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Abstract

The main focus of this thesis is to find simple waysraplementingoptimal op-
eration of process plants. The work is in the spirit of “self-optimizing cdhtro
which can be summarized as [Skogestad, 2000b]:

“The goal is to find a self-optimizing control structure where accept-
able operation under all conditions is achieved with constant setpoints
for the controlled variables. More generally, the idea is to use the
model off-line to find properties of the optimal solution suited for
(simple, model-free) on-line implementation.”

In the first part of the thesis, the problem of static output feedback isased.
This is one of the open problems in control [Syrmos et al., 1997], and we de
rive a novel approximation to this problem by using links to self-optimizing con-
trol. The approximation can be used to calculate multiple inputultiple output
proportional-integral-derivative (MIMO-PID) controllers, which cha of great
practical interest.

We further extend parts of the theory of self-optimizing control to covanges
in the active set. This is done by using results from explicit model predictive
control (MPC) and the results are exact for a quadratic approximateamerthe
optimum. By using an ammonia production plant as an example, we show that
the results may also be applied to more general processes, and that thd imetho
particularly interesting for cases where the set of active constraintpéctd to
change frequently.

Thereafter we develop a mathematical framework for analysis of therperfo
mance loss when “speedups” are applied to an MPC formulation. Suctigpee
can be model reduction, move blocking, shortening the horizon in the dentwvo
changing the sample time of the internal model in the MPC. By using the method
on a model of a distillation column, we find that the so-called “delta-move block-
ing” has a good performance to speed ratio.

We then use the same mathematical program to prove stability of simple con-
trol schemes by calculating the maximum distance to a robust controller; if the
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distance is within the robustness margin of the robust controller, then the simple
controller is proven to be stable. Several “simple controllers” can be zelin
this scheme, for example partial enumeration of an explicit MPC and the linear
guadratic regulator with saturation.

Finally, in the appendices of the thesis, we give mathematical links between
the problem of self-optimizing control and explicit MPC, and we give someasiea
of simplification of the implementation of explicit MPC. In addition we give some
extra information regrading the static output feedback problem.
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Chapter 1

Introduction

1.1 Motivation

The main focus of this thesis is to find simple implementations of solutions to
optimal control of process systems. In order words, the foaustibn how to solve

an optimal control problembut onhow to implement the solution to an optimal
control problem One can identify two different paradigms for implementation of
the solution to an optimal control problem [Narasimhan and Skogestad}:2007

Paradigm 1. On-line optimizing control where measurements are primarily used
to update the model. With arrival of new measurements, the optimization
problem is resolved for the inputs.

Paradigm 2. Pre-computed solutions based on off-line optimization. Typically,
the measurements are used to (indirectly) update the inputs using feedback
control schemes.

Open-loop optimization is typically used in Paradigm 1, while closed-loop solution
is the preferred alternative for Paradigm 2.

An open loop approach to Paradigm 1 may however be quite consepnadive
is addressed by many authors in the context of robust model prediciieot
(MPC), see e.g. the survey paper by Mayne et al. [2000]. The appriz con-
servative because the open-loop optimization problems needs to take iatmacc
disturbances that in closed loop will be attenuated by the controller, bunnot
the open loop predictions of the optimization problem, see e.g. [Bempora8, 199
Bemporad and Morari, 1999]. One would therefore like to use closeul-opb-
mization also in Paradigm 1, but in practice it is usually difficult to take feedbac
into account in on-line optimization, so in most cases one would be content with
an open-loop formulation.
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In this thesis we are mostly interested in Paradigm 2, however combinations of
the two are also interesting.

Let us consider the following example to better understand the differdmeces
tween the paradigms:

Example: Linear quadratic control. Consider the quadratic optimization prob-
lem

N-1
J* (%) =min xyQnxn + Z) XQx% +URuy (1.2)
, 2
S.tXe1=A%+Bu, k=01 ,N-1 (1.2)

whereu = (up,us, - -- ,un—1) iS @ sequence of inputs are= (Xq,X2,- -+ ,XN) iS a se-
quence of states. We assume Rat Q, Rare symmetric matrices and ti@y > 0,

Q> 0,R> 0. Furtherxc,1 = AX% + Bu is a linear model of some plant we want

to control. There exists many solvers [Wang and Boyd, 2010] that camle-
mented on-line such that when a new measuremerg otcurs, problem (1.1)-
(1.2) is resolved for the inputs The idea of receding horizon control [Richalet

et al., 1978, Cutler and Ramaker, 1980] is to implement only the first pareof th
sequencel, and then resolve the optimization problem when new measurements
of the statex, becomes available. This solution, whengen-loop optimizations

used in closed loop, belongs to Paradigm 1.

However, by using dynamic programming, one can fifelealback policy u=
KoXk that is optimal forany statexy, in order words, the feedback ga{ig does not
depend on the current state. For the quadratic program (1.1)-(le2)asndefine
the backward Riccati iteration [Rawlings and Mayne, 2009]

M 1= Q+AMA—AMBMBMB+R BMA k=NN-1..1 (1.3)

with terminal condition
My = On. (1.4)
The optimal gain at tim& is computed from the Riccati matrix at tinke- 1:
K= —(BM1B+R) 1B M 1A, k=N-1,N—-2....0. (1.5)

All these calculations can be performeff-line and implementation, by using re-
ceding horizon control, is simply

Uk = KoXk. (1.6)

Implementation of thistate feedbacloes not depend on any online optimization
and belongs to Paradigm 2.
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Once the state-feedbacl = Koxk is found one may also use this as a re-
parameterization of the open loop problem by introducing [Rossiter et &7]19

Uk = KoXk + Wk 1.7)
and rewriting the plant model to

X1 = (A+BKo) Xk + Bwk
——
Ac
= AcXk + Bwik. (1.8)

An open loop optimization in the re-parameterized inputshould now converge
to a solution close tav = 0 for any disturbance, hence finding initial values and
consequently solving the re-parameterized problem should be easi¢in¢harig-
inal formulation (1.1)-(1.2) [Mayne et al., 2005].

In the last decade, parts of the control community have investigatplitit
solutionsto model predictive control, see e.g. the recent survey by [Alessio and
Bemporad, 2008]. In order to compute an explicit MPC one usually firstdie
lates anopen-loopproblem, for example on the form of problem (1.1)-(1.2), but
with constraints added on inputs and states. Then one solves this probi@am pa
metrically [Bemporad et al., 2006] to get a piece-wise affine feedback feie
form

Uc=K'xe+c if x eP, (1.9)

whereP, represent a polytopic division of the state spacelnt; are correspond-
ing state feedback laws.

Implementation of explicit and on-line MPC will yield the same value of the
cost function, as their solutions are equivalent. However, the explicitiso can
itself be very complicated (with many polytopBsin (1.9)), and researches have
therefore started to look for simplifications of the explicit control law, seefs
ample the double description method by Jones and Morari [2008]. In thégsthe
Chapter 7 is devoted to analysis for such simplifications.

When one does a simplification a non-negative loss is introduced [Skdgesta
2000Db]:

L(u,d) =J(u,d) — Jope(d), (1.10)

whereJ(u,d) is the cost of a particular policy arldpi(d) is the optimal cost for a
given disturbance. The idea of self-optimizing control, which has been a major
source of inspiration for this thesis, is to [Skogestad, 2004]:

"Find a self-optimizing control structure where acceptable operation
under all conditions is achieved with constant setpoints for the con-
trolled variables. More generally, the idea is to to use the model
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off-line to find properties of the optimal solution suited for (simple,
model-free) on-line implementation”

Here “acceptable operation” can imply that the ldgs,d) is below some ac-
ceptable value. The idea of self-optimizing control can be applied to cawitrol
complex systems, as described in the following example, which is borrowsd fr
[Skogestad and Postlethwaite, 2005]:

Example: Long-distance running. Consider the optimal operation of a long-
distance runner. The manipulated input is the muscle power. The objective is
minimize the time of the race. Using paradigm 1, on-line optimization, is clearly
very difficult, because we would need to identify a model of the many complex
mechanisms that occur in the human body and re-optimize this model online when
disturbances occur. Probably just getting a model that is suitable for erofin
timization would take a very long time. We therefore consider the approach of
Paradigm 2, to look for some feedback strategy that will give acceptael@ation

in closed loop. Moreover, let us search for sooeastant setpoint policthat we

can use in closed loop. The question in thus: Can we find some vaddbat
when controlled to a constant setpoiglyields acceptable operation?

It is clear that running at maximum power is not a good strategy. This would
give a high speed at the beginning, but a slower speed towards theigndnwv
overall low average speed. A better policy would be to keep constaatsfide
trainer will then choose an optimal setpoint for the speed, and this is implemented
by the runner. Alternative strategies, which may work better in a hilly tereain,
to keep a constant heart rate or a constant lactate level.

Chapter 5 is devoted to self-optimizing control, where we extend some results
to cover changes in the active set. However in a broader sense, ntbst thie-
sis is based on the general idea of findsigple solutionghat givesacceptable
performance in closed loop.

1.2 Outline of thesis

In Chapters 2-4 we give a convexapproximationto the static output feedback
problem, which is one of the open problems in control [Syrmos et al., 199€&].

do this by exploiting a link to self-optimizing control, where we minimize the
loss from an optimal controllerSince we only find an approximation, the prob-
lem still remains open, but we show that our approximation may be used to syn-
thesize multi input— multi output proportional-integral-derivative (MIMO-PID)
controllers, which can be of great practical interest.
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In Chapter 5, we extend the ideas of self-optimizing control to handle changes
in the active set, by using results from explicit MPC.

In Chapter 6, we formulate a mathematical program that can analyse different
speedups in MPC, such as move blockingChapter 7, we use a similar program
to analyse different low-complexity controllers.

In Appendices A-B we give some ideas on simplification of explicit MPC and
extensions to output feedback.

In Appendix C, we give some more details on the static output feedback prob-
lem.

1.3 Publications

During the work on my thesis | was the main author the publications given in
Table 1.1. In addition | was a co-author on the papers listed in Table 1.2s | wa
also working on the papers listed in Table 1.3, which were related to my Master’
thesis, but not to the work reported in this thesis.
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Chapter 2

Convex approximation of the
static output feedback problem

with applications to design of multivariable PID
controllers

In this chapter we derive a convex approximation to #ieoptimal static
output feedback problem and show how the approximation eansed to
synthesize multiple input multiple output proportional-integral-derivative
(MIMO-PID) controllers. The approximation is done in twegs. First,
instead of minimizing directly the quadratic cost, we finé gtatic output
feedback controller that minimizes the “loss” comparech® dptimal state
feedback controller. Use of this modified cost seems to hareall effect
on the resulting controller. Second, we approximate thaltiag noncon-
vex problem by a convex quadratic program (QP). This appmakidn intro-
duces some sub-optimality, but numerical examples showthbacontroller
is close to the optimal in most cases, except for cases wheredntrol-
lability using output feedback is far away from the optimtgte feedback.
Alternatively, we can use it as initial value for a nonlineaarch.

2.1 Introduction

Consider the linear process

Xer1 = AX+ B (2.1)
Yk = Cx+Duk (2.2)
(A7) (2.3)
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where equation (2.3) means that the initial stgtis a normally distributed random
variable with zero mean and covariance méaiify. The objective is to find atatic
output feedback

Uk = —Kyyk (2-4)
that minimizes thexpected value EJ”}, where the cost
o] H 1 z / /
J —11|an{Ti;XiQ)Q+UiRLI}. (2.5)

Here Q = Q = C,Q¥C,, where@’ > 0 is a quadratic weight on the controlled
outputsz = C,xc, andR= R > 0 is a weight on input usage. The infinite horizon
objective function may be approximated by a finite horizon cost functicnésgp
Chmielewski and Manousiouthakis [1996] and Scokaert and Rawlirg$8]}),

N-1
J = Xy Qnxn + Z) XQx -+ URy. (2.6)

Remark 2.1. There are several ways of choosing the final state cost matgix Q
such that the finite horizon problem corresponds as closely as possitble iofi-
nite horizon problem. In this chapter we use the method of first findingdire-c
sponding linear quadratic regulatoryu= —KorXx, Which can be found by stan-
dard software, and further we letiA= A—BK R, Qt = Q+ K[QRRKLQR, and let
Qn > 0 satisfy the Lyapunov equation

AQNAK +Qf = Qn (2.7)

With this method, the cost functions of the infinite horizon and finite horizd» pro
lems are the same for any value of prediction horizon N if full information state
feedback is used, see [Chmielewski and Manousiouthakis, 1996ae3takd
Rawlings, 1998].

Example: MIMO-PID. A controller of great practical interest that can be cast
into a static output feedback problem is the multiple inputmultiple output
(MIMO) proportional-integral-derivative (PID) controller. To see tHet oy de-

note the integrated output and consider the augmented plant with augmetded sta
dynamics

Xi+-1
Ok+1
and augmented outputs

A C 0 D
v | = 0 | [X"% 0| u. (2.9)
w|  licia-n o/ % [B

Xk

“|C 1| |ok

_[AO

+ [g} Uk, (2.8)
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The PID-controller can then be written on the form (2.4) with
KY = [Kp K KD] : (2.10)

In (2.9) we have used the forward difference to approximate the diggya
% ~ yk%s*y" which gives a direct feed through term in the model. We can also use
other approximations of the derivative including filters, but the filter conistaeds
to be set a priori and is not considered a degree of freedom for timaination.
The MIMO-PID is covered in more details in the examples.

Remark 2.2. Rather than only integrating the outputs as in equat{@r8) one
could also add integrators on the inputs to get better performance for irtiagra
disturbances at the inputs. Then one would need to estimate these disesban
by for example a Kalman filter, and include the output of the Kalman filter as
an additional model output, to be used in the controller design. Issuesdieg
offset-free tracking and disturbance rejection for MPC are treated in [Mushd
Badgwell, 2002, Pannocchia and Rawlings, 2003], where rankirequents for
the matrices in the estimator are given.

By augmenting the plant as shown above, any fixed structure conttallepno
may be posed as a static output feedback problem. In process contrt@rasting
controller could bedecentralized?l-control, but the fixed structure problem may
also be interesting in other fields, see e.g. Gadewadikar et al. [2009) wfoidied
static output feedback control for rotorcraft and Maithripala et al0OflQvhich
considered static output feedback of an electrostatic microelectromesiatain.

Difficulty of solving static output feedback. In the literature, it is proved that
problems closely related to static output feedback belongs a class of pothiat
cannot be solved by polynomial time algorithms (NP-hard problems), and it is
therefore conjectured that also the SOF problem is an NP-hard proBlemdel

and Tsitsikilis, 1997]. For a survey of different approaches to thiblpro the
reader is referred to Syrmos et al. [1997].

There is still active research in this topic, see for example Bara and Bsutay
[2005], which addresses static output feedback stabilizationatithberformance,
Fujimori [2004], which approaches static output feedback with a subsatuiv|
formulation, and Maruta et al. [2009] which addresses fixed-strucyméhesis
using particle swarm optimization. For applications to uncertain systems see e.g.
[Shu et al., 2010, Wu, 2008], and for an application to stabilization anttaaf
networks see [Menon and Edwards, 2009]. The subject of static toietpdback
is also still frequent at conferences, see e.g. the Conference asideand Con-
trol [Pakshin and Peaucelle, 2009, Nagashio and Kida, 2009, Mukaicathd Xu,
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2009, Qiu et al., 2009, Bouarar et al., 2009] and American Control €ente
[Haidar et al., 2009, Du and Yang, 2009, Ding and Yang, 2009a,b].

It is interesting to note that a fixed structure femd/ard control design prob-
lem can at least for some cases be posed as a convex problem. This istiated
by van der Meulen et al. [2008], who investigated fixed structure cthetrdesign
by exploiting iterative trials. They demonstrated their method on a wafer stajye a
a desktop printer.

Contribution of this chapter. Rather than solving for the output feedback con-
troller that directly minimizes the expected value of the cost function (2.5), in this
chapter we derive a convex approximation to the problem of minimizing the ex-
pected los€{L}, where the non-negative loss is given by

L(uk = —KYyi, X0) = I(uk = —Kyk, Xo) — Jopt(X0), (2.11)

whereJ(u, Xo) is the cost function (2.6) evaluated for a static output feedback con-
troller andJopt(Xo) is the optimal value of the objective function for any given dis-
turbancexg, which can be realized with a LQ-optimal full-information controller
(i.e. state feedbacl = —K grxXx). Note that minimizing the loss (2.11) may be
more reasonable from an engineering point of view, as we avoid perpdewi-
ations that cannot be handled even with the best controller. In somesergst

“for free” a reference model which is often used as a tuning factor rirober
design, see e.g. [Skogestad and Postlethwaite, 2005]. In any caserical evi-
dence suggests that the differences are small.

Chapter overview. The rest of this chapter is organized as follows: First, we re-
view background material on the finite horizon linear quadratic regulatomjtin
horizon static output feedback, and finite horizon static output feed@dmn we
give our main result, which is a convex approximation to the problem of minimiz-
ing the expected loss from optimal control. Thereafter two examples aga,giv
and we finally discuss our findings.

2.2 Background material

2.2.1 Finite horizon linear quadratic regulator

Let us consider the finite horizon optimal control problem, also known akrthe
ear quadratic regulator (LQR) problem (see for example [Kalman, 1&6dyef-
erences therein). This problem can be posed apan-loopgproblem in the inputs
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u= (Up,Us,---,un—1) by first writing the linear modely;1 = A+ Bw as

X1 A B
X2 A2 AB B
=1 | X%+ . . u (2.12)
XN AN AN-1B ... ... B
N—— N
X G, G}

By further definingQ = diag(Q,--,Q,Qn), andR = diagR --- ,R), the LQR
problem can be written as

/
. |u Ju Jue | | U
Jopi(X0) = i [XO] |:‘Jl/JX0 JX0X0:| [XO] (213)
with
Ju=G'QGl+R, (2.14)
Juo = G} QG (2.15)
Joxo = G /QGL,. (2.16)

This is not formulated as a feedback problem, but if we assume a moving
horizon problem and only implement the first move (of the input vegjpthen
by the principle of optimality [Bellman, 1954] an optimal feedback policy results.
Actually, without knowledge of dynamic programming, one can deduce tleat th
solution can be written as a feedback policy by solving the first-order optimality
conditions, which giveu = —J;tJuxX0, and since a new disturbangg, which
can be observed by the states, can happen at every sample time, we sigply ke
implementing the first part of this vector (corresponding to the first imguand
we have solved the moving horizon control problem. Note that a Riccatti-itaratio
can be used to fin&_gr, Which is the first part of the matriﬂ;ulJud, see e.g.
[Rawlings and Muske, 1993].

The optimal value of the cost function (denoted “value function”), whi@ w
get by inserting the optimal input= —J;}Jux,Xo into problem (2.13) is

Jopt(X0) = —%JGxOJJulJumXO + XgJoxoX0- (2.17)

Remark 2.3. The finite horizon linear quadratic regulator problem as presented
above imotset up as a feedback problem and at the first glance it may therefore not
seem to be very interesting from a control point of view, where one is nioskly

ing for feedback controllers (that has a good trade-off between pedioce and
robustness). However, since the solution can be written on the formK| grxk,



14 Static output feedback: noise-free case

where Kor = Ju‘ulJW, and all information about the past disturbances can be as-
sumed to be accumulated into the statgswve in fact get a feedback solution when
we implement the solution in a moving horizon fashion. Note however that in the
problem formulation there is no information about any moving horizon, bimgu

the solution as a moving horizon strategy happens to give good resultsinin s
mary, the LQR problem itself (posed as an open-loop problem in u) isergt v
interesting from a practical point of view, but itteiplementatioras a state feed-
back is what makes this problem interesting.

We further remind the readers about the guaranteed robustness reasfjin
linear quadratic Gaussian control (LQG), for which “there are none” ¢ile,
1978], so using the state feedback with a Kalman filter in the loop should ke don
with care. Other researches have pointed out that this limitation of no gueesl
margins is not too important in practise, see e.g. [Pannocchia et al., RO0%e
practitioner should nevertheless be aware of this limitation.

2.2.2 Infinite horizon static output feedback

The problem of finding the static output feedback that minimizes the expected
value of the infinite-horizon objective functialf in equation (2.5) may be posed

as minimizing thes#>-norm of the lower fractional transforiq (P,KY) = P11+

Pro(l — PoKY) 1Py s [é’; g: } whereP is given by e.g., [Skogestad and Postleth-
waite, 2005]:

A Wi B

Pi P2l s| QY2 0 | ©
P= = 2.18
b el % 0 e e19

C 070

The #,-norm ||/ (P,KY)||2 can be computed by first solving a Lyapunov equation
to obtain the “state covariance” mati®{Bryson and Ho, 1975]:

S=ArSA; +BrBE, (2.19)
The “output covariance” is then given by
R=Cr SG; + Dr Dg; (2.20)

and finally
IR (P.KY)||2 = trace(R). (2.21)

This problem is nevertheless believed to be NP-hard [Blondel and Tsitsiid@],
and the “brute-force” approach is to optimize directly on the gain m#&#jxvhich
works well as long as we have a good initial guess. A minimal requirememit fro
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our experience is that the initial guess should stabilize the plant, astherm is
only defined for stable plants.

Remark 2.4. (Interpretation of#»-norm) The problem of regulating a system that
is driven by white noise back to origin may seem a bit restrictive from the practi-
tioner’s point of view, since the dominating disturbances in e.g. a chejmiceéss
plant look more like sinusoids than white noise. By [Skogestad and Posdiethw
2005, Tables A.1-A.2, page 540] we have that one should minimizétherm if

1. Theinput signal is assumed to be (series of) impulses and the emad g9
evaluated by the 2-norm (energy).

2. The input signal is assumed to be bounded by it's energy (2-narchjhee
error signal is evaluated by the-norm (peak magnitude).

In order to cover sinusoids one must use the maximum singular valtespea-
cially point 2, energy bounded input and peak magnitude as a mea$@meoo
signal, should be quite interesting from a practical point of view.

2.2.3 Finite horizon static output feedback

Let us analyze the problem of minimizing the expected value of the finite horizon
objective functionJ given in equation (2.6). For a giveq the objective function
can be written as

J(xo) =72 (2.22)

with
z=GY?xg (2.23)
= (AY)QNAY + % "(Q+ (KC)'RKC)AL (2.24)

where the dependence &8 enters through the state mat#,

A. = A—BKYC. (2.25)
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Note thatAl, is A; raised to the power and further note tha® is symmetric under
the assumption th& andR are symmetric matrices. It now follows that

E{J} =E{Zz} =E {trac4zZ)} =E {traCE{Gl/Zxoxgel/Z)}
=E {trace(Gl/ 2GY 2x0xg)}
= traceGY/2GY2E {xo%})
— tracg GY/2GY 2\/\&})/ 2\/\&})/2)
= trace (GY/2W/?Y (GY/2WY?))
= |G/

where we have used thBt{Xox;} = var(Xg) = W, and the identify tracde\B) =
tracdBA).
In order to synthesize a static output feedback controller one may use-a no

linear search to minimize the norfGY/2W, /|2, but this problem is expected to
be NP-hard [Blondel and Tsitsikilis, 1997].

2.3 Minimization of expected loss from optimal control

In this section we first analyse the problem of minimizing the expected loss
E{J(u,d) — Jopr(d)} (2.26)

and then we derive an upper bound for this problem that may be foundriwex

optimization.

2.3.1 Analysis

Let the plant model (2.1)-(2.2) be written in the from= G{ xo + Gju as in equa-
tion (2.12) and let

Gl =CG+D, G} =CG, (2.27)
where
C=diagC,...,D), D=diagD,...,D). (2.28)
Further, lety denote the stacked vector of outputs,

Yo
y=1:1]. (2.29)
YN
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Consider now the augmented linear model

u I 0
J = = Wyd 2.30
= [3) = o oy e (250
S~—~— S~—~— X
(e} Gg

whered is a normally distributed random variable with zero mean and unit covari-
ance, ant\y = M/Z, such thaky = Wyd. Note that

var(xp) = var(Wyd) = var(V\&ﬁ/ 2d) =W, (2.31)

as expected. The static output feedback consttaint-diag K, ...,KY)y can be
written as

I diagKY,...,KY)]§=0. (2.32)

H

Here, the block diagonal structure digg, Ky, ..., Ky, _,) is required to have causal-
ity whereak¥ = K = K = --- = K{|_; gives a time invariant controller.

Halvorsen et al. [2003] show that the la3&1,d) — Jopt(d) for a givend of
adding a constrairtly = 0 to an otherwise unconstrained optimization problem is
given by

1
L(u,d) = J(u,d) — Jopt(d) = éq’q (2.33)
with
q=—XHFWd, (2.34)
X = JHAHGY) L, (2.35)
F = (G313 — GY,). (2.36)

By exactly the same deviation as for the finite horizon static output feedlvabk p
lem in section 2.2.3 we find that the expected value of the loss is

E{L} = fH\Jl/Z(HGV)*lHFWdH,Z:. (2.37)
~—_———
G

This expression is also derived by Kariwala et al. [2008].
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2.3.2 Solution
Problem (2.37) of minimizing the expected loss can be restated as:
min E{L} = [ XHFW(2 (2.38)
s.t.X = JA(HGY) ! (2.39)
H on the formH = [I  diagKY,...,KY)] (2.40)

This problem is non-convex due to the inversionti®Y, and moreover it is
probably as difficult as the original static output feedback problem of mitiigiz
the cost (2.6), as the only difference is that we subtract a referemteter in the
objective function.

However, if we for the moment létl be a full matrix, meaning that could
be a function of all outputg (in general, non-causal), there exists a reformulation
which makes the problem convex:

Theorem 2.1. (Convex reformulation for full H [Alstad et al., 2009]) The optimal
full H that minimizes the expected loss in equati@r87)can be found by solving
the convexoptimization problem

min ||HFW;||r
H (2.41)

subject to X= (HGY) being any fixed full rank matrix (e.g., % J&L/,Z)

The reason why we can oni = J&éZ(HGy)*l is that the expression for the
loss is not affected by a non-singular matbxin front of H. That is, ifH is an
optimal solution that minimize§XHF||g, then so isH; = DH whereD is any
non-singular matrix of appropriate dimensions [Alstad et al., 2009].

For our case, where we know that we are looking for a feedback so]tio
can be satisfied by requiring thel, = [I K] where use of the identity matrix
guarantees full rank and where the remairihig a full matrix. This gives no loss
because we may choose the non-singDlao getH; = DH.

Remark 2.5. Actually, [Alstad et al., 2009] require X% | which is one way of
guaranteeing that X has full rank. This can be relaxed even more aseX it
need to be the identity matrix (1), but can be any full rank matrix Yelchud1(2.
This also means that the matriy,Js not needed, and from this we finally get the
result in Theorem 2.1 that it is enough to require that H@s full rank. Explicit
knowledge about, is not actually required when finding the optimal H using
(2.41) but it would be required to find a numerical value for the loss.

Theorem 2.1 does not apply for the case of a structidreddiag(KY, ... ,KY).
However, a suboptima&Y is obtained by solving the following problem:
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Definiton 2.1. (Upper bound on the loss by using static output feedback) The
following convex problem can be used to find an upper bound for the ostatad
output feedback:

min ||[HFW |2
H F (2.42)
s.t. Honthe form H= I diag(KY,...,KY)],

where F is given by2.36)

As we demonstrate in the examples, we have numerical evidence that indicates
that for some interesting cases, we get solutions that are close enoughtitogh
solution such that we can use the resulting controller as an initial conditican for
nonlinear search (or simply use the sub-optimal controller directly).

Problem (2.42) can be solved as a quadratic program (QP) by vetimnizA
so-called “large-scale algorithm” is a good candidate to solve the resultingsQP
the problem is structured and only equality constraints are present [Mat].

Remark 2.6. Note that probleng2.42)differs from the original static output feed-
back problem in two ways: First, we minimize the loss from the LQR controller,

rather than the cost functiof®.6) directly. Second, we neglecta(J&(,z(H &)t

which gives the effect of the termﬁ(\]gc/z. Neglecting X is not expected to have a
large effect as we conclude that it is exact for the case when K is full.

2.4 Examples

We here give two examples of application of the static output feedbackrdesig
method. First we discuss proportional-integral (Pl) LQ-optimal contiral get of
second-order underdamped plagts) = k/(12s? + 21s+ 1), where we change
the damping coefficierg in the range, € [0,1]. As a second example we discuss
multivariable PID control of a distillation column.

2.4.1 PI control of underdamped plant
Consider the following second-order system:

k

0 =g agsi 1 (2:43)

We want to design a proportional-integral (PI) LQ-optimal controller fas th
plant, and we want to investigate our design method for different valudiseof
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damping coefficienf. For plants with small values d@fa PI controller is not ex-
pected to work very well, and thus the problem of finding PI parameterpentsd
to be difficult.

Using the observer canonical form, see e.g. [Skogestad and Positethwa
2005], we write the system on state-space form:

. 0 1 0
X= [1/T2 ZZ/T} x* [k/Tz] t ymz[iﬂz (2.44)
A B c

To design a PI controller, we augment the system with an integrated outpet, to g

) X] A 0 X B
2:6: 0 0+Ou
] 10 0 L
A B (2.45)
Iw] 100
y’“—[y'__[o 0 1/

|

We here consider = k = 1, and sample the plant witfy = 0.1 to get a discrete-
time model which we use for design of different static-output feedbacttaiers.
We define the quadratic weights for the controller design as:

0
Q= 0 |, R=1 (2.46)
1

In addition we assume that the disturbances are equally distributed on altbe s
and therefore usef, = W; =1.
Figure 2.1 shows closed loop norifig (P,KY)||2 for the following controllers:

1: Optimal finite horizon PI for original cost function For a horizon oN =100

we used nonlinear optimization to minimize the ndj&+2W./?||¢ as given
in section 2.2.3.

2: Convex approximation of minimizing the expected lossFor the same hori-
zon of N = 100 we solve the convex problem (2.42).

3: Optimal infinite horizon PI for original cost function Here we used a non-
linear solver to solve the problem posed in section 2.2.2, i.e. we search for
aKY such that the norrjF (P, KY)||2 in equation (2.21) is minimized.
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30 .
= — 1. Optimal finite horizon PI
é 251 = = = 2: Upper bound by convex approximatign
2 ool ——— 3: Optimal infinite horizon PI )
S W | 4: LQR
© 15 l
(D]
o I
O 10f | .

T RN

5
00.058 0.5 1
Damping coefficient

Figure 2.1: Closed-loop normig (P, KY)|| for different design methods.

4: Optimal PI for loss formulation For an input horizon oN = 100 was prob-
lem (2.38)-(2.40) too time-consuming to solve. We discuss the properties of
this solution for a smaller horizon after this example.

5: LQR controller An infinite horizon linear quadratic controller for the aug-
mented plant.

Corresponding closed-loop responses for a damping coeffiCier. 101 are
shown in Figure 2.2, and the specific controller gains for the same damping co
efficient are given in Table 2.1. As already mentioned we uded 100 in the
design of the finite horizon controllers, which in this plot corresponds thri@
units. For such a underdamped system, it seems like the prediction horizbit is a
too small. Nevertheless, we conclude that the controllers are companathlinzd
they can be ranked as shown by the closed-loop norms in Figure 2.1, ndraely
optimal infinite horizon PI controller is the best static output feedback ciberiro
but that the optimal finite horizon PI controller and the convex approximaten a
quite similiar with respect to closed-loop performance.

We observe that the LQR controller for the same process is superiorforper
mance to the static output feedback controllers. This is expected as wehose
a “difficult” plant to control with the PI-structure of the controller. The L@Bn-
troller use a measurement of the whole state vector and does not saffetlfe
same controllability issues.

For both optimal control problems, which need to be solved by nonlinear op-
timization, we started witd = 1, for which initial conditions can easily be found,
and incrementally decreased the damping coeffidietat trace the optimum to-
wards( = 0.
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LN o

Plant output

1: Optimal finite horizon PI
— = = 2: Upper bound by convex approximatipn
——— 3: Optimal infinite horizon PI
------- 4: LQR

0 10 20 30 40 50 60
Time

Figure 2.2: Closed loop responses for Pl control with damping coefticien
0.101. Disturbance at time= 0 isxp = (1,0,0).

Case Controller gain

Optimal finite horizon PI [0.411 Q167
Upper bound by convex approximation [0.372 Q173
[

Optimal infinite horizon PI 0.389 Q124
LQR 0.879 1151 0942

Table 2.1: Output feedback (PI) controllers for damping coeffialeat0.101.
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Expected value to be mini- Controller gain Closed loop norm

mized (= infinite horizon
cost)

Finite horizon cosf in (2.6) [0.643 (0335 13.74

Approximated loss in (2.42) [0.413 0232 1112

Exact loss in (2.37) [0.345 Q161] 10.95

Infinite horizon costJ® in [0.447 Q190 10.81

(2.5)

LQR [0.899 1085 0946 6.78

Table 2.2: Output feedback (PI) controllers for damping coeffialeat0.15 with
a smaller horizon for the finite horizon cosk$é= 20, compared to the rest of the
example, where we uséd= 100.

From Figure 2.1 we observe that in the range of process&sdd.058 1] is
the convex approximation very close to the optimal finite horizon PI contréltar.
the very underdamped processes in the ra@ge058 neither of the finite horizon
PI controllers resulted in stable closed loop. This might have been imprgved b
using a larger prediction horizoN in the design problem. However, even by
taking an infinitely long prediction horizon there is a point where the “forédd
structure of the controller is simply not suited for the process. This is illustrate
by the infinite horizon PI controller, for which the closed-loop norm insesa
and eventually becomes infinity §s— 0. This is because derivative action (PID
controller) is required to stabilize a process on the foisf.1

Comparison with exact loss minimization

In Table 2.2 we show the results of the different design methods when eva us
shorter horizonN = 20, for the finite horizon approximations. Minimizing the
expected loss function in equation (2.37) is quite complicated, so we could not
include this result in the rest of the example, where we used an hori2éa-df00

in the finite horizon approximations.

