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Abstract

This thesis discusses plantwide control configuration with focus on maximizing
throughput. The most important plantwide control issue is to maintain the mass
balances in the plant. The inventory control system must be consistent, which
means that the mass balances are satisfied. Self-consistency is usually required,
meaning that the steady-state balances are maintained with the local inventory
loops only. We propose the self-consistency rule to evaluate consistency of an
inventory control system.

In many cases, economic optimal operation is the same as maximum plant
throughput, which corresponds to maximum flow through the bottleneck(s). This
insight may greatly simplify implementation of optimal operation, without the
need for dynamic optimization based on a detailed model of the entire plant.

Throughput maximization requires tight bottleneck control. In the simplest
case when the bottleneck is fixed to one unit, maximum throughput can be real-
ized with single-loop control. The throughput manipulator should then be located
at the bottleneck unit. This gives a short effective delay in the control loop. Ef-
fective delay determines the necessary back off from constraints to ensure feasible
operation. Back off implies a reduction in throughput and an unrecoverable eco-
nomic loss and should therefore be minimized. We obtain a rough estimate of the
necessary back off based on controllability analysis.

In some cases it is not desirable to locate the throughput manipulator at the bot-
tleneck. To reduce the effective time delay in the control loop from the throughput
manipulator to the bottleneck unit, dynamic degrees of freedom, like most inven-
tories, can be used to reduce the effective time delay.

In larger plants there may be several independent feeds, crossovers and splits
that should all be utilized to obtain maximum throughput. The proposed coordi-
nator MPC both identifies the bottlenecks and implements the optimal policy. A
key idea in the coordinator MPC is to decompose the plantwide control problem
by estimating the remaining capacity for each unit using models and constraint in
the local MPC applications. The coordinator MPC is demonstrated by dynamic
simulation and by implementation on a large-scale gas processing plant.
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Chapter 1

Introduction

The purpose of this chapter is to motivate the research, to define the scope and
place it in a wider perspective. The contributions and publications arising from
this thesis are listed.

1.1 Motivation and focus

Optimal economic operation of processes is important, especially in mature in-
dustries where it is difficult to maintain competitive advantages. In some cases,
steady-state considerations may be sufficient to track the economic operation point.
In other cases, where the important economic disturbances are frequent compared
to the plant response time, dynamic considerations to track the optimum is prefer-
able. Some dynamic economic disturbances that most likely call for dynamic op-
timization are feed flow, feed quality, energy supplies and product specifications
(Strand, 1991). To decide whether a dynamic or steady-state process model should
be used, the dynamics of the plant and the disturbances must be considered.

In practice, the control and optimization is organized in a hierarchical structure
(or layer) (e.g. Findeisen et al. 1980; Skogestad and Postlethwaite 2005). Each
layer acts at different time intervals (time scale separation) and a typical control
hierarchy is displayed in Figure 1.1.

This thesis discusses the control layer, that is, the regulatory control and su-
pervisory control. In addition, implementation of maximum throughput (local op-
timization) in the control layer is discussed. The stabilizing regulatory control
typically includes single-loop PID controllers. Supervisory control (or advanced
control) should keep the plant at its target values and model predictive control
(MPC) has become the unifying tool with many applications (Qin and Badgwell,
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Figure 1.1: Typical control system hierarchy in chemical plants (Skogestad and
Postlethwaite, 2005, p.387).

2003) and has replaced previous complex systems with selectors, decouplers, feed-
forward control and logic.

Engell (2007) gives a review of how to realize optimal process operation by
feedback control with direct optimization control, that is, optimization of a online
economic cost criterion over finite horizon. Optimal operation can be implemented
by conventional feedback control if a self-optimizing control structure is found.
This is called self-optimizing control where acceptable operation is achieved un-
der all conditions with constant set points for the controlled variables (Skogestad,
2000a; Morari et al., 1980). Today, model based economic optimization has be-
come common, and several real-time optimization (RTO) applications based on
detailed nonlinear steady-state models are reported (Marlin and Hrymak, 1997).
However, there are several challenges regarding (steady-state) RTO. To mention
some of these challenges, an RTO requires highly predictive and robust models.
Steady-state detection and data reconciliation are necessary to detect current oper-
ation point and to update models and this is not a straight forward task (Forbes et
al., 2006; Marlin and Hrymak, 1997).

