Algorithm B.1 can directly be applied to find invariants between inputs uk and
output yk,yk−1, . . . , also when there is noise on the measurements. Here we choose
Ny = 10, which will give a good performance in the resulting controllers. Apart
from this, the cost function is the same as in(B.18).

In Manum et al. [2007] analytical expressions for the derivatives Juu and Jud

are given. These can be derived by substituting the state space model into the
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objective function to get an unconstrained optimization problem as a function of
(U,xk), where again we treat xk as a disturbance.

The open-loop model follows from the model equations. For example, for y=
(yk,yk+1,U), where U= (u0, . . . ,u9), we establish the model:

y =





yk

yk+1

U



 =







0 0
CB 0
I 0
0 I







︸ ︷︷ ︸

Gy

U +





C
CA
0





︸ ︷︷ ︸

Gy
d

xk. (B.22)

The disturbance weight Wd should reflect the variation in disturbances, whilst
the noise weight Wny the noises on measurements and inputs. In [Manum et al.,
2008a] it is shown that the resulting controllers are not affected by the noise on
the inputs using the current formulation. We therefore choose:

Wd =
β2

3
I2×2 Wny =

[α2

3 Iñy×ñy 0
0 INy×Ny

]

, (B.23)

whereñy≤Ny is the number of measurements we want to include in the implemen-
tation (i.e. the order of the resulting controller).

This framework was used to generate the controllers shown in Table B.1. The
LQR and LQG controllers were designed using standard software, and thetuning
was based on the known distributions of the process and measurement noises.

The reference controller is an LQR using full state information (available in
Matlab).

The LQG controller (from yk to uk) is implemented as:

x̂n+1|n = Ax̂n|n−1 +Bun +L(yn−Cx̂n|n−1)

x̂n|n = x̂n|n−1 +M(yn−Cx̂n|n−1)

uk =−Kx̂n|n (B.24)

with L′ = [0.04 0.59] and M′ = [0.12 0.57].
The simulated costs for the different controllers are shown in Table B.1. We

investigate two cases, one where the process noise (i.e. disturbances) occurs at all
time instants (J1) and one where the process noise occurs only every tenth instant
(J2). The simulated costs are the values of the objective function divided by the
simulation length.

When the process noise is occurring at all time instants (see J1), the LQG
controller is optimal. The best variable combination between the present input
and the outputs back in time, controller no. 4, has a simulated cost13% higher



164 Explicit MPC with output feedback using self-optimizing control

than the LQG controller. However, if the process noise occurs only every tenth
time instant (see J2), a simple combination between yk,yk−1,yk−2 actually yields
slightly better performance than the LQG controller.

As we increase the order of the controller we will reduce the noise sensitiv-
ity but we will be more sensitive to startup problems. The control law using
yk, . . . ,yk−3 is only optimal 3 time-steps after the disturbance occurs, this is the
reason why it has a higher simulated cost than controller number 4.

This example shows that our approach for deriving low-order controllers has
some inherent problems regarding causality; to achieve optimal operation in the
noise-free case we need at leastny = nu + nd measurements, and in the presence
of noise we should include even more to reduce the sensitivity of noise. However,
increasing the number ofy’s in the control law makes the causality problem more
significant as we need to ‘wait’ until the rank conditions from the disturbance to
the measurements becomes fulfilled.

The example further shows that the method works, and we get controllers com-
parable with the LQG controller. For disturbances occurring at every time instant
the LQG controller will be optimal at all times. However, in most practical cases
we do not expect that the disturbances will change in a random manner from one
time step to the next, so the assumption ofdk changing for example only every
tenth time step may not be too wrong. Further, if we are allowed to change the
sample time we can always increase it to be faster than the dynamics of the distur-
bances and our method can be applied.

B.5 Discussion and extensions

In this paper we have discussed that feedback laws may be viewed as additional
constraints (invariants) to the original optimization problem, and based on this,
we have shown that optimal linear feedback laws can be derived for quadratic
optimization problems.

Further, we have presented a mathematical framework, Theorem B.2 that gives
optimal invariants ofnoisymeasurements. This theorem can also be used in the
case of too few measurements, which can be of interest even for the unconstrained
LQ case.