The results in Table 2.2 are quite interesting; we observe that in terms of the
closed loop norm, our convex approximation of minimizing the loss is actually
better than directly minimizing the finite horizon approximation. This may be
related to the fact that in the convex approximation we are minimizing the loss
to an LQR controller, which does not degenerate when the horizon is sniel. T
static output feedback controller that directly minimizes the cost should be more
sensitive to a short horizon, because the weight on the final state indtfeiaotion
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assumes an LQR controller, which is not correct. The weight matrix for iz fi
statexy was

9.58 1117 1Q001], (2.47)
1416 1001 2008

derived by the method of Remark 2.1.

We further notice that the exact loss is quite close in performance to minimiz-
ing directly the infinite cost. Then there is an additional (small) increase in gte co
by using the approximated loss function, this is due to the convex relaxattbe of
problem.

1473 958 1416
Qn =

2.4.2 Binary distillation

In this example we consider MIMO-PI and -PID control of “Column A’ in Bk
gestad, 1997]. The model is based on the following assumptions:

e binary separation,

e 41 stages, including reboiler and total condenser,

e each stage is at equilibrium, with constant relative volatiity: 1.5,
e linearized liquid flow dynamics,

e negligible vapor holdup,

e constant pressure.

A sketch of the column is shown in Figure 2.3. The feed enters on stage 21.

We here consider thieV -configuration, wher® andB are used to control the
levels. With level controllers implemented (P-control with= 10) the rest of the
column is stable.

The model is first linearized around the nominal operating point givenbteTa
2.3. Balanced reduction was used to reduce the number of states fronil82 to
with a largest neglected Hankel singular value d&¥-10-°. Then integrated
outputs were added to the model, resulting in a model with 18 states. If we let the
outputs of the model be P, I, and D, we get a model with the following structure

o] =l o ¢]+[cl
yP C 0 0] - (2.48)
vy =10 1 [();}L 0|u
yP CA 0 CB



2.4. Examples 25

g ¢

Figure 2.3: Sketch of distillation column.

Type Description Variable Nominal Value
Input Reflux flow L (u) 187

Vapor flow Vo (W) 2.37
Disturbance Feed flow F (dy) 10

Feed composition Z= (dy) 0.5

Liquid feed fraction OF 10
Output Overhead compositionxp (Y1) 0.95

(light component)

Bottoms composition xg  (Yy2) 0.05

(light component)

Table 2.3: Variables for distillation example. Variable names in parenthesis indi-
cate corresponding deviation variables, for exanple L —1.87. The liquid feed
fractiongr is assumed constant.
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Description  Control equation I/ (P,K)||2
Upperbound = — [ Ggezs & 2066 Yk — (63900 25700) Yk 3.654
Pl
Optimal Pl uc=— 571 “g5017) Yk — [5.4088 2 7756] Yk 3.650
Upperbound u, = — (1000 461387 — [39068 0380~ 3650
PID [71.495171.2063] Y
Optimal PID - ux = — [ 3169 ~Ji606s) Yk — [61020 27143 %k— 3630
[72.4821 73.8819] yD
~7.0188 -8.4573] Yk
LQR Given by equation (2.50) .810

Table 2.4: Controller gains for the upper bound PI and PID controllamsddy
solving problem (2.42) and optimal controller for the distillation column example.

This model is sampled with; = 1 to get a discrete time model. We use the weights
Q=C [OI O} C,andR=0.1-1. For the finite horizon approximation we use a

prediction horizon oN = 80, and we also for this example assuwie=I.
We now look for controllers on the form

ue = — (KPyE +K'yi + KoyR) (2.49)

and we assume measurements of the compositions with a sample time of 1 minute
is available.

Table 2.4 shows the result of using the approximation given by probler)(2.4
and the assumed global optimum of the original problem for both MIMO-HEI an
-PID designs. In particular for the Pl case is the solution of the convesoapna-
tion quite close to the optimal Pl controller. The LQR controlige= —K-QRx,
with gain

KLQR _ ke kal,

—0.0022 00002 —0.0004 —0.0007 00016 —0.009

wherek; [ 0.0008 00015 —0.0016 —0.0037 00079 —0.0074

(2.50)

—0.0036 00048 00116 —0.0011 —0.0213 00305 ]

—0.0066 00262 00610 Q0044 00093 —0.0148
0.0149 Q00521 01349 01034 26897 —O. 5975]
0.0233 —0.0372 —0.1607 00895 —0.1350 —2.5939

has a closed loop gain which is in the same range as the static output feedback
controllers. We also notice with interest that adding derivative action doges
improve the closed loop norm much, even for the optimal PID controller.

Figure 2.4 shows responses to step disturbances for the differemnoltzms.
The optimal PID controller seems to be a bit too aggressive, however this is e
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Figure 2.4: Closed loop responses for distillation example. Disturbanmgsins
feed rate at = 10 and step in feed compositiontat 100.

pected as we did not include any penalty on the rate of chamge ux_1). Nev-
ertheless, the controllers are quite comparable in performance, whicratsmeh
wanted to demonstrate with this example.

2.5 Proposed procedure

For plants where a MIMO-PID or another “fixed-structure” controlledésired,
we propose the following design procedure in order to use the results ichidgys
ter:

1. Design a good LQR controller by modifying the weigl@sandR in the
gquadratic objective function (2.5).

2. Propose aimplefixed-structure controller, for example a diagonal Pl con-
troller, and use convex approximation (2.42) to find the controller gains.

3. Evaluate the difference in closed-loop costs between the LQR anddhe pr
posed simple controller.
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(a) If the difference large, increase the complexity of the controller by
for example allowing for interactions in the controller (i.e. add off-
diagonal elements). In addition one can add filters in the PID formula-
tions to change the dynamic properties of the controller.

(b) If the difference is acceptably small, finish.

In the procedure above we solve at each iteration a static decentralia&dlco
problem (where static in this chapter allows for MIMO-PID and other figgdeture
designs). For a given decentralized controller, we compare the cost 0GR
controller, and we add complexity if needed. Note that decentralized tastro
known to have non-unique solutions, see for example [Hovd and Stkafjd994,
Example 6] and [Lundstirm and Skogestad, 1991]. It seems therefore likely that
the convex approximation of the minimization of expected loss may perform badly
for a controller with many zero elements. Investigation of this phenomenon is
planned further work in this project. However, for a structure that is sutied

for the plant, the method should work satisfactory.

2.6 Discussion

2.6.1 Loss versus finite horizon objective

We observed in the example of Pl control of an underdamped plant thettivex
approximation of minimizing the loss actually performieetterin terms of the
closed-loop norm than minimizing a finite-horizon objective function. As dliyea
mentioned this is probably due to that the finite horizon cost function is nodé go
approximation for the infinite horizon cost for small horizdhgvhen static output
feedback is used. Minimizing the loss seems to be less sensitive to small lsprizon
and this is probably due to that we are approximating the cost function of tax lin
quadratic controller described in section 2.2.1 which is independeé¥t of

The problems with the finite horizon objective function for controller design
may also be brought back to the issues with the moving horizon controller itself;
usually when a moving horizon control problem is posed feedback is kehta
into account, subsequently by only implementing the first move we have a-differ
ence between the controller used on the plant and the one found by the eptimiz
These limitations have been acknowledged in the terms of robust modeltjyedic
control, see e.g. [Bemporad and Morari, 1999], but are often nataddd.

The limitations with the finite horizon approach further justifies our approach
of minimizing the expected loss from the cost of using an optimal controller. The
approximation may be as valid as simply using a finite horizon cost for output
feedback design, and this is indeed demonstrated by the results of Tafieth&
example of controlling an underdamped plant.
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2.6.2 Solution method
Recall the convex approximation (2.42):
min|| HFW e
s.t.H onthe formH = [I diagKY,...,KY)].

We chose to solve this as a quadratic program by vectorization. Vectonizatio

the problem can be done by first defining

4
H2Z = %
Z,
and then
Z
Y4)
z= |,
Z,
and finally
FWy
FWy
I:diag:
FWy
We now rewrite the objective function as:
IHFWg [ = [[ZFWall2 = || | 7| FWalB =11 | =, | IR =
z, z,F\Wy
=||[ZFWa ZFWa - ZFW] [|2 = [|ZFdiagllz =

(2.51)

(2.52)

(2.53)

(2.54)

Here we used the following identityfA||r = ||A/||r = trac§ A'A) = tracd AA)).

In addition we add equality constraints pauch thaH is constrained to be on
the formH = [I diagKY,...,KY)], let Az= b denote these constraints. In order
to solve the convex approximation we therefore chose to solve the followihg Q

s.t.Az=b

(2.55)
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CPU time [minutes]

N  size of optimization vectoz CPLEX QUADPROG

80 102400 elements 1.4 1.4
100 160000 elements 5.0 5.3
120 230400 elements 43 out of memory

Table 2.5: CPU times for MIMO-PID design for the distillation example.

The optimization vectoz has lengtiN2n,(n, +ny), and the length ab is such that

the remaining degrees of freedom (if we were to substitute the equality amnstr
into the objective function) are equal to the number of elements in the statictcoutpu
feedback gairkY. Even though this is a convex QP we experienced that it took
quite long time to solve the problem, as the following example illustrates.

Example: MIMO-PID design for distillation column. Let us consider the
MIMO PID design in for the distillation example in section 2.4.2. In Table 2.5
we report CPU times for the commercial QP solver CPLEX version 12.1 called
through the “IBM ILOG CPLEX Matlab connector” on a Dell PowerEdgeQ9
with an Intel Xenon CPU E5410 at 2.33 GHz with 8GB RAM, running CentOS
Linux release 5.2. In addition we tried to use Matlab8ARpPROGINn “large-scale
mode”, which handles sparse Hessian and equality constraints. Weebzatrfor
smallN the solvers have the same solution time, bub@PROG causes Matlab to

go out of memory for largé.

There is probably a significant potential to improve the solution of this QP
by using a tailor-made solver. For instance, the “IBM ILOG CPLEX Matlab
connector” converts sparse matrices to full matrices before it sendgsdbiem
to CPLEX. This is clearly not beneficial for our problem, as the Hessianixnatr
FaiagFgiag IS @ block diagonal matrix witk F’ on the diagonal and zeros on the rest
of the matrix. We leave improvements of the solution as further researcloor n

2.6.3 lterative method

The expected loss minimization,

min [ J°(HGY)*HFW|le
s.t.H onthe form[HY H'] = [diagKY) ],
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can be solved iteratively as

min HZkFWdHF
Hi

s.t.H onthe form[HY HY] = [diagKY) 1] (2.56)
2 = Ni—1Hk
with s
N1 = Jih*(Hi1GY) 2. (2.57)

However, we identified two problems with using this method. First, the method
did not converge to the optimal solution of the nonlinear problem. This is due to
that for a giverlNk_1, the objective functions

J1(Hi) = [|%

L2 (HGY) " THIFWy ||
and
Jo(Hk) = ||Nk—1HkFWq ||

arenotthe same. In the examples covered in this chapter this was not too important
asJi?(HG)Y/2 was close to unitary at the optimal point.

Second, we solved this problem as a quadratic program (QP) by véogpriz
problem (2.56). For a large prediction horizon, just performing the vizetibon
takes a very long timex{ 1 hour). This can most likely be fixed by paying more
attention to the coding, as we used “standard” Matlab code (sparse matcix fu
tionality) to define the problem.

We therefore recommend to ignore the tédn ; and rather solve the convex
approximation, as this can be solved with considerably larger predictiarnomor
N for the same computational effort as the iterative scheme.

2.6.4 Static decentralized control

A static decentralized control problem may readily be posed as in probld2)(2

as one only has to add additional constraints that some parts of the statit outpu
feedbackKY should have zero elements. For example, one could search for a
diagonal Pl structure. As already mentioned in the design proceduestigation

of synthesis of diagonal controllers if planned further work in this pitojec

2.7 Conclusion

We have given a convex initialization for the static output feedback proteich
can be used to initialize a non-linear search for finite and infinite horizon olptima
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Variable Value
LossL* = 3G2(Ji°(HGY)~HF) 46.28
Corresponding input vect@nax [-0.05 083 056]'

Finite horizon cost oKy, ex approximation 6842
starting fromxg = dmax

Finite horizon cost foK| gr starting from 2214

X0 = Omax

Difference in costs 428
Bound on relative maximum loss by equa209%
tion (2.58)

Table 2.6: Loss calculation by the 2-norm fp 0.101.

static output feedback controllers. However, as examples indicate, thedmaty
also be used on it's own, as the sub-optimal static output feedback corstrarée
quite close to the optimal ones for the examples studied.

We finally stress that this is a heuristic method with no guarantee of success
for a given linear system, but that it performed well on the examples inatstg
in the chapter.

2.8 Appendix: Bounds on the loss

In this appendix we give some numerical verifications on our calculaticthsaln
culate a relative bound to the LQR controller by using the maximum singular value
for the loss function. The maximum singular value will occur if we consider the
worst case value of the loss function when the augmented disturtfaac[ei’ n]

is bounded in the 2-norm, see e.g. [Kariwala et al., 2008]. In this chagteow
sider the expected loss (denoted as “average loss” by Kariwala ef@8]javhen

the augmented disturbance vealds assumed to be a random variable drawn from
a normal distribution, and we showed that the resulting norm to be minimized is
the Frobenius norm. Kariwala et al. [2008] showed that for the casefulf &

(i.e. where the structural constrairt ‘on the form[HY HY| = [diag(KY) 1]")

will an H that minimizes the Frobenius norm of the loss also minimize the max-
imum singular value, hence the optintdlis “super-optimal”. This result cannot

be applied to our case, since we have added the structural constraiot sitatic
output feedback, but the norms should still be related.
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Method Loss  JapproXdmax) Bound
Upper bound PI 295 896 34%
Upper bound PID @252 890 29%

Table 2.7: Bounds of sub optimality for upper bound Pl and PID controdieue
lated by expression (2.58).

2.8.1 Bound for the underdamped system

The loss can be used to calculate a relative bound between a static oatthdadk
controllerKY and the optimal state feedback (finite horizon LQR) contrdlesr.
This is done in Table 2.6 for the case of damping coefficteat0.101. We first
use the singular value decomposition to find the maximum singular valu&»f 9
and the corresponding worst-case disturbathgg = [-0.05 083 056}'. We
then calculate the finite horizon objective with= 100 withxg = dmax for both the
static output feedback controller and the LQR controller, and we obsleat¢he
difference in objective functions is indeed equal to the loss. Hence, abtigimd
on the relative worst-case loss from optimality is:

\](Ky7 dmaX) _ Jopt(dWOI'St CaS? B L*

Jopt(dmax) - J(Ky’ dmax) _L* (258)

Remark 2.7. The results in Table 2.6 gives bounds on the worst-case error for the
given K that we found by using the convex approximation. Note however that we
in this chapter use the Frobenius norm, and since H is not full it is not givan th
an optimal H in the Frobenius norm also minimizes the worst-case erras, the

case for full H, see [Kariwala et al., 2008].

2.8.2 Bounds for distillation example

Also for the distillation case can we calculate the worst case relative ditferia

cost functions between optimal control and the static output feedbacfuatien
(2.58). The results are reported in Table 2.7, and we observe thatlétizae
difference between state feedback and static output feedback ardeaddhat
what was the case for the underdamped system. In this in accordance svith th
closed loop simulations in Figures 2.2 and 2.4.
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Chapter 3

Static output feedback with noisy
measurements

In this chapter we generalize the results in Chapter 2 to/m&sasurements.
This generalization has the following implications:

e The reference controller, which for the noise-free case avéisite
horizon linear quadratic regulator, is for this case a nansal con-
troller which depends on information about the current andré dis-
turbances.

e We need to consider disturbances on all the states ovemtigewin-
dow of interest, because otherwise the noise will domina¢eopti-
mization.

The inclusion of noise gives us one extra tuning paramétemoise weight
Wh. This weight may be useful in applications, for example tuee the

derivative action in a multivariable PID controller, whichan be achieved by
simply adding more “fictitious” noise on the derivate output

3.1 Introduction
Consider the linear process

X1 = AX + Bu+ di (3.1)
Yk = Cx+ Duk + ng (3.2)

We assume that the disturbanaksand noise termsgy are normally distributed
random variables with zero means and variaMieg, respectively.

Remark 3.1. The difference in assumptions on mo(Bel)-(3.2)from model2.1)
(2.3)in Chapter(2) is that we have additional normally distributed disturbances

35
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dk on all the states (and not only on the initial statg and also allow for normally
distributed noise pon all the measurements (while in Chapter 2 we neglected the
noise).

The objective is to find atatic output feedbacku= —KYyy that minimizes the
expected valuef the objective

(< H 1 z / . /
J —Tl'Tw{TiZOKQNJrUiRU}, (3.3)

with Q = C,QYC, whereQ" > 0 is a quadratic weight on the controlled outpzits-
Cx andR > 0 is a weight on input usage. The infinite horizon objective function
may be approximated by a finite horizon cost function (see e.g. Chmielendki a
Manousiouthakis [1996] and Scokaert and Rawlings [1998]) to

N-1

J = XyQnxn + Z) XQx% + URu. (3.4)

Contribution of this chapter. In this chapter we derive a convex approximation
to the problem of minimizing thexpected valuef the non-negative loss

L(u,d,n) = J(u,d,n) — Jopi(d) (3.5)

whereJ(u,d,n) is the value of the cost function (3.4) evaluated and for a given
static output feedback policy for a specific realization of the disturbance

do
d
! (3.6)

and noise

n= : (3.7)

NN-1

For more background information is the reader referred to Chapter 2.
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Chapter overview. The rest of the chapter is organized as follows: First, we
show how the background material in Chapter 2 needs to be adjusted int@rde
account for noise. That is, we first present the reference contthli¢is used in
this chapter (corresponding to the linear quadratic regulator for theotasenoise

in Chapter 2). Then some modifications to the problem of infinite and finite hori-
zon static output feedback are discussed. Thereafter we presemiainresult,
which is a convex approximation of the problem of finding a static outputieed
such that the expected loss from an optimal controller is minimized. Finally, we
demonstrate the method on a simple example.

3.2 Background material

3.2.1 Optimal non-causal control

Let us consider the extension from the finite horizon linear quadratidatgyun
Chapter 2, section 2.2.1, when we let the optimal inp&t(up, us,--- ,un—1) be a
function of all disturbanced (and not only the initial disturbanog as in Chapter
2). (The resulting reference will then no longer be a causal controfénrs}, let
the linear modeky 1 = Ax + Buk + di be written on the form

X1 B I
X2 AB B A I
L= . u+| .
: : : (3.8)
XN AN-1B .. ... B AN-L
——
X G Gy
By substitution of the model (3.8) into the finite horizon objective function (3.4)
we obtain )
u Juu Jud:| |:U:|
J= 3.9
[d] [Jéd Jua] |d 39
where
Ju=G'QCE+R (3.10)
Jua = G QG (3.11)
Joa = G§ QG (3.12)
Q_: dlang Qa 7Q>QN) (313)
R=diagR R, - ,R) (3.14)

The optimizer of problem (3.9) may be found by simply completing the squares
[Astrom and Wittenmark, 1984] and is given by:

Uopt = —Jgi-Juad (3.15)
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The optimal cost (for a gived) is then given by
Jopt(d) = —d' I g it Juad + d' Jgqd. (3.16)

The optimal inputugpt = —Ju‘ulJudd cannot be realized as a feedback controller
since it depends on the full disturbance vedpincluding future disturbances.
The optimal cost (3.16) is therefore a measure of how well we can cadiol
plant with any controller, non-causal included.

Remark 3.2. In Chapter 2, where only disturbances gywmrere allowed, we found

a nice interpretation of the resulting optimal input u, namely that it can be im-
plemented as the solution to a finite horizon linear quadratic regulator problem
Unfortunately the corresponding expression for the case of more daiods,
eguation(3.15) does not have such an interpretation, as we cannot realize the
control action by a feedback controller. Nevertheless, it is this optimatrotber

that we will use as reference for the loss minimization when noise is pregent, b
cause this reference lets us derive a convex approximation similar to whdidwv

in Chapter 2.

3.2.2 Infinite horizon static output feedback with noise

The problem of minimizing the expected value of the infinite-horizon objective
function J* in equation (2.5) may be posed as minimizing thignorm of the
lower fractional transfornf (P, KY) = P11+ Pyo(l —P22Ky)‘1P21§ [ég Eg} where

P is given by e.g., [Skogestad and Postlethwaite, 2005]:

A [WY2 0 ., B

[P P2l s | QY2] 0 0, 0

P_[Pm Pzz]_ 0| 0 o0 'R¥ (3.17)
~C | 0o Vv¥Zio

The reason we can use thg-norm is that this may be interpreted as the response
to input signals that are white noise (by for example following a normal distribu
tion as in this case) [Skogestad and Postlethwaite, 2005]. For more baokigr
material see Chapter 2.

Note that the only difference between the plant (3.17) and the corrdsgpn
plant in equation (2.18), Chapter 2, is that we have added an extra imponel to
account for the measurement noise.

3.2.3 Finite horizon static output feedback with noise

Let us analyze the problem of minimizing the expected value of the finite horizon
objective function] in equation (3.4) when noise is present. First, for a given static
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output feedbacki = —KYyy we have that
X1 I BKY
X2 A I A:BKY  BKY
| = . . d— ] n, (3.18)
XN AL AY-1BKY ... ... BKY
——
x Gi —G§
which on a compact form can be written as
X X d X
x=[G} & [n] g (3.19)
~——
GX -
d
where
A; = A—-BKYC. (3.20)
In addition, the inputi is given by
u = —KYy = —KY(Cxc+ k), (3.21)
which means that the vector of stacked inpwtan be expressed as
u= —(KYC)x—K¥n
= —(KYC)G{d —K¥n
—- [®O)E; ©0G+1)[(]
= —Gyd
where
(KYC) = diag KYC,--- ,KYC) (3.22)
KY =diagKY,--- ,KY) (3.23)
and
Gy = Gy G (3.24)
Gy = —(KYC)G} (3.25)
GY = — (KYC)GX +KY (3.26)
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The finite horizon objective functiod = XQx+ URy, with Q and R given by
equations (3.13)-(3.14), can be written as

J(x,u) = XQx+ URu
d'GYQeyd+d' GYRGyd
= d'(GYQG;+GYRG}d

The problem of finding a static output feedbagk= —KYy, that minimizes the
expected valuef the objectivel in equation (3.4) can now be analyzed by first
defining

J(KY,d) =7z (3.27)

with
z=GY2d (3.28)
G =G4 QG+ Gy'RG} (3.29)

Let
7 - |diagW) diagV) (3.30)

be the covariance matrix for the random variaibte [4]. Now, by the same deriva-
tions that are used in Chapter 2, page 16, we can show that the expalttedd/
the cost function for a given value & is:

E{J} = ||G"?Z"?|2. (3.31)

In order to synthesize a static output feedback controller one couldnsdiaear
search to minimize the norm in equation (3.31), but this problem is expected to be
NP-hard [Blondel and Tsitsikilis, 1997].

3.3 Minimization of expected loss

In this section, we first analyse the problem of minimizing the expected value of
the loss

L(u,d,n) =J(u,d,n) — Jopt(d) (3.32)

whereu s the result of a given static output feedback law. Then we derivexaegon
approximation for the problem of finding an optimal static output feedback.
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3.3.1 Analysis
Similar to Chapter 2, section 2.3.1, we consider an augmented linear model
~ u | Ol - |0]—
y= M = [Gd u+ [G‘J d+ [WJ n (3.33)
N—— N——
GY Gg
where
G, =diag(C)G}, G = diagC)Gy, (3.34)

andG}, G are defined by equation (3.8). Hedeand i are normally distributed
random variables with

Wy = diagW/?), W, = diag(V/?), (3.35)

such that the equalities _
d=Wyd, n=Whn (3.36)

hold. The static output feedback constraint —diag KY)y can be written as
(I diagKY)]y=0. (3.37)

Halvorsen et al. [2003] derived an expression for the lc(ssd_,ﬁ) = J(u,d_,ﬁ) -
Jopt(d) whereu is used to fulfill the static output feedback constraint (3.37):

L(u,d, ) = J(u,d, ") — Jope(d) = %z’z, (3.38)
where
- [d]
z= —XHF [ﬁ (3.39)
X = 2 HG) 1 (3.40)
F=[FWs Wi (3.41)
F=—(G'3 -G (3.42)

whereJdy,, Jug are given by (3.10)-(3.11).
By following the derivation in Chapter 2, section 2.2.3, we find that the ex-
pected value of the loss is

1 ~
E{L} = 5|0 (HE) HF 2. (3.43)

This expression is also derived by Kariwala et al. [2008].
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3.3.2 Solution

In order to minimize the expected loss, one could solve the following nonezonv
problem

min € {L} = [XHF[2 (3.44)
st.X = JHA(HGY) ! (3.45)
F=[FWy W (3.46)

H on the formH = [I  diagKY,--- ,KY)] (3.47)

but this is expected to be as difficult as the original static output feedbatk p
lem. We therefore, by the same arguments as in Chapter 2, section 2.3@erop
to solve the followingconvexprogram which gives an upper bound on the best
possible static output feedback:

Definiton 3.1. (Upper bound on noisy static output feedback) The following con-
vex problem can be used to find an upper bound for the optimal static degmi#
back:

min||HF |2
H (3.48)
s.t. Honthe form H= I diagKY,--- ,KY)],

whereF = [FWy W] and F is given by3.41)
This problem can be vectorized and solved as a quadratic program.

Remark 3.3. Note that this problem differs from the original static output feed-
back problem in two ways: First, we are as in Chapter 2 minimizing the loss from
an optimal controller, and this controller happens to be non-causal withfdhe

mulation used in this chapter. Second, we neglect the te&rﬂ}éz(H GY)"lwhen
minimizing || XHF ||, which gives a convex problem, but the resulting H is then
suboptimal.

3.4 Example

Consider proportional (P) control of the discrete plant

Xict-1 = 0.5% + Uy + d, (3.49)
Yk = Xk + Nk, (3.50)
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0.35 - - -

1: Convex approximation

0.3} — = = 2: Optimal finite horizon P-control
------- 3: Optimal infinite horizon P—contrg

0.25f

Gain

0.2f

0.15¢

0.1 L L L
0 0.5 1 1.5 2

Noise to disturbance ratio

Figure 3.1: Gains for example of noisy process.

whered is a normally distributed variable with zero mean and unit variance. We
want to study the effect of changing the variantdor the normally distributed
noiseny (which also has zero mean) on the resulting proportional gains.

We use a quadratic objective function to describe the trade-off between r
bustness and stability of the resulting controller, and we assume that thetsveigh
(Q,R) = (1,1) give a good trade-off. We use an prediction lenjth= 20. By
using the method outlined in Remark 2.1, Chapter 2, we calculate the final weight
matrix asQy = 1.13.

Figure 3.1 shows the resulting gains for the following design methods:

1: Convex approximation. Design a P-controller by solving the convex problem
(3.48).

2: Optimal finite horizon P-control. Found by minimizing the norm
||Gl/221/2HF
in equation (3.31).

3: Optimal infinite horizon P-control. Found by minimizing thet>-norm of the
plant found by taking the lower fractional transform of the pl&rnit equa-
tion (3.17) with the P-controller.

Itis clear from the figure that the gain resulting from the convex appraiima
is similar to both optimal controllers for the range of noise to disturbance ratios
studied.
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3.5 Conclusion

In this chapter we have formally extended the results of Chapter 2 to inchisie n
measurements. As in Chapter 2, we minimize the expected loss to an optimal
controller, which unfortunately is non-causal for the noisy case Isecafl the

need to include future disturbances to avoid that the noise dominates ansl inake
optimal to useKY = 0 as the optimal controller. Nevertheless, the method seems
interesting also for the case of noisy measurements, and we hope to tlamgerc

case studies in the future.



Chapter 4

Additional results regarding the
static output feedback problem

In this chapter we review implementation of the first move sédes of open
loop optimal inputs, as is done in moving horizon control. $kew that for
the case of full state information, there ediaear relationships between the
states and the inputs such that when added to the originallopp problem,
the solution does not change. We call these relationshipsfiants”. For
state feedback, one invariantus = —KgXg, i.e. that the first move can be
written as a linear function of the initial statg, and thaKg is nota function
of Xo. We then show that the same does not hold for static outpdbfesk,
and consequently that the moving horizon idea does not werk well for
static output feedback.

We further give a rule for how the optimal gains varies witbrgasing noise
in the measurements. The rule is not exact due to the samenseas for
static output feedback, namely that the result cannot ireggrbe imple-
mented as a moving horizon controller. However, we show bgxample
that it gives reasonable approximations to the optimalrcdiet.

4.1 Introduction

In this Chapter we discuss some additional results that we found wheritgxgplo

the link between self-optimizing control and static output feedback (thatdethe:
results in Chapters 2-3). First, we prove the existence of a state féeithple-
mentation to the open loop problem normally posed in model predictive control:
“Find a sequence of inputssuch that a linear system is regulated back to the ori-
gin while minimizing quadratic penalties on both inputs and outputs.” Second, we
discuss how this insight may be used to make an approximation to the static output
feedback problem, but that implementing only the first part of the correipg
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input sequence does not work as good as for state feedback.

Finally we derive a short-cut method for how one should change the gatie if
has designed a state feedback controller based on noise-free nmeasisrand one
wants to apply this controller to a plant where there are noisy state meastiremen
available. The controller is not optimal, since we, as for noise-free stadbéek,
only implement the first part of a sequence of inputs, but it has the adpanta
of being very easy to compute, and may be used as initial condition for furthe
nonlinear optimization.

4.2 Finite horizon linear quadratic regulator

Let us again look at the problem of regulating the linear systgm= Ax + Buk
from an initial state¢ to the origin when we have full information about the states
available for feedback. As shown in section 2.2.1 in Chapter 2, this protdem
be written on the form

. {u ! Ju Jue | | U
ool = o] |37 5e) Le) @

where the expressions for the matrices in the cost function can be fo@idhjpter

2. By using the method of completing the squa#&{bm and Wittenmark, 1984],
the optimal input can be written on the fonm= —J;; 1y Xo. Interestingly, the
same result can be found by using the following Theorem:

Theorem 4.1. (Linear invariants for quadratic optimization problem [Alstad et al.,
2009]) Consider an unconstrained quadratic optimization problem in thialkes
u (input vector of length ) and d (disturbance vector of lengt)n

o= [ [ ][] “2

In addition, there are “measurement” variablesyGYu-+ Gﬁd. If there exists p>

ny + ng independent measurements (where “independent” means that thexmatr
& = [@ G} has full rank), then the optimal solution {d.2) has the property
that there exists = n, linear variable combinations

c=Hy (4.3)

that are invariant to the disturbances d, meaning that their optimal value Q¢
is independent of d. The corresponding measurement combinatiwix tdacan
be found by selecting H such that

HF =0, (4.4)
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That is, H is in the left nullspace of F, Where:l;%pt is the optimal sensitivity
matrix which can be obtained from

F=—(G3dda—GY). (4.5)

In the notion of Theorem 4.1, let the measurement variables be

~—~ ~—~
(e Gﬁ

whereu is a vector of stacked inputsip, us,---,un—1). Further, we assume that
all disturbances can be represented by the initial s¢atbence we treat the dis-
turbanced in Theorem 4.1 as the initial statg. We observe that the matrix
G = [Gy GE;] has full rank, so by Theorem 4.1 there exists a variable combi-
nationc = Hy that is optimally invariant to the disturbances(which implies that
we can add the constraiot= Hy = 0 to the original problem (4.1) and the solution
will not change).

Let us find this measurement combination by the method outlined in Theorem
4.1: First, we form the optimal sensitivity matrix

F:—@uﬁmrem=—<P%WYWﬂ>=f%ﬁm] @.7)

Second, leH = [HY H]. In order to avoid a trivial solution should have full
column rank, however there is some degree of freedom in choosingasudh
because for a givehl such thatHF = 0 we also have that fdd; = DH with D
square and full rank, thad,F = 0. This means that we can specify some parts of
H, for exampleH"Y = | (This corresponds to normalizing the vectors that span the
left nullspace of.) With this choice oH", we have that

-1
HF = | HXo][ JuTJuxo

0

H = Jydu

]:—%ﬁ%+HM=o

This means that the optimal variable combination is

u _
Hy=0 [I Juidug) [XO} =0 & U= -3 w0 (4.8)



48 Additional results regarding the static output feedback problen

as expected. Let us analyze this solution. By setting —J;}Jux, We have that

Uo = KoXo,
u; = KXo,

Un-1 = Kn-1Xo,

whereK’ = [K§ Ki -+ K{_;]. We notice that neither of these gains are a
function of the initial state, only of the problem parameteds, andJ,y,, and
therefore can we use this solution in a moving horizon strategy by implementing
only the first moveuy = Koxx as we get new state measurememnts. ( This is
further discussed in Chapter 2, section 2.2.1.

We finally notice thaKg can also be found from a Riccatti equation that can
be derived from the structure af, andJ,q, i.e. withoutforming the inverse od,,
[Rawlings and Muske, 1993].

For long horizondN we further have that

U = Kixo = K (A+BKg) “1xy = Koxy, (4.9)
—_—
Uz = Kaxo = Ka(A2 4+ ABKg + BKy) 1 X0 = Koxa (4.10)
Ko
Uz =Ksxg ="

that is, the gain remains constant also throughout the horizon, howévés ttot
the case for short horizons. (l.e. first move implementation coincides with the
open loop solution.)

Remark 4.1. It may not be so surprising that Theorem 4.1 gives the same result
as completing the squares, if we got some other result then we woulditg do
something wrong. Theorem 4.1 may however be used in a more gemenakr,

for example we can let a measurement be-XAx; + Buy and use the Theorem to
prove that there must exists an optintiakarrelationship betweenyuand x. The
linear model is for then

Rl e
- =~
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where
B=[B 0 --- 0. (4.12)

The augmented pla@’ = G Gﬁ] has full rank in this case (given that A has
full rank), so Theorem 4.1 holds, and may be used to find an H such teat the
constraint c= Hy = 0 is added to probleni4.1) the solution will not change.