In particular, for plants that are seldom in steady-state, dynamic optimization
is more suitable, which may be realized using dynamic RTO (DRTO) or nonlinear
model predictive controller (MPC) with an economic objective, e.g. Kadam et al.
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(2007); Engell (2007); BenAmor et al. (2004); Tosukhowong et al. (2004); Diehl
et al. (2002).

In many cases, we can assume that optimal economic operation is the same as
maximizing plant throughput, subject to achieving feasible operation (satisfying
operational constraints in all units) with the available feeds. This corresponds to
a constrained operation mode (Maarleveld and Rijnsdorp, 1970) with maximum
flow through the bottleneck(s). Note that the overall feed rate (or more generally
the throughput) affects all units in the plant. For this reason, the throughput is usu-
ally not used as a degree of freedom for control of any individual unit, but must be
set at the plant-wide level. The throughput manipulators are decided at the design
stage and cannot easily be moved later because this requires reconfiguration of the
inventory loops to ensure self-consistency (Chapter 2). Plant operation depends on
its control structure design and plantwide control related to that design for com-
plete chemical plants (Skogestad, 2004). The focus in this thesis is the control
configuration design for throughput maximization.

The economic importance of throughput and the resulting earnings from im-
proved control is stated by Bauer and Craig (2008). They performed a web-based
survey by over 60 industrial experts in advanced process control (APC) on the eco-
nomic assessment of process control. From the survey they found that in particu-
lar throughput and quality were the important profit factors: “Both suppliers and
users regard an increase in throughput and therefore production as the main profit
contributor of process control. Several respondents estimate that the throughput
increase lies between 5% and 10%.”.

In this thesis, dynamic optimization is approached by using linear MPC under
the assumption of the economic optimum is at maximum throughput (Chapter 5
and 6). Since the objective function is simplified to a linear and constrained func-
tion, approaching dynamic optimization by linear MPC is suitable. In the simplest
cases, the regulatory control layer can realize throughput maximization (Chapter 3
and 4).

1.2 Thesis overview

The thesis is composed of six independent articles, five of them in the main part of
the thesis as chapters and one already published conference paper in the appendix.
Some of the chapters have their own appendices. The thesis has a common bibli-
ography. The chapters are written as independent articles, so background material
is in some cases repeated. At the end of the thesis, there is a concluding chapter.
The starting point for this research was that the optimum operating policy in
many cases is the same as maximum throughput that can be realized with a coor-
dinator MPC (Chapter 5). The location of the throughput manipulator is crucial



4 Introduction

when it comes to the required back off in the maximum throughput case. The ef-
fect the throughput manipulator location has on the required back off and its effect
on the bottleneck unit was studied next (Chapter 3). The inventory control config-
uration is (partly) derived from the placement of the throughput manipulator, and a
clear rule for a self-consistent inventory control structure was developed as it was
not reported in the open literature (Chapter 2). Another path that arose from tight
bottleneck control was the idea to include dynamic degrees of freedom (hold-up
volumes) to obtain tighter bottleneck control (Chapter 4). Finally, through my em-
ployer, StatoilHydro, I got the possibility to implement the coordinator MPC in
practice at a gas processing plant (Chapter 6). A short summary of the contents of
the thesis is given next.

In Chapter 2: Self-consistent inventory control, we define consistency and self-
consistency for an inventory control system. Consistency means that the (steady-
state) mass balances are fulfilled and self-consistency means that the mass bal-
ances in the individual units are satisfied by the local inventory loops. This leads
to the proposed self-consistency rule. The proposed rule is demonstrated on sev-
eral examples, including units in series, recycle systems and closed systems. Spe-
cific rules that deal with the inventory control system are developed from the self-
consistency rule.

In Chapter 3: Throughput maximization requires tight bottleneck control,
we derive under which conditions maximum throughput is an optimal economic
operation policy. We discuss back off in a general setting and for the special case
for maximum throughput. We consider the case with a fixed bottleneck where a
single-loop controller can realize maximum throughput. Further, the location of
the throughput manipulator is discussed, where the effective time delay from the
throughput manipulator to the bottleneck is important. The location of throughput
manipulators is illustrated through examples. Possible improvements to reduce
back off and hence increase the throughput are listed.