Currently we are working on how to determine changes in the active set for
noisy measurements and how to optimally include integral action in the low-order
controllers.
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Convex initialization of the
H 2-optimal static output feedback
problem
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Recently we have established a link between invariants for quadratic opti-
mization problems and linear-quadratic (LQ) optimal control [Manum et al.,
2008b]. The link is that for LQ control one invariant isck = uk−Kxk,
which yields zero loss from optimality when controlled to a constant set-
point c = cs = 0. In general there exists infinitely many such invariants to
a quadratic programming (QP) problem. In [Manum et al., 2008c] we show
how the link can be used to generate output feedback control by using current
and old measurements. In this paper we extend this approach by consider-
ing in more detail some interesting examples, and the use of additional (old)
measurements. In particular, we show that if the number of measurements
is less than the number of disturbances (initial states) plus independent in-
puts, we can not with this method find a policyuk = −Kyyk that minimizes
the original problem, becauseKy is not optimally constant. However, this
method may be used to find initial values forH 2-optimal static output feed-
back synthesis.
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C.1 Introduction

Consider a finite horizon LQ problem of the form

min
u0,u1,...,uN−1

J(u,x(0)) = E{x′NPxN+

+
N−1

∑
k=0

[
x′kQxk +u′kRuk

]
}

subject tox0 = x(0)

xk+1 = Axk +Buk, k≥ 0

yk = Cxk +ny
k,

(C.1)

wherexk ∈ R
nx are the states,uk ∈ R

nu are the inputs andyk ∈ R
ny are the mea-

surements. FurtherP = P′ > 0, Q ≥ 0, andR > 0 are matrices of appropriate
dimensions, andE{·} is the expectation operator.

It is well-known that ifC = I andny = 0, such thatyk = xk, the solution to (C.1)
is state feedbackuk =−Kxk, where the gain matrixK can be found by solving an
iterative Riccati equation. For the case with white noise assumption onx0 and
y (ny), the optimal solution isuk = −Kx̂k, where ˆxk is a state estimate from a
Kalman filter [Åström and Wittenmark, 1984], which in effect gives a dynamic
compensatorK lqg (from y to u) of same ordernx as the plant.

In this paper we consider the static output feedback problem,uk = −Kyyk,
whereKy is a static gain matrix. Note that the case with a fixed-order controller
of order less thannx may also be brought back to the static output feedback prob-
lem. A particular controller considered in this paper is the multi-input multi-output
proportional-integral-derivative controller (MIMO-PID) where we have as many
controlled outputsyc as there are inputsu. The “allowed” measurementsyk in
the formulation in (C.1) are the present value of the controlled outputyc

k (P), the

integrated value∑k
i=0yc

i (I) and the derivative∂yc
k

δt (D).
This optimal solution to this problem is unsolved [Syrmos et al., 1994] so one

cannot expect to find an analytic or convex numerical solution. The contribution of
this paper is therefore to propose a convex approach to find a good initialestimate
for Ky, as a starting point for a numerical search.

C.1.1 Notation

Notation adopted from self-optimizing control is summarized in figure C.1. Typi-
cally, u = (u0,u1, . . . ,uN−1), d = x0 andy = (x0,u) or y = (y0,

∂y0
∂t , . . . ,u), but also

other variablesy will be considered.
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ny

y

Measurement
combination (H)

c = H(y+ny)

u

Gy
d

d

Gy

Figure C.1: Notation for self-optimizing control.

C.2 Main results

C.2.1 Results from self-optimizing control

Nullspace method

From [Alstad et al., 2009] we have the following theorem:

Theorem C.1. (Nullspace theorem = Linear invariants for quadratic optimiza-
tion problem) Consider an unconstrained quadratic optimization problem in the
variables u (input vector of length nu) and d (disturbance vector of length nd)

min
u

J(u,d) =

[
u
d

]′[
Juu Jud

JT
ud Jdd

][
u
d

]

. (C.2)

In addition, there are “measurement” variables y= Gyu+Gy
dd. If there exists ny≥

nu + nd independent measurements (where “independent” means that the matrix
G̃y =

[
Gy Gy

d

]
has full rank), then the optimal solution to(C.2)has the property

that there exists nc = nu linear variable combinations (constraints) c= Hy that are
invariant to the disturbances d. The optimal measurement combination matrix H
is found by selecting H such that

HF = 0, (C.3)

where F= ∂yopt

∂d is the optimal sensitivity matrix which can be obtained from

F =−(GyJ−1
uu Jud−Gy

d), (C.4)