For a problem with relatively long input horizon, this linear relationship should
correspond to K above. Actually, we can use Theorem 4.1 to prove many such
optimal linear relationships that when added as constraints to the origirwdlpm
does not change the solution. The reason we considgyexs xa measurement
above it that this is the usual assumed available measurement in redealizgn
control.

4.3 First move output feedback

Let us slightly change the problem formulation from state feedback as irr¢he p
vious section to output feedback, where an oufput Cx; is available, but not
the full state vector. Following the notation of Theorem 4.1 we consider the au
mented measurement vector as

u I 0
y= [yo] — M u+t H Xo (4.13)
~—~ ~—~
oy G}

Since the dimension of thdisturbance yis larger than the dimension of the output
Yo is not the assumption that “there exists> ny 4+ ng measurements” fulfilled,
and Theorem 4.1 cannot be applied to this case. However, TheoremChajer

2 can be applied. As above, let

H=[HY HY]=[I HY], (4.14)

whereHYe is a full matrix. With this normalization dff we have that

I
y _ Vi =
HGY = [I HY] [O] ]
which is always full rank, so finding thid that minimizes the expected loss from
adding the constraiiy = 0 to problem (4.1) is given by thd that minimizes the
norm
[HFWal[e, (4.15)

where as in Chapter 2 &4 = V\Aé/z the square of the variance xf. Note that we

are now trying to combine the input vectowith the outputyy on a form such that
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when a constrairtly = 0 is added to the original problem the loss from optimality
is minimized. Thereafter, the goal is to implement only the first part of the input
vector in a moving horizon strategy, as was the case for the state feealaak

Remark 4.2. This is not the same as what we did in Chapters 2-3, where we
explicitly added the constrainku= —KYyy. That approach is different in two ways;
first we are requiring that Kis constant throughout the horizon and second, since
all output y are included in the vector of “measurements” i) we had to add
structural constraints the form of zeros in the H matrix, such that ongsionly

a function of one y(and not for examplegy 1 and ¥ 1).

Let us analyse the resulting problem. First, the sensitivity métris

_ —J-1J
F=—(Gdw—GY) = [ ‘e “’0] : (4.16)
and therefore
IHFW[F = [|(— I due + HYC)Wel|e . (4.17)

We can find arH that minimizes an upper bound to this expression by choosing
HYo = 35,1005, CT, (4.18)
so that
IHFWa [l < 1|(— 350 duxo + Jii dunCTC) [l
< 9w lF - 1 = CTCle - Wl (4.19)
Clearly, if C has full row rank, then will the choice d¢f in (4.16) make the ex-
pected loss from optimality zero, which is expected as we regain the stabafded

problem in this case.
The resulting sequence of inputs is thus

uo = KoCyo
u; = KiClyo

un_1 = Kn_1Cyo,

whereK is the same gain as for the case of state feedback in the previous section.
Unfortunately, we find that the first input of this sequence is not well duiite

a moving horizon strategy. For the case of state feedback the contradidulha

information about at the disturbances, and then the implementatienKoxy is
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1.5¢

—

—— 1: Sequence of open loop inpd
— 2: First move output feedback
— = = 3: Linear quadratic regulator

S

Plant output
o
2]

20 40 60 80 100
Sample time

Figure 4.1: Comparison of open and closed loop implementations of the output
feedback design method termed “first-move”. The simulation starts ko
(1,1), with outputyp = 1.

valid. However, the corresponding output feedbagk= KoC'yi does not benefit
from full information about the disturbances, and thus it should not bsetf’ at
every time-step. Moreover, the upper bound on the loss in equation @49nes
that the whole sequence ok is implemented, and it does not hold for the case
of implementing only the first move in a moving horizon strategy. This is further
illustrated in the following example section.

4.3.1 Examples

Open loop versus first move as closed loop.Consider the proceggs) = 1/(s*+
2-0.4s+ 1), sampled withls = 0.1 to get

(09951 00959 00049
Xt1= | 00959 09184 %< |0.0959 Y

Yk=[1 0]x.

We use a finite horizon quadratic objective function widh=1, R=1, andN =
100. For such a long input horizon will the final weight matrix not influetice
solution, so we sy = | as well. We compare three different controllers:

(4.20)

1: Sequence of open-loop inputsThe inputs are calculated for the first value of
the outputu = —J;}JuxC Yo, and then we implement these inputihout
taking any feedback into account

2: First move output feedback. This controller uses the first part &f,1J,,,C' as
a feedback controlley = KoCly, with KoCT = —0.3608.
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3: Linear quadratic controller. State feedback controller as discussed in Section
4.2,ux = KXk, with Ko = — [0.3608 0730@.

Results for an initial step disturbance in the stategoof [1] is shown in Figure
4.1. It is evident that the open loop inputs do not coincide with the first move
output feedback (as would be the case for state feedback if the inpabhas
long enough), and moreover we observe that the open-loop contreitearms
better than the first move controller.

This simulation is of course a function of the initial state, for disturbances that
can be seen “directly” on the outputs, for example a disturbance on thetéite
for this example, we will get that the sequence of open loop inputs and tike LQ
implementation are coinciding. However, for disturbances that doesfect die
initial outputygp, the open loop sequence of inputs will be kept to zero, and the first-
move implementation will be better. Nevertheless, in the average case we found
that the open loop sequence was performing better than using only thadivet
as a feedback implementation, and this is illustrated by this example.

Comparison with controllers from Chapter 2. In Chapter 2 we investigated
control of the underdamped plant

k

9(s) = 1282 4 21(s+ 1

for different values of the damping coefficieht For the same design parameters
as in Chapter 2 we designed a first move output feedback controlled basée
first part of—JJulJUXOCT. The resulting closed loop gains are shown in Figure 4.2,
were we observe that the closed loop gain using the first move outpuideled
controller is significantly higher than for the other design methods for thdyhigh
underdamped plants, and that for plants with a damping fddess than 0.28 did
the first move output feedback actually destabilize the plant.

4.3.2 Discussion

The first move output feedback as derived in this chapter is easy to ¢tepaguve
simply use the pseudo inverse of the measurement narso no optimization
problem needs to be solved. This controller has the nice property that dt fo
full rank measurement matri@ coincides with the finite horizon linear quadratic
regulator. However, whe@ is not full rank we observe that implementing only the
first move of a sequence of “open loop optimal” inputs does not work weti;
This may be explained in two ways; First, we are not solving a feedbadiemmo
in the original problem, see equation (4.1), so even though the sequenapuots
umay give a good transient performance, we are not guaranteed thatriemilag
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30

25F

15f

Closed loop norm
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5
00.059 0.28 0.5 1
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— 1: Optimal finite horizon PI
— = =2: Upper bound by convex approximatipn
—— 3: Optimal infinite horizon PI
------- 4:LQR

5: First move output feedback

Figure 4.2: Closed loop nornii$; (P, KY)||2 for different output feedback (PI) con-
trollers

only the first part of this sequence gives a good closed-loop belraBeaond, for

state feedback, when we have full information about the disturbanegstdblem

can be restarted at every time sample, and it therefore makes sense to intplemen
only the first move in a moving horizon strategy. However, for outputtiaek do

we not have full information, and we would need some steps in order to estimate
the states, but the problem is not set up to handle this. On the other hand, the
static output feedback controllers that we synthesise in Chapters 2sgtaup as
feedback problems to begin with and do not suffer from the problem thedres
trying to implement parts of an open loop solution as a feedback. (But weedo th
approximation of ignoringk = J&éZ(HGy)‘l when minimizing|| XHFW||¢.)

In appendices B and C is it discussed how we can use the ideas presented
this paper to find controllers which uses past and present informatiant i
outputs. The performance of these controllers are better than using resign
information, but they suffer from the same problem as discussed in thigezha
namely that they are implementations of a part of an open loop sequence. One
could also use the framework presented in Chapters 2-3 to synthesisaleosion
this form, with an expected better closed-loop performance, since welaieg
a feedback problem. These results are not discussed further luengskeve now
want the focus to be on tHendamental propertiesf the controllers derived the
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current chapter and Chapters 2-3.

4.4 Gain reduction rule

We here consider the special case of the following plant

X1 = AX+ Bk, (4.21)
Yk = X+ Nk, (4.22)
X0~ N(O,1), (4.23)

whereny is a normally distributed random variable with zero mean and variance
W = al. The objective is to find a static output feedbagk= KYyx and to relate

this controller to the corresponding linear quadratic controller for the sgstera.

The controller should minimize some finite horizon objective function (see e.g.
equation (2.6), Chapter 2):

N—-1
J= X/NQNXN + Z X|,QXI + UfRu.
i=

Consider now an augmented “measuremeraf

y= m @w@m

Let Jyy andJyx, be defined as in Chapter 2, Section 2.2.1. By the results from Chap-
ters 2-3 we be pose the problem of finding a combination matrix [HY H,|

that minimizes the expected loss from an finite horizon linear quadratic controlle
when the constraint = Hy = 0 is added to the problem as

min [ XHF ¢ (4.24)
st.X = J2HeY) ! (4.25)
F=[FW W, (4.26)

whereWy = | andW, = v/al. In this problem, the disturbance only occurs on the
initial state and we do not have any structural constraintsl drom the causality
requirement. We can then actually solve problem (4.24)-(4.26) analyticglly b
using an expression from [Alstad et al., 2009] and show that the firsernan
optimally be written as:

U = —

KoXk,

whereKj is the first part ot Jux,-
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Proof. Problem (4.24)-(4.26) can be solved analytically by [Alstad et al., 2009]:
H' = (FF) oY (GY(EE) @) 0P (4.27)

Let the combination matriki be partitioned asl = [H¥ H"] for which we have

G = m , QY= H , (4.28)
andJy, andJ,y, are derived in Chapter 2, Section 2.2.1. Now, let

valy ]

W, = x 4.29
=1 (4.29)
where the upper left part corresponds to the noisgy@nd the lower left part cor-
responds to noise am (We will show that3 does not affect the solution.) Define
Y = =3, ux- We have thabFF’ = FWyW,F’ +WaW,. By the above assumptions

we get that

/
FWyW,F’ = FF' = [\'( :Y} (4.30)
|

Due to the assumptions &, we get

FF = FWyW)F' +WoW, =

C[@+a)l \4 (4.31)
_{ Y YY+|3I}

This matrix has to be inverted. This can be done using Lemma A.2 (Inverse of a
partitioned matrix) in Skogestad and Postlethwaite [2005], With= (1+ a)l,

A= Y’, A1=Y, A= YY + B| . Further we havX = A22*A21A511A12 ==
(LYY’ + [3I). We observe that the inverseXfexists. Using the Lemma, we get

1+a . PPV
that the inverse ofF’ is:

(1+a)2 " 1ta

=y —1
(FF') "= Yy o1 (4.32)

1 1 -1 1 -1
e e A ' Y'X ]

We now need to evalua®’(FF’)~1GY. For the current problem formulation we
have thatG¥ = [0 1], and after doing the multiplication we get that

~ ~

GY(FF) I =x"1 = (GV’ (lflf’)_ley) Tox (4.33)
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Further,
cmp -1 — L yx-1t
(FF) Gy=[ v ] (4.34)
and finally we get that
W= (BF) e (o (FF) M) (4.35)
, 1/2
—[”"(J I}%X")J ] (4.36)
uu
or
H:[m 295 3 Jl/z} (4.37)

We now scaléd matrix byJJul/2 to decouple the inputs and to get an expression
for the controller gains:

()7 = [ dle 1], (4.38)

and we observe that optimally we should reduce the controller gaing(ly+lo)
when there is noise on the states with variante To see this, remember that
y = (x,u), and hence we gets on the form

1
c=Hy= Juu JuxoXo + U, (4.39)
O

Note that we are not solving the original problem in terms of the dpbtt
rather to find the output feedback which is closest to the optimal state fededba
solution. What is more serious, is that we cannot apply the “moving horizon”
argument because each move is no longer optimal. Thus simply implementing the
first move is not optimal and the gains will vary, that is, we not not h&ye K;
or Ko = Ky as is the case for state feedback, see equations (4.9)-(4.10).

4.4.1 Example
Figure 4.3 shows that the gain reduction rule used on the plant
Xer1 = A+ Buc+ di
Y = X+ Nk

studied in Chapter 3, Section 3.4, with the same controller weights as used in
Chapter 3 is quite close to the gains found by the convex approximationybowe
this method is a lot simpler as no optimization problem needs to be solved (except
for a Riccatti equation to find the state feedback gain) in other to calculataitie g
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0.3 : :
1: Convex approximation
0.25} — = =2: Gain reduction rule .
3: Optimal finite horizon P-control
o2t L 4: Optimal infinite horizon P—control
- O
‘®
O]
0.15¢
0.1t
0.05 ' : '
0 0.5 1 15 2

Noise to disturbance ratio

Figure 4.3: Gains for example of noise process

45 Conclusions

In this chapter we have discussed the existence of a state feedback fonnthe

ux = Koxk as an implementation to the typical problem formulation used in model
predictive control, where one formulates an optimization problem to regulate a
system from an initial state) to the origin (or more general to some pre-defined
trajectory). Further we showed that such a solution does not existifpubfeed-
back, i.e. that using only the first part of an open loop optimal sequemnce \ery

good for feedback control when the full state vector is not availableneasure-
ment.

Finally we derived a simple rule for reduction of the gain for the specia cas
when a noisy state measurement is available for feedback, and one wasésdo
static controller from this measurement in closed loop. The solution has the same
problem as the “first move output feedback”, i.e. that we don’t solveedliack
problem, but it may still be interesting a fast way of calculating initial conditions
for further nonlinear optimization.
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Chapter 5

Self-optimizing control with
active set changes

In this chapter we extend the “nullspace method” by Alstad 8&koges-
tad [2007] to cover changes in active set. The extensionsedan recent
results from explicit model predictive control by Babtt al. [2008]. The
nullspace method is a method for selecting controlled bée@m assuming
that the set of active constraints does not change. Withxttension pre-
sented here, we show that by applying the nullspace methakt@ral dif-
ferent regions, where the regions are found by a parametigram, we can
use the value of the controlled variables for each regioretnd#® when to

switch regions.

The proposed method is demonstrated on a simple model of amaa
production plant, and the results are comparable to rewd-tiptimization of
the same plant.

5.1 Introduction

In this chapter we extend some recent results on implementation of quadmatic pr
grams [Alstad et al., 2009] to cover changes in the active set. The workhgin
field of “self-optimizing control”, where the focus is to select the right Valea
c to control, such that acceptable operation under all conditions is achatied
constant setpoints for the controlled variables [Skogestad, 2000a].

A more direct approach for ensuring optimal operation is real-time optimiza-
tion (RTO) [Marlin and Hrymak, 1996]. Using RTO, the optimal values (siet|sd
for the controlled variables are computed online based on online measurements,
and a model of the process [Alstad et al., 2009]. In control of chemicalgsses
an hierarchal structure [Findeisen et al., 1980] is often used. RTO rsutbed
to calculate setpoints; for the controlled variables for the supervisory control

59
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steady state

optimization
supervisory MPC/ y
control decentralized RI

!

Figure 5.1: Interconnection between RTO and supervisory contral laye

layer. In the supervisory layer model predictive control (MPC) [Misad Lee,
1999, Mayne et al., 2000] is often used.

A typical hierarchical structure is outlined in Figure 5.1. In the RTO frame-
work, the degree of freedoh is not exploited as an optimization variable, while
for “self-optimizing control” finding a goodH is the main focus. The two ap-
proaches are therefore complementary. In gentdrahn be any non-linear map
from measurementgto controlled variables, but until now the focus has been
mostly on static maps, i.&] is astatic combination matriwr aselection matrix

One can identify at least four ways of choosing the combination mitficr
the controlled variables= Hy:

1. Usec = ug, i.e. open loop control. This is not expected to work very well
unless the static optimization layer is updated rapidly.

2. Usec =Yy, whereyyp are presently used controlled variables in the super-
visory layer. Also this choice is not expected to give a good performance
unless the static optimization problem is resolved frequently. In fact, it does
not have any particular advantage over choosiagug.

3. Usec = Hy, wherey is all available measurements, includiog andyp.
If H is chosen carefully, this choice is expected to give better performance
between samples of the RTO than the choices above. In partieludruld
be chosen such that even though we have large disturbances, the optimal
valuescs of the controlled variables does not change much. Such a choice
of H may be beneficial in at least two ways. First, since RTO is in general a
non-convex problem, the starting values for the optimization are important,
and thus if the optimal values do not change much, such a choeehaiuld
aid the success of a RTO implementation. Secagdan be updated less
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frequent and the system will work better should the RTO be out of service

the ideal “self-optimizing” case one identifies controlled variables such that

the RTO layer may be eliminated altogether. During the last decade several
methods for finding “good” controlled variables have been developeth, s

as the maximum gain rule [Hori and Skogestad, 2008], exact local method
[Halvorsen et al., 2003], and the nullspace method [Alstad and Skogestad

2007].

4. Even more general; we may choose to change the controlled vartaddes
operating conditions change. This is equivalent to letting the hhdge a
function of the operating conditions.

In this chapter we consider the last approach and develop a methodafoging

the combination matrid when changes in the active set occur. The results are
exact for quadratic problems, but an example of an ammonia productianlan
show that the method may be applicable also to more general processeslby loc
linearization.

The approach we use is to exploit a link between self-optimizing control and
linear-quadratic explicit MPC [Manum et al., 2008b]. The link is exactfoadratic
approximations of the self-optimizing control problem, because then the gpatic o
timal operation problem of self-optimizing control and explicit MPC have tihessa
equation structure.

Using parametric programming [Kvasnica et al., 2004] and recent resutts f
explicit MPC [Baott et al., 2008] on implementation of the optimal solution, we
show that combination matricé$, found by using the nullspace method, can be
used to track changes in the active set using only information about theteulp
the multivariable case, a scalar function of the outputs is enough to trangesa
in the active set. We have already proposed similar results earlier, semifiMa
et al., 2008b,c], where we used controlled variables (invariants) fremuhlspace
method to track changes in the optimal active set. However, we proposeépo k
track of the whole vectoc = Hy € R, wheren, is the number of controlled
variables, and not the considerably simpler method of trackiihty € R.

The rest of the chapter is organized as follows: First, we review theory f
self-optimizing control and implementation of solutions to quadratic optimization
problems usinglescriptor functions Then we show how continuous piecewise-
affine (PWA) descriptor functions from measurements can be condringtasing
the nullspace methadWe then discuss how to match constraints between mea-
sured constraints and constraints in the model. Thisstraint matchingnay in
some cases have a significant effect on the economical operationvafragiant.
Thereafter we collect our findings in an algorithm for design of a costrakture
that handles changes in the active set, and finally we show how this methbe ca
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used on an example of an ammonia production plant.

5.2 Background

5.2.1 Quadratic approximation to RTO

We consider the problem
min .J()(X7 Uo,do)
X,Ug
s.t. fo(X, Up,dp) =0 (5.1)
o(X, Up, do) > 0

wherex € R™ are statesyy € R™o are steady state degrees of freedom dnd
R"o are disturbances. Using the model equatid§(, up,dp) = O to formally
eliminate the internal state we can rewrite problem (5.1) on the form

min J(Uo,do)
to (5.2)
s.t.g(Uo,do) > 0

Unconstrained case. Assume that for the nominal disturbartgthe optimal in-
putug is such that none of the inequality constraigisy, do) > 0 are exactly equal
to zero (i.e. they are not active). Further, introduce the following sulistitst

u=up—Up (5.3)
d = do— do (5.4)
My = —0y9 .o (5.5)
Ma = D9l (5.6)
M = g(up, do) (5.7)

By a quadratic expansion of the objective function around the nominal ogtimu
(0JI(up,do) = 0) can we give the following quadratic approximation to problem
(5.1), which we will use throughout the chapter:

min =
u 2 M [J(,d Jaa] [d (5.8)
s.t.Myu <M+ Mqyd

Here the notatiod,, means the second derivative of the mattiwith respect to
the inputsu, and so on.



5.2. Background 63

Extension to constrained case. The case of nominally constrained optimum can
also be posed on the form of problem (5.8), which we will now demonstidte.
only difference from the unconstrained case is that we do a changgiables to
“eliminate” the effect of a non-zero first derivalgat the optimum.

First we define a Lagrangian as:

£ (Ug,do, ) = J(uo, do) — N'g(Uo, do) (5.9

whereA are the Lagrange multipliers. Then we make a quadratic approximation
of the nonlinear program (5.2) around the optimal pgigt A*) as [Nocedal and
Wright, 1999, Ying and Joseph, 1999]:

!/

: _ * 1 Uop — % Luguy  Lugdy | |Uo — u_a
min Dugdly; g, (Uo — o) + 5 [do —do| [£lg Ldoco) [do— o
X (5.10)

>0

s.t.g(Up, do) +D[go} 9o [dﬁ_d‘é
0

where we have cancelled the tefidg, (do — d) which can not be affected by the
degrees of freedomy. All first and second derivatives are evaluated at the nominal
optimum, (u*,do). Under the assumption that,,, is positive definite (second-
order optimality conditions) we introduce the following change of variables fo
the degrees of freedom:

U= Up— Up+ Ligpdu (5.11)

Note that this definition ofi is not in conflict with definition (5.3) used for the
unconstrained case, because for an unconstrained minilpaa0 and the two
definitions coincide. Now, bdefining 4y, Jug andJqg as

{ Juu ; Jud ] 'y

(5.12)

can also the nominally constrained case be written exactly on the form déprob
(5.8). Note again the analogy to the unconstrained case: for the uraioesir
optimum is the Hessian of the quadratic approximation equal to the Hessian of
the objective function at the nominal operating point, while for the consulaine
case is the Hessian of the quadratic approximation equal to the Hessian of the
Lagrange function of the original problem at the nominal point. Furthés tiat

the unconstrained case is a special case of the constrained case ariddedn
here only to ease the presentation of the material, and because in the example w
consider in this chapter the nominal optimum happens to be unconstrained.

Remark 5.1. The matrix 44 is not needed and may be set to zero.
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5.2.2 Nullspace method

The nullspace method by Alstad and Skogestad [2007] deals with the optimal se
lection of linear measurement combinations as controlled variabledily. In a
recent chapter by the same authors [Alstad et al., 2009], their resuitdenmeted
more generally as deriving linear invariants for quadratic optimization pnakle
More specifically, a key result is the following Theorem:

Theorem 5.1. (Linear invariants for quadratic optimization problems [Alstad and
Skogestad, 2007]) Consider an unconstrained quadratic optimizatiololgam in
the variables Ll R™, parameterized in & R":

7*(d) = min {J(u,d) _ m/ BZ; j:‘ﬂ [g] } (5.13)

In addition, there are “measurement” variables:yGqurGé’d. If there exists

ny > ny + ng independent measurements (where “independent” means that the
matrix &Y = (€4 Gﬁ] has full row rank), then the optimal solution {6.13) has

the property that there exists, B= ny linear variable combinations (constraints)

¢ = Hy that are invariant to the disturbances d, meaning that their optimal value
(c=0) is independent of d. Here, H may be found from the nullspace method
using H= null(F’), where

F=—(G3 -Gy (5.14)

5.2.3 Implementation of solution to parametric quadratic programs

In this section we follow Baoti et al. [2008] unless otherwise noted. This im-
plies that all Theorems, Lemmas, Algorithms and Definitions are taken from the
reference unless otherwise noted.

Definiton 5.1. Two polyhedra PP; € R™ are calledneighboring polyhedrgtheir
interiors are disjoint and PN P; is (ny — 1)-dimensional (i.e. is a common facet).

Let {P.}i'\':pl be a polyhedral partition. For each polyhedfmwe denote with
Ci the list of all its neighbors,
Pj is a neighbor of, }

G:=1q1]l. L
{ J:17"'7Np7 J#l

Throughout the chapter we assume that every facet is shared by anteigh-
boring polyhedral partitions, i.e. that the facet-to-facet property 8pjd et al.,
2006] holds.

(5.15)




5.2. Background 65

descriptor function

A
T E f3
1 f2

P1 Pr P3

2 parametex

N,

1

Figure 5.2: A scalar descriptor function over three polyhedra.

Definiton 5.2. (PWA descriptor function) A scalar continuous real-valued PWA
function f : X; — R,

f(x):= fi(x) =Ax+B; if xe€m, (5.16)
with A € R™, B € R, is called adescriptor functionf

A#A;, Vie€GC, i=1,...,Np, (5.17)
whereU;?; = X; € R™, and G is the list of neighbors aof;.

See Figure 5.2 for an example of a scalar PWA descriptor function. Thas kin
of function can be used to track changes in the optimal active set. We can do
this because the sign df(x) — fj(x) changes only when the poirtcrosses the
separating hyperplane betwegrand2;. Thus for allx € #;, the differencef; (x) —
fj(x) has the same sign.

In the figure, letf; = —2x+ 5, f, = 3, and f3 = 0.5x+ 2. Assume that the
parametei is in 2, and we want to detect whencrosses into eithep;, or ?3
without measuringx itself (but we have a measurements availableqgff,, f3).

We can do this using the descriptor function

fi=1f if xer, =123

For x € », we have that sigif, — f1) = 1 and sigiif, — f3) = 1. Now, if either
sign( fo — f1) or sign(f, — f3) changes sign, we deduce thdtas moved ta; or
P3, respectively.

Definiton 5.3. (Ordering function) Let {x) be a PWA descriptor function on the
polyhedral partition{?i}:\i’l. An ordering function @x) is defined as

0i(x) := [01,(X)] (5.18)

jeCi
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where

O — +1 if  fi(x) > fj(x) (5.19)
S R TV '

withie {1,...,Np}, j €C.

Theorem 5.2. Let f(x) be a PWA descriptor function on the polyhedral partition
{P.}i'\':pl. Let& € R™ be any point in the interior of;, and define

SLJ '»J(EI) (5'20)
S = Oi (Ei)a
withi=1,...,Np, j € G. Then the following holds:
xeint(?) & 0 j(x) =S, VjeG (5.21)

< O(x)=§

Theorem 5.2 states that the ordering functi(x) and the vecto§ uniquely
characterizer;. Therefore, to check on-line if the polyhedral regigincontains
the statex, it is sufficient to compute the binary vector(x) and compare it t&.

Vectors§ are calculated off-line for = 1,...,Np, by comparing the values
of fi(x) and fj(x), Vj € G, in a point that belongs to ifi;), for instance, the
Chebysev center af;.

Algorithm 5.1 GLoBAL. (Used for initialization and recovery)
L1 ={1,...,Np}

20 1|

3 1=I1\{i},C=C

4. while C#0do

5. j«—C,C=C\{j}
6:  ComputeG; j(x)

7. if Qi j(X) # S, then
8: if j¢1then

9: GOTOStep 2
10: else

11: i = j andcoTOostep 3
12: end if

13:  endif

14: end while
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Algorithm 5.2 LOoCAL.

Require: Current regiorni
1: C=C; and NotLost=1
2. while NotLostdo
Compute vectoO;(x)
if Gi(x) # S then
if the difference is at element corresponding tmnly then
Seti = j andcoTOstep 1.
else
Set NotLost= 0.
end if
10:  endif
11: end while

Algorithm 5.3 Main program.

1: Run Algorithm 5.1 GoBAL to find current regionm.
2: while System is operationao

3:  Run Algorithm 5.2 loCAL.

4. if NotLost= 0then

5: Run Algorithm 5.1 GoBAL to find current region.
6: endif

7. end while
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Locating the current state. Algorithm 5.1 was proposed by Baotet al. [2008]

to find the current statg(t) for explicit MPC. Here we extend this method by
adding Algorithm 5.2 as a “local” algorithm that for the current polyhedegion
only monitors the corresponding ordering function (and thus only “lo@kghe
neighboring regions). If one element of this vector changes sign, tlogithilg
updates the current region to the regamrespondindo the element of the vector
that changed sign. However, if more elements changed sign we dedadbeha
process did not change to a neighboring region and we must run Algosithm
again. This logic is covered in the main program in Algorithm 5.3. A similar logic
is published in [Narasimhan and Skogestad, 2010].

Finding a scalar PWA descriptor function. A vector-valued PWA descriptor
function is defined as:

Definiton 5.4. (Vector-valued PWA descriptor function) A continuous vector-valued
piece-wise affine (PWA) function

mx) :=Ax+B if xeco (5.22)
is called a vector-valued PWA descriptor function if
A#A VjeG, Vi=1,---,N, (5.23)
whereA € RS™, B, € RS, sc N, s> 2, and G is the list of neighbors of;.

Next, the following Theorem gives a method for constructing a scalar PWA
descriptor function from a vector-valued one.

Theorem 5.3. ([Baotic et al., 2008]) Let m: R™ — RS be a vector valued PWA
descriptor function defined over a polyhedral partiti{mi}i’\'jl. Then there exists
a w e RS such that fx) := wm(x) is a PWA descriptor function over the same
polyhedral partition.

Algorithm for finding w. For a given vector-valued PWA descriptor function
we form a set of vectora, € R®, [ja|| = 1,k=1,--- ,Ng, by taking one (and only
one) nonzero column from each mat(ig — Aj), Vj € G, i =1,--- ,N,. Here
Na = 5;|Ci|/2 < Ny, and|C;| denotes the cardinality of s€t. The vectow € RS
satisfying the set of equatiomgay # 0, k = 1,--- N, can be constructed using
Algorithm 5.4,
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Algorithm 5.4 Construct the vectow.
1w [1,---,1]
2: while k < N, do
3 d—wWa
4 if 0<d<Rthen
5: W<—W—|—%(R—d)ak,R<—%(R—|—d)
6: elseif—R<d<O0then
7
8
9:

W— W— %(R+d)ak, R«— %(R— d)
end if
end while

Properties of the solution of a parametric QP. Consider again the quadratic

problem (5.8):
- 1(u]’ Juu Jud| U
mumé [d} |:J(Jd Jaa| |d
s.t. Myu <M + Myd

From [Baott et al., 2008] we have the following properties of the solution to this
problem:

Theorem 5.4. Consider the parametric QP i(5.8) and let J, > 0. Then the set
o of feasible parameters d is convex, the optimal inguta — R™ is continuous
and piecewise affine.

In addition the following Lemma is provided:

Lemma 5.1. Let the optimal solution (“optimizer”) be written on the form
u=Kid+K, ifde® (5.24)

Then, for two neighboring polyhedm, #; the gains Ig # Ké.

5.3 Measurement based descriptor function

From now on, the results are new unless otherwise noted.
Lemma 5.1 states that the optimizer to problem (5.8) can be written on the
form
u=Kid+k; ifde . (5.25)

We now want to eliminate the need of information about the disturbathcbst
rather rely on plant outpuy.



Self-optimizing control with active set changes

70

Assuming a parametric solution exists, we form the following problem for a
given set of active inequality constraints:

rrLHT J(ug,uz,d) =

uz2
/

Ui Juw Juw,  Juid Ui
1 1UL 1U2 1 2
> U2 * Jpu, Jud| |U2 (5.26)
d * * Jdd d

subject toM, us + My,uz = M + Mqd,

where we choose; (as a subset of the input vectoy such thatM,, is invertible.

This implies that we can write
Up = —My, My, Up + My, Mgd + My, M. (5.27)
N———— N—_—— N—_——

KY2 Kd K

We can now do the following manipulations in order to get the problem on a form
suitable for Theorem 5.1: First, we define- u, + J;;*J, and

Joz= K" 3y K™ + T, + 2K Jy, (5.28)
Jog = KU 3y 0, K9+ 3y, /K9 4+ KY2' 3y g + Jd (5.29)
(5.30)

Jz = K/JU1U1Ku2 + K/‘]Uluz

With these definitions it can be shown that the objective function with the active
equality constraints substituted into the objective can be written as

1
In addition, we write the linear model as
U I 0 4 0
w|=|0 I H+ 0 |d (5.32)
ym| (G oG] DA ey
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Using (5.27) we find that

[ Kw® K¢
uz [ 0 K
u2 = GﬁTKUZ + G}J; U2 + GﬁTKd + Gém d + y?] (533)
Ym S — E
| =G =Gy
K Kd K
=| 1 |(z=3,'"%)+| 0 |d+| O (5.34)
|Gl G| [GliiK
SN—— SN——
&4 e K
=G24+ Gd+K - &I, (5.35)

Y

Now, lety=y—yand letF = —(GYJ;;}J,q— G)) and further led be a full rank
matrix that fulfils HF = 0. Due to Theorem 5.1 we have that optimafly =
H(y—y) = 0, hence the invariants ace= Hy with ¢cs = Hy. Due to the “extra”
degrees of freedom il can we write the combination matrix on the fott=

[I Hym]. The extra degrees of freedomlharise from the fact that iIHF = 0,
then alsdDHF = 0. By lettingD be a non-singular square matrix we can use this
to scale the entries iH, or as above to introduce an identity matrix. This is further
discussed in [Alstad et al., 2009]. Finally, we can show that this invaramibe
written on the form:

— _HYm (KiKUZ) J—lJ/ HYm GYm K_KUZ GYm J—lJ/ 5.36
u= Ym+ _ 27 9z T [ u1( )+ uz} 7z Yz ( )

We observe that for a given set of active constraints, there is are affitimal
relationship between the inputand the measuremew,. For several regions we
can therefore pose the following optimal relationship:

u=Kj ym+cs, ifdemn, (5.37)

where Kg,m and c, can be found by using the procedure above. The following
Lemma shows that this functional relationship from measuremgnd inputu
can be used as a vector-valued PWA descriptor function.

Lemma 5.2. The invariants defined bipv' := Hiy — ck can be used as a vector-
valued descriptor function

Proof. Theorem 5.2 states that the optimizer for for problem (5.2.3) can be written
on the form of equation (5.25). According to Lemma 5.1, for two neighboring
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polyhedraz;, 7;, K(ij + Kc’,, and hence the disturbance feedback law (5.25) is a
vector-valued descriptor function.