Chapter 4: Dynamic degrees of freedom for tighter bottleneck control, ex-
tend the ideas from Chapter 3 to include dynamic degrees of freedom to reduce
the effective delay from the throughput manipulator to the bottleneck. The control
structure single-loop with ratio control is proposed to include dynamic degrees of
freedom for cases with fixed bottleneck. A multivariable controller like MPC that
uses inventory set points as manipulated variables can also be used. Both control
structures are demonstrated with an example. The required inventory size is esti-
mated for the case with single-loop with ratio control structure.
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In Chapter 5: Coordinator MPC for maximizing plant throughput, we con-
sider the case where the bottlenecks may move, with parallel flows that give rise
to multiple bottlenecks and with crossover flows as extra degrees of freedom. We
present a coordinator MPC that solves the maximum throughput problem dynami-
cally. The plantwide control problem is decomposed by estimating the capacity to
each unit, that is, the feed rate each unit is able to receive within feasible operation.
The coordinator MPC is demonstrated with a case study.

In Chapter 6: Implementation of a coordinator MPC for maximizing through-
put at a large-scale gas plant, the industrial implementation of a coordinator
MPC (Chapter 5) at the Kérsto gas plant is described. This includes design, mod-
elling and tuning of the coordinator MPC, in addition to the plantwide decompo-
sition by the remaining capacity estimate. Experiences from implementation and
test runs are reported.

Chapter 7: Conclusions and directions for further work sums up and con-
cludes the thesis, together with proposals for further work.

Appendix A: Implementation of MPC on a deethanizer at Kirste gas plant
discusses implementation of MPC on a deethanizer column located at the Karsto
gas plant. The appendix contains basic information about MPC design, dynamic
modelling and tuning. The MPC software, SEPTIC", is described briefly. The
SEPTIC MPC tool is used in other parts of the thesis (Chapter 5 and 6) and the
Appendix is therefore included for completeness.

1.3 Main contributions

The main contributions of the thesis are:

* Plantwide decomposition by estimating the remaining capacity in each unit.
An important parameter for the maximum throughput case is the maximum
flow for the individual (local) units. This can be obtained by using the mod-
els and constraint in the local MPC applications. This decomposes the plant
significantly, leading to a much smaller plantwide control problem.

* The idea of using a “decentralized” coordinator MPC to maximize through-
put. Throughput manipulators strongly affect several units and are therefore
left as “unused” degree of freedom to be set at the plant-wide level. The
coordinator manipulates on feed rates, splits and crossover (throughput ma-
nipulators) to maximize the plant throughput subject to feasible operation.

*Statoil Estimation and Prediction Tool for Identification and Control
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The remaining capacity estimate for each unit is constraints in the coordina-
tor MPC.

* The self-consistency rule and the explanation of a self-consistent inventory
control system. Consistency is a very important property of inventory con-
trol that must be fulfilled. An experienced engineer can usually immediately
say if a proposed inventory control system is workable. However, for a stu-
dent or newcomer to the field it is not obvious, and even for an experienced
engineer there may be cases where the experience and intuition fails. There-
fore, we find the self-consistency rule useful together with the illustrative
examples.

« Single-loop with ratio control as an alternative structure to obtain tight bot-
tleneck control. With a fixed bottleneck and with a long effective delay from
the throughput manipulator to the bottleneck, tight bottleneck control can
still be obtained by using dynamic degrees of freedom. Single-loop with
ratio control use inventories upstream the bottleneck by adding bias to the
inventory controller outputs, whereas the throughput manipulator (e.g. feed
rate) controls the bottleneck flow rate. This structure makes it possible to
obtain tight bottleneck control without moving the throughput manipulator
or reconfiguring the inventory loops.

1.4 Publications

The following is a complete list of the publications written during the work con-
tained in this thesis. This includes submitted, accepted and published work.
Chapter 2

Aske, E.M.B. and Skogestad, S. Self-consistent inventory control. Ind. Eng.
Chem. Res., Submitted.