(That is, H is in the left nullspace of F.)
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Generalization: Exact local method

A generalization of Theorem C.1 is the following:

Theorem C.2. (Exact local method = Loss by introducing linear constraint for
noisy quadratic optimization problem [Alstad et al., 2009]) Consider the uncon-
strained optimization problem in Theorem C.1,(C.2), and a set of noisy mea-
surements ym = y+ ny, where y= Gyu+ Gy

dd. Assume that nc = nu constraints
c = Hym = cs are added to the problem, which will result in a non-optimal solu-
tion with a loss L= J(u,d)− Jopt(d). Consider disturbances d and noise ny with
magnitudes

d = Wdd′; ny = Wnyny;

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1.

Then for a given H, the worst-case loss introduced by adding the constraint c= Hy
is Lwc = σ̄2(M)/2, where M is

M ,
[
Md Mn

]

Md =−J1/2
uu (HGy)−1HFWd

Mn =−J1/2
uu (HGy)−1HWny,

(C.5)

and σ̄(·) is the maximum singular value. The optimal H that minimizes the loss
can be found by solving theconvexoptimization problem

min
H
‖HF̃‖F

subject to HGy = J1/2
uu

(C.6)

HereF̃ = [FWd Wny].
The reason for using the Frobenius norm is that minimization of this norm also

minimizesσ̄(M) [Kariwala et al., 2007].

Remark C.1. From [Alstad et al., 2009] we have that any optimal H premultiplied
by a non-singular matrix nc×nc D, i.e. H1 = DH is still optimal. One implication
of this is that for a square plant, nc = nu, we can write c= H1y = Hym

1 ym+ Iu. To
see this, assume y= (ym,u), so H= [Hym Hu], where Hu is a non-singular nu×nu

matrix. Now, H1 = (Hu)−1[Hym Hu] = [(Hu)−1Hym I ].

Remark C.2. More generally, for the case wheñFF̃ ′ is singular, we can solve the
convex problem(C.6)using for exampleCVX, a package for specifying and solving
convex programs [Grant and Boyd, 2008], with the following code:
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cvx_begin
variable H(N*nu,ny+nu*N);
minimize norm(H*Ftilde,’fro’)
subject to

H*Gy == sqrtm(Juu);
cvx_end

Remark C.3. Noise will not be further discussed in this paper, but is covered in
[Manum and Skogestad, 2009].

C.2.2 Some special cases

Some special cases will now be considered where explicit expressions can be
found.

Full information

No new results are represented here, but we show the matricesGy, Gy
d, Juu, andJud

for LQ-optimal control.
Assume that noise-free measurements of all the states are available. It is well

known that the LQ problem (C.1) can be rewritten on the form in (C.2) (see for
example [Rawlings and Muske, 1993]) by treatingx0 as the disturbanced, and
letting u = (u0,u1, . . . ,uN−1). Thus, from Theorem C.1 we know that for the LQ
problem there existsinfinitelymany invariants (but only one of these involves only
present states).

Without loss of generality consider the case when the model in (C.1) is stable.
Let y = (x0,u0,u1, . . . ,uN−1) = (x0,u). Note that this includes also future in-

puts, but we will use the normal “trick” in MPC of implementing only the present
(first) input changeu0. Since we haveny = nd + nu and no noise, we can use
Theorem 1. The open loop model becomes:

y = Gyu+Gy
dd

Gy =

[
0nx×(nuN)

InuN

]

∈ R
(nx+nuN)×(nuN)

Gy
d =

[
InuN

0(nuN)×nx

]

∈ R
(nx+nuN)×nx

(C.7)

HereIm is anm×m identity matrix and 0m×n is am×n matrix of zeros.
The matricesJuu andJud are the derivatives of the linear quadratic objective

function.For the objective and process model in (C.1) we show in [Manum et al.,
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2007] that

Juu

2
=






B′PB+R B′A′PB ... B′(AN−1)′PB
B′PAB B′PB+R ... B′(AN−2)′PB

...
...

...
...

B′PAN−1B B′PAN−2B ... B′PB+R




 (C.8)

and

Jud

2
=








B′

B′

. ..
B′















P
PA
...