We now consider the invariants fnv= H'y — ¢, and we assume that we have
a perfect measurement of the input vector includeglan the form:

el e

With this partition ofy we accordingly writeH' = [H" HY»]. By assumption

Juu is positive definite (second-order optimality conditions), and hence the dptima
input u must by Theorem 5.2 be unique and continuous. This has the following
implications: First, we can form an equivalent invariant by

vy = U= (HY) Sy, + (HY) 3 (5.39)
K)i’m k;m

For optimality, by Theorem 5.1, this invariant should be controlled to zemgéde
we have the measurement feedback form

u=Kj ym+k, if der, Vi=1...Np (5.40)
Inserting the equality constraint (5.38), we have that

u=K} (Gmu+Gfd)+K,
=K, G""u+Ky, Gd +K, ,
= (I1-Kj, GMu=K, Grd+k,, (5.41)
= u=(I-Kj &K Gid
+ (1 — Ky, &™) 7K,

Second, due to the uniqueness of the optimal inpute have that the inverse of
(I = K|,,G'™) must exist and further that

(I1-K}, &™) K, G =Ky Vi=1...Np (5.42)

Since both(l — Kj, &)~ and G!" have full rank, we must have that K}, #

Ké tht—:‘nlgi,m =+ KJm. Finally, sinceu is continuous we conclude that the function
Ky..ym+K, can be used as a vector-valued PWA descriptor function. O

Remark 5.2. To use the nullspace method we do not need to include a perfect
measurement of u in y; it is sufficient that we have enough independsure-
ments § > ny+nq. Here we include u because it is then easier to prove that the
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Figure 5.3: Additional disturbana# to match the model with the measured con-
straint.

resulting set of invariants can be used as a vector-valued PWA degcfipto-
tion. This means that we can use the method described in this chapter taucbns

a descriptor function as a function of measuremepisand include other mea-
surements in the controlled variable selection problem. The only requireisie
that the controlled variables gives zero loss from optimality when controlled to
constant setpoints,c

5.4 Constraint matching

The linear approximation of the constraints as used in problem (5.8) magyas a
model based scheme, lead to infeasibility when used on a real plant. Howeve
this can to some extent be accounted for if the constraints are measuredhn\We
then simply estimate a disturbandgas illustrated in Figure 5.3 and treat this as
a measured disturbance in the problem formulation (problem (5.8)). Fautant
constraint we then have

Ymin < Ymeasured< Ymax
(3
Ymin <Y+ dec < Ymax

)

Ymin — 0e <Y < Ymax— de

One should realize that this method can (and should) also be used on iniportan
manipulated variables, where important here means inputs that have a strong
economic effect, for example inputs that are affecting the throughputptdrd.
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Figure 5.4: Matching of an input constraint by additional disturbatice

Say, that for some values of the disturbances it is optimal to implement a certain
input at its maximum value, but that there is some mismatch between the model
and the reality, as illustrated in Figure 5.4. If a measurement of the actualeflu

u is available, then can this be corrected for by adding an extra disturloiirase
indicated in the figure, and by using the procedure outlined above for plésito
effectively change the value of,ax in the internal model of the controller.

5.5 Procedure for structure selection

We summarize our findings in the following procedure that may be used to find
controlled variables for an economic problem that can be approximateglLiasieatic
program:

1. Define the optimal control problem, consisting of objective funcligr, u,d),

process modefp(x,u,d) = 0, and operational constrairgg(x,u,d).

. Approximate this problem around the nominal optimum as a QP by the
method outlined in section 5.2.1:

(a) Eliminate the model from the nonlinear problem.

(b) Solve the resulting optimization problem for nominal disturbatice
to get optimal inputs™ and optimal Lagrange multiplieps'.

(c) Approximate this problem as a QP arouiod, A*).

. Add extra disturbanced; as illustrated in section 5.4 for important con-
straints.

. Solve the resulting problem as a parametric QP where the disturlbéhaoes
parameters. The solution will consist of a set of polyhedral regipinsthe
disturbance space and a list of active constraints for each region.
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5. Identify available measurements and linearize to get
ym = GLu+ G"d.
6. In each region (in the disturbance space), use the nullspace metiibd-of
orem 5.1 to find invariants itv= H'y — cL.
7. Use Lemma 5.2 to make vector-valued PWA descriptor function.

8. Use Algorithm 5.4 to construct a scalar PWA descriptor function to beé use
for region detection.

9. Use Algorithm 5.3 for region detection.

5.6 Example: Ammonia production plant

recycle
compressor

y Np Reactor
3H2 + N2 = 2NH3

=]
feed

Po compressor
ny

Figure 5.5: Sketch of an ammonia synthesis loop.

Consider the ammonia synthesis loop in figure 5.5. The objective is to maxi-
mize the produced ammonia in stream 4, while at the same time to minimize the
use of compressor work and cooling with a given reactor temperature.cdst
function is

prOﬁt = R/Vreedvvfeed+ RNrecycIe\MeCyC|9+ R/VcoolingWCOOIing + PNHSnZIH37 (543)

with prices given in Table 5.1.
In addition we must satisfy some operational constraints, namely a lower limit

on the possible coolindl{asy) and a high limit on the recycldRj in the loop.
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Price variable Value§ /unit]

RNreed —-0.4
I:‘Nrecycle —-10
I:‘Ncr.mling -05
I:)NH3 104

Table 5.1: Prices for ammonia example.

There are three steady state degrees of freedom, which can be thbsethe
pressure, recycle ratio and flash temperature, and the temperature éachar iis
assumed constant.

The feed consists of a mix of Hand N, and the main disturbances are feed
rate and feed composition.

5.6.1 Model

The model we use in this example is a honlinear model of the ammonia plant that
should explain the most dominant effects that influence the economic opevétio
the plant at steady state. The main properties of the model are:

Equilibrium reactor.

Henry's law (H, N2) and Raoult’s law (NH) describe the flash-tank.

Ideal compressor works.

Cooling work efficiency given by a Carnot factor.

The model consists only consist of a mass balance. The variables areléhe mo
vector for each stream;, i = 1,...,n7 and extent of reactiod. In addition we use
as secondary variab}é to indicate the mole fraction of componehin streami.
The components are ordered by, N2, NH3.

Table 5.2 shows a list of constants used in the modelling. All constants are
found in the book by Skogestad [2003b].

The mathematical model is given below:

Reactor feed. Mass balance over the feed point:

N =N1-+Ng (5.44)
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Variable Value Unit

Keq 6.36-10°°

Ho® 210688

Hi®? —656

H)® 110816

HT2 —342

A 4.4854

B 926132

C 3298

d? 5.1 mole/time
d? 0.8 mole fraction

Table 5.2: Constants for the ammonia plant example.

Equilibrium reactor. Let P = Px3 be the partial pressures in stream 3. The

equilibrium relation is then
2
I:)NH3
PSQPNZ

— Keq

Further, by using the extent of reacti§nwe have that

nR=n+<,
where the stoichiometric matr&=[-3 -1 2]'.

(5.45)

(5.46)

Flashtank. We here assume Henry’s law fopldnd N, and Rault’s law for NH.

TheK-values are given by

iy,  Ho”+ HrTrasn
2 P
i, — HO" - Hr Thasn
2 P
]_do‘fTﬂasBmc
kNH3 = T
LetK = diag(kn,,kn,, knns) @and we have that
X5 = KX4.

In addition we use the Rachford-Rice equation to find the ratio

(3ns)/ (3 Ms): _
k-1
i~ o RonHg TPk —1)

=0.

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)
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Now,

ens =re'ng (5.52)
€ng=(1-r)€ng, (5.53)

wheree =[1 1 1.

Split. The mass balance around the split is
Ns = Ng+ Ny (554)

In addition we have that
ng = fns. (555)

The reader may observe that the model depends on the temp€eFatwrim the
flash-tank and the pressuren the reactor and flash-tank. We here treat the vari-
ablesP, Tyash and the recycle ratid as steady state degrees of freedom.

For the compressors we have the following models:

Feed compressor. The feed compressor increases the pressure in the feed from
the nominal pressur, to the reactor pressufeby

p
Weeed = Z(nZ) RTInEO (5.56)

Recycle compressor. This compressor should counteract pressure drop in the
system by

p
Wecycle= Z () RThiasHN P_AP (5.57)

Cooling water. We assume that there is cooling water free of charge that can
cool the product stream down to°1& = 288 K. For further cooling, we have to
use a cooling unit with the following work associated:

To

Waub cool= z nCp(To—T) (? -1), (5.58)
c
To—T
whereT; = W. (5.59)

This means that the overall energy usage for cooling is

(5.60)

w0 if Thash > 288 K
COOIIng N Wsub cool OtherWISE
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5.6.2 Disturbances

The only disturbances acting on the system are the feeddgtar{d composition
(d2). The feed stream; can therefore be expressed as

dg+d2
n=(d+dp) | (1—d)—dp|, (5.61)
0

with d? = 5.1 mole/time as the nominal feed flow ad§ = 0.8 as the nominal
mole fraction of hydrogen in the feed. The disturbances are assumedrtdahse
set

D= {d c R? ‘ Idy] < 1, |da| < o.oz}. (5.62)

This corresponds to a maximum relative change in the feed rate of abdua2d
a change in the composition of about 4%.

5.6.3 Operational constraints

There are two operational constraints that we need to address. Firspdlieg
unit can only cool the reactor productt67° C = 266 K, therefore

Tflash > 266K (5-63)

We assume that this constraint can be implemented exactly, i.e. that an unbiased
measurement of this temperature exists.

In addition is there an upper bound on the maximum flow of recycle. For this
constraint, we include an extra disturbandg £ d;) as explained in Section 5.4
to make sure that we satisfy the upper limit on recycle at all times. (Note that this
maximum recycle constraint is motivated by the fact that the recycle conapress
has a high limit on the amount of fluid it can process.) We include this correction
by the following procedure: First, we find a linear model fromd) to ng on the
form

Ne ~ N o+ G"u+ Ggsd, (564)

using for example finite differences. The we add the “constraint matchiistyir-
banced; = d; to get the following inequality that bounds the maximum recycle in
the plant:

Rmeasurec< Rmax < €G™u+ e/GSGd + 1’n570 + d3 < Imax

so finally we have

€G"™U < (Imax— ENgo) + [-€G  —1] [(?J , (5.65)
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Steady state degree of freedom  Nominal optimal value

Split-factor (recycle ratio) ®875
Pressurd” in reactor 34217 bar
Temperatur@iashin flash-tank 2663 K

Table 5.3: Nominal optimal inputs.

ny N3 Ny Ns Ne Ne

6.8473 4.0455 0.0176 4.0279 2.7683 1.2586
1.2163 0.2837 0.0011 0.2826 0.1953 0.0883
0.0314 1.8995 1.8589 0.0427 0.0304 0.0133

Table 5.4: Nominal optimal stream data.

whered are the “economic” disturbancéd;, d,), andds is the “constraint match-
ing” disturbance.

5.6.4 Control structure selection

Nominal operating point. We used TomlabB" under MatlaBM to find the
nominal operating point, as reported in Tables 5.4 and 5.3. The inpuged in
the sequel are deviation variables from this nominal operating point.

Approximation to a QP. At the nominal optimum no constraints are active, so
we can use the Hessian of the nonlinear problem (rather than using trenigéan)
to find J,, andJ,g. The resulting matrices are:

5572017 -801 262 , 5953 34026850
—~7.95 008 -008' 002 7511 (5.66)
261 -008 131 -0.00 7.70

59.52 002 —0.00, 004 1569524
34008183 7433 773 ! 1557395 17025466

This Hessian is found by finite differences. We observe that the matrix sl
symmetric because of numerical inaccuracy, but it is close enough to syimmetr
for our purposes. We used the upper right pard,gsn the calculations.
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The linearized constraints are:

[maxR: ] [9.6295 ~0.0033 00015} 31 -

[Min Trash:]1 | O 0 —1.0000 Uz =
M (5.67)

[0.51]%—0.59 —23.76 —1.00] gl

0.53 0 0 0 2

~—— d3

M Mgy

In addition there are non-negative constraints on all the compositions langa
limit on the pressure in the system, but these constraints are not active fdisth
turbance space we chose to study, so we do not add them explicitly to thlempro
formulation.

Measurements for region detection. We have three disturbances, but one of
them is assumed to be measured (the constraint matching for maximum recycle),
hence we need to identify two measurements that we can use for regiotiatetec
(see Theorem 5.1). Since the goal here is to demonstrate how to use thislahetho
ogy, we simply chose the two first entries of the stream-vaegtas measurements,

that is the flow of H and N> in the reactor feed. This gives the following “mea-
surementsY (in deviation variables) that we use for region detection:

Ui

uz 1 0 0 0 0 O

Us o 3 o[ [ o gl

Y= | H2| = | 96773 ~0.0024 aoo0z2| | U2 + | 1.3468 338300 0| |d2| (5.68)

2 —0.1411-0.0008 00002 |4 02371-103119 0| |,

N2 0 0 0 0 0 1

2
| d3 | ¢ Gy

where the matrice8’ andG), come from linearization around the nominal optimal
point.

Parametric solution. Using the “Multi-Parametric Toolbox” (MPT) [Kvasnica

et al., 2004] we identify three regions for the solution of the QP-approximatio
which are described in Table 5.5. We used three parameters in the optimization;
(d1,dy) with search space defined in equation (5.62), and in additidb < d3 <

0.5.
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Region Description
1 Unconstrained “nominal” region.
2 R = Rmax (maximum throughput of the recycle com-
pressor.)
3 Thiash = Tiashmin (COOIlINg unit can not decrease tem-

perature further.)

Table 5.5: Regions of the parametric solution to the QP-approximation.

Vector-valued PWA descriptor function. Using the nullspace method in each
region (as described in Lemma 5.2), we get the following invariants (whiotemwe
use also as controlled variables):

[—028 160 O

~7619 42731 0 [ym] ifde e,

| 451 2531 o L°

[—015 023 -024 0.12

u=1{ |-5497 21037 —3994| |"™| +|2021| ifdee (569

| 310 1098 -261|Ll° 1.32

[ 028 158 0O —0.0004

—7074 39673 0| |"™| + |-06408  ifdec s

| —000 000 of 1 |-05305

In order to check the calculations the reader is referred to section 5. iéing
algorithm 5.4, we identify the following function which can be used for tragkin
changes in the active set:

:—81.0 4542 o}

_[_582 2216 -4

:—71.0 3983 o}

Yml 217

—1.18

ifde P
ifde P, (5.70)

ifde P

Table 5.6 shows neighbors and correct signs for the funcfiansequation (5.70).
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Region Neighbor(s) sigri(— fj)

2 1 -1
3 1 1

Table 5.6: Neighbors and correct signs for the scalar PWA descrif{ar) as
defined in equation (5.70).
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Figure 5.6: Calculated steady state degrees for freedom for the ammaniglex
for various disturbances. In addition we have plotted the resulting reBycldie
blue line represents the RTO, the red dashed line is the approach of thisclaad
the black dotted line is the approach of this papgghoutconstraint matching. The
disturbance axis represent traversing the disturbance spacédgam (—1,0.02)
to deng= (1, —0.02) in a straight line.
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Figure 5.8: Constraint matching temts.
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5.6.5 Simulation results

Figure 5.6 shows the result of simulating the proposed control structuagémge

of disturbances corresponding to the search-space of the paramegiam, that
is—1<d; <1land-0.02<d, <0.02. The figure shows a traversal of the distur-
bance space fromdsiat= (—1,0.02) to deng= (1, —0.02) by following a straight
line. We chose this representation because this direction was the directwa wh
the methods differed the most. For comparison we have solved the origimal no
linear program for the same disturbances.

From Figure 5.6 we observe that the two methods are quite close, especially
around the nominal disturbance. Figure 5.7 shows the difference ifiucations
scaled with the absolute value of the optimal cost. We observe that the ddéere
in this metric is quite small, and less than 1% for the cases studied. Probably this
will be an “acceptable loss” and we therefore have an implementation thases clo
to optimal but simple, which is exactly in the spirit of “self-optimizing control.”

Figure 5.8 shows the estimated nonlinear correctignAt saturation of the
recycle the actual value is®8mole/time, so the error in predicted recycle by the
linear model is about 1.4% at maximum. We also simulated the system without
this disturbance included as a measurement, and then the constraint on maximum
recycle was violated with about 1%. This can be observed from Figure 5.6

5.7 Discussion

In this chapter we use the descriptor function defined by Bagttial. [2008] to
implement the solution of a parametric quadratic program. Our main contribu-
tion is to relate descriptor functions to implementation of static optimization prob-
lems. In particular for quadratic problems, we show that we can identifyrigar
functions based on “linear measurements? GYu+ Gﬁd by using the nullspace
method in each region of the parametric quadratic program. As a resultrwe ca
make a list of constant setpoint policies, one for each region of the pnoate
hand, and a simple method for how to change between these policies, babed o
outputs only.

The results are exact for quadratic problems, but as we have showmanvith
example, it seems like the method may also be applied to more general problems
by quadratic approximations. This opens up some interesting researcs, @apic
it seems like we can use the current method for region detection, and wse oth
methods, such as the exact local method [Alstad et al., 2009] to accounisty n
too few measurements, and other issues, as long as the loss from optimalty is su
ficiently small. What “sufficiently” means, and how to construct a contrdicgo
(that handles changes in the active set) that is robust to modelling enidislzer
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sources of errors, are open research issues.

In this chapter we have only considered steady state, and in fact the regio
detection scheme assumes that the system is at steady state at all times. This
assumption will of course not be valid for real processes, and threrdfmamic
studies of control policies with dynamic controllers and dynamic model of the
plant should be conducted before application.

Static part of MPC. MPC is usually implemented with a static optimization
problem that adjusts the setpoints of the controlled variables such thédiligas
of the dynamic problem is guaranteed. The problem is often referred‘target
calculation”, and may have the following structure [Rawlings, 2000]:

1
min 2 (n'Wen + (Us — U)Rs(Us — 1)) + g

Xs,Us,N 2
S.t.
I-A -B O Xs| (= Bd
C 0 | Us| ¢ > 72 |Yy—p
C 0 —I][nfg)ly-p
n>0

Umin < DUs < Umax
Ymin < CX%+ P < Ymax

Herey andu are desired (assumed economically optimal) values for the measure-
ments and inputs, whilg is a slack variable.

However, our method may also guarantee feasibility if we can estimate (by
using “constraint matching”) the deviation from predicted and actual vafltlee
output constraints. This is because the controlled variabledHy are by con-
struction feasible at their setpoints (also for theactual plantwhen “constraint
matching” is used). Hence, the method presented in this chapter may besused a
an alternative to the steady state part of the MPC, with the benefit of improved
economic performance of the plant.

A similar idea is presented in [Ying and Joseph, 1999], but the authors do
not consider “feedback implementations” on the form of controling Hy to a
setpointcg, rather they consider an open loop implementation of the static problem.
Similar to what we do in this chapter, Ying and Joseph also suggest to use the
Hessian of the Lagrangian of a quadratic approximation of the RTO astuaiica
weight in the feasibility problem of the MPC.

Using self-optimizing control with RTO. In the example we assumed that the
feed composition could change with about 4%. Optimal economic operation of
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Economic P Economic P
Optinﬂzatljon < Optln%]lzatljon <
Uo, Yo Uo, Yo
A 4 \ 4
(l?:esdg(id(;[%‘:rg)%t): QP approximation
vG S
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| |
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MPC < MPC <

Figure 5.9: Left figure: Typical situation when self-optimizing control is not
implemented, the controller should track the optimal valgasy,) from the
real-time optimization (RTO)Right figure: A possible implementation of self-
optimizing control with an RTO layer above. The controller is tracking contlolle
variables that should give an acceptably small loss from optimality betweén RT
updates when disturbances occur.

the plant was found to be a strong function of this disturbance, which i<kdao
from e.g. Figure 5.6 where one observes that one has to change the ¢opd
siderably when the feed composition changes. For larger disturbantesfieed
composition, say 10%, the self-optimizing control scheme will generate ingtts th
are quite far away from the optimal inputs, and there will be a significant lass
these situations it would be fruitful igpdatethe self-optimizing control policy by
using an RTO layer (economic optimization) above the self-optimizing layer. A
flow-sheet of a possible implementation is shown in Figure 5.9. In the figure we
show both a typical scheme where an economic optimization layer sendsexddesir
target value to the control layer, and a situation where one implements thaesche
presented in this chapter. The scheme on the right hand side of the figuté w
typically be interesting if the economic optimization is updated every now and
then (assuming that a fast update is too difficult). Such a scheme shoukdebe a
to handle larger disturbances in the feed composition and still have antaloiyep
small loss from optimality.
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5.8 Conclusion

Based on a recent contribution by Baogt al. [2008] we have presented a gener-
alization of the nullspace method [Alstad and Skogestad, 2007] to includgeba

in the optimal active set. The method has been demonstrated on a model of an am-
monia production facility. We identified three different regions of operatom

the method was comparable in performance to real-time optimization of the same
plant.



Chapter 6

Analysis of methods used to
speed up model predictive control

Based on the paper “Bilevel Programming for Analysis of Reduced Mddelse
in Model Predictive Control” published idournal of Cybernetics and Informatics
pages 3-12, volume 9, 2010.

In this chapter we develop a mathematical program that iiikesthe dis-

turbance that maximizes the difference between two modwsligtive con-

trollers, one candidate controller and one reference obatr The reference
controller is assumed to be tuned to give a good trade-offiden perfor-

mance and robustness, but it is too computationally demgnidi be im-

plemented. The candidate controller is an approximatiotihéoreference
controller, where some “speedup” has been used. In thisrpe@eonsider

move blocking, model reduction and changing the input loorias possi-
ble speedups. For several different candidate controlters may use the
proposed mathematical program to choose which controi@sghe best
performance to computational demand ratio.

We apply the proposed method to model predictive control ditllation

column, and we find that blocking the difference of moves im MPC is
more efficient that directly blocking the moves. We also finat the reduc-
ing the horizon is not very good, as this gives a high perforredoss.

6.1 Introduction

In the literature, one can find numerous variations of discrete-time finitedroriz
optimal control, see e.g. the survey by Mayne et al. [2000]. In most implemen
tations, the optimal sequence of inputs is computed at each time-step, apd subs
quently only the first element of the sequence is applied [Cagienard efar].2

89
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Method Gu-time

Dense quadratic program 0((Nny)3)
Interior point method that exploits structureo (N(ny + ny)3)

Table 6.1: Expected order of magnitudg-) for number of operations per step
using either a dense formulation or a structured (sparse) formulationdRalg
1998, Wang and Boyd, 2010].

At the next time step, the horizon is moved one step and with new measurements
the calculations are repeated. This policy is referred to as model predictntrol
(MPC). In a recent paper Wang and Boyd [2010] claim that “a widetpgaized
shortcoming of MPC is that it can usually only be used in applications with slow
dynamics”. For an MPC problem with linear model, polytopic constraints, and
quadratic objective, with state dimensiog input dimensiomy, and prediction
horizonN, the order of magnitude of expected number of operations per step is
given in Table 6.1. For both methods, the computational time is increasing in
the third power ofny, but whereas the computational time of a dense program is
increasing in the third power also M, the computational time for a solver that
exploits structure is linear ilN. Finally observe that the states are removed in
the dense formulation, but they are present in the structured formulatidrtha
corresponding computational time is increasing in third order with

It is in addition recognized that the expected number of operations is also a
function of the number of constraints of the problem [Qin and Badgwell3R00

In order to reduce the computational effort in conventional MPC one can

e Perform amodel reductiorof the internal model in the MPC to reduce the
number of stateny.

¢ Introducemove blockingtrategies to reduce the number of degrees of free-
dom (given e.g. by the produbtn, for a dense formulation). This strategy
is used in numerous industrial implementations, see e.g. the survey by [Qin
and Badgwell, 2003]. For an overview of different move blocking poss
bilities see [Cagienard et al., 2007]. The effect of move-blocking on the
computational demand is clear in the case of a dense formulation (cubic de-
crease), but less clear when a structure-exploiting method is usedugiiho
there should be possible to exploit the extra structure given by the move-
blocking and hence have some decrease in expected number of operation
per step.)

e Reduce thénput horizon N Though this is an important parameter, there are
few clear guidelines for how to choose it. It is recognized that the cantsgra
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will only remain active for a finite number of time steps, and for a long
enough horizon one can eventually force the system to an invariadt.set

{w]| (A+ BK)/w € Wk, Vj > 0} such that the unconstrained feedback law

v = Kw is feasible for all future times, see e.g. [Rawlings, 2000]. Denote
such an horizoN*. Chmielewski and Manousiouthakis [1996] found an
upper bound oiN*, but it is considered to be very conservative in many
cases, see e.g. [Grieder et al., 2004]. Due to this we believe that for many
applications the input horizon is chosen on an ad-hoc basis and mayde use
as a tuning to reduce the computational demand for the MPC.

¢ Reduce thesample time Jof the model. This may be seen as an alternative
to reducing the input horizon, where one instead uses a coarser madel. O
may also use models with different sampling times inside the controller,
typically one would use a small sampling time for the first times, and then
increase the sampling time later. See [Halldorsson et al., 2005] for more
details.

In this work we develop a framework f@erformance loss analysfer such
speed-up schemes by comparing a “candidate controller” with a “refereon-
troller”. The “candidate controller” is an MPC for which one has used sormans
to reduce the computational load, whereas the “reference controller isath-
troller one would like to use. The mathematical method is based on exploiting
the optimality conditions of MPC to rewrite a bilevel program to a mixed-integer
linear program.

Closed-loop simulation of the candidate controller seems to be the normal
way of checking closed-loop performance for industrial implementatioims4€d
Badgwell, 2003]. However, checking all possible constraint combinai®not in
general possible, and there is therefore a need for automatic methoidietitdies
the worst case disturbances.

With the method developed in this chapter the goal is that the practitioner can
easily scan through different methods to speed up the controller in ordet @
good trade-off between computational effort and performance loss.

An alternative approach is to use an explicit solution of MPC, see e.g. the
recent survey by Alessio and Bemporad [2008]. Here one avoidsritiepn of
online optimization altogether, but instead one needs to identify the corréet sta
region. In practise, this approach works well only for systems with smak sta
and input dimensions (say, no more than five [Wang and Boyd, 2010jervthe
dimensions grow, the number of regions can grow exponentially [Wen 80819],
which implies that both storing all the regions and locating the correct regiam f
given state becomes a difficult problem.

Hovland et al. [Hovland et al., 2006, Hovland and Gravdahl, 2008pqse
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a scheme to use reduced models in explicit MPC. They perform a two-step pr
cedure to analyse the reduced order controller: First, they analyse tiel nee
duction using an open loop evaluation of the model mismatch (evaluated by the
#H,-norm). Then, they make a table of model order and resulting number of re-
gions, and choose the model order that gives a satisfactory low nurhtegyions
combined with a low model mismatch. This approach does not take closed-loop
performance explicitly into account, but one may assume that there is a relation
between performance and number of regions in the controller.

Note that the results in this chapter are valid both for on-line and explicit MPC.

The rest of the chapter is organized as follows: First we give badkgrma-
terial on MPC and two common methods to speed up MPC, namely move block-
ing and model reduction by balanced truncation. Then we give a mathematical
formulation of the problem of identifying the maximum difference between two
controllers in closed loop on the same system. Thereafter we discuss some co
putational aspects and present some simplifications. Finally, we demonsgrate th
proposed method on a linearized model of a distillation column.

6.2 Background

6.2.1 System to be controlled

Consider the linear system

Xk1 = AX+ Bl

Yk = Cx (61)

wherex, € R™ are the statesy € R™ are the inputs, angk € R™ are the outputs.
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6.2.2 Model predictive control (MPC)

We pose the followingpen-loopcontrol problem in order to control the linear
system (6.1):

_ 1 ANzt ,
X1=~-~7XNTJ:)?~-=UN—1 EX,NQNXN + é i; (uiRu +XiQ)q) (6'2)
Xkr1 =A% +Bw, Vvk=0,....N—1
Yk = CX, vk=0,...,N
Flu< fy, vk=0,...,N—1
s.t. (6.3)
Fly < fy, vk=1,....N—1
I:XNXN < fXNa
L Xo = given

Remark 6.1. We have here included an inequality constraint on the final state x
because if this is chosen carefully together with the final weig@xy, feasibility
and stability can be guaranteed in closed loop. There are many refesemcthis
subject, see e.g. [Mayne et al., 2000, Rawlings and Mayne, 2009].

Remark 6.2. We assume that the MPC problem at hand is a well-posed problem
with Q > 0 and R> 0 and that there exists a non-empty sgXinitial conditions
Xo such that problen(6.3) has a feasible solution.

Dense formulation. The MPC problem (6.2)-(6.3) can be written on a dense
form, where the states are eliminated by substituting the model equations into
the objective function and constraints: First, we define the following gaitis w

notationG[, :
X1_ [ A B Uo
X2 A2 AB B Uy
=1 X+ . : (6.4)
XN AN AN-1B .. Bl |un-1
L
X G5, e u
yvi ]| [ CA CB 0
Yo CA? CAB CB 0
: = : Xo+ : . 0 u (6.5)
yn-1]  |CANE CAV™B ... ... CB O
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In addition, we define the following model, corresponding to the last rov@.df{

xn=A" %+ [ANV1B ... AB Bu. (6.6)

Giy EN

We further define the following matrices:

Fu = diag(F,--- ,Fy) (6.7)
Q:dlaQQa 7Q7QN) (69)
R=diagR,---,R) (6.10)
and vectors:
fu fy
fu fy

With the above definitions can we rewrite the MPC problem (6.2)-(6.3) as

bl [ 3o o)

P fu 0 (6.12)
st. | PG [u< | fy |+ | -FG, | % '
FXN G)L(JN fXN - FXN Gxxgl
F f E
with
Ju=GJ'QG+R, (6.13)
Juo = G QG (6.14)

First order optimality conditions. The first order optimality conditions (re-
ferred to as Karush-Kuhn-Tucker (KKT) conditions, see [Noceatal Wright,
1999] for an introduction), for the MPC problem (6.12) are:

Fu< f+Ex (6.17)
A>0 (6.18)

N(Fu—f—Ex)=0 (6.19)
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where are the so-called Lagrange multipliers for the function
1
L(u\) = éu’Juour U'Jygd — N (=Fu+ f +Exy) (6.20)

Mixed integer formulation of complimentary constraints. From equation (6.19),
often referred to as a complimentary constraint between the ineqéality f +
EXy and the Lagrange multipliex, we see that the KKT-conditions are bilinear in
uandA. This equation can be replaced with the following two equations:

A <Ms (6.21)
Fu>f+Ex—M(1-y) (6.22)

Heresc {0,1}" is a vector of binary variables corresponding to the number of in-
equality constraints in problem (6.12), akldis a constant large enough such that
the solution does not change when equation (6.19) is replaced with thelitegu
(6.21)-(6.22). (This is often referred to as a “ij-formulation.) Note that even
though some references claim that that the valu¥ afhould be set “arbitrarily
large,” it should only be as large as necessary to not affect the sobfttbe equa-
tions, but not larger, as a too larye will render the problem intractable [Camm
etal., 1990]. This is because both solution time and the reciprocal of thisiore

of the solution will increase with an increasing valuevbf

6.2.3 Move blocking

Move blocking schemes comes in many different fashions, see [Cadiebat.,
2007] for an overview. We here cover “input blocking” and “delta inipiacking”.

In addition, one can choose to parameterize the input sequence in terme-of d
ation from a reference controller, typically the linear quadratic regul&iQiRy).

We then haveu, = K grXk + Ck, Where the deviations, are the new degrees of
freedom, and we add blocking constraints to these new variables. Thedsetho
presented in this chapter can be used also for the latter case, but wedisauss
this method further here.

Figure 6.1 shows a sketch of input blocking and delta input blocking. Biape
case of input blocking would be to keep all moves the same, which would-corr
spond to a single-move MPC. The blocking schemes can be expressexiftonth
Wu= 0, and we now give examples for how to fitMi(the “blocking matrix”) for
input blocking and delta input blocking.

Input blocking. As in [Cagienard et al., 2007], consider a SISO system with
prediction horizorN = 4 and corresponding degrees of freedayus, Uz, us. We
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A Input

input blocking,
3 degrees of freedom

delta input blocking,
past future 4 degrees of freedom

1 1 1 3

T T >
Time samples

Figure 6.1: Different types of move blocking.

want to add a blocking such thag is free, whileu; = u, = uz, thus reducing the
degrees of freedom in a dense MPC formulation from 4 to 2. This is aahleye
adding the equation

Uo

01 -1 O u| 1|0

[O 1 O —1} Uo _[O] (6.23)
us

to the control problem.

Deltainput blocking. Consider the same example, but now we want to constrain
the difference between the inputs remain constant. For the SISO example with
the four degrees of freedomg, uz, U, uz we can reduce the number of degrees of
freedomNn, to 2 by adding the equationg — ug = U — Uy = Uz — U, Which on
matrix from can be written as

Uo
-1 2 -1 0| |uy 0
O -1 2 —1] U []
us

(6.24)

Optimality conditions for MPC with move blocking. Consider the optimality
conditions (6.16)-(6.19) for the MPC problem (6.12). When move blocksng
introduced we need to augment the Lagrangian function to

L(uAy) = %UIJUUU +XpduU— N (=Fu+ f + Exp) —YWu (6.25)
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wherey are the Lagrange multipliers corresponding to the move blocking equality
constraintdvVu= 0. The KKT-conditions for the case of move blocking are then:

Wu=0 (6.27)
Equations (6.17)-(6.19)

6.2.4 Balanced truncation

We here review model reduction by balanced truncation [Moore, 1384 @xam-

ple of a model reduction scheme that can be analyzed with the proposedimetho
The model reduction by balanced truncation consists of two steps: First, we

find a balanced representation of system (6.1), then we remove the siates c

sponding to the smallest Hankel singular values of the balanced retatsen

Balanced representation. The controllability and observability Gramians of a
linear system are defined as

AN +WA +BB =0 (6.28)
AW, +WoA+C'C =0 (6.29)

A balanced representation of system (6.1) is obtained through a travetfon
matrix T, such that\; andW, (of the transformed system) are equal. ketdénote
the states of the balanced system, ke="T X. It can be shown that

W, =W, = diag(01, 02, ...,0n,)
We=TWT 1! (6.30)
Wo = (T HW,T 2
wherea;, k=1,2,...,n, are the Hankel singular values of the balanced represen-
tation, ordered according to

01 >02>--->0p > 0.

Truncation. LetZ = [z, Z&¥]. In balanced truncation we simply deletg®
from the vector of balanced states DenoteT; andT, as

i . -
——
Tin ... Tin T o TR Tt
T=||. ], TR ; : (6.31)
T .. Tan Tb o TR Tl
: : T
N Tn]_ Tnn i
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We can now express the balanced and truncated result as

=TATz+TB
Zer : rer 1Bk (6.32)
Yk = C"T"z+ Duy,
and we note that the map from the full state vestdio the balanced and truncated
system (6.32) is given bz = T x.

6.3 Problem formulation

Consider the controlled system in figure 6.2, where we have included &dxdistte
model and a state observer. The objective is to identify a worst-casebdistie
sequencev* such that the weighted difference

Nsim

diff = _;IIQ(XF—X{)IIooJrHR(U?—UDHw (6.33)

is maximized. Here superscript™means “candidate controller,” and™means
“reference controller”. The parametii, is the length of a time period for which
we are comparing the controllers.

The idea is that the reference controller has been tuned to give a goed tra
off between performance and robustness for the linear system to el
but that this controller is too computationally demanding to be implemented. The
candidate controller is a simplified alternative, where different simplifications
been used, i.e. model reduction or move blocking. The objective is to find the
performance degradation in terms of the weighted difference 'diff’ inagéiqn
(6.33).

6.3.1 Notation

The system to be investigated in Figure 6.2 consists of three linear systems (dis
turbance model, linear process and state observer) and one optimizatienpr
(MPC).

Disturbance model. Let the disturbance dynamics be described by
Ay 1 = Aqdk + Bgwi (6.34)

d® = Cdk (6.35)
di, = Clidk. (6.36)
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Figure 6.2: Linear system with MPC controller, state observer and distceba

model.

For a time-sequence 1 - , Nsim we have

d? C{Aq C{Bq Wo
d? C{A3 CPABy C{By Wi
: - : 0+ :
d'(\?simfl CdoAysimfl C:dOA’(;‘sim*2 CdOBd WNsim—l
do GQ(? GEO w
(6.37)
d! CiAd ClBqg Wo
db CL\A3 CiAsB4 ClBq Wi
. = : do + :
dy, 1] lCoAr™ CoAT™? CyBal [Wigin—1
d! o o w
(6.38)
Linear process. The linear process
= AZ+Bl'uc+ B%d|
Zer1 = A+ Bruc+ B dg (6.39)

Yk = Cizc+Dfed?
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may have slightly different dynamics than the internal model in the MPC. Over
Nsim sample times we write the model as

Y1 G By Uo
2| | GA B' GB Uz
VNG, CIAiNsimlelu e . CI BIU UNg,—1
S—— N——
y e u
dl
CI BI d' d'
: . (6.40)
QAiNsim—lgld' G Bld'
d,
Dd°
+ - d®
pd°
Glo

State observer. We consider a simple Luenberger observer [Luenberger, 1966]
on the form

Rir1 = AR+ L(Yk — Yk) + Buk

5 (6.41)
Yk = CX,
or equivalently
Xer1 = (A—LC) R+ Lyk + B (6.42)
N——
Ao
and we assume thab is stable. OveNg, time samples we have
X1 L B
Ko Aol L AcB B
= . ) y+ .
: : . : (6.43)
KN A(’\)‘sim—lL e oL A<N)sim—1|3 ... ... B
——

X GX
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MPC. Let Kypc denote the magKypc : R™ — R™}, i.e. the first part of the
sequence’* that solves an MPC problem. We then have that

Kmpc
u= X, (6.44)

Kvpc

Kmpc

whereKypc is a variable gain that depends ywherex= [%, %, ... Xf\,sim]'.

6.3.2 Problem statement

The problem we attempt to solve can be summarized as:
Nsim
max 21 1QWF = ¥ lleo =+ IR(UF — U)o
wew =

std®=cdw, d =clw,
Yo =G+ Gy d' +God®, Y =G + G d' +G)od®,
£ = Gly* + GALE, R =Gy +Giu,
UC - KKAPC)’&C’ ur - KRAPC)’{'
Here K}, indicates that a candidate MPC formulation is used, whelgas-
indicates the reference controller. The search space for the distesbangiven
by the polytopew .

Remark 6.3. Rather than considering a linear state observer as done in problem
(6.45) one may include a finite horizon estimator. Note however that the complex-
ity of the problem increases significantly when a finite horizon estimator & use

(6.45)

6.3.3 Solution by mixed integer linear programming

Problem (6.45) is referred to addevel progranBard, 1998, Colson et al., 2005]
because we have two “levels” of optimization, the “upper level” of maximizing the
difference between the controllers, and the “lower level” representagdhutions

to the MPC problems (which are themselves optimization problems). If the lower-
level problems happens to be convex and regular, they can be replatiear first
order optimality conditions, yielding a single-level optimization problem (see for
example [Jones and Morari, 2009]). Under the assumption that we tpstave
semi-definite weigh@Q > 0 on the states and a positive definite weight 0 on

the inputs, the MPC formulations will fulfill this assumption. Thus, we do not look
for an explicit solution (controller) to the lower-level problems, but we sdtw

the corresponding inputs by using the first-order optimality conditions.
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MPC as mixed integer constraints. We define the operator
KKT : R™ — {first-order optimality conditions on “bi¢4 form”},  (6.46)

i.e. an operation that writes the KKT-conditions given in section 6.2 for argiv
MPC formulation. Further, let the operation

KKT : RN — Ngir, independent instances of the KKT operator above (6.47)

have as input the vector of stacked state3his operation then writes the KKT-
conditions forNgj, steps forward in time, i.eN\sim MPC calculations. We can now
do the following substitution:

(U = KpcKs, U = KiypcX' ) & (KKTX®, KKT'X') (6.48)

We here substitute the lower level problems with linear constraints, and add
new variables, some of which are binary.

Objective function. The objective function is still non-convex, but it can be
made convex by a standard trick, see e.g. [Jones and Morari, 20fif&rly, 2004]:
The objective function is on the form “mék|..”. If we introduce binary variables
n; andp; for each element dfand add the condition that the binary variapjes 1

if ||t||e =t andn; is 1 if [|t]| = —t;, will the remaining problem be a mixed-integer
linear program (MILP). In this work we usedaYmiP [L 6fberg, 2004] to pose the
problem, and this software has a built-in facility for this “trick”.

Summing up, if we replace the MPC problems with their respective KKT con-
ditions and add binary variables to render the objective function linearedget/
an MILP problem in the end, which we can solve using standard softwatkis
work, the commercially available softwareeQ=x© was used.

6.4 Computational aspects

After replacing the MPC problems with their respective first order optimaliby co
ditions (modelled using binary variables for the complimentary constraints) and
noting that the maximization of an infinity norm can be rendered into a mixed-
integer linear program we are left with an MILP problem:

Nsim
max Zx 1QUYF = ¥i)lleo + [[R(UF — ) o
wew i=
std®=cdw, d =clw,
Gl + Gl + G, Y — Gl +GYd + Gl
& — G§yC + G, g — G;yr +Ghu,
KKTX, KKT'S.
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Origin Number of binary variables

Objective function Nsim(2ny + 2ny)
KKT conditions for MPC problems Nsim(N°n¢ +N"n¢)

Table 6.2: Number of binary variables by solving problem (6.33) as a NbioB-
lem. The MPC problems have an input horizorN\5ffor candidate controller and
N’ for reference controller, both with. constraints.

Table 6.2 shows approximately how many binary variables that are used in
the problem formulation. To get some insight into these numbers, consider the
following example:

Example: Distillation column. We consider a typical distillation column, see
e.g. [Skogestad, 1997], with 2 inputs and 2 measurements. Consider tHessimp
case of only input constraints on the foun< u < U, so the number of constraints
nc = 2ny = 4. Assume that one decides that a prediction horizoN ef 20 is
sufficient, and that both reference controller and candidate contrdiéess this
prediction horizon. Further let us assume that we want to simulate the ctotrol
Nsim = 40 time steps. We then get the following number of binary variables in our
formulation:

Origin Number of binary variables

Objective function 4R-2+2-2) =320
KKT conditions for MPC problems  4Q@0-4+20-4) = 51200

A number of binary variables of 51520 corresponds to that the sohedt us
for finding solving the MILP in the worst case has to explor&2nodes, which
may take extremely long time. It is well-known that MILP problems are NP-hard
(NP-hard problems belong to a class of problems that cannot be solvetyivop
mial time [Blondel and Tsitsikilis, 1997]), but nevertheless there exists comater
software that can solve these problems within reasonable time. What sehder
problem we have posed even more difficult, is probably the structure afotime
plimentary constraints originating from the KKT conditions of the lower level of
the bilevel program, because even for the simplest instance of a bilegapn,
the linear bilevel programming problem is shown to be NP-hard [Colson et al.,
2005].
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6.4.1 Simplifications

We now present some simplifications that effectively lets us only find a lower
bound on the maximum difference (rather than the exact value), butehders
the remaining problem tractable.

Initial state of disturbance model as only disturbance. In the problem formu-
lation shown graphically in Figure 6.2, the “generatong’drive the disturbance
model. In the equations we have also included the initial slgt®s a degree of
freedom. In optimal control, see for example [Kwakernaak and Si&f ITheo-
rem 3.9, page 260], is it well-known that for a linear system (withouttaimgs), a
linear feedback that is optimal for rejecting an initial disturbasicis also optimal
for sustained white noise disturbances on the fagkm = (A— BK)xk + Wk.

This result is only valid for linear controllers on linear systewithout con-
straints, but here we suggest to ignore the generatprand only search over
initial states of the disturbance modd}, which should by the similarity to the
result above from optimal control, lead to the same classification of the caadid
controllers.

Using fewer points in the objective function. With the simplification of con-
sidering only the initial state as our disturbances, we suggest to simplify obe pr
lem by, rather than evaluating the whole trajectory in the objective functian, i.e
zi'\fi” |Q(YF — ¥i)|leo + ||R(UF — U ) |0, ONly considering a few points, for example
the midpoint and the end poitt Ts- Nsim. We here assume that an initial distur-
banced;, that maximizes the difference between the controllers at the end point,
alsomaximizes the difference over the whole trajectory. However, for long “sim-
ulation times”Nsjm, this problem maybe badly posed (as the difference may be
very small at the end point for adh in the set of initial disturbances that we want

to investigate), so we then suggest to add some more points, for example the mid
point, as indicated in Figure 6.3.

From Table 6.2 it seems like “simplifying” the objective function as outlined
above, does not have a significant influence on the solution time, as mibst of
binary variables come from the KKT conditions of the MPCs. However, by n
merical experiments we found that this simplification made the problem solve a lot
faster.

Early termination of the MILP solver. While testing the method proposed in
this chapter we found that the MILP solverg(:=x) actually found an acceptable
solution to the problem of maximizing the difference between two controller quite
fast, but that it took a long time to converge to the actual solution. A typical
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closed loop outputs
A

3

M Time samples

1 midpoint

Figure 6.3: lllustration of two closed-loop trajectories, one for the refeeon-
troller (blue line) and another for the candidate controller (dashed red line
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Figure 6.4: Sensitivity to time limit.

example is shown in Figure 6.4, where by changing the time limit on the solver we
get essentially the same solution after 10 seconds as after two minutes. We also
investigated the sensitivity to the tolerances PLEX (absolute and relative gaps,

and absolute and relative objective function values), but we foundhleatnost
effective solution was to simply add a time-limit to the solver.

6.5 Example: Distillation

We here consider model predictive control of “Column-A’ in [SkogestaD7],
with the “LV-configuration”. Muske and Badgwell [2002] also used tame col-
umn model as an example for offset-free MPC, and we here use the saraéing
point as they did, which is reported in Table 6.3.

In order to use the distillation model in this example, we first linearize the
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Type Description Variable Nominal Value
Input Reflux flow L (u) 1.87

Vapor flow Vo (up) 2.37
Disturbance Feed flow F(do) 1.0

Feed composition Z= (do) 0.5

Liquid feed fraction aF 10
Output Overhead compositionxp (Y1) 0.95

(light component)

Bottoms composition xg  (¥2) 0.05

(light component)

Table 6.3: Variables for distillation example. Variable names in parenthesis indi-
cate corresponding deviation variables, for exanople L — 1.87. The liquid feed
fractiongr is assumed constant.

model around the nominal operating point to get an 82 state model. In addition,
we sample the model to get a discrete system, with sampleTime2 minutes.

We further simplify the model by balanced truncation to find a corresporibng
state model. We propose the following objective function for control:

15
J = X16QnX16+ %y{Qy, +URy (6.49)
i=

withQ=R=1.
The disturbance space is:

“1<di<1, i=12 (6.50)

By simulation one finds that, with the original formulation, input saturation is
not likely to happen. In order to investigate this effect, we therefore tigtiten
input constraints and use in the following:

—0.02<u <002 =12 (6.51)

The final state weight matri®Qy is found by first finding the LQR feedback
gain ux = —K_grX« corresponding to an infinite objective function with weights
(C'QC,R) on states and inputs, respectively. Then, we define

Ak = (A—BKigr) (6.52)
Qt = C'QC+K|orRK R (6.53)
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Figure 6.5: Responses of unconstrained systems from an impulse distedpa-
(-1,1).

and letQy > O satisfy the Lyapunov equation

ALQNAC+Qr = Qu, (6.54)

see [Chmielewski and Manousiouthakis, 1996] for details. The m@jgix

r 0.8797 —0.0072 00161 —0.0241-0.0191 00125 00356 —0.0078-0.0023 00182 —0.0154 00023 00130 —0.0074 00070 —0.0062q
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Figure 6.5 shows a closed loop simulation of the state feedback controller
(LQR) on the 82 state system and the LQR that minimizes objective (6.49) ap-
plied to the 16 state system. We observe that the input-output relationshipes of th
two systems in closed loop are almost indistinguishable.
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The reference controller is thus the following MPC.:

15
J*(Xo) = mlxrg )(’16PX16+_Z)yi’Qy. + ui'Ru
’ = (6.55)
Xki1 = AX + B, k=0,...,15

S.L
~0.02<w <002 k=0,...,15

We consider both dense and structured formulations of the MPC problesm Fr
Table 6.1 we observe that in order to reduce the CPU-time for a structmedf
lation, we can change the prediction horizd) ©r reduce the model ordeny).
For the dense formulation we can either change the prediction hoNzonthe
productNny, which we can address using move blocking.

Definition of analysis problem. We consider impulse disturbances at time sam-
plet = 1, and we define the objective to maximize the difference in outputs after 5
time steps (corresponding to 10 minutes), i.e. the difference function is

diff = {15 — y5|lo-

We use the same linear model as in the reference controller, and we assatithe th
state vector is available as a measured variable. For the case of a réteceal
model in the MPC, we assume that the state observer is simply given=b¥ x,
see section 6.2.4.

Results. The results for the dense formulation (where we assume a CPU-time in
the order of(Nn,)%) are shown in Tables 6.4-6.5 and Figure 6.6. The first con-
clusion is that it is significantly better to apply move blocking than to reduce the
horizon of the controller. This may be because the horizon was quiteighbe
reference controller, so the control action is sensitive to changes irotimh.

The next conclusion is that delta-blocking generally gives better pedice.
Notice that for delta input blocking we have one case where we get befter p
formance with less degrees of freedom (3 versus 5 degrees obfrgednd both
blocking schemes seems to be reasonable. This is a bit counter intuitivegrieut
we are maximizing the difference between a candidate controller and ameéer
controller at a certain point in time, which is not exactly the same as checking the
performance of the controllers directly (though the problems are expeztee
related).

We further notice from Figure 6.6 that it seems to be better to keep the original
horizon and block all the moves (corresponding to the original DMC ctetro
[Cutler and Ramaker, 1980]), than to reduce the horizon to one.
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Maximum error

Blocking type DOF= M-t
First 13 free, last 2 blocked 14
First 12 free, last 3 blocked 13
First 11 free, last 4 blocked 12
First 10 free, last 5 blocked 11
First 9 free, last 6 blocked 10
First 8 free, last 7 blocked 9
First 7 free, last 8 blocked 8
(1,2,2,4,6) 5
(1,3,4,7) 4
(1,7,7) 3
First free, last 14 blocked 2
All blocked 1
Reference controller 16

3108
8107
%107
41076
.B10°6
.10
1-10°°
7.7-10°6
14.10°°
50-10°°
3.104
Q0033

0

Table 6.4: Details of input blocking. The notati¢h 2,2, 4,6) means that the first
input is free, then the next two are blocked (constrained to be the sachepam.
The degrees of freedom (DORYn, — nw)/ny are the original degrees of freedom
Nn, minus the number of blocking relationg and divided byn, to get a number
that corresponds to an equivalent horizon length. For all the consplller 16

andny, = 2.
Blocking type DOF= Nmnizrw Maximum error
First 12 free, gradient of last 3 constant 14 4107°
First 11 free, gradient of last 4 constant 13 280°
First 10 free, gradient of last 5 constant 12 9208
First 9 free, gradient of last 6 constant 11 67108
First 2 free, two gradients 5 B-10°8
of length 7 constant
First free, last 14 same gradient 3 18106
All have the same gradient 2 .an17
Reference controller 16 0

Table 6.5: Details of delta input blocking. The degrees of freedom (O@R) —
nw)/ny are the original degrees of freedddn, minus the number of blocking
relationsny and divided byn, to get a number that corresponds to an equivalent
horizon length. For all the controllers, = 16 andn, = 2.
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Figure 6.6: Dense formulation with Cpu-time in the ordetNfy,)3. The normal-
ized Cpu-time in the plot i$Nn,)3/(N'n[,)® where superscrigtrefers to the ref-
erence controller. The numbers next to the symbols correspond to tmelized

degrees of freedom DOE (Nn, — nw)/ny whereny is the number of blocking
relations applied to the problem.

Order of reduced model Maximum error
(number of states)

2 211-104
4 361-10¢
6 145.10°°
8 126-10°°
10 124.10°6
12 143-10°°
16 (Reference controller) 0

Table 6.6: Details of model reduction.
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Horizon in candidate con- Maximum error

troller

2 365-10°3
4 279-10°3
6 1.96-10°3
8 1.20-10°3
10 6.86-104
12 353.104
14 912-10°°
16 (Reference controller) 0

Table 6.7: Details of changing the horizon length.

The details of the blocking schemes were selected by intuition and there may
certainly be other schemes that are better given a certain number okdatjre
freedom.

When using a solver that exploits the structure of the problem (with assumed
number of operations per step in the ordeNgfy, + ny)3), we observe from Fig-
ure 6.7 that it is far better to apply model reduction than to reduce the horizon
Additional details are given in Tables 6.6-6.7.

Finally, we show in Figure 6.8 a closed loop simulation for a candidate con-
troller with reduced horizon df. = 2 from the worst-case disturbance

dy=[1 —0.96].

Though perhaps difficult to observe from Figure 6.8, this gives atwrarse output
difference between the candidate and reference controller&sf B0~2, which

is the same as the calculated worst case error by the MILP solver (skee6Tdp
Figure 6.9 shows the result of a gridding over the disturbance space ovit ¢
sponding errorgyz — 5|, and we observe that the worst case error is indeed at
the location where the MILP solver found it, which validates our numericaigr
dure

Computation time. The resulting MILP needed to generate the results in this
example turned out to take very long time to solve, so in order to get a fastrscr
ing of different methods we added a time-limit of 10 minutes to each optimization
problem. A high computational demand to solve these problems is expected since
they in general are NP-hard.

We did the calculations on a Dell PowerEdge 1950 with Intel(R) Xeon(R) CPU
E5410 @ 2.33GHz and 8GB RAM. The MILP solver was set up in parallelanod
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Figure 6.7: Structured formulation with the cpu-time is in the ordeN@fy +
ny)3. The normalized Cpu-time in the plot i(ny + ny)3/(N"(nf + n,)%) where
superscript refers to the reference controller.
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Figure 6.8: Closed loop simulation
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Figure 6.9: Contour plot of worst case difference for candidate obhatrwith
reduced horizofN, = 2.

using up to 8 of 8 available CPU'’s.

6.6 Discussion

6.6.1 Numerical experiences and future work

As stated clearly in the online documentation foxL¥iip [L0fberg, 2004], there
are several pit falls when setting up a mixed integer problem. First of all, it is
very important to bound all variables, and the bounds should be fairly tight
avoid excessive computation times. We added bounds in an iterative mamerer w
we first solved a problem with quite conservative bounds, checkedotb&om,
tightened the bounds accordingly, and finally resolved the problem tk ¢hat
the solution was unaffected by the added bounds (i.e. that none of thdbwere
active).

In addition, we experienced that the solution was very sensitive to theMibig-
value, and we found as indicated above acceptable valukishyf iteration. The
sensitivity to the value of the bilyt is well known [Camm et al., 1990] and should
always be addressed when setting up an MILP problem.
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Other solution methods. Rather than adding constraints on bfigform and us-

ing an MILP solver as we did in this chapter, there are reports of methots tha
branch directly on the KKT conditions, see for example [Bard and Md#60,
Bard, 1998]. These methods could be investigated as one may avoid #tiding
numerically dangerous) bilgt constraints altogether.

Symmetry. The example in this chapter is actually symmetric in the inputs
and disturbancedy, as we have a linear model with symmetric constraintsion
The symmetry can also be seen from the objective function plotted in Figurk 6.9
seems likely that if this symmetry would be exploited, the solution could be made
faster.

Further, when we have a high and low limit on some variable, we know in ad-
vance that both constraints cannot be active at the same time, and this itdorma
should be used when solving the problem.

6.6.2 Extension to quadratic cost function

Practitioners might prefer to use a weighted 2-norm to judge the differeace
tween controllers, rather than the infinity norm as used in this chapter. loabés

one can simply use the same objective function in the performance evaluation a
one is using in the MPC itself. A method for how to write this problem as an MILP
is outlined in [Jones and Morari, 2009].

6.7 Conclusions

In this chapter we have presented a framework for analysis of differethods to
speed up MPC. The framewaork can be used to rank different candliitieterms of
expected performance degradation. The problem we pose is knowrNiB-bard
and thus can be very time-consuming. We showed by an example that by intro-
ducing an early stopping constraint on the MILP solver, we got interestisiglts
within a reasonable time frame. For a case study, we found for a demsel&tion
that move blocking was more efficient than reducing the horizon. We aisudfo
that “delta input blocking” was better than “input blocking.” For a struetufor-
mulation on of the same case study, model reduction was significantly better than
reducing the horizon.

Several improvements on the numerical side has been addressed iateposs
future work.



Chapter 7

Bilevel programming for analysis
of low-complexity control of
linear systems with constraints

Published in “Proceedings of Conference on Decision and Contr@l, B¥tanghai,
China.”

In this paper we use bilevel programming to find the maximuffedince
between a reference controller and a low-complexity cdietrin terms of
the infinity-norm difference of their control laws. A nomindPC for linear
systems with constraints, and a robust MPC for linear systgitihh bounded
additive noise are considered as reference controllers. péssible low-
complexity controllers we discuss partial enumeration)(RBronoi/closest
point, triangulation, linear controller with saturati@amd others. A small dif-
ference in the norm between a low-complexity controller amdbust MPC
may be used to guarantee closed-loop stability of the lomgtexity con-
troller and indicate that the behaviour or performance eflthv-complexity
controller will be similar to that of the reference one. Wetlfier discuss
how bilevel programming may be used for closed-loop analgéimodel
reduction.

7.1 Introduction

Bemporad et al. [2002] introduced an explicit solution of the model predictin-
trol (MPC) problem for control ofinear systems with constrainising a quadratic
performance index. Later these results have been extended to covadaibclass
of systems and performance objectives, see [Alessio and Bempof2&l, f20 a
survey.

115
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The main drawback of explicit MPC is that the control law, due to the combi-
natorial nature of the problem, can grow exponentially with the size of the dptima
control problem [Wen et al., 2009].

Alessio and Bemporad [2008] proposed to reduce complexity of explic€t MP
by either storing only thé& regions with the highest Chebysev radius (if a full ex-
plicit solution is available), or to run extensive simulations of closed-loop MPC
and collect the- most recurrent combinations of active constraints for implemen-
tation, similar to [Pannocchia et al., 2007]. (Storing only a subset of thalges
regions of a MPC and using them for implementation is called partial enumeration
(PE).)

Pannocchia et al. [2007] recently reported that by using a PE policynon a
industrial example with more than 250 states, 32 inputs and a 25-sample control
horizon, small look-up tables with only 25-200 entries gave a control thatiess
than 0.01% suboptimal compared to the full model predictive controller (MPC)
for the same example. The MPC could theoretically ent€? 3 4.977x 10%%1
regions.

In this paper we use bilevel programming to investigate the PE-schemes de-
scribed above, but also more general low-complexity policies. The mainsdea
to calculate the maximum difference between a either a nominal or a robust MPC
and the low-complexity policy, and then, based on this difference, drawlgo
sions about the proposed low-complexity controller.

In addition to guarantees of feasibility and stability the method can be used
to give bounds on the sub-optimality of the low-complexity scheme, by using the
value of the objective function of the reference controller as a diftexenetric of
the reference and low-complexity controller.

7.2 Notation and preliminaries

A polyhedronis the intersection of a finite number of halfspaces angbky-
topeis a bounded polyhedron. Given two s&sS, C R" the Minkowski sum
is defined a5, & S £ {s; + 2|51 € S1, 2 € S}, and the Pontryagin difference
asS 0SS = {sisi+9€ 5,9 €S}. Boldfacex andu means the sequences
X = (Xo,X1,-..,Xn) @andu = (Up, U, ...,un—1), While boldfacel is a vector of 1's
of appropriate length.

We consider control of the following discrete-time linear system

X" = Ax+Bu, (7.1)

wherex € R™ are the states ande R™ are the inputs, anxi above is a short-hand
notation forxx. 1 = Ax+ Bw. In addition we have constraints such tkat X and
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ue U, whereX = {x| Fx< f} c R™andU = {u | Gu< g} ¢ R™ are polytopic
sets.

The solution of an explicit MPC with quadratic objective, linear process and
polytopic constraints, can be written as a piecewise affine function of the gta
piecewise affine functiom(x) : X — R™, whereX C R™ is a polyhedral set, is
piecewise affine if it is possible to partitiofiinto convex polyhedral region€R,
andz(x) = K'x+c, Vxe CR [Bemporad et al., 2002]. In this paper “region”
denote<CR, written “regioni”, and (K',c') is the corresponding optimal control
law, i.e. the part ofu(x) that belongs t&€R. In order to conform with notation
used in [Alessio and Bemporad, 2008], we Wse= {x € R™ | Ax <b'} in the
place ofCR.

7.3 Bilevel optimization

The main focus of this paper is the application of bilevel optimization for anal-
ysis of low-complexity controllers. Here we give an introduction to bilevel op
timization and solution methods, following Jones and Morari [2009]. For more
background details the reader is referred to a recent survey [Celsin 2005].

Bilevel problems are hierarchical in that the optimization varialj}es) are
split into uppery and lowerz parts, with the lower level variables constrained to
be an optimal solution to a secondary optimization problem:

myin VU (y,2)

subject toGy (y,2) <0

_ (7.2)
z=argminv (y,2)

subject toG (y,z) <0

In this paper we will only consider problems where the lower-level proliies
an unique optimizer. Moreover, we will usually have two low-level probleons,
for the reference controller and one for the low-complexity controller.

7.3.1 Solution methods

If the lower level problem is convex and regular, then it can be replbgéd nec-
essary and sufficient Karush-Kuhn-Tucker (KKT) conditions, yieida standard
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single-level optimization problem [Jones and Morari, 2009]:

minVy (Y, 2)
Y,ZA

subject toGy (y,2) <0

GL(y.2 <0 (7.3)
A>0

NGL(y,2 =0

O.2(y,zA) =0

wherez (y,z,A) := GL(Y,2) + NGy (Y, 2) is the Lagrangian function associated with
the lower-level problem. For the special case of linear constraints anddratic
cost, all constraints of (7.3) are linear and the complimentary conditi®ny,z) =

0 is a set of disjunctive linear constraints, which can be described usiagyb
variables, and thus leads to a mixed-integer linear problem.

7.3.2 Bilevel optimization for analysis of controllers

In this paper we use bilevel programming to find the maximal difference batwee
a reference controller and a low-order controller. Hence, for astubs R™, we
solve

maXd(Uref, Ulow-complexity)
XEX

subject to KKTreference controller (7.4)
KKT (low-complexity controlley

Typically, x is the intersection of the feasible states for the reference and the low-
complexity controller.

Note that explicit solutions of neither the reference nor the low-complexity
controllers are needed, because the solutions are implicitly given by thecki-T
ditions.

The distance measudgUurer, Uow-complexity) €an be, for example, the difference
between the next state,

d(Uret, Uow-complexity) =
Hx+ref(xa Uref) — X+Iow-comp|exity(X7 UIow-compIexity) o = (7.5)
|| Blret — BUow-compIexityHooa

but also differences between trajectories of either states or inputs.
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Remark 7.1. We observe tha7.5) renders(7.4) non-convex due to the term
max||t||. (where t is a convex function @tief, Uow-complexity) - However, the
problem may be converted into a mixed integer linear program (MILP)guain
standard technique (e.qg. fifberg, 2004]), in which we introduce binary variables
n;, p; for each element of t and add the condition that the binary variaple gne

if |[t|l» =t and n is one if|t||« = —tj. The method adds only linear and binary
conditions to(7.4) and therefore the overall problem remains a MILP [Jones and
Morari, 2009].

7.4 Application on analysis of low-complexity controllers

We first present a nominal MPC policy based on optimizing a quadraticrperfo
mance objective subject to a linear model of the process at and a sdy o
constraints on both states and inputs. We thereafter present a robGstiBre
the process is subject to bounded disturbances on the states. Bothdheses

fit into the bilevel problem as a reference controller.

The choice of which reference controller to use depends on the pradtiem
hand, as this defines a benchmark for control of the process. ThstrbttPC
scheme can be used to give a feasibility and stability certificate of the low-crityple
scheme. However, in some cases the robust MPC can be quite conseraat
the nominal MPC may be a better benchmark.

Thereafter we show how several low-complexity polices can be exqutéss
the bilevel framework. The main “tool” we use here is to represent any kgic
bilinear terms in the KKT-conditions with mixed integer linear constraints in order
to let the resulting problem be a MILP.
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7.4.1 Nominal MPC as reference controller

Consider the following semi-infinite horizon optimal control problem [Jomes a
Morari, 2009]:

. 1
min J(x,u) = éx’,\,Px,\. +...

X,U
1N—1
+5 Zj URY +XQx,
=

subjecttoxi;1 =A% +Bu, Vi=0,...,.N—1 (7.6)
xeX, Vi=1,...,N—1,
uelU, Vi=0,....N—1
XN € XN,
Xg = X.

Here Xy = {x | Hx < h} ¢ X is a polytopic invariant set for the systexn =
Ax+ Bp(x) for some given control laya : R™ — R™. FurtherP € R™*™ and
Q € R™*™ are positive definite matrices afkE R™*" is a positive semi-definite
matrix. We definex € R™ to be the set of statesfor which there exists a feasible
solution to (7.6).

If u*(x) is the optimal input sequence of (7.6) for the stateand uj(x) is
the resulting control law, then stability of the system = Ax+ Buj(x) can be
established under the assumption ¥atx) = X Pxis a Lyapunov function for the
systenx™ = Ax+ Bu(x) and that the decay rate g is greater than the stage cost
[ (u,x) = URu-+ X Qxwithin the setXy [Jones and Morari, 2009].

By usingx = A%+ 3 *_5 AIBU_1j the MPC problem (7.6) can be rewritten
as [Bemporad et al., 2002]:

V(xo):%x{)Yx)Jr...

1
+min {5U'HU +XGF U, (7.7)

subject toGU < W +Ex},

whereU’ = [up uj -+ Uy_4].
We want to use (7.7) as a lower-level problem in bilevel programming. The
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following equations define the KKT conditions for this problem:

HU +F'x%+GA=0
GU-W-Ex<0

A>0 (7.8)
A< Ms
GU-W-Ex>—-M(1-5)

Heres € {0,1}™, whereny is the number of inequality constraints in (7.7). The
two last equations in (7.8) correspond to the complementary condi@ry, z) =

0 in the general bilevel problem, here described with binary variablell is

a constant that is large enough such that the solution to (7.8) correspmtite
solution of (7.7). (This is called a “bi}” formulation.)

7.4.2 Robust MPC as reference controller

In this subsection the results are from Mayne et al. [2005] unless aeneted.
Consider control of the linear system (7.1) watiditive disturbances wn the
states:

X" = AX+Bu+w. (7.9)

The disturbance is assumed to be bounded,
wew, (7.10)

whereW is compact and contains the origin (but may not have an interior).
Suppos& € R™W*™ is such thatx = A+ BK is stable. Le¥ be a disturbance
invariant set for the controlled uncertain systeim= Axx+ w satisfying, therefore

AkZBW C Z. (7.11)
We use the following proposition as a basis for the robust MPC:

Proposition 7.1. Suppose Z is disturbance invariant for x Axx+w. If xe X¢ Z
and u=u+K(x—X), then X € x* & Z for allwe W where X = Ax+ Bu+w and
X" = Ax+ Bu.

Proposition 7.1 states that the feedback palieyu+ K (x— X) keeps the states
x of the uncertain system (7.9) close to the statekthe so-called nominal system
X" = Ax+ Bu.



122 Analysis of low-complexity control of linear systems with constints

We can now define the robust MPC problem:

- 1,

1N71
+= Y URG+XQX,
2 I; 1 1

subject taxi;; = A +BU;, Vi=0,...,N—1, (7.12)
xeXez Vi=1...N—-1
G eUsKzZ, Vi=0,... N—1
XN € X1,

Xo=XDZ.

In order to achieve closed loop robust stability, the terminal constraintset
must satisfy the following axioms [Mayne et al., 2005]:

Al: Axxs C x5, Xs CX6Z, Kxs CUBKZ

A2 : Vi (A +1 (6 KX) < Vi (x), VX e Xr, (7.13)

whereVt (v) = VPvandl (v, z) = VQv-+ URuin the scope of this paper.