PAN−1








A (C.9)

The sensitivity matrix (optimal change iny whend is perturbed) becomes:

F =
∂yopt

∂d′
=−(GyJ−1

uu Jud−Gy
d) =

[
Inx

−J−1
uu Jud

]

(C.10)

We can use Theorem C.1 to get the combination matrixH, i.e. find anH such that
HF = 0:

[
H1 H2

]
[

Inx

J−1
uu Jud

]

= H1−H2(J
−1
uu Jud) = 0 (C.11)

To ensure a non-trivial solution we can chooseH2 = InuN and get the following
optimal combination ofx0 andu:

c = Hy = J−1
uu Judx0 +u, (C.12)

which can be interpreted as:

Invariant 1:u0 = K0x0

Invariant 2:u1 = K1x0

...

InvariantN: uN−1 = KN−1x0

(C.13)

From Theorem C.1 implementation of (C.13) give zero loss from optimality, i.e.
they correspond to the optimal input trajectoryu∗0,u

∗
1, . . . ,u

∗
N−1 from the solution

of (C.1). Moreover, since the states capture all information, we must havethat

u1 = K1x0 = K1(A+BK0)
−1

︸ ︷︷ ︸

=K0

x1. (C.14)

From this we deduce that the solution to (C.1) can be implemented asuk = K0xk, k=
0,1, . . . .

In [Manum et al., 2007] we prove that this gives the same result as conven-
tional linear quadratic control, by conventional meaning for example equation (3)
in Rawlings and Muske [1993].
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Output feedback

In this section we will show how Theorem C.2 can be used for the special (but
common) case whenyk = Cxk +0 ·uk, k = 0,1, . . . ,N and we look for controllers
on the formuk = −Kyyk. If C is full column rank, then we have full information
(state feedback), but we here consider the general case whereC has full row rank
(independent measurements), but not full column rank.

Let y = (y0,u) and as beforeu = (u0,u1, . . . ,uN−1). The disturbanced = x0.
The open loop model is now

y =

[
y0

u

]

=

[
0
I

]

︸︷︷︸

Gy

u+

[
C
0

]

︸︷︷︸

Gy
d

d, (C.15)

and the sensitivity matrixF is

F =−(GyJ−1
uu Jud−Gy

d) =

[
C

−J−1
uu Jud

]

(C.16)

Since we now have thatny = nỹ + nu < nu + nd, wherenỹ are the number of
measurements from the plant,nỹ < nd, we cannot simply setHF = 0, but we need
to solve (C.6).

Let us analyze this problem. ForGy′ = [0 I ], HGy = J1/2
uu is equivalent to

H2 = J1/2
uu , where

Hnc×(nỹ+nu) =
[
H1nc×nỹ H2nc×nu

]
(C.17)

With this partitioning we get that

HF̃ = H[FWd Wny] = [HFWd HWny], (C.18)

and forWny = 0, i.e. the noise-free case,

HF̃ = [HFWd 0]. (C.19)

We want to minimize the Frobenius-norm of this matrix and we have that

‖[HFWd 0]‖F = ‖HFWd‖F +‖0‖F (C.20)

Assume without loss of generality thatWd = I , and letJ̃ = −J−1
uu Jud. With F ′ =

[C′ J′] we have that

HF = H1C+H2J̃
∣
∣
H2=J1/2

uu
= H1C−J−1/2

uu Jud (C.21)
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We want to minimize‖H1C−J−1/2
uu Jud‖, hence we look for aH1 such that

H1C = J−1/2
uu Jud. (C.22)

Using the pseudo-inverse, we find that

H1 = J−1/2
uu JudC

†, (C.23)

and we get that the optimalH is

H = [J−1/2
uu JudC

† J1/2
uu ]. (C.24)

In the final implementation we can decouple the invariants in the inputs by

H̃ = J−1/2
uu H = [−J−1

uu JudC
† I ]. (C.25)

This means that the open-loop optimal “output feedback” is

uk =− J−1
uu Jud

︸ ︷︷ ︸

Kstate feedback

C†yk =−Kyyk, (C.26)

that is, for an optimal state feedbackK, the optimal “output feedback” isKC†.
This means that for this case we have

“Invariant” 1: u0 = K0C
†y0

“Invariant” 2: u1 = K1C
†y0

...