Assume tha¥ is a polytopic set such thgt € R™ | Hv < k}.
As for the nominal MPC, we can rewrite the robust MPC problem as:

o [UTH F U
Uxo) | %] |[F 2Y] [%o

Hf_'/
Ho (7.14)
subjectto|® “E||Y] < W + 0 |«
) 0 —H,||%| = |k| T |-H,
S—— ) N~ S~
G W E
Letv= (U,Xg). The KKT-conditions corresponding to (7.14) are
Hv+GA=0
Gv<W 4 Ex
A>0 (7.15)
A< Ms

Gv>W-+Ex—M(1—s)

Note that the KKT conditions in (7.8) are a special case of the KKT-condition
above, since abowe is included as a degree of freedom. For both nominal and
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robust MPC the current stateis a parameter driving the controller, but for the
nominal MPC we have substituted this with, asxg = X is a constraint in the
nominal MPC formulation.

The main motivation for using robust MPC as a reference rather than nbmina
MPC is because the robust MPC can be used to prove feasibility and stability o
the low-complexity scheme. Both properties can be established using theifglow
proposition:

Proposition 7.2. Consider the linear system for which robust stability and feasi-
bility are guaranteed by the robust MPC:
X" = AX+Bu+w, wew,
and that
W={weR™|||w|o <€}

Let u.¢ be the control input from the low-complexity controller, angat the
input from the robust MPC. The following holds for the system controlled by the
low-complexity controller:

Xt = Ax+ Bu.c
= AX+ Bu.c — Buvpc + Buvipc (7.16)
= AX+ Buwmpc + B(Ui-c — Urmpc)-
Hence, if
[[B(ur-c — Umpc) [l <€, (7.17)

the low-complexity controller is both feasible and stable.

7.4.3 Low-complexity controllers as low-level problems in lbevel pro-
gramming

In this section we describe various low-complexity controllers that fit into the
bilevel programming framework. Several more are possible, but notdadldor
space restrictions.

Linear quadratic regulator with saturation

A simple low-complexity control policy is the linear quadratic regulator (LQR)
with saturation. In the “unconstrained region” this is optimal, and its behaviour
can be modelled using few binary variables. First, we defirg = —KXx. For
simplicity we assume that the constraintstomay be written as

u<u<d, i=1,...n (7.18)
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Now, for each row in (7.18), we define a corresponding binary vettar{0, 1}3.
The saturation can now be modelled using
Ui < ul'+Mdi,
U > ul —Mds,
di +db+dh=1, (7.19)
~M(1-d}) <safu) — {ui}k <M(1—d)),
k=123,

where{u;} = {u",u;,u }, and{u;}, is thek'th element of{u;}.

Partial enumeration (PE)

Here we follow the ideas of Pannocchia et al. [2007] and Alessio and Bedp
[2008], and we store only a subset of the possible active sets. Tlebenim-
plementation is here to first locate the closest region to the currenkstatd then
use the control law from the corresponding region. In order to satisfyU, we
saturate the input before applying the input to the plant.

Here we use theninimal-violation distancérom Christophersen et al. [2007]
to find the closest region for a setof stored polytopes.

Definiton 7.1. (Minimal-violation distance [Christophersen et al., 2007]) Let the
collection £ be the setz = {Li};,, where L := {xc R™ | Ax<b'} are full-
dimensional polyhedra ilR™. We assume that A< b' are on Hessian normal
form, i.e. each roWA']; of A’ is normalized with|[A'];||2 = 1.

The minimal-violation distanceyd of x to £ is given by

duy = miin{ai*(x)}, (7.20)

where _ _
o (x) =argmin{aj e R | Ax < b + a1}, (7.21)
foralli=1,...,N, and1=11--- 1]'.
The solution of the LP (7.21) can be found using the KKT conditions:
1-1N =0,
0<A <MS, (7.22)
0<b+0l-Ax<M(1-9),

wheres € {0,1}™ is a vector of binary variables of length corresponding to the
number of faces in the polytopg = {x eR™ | Ax<D }
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LetB € {0,1}"™ be binary variables such that
Bi:1<—>ai§aj Vj;éi, (7.23)

which implies thaty 3j = 1. We can then define the PE control law as

O:sat{_iﬁi (Kix+ ci)}, (7.24)

where(K',c') is the optimal feedback in regianand saf-} is a normal saturation
function. Equation (7.24) is bilinear in the optimization variabgs¢, and can

be implemented in the bilevel framework with the following equations (added as
constraints in the problem):

~M(1-B) < 0— (K'x+¢') <M(1-Bi). (7.25)

Remark 7.2. The proposed PE-scheme, which follows from Christophersen et al.
[2007], can be implemented on-line as follows:

ai =max{Ax—b'}, i=1..,L

i* =arg ni1in{0(i} (7.26)

Delaunay triangulation

Assume that for some pointsy, . .., X, ) we precompute a Delaunay triangulation.
In addition we store the optimal inpaty, ..., uy, ) atthose points. A Delaunay tri-
angulation can be understood by the empty circle method [Aurenhammel; 1991
Consider all triangles formed by the points such that the circumcircle oftgach
angle is empty of other sites, where the sites in this case are the stored points
(X1, -+ Xn,)-

The Delaunay triangulation of the pointsy,...,Xn,) can be used to find an
interpolated control law:

e Denote the triangles from the Delaunay triangulatiorLpy .., Ly,.
e For a given state:

1. Find the current triangle; that containt.

2. Expres_sx as a convex combination of the verticeslof x = z)\ka,
wherex, denotes the vertices bf
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e Implement the following interpolated control law:
Upelaunay= Z)\ku:;’i, (7.27)

whereuﬁ’i are the optimal inputs corresponding to the poi(hts

The Delaunay triangulation itself can be implicitly defined using the following
set of equations, which can be added as mixed-integer linear constraits to
overall problem:

x=3>AX, ,Ai=0 HAN=1
A <o, ZO’i:I’H-l (7.28)
le—xl5 < [lc—Xj[|5+Maj +M(1-0),

where the last equation can be rewritten as

SC-2¢c+ XX < -2 c+ XX +...

al b a/j b;

~-+Moj+M(1-0)
ac+b <ajc+bj+Mo;+M(1-0q)

(7.29)

Herec € R™ is an extra optimization variable,c {0,1}™ is a vector of binaries
andM is a large constant.

We note that the last equation of (7.28) is an expression for the “emptg-circ
method”.

7.5 Examples

In this section we show two examples where we use the bilevel programming to
identify the worst-case distance between a reference controller ang@sed low-
complexity controller. The calculations where done usingd CPLEX®) and the
problems were written in XLMIP [Ldfberg, 2004]. Set calculations and explicit
solution of MPC’s were done using Multi-Parametric Toolbox (MPT) [Kvean

et al., 2004].

Example 1: Double integrator with nominal MPC as reference con
troller and PE as low-complexity controller

In this example we consider the double integrator described in [Bempogdd et
2002], example 7.3, but with a sample time Taef= 0.1 in order to match the
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Initial PE Final PE Full enumeration

©
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1

HB(unom - uPE)”oo
o
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1
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o

Figure 7.1: Example 1: double integrator.

conditions in [Alessio and Bemporad, 2008]. The process is hence

x*:[1 O'l]x+{0]u —1<u<1

0 1 01] " (7.30)
N—— N——
A B
The control parameters ake= 8, Q = [} 3] andR= 0.1. The final weighP
corresponding to the LQR controllerfs= 5§38 332]

The nominal MPC problem is now:

7
TIP3 XQx +Rif
: &
subject taxg;1 = A+ Bu,k=0,...,7 (7.312)

Xo = X
“1<w<1l k=01....7

We do not add any terminal constraint gg as we want to compare our results
with [Alessio and Bemporad, 2008].
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We want to compare the nominal MPC to a PE-scheme, hence we want to solve
max ||B(u* — 0)|e
Xex
subject toa; = arg n&incx

subject toA'x < b' + a1

1 o <a Vit
Bi=<" % <0 VI #] (7.32)
0, otherwise

(0= iKi i7
1] i:;J_B( x+c')

0= saf0)
u* =argmin(7.31)

This problem can be rewritten to a MILP using (7.22) for the minimal violation
distance.

The main focus of this paper is to calculate the difference between two con-
trollers, but we may also use this method for controller synthesis. This can be
achieved by:

e Solve (7.32) to get the worst point in the state speicand the worst case
norm ||B(u* — 0) [|eo = [|X*" — X" |0-

e Add the corresponding region and corresponding optimal control laweto th
PE-controller.

¢ Resolve (7.32) and add the corresponding worst-case region untibiise-w
case norm is less than a user-defined value or the number of regions in the
PE is larger than a user-defined value.

This example can be solved explicitly using MPT. The full enumeration is
shown in the upper right part of figure 7.1. In order to test our soéwae started
out with an initial PE controller using the 3 largest regions, shown in the tibp-le
part of figure 7.1. The lower part of the figure shows the maximum difiere
between the reference controller (nominal MPC) and the PE-controllerthéh
performed iterations as described above, at each iteration we addeegtba r
corresponding to the worst case poihit One observes that initially the difference
is equal to the maximum possible differenceBas [ ] and||u|| < 1. However,
as we add regions to the PE controller the difference decreases to qulevéis:

Note that even though the full enumeration was available for this example, we
do not use this solution while solving (7.32), rather we use the KKT-conditién
the corresponding MPC problem.
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Closed-loop simulations, even from the worst case points, shows vety sma
difference between the nominal MPC and the PE, also for quite high valdies o
worst-case norm, and are not included here for brevity.

Example 2: Double integrator with robust MPC as reference contoller

For the same process as in Example 1, with the same objectives for the controlle
we designed a robust MPC using the method described in section 7.4.2,eand w
use this one as the reference controller. The motivation for using thetrbiiRC
rather than the nominal MPC is because we can verify closed-loop stabitity of
low-complexity scheme, given thiB(Urobust— Uiow-complexity) (|0 < ||W/|co-

A box constraint orw was used such théiv||. < 0.01, and we used the al-
gorithm from Rakow et al. [2005] to comput&, and in order to comput¢
we used MPT. We wanted to use this robust controller to prove closedilmop
inal stability of the PE-controller from Example 1. However, we observed th
MaXex ||B(Urobust MPc— Unominal MPQ) || Was growing faster thafw||., i.e. the
robust MPC was very conservative with increasjimg|... Since the PE-controller
from Example 1 is close to the nominal MPC, it is clear that we cannot usethe ro
bust MPC scheme to prove stability of the PE-scheme, moreover we cavemot e
use it to prove closed-loop stability of the nominal MPC.

One reason for whyj|B(Urobust MPc— Unominal MPQ) ||~ IS growing faster than
|lw||« is that the scalar input can only act on the process in the directi®rwhile
the vectorw is acting directly on both states (through the identity transformation
I). Changing the formulation of the robust MPC to restricto act only in the
directionB is planned as further work in this project.

7.6 Conclusions

A bilevel framework for closed loop comparison of different contrdiesmes has
been presented. Many challenges still remain, but it seems like this frakexyor
be useful for proving stability for some “ad-hoc” low complexity contrdiemes,
and moreover it seems to have potential in the field of model reduction.
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7.7 Appendix: Further comments to problems of proving
stability
It seems like our method for proving nominal stability of a given controllerdhas

fundamental limitation that if the controller is more aggressive than the nominal
controller, then we can never prove its stability.

N,
»
u

Figure 7.2: Different controllers for an example with= n, = 1. Full line rep-
resents the nominal MPC, dashed line is the proposed low-complexity controlle
and the dotted line is the robust MPC.

Consider figure 7.2 which shows an examplerige=n, = 1. The full line
shows the input form a nominal MPC controller, while the dotted line shows the
input from a robust MPC. We observe that the robust MPC is more oaaises
than the nominal MPC. The maximum difference in input occuges Biow, assume
that the maximum differencgbetween the nominal MPC and the low-complexity
controller is such that

y<e. (7.33)

This, however, does not guarantee that the difference betweerhingt MPC and
the low-complexity controllef less thare,

B<E (7.34)



Chapter 8

Conclusions and suggested
further work

8.1 Conclusions

In this thesis we have given several contributions to the general topia@f fi
ing simple implementations that give near-optimal operation in closed loop. In
Chapters 2-4 we developed a convex approximation to the static outpbfded
problem, which is one of the open problems in control [Syrmos et al., 1997].
We showed by an example that the method may be useful for designing-“fixed
structure” controllers, such as a multiple inputmultiple output proportional-
integral-derivative (MIMO-PID) controller.

In Chapter 5 we extended a method within the field of self-optimizing control,
the nullspace method [Halvorsen et al., 2003], to handle changes in the seti
This was done by using results from explicit MPC [Baatt al., 2008].

In Chapter 6 we developed a framework for analysis for differentsnafy
speeding up model predictive control (MPC), and in Chapter 7 we usesktime
approach to analyse simplified controllers, such as controllers whichiysparts
of the whole lookup table that is used in explicit MPC.

In Appendices A-C we gave some more information about links between self-
optimizing control and explicit MPC, suggested some simplifications to the point
location problem in explicit MPC, and gave some more details on the static output
feedback problem.
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132 Conclusions and suggested further work

8.2 Suggested further work

8.2.1 Challenges with real-time optimization (RTO)

It is acknowledged in Chapter 5 that self-optimizing control and RTO amgpte
mentary, so in order to have good economic operation both layers needrai®p

as intended. By talking to practitioners we learned that RTO is in practise often
not operational. It would be interesting to get updated information aboat wh
kind of challenges the practitioners are challenging and how these issudsec
solved. After solving these issues one could better understand the igtbgla
tween an operational RTO and a self-optimizing control layer, a projetttra
have significant environmental and economic potential.

8.2.2 Mathematical transformations

In control of distillation columns it is well-known that a logarithmic transformation
of the composition makes the resulting control problem linear [Skogesta8d].19
The methods developed so far in self-optimizing control depend mostly orr linea
or quadratic models. Finding a procedure that can transform a nonpinaalem

into a linear or quadratic problem would be very useful, as this would lerotue
applicability of self-optimizing control.

8.2.3 Convex modelling

When modelling a chemical plant there is usually not much focus on if the regultin
model, when used in economic optimization, results in a convex problem (inter-
estingly, the mass and energy balancesahnayslinear [Haug-Warberg, 2010],
and these equations are the basis for any modelling project where ondsititen
use first principles). It would be nice to have a library of convex modehiegh-

ods that can be used to model a chemical system such that the resultiognécon
optimization is convex. Most likely, not all parts of a chemical system can gk mo
elled as convex operations, but by paying attention to the convexity wheg the
modelling one can efficiently pin-point the parts of the model that will introduce
non-convexity in the resulting optimization problem. Once this insight is gained,
one can choose to approximate the non-convex parts by convex apptmns,

or one may build the information about theeation of the non-convexity into the
optimization routine.

Hopefully such an approach would be beneficial for the application & RT
process plants.
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8.2.4 Generalization of switching scheme

The switching scheme for implementation of quadratic programs presented in
Chapter 5 can easily be generalized to cover linear programs by usiits fesm

the main reference, the paper by Baat al. [2008]. Probably more important,
one should consider to investigate further the general area of “comméebéige-

bra” in a lot more depth, perhaps starting by looking at results from expMieiC,

such as general parametric programming [Kvasnica et al., 2004]. aheeadready
several results on explicit control of hybrid systems (see e.g. the groMiprari

in ETH and the group of Bemporad in Siena, Italy) that probably can be aise

the static optimization problems that are faced in self-optimizing control.

8.2.5 Improvement of numerical methods

In Chapters 2-4 we show that we can approximate the static output féepltude
lem to a quadratic program, but that the resulting quadratic program tdkeg a
time to solve. In order to better investigate the properties of this method it would
be useful to program the method in some language that is more optimized towards
calculation time, rather than using Matlab interfaced ta_€x as was done until
now. CPLEX itself may be a suited solver, but the interface to Matlab does not
allow for sparse matrices, which makes integration of the two difficult.

Once this is done it would be interesting to investigate how the method can be
used on for example static decentralized control.
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Appendix A

A new approach to explicit MPC
using self-optimizing control

Published in “Proceedings of American Control Conference 2008tI§6dSA."

Model predictive control (MPC) is a favored method for hamglconstrained
linear control problems. Normally, the MPC optimizatiomblem is solved
on-line, but in ‘explicit MPC’ an explicit piecewise affineddback law is
computed and implemented [Bemporad et al., 2002]. Thiscgmbris simi-
lar to ‘self-optimizing control,’ where the idea is to findrgile pre-computed
policies for implementing optimal operation, for exampby, keeping se-
lected controlled variable combinationgonstant. The ‘nullspace’ method
[Alstad and Skogestad, 2007] generates optimal varialidatations, which
turn out to be equivalent to the explicit MPC feedback lawst tis,c =
u— Kx, whereK is the optimal state feedback matrix in a given region.
More importantly, this link gives new insights and also sonesv results.
One is that regions changes may be identified by trackingahiahesc for
neighboring regions.

A.1 Introduction

Consider the general static optimization problem [Alstad and Skogestad); 200
min  Jo(X, Up, d)
Up,X

s.t. fi(x,Up,d) =0, ez (P1)
hi(x,up,d) >0, i€,

wherex € R™ are the statesyy € R™o are the inputs, and € » c R™ are distur-
bances. By discretization and reformulation this may also represent soramity
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136 A new approach to explicit MPC using self-optimizing control

optimization problems. Usually is a model of the physical system, whilsis

a set of inequality constraints that limits the operation (e.g., physical limits on
temperature measurements or flow constraints). In addition to (P1) we have me
surements on the form

yo = fY(x,up,d). (A1)

In this work the emphasis is dmplementation of the solution {®1). This
means that the optimization problem (P1) is solved off-line to generate adtontr
policy’ which is suitable for on-line implementation, with particular emphasis on
remaining close to optimal solution when there are unknown disturbanced. Th
is, we search for ‘control policies’ such that the castemains optimal or close to
optimal when disturbances occur without the need to reoptimize.

A.1.1 Self-optimizing control

In our previous work on ‘self-optimizing control’ we have looked for simpd-

trol policies to implement optimal operation, and in particular ‘what should we
control’ (choice of controlled variable€¥'s)). Using off-line optimization we
may determine regions where different sets of active constraints ave,aatid
implementation of optimal operation is then in each region to:

1. Control the active constraints.

2. For the remaining unconstrained degrees of freedom: Controldpétiizing’
variablesc = Hy which have the property that keeping them constaat¢s)
indirectly achieves close-to optimal operation (with a small loss), in spite
of disturbancesl. We here allow for linear measurement combinations,
c = Hy. There are here two factors that should be considered:

(a) Disturbancesl. Ideally, we want the optimal value af(copy) to be
independent ofl.
(b) Measurements error. The loss should be insensitive to these.

A.1.2 Relationship to explicit MPC

Consider a simple static optimization problem gtu,d), whereu are the uncon-
strained degrees of freedom and the statead the active constraints have been
eliminated by substitution. For the quadratic case

Jud) =[u d'Su d

Juu Jud] (A.2)

whereS=
[Jﬂd Jud
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In addition we have available ‘measurements: GYu+ G%. A key result,
which is the basis for this paper, is

For a quadratic optimization problem there exists (infinitely many) linear mea-
surement combinations-e Hy that are optimally invariant to disturbances d.

One sees immediately that there may be some link to explicit MPC, because
the discrete form MPC problem can be written as a static quadratic probleen. Th
link is: If we lety contain the inputsi and the states, then the ‘self-optimizing’
variable combinatior = Hy is the same as the explicit MPC feedback law (control
policy), i.e.c = u—Kx. (This is shown in section A.3.)

Based on this, we provide in this contribution sonesvideas on explicit MPC:

1. We propose that tracking the variables c (deviation from optimal fedba
law) for all regions, may be used as a local method to detect when to switch
between regions.

2. We may use our results to include measurement errpéng. inx andu)
when deriving the optimal explicit MPC.

3. We may extend the results to output feedback (1 — Ky) by including iny
present and past outputs (and not present sxites

4. We can also extend the results to the case where only a subset of tee state
are measured (but in this case there will be a loss, which we can quantify).
This may be of interest even in the unconstrained LQ case.

In this paper the basic framework and issue (1) are discussed. IrufiWanal.,
2008c] it is shown how the results can be extended to handle items (2)ei),
with theorems and examples.

A.2 Results from self-optimizing control

A.2.1 Steady state conditions

Once the set of active constraints in (P1) is known we can form the eeldurob-
lem and the unconstrained degrees of freedoran be determined. The uncon-
strained measurements are

y=Gu+G)d, (A.3)

andy contain information about the present state and disturbageaay include
Up andd, but not the active constraints.) The (measured) valug,@vailable for
implementation is

Yym=y-+n, (A.4)
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Off-line
Optimizer
Cs
\ 4
Feedback| ~ c+n . n°=0
Controller | A
u Measurement
combination H)
Y 1
d Process y P
(&,G)) Y

Figure A.1: Block diagram of a feedback control structure including@imoza-
tion layer [Alstad et al., 2009].

wherenY represents uncertainty in the measurementiotluding uncertainty of
implementation iru.

The following theorem describes a method to find linear invariants that yields
zero loss from optimality when the invariants are controlled at constantisetpo
The theorem is based on the ‘nullspace method’ presented in [Alstad ages$k
tad, 2007]. Figure A.l illustrates how thé matrix is used to linearly combine
measurements (and square down the plant).

Theorem A.1. (Linear invariants for quadratic optimization problem [Alstad et al.,
2009]) Consider an unconstrained quadratic optimization problem in thialkes
u (input vector of lengthy) and d (disturbance vector of lengtiy)n

minJ(u,d) = [u d [jZ: j:ﬂ m ~

In addition, there are ‘measurement variables=GYu + Géd.

If there exists § > n, + ng independent measurements (where ‘independent’
means that the matrig¥ = [Gy Gg] has full rank), then the optimal solution to
(A.5) has the property that there exists-a n, linear variable combinations (con-
straints) c= Hy that are invariant to the disturbances d. The optimal measurement
combination matrix H is found by either: (1): Let¥ %pt be the optimal sen-
sitivity matrix evaluated with constant active constraints. Under the assunsption
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stated above possible to select the matrix H in the left nullspace of EAHF’),
such that

HF =0 (A.6)

(2): Ifny = ny+ng:

~ o~

H=M,J(@&)?, (A.7)

whereJ = [J&GZ " ZJud] and& = [ G}] is the augmented plant. M may
be seen as a free parameter. (Note that-MJ. is the Hessian of the cost with
respect to the c-variables; in most cases we selgctNifor convenience.)

Remark A.1. The sensitivity F matrix can be obtained from
F=—(C3ddd—GY). (A.8)

Remark A.2. An equivalent formulation is: Assume that there exists a set of inde-
pendent measurements y and that the (operational) constréirtg = cs (where

Cs IS a constant) is added to the problem. Then there exists an H that does not
change the solution t@A.5). In terms of operation, this means that zero loss (opti-
mal operation) is obtained by controlling &= ny, variables c= Hy with a constant
set-point policy &= cs, where H is selected according to theorem A.1.

Theorem A.1 may be extended:

Lemma A.1. (Linear invariants for constrained quadratic optimization methods)
Consider an optimization problem of the form

X
minJo=[x Ww d]S|u
Up,X
d (A.9)
s.t. Ax+Bu+Cd=0
Ax+Bu+Cd <0,

with det A) # 0 and [A B] full row rank.

Assume that the disturbance space has been partitionedjmtitical regions.
In each region there arelp= Ny — niA > 0unconstrained degrees of freedom, where
niA < npis the number of optimally active constraints in region i.

If there exists a set of independent unconstrained measurement&y)'u' +
(G})'d in each region i, such thatn> n; + ng, the optimal solution t¢A.9) has
the property that there exists variable combinatiohs-d1'y' that are invariant to
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the disturbances d in the critical region i. The corresponding optimiairtdy be
obtained from Theorem A.1.

Within each region, optimality requires that-ec, = 0 (where & is a constant).
From continuity of the solution, we have thaiscontinuous across the boundary
of region i. This implies that the elements in the variable vecterd; will change
sign or remain zero when crossing into or from a neighboring region.

Proof. See internal report [Manum et al., 2007]. O

A.2.2 Implementation of optimal solution

For the case of no measurement errdr= 0, Theorem A.1 shows that for the
solution to quadratic optimization problems, variable combinatmasHy that
are invariant to the disturbances can be found. In section A.3 this insitiiden
used as a new approach to the explicit MPC problem.

A.3 Application to explicit MPC

We will now look at the model predictive control problem (MPC) with coristisa
on inputs and outputs. For a discussion on MPC in a unified theoreticalirarke
see Muske and Rawlings [1993].

The following discrete MPC formulation is based on [Pistikopoulos et al.,
2002]. Consider the state-space representation of a given procdst mo

X(t+1) = Ax(t) + Bu(t) (A.10)
Yo(t) = CX(t), (A.11)

subject to the following constraints:

Ymin < Yo(t) < Ymax (A.12)
Umin < U(t) < Umax, (A.13)

wherex(t) € R", u(t) € R™, andy(t) € RP are the state, input and output vectors,
respectively, subscripts min and max denote the lower and upper baesgsg-
tively, and (A, B) is stabilizable. MPC problems for regulating to the origin can
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then be posed as the following optimization problem:
minI(U, (1)) = X nyPXsny i+
Ny—1
+ kZO [X{Jrk\tQXHk\t +U{+kRLt+k}
St Ymin < Yokt < Ymax, K=1,...,Nc
Umin < Uk < Umax, kK=0,1,...,N¢
Xt = X(t)
X1kt 1t = A%kt +BUk, k>0
Yerkt =CXikt, k>0
Uik = KXk, Nu <K<Ny
whereU £ {u,...,Un-1}, Q=Q >0,R=R >0,P >0, N, > N,, andK is

some feedback gain. Pistikopoulos et al. [2002] show that by substitutithe o
model equations, the problem can be rewritten on the form

.1 1
rTL1J|n§U’HU +X(t)'FU + ix(t)’Yx(t)
s.t.GU <W+EX(t)
The MPC control law is based on the following idea: At tilme&ompute the
optimal solutionJ*(t) = {u,..., U,y 1} and applyu(t) = ui [Bemporad et al.,
2002].

Remark A.3. The trade-off between robustness and performance is included in
the weights in the MPC cost function and in the constraints.

(A.14)

If we let the initial statex(t) be treated as a disturbance, (A.14) can be written

as: 1
minz [U" d] [F' 5] m (A.15)

s.t.GU <W+Ed,

and we observe that (A.15) is on the same form as (A.9), where the mauaiz! e
tions f (X, up,d) = 0 have already been substituted into the objective function.

A property of the solution to (A.15) is that the disturbance space (initial state
space) is divided into critical regions. In thth critical region there are!, = ny —
nl, unconstrained degrees of freedom, wheyés the number of active constraints
in regioni.

As we discuss in section A.3.1, a possible set of measureméntie current
state and the inputy/ = [X U]. We further note that causality is not an issue
here, as we have the information at the current time.



142 A new approach to explicit MPC using self-optimizing control

A.3.1 Exact measurements of all states (state feedback)

The following theorem is well known, but we will here prove the theoreimagis
the nullspace method.

Theorem A.2. (Optimal state feedback [Bemporad et al., 2002]) The control law
u(t) = f(x(t)), f:R"— R™ defined by the MPC problem, is continuous and
piecewise affine

f(x) =Kix+d ifHX<K, i=1...,Nmpc (A.16)

where the polyhedral sefHx <k'}, i=1,...,Nmpc< N, are a partition of the
given set of states X.

In this case causality is not a problem and from Theorem A.1 the optimal
solution is simplyu = Kx+g (i.e. c=u— (Kx—g)). Note thatng = ny in this
case.

Proof. We consider the explicit MPC formulation as in (A.15). First we consider
the unconstrained case. bet (U, x) be the set of candidate measurements. With
this choice of measurements and disturbances on the present state muddor
process model:

Ay =GYAU +GYAd (A.17)

o — [ Onox (nuy) ] € R{Mtulu)x (o) (A.18)
| (nuNy) > (nuNo)

Gﬁ_[ Inxny ] € RPN xn (A.19)
O(nuNu)an

We then get the optimal sensitivity as

ay°Ft

F="g = (Gid—Gy) = (A.20)
On x (NuNy) ] [ I, xn :| >
_ X uiNu _ X X A21
( |:(‘Juul‘Jud)(nuNu)xnx O(nuNy) xny (A.21)
I
= [_J”w}'j]uJ (A.22)

We now search for a matri{ that gives a non-trivial solution tdF = 0:

|
[(Hl)(nuNU) e (H2) (nun) (nuNu)} [Jnxlx‘]r:d} = (A.23)
uu

= Hy — Hp (J5dug) =0 (A.24)
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To ensure a non-trivial solution we can for example chdtse: | N, xn,n,- ThEN
we must haved; = J;tJug, and hence theptimal combination ¢ of x and We-
comes

c=Hy=J;dugx+U =0 e R(NN) (A.25)

In the internal report by Manum et al. [2007] it is shown how the affimentan
(A.16) enters as a function of the active constraints. O

Remark A.4. (Comparison with previous results on unconstrained MPGNR25)
the state feedback gain matrix is given gg¢dq. This is gives the same result as
conventional MPC, see equation (3) in [Rawlings and Muske, 1993].

Remark A.5. These are not new results but the alternative proof leads to some
new insights. The most important is probably that the “self-optimizing” Valga

¢ = u— (K'x+¢') which are optimally zero in region i, may be used for identifying
when to switch between regions (Theorem A.3) rather than using a “dezetd
approach, for example based on a state tree structure search. Thissdeebe
new. Another insight is to understand why a simple feedback solution Rristsine

the first place. A third is to allow for new extensions.

Theorem A.3. (Optimal region for explicit MPC detection using feedback law)
The variables &= ux — (Kxc +g) can be used to identify region changes.

Proof. See report by Manum et al. [2007]. O

Remark A.6. Neighboring regions with the same feedback law (including regions
where the feedback law is to keep the input saturated) can be mergedigadhat

the regions remain convex or if the “crossings” inside a hon-convgioredue to

the optimal direction of the process in closed loop only occurs in the cqaugnf

the region). This may greatly reduce the number of regions companeesently
used enumeration schemes. Note that the number of c-variables ddhtmée
tracked to detect region changes is only equal to the number of ingutisnes the
number of distinct merged regions. Because of the merging of redliasnay be

a small number even with a large input or control horizon and with outptatt€)
constraints.

We present a simple example from Bemporad et al. [2002] that confirms that
our switching policy based on tracking the sign of theariables works in practice.

Example A.3.1(Optimal switching) This example is taken from Bemporad et al.
[2002] (with correction), and is included here to demonstrate optimal $ivitg
using the sign change of-e u— Kx as the criterion. The system is:

2
YO= 212"
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Algorithm A.1 Detect current region and calculate
Require: CR¢_1, i.e. the region of the last sample time, aqd
1: U =K(CR1)+9(CRc1)

2: [Regionsa]| = Neighbor¢CRc_1)

3: for i =1 to length(Regionsjo

4. (i) = aj (uk— (K(Regionsi)) + g(Regionsi))))
5. end for

6: if sign(k(i) # —1)then

7. CR(=Regionsi)

8: else

90 CR(=CR1

10: end if

11: return  ux = K(CR)x«+ 9(CR«), CR«

With a sampling time & 0.1 seconds the following state-space representation is
obtained:

0.7326 —0.0861 0.0609
X(t+1) = [0.1722 09909} X(1)+ [0.0064] u(t)

y(t)=1[0 14142 x(t)

One observes that only the last state is measured, but it will be assuated th
both states are known (measured) in the remainder of this example.
The task is to regulate the system to the origin while fulfilling the input con-
straint
—2<ut) <2 (A.26)

The objective function to be minimized is

1
minx{+2|t P)q:+2|t + kz |:X{+k|tXt+k|t + 001u12+k:| (A27)
=0

subject to the constraints angx= X(t).

P solves the Lyapunov equation=PA'PA+ Q, where Q= | in this case. The
optimal control problem can be solved for example using the MPT toolbeadK
nica et al., 2004]. The P-matrix is numerically:

p_ 5.5461 49873
~14.9873 104940
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Figure A.2: Partition of state space for first input. (Example A.3.1.)
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Figure A.3: Closed loop MPC with region detection using- (Kxx). (Example
A3.1)
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To illustrate ideas a simulation fromyx= (1,1) was done. State space trajec-
tories and inputs are shown in figures A.2 and A.3. As long as the state is in the
input-constrained region where’® = —2, the linear combination e= ux — Kx
remains positive. One chooses to leave the input-constrained regionayhen
comes zero. As one observes, this happens at time instant 8, whemdtless
indeed is on the boundary between the input-saturated region and the cente
gion. After the switching the controller for the center region is implemented. The
state trajectory is the same as in [Bemporad et al., 2002].

The reason for whyg never becomes negative is because both states are as-
sumed measured at the present time and hence optimal switching is achieied. T
can be understood from the algorithm A.1, where we show how the ¢umigoal
region CRy) is tracked and how the current inputis calculated.

Example A.3.2(Double integrator) Consider the double integrator disussed by
Bemporad et al. [2002], ) = 1/s%u(t), and its equivalent discrete-time state-
space representation,

1 1 0
Xk+1:[o 1}Xk+[1:| Uk, yk=[1 0]x

which is obtained by settingt) = (y(t+Ts) —y(t))/Ts, y(t) = (Y(t+Ts) = y(t)) /Ts,

Ts = 1. The control objective is to regulate the system to the origin while min-
imizing the quadratic cost funcion3 T ,y(t)'y(t) + ﬁuz subject to the input
constraint—1 < u(t) < 1. The infinite horizion control problem can be converted
to a finite horizion problem by solving [Bemporad et al., 2002, Chmielearsti
Manousiouthakis, 1996]:

Ko = —(R+B'PB)B'PA
P = (A+BKLq)'P(A+BKLq) + K{oRKLo+ Q

to obtain the unconstrained feedback gairmpkand the final state weight matrix
P (see example A.3.1). In this case we ggp K [0.8166 17499 and P=
E;gig gsgg] . For demonstration purposes we chooge-N5, and by solving

the paramteric program we get 73 regions initially. In this case there amedibns

of unsaturated control actions, which agrees with the general resy2Ngf — 1)
regions given in [Bemporad et al., 2002]. Merging all regions where fitst
optimal input is the same, leaves us with the 11 unsaturated regions, and two
regions for which the optimal input is either at the high or low constraint. The
final partitioning with 13 regions is shown in figure A.4. We note that [Bemgor

et al., 2002] find 57 regions after their merging scheme.
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Figure A.4: Regions for double integrator example (Example 3.2).

Considering figure A.4 one observes that the input-saturated regi@ensar-
convex. However, optimally, this process moves clockwise in the state, spal
we observe that the “non-convex” crossings will not occur in practi3ée re-
maing boundaries then form convex regions (indicated by the dasheddities
figure.)

Figure A.5 shows the evolution of the invariantsirc each region when we
start the simulation atx= (0, —3) and close the loop by using the optimal inputs.
We start in the input-saturated region=t11, and need to track the invariants for
regions 1,2,3,4,5, and 6 to determine optimal switching. We should switch to un-
saturated control when one the variabléga c® becomes zero or changes sign. As
one sees, this happens forat t = 6, so we change to this region. After using the
feedback law for region 3 for one sample time, we reach the other inputraors
u= —latt= 8. Now, to decide when to leave this constrained region we track the
invariants for regions 1,7,8,9,10,11, and we observe thatagtthe invariant for
the center region becomes zero, hence we switch control to this region.

Note that in this example, where we have only input constrained regiams, th
challenge is to decide when to leave the input constraints. Note that thersenve
crossing can also be tracked using their invariants on the fore ax — g.

The idea of using directionality (clockwise movement in this case) to reduce
the number of reigons in explicit MPC can be generalized by using the dinattio
derivative of the process under optimal cont(@,— BK'), together with the nor-
mal vectors to the boundaries of the regions, and by some normalizatiomeche
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Figure A.5: Invariants for double integrator example.
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we remove all boundaries for which crossings under optimal control afilbocur.
HereK' is the optimal feedback gain for region

A.4 Discussion

In this paper we have described the link between self-optimizing controéand
plicit MPC. This link has been used to propose a new method for detectiranreg
changes. This new method lets us reduce the number of regions by meliging a
regions for which the first input is the same. In its simple form presented in this
paper, it does not handle non-convex regions, but we noted thedifioe processes
directionality of the process in closed loops implies that the non-convegingss
may be ignored.

In a forthcoming contribution [Manum et al., 2008c] we show how the results
can be extended to output feedback and how to find invariants that givenahin
loss when controlled at constant set points also when we have noisyneeesus.

We further show how we one choose the order of the controller and o sh
by examples that the resulting controller will have performance in the orfder o
magnitude of LQG controllers.

The most important problem of using results from steady state self-optimizing
control is causality, in steady state optimization all measurements are available at
the current time (i.et — ), but in dynamic optimization we may need to find
invariants between measurements at current and future times and thentbeitch
invariants back to get a casual controller, but this controller will be natimval by
construction. Also this is discussed in more detail in [Manum et al., 2008c].
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Appendix B

Explicit MPC with output
feedback using self-optimizing
control

Published in “Proceedings of IFAC World Congress 2008, Seoul, Stutka.”

Model predictive control (MPC) is a favored method for hamglconstrained
linear control problems. Normally, the MPC optimizatiomplem is solved
on-line, but in ‘explicit MPC’ an explicit precomputed fdeatk law is used
for each region of active constraints [Bemporad et al., 2002 this pa-
per we make a link between this and the ‘self-optimizing oahidea of
finding simple policies for implementing optimal operatidrne ‘nullspace’
method [Alstad and Skogestad, 2007] generates optimahblarcombina-
tions, ¢ = u— Kx, which for the case with perfect state measurements are
equivalent to the explicit MPC feedback laws, whirés the optimal state
feedback matrix in a given region. More importantly, thitklimakes it pos-
sible to derive explicit feedback laws for cases with (1}estaeasurement
error included and (2) measurement (rather than statep&eéd We fur-
ther show how to generate optimal low-order controllersuieconstrained
optimal control, also in the presence of noise.

B.1 Introduction

Consider the general static optimization problem [Alstad and Skogestad)]; 200

min  Jo(X, Uo, d)
Up,X

s.t. fi(x,Up,d) =0, ez (P1)
hi(x,up,d) >0, i€,
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wherex € R™ are the statesiy € R™o are the inputs, and € » c R™ are distur-
bances. By discretization and reformulation this may also represent soramity
optimization problems. Usually is a model of the physical system, whilsis

a set of inequality constraints that limits the operation (e.g., physical limits on
temperature measurements or flow constraints). In addition to (P1) we hawe me
surements on the form

Yo = Y(x,up,d). (B.1)

In this work the emphasis is dmplementation of the solution {®1). This
means that the optimization problem (P1) is solved off-line to generate adtontr
policy’ which is suitable for on-line implementation, with particular emphasis on
remaining close to optimal solution when there are unknown disturbances.

In our previous work on ‘self-optimizing control’ we have looked for simple
control policies to implement optimal operation, and in particular ‘what shoeld w
control’ (choice of controlled variable€y’s)). Using off-line optimization we
may determine regions where different sets of active constraints ave,aatid
implementation of optimal operation is then in each region to:

1. Control the active constraints.

2. Forthe remaining unconstrained degrees of freedom: Controldpéhizing’
variablesc = Hy which have the property that keeping them constasat¢s)
indirectly achieves close-to optimal operation (with a small loss), in spite of
disturbancesl.

A key result, which is the basis for this paper, is

For a quadratic optimization problem there exists (infinitely many) linear mea-
surement combinations=¢ Hy that are optimally invariant to disturbances d.

One sees immediately that there may be some link to explicit MPC, because
the discrete form MPC problem can be written as a static quadratic probleen. Th
link is: If we lety contain the inputsi and the stateg, then the ‘self-optimizing’
variable combinatiort = Hy is the same as the explicit MPC feedback law, i.e.
¢ =u—Kx. (This is shown in section B.3.)

Based on this, we provide in this contribution sonesvideas on explicit MPC:

1. We propose that tracking the variables ¢ (deviation from optimal feskdba
law) for all regions, may be used as a local method to detect when to switch
between regions. (This is discussed in Manum et al. [2008b].)

2. We extend the results to output feedback=(u — Ky) by including iny
present and past outputs.
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3. For unconstrained optimal control, we show how the links can be used to
give low-order controllers that give a small loss from optimality also for
noisy measurements.

4. We also extend the results to the case where only a subset of the states ar
measured (but in this case there will be a loss, which we can quantify). This
may be of interest even in the unconstrained LQ case.

B.2 Results from self-optimizing control

In this section we will present results from previous work on self-optimiziogr
trol and relate them to quadratic optimization problems.

B.2.1 Steady state conditions

Once the set of active constraints is known, we can form the reduobtepn and
the unconstrained degrees of freedaman be determined. The unconstrained
measurements are

y=Gu+G)d, (B.2)

andy contain information about the present state and disturbageaay include
Up andd, but not the active constraints.) The (measured) valug,@lvailable for
implementation is

Yym=y+1, (B.3)

wherenY represents uncertainty in the measurementiatiuding uncertainty of
implementation iru.

The following theorem describes a method to find linear invariants that yields
zero loss from optimality when the invariants are controlled at constantisetpo
The theorem is based on the ‘nullspace method’ presented in Alstad agdss&ad
[2007].

Theorem B.1. (Linear invariants for quadratic optimization problem [Alstad et al.,
2009]) Consider an unconstrained quadratic optimization problem in thialbkes
u (input vector of length ) and d (disturbance vector of lengtl)n

minJ(u,d) = [u d] [jtj: j:ﬂ m o0

In addition, there are ‘measurement variables=GYu + Géd.
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If there exists # > ny 4 ng independent measurements (where ‘independent’
means that the matri§y = [Gy Gﬁ] has full rank), then the optimal solution to
(B.4) has the property that there exists=+ ny linear variable combinations (con-
straints) c= Hy that are invariant to the disturbances d. The optimal measurement
combination matrix H is found by either: (1): Let¥ g’g, be the optimal sen-
sitivity matrix evaluated with constant active constraints. Under the assunsption
stated above possible to select the matrix H in the left nullspace of &AHF’),
such that

HF =0 (B.5)
(2): If ny =ny+ng:

H=M;13(&)1, (B.6)

whereJ = [ /2 Jgul/ZJud] and& = [ G}] is the augmented plant. M may
be seen as a free parameter. (Note that-MJ. is the Hessian of the cost with
respect to the c-variables; in most cases we selgctNifor convenience.)

Remark B.1. The sensitivity F matrix can be obtained from
— (63,0 —GY) - (B.7)
Theorem B.1 may be extended:

Lemma B.1. (Linear invariants for constrained quadratic optimization methods
[Manum et al., 2008b]) Consider an optimization problem of the form

X
mindo=[X W d]S|uo
Up,X
d (B.8)
s.t. Ax+Bu+Cd=0
Ax+Bu+Cd <0,

with det(A) # 0 and [A BJ full row rank.

Assume that the disturbance space has been partitioneddwtttical regions.

In each region there arelp=ny, — n,y > 0unconstrained degrees of freedom, where
nA < hn is the number of optimally active constraints in region i.

If there exists a set of independent unconstrained measurement&y)'u' +
(Gy)'d in each region i, such that,n> ny + ng, the optimal solution tqB.8)
has the property that there exists variable combinatidns El'y' that for critical
region i are invariant to the disturbances d. The corresponding optltiahay be
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obtained from Theorem B.1. Within each region, optimality requires thatg—=

0 (where ¢ is a constant). From continuity of the solution we have tHaisc
continuous across the boundary of region i. This implies that the elemetits in
variable vector t— c will change sign or remain zero when crossing into or from
a neighboring region.

B.2.2 Including noise

For the noise-free problem, adding the constrantsHy = ¢ does not change
the optimal solution (Theorem B.1). However with measurement noise there will
be some loss, which can be minimizedHifis selected as given in Theorem B.2.

Theorem B.2. (Loss by introducing linear constraint for noisy quadratic opti-
mization problem [Alstad et al., 2009]) Consider the unconstrained cataxop-
timization problem in Theorem B.1:

. o Juu Jud u
minJ(u,d) = (u d [\]ﬂd Jdd] [d]
and a set of noisy measuremengs¥y y+n¥. Assume that = n, constraints
¢ = Hyn = csare added to the problem, which will result in a non-optimal solution
with loss L= J(u,d) — Jopt(d). Consider the disturbances d and the noisewvith
magnitudes:

d/

d=Wud; n=Wyr?; | ny:| | <1 (B.9)

Then, for a given H, the worst-case 10ss ig = 0(M)?/2, where M= Mg M|
is given by

Mg = —JH2(HGY) " THFW, (B.10)
Mpy = —J52(HGY) HWy ., (B.11)

and the optimal H that minimizegM) is given by
H' = (FF) ' &GV (FF)1eY) 1l (B.12)
whereF = [FWy Wiy]. This solution also minimizes the average s8]

Remark B.2. The optimal H can also be found by solving the constrained opti-
mization problem

H = arg rninE(Hlf) subjectto HG = 2 (B.13)
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B.3 Application to explicit MPC

Pistikopoulos et al. [2002] show that by substitution of the model equatibas,
linear MPC problem can be rewritten to the form

1 1
min=U’HU + x(t)'FU + =x(t)"Y Xt
in> (1)FU + SX(1)YX) 610
s.t.GU <W+EX(t)

The MPC control law is based on the following idea: At time&ompute the
optimal solutionJ*(t) = {u,..., Uy, 1} and applyu(t) = i [Bemporad et al.,
2002].

If we let the initial statex(t) be treated as a disturbance, (B.14) can be written

as:
o1 , A |H F||U
i Y d][F Y] M (B.15)
s.t.GU <W 4 Ed,

and we observe that (B.15) is on the same form as (B.8), where the nopddians
f(x, up,d) = 0 have already been substituted into the objective function.

A property of the solution to (B.15) is that the disturbance space (initial state
space) will be divided into critical regions. In tliieh critical region there will be
ni, = ny — nl, unconstrained degrees of freedom, wheyés the number of active
constraints in region

As we will discuss in section B.3.1, a possible set of measurenyeistthe
current state and the inputg,= [xX  u']. We further note that causality is not an
issue here, as we have the information at the current time.

B.3.1 Exact measurements of all states (state feedback)

The following theorem is well known, but we shown in [Manum et al., 2Q@8at
it can be derived using the nullspace method. The proof is left out herea
space limitations.

Theorem B.3. (Optimal state feedback [Bemporad et al., 2002]) The control law
u(t) = f(x(t)), f:R"— R™, defined by the MPC problem, is continuous and
piecewise affine

f(x) =K'x+g ifHX<K, i=1...,Nmpc (B.16)

where the polyhedral sefsH'x <k'}, i = 1,...,Nmpc < N; are a partition of the
given set of states X.
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Remark B.3. (Comparison with previous results on unconstrained MPC) In the
proof shown in Manum et al. [2008b] the state feedback gain matrix is gigen
Jotdua- This is gives the same result as conventional MPC, see equation (3) in
Rawlings and Muske [1993].

Remark B.4. Our alternative proof of Theorem B.3 leads to some new insights.
The most important is probably that the ‘self-optimizing’ variables a— (K'x+-

g') which are optimally zero in region i, may be used for identifying when to switch
between regions (Theorem B.4) rather than using a ‘centralized’ amprofor
example based on a state tree structure search. This seems to be netlierAn
insight is to understand why a simple feedback solution must exist in theldicst

A third is to allow for new extensions.

Theorem B.4. (Optimal region for explicit MPC detection using feedback law
[Manum et al., 2008b]) The variables-e ux — (Kxx + g) can be used to identify
region changes.

An algorithm for implementing the region detection scheme is presented in
Manum et al. [2008D].

We present a simple example from Bemporad et al. [2002] that confirms that
our switching policy based on tracking the sign of theariables works in practice.

Example B.3.1(Optimal switching) This example is taken from Bemporad et al.
[2002] (with correction), and is included here to demonstrate optimal $ivitg
using c= u— Kx as criterion. For more details on this example see [Manum et al.,
2008b]. The system is:

2

y(t) = %+ 3s+ 2u

(t).
With a sampling time & 0.1 seconds the following state-space representation is
obtained:

X(t+1) = 0.7326 —0.08611 X(t) [0.0609

0.1722 09909 0.0064] u(t)
y(t)=[0 14142 x(t)
One observes that only the last state is measured, but it will be assumted th
both states are known (measured) in the remainder of this example.

The task is to regulate the system to the origin while fulfilling the input con-
straint

—2<ut) <2 (B.17)
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Figure B.1: Partition of state space for first input. (Example B.3.1.)

The objective function to be minimized is

1
minX;_ 5 Px 21 + Z) [)<+k|txt+k|t + O'Olut2+k} (B.18)
k=

subject to the constraints ang= X(t).

P solves the Lyapunov equation=PA'PA+ Q, where Q= | in this case. The
P-matrix is numerically P= [$3362 ;98731 The optimal control problem can be
solved for example using the MPT toolbox [Kvasnica et al., 2004].

To illustrate the ideas, we show a simulation where the control objective is to
bring the process frompx= (1,1) and back to x= (0,0). State space trajectories
and inputs are shown in figures B.1 and B.2 (dotted line). As long as the state
is in the input-constrained region wher&Pi= —2, the linear combination e
Uk — Kxx remains positive. One chooses to leave the input-constrained region when
¢ becomes zero. The state trajectory is the same as in Bemporad etG] [20

B.3.2 Output feedback with no noise

Consider now the case where all the statemre not measured. The objective
is to find linear combinations = Hy that are optimally constant in each optimal
region. From the nullspace method, this requires that we have as manginuidey
measurementgas there are inputs and disturbances.

With no measurement error, the optimal combinatica Hy can be obtained
from the nullspace method. This requires té@has full rank, which again implies
that alld’s can be observed from the outpytsBecause of causalitﬁfﬁy will not
be full rank initially (just after the disturbance occurs), but the rankdadan will
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be satisfied if we consider a disturbance entering sufficiently lopg- (L steps)
back in time. From this time and on the solution is the same as the state feedback
solution.

In terms of detecting region changes, we suggested for the state fekexisac
to use the deviation from the optimal feedback laws= u— Kx as tracking vari-
ables. This simple strategy may not work as well with output feedback, partly
because output feedback is not truly optimal, and partly because thdéodtpoot
contain accurate information about the present state. (It can howewaagdiied in
the following example.)

Example B.3.2(Output feedback)Consider the same model and optimal control
problem as in example B.3.1, but assume that only the outpusyavailable (and
not both states). Recall from figure B.1 that the state space is optimally pagtition
into 3 regions with 3 different state feedback laws. As before, dekd

One approach is to find the optimal sensitivity F from=F-(GYJ;1dua — G})),
where y= (yi, Yk:1,U), and

Yic 0 0
_|Yks1| _ [CB Of | uk C
Y=1w | T 1 of |ucs| T |cal ™ (B8.19)
Uk+1 0 1 :?/
I

By finding an H such that HE= O, this method yields feedback gains from the
outputs to the inputs. Note that we can always ‘decouple’ the invariants in the
inputs u when all inputs are included in the candidate vector y. This is becaus
n. = ny and we have a degree of freedom in H such that multiplying by a non-
singular n, x nc matrix on the left yields the same loss as before. Write-H
[HY HY], then a combination matrix that is decoupled in tis= (HY)~H.

We here get two invariants, one betwe@Rp,1,Yk+1,Yk), and one between
Uk, Yk+1, Yk, Where only the first one is implementable because of causality.

The controller gains for the central region af&;,ky) = (—16.7,13.7), with
control equation W= — (Kyyk + kaYk—1)-

Another approach for finding F and H is to use the optimal solutigr=u
—Kxk a priori, which we did not do above. If we use the knowledge of the optimal
feedback law, we can for example find that

/\ opt
F/’:(‘W) —[K' C (C(A+BK))], (B.20)

and by solving -’ = 0 we get an invariant betwedii, Yk, Yk+1). This invariant
is not implementable, but by using the same idea we can find another invaria
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States x(t)

0 5 10 15 20 25 30 35 40

Input u(t)

0 510 15 20 25 30 35 40

ck = ur — (kiyx + koyr—1)

Figure B.2: Simulation of output feedback configuration, where the otitaat-
back law is used both for switching and control. Dotted line is optimal switching
and control when both states assumed measured. (Examples B.3.1 and B.3.2.)

between(yk, Yk+1, Yk+2), shift this invariant one time-step back and then combine
with the first one. The resulting output feedback law becomes the same as fo
the method above, where we did not use the optimal state feedback law in the
derivations.

Figure B.2 shows the result of a simulation of the output feedback cordral fr
Xo = (1,1). Note that we use the output feedback control law for the unconstrained
region to decide when to leave the constrained region. The previous ¢gioma
trol with both states assumed measured is shown as the dotted line. Omespbse
that the optimal control scheme leaves the constrained region one timatih&ta
fore the output feedback scheme. This is expected from the discussian dabe
‘discontinuity’ in ¢ at samplel is due to initialisation issues.
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B.4 Low-order controllers for optimal control in the pres-
ence of noise

In example B.3.2 we used Theorem B.1 to derive an output feedback talv, a
moreover this feedback law could be used for region detection. We willfoous

on unconstrained optimization problems and show, by using Theorem Ba2, ho
we can find optimal invariants betweanisymeasurementg To achieve this we
use the weight¥\y andW,y, see (B.9). The approach we use is summarized in
algorithm B.1. The algorithm can easily be extended to cover a non-staiensy
matrix A by not settingug = 0 for k > N.

Algorithm B.1 Finding low-order controllers. (For stable system ma#jx

1: Define cost functiod(u,x) = o X Q% + U Ru.

2: Choose\y, whereu, =0, k> Ny.

3: Rewrite cost function tal(u,x) = z::'igl (x’kQ><k+u’kRu<) + XN, PXy,, Where
P=APA+Q.

4: Treatxg as a disturbance and findJ,, andJyg.

5. Decide candidate variablgs for exampley = (yk, Ukt1, Uk, - - - ,Uk+N—1) and
form the “open-loop” modey = GYU + G}jd, U = (U, ..., UkiN-1)-

6: Decide disturbance weighty and noise weighi\jy.

7: FindH by solving either the optimization problem (B.13) or use (B.12).

8: Decouple the inputs iRl = [Hy Hy] by settingH = H; 1[Hy Hy] = [H; Fx I].

In step 2 one has to choose the input horizagn In practical applications
we found that this should be set rather high to give good performance iowh
order controllers. In the following example, where we focus on the dewrigeon
(unconstrained) for example B.3.2, we had to increldgérom 1 (as it was in
example B.3.2) to 10 to get acceptable performance. To reduce complexity in
constrained explicit MPC one can decrease the input horizon to getuegsen of
regions, but the resulting controller will have a poorer performancepsmusly
there is a trade-off. In future work we will investigate the possibility of using
different input horizons for solving the parametric program and foivaheg the
controllers in each region.

The disturbance and noise weigiig, W,y in step 6 should contain information
about the expected variation in disturbances versus measurement noise.

In the following example we compare different low-order controllers tbun
by using algorithm B.1 with optimal LQG controllers for the central region of
example B.3.2 using output feedback.

Example B.4.1. (Low-order controllers and comparison with LQG: output feed-
back) In this example we investigate the same process as before, butoigith n
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Table B.1: Simulated costs for example B.4.1. Noise levelsMgr: (a,B) =

(0.8,1).
Number| Control equation N J
0 ux = —[6.08 607X« (noise free, perfect measurement) 2|86 0.284
1 ux = —[6.08 607X« 3.40| 0.400
2 e = —(3.25yy) 5.27| 0.569
3 Uk = —(1.54yx + 0.5yk_1) 3.88| 0.401
4 Uk = —(0.78yk + 0.44yy_1 — 0.03yk_2) 3.88| 0.394
5 Uk = —(0.39 + 0.28yk_1 -+ 0.12y_» — 0.09y;_3) 4.11| 0.416

measurements, i.e.

«.. _ [07326 —0.0861 00609 =~
“+17= 10,1722 09909 0.0064| <k
yk=[0 14142 x+ v, (B.21)

where the process noisgare two uniformly distributed random numbers drawn
from a uniform distribution on a—f, ] interval, and the measurement noige v
is a uniformly distributed random number drawn from a uniform distribution on
a[—a,a] interval. There is no correlation between the noises. This implies vari-
ancesvar(wy) = %ZI, andvar(vg) = “—32

The objective is to find low-order controllers that can give comparabléper
mance with the well-known LQG controller.

In this example we investigate the following controllers for controlling the
Noisy process:

1. LQG from y to W.

2. Invariant(uy, yk).

3. Invariant(uy, Yk, Yk-1)-

4. Invariant(ug, Yk, - - -, Yk—2)-
5. Invariant(u, Yk, - - -, Yk-3)-

Algorithm B.1 can directly be applied to find invariants between inputna
output ¥, Yk_1, ..., also when there is noise on the measurements. Here we choose
Ny = 10, which will give a good performance in the resulting controllers. Apart
from this, the cost function is the same a$Bn18).

In Manum et al. [2007] analytical expressions for the derivativgsahd J,g
are given. These can be derived by substituting the state space modeldanto th
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objective function to get an unconstrained optimization problem as a function of
(U,x«), where again we treatyas a disturbance.

The open-loop model follows from the model equations. For example~or y
(Yi: Yk+1,0), Where U= (U, ..., Ug), we establish the model:

0 O
Yk CB 0 ¢
y= %1l = || g U+ |CA| X. (B.22)
U 0 | 0
Y Gy

The disturbance weight¥should reflect the variation in disturbances, whilst
the noise weight W the noises on measurements and inputs. In [Manum et al.,
2008a] it is shown that the resulting controllers are not affected by theenams
the inputs using the current formulation. We therefore choose:

2 2
Wo=P1ss Wy = [%'ﬁvxﬁv 0 ] (B.23)
3 0 Ingxn,

wherefiy < Ny is the number of measurements we want to include in the implemen-
tation (i.e. the order of the resulting controller).

This framework was used to generate the controllers shown in Table Bel. Th
LQR and LQG controllers were designed using standard software, artiveg
was based on the known distributions of the process and measureoissg.n

The reference controller is an LQR using full state information (available in
Matlab).

The LQG controller (from yto w) is implemented as:

)’szrl‘n = A>A(n|n71 +Bun+ L(yn - C)A(n|nfl)
)A(n|n = )A(n\n—l +M (Yn - Cf(n\n—l)
U = —KRojn (B.24)

with L' = [0.04 059 and M = [0.12 057].

The simulated costs for the different controllers are shown in Table B.1. We
investigate two cases, one where the process noise (i.e. disturbancess at all
time instants () and one where the process noise occurs only every tenth instant
(J2). The simulated costs are the values of the objective function divided by the
simulation length.

When the process noise is occurring at all time instants (sgetlde LQG
controller is optimal. The best variable combination between the preseat inp
and the outputs back in time, controller no. 4, has a simulated 8% higher
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than the LQG controller. However, if the process noise occurs onlyyeeerth
time instant (see,), a simple combination betweeR, yk_1, Yk_»2 actually yields
slightly better performance than the LQG controller.

As we increase the order of the controller we will reduce the noise sensitiv-
ity but we will be more sensitive to startup problems. The control law using
Yk, - -, Yk_3 is only optimal 3 time-steps after the disturbance occurs, this is the
reason why it has a higher simulated cost than controller number 4.

This example shows that our approach for deriving low-order contsolias
some inherent problems regarding causality; to achieve optimal operatioa in th
noise-free case we need at leagt= ny, + ng measurements, and in the presence
of noise we should include even more to reduce the sensitivity of noiseevéow
increasing the number gfs in the control law makes the causality problem more
significant as we need to ‘wait’ until the rank conditions from the disturbdnc
the measurements becomes fulfilled.

The example further shows that the method works, and we get contrailers c
parable with the LQG controller. For disturbances occurring at every tistarh
the LQG controller will be optimal at all times. However, in most practical cases
we do not expect that the disturbances will change in a random mammneoine
time step to the next, so the assumptiordpichanging for example only every
tenth time step may not be too wrong. Further, if we are allowed to change the
sample time we can always increase it to be faster than the dynamics of the distur
bances and our method can be applied.

B.5 Discussion and extensions

In this paper we have discussed that feedback laws may be viewed iisredd
constraints (invariants) to the original optimization problem, and based on this,
we have shown that optimal linear feedback laws can be derived farai@
optimization problems.

Further, we have presented a mathematical framework, Theorem B.24bsit g
optimal invariants ohoisymeasurements. This theorem can also be used in the
case of too few measurements, which can be of interest even for thesirained
LQ case.

Currently we are working on how to determine changes in the active set for
noisy measurements and how to optimally include integral action in the low-order
controllers.
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Convex initialization of the
Ho-optimal static output feedback
problem

Published in “Proceedings of American Control Conference 2009, Siwisl
USA’

Recently we have established a link between invariants diadatic opti-
mization problems and linear-quadratic (LQ) optimal cohfiManum et al.,
2008b]. The link is that for LQ control one invariant &g = ux — Kxy,
which yields zero loss from optimality when controlled to @nstant set-
pointc = ¢s = 0. In general there exists infinitely many such invariants to
a quadratic programming (QP) problem. In [Manum et al., 200& show
how the link can be used to generate output feedback contraing current
and old measurements. In this paper we extend this apprgacbrisider-
ing in more detail some interesting examples, and the usddifianal (old)
measurements. In particular, we show that if the number @smements
is less than the number of disturbances (initial states) pldependent in-
puts, we can not with this method find a poligy= —KYyy that minimizes
the original problem, becaus€’ is not optimally constant. However, this
method may be used to find initial values fas-optimal static output feed-
back synthesis.

165
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C.1 Introduction
Consider a finite horizon LQ problem of the form

min  J(u,x(0)) = E{xPxn+

Uop,U1,...,UN—1
N—-1
+ Z) [XQ%+ U RU }
k= (C.1)
subject taxg = x(0)
Xer1 =A% +Bu, k>0
Vi = CXc+ 1y,

wherexy € R™ are the states), € R™ are the inputs angk € R™ are the mea-
surements. Furthe? = P > 0, Q > 0, andR > 0 are matrices of appropriate
dimensions, ané&{-} is the expectation operator.

Itis well-known that ifC = | andnY = 0, such thayy = xk, the solution to (C.1)
is state feedbacly, = —Kxk, where the gain matrik can be found by solving an
iterative Riccati equation. For the case with white noise assumptiox @md
y (nY), the optimal solution sy = —KXx, wherex is a state estimate from a
Kalman filter [Astrom and Wittenmark, 1984], which in effect gives a dynamic
compensatoK'99 (fromy to u) of same orden, as the plant.

In this paper we consider the static output feedback problem; —KYyy,
whereKY is a static gain matrix. Note that the case with a fixed-order controller
of order less thany, may also be brought back to the static output feedback prob-
lem. A particular controller considered in this paper is the multi-input multi-output
proportional-integral-derivative controller (MIMO-PID) where wevhaas many
controlled outputs/ as there are inputs. The “allowed” measuremenig in
the formulation in (C.1) are the present value of the controlled owip(R®), the
integrated vaIug{;OyiC (I) and the derivativé’% (D).

This optimal solution to this problem is unsolved [Syrmos et al., 1994] so one
cannot expect to find an analytic or convex numerical solution. Theibation of
this paper is therefore to propose a convex approach to find a good ésitiialate
for KY, as a starting point for a numerical search.

C.1.1 Notation
Notation adopted from self-optimizing control is summarized in figure C.1. Typi-

cally,u= (up,us,...,un—1), d = Xg andy = (X, u) ory = (Yo, %, ...,u), but also
other variabley will be considered.
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Z ) Gﬁ
nY
c=H(y+nY) Measurement

< | combination H)

Figure C.1: Notation for self-optimizing control.

C.2 Main results

C.2.1 Results from self-optimizing control
Nullspace method

From [Alstad et al., 2009] we have the following theorem:

Theorem C.1. (Nullspace theorem = Linear invariants for quadratic optimiza-
tion problem) Consider an unconstrained quadratic optimization problemen th
variables u (input vector of length,h)and d (disturbance vector of lengtl)n

minJ(u,d) = m [ji: j:‘;] [g] (C.2)

In addition, there are “measurement” variablesyGYu+ G)d. If there exists p>

ny + ng independent measurements (where “independent” means that thexmatr
G = [Gy Gﬁ] has full rank), then the optimal solution {€.2) has the property
that there existsg= n, linear variable combinations (constraints}cHy that are
invariant to the disturbances d. The optimal measurement combinatitnixria

is found by selecting H such that

HF =0, (C.3)
where F= %pt is the optimal sensitivity matrix which can be obtained from
F=—(G3dda—GY), (C.4)

(That s, H is in the left nullspace of F.)
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Generalization: Exact local method

A generalization of Theorem C.1 is the following:

Theorem C.2. (Exact local method = Loss by introducing linear constraint for
noisy quadratic optimization problem [Alstad et al., 2009]) Consider theonnc
strained optimization problem in Theorem C(C.2), and a set of noisy mea-
surements y = y+ Y, where y= GYu+ Gﬁd. Assume thatd= n, constraints

¢ = Hym = ¢s are added to the problem, which will result in a non-optimal solu-
tion with a loss L= J(u,d) — Jop(d). Consider disturbances d and noiséwith
magnitudes

<1

/
d :de/; n :Wnyny; H [:)/:|
2

Then for a given H, the worst-case loss introduced by adding the coristraifly
is Lyc = 62(M) /2, where M is

M2 Mg My
Mg = —JH2(HGY) THFW (C.5)

Mn = —JH2(HGY) " THWy,
ando(-) is the maximum singular value. The optimal H that minimizes the loss
can be found by solving thenvexoptimization problem

min |[HF ||
H " (C.6)
subjectto HG = Jy),

HereF = [FWy Wh].
The reason for using the Frobenius norm is that minimization of this norm also
minimizess(M) [Kariwala et al., 2007].

Remark C.1. From [Alstad et al., 2009] we have that any optimal H premultiplied
by a non-singular matrix ix nc D, i.e. Hy = DH is still optimal. One implication
of this is that for a square plant.i= ny, we can write c= Hiy = H}’”‘ym+ lu. To
see this, assumey (ym,u), so H= [HYm HY], where H' is a non-singular g x ny
matrix. Now, H = (HY)"1[HYm HY] = [(HY)~tHYm [].

Remark C.2. More generally, for the case whétt' is singular, we can solve the
convex probleniC.6)using for exampl€VX, a package for specifying and solving
convex programs [Grant and Boyd, 2008], with the following code:
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cvx_begin
variable H(N*nu,ny+nu*N);
minimize norm(H*Ftilde,’fro’)
subject to
H*Gy == sqrtm(Juu);
cvx_end

Remark C.3. Noise will not be further discussed in this paper, but is covered in
[Manum and Skogestad, 2009].

C.2.2 Some special cases

Some special cases will now be considered where explicit expressamnbec
found.

Full information

No new results are represented here, but we show the maBic&, Juu, andJyq
for LQ-optimal control.

Assume that noise-free measurements of all the states are available. lit is we
known that the LQ problem (C.1) can be rewritten on the form in (C.2) (see f
example [Rawlings and Muske, 1993]) by treatiwgas the disturbancd, and
letting u = (up, us,...,un—1). Thus, from Theorem C.1 we know that for the LQ
problem there exist®finitely many invariants (but only one of these involves only
present states).

Without loss of generality consider the case when the model in (C.1) is stable.