“Invariant” N: uN−1 = KN−1C
†y0

(C.27)

We have called these variable combinations “invariants” in quotation marks
because they are not invariant to the solution of the original problem, but rather
the variable combinations that minimize the (open-loop) loss. Indeed, the non-
negative loss is

‖HF‖= ‖J−1/2
uu JudC

†C−J−1/2
uu Jud‖

= ‖J−1/2
uu Jud(C

†C− I)‖
≤ ‖J−1/2

uu Jud‖‖C†C− I‖
(C.28)

For output feedback we have in the least squares sense

u1 = K1C
†C(A+BK0C

†C)−1C†

︸ ︷︷ ︸

K1

y1. (C.29)

Unfortunately, in generalK1 6= K0 and hence the open loop solution (C.27) cannot
be implemented as a constant feedbackuk = K0C†yk, as was the case for state
feedback, see (C.14).
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C.3 Main algorithm

We now propose an algorithm for finding output feedback controllers. This is a
two-step procedure where we first find initial values using Theorem C.2.These
initial values correspond to a controller that in the open-loop sense is closest to
the optimal state feedback LQ controller. Thereafter we improve this controller by
solving a closed-loop optimization problem where the controller parameters are
the degrees of freedom.

In the previous section we showed that ify = (Cx0,u0, . . . ,uN−1) Theorem C.1
givesu0 =−Kyy0 = Kstate feedbackC†y0. The algorithm presented here is more gen-
eral in the sense that it handles “measurements” such asy= (y0,y1, . . . ,yM,u0, . . . ,uN−1).
(In the latter case a casual controller isuM =−Ky[y′0 . . . y′M]′.)

Algorithm C.1 Low-order controller synthesis
1: Define a finite-horizon quadratic objectiveJ(u,x) = x′NPxN +

∑N−1
i=0 x′iQxiu′iRui +2x′iNui .

2: CalculateJuu andJud as in (C.8), (C.9).
3: Define candidate variablesy = Gyu+Gy

dx0, u = (u0,u1, . . . ,uN−1).
4: Decide weightsWd andWy

n (Default:Wd = I , Wy
n = 0)

5: Find H̃ by solving the convex optimization problem (C.6)
6: Optional: Improve control by closed-loop optimization. (Section C.3.1.)

C.3.1 Relationship between LQ-control andH 2 optimal control

It is well-known that the LQG problem may be cast into theH 2 framework and that
a class ofH 2 optimal controllers may be implemented in an LQG-scheme with a
Kalman estimator and a constant feedback gain from the estimated states [Doyle
et al., 1989]. In this paper we propose to improve the solution from the open-loop
control by minimizing theH 2 norm

min
K
‖Fl (P,K)‖2. (C.30)

In this context minK means minimizing over theparametersin K. The lower-
fractional transformFl (P,K) = P11+P12(I −P22K)−1P21 for a P =

[P11 P12
P21 P22

]
[Sko-

gestad and Postlethwaite, 2005]. The interconnection structure we use for P is
shown in figure C.2.

The last row of Algorithm C.1 consists of solving (C.30) with initial values as
H̃ on step 5 in algorithm C.1, which is the solution to (C.6).



174 Convex initialization of theH 2-optimal static output feedback problem
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Figure C.2: Interconnection structure for closed-loop optimization ofK.

C.4 Examples

In this section two examples will be considered. First we discuss P-controlof a
second order plant, then MIMO-PID control of a model of a distillation column.

Example C.4.1. (P-control of second order plant) Consider the plant g(s) =
2

s2+3s+2. The plant is sampled with Ts = 0.1 to get

xk+1 =

[
0.7326 −0.1722
0.0861 0.9909

]

xk +

[
0.1722
0.0091

]

uk

yk =
[
0 1

]
xk

(C.31)

The objective is to derive two LQ-optimal controllers for this process, one P-
controller on the form uk =−Kyyk and a PD-controller uk =−(Ky

1yk +Ky
2yk−1).

In the synthesis of the controllers we use algorithm C.1. The open loop objec-
tive to be minimized is̃J(u,x) = ∑∞

i=0x′iQxi +u′iRui with Q=
[

0 0
0 1

]
and R= 1. The

infinite horizon objective can be approximated by the following objective:

J(u,x) = x′NPxN +
N−1

∑
i=0

x′iQxi +u′iRui , (C.32)

with P=
[

0.8333 2.4917
2.4917 9.6667

]
and N= 10. (P is a solution to the discrete Lyapunov equa-

tion P= A′PA+Q.) The objective is now on the form of step1 in the algorithm.
P-control: For the P-controller, the variables to combine are y1 = (y0,u0, . . . ,uN−1).