Lety = (Xp,Uo, Us,...,UN—1) = (Xo,Uu). Note that this includes also future in-
puts, but we will use the normal “trick” in MPC of implementing only the present
(first) input changeup. Since we havey = ng +ny and no noise, we can use
Theorem 1. The open loop model becomes:

y=Gu+GYd

Gy — |:Onx><(nuN):| c R(nx-l-nuN)x(nuN)

[n,N (C.7)

Gy _ [ InuN :| GR(nX+n“N)XnX
d o(nuN)><r1X

Herely, is anm x midentity matrix and @i is amx n matrix of zeros.
The matricesl,, andJ,q are the derivatives of the linear quadratic objective
function.For the objective and process model in (C.1) we show in [Martuah,e
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2007] that
BPB+R BAPB .. B'(AN-1yYPB
J BPAB BPB{R .. B'(AN-2)PB
ol )
BPAN-1B BPAV-28 .. BPBR
B’ P
J B PA
sud _ A (C.9)
2 :
B'| |PAN!
The sensitivity matrix (optimal change ywhend is perturbed) becomes:
ay°rt I
_ _ (Y11 e — Ny
F= Fr (G dud— GY) [_ Il Jud:| (C.10)

We can use Theorem C.1 to get the combination métrike. find anH such that
HF =0:

I _
[Hl Hz] |:-J:?3ud] =H;— Hz(JuulJud) =0 (C.11)
uu

To ensure a non-trivial solution we can chod$e= I,y and get the following
optimal combination okg andu:

c=Hy=J, 0 +u, (C.12)
which can be interpreted as:

Invariant 1:up = KXo

Invariant 2:u; = K1xg
(C.13)

InvariantN: un_1 = Kn_1Xo

From Theorem C.1 implementation of (C.13) give zero loss from optimality, i.e.
they correspond to the optimal input trajectagyus, ..., uy_, from the solution
of (C.1). Moreover, since the states capture all information, we mustthave

u; = Kixo = K1 (A+BKg) "1 xg. (C.14)
N———’
=Ko

From this we deduce that the solution to (C.1) can be implemenigd-akoxy, k=
0,1,....

In [Manum et al., 2007] we prove that this gives the same result as genve
tional linear quadratic control, by conventional meaning for example equégjo
in Rawlings and Muske [1993].
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Output feedback

In this section we will show how Theorem C.2 can be used for the speaitl (b
common) case wheyx = Cx+0-ux, k=0,1,...,N and we look for controllers
on the formux = —KYy. If Cis full column rank, then we have full information
(state feedback), but we here consider the general case @Here full row rank
(independent measurements), but not full column rank.

Lety = (yo,u) and as beforel = (up,us,...,un—1). The disturbance = xo.
The open loop model is now

o Y
~~ ~~
(e Gé

and the sensitivity matrik is

_ C
F= —(GVJUUlJud — G)é) = [—J—lj ] (C.16)
uu Yud

Since we now have that, = ny+ny < ny + Ny, whereng are the number of
measurements from the plan§, < nq, we cannot simply s¢d F = 0, but we need
to solve (C.6).

Let us analyze this problem. F@Y = [0 1], HGY = &62 is equivalent to

H, = J&éz, where

anx(ny+nu) = [Hlncxny HZannu] (C.17)

With this partitioning we get that
HF = H[FWy W] = [HFWy HW,y], (C.18)
and forWy = 0, i.e. the noise-free case,
HF = [HFW; 0]. (C.19)
We want to minimize the Frobenius-norm of this matrix and we have that
[[HFWy O]|[F = [[HFWallr + (0] (C.20)

Assume without loss of generality thiat = 1, and let = —J;}yg. With F/ =
[C" J'] we have that

HF = HiC+Had[, a2 = HiC — 32 dug (C.21)
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We want to minimize|H;C — JJul/zJudH, hence we look for &l; such that
HiC = % 3ua. (C.22)
Using the pseudo-inverse, we find that
Hy = Ju’ 23uaCT, (C.23)
and we get that the optim#l is
H = Bua” dueC’ 307 (C.24)
In the final implementation we can decouple the invariants in the inputs by
A = Ju”?H = [~ 3, %uCT 1], (C.25)
This means that the open-loop optimal “output feedback” is
Ue= = Jusdug C¥e=—KMk, (C.26)

K state feedback

that is, for an optimal state feedbaklk the optimal “output feedback” KKCT.
This means that for this case we have

“Invariant” 1: ug = KOCTyo

“Invariant” 2: u; = K1CTyo
(C.27)

“Invariant” N: uy_1 = Kn_1CTyo

We have called these variable combinations “invariants” in quotation marks
because they are not invariant to the solution of the original problem altuer
the variable combinations that minimize the (open-loop) loss. Indeed, the non-
negative loss is

[HF | = [} %u”23aC"C — Jui”23ua
= |9 23ua(CTc 1)) (C.28)
< 3”2 3uallCTC—1]
For output feedback we have in the least squares sense
u; = K1C'C(A+BKCTC)ICTy;. (C.29)

Ky

Unfortunately, in generd{; # Ko and hence the open loop solution (C.27) cannot
be implemented as a constant feedbagk= KoC'yy, as was the case for state
feedback, see (C.14).
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C.3 Main algorithm

We now propose an algorithm for finding output feedback controllefss & a
two-step procedure where we first find initial values using Theorem Thizse
initial values correspond to a controller that in the open-loop sense isstituse
the optimal state feedback LQ controller. Thereafter we improve this comtiglle
solving a closed-loop optimization problem where the controller parameters ar
the degrees of freedom.

In the previous section we showed thay i (Cxg, Up, ...,un—1) Theorem C.1
givesug = —KVYyp = Kstate feedbagksty, The algorithm presented here is more gen-
eral in the sense that it handles “measurements” sugbk-d$o, Y1, - - ., YM, Uo, - - -, UN—1)-
(In the latter case a casual controlletis = —KY[yg ... yml')

Algorithm C.1 Low-order controller synthesis

1: Define a finite-horizon quadratic objectiveJ(u,x) = xPx +
Sito XQXURY +2¢Nu.

2: Calculatel,, andJyq as in (C.8), (C.9).

3: Define candidate variablgs= G'u+ G‘éxo, u= (up,us,...,UN_1).

4: Decide weight&\y andWy (Default: Wy = |, W = 0)

5: Find H by solving the convex optimization problem (C.6)

6: Optional: Improve control by closed-loop optimization. (Section C.3.1.)

C.3.1 Relationship between LQ-control and#> optimal control

Itis well-known that the LQG problem may be cast into #iieframework and that

a class of#, optimal controllers may be implemented in an LQG-scheme with a
Kalman estimator and a constant feedback gain from the estimated states [Doyle
et al., 1989]. In this paper we propose to improve the solution from the-lomgn
control by minimizing thex, norm

min|[R (P.K)| 2 (C.30)

In this context mig means minimizing over thparametersin K. The lower-
fractional transfornf (P,K) = Py + Pio(l — PoK) 1P, for aP = [Eﬁ E;;] [Sko-
gestad and Postlethwaite, 2005]. The interconnection structure we uBeifo
shown in figure C.2.

The last row of Algorithm C.1 consists of solving (C.30) with initial values as
H on step 5 in algorithm C.1, which is the solution to (C.6).
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P :
: »RL/2 > 7
y :

Figure C.2: Interconnection structure for closed-loop optimizatiok.of

C.4 Examples

In this section two examples will be considered. First we discuss P-cafteol
second order plant, then MIMO-PID control of a model of a distillation column

Example C.4.1. (P-control of second order plant) Consider the plan(sjg=
27555+ The plant is sampled withF 0.1 to get
~10.7326 —0.1722 0.1722 y
X+1= 10,0861 09909 0.0091| (C.31)

Yk = [O 1] Xk

The objective is to derive two LQ-optimal controllers for this process, one P-
controller on the form w= —KYy, and a PD-controller w = —(K{yk + KJyk_1).
In the synthesis of the controllers we use algorithm C.1. The open loop-objec
tive to be minimized i§(u,x) = 7> o XQx + URy with Q= [3 9] and R=1. The
infinite horizon objective can be approximated by the following objective:

N-1
J(u,x) = xyPxy + Z) X Qx +URu, (C.32)
i=

with P= [38333 29171 and N=10. (P is a solution to the discrete Lyapunov equa-
tion P= A'PA+Q.) The objective is now on the form of stem the algorithm.
P-control: For the P-controller, the variables to combine atey(yo, Uo, . .., UN_1)-
The matrices , and J4 are the same as those reported in equati¢@s3) and
(C.9). Since we do not consider noisg W | and Wy = 0. We can now findf
either by solving the convex problem (@.6), or we can simply use the explicit
formula in (C.23) i.e. H = J;}J,¢C". As shown in section C.2.2 (see equation
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Controller IHE | IR(P.K):2

1: ug = —0.404y 0.390 0.2993 First invariant us-
ing Theorem C.2 for
y! = (Yo.Uo, - .., Un-1)

2: ug = —0.313y — 0.2981 Closed-loop optimal P-
controller

3: u = —(L.49%x — 0 0.3176 Second invariant us-

111y 4) ing Theorem C.2 for
y2 - (YO7Y17 U, ..., uN—l)

4:  u = —(0.4164 — — 0.2979 Closed-loop optimal con-

0.109-1) troller PD-controller

5: ug = —[0.131 Q396x¢ 0 0.2972 LQR

Table C.1: Controllers for example C.4.1.

0.03
0.02 B
¢ 001 .
0 i
-0.01 : L Lw = =Ky )
0 1 2 6
o 28 Uk=—Kyyk;
0.15 - — =3 w = —K{ oy — K ope—1 |
- owm wmd: oy = — Yo — Y _
01 Xo - [0’1] 4: g Kiyr — K3yk—1 |
sy = — K,
= 0.05 B
0 i
_0.05 Il Il Il Il Il
0 1 2 3 4 5 6

Figure C.3: Simulation results for disturbances in initial conditions, example
C4.1.
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C.27) we now get N= 10 “invariants” to the solution to the original optimiza-
tion problem in(C.32) The first one of these invariants is reported as controller
1 in table C.1. We observe th@tF || > 0, which is expected from Theorem 1, as
Ny < ny+ng in this case (p=1+10,n, = 10,ng = 2).

Using this P-controller (W= —0.404y) as the initial estimate, th&»-optimal
closed-loop controller K in Figure C.2 is obtained numerically. Note from raw 2
Table | that the#,-norm is only reduced slightly (from 0.2993 to 0.2981), although
K changes from -0.404 to -0.313.

PD-control: For the synthesis of a PD controller we again use algorithm
C.1. The variables to combine are now ¥ (yo,y1,Uo,...,Un_1). The objec-
tive function and the matricegJand J,g remain the same. The open-loop model
y = GYu+ G)xo is now:

0 O
Yol IcB o ¢

V= |yl = | olut [CA| % (C.33)
u 0 | 0

For this particular variable combinatioiC.23) cannot be used, as the variables
occur on different instances in time. We therefore solve the optimizatiotepnob
(C.6) usingcvx, as shown in remark C.2. The solution is again on the form of
(C.27) for which the second invariant is reported as controller 3 in table C.1. The
solution (all the invariants) give$HF || = 0, which is expected from Theorem C.1,
as n, = ny+ ng and no noise is present. Further numerical optimization reduces
the #» norm from 0.3176 to 0.2979.

It can be verified that the variable combination is indeed optimal after one ste
with the following calculations:

up = —Kxo, U1 =—Kiy1—Klyo
= U = — (K{C+KJC(A—BK) 1) xq, (C.34)
—K
where K is the LQR controller. For implementation some sub-optimality must be
expected since we are not starting the control with LQR, rather we uselhe P
controller at all time instances.
Simulations: From the closed-loop norms reported in table C.1 the controllers

are expected to perform similarly in closed loop. This is confirmed in thealose
loop simulations of disturbances in initial states, see figure C.3.

Example C.4.2. (Linear dynamic model of distillation column.) In this example
we consider MIMO-PI and -PID control of “column A” in [Skogestad@97]. The
model is used as an example for offset-free control in [Muske and Bati@®02].
The model is based on the following assumptions:
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binary separation,

41 stages, including reboiler and total condenser,

each stage is at equilibrium, with constant relative volatitity= 1.5,

linearized liquid flow dynamics,

negligible vapor holdup,
e constant pressure.

The feed enters on stage 21=U} | and y= [33].

We here consider the LV-configuration, where D and B are used toatah&
levels. With level controllers implemented (P-control with=K10) the rest of the
column is stable.



Description Control equation IHEIE  IR(PK)]
e , ([ 5316 025664 26897 -05975
First-move” Pl ="\ |-31953 73.3371]y5 {70.13498 72.5939} yk) 4.28 399
. ~ /[160156 -5.1712 27148 —0.715]
Closed-loop optimal P! uk_*<_o.541199 —9.577733{ {0‘33949 —2.7672} yk> - 3.65
e , (99305 -09674 26891 —0.6258
First-move” PID %=\ |-5.2025 73.5369]1%2 {70.13969 72.6454]] Yoo 344 378
L[ 10724 022799
~0.53974 —0.43514 %k
. _([17.5043 —8.2239 2743 -13167
Closed-loop optimal PID uy = — 3.48502 _17.733\,jy’|f {0.15148 _4.3547} Yoo — 3.63
g [L78427 607619 o
~9.79446 —13.3285 %k
LQR - 3.61

U _7{—0.0022 00002 —0.0004 —0.0007 00016 —0.0097|
k= 0.0008 00015 —-0.0016 —0.0037 00079 —0.0074
—0.0036 00048 00116 -0.0011 —-0.0213 Q0305
”_{70.0066 00262 00610 00044 00093 —0.0148
“_{0.0149 00521 01349 01034 26897 70.5975} x(13:18
0.0233 —0.0372 —0.1607 Q0895 —0.1350 —2.5939 '

}xk(l:s)...

}xk(7:12)...

Table C.2: Controllers for example C.4.2.

wa|qoid Moeqpaa) indino anels [ewndo-2x ayl Jo uonezifeniul Xanuo) 8/T
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Algorithm C.1 K°=0 SIMC-tuned PI controllers

Pl 44 - 71
PID 91 - 123

Table C.3: Iteration count usirfginunc  (Matla® R2008a) with different initial-
izations

Balanced reduction is used to reduce the number of states to 16. Then in-
tegrated outputs are added to the model, resulting in a model with 18 states. If
we let the outputs of the model be P, I, and D, we get a model with the following

structure:
x| _|a 0] (X n b 4
6| |c O]|o d
yp c O « d] - (C.35)
v =10 | {0 +(0fu
yP ca 0 chj

This model is sampled with F 1 to get a discrete time model. Again we set up
an infinite time objective function, with @ C’ [o| C,and R=0.1-1, and for

intermediate calculations we approximate this by a finite horizon objective with
N = 150and P= Q.
We now look for controllers on the form

ue = — (KPyE +K'yi + KoyR) (C.36)

and we assume measurements of the compositions with a sample time ofel minu
is available.

Table C.4.2 shows “first-move” PI (= first move invariant realized asdfee
back), closed loop Pl and PID controllers, and the LQR controller for neziee.

In addition to the initialziation proposed in this paper we tried to initialize the nu-
merical search with K= 0 and two SIMC-tuned [Skogestad, 2003a] PI controllers
with Tc = 10 minutes, leading to &, = [*4%% 1001 %87 _%7 § - As reported

in table C.4.2 did R = 0 not converge, whereas intializing with two SIMC-tuned
PI1 controllers converged in both cases (both for Pl and PID designudhowith
some more iterations than the method proposed in this paper.

Figure C.4 shows simulation results where we at @ introduce a step in the
feed rate and at & 70 a step in the feed composition. 'PI' and 'PID’ refers to
the closed-loop optimal controllers. As one observes is the MIMO-Piiraiter
quite close in performance to the LQR controller.
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Figure C.4: Simulation results for example C.4.21At 0 a step-change ofDin
F occurs, and dt= 70 z- is changed from & to 0.6.
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C.5 Conclusions

In this paper we have discussed synthesig/gfoptimal static output feedback,
and in particular the MIMO-PID. We have shown that initial conditions foselib
loop optimization can be found by solving a convex program, and that thiines
closed loop optimization problem converges for some interesting cases.

C.6 Acknowledgments

The authors gratefully acknowledge the comments from Bjarne Grimstad.



182 Convex initialization of the #/>-optimal static output feedback problem




Bibliography

MATLAB version r2009b. Computer program.

A. Alessio and A. Bemporad. A survey on explicit model predictive cdntho
Proc. Int. Workshop on Assessment and Future Directions of Nomliiedel
Predictive Contro| Pavia, Italy, 2008.

V. Alstad and S. Skogestad. Null space method for selecting optimal mezenire
combinations as controlled variabldad. Eng. Chem. Red6:846—-853, 2007.

V. Alstad, S. Skogestad, and E.S. Hori. Optimal measurement combinations as
controlled variablesJournal of Process Contrpll9(1):138 — 148, 2009.

Karl J. Astrom and Bjgrn WittenmarkComputer Controlled System®&rentice-
Hall, 1984.

F. Aurenhammer. Voronoi diagrams - A Survey of a Fundamental Geonstec
Structure. ACM Computing Survey23(3), September 1991.

M. Baotic, F. Borrelli, A. Bemporad, and M. Morari. Efficient On-Line Computa-
tion of Constrained Optimal Contro51AM Journal on Control and Optimiza-
tion, 47(5):2470-2489, 2008.

G.l. Bara and M. Boutayeb. Static output feedback stabilization withper-
formance for linear discrete-time systemHEE Transactions on Automatic
Control, 50(2):250-254, February 2005.

J.F. Bard. Practical Bilevel Optimization Kluwer Academic Publishers, Do-
drecht/Boston/London, 1998.

J.F. Bard and J.T. Moore. A branch and bound algorithm for the bilerogrpm-
ming problem. SIAM Journal of Scientific Computing1(2):281-292, March
1990.

R. Bellman. The Theory of Dynamic ProgramminBull. Amer. Math. So¢60:
503-515, November 1954.

183



184 Bibliography

A. Bemporad. Reducing conservativeness in predictive controlrdtcained sys-
tems with disturbances. IRroceedings of the IEEE Conference on Decision
and Contro] Tampa, Florida USA, December 1998.

A. Bemporad and M. Morari. Robust Model Predictive Control: A Syrvio-
bustness in ldentification and Contr@45:207-226, 1999.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicitdine
guadratic regulator for constrained systemaitomatica 38:3—-20, 2002. See
also corrigendum 39(2003), pages 1845-1846.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The expliciuso
tion of model predictive control via multiparametric quadratic programming. In
Proceedings of the American Control Conferghgne 2006.

V. Blondel and J.N. Tsitsikilis. NP-Hardness of some linear control dgsigh-
lems. Siam Journal of Control and OptimizatipB5(6):2118-2127, November
1997.

T. Bouarar, K. Guelton, and N. Manamanni. Static Output Feedback @lentr
Design for Takagi-Sugeno SystemsA Fuzzy Lyapunov LMI Approach. In
Proceedings of IEEE Conference on Decision and Conpabes 4150-4155,
Shanghai, China, 2009.

A.E. Bryson and Y.C. Ho. Applied Optimal Contral Hemisphere Publishing,
1975.

R. Cagienard, P. Grieder, E.C. Kerrigan, and M. Morari. Move blagkinategies
in receding horizon controlournal of Process ContrplL7:563-570, 2007.

J.D. Camm, A.S. Raturi, and S. Tsubakitani. Cutting Big M down to Siater-
faces 20(5):61-66, Sep.-Oct. 1990.

D. Chmielewski and V. Manousiouthakis. On constrained infinite-time linear
guadratic optimal controlSystems and Control Lettei29:121-129, 1996.

F. J. Christophersen, M. N. Zeilinger, C. N. Jones, and M. Moramt@der Com-
plexity Reduction for Piecewise Affine Systems Through Safe Region Elimina-
tion. InProc. of the Conf. on Decision & Contrdew Orleans, USA, December
2007.

B. Colson, P. Marcotte, and G. Savard. Bilevel programming: A surd®R: A
Quarterly Journal of Operations Resear@(2):87-107, June 2005.



Bibliography 185

C.R. Cutler and B.L. Ramaker. Dynamic Matrix ContrelA Computer Control
Algorithm. In Proceedings of American Control Conferen&an Francisco,
USA, 1980.

D.-W. Ding and G.-H. Yang.#. Static Output Feedback Control for Discrete-
time Switched Linear Systems with Average Dwell Time. Rroceedings of
American Control Conferen¢gpages 23562361, St. Louis, MO, USA, 2009a.

D.-W. Ding and G.-H. Yang. Static Output Feedback Control for Disctiete-
Switched Linear Systems under Arbitrary Switching.Pimceedings of Ameri-
can Control Conferenggages 2385-2390, St. Louis, MO, USA, 2009b.

J.C. Doyle. Guaranteed Margins for LQG Regulatot&EE Transactions on
Automatic Contrgl AC-23(4):756—757, August 1978.

J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis. Stateespalutions
to standard#> and #. control problems. IEEE Transactions on Automatic
Control, 34(8):831-847, 1989.

X.Du and G.-H. Yang. LMI Characterizations of Positive Realness aait®ut-
put Feedback Positive Real Control of Discrete-time System®rdoeedings
of American Control Conferencpages 5132-5137, St. Louis, MO, USA, 2009.

W. Findeisen, F.N. Bailey, M. Bryds, K. Malinowski, P. Tatjewski, and Ao2A/
niak. Control and Coordination in Hierarchical System3ohn Wiley & Sons,
1980.

A. Fujimori. Optimization of Static Output Feedback Using Substitutive LMI For-
mulation.|EEE Transactions on Automatic Contrdl9(6):995-999, June 2004.

J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, and B.M. Cheinfikity
Static Output-feedback Control for Rotorcrafaurnal of Intelligent Robot Sys-
tems 54:629-646, 2009.

M. Grant and S. Boyd. CVX: Matlab software for disciplined con-
vex programming (web page and software), August 2008. URL
http://standford.edu/"boyd/cvx

P. Grieder, F. Borrelli, F. Torrisi, and M. Morari. Computation of the ¢oaised
infinite time linear quadratic regulatoAutomatica 40:701-708, 2004.

A. Haidar, E.K. Boukas, S. Xu, and J. Lam. Exponential Stability and Statip@
Feedback Stabilization of Singular Time-Delay Systems with Saturating Actu-
ators. InProceedings of American Control Conferenpages 4945-4950, St.
Louis, MO, USA, 2009.



186 Bibliography

U. Halldorsson, M. Fikar, and H. Unbehauen. Nonlinear predictiverobwith
multirate optimisation. IREE Proc., Control Theory Applicationsolume 152,
pages 273-284, 2005.

I. J. Halvorsen, S. Skogestad, J. C. Morud, and V. Alstad. Optimattsabeof
controlled variablesind. Eng. Chem. Res42:3273-3284, 2003.

Tore Haug-Warberg. Personal Communication, 2010.

E.S. Hori and S. Skogestad. Selection of controlled variables: Maximimrga
and combination of measuremeniisd. Eng. Chem. Res47:9465-9471, 2008.

M. Hovd and S. Skogestad. Control of Symmetrically Interconnected PlAnts
tomaticg 30(6):957-973, 1994.

S. Hovland and J.T. Gravdahl. Complexity Reduction in Explicit MPC through
Model Reduction. InProceedings of the 17th World Congregsmges 7711—
7716, Seoul, Korea, July 2008. The International Federation of AutorGan-
trol.

S. Hovland, K. Willcox, and J.T. Gravdahl. MPC for Large-Scale Systeias
Model Reduction and Multiparametric Convex Programming.Ptaceedings
of the IEEE Conference on Decision and Contf&én Diego, USA, Dec 2006.

C.N. Jones and M. Morari. The Double Description Method for the Apipnekion
of Explicit MPC Control Laws. InConference on Decision and Control, CDC
Cancun, Mexico, December 2008.

C.N. Jones and M. Morari. Approximate Explicit MPC using Bilevel Optimiza-
tion. In European Control ConferenceBudapest, Hungary, August 2009.
URL http://control.ee.ethz.ch/index.cgi?page=publicatio ns;
action=details;id=3339

R.E. Kalman. Contributions to the Theory of Optimal Contr@oletin de la
Sociedad Matematica Mexicanat102—-119, 1960.

V. Kariwala, Y. Cao, and S. Janardhanan. Local self-optimizing cowith aver-
age loss minimizationind. Eng. Chem. Reg6:3629-3634, 2007.

V. Kariwala, Y. Cao, and S. Janardhanan. Local self-optimizing cownfith av-
erage loss minimizationindustrial and Engineering Chemistry Researdi:
1150-1158, 2008.

M. Kvasnica, P. Grieder, and M. Baoti Multi-Parametric Toolbox (MPT), 2004.
URL http://control.ee.ethz.ch/ mpt/



Bibliography 187

H. Kwakernaak and R. Siva.inear optimal control system&Viley, 1972.

J. Lofberg. Yalmip : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conferencripei, Taiwan, 2004. URL
http://control.ee.ethz.ch/ joloeflyalmip.php .

D. G. Luenberger. Observers for multivariable systemlEEEE Transactions on
Automatic Contrgl AC-11(2):190-197, April 1966.

P. Lundstom and S. Skogestad. Non-uniqueness of robstiecentralized PI-
control. InProceedings of the American Control ConferenBeston, USA,
1991.

D.H.S. Maithripala, J.M. Berg, and W.P. Dayawansa. Control of an El&tetfio
Microelectromechanical System Using Static and Dynamic Output Feedback.
Journal of Dynamic Systems, Measurement and Cqrit&1:443-450, Septem-
ber 2005.

H. Manum and S. Skogestad. Convex initialization of #heoptimal static feed-
back problem with noise. Submitted to Conference on Decision and Control,
2009.

H. Manum, S. Narasimhan, and S. Skogestad. A new approach
to explicit MPC using self-optimizing control. Avaliable at:
http://www.nt.ntnhu.no/users/skoge/publications/2007/, 2007.

H. Manum, S. Narasimhan, and S. Skogestad. A new approach to expR€&t M
based on self-optimizing control. Manuscript in preparation, 2008a.

H. Manum, S. Narasimhan, and S. Skogestad. A new approach to expR¢&t M
using self-optimizing control. IProceedings of American Control Conference
Seattle, USA, 2008b.

H. Manum, S. Narasimhan, and S. Skogestad. Explicit MPC with outpulb&eéd
using self-optimizing control. IRProceedings of IFAC World Conferenc&eoul,
Korea, 2008c.

T. Marlin and A.N. Hrymak. Real-time operations optimization of continuous
processes. IRroceedings of Chemical Process Contrglf@hoe City, Nevada,
USA, 1996.

I. Maruta, T.-H. Kim, and T. Sugie. Fixed structurg, controller synthesis: A
meta-heuristic approach using simple constrained particle swarm optimization.
Automatica45:553-559, 2009.



188 Bibliography

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Caimgtd model
predictive control: Stability and optimalityAutomatica 36:789-814, 2000.

D.Q. Mayne, M.M. Seron, and S.V. Rakévi Robust model predictive control
of constrained linear systems with bounded disturbangatomatica41:219—
224, 2005.

P.P. Menon and C. Edwards. Decentralized static output feedback sttbiliand
synchronization of networksAutomatica 45:2910-2916, 2009.

B. Moore. Principal Component Analysis in Linear Systems: Controllabiliby, O
servability and Model ReductiodEEE Transactions on Automatic Contr@6
(1):17-32, 1981.

M. Morari and J. H. Lee. Model predictive control: past, presentfature. Com-
puters & Chemical Engineerin@3:667—682, 1999.

H. Mukadidani and H. Xu. Guaranteed Cost Control for Uncertaint&tstic Sys-
tems with Multiple Decision Makers via Static Output FeedbackPloceed-
ings of IEEE Conference on Decision and Contpages 2917-2922, Shanghai,
China, 2009.

K. R. Muske and T. A Badgwell. Disturbance modeling for offset-freedimaodel
predictive control.Journal of Process Contrpll2:617-632, 2002.

K. R. Muske and J. B. Rawlings. Model predictive control with linear niede
AIChE Journaj 39:262-287, February 1993.

T. Nagashio and T. Kida. An Optimal Design of Symmetrg Static Output
Feedback Controller using LMI for Collocated Second-Order Lineate3y. In
Proceedings of IEEE Conference on Decision and Conpabes 6177—6182,
Shanghai, China, 2009.

S. Narasimhan and S. Skogestad. Implementation of optimal operation uking of
line calculations. IrDycops 2007.

S. Narasimhan and S. Skogestad. Control structure adaptation for tiapar
strained systems. Preprint submitted to Elsevier Science, 2010.

J. Nocedal and S. J. WrighNumerical Optimization Springer Series in Opera-
tions Research, 1999.

P. Pakshin and D. Peaucelle. LQR parameterization of static output fdeghias
for linear systems with Markovian switching and related robust stabilizatidn an
passification problems. IRroceedings of IEEE Conference on Decision and
Control, pages 1157-1162, Shanghai, China, 2009.



Bibliography 189

G. Pannocchia and J. B. Rawlings. Disturbance models for offsetrficatel-
predictive control AIChE Journa) 49(2):426—-437, February 2003.

G. Pannocchia, N. Laachi, and J.B. Rawlings. A Candidate to Replac€ &b
trol: SISO-Constrained LQ ControlAIChE Journa) 51(4):1178-1189, April
2005.

G. Pannocchia, J. B. Rawlings, and S. J. Wright. Fast, large-scald predective
control by partial enumeratiorutomatica43:852—-860, May 2007.

E. N. Pistikopoulos, V. Dua, N. A. Bozinis, A. Bemporad, and M. Mordtin-
line optimization via off-line parametric optimization tool<Computers and
Chemical Engineering26:175-185, 2002.

S.J. Qin and T.A. Badgwell. A survey of industrial model predictive cdné&ch-
nology. Control Engineering Practisel1:733—-764, 2003.

J. Qiu, G. Feng, H. Gao, and Y. Fan. Exponentig) Static Output Feedback
Control of Switched Systems with Average Dwell-Time and Time-Varying Un-
certainties. IrProceedings of IEEE Conference on Decision and Conpayes
6383-6388, Shanghai, China, 2009.

S.V. Rakovt, E.C. Kerrigan, K.I. Kouramas, and D.Q. Mayne. Invariant approx-
imations of the minimal robust positively invariant séEEE Transactions on
Automatic Contrgl50(3):406—410, March 2005.

C.V. Rao, J. Wright, and J.B. Rawlings. Application of interior-point methiods
model predictive controlJournal of Optimization Theory and Applicatiqré®
(3):723-757, December 1998.

J. B. Rawlings and K. R. Muske. The stability of constrained recedingdo
control. InlEEE Transactions on Automatic Contraolume 38, pages 1512—
1516, 1993.

J.B. Rawlings. Tutorial overview of model predictive contriEEE Control Sys-
tems Magazine20(3):38-52, June 2000.

J.B. Rawlings and D.Q. MayneModel Predictive Control: Theory and Design
Nob Hill Publishing, Madison, Wisconsin, first printing edition, 2009.

J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictivediewcontrol:
Applications to industrial processeAutomatica 14:413-428, 1978.



190 Bibliography

J.A. Rossiter, M.J Rice, and B. Kouvaritakis. A robust state-spacebapiprto
stable predictive control strategies. Broceedings of the American Control
Conferencepages 1640-1641, Albuquerque, New Mexico, USA, 1997.

P. O. M. Scokaert and J. B. Rawlings. Constrained linear quadratidatem.
IEEE Transactions on automatic contydi3(8):1163—-1169, 1998.

Z. Shu, J. Lam, and J. Xiong. Static output-feedback stabilization of déstiree
Markovian jump linear systems: A system augmentation approadiomatica
46:687-694, 2010.

S. Skogestad. Dynamics and control of distillation columns - a tutorial introduc
tion. Trans IChemE, Part A75:539-562, September 1997.

S. Skogestad. Plantwide control: the search for the self-optimizing ccttrm-
ture. Journal of Process ContrplL0:487-507, 2000a.

S. Skogestad. Self-optimizing control: the missing link between steady-state op
mization and controlComputers & Chemical Engineering4:569-575, 2000b.

S. Skogestad. Simple rules for model reduction and pid controller tudmgnal
of Process Contrgl2003a.

S. SkogestadProsessteknikkTapir Akademisk Forlag, 2nd edition, 2003b.

S. Skogestad. Near-optimal operation by self-optimizing control: Frorogs
control to marathon running and business systef@smputers and Chemical
Engineering 27:127-137, 2004.

S. Skogestad and |. Postlethwaitdultivariable Feedback ControlWiley, 2005.

Jargen Spjgtvold, Eric. C Kerrigan, Colin N. Jones, Petter Tgndel, and\T
Johansen. One the facet-to-facet property of solutions to convexngarc
quadratic programs. Preprint submitted to Automatica, May 2006.

V.L. Syrmos, C. Abdallah, and P. Dorato. Static output feedback: aeguive-
cision and Control, 1994., Proceedings of the 33rd IEEE Conferengelon
837-842 vol.1, Dec 1994. doi: 10.1109/CDC.1994.410963.

V.L. Syrmos, C.T. Abdallah, P. Dorato, and K. Grigoriadis. Static Outpatiback
— A Survey. Automatica 33(2):125-137, 1997.

S.Hvan der Meulen, R.L. Tousain, and O.H. Bosgra. Fixed Structurdfémseard
Controller Design Exploiting Iterative Trials: Application to a Wafer Stage and
a Desktop Printer.Journal of Dynamic Systems, Measurement, and Cantrol
130(5):051006, September 2008.



Bibliography 191

Y. Wang and S. Boyd. Fast Model Predictive Control Using Online Optimiza
tion. IEEE Transactions on Control Systems Technaolda§y?2):267-278, March
2010.

C. Wen, X. Ma, and B.E. Ydstie. Analytical expression of explicit mpc sofutio
via lattice piecewise-affine functioutomatica (45):910-917, 2009.

H.-N. Wu. An LMI approach to robust> static output feedback fuzzy control for
uncertain discrete-time nonlinear systerAstomatica 44:2333-2339, 2008.

R. Yelchuru. Personal communication, 2010.

C.M. Ying and B. Joseph. Performance and Stability Analysis of LP-MPC an
QP-MPC Cascade Control Systerd8dChE Journa) 45(7):1521-1534, 1999.