The matrices Juu and Jud are the same as those reported in equations(C.8) and
(C.9). Since we do not consider noise Wd = I and Wny = 0. We can now find̃H
either by solving the convex problem in(C.6), or we can simply use the explicit
formula in (C.23), i.e. H1 = J−1

uu JudC†. As shown in section C.2.2 (see equation
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Controller ‖HF̃‖F ‖Fl (P,K)‖2
1: uk =−0.404yk 0.390 0.2993 First invariant us-

ing Theorem C.2 for
y1 = (y0,u0, . . . ,uN−1)

2: uk =−0.313yk − 0.2981 Closed-loop optimal P-
controller

3: uk = −(1.49yk −
1.11yk−1)

0 0.3176 Second invariant us-
ing Theorem C.2 for
y2 = (y0,y1,u0, . . . ,uN−1)

4: uk = −(0.416yk −
0.109yk−1)

− 0.2979 Closed-loop optimal con-
troller PD-controller

5: uk =−[0.131 0.396]xk 0 0.2972 LQR

Table C.1: Controllers for example C.4.1.
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Figure C.3: Simulation results for disturbances in initial conditions, example
C.4.1.
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C.27) we now get N= 10 “invariants” to the solution to the original optimiza-
tion problem in(C.32). The first one of these invariants is reported as controller
1 in table C.1. We observe that‖HF̃‖ > 0, which is expected from Theorem 1, as
ny < nu +nd in this case (ny = 1+10,nu = 10,nd = 2).

Using this P-controller (uk =−0.404yk) as the initial estimate, theH 2-optimal
closed-loop controller K in Figure C.2 is obtained numerically. Note from row 2in
Table I that theH 2-norm is only reduced slightly (from 0.2993 to 0.2981), although
K changes from -0.404 to -0.313.

PD-control: For the synthesis of a PD controller we again use algorithm
C.1. The variables to combine are now y2 = (y0,y1,u0, . . . ,uN−1). The objec-
tive function and the matrices Juu and Jud remain the same. The open-loop model
y = Gyu+Gy

dx0 is now:

y2 =





y0

y1

u



 =







0 0
CB 0
I 0
0 I







u+





C
CA
0



x0. (C.33)

For this particular variable combination(C.23)cannot be used, as the variables
occur on different instances in time. We therefore solve the optimization problem
(C.6) usingcvx, as shown in remark C.2. The solution is again on the form of
(C.27), for which the second invariant is reported as controller 3 in table C.1. The
solution (all the invariants) gives‖HF̃‖= 0, which is expected from Theorem C.1,
as ny = nu + nd and no noise is present. Further numerical optimization reduces
theH 2 norm from 0.3176 to 0.2979.

It can be verified that the variable combination is indeed optimal after one step
with the following calculations:

u0 =−Kx0, u1 =−Ky
1y1−Ky

2y0

⇒ u1 =−(Ky
1C+Ky

2C(A−BK)−1)
︸ ︷︷ ︸

=K

x1, (C.34)

where K is the LQR controller. For implementation some sub-optimality must be
expected since we are not starting the control with LQR, rather we use the PD
controller at all time instances.

Simulations: From the closed-loop norms reported in table C.1 the controllers
are expected to perform similarly in closed loop. This is confirmed in the closed
loop simulations of disturbances in initial states, see figure C.3.

Example C.4.2. (Linear dynamic model of distillation column.) In this example
we consider MIMO-PI and -PID control of “column A” in [Skogestad, 1997]. The
model is used as an example for offset-free control in [Muske and Badgwell, 2002].
The model is based on the following assumptions:



C.4. Examples 177

• binary separation,

• 41 stages, including reboiler and total condenser,

• each stage is at equilibrium, with constant relative volatilityα = 1.5,

• linearized liquid flow dynamics,

• negligible vapor holdup,

• constant pressure.

The feed enters on stage 21. u= [ L
V ] and y= [xD

xB ].
We here consider the LV-configuration, where D and B are used to control the

levels. With level controllers implemented (P-control with Kc = 10) the rest of the
column is stable.
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ofthe
H

2 -optim
alstatic

outputfeedback
problem

Description Control equation ‖HF̃‖F ‖Fl (P,K)‖

“First-move” PI uk =−
([

5.316 0.25664
−3.1953 −3.3371

]

yP
k +

[
2.6897 −0.5975
−0.13498 −2.5939

]

yI
k

)

4.28 3.99

Closed-loop optimal PI uk =−
([

16.0156 −5.17125
0.541199 −9.57775

]

yP
k +

[
2.7148 −0.715
0.33949 −2.7672

]

yI
k

)

− 3.65

“First-move” PID uk =−
([

9.9305 −0.96741
−5.2025 −3.5369

]

yP
k +

[
2.6891 −0.62581
−0.13969 −2.6454

]

yI
k . . . 3.44 3.78

· · ·+
[

1.0724 −0.22799
−0.53974 −0.43514

]

yD
k

)

Closed-loop optimal PID uk =−
([

17.5043 −8.22394
3.48592 −17.7333

]

yP
k +

[
2.743 −1.3167

0.15148 −4.3547

]

yI
k . . . − 3.63

· · ·+
[
−1.78427 −6.07614
−9.79446 −13.3285

]

yD
k

)

LQR uk =−
[
−0.0022 0.0002 −0.0004 −0.0007 0.0016 −0.0097
0.0008 0.0015 −0.0016 −0.0037 0.0079 −0.0074

]

xk(1 : 6) . . . − 3.61

· · ·−
[
−0.0036 0.0048 0.0116 −0.0011 −0.0213 0.0305
−0.0066 0.0262 0.0610 0.0044 0.0093 −0.0148

]

xk(7 : 12) . . .

· · ·−
[
0.0149 0.0521 0.1349 0.1034 2.6897 −0.5975
0.0233 −0.0372 −0.1607 0.0895 −0.1350 −2.5939

]

xk(13 : 18)

Table C.2: Controllers for example C.4.2.
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Algorithm C.1 K0 = 0 SIMC-tuned PI controllers

PI 44 − 71
PID 91 − 123

Table C.3: Iteration count usingfminunc (Matlabc© R2008a) with different initial-
izations

Balanced reduction is used to reduce the number of states to 16. Then in-
tegrated outputs are added to the model, resulting in a model with 18 states. If
we let the outputs of the model be P, I, and D, we get a model with the following
structure:

[
ẋ
σ̇

]

=

[
a 0
c 0

][
x
σ

]

+

[
b
d

]

u





yP

yI

yD



 =





c 0
0 I
ca 0





[
x
σ

]

+





d
0
cb



u

. (C.35)

This model is sampled with Ts = 1 to get a discrete time model. Again we set up

an infinite time objective function, with Q= C′
[

0
I

0

]

C, and R= 0.1 · I, and for

intermediate calculations we approximate this by a finite horizon objective with
N = 150and P= Q.

We now look for controllers on the form

uk =−
(
KPyP

k +KI yI
k +KDyD

k

)
(C.36)

and we assume measurements of the compositions with a sample time of 1 minute
is available.

Table C.4.2 shows “first-move” PI (= first move invariant realized as feed-
back), closed loop PI and PID controllers, and the LQR controller for reference.
In addition to the initialziation proposed in this paper we tried to initialize the nu-
merical search with K0 = 0and two SIMC-tuned [Skogestad, 2003a] PI controllers
with τc = 10 minutes, leading to K0SIMC =

[
14.63 0 0.37 0 0 0

0 −10.91 0 −0.27 0 0

]
. As reported

in table C.4.2 did K0 = 0 not converge, whereas intializing with two SIMC-tuned
PI controllers converged in both cases (both for PI and PID design), though with
some more iterations than the method proposed in this paper.

Figure C.4 shows simulation results where we at t= 0 introduce a step in the
feed rate and at t= 70 a step in the feed composition. ’PI’ and ’PID’ refers to
the closed-loop optimal controllers. As one observes is the MIMO-PID controller
quite close in performance to the LQR controller.
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Figure C.4: Simulation results for example C.4.2. Att = 0 a step-change of 0.1 in
F occurs, and att = 70zF is changed from 0.5 to 0.6.
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C.5 Conclusions

In this paper we have discussed synthesis ofH 2-optimal static output feedback,
and in particular the MIMO-PID. We have shown that initial conditions for closed
loop optimization can be found by solving a convex program, and that the resulting
closed loop optimization problem converges for some interesting cases.
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