Chapter 3

Aske, E.M.B, Skogestad,S. and Strand, S. Throughput maximization by improved
bottleneck control. 8th International Symposium on Dynamics and Control of Pro-
cess Systems (DYCOPS). Vol. 1, June 6-8 2007, Cancun, Mexico. pp 63-68.

Chapter 4

Aske, E.M.B. and Skogestad, S. Dynamic degrees of freedom for tighter bottle-
neck control. Comput. Chem. Eng., Submitted.
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Aske, E.M.B. and Skogestad, S. Dynamic degrees of freedom for tighter bottle-
neck control. 10th International Symposium on Process Systems Engineering, Au-
gust 16-20, 2009, Salvador-Bahia, Brazil. Submitted.

Chapter 5

Aske, E.M.B., Strand S. and Skogestad, S. Coordinator MPC with focus on max-
imizing throughput, In: Proc. PSE-ESCAPE Symposium, (W. Marquardt and C.
Pantelides, Eds.), July 10-13 2006, Garmisch-Partenkirchen, Germany. Published
by Elsevier, ISBN 0-444-52969-1 978-0-444-52969-5, Vol. 21B, pp. 1203-1208.

Aske, E.IM.B., Strand, S. and Skogestad, S. Coordinator MPC for maximization
of plant throughput. AIChE Annual Meeting, San Francisco, USA, Nov. 2006,
Abstract and Presentation 330b.

Aske, E.M.B., Strand, S. and Skogestad,S. Coordinator MPC for maximizing plant
throughput. Comput. Chem. Eng. 32, 195-204 (2008).

Chapter 6

Aske, E.M.B., Strand, S. and Skogestad, S. Implementation of Coordinator MPC
on a Large-Scale Gas Plant. AIChE Annual Meeting, Philadelphia, USA, Nov.
2008, Abstract and Presentation 409g.

Aske, E.IM.B., Strand, S. and Skogestad, S. Industrial implementation of a co-
ordinator MPC for maximizing throughput at a large-scale gas plant. International
Symposium on Advanced Control of Chemical Processes, July 12-15, 2009, Istan-
bul, Turkey. Submitted.

Appendix A

Aske, E.M.B., Strand, S. and Skogestad, S. Implementation of MPC on a deetha-
nizer at Karsto gas plant. In: 16th IFAC World Congress, Prague, Czech Republic,
July 2005, paper We-M06-TO/2. CD-rom published by International Federation
of Automatic Control.






Chapter 2

Self-consistent inventory control

Submitted to Ind. Eng. Chem. Res.

Inventory or material balance control is an important part of process
control. A requirement is that the inventory control system is consis-
tent meaning that the steady-state mass balances (total, component and
phase) for the individual units and the overall plant are satisfied. In ad-
dition, self-consistency is a desired property, meaning that the mass bal-
ances are satisfied locally with local inventory loops only. In practice, if
a control structure is inconsistent, then at least one control valve will be-
come fully open (or in rare cases closed) and cannot attain its set point.
The main result of this paper is a self-consistency rule for evaluating the
consistency of inventory control systems.

2.1 Introduction

One of the more elusive parts of process control education is inventory or material
balance control. An engineer with some experience can usually immediately say
if a proposed inventory control system is workable. However, for a student or
newcomer to the field it is not obvious, and even for an experienced engineer there
may be cases where experience and intuition are not sufficient. The objective of
this paper is to present concise results on inventory control, relate to previous work,
tie up loose ends, and to provide some good illustrative examples. The main result
(self-consistency rule) can be regarded as obvious, but nevertheless we have not
seen it presented in this way before.

The main result is a simple rule to check whether an inventory control system is
consistent. Here, consistency means that the mass balances for the entire plant are
satisfied (Price and Georgakis, 1993). In addition, we usually want the inventory
control system to be self-consistent. Self-consistency means that, in addition to
plantwide consistency, the mass balance for each unit is satisfied by itself (locally),

9



10 Self-consistent inventory control

without the need to rely on control loops outside the unit. Consistency is a required
property, because the mass balances must be satisfied in a plant, whereas self-
consistency is a desired property of an inventory control system. In practice, an
inconsistent control structure will lead to a situation with a fully open or closed
control valve and the associated control loop cannot fulfill or attain the control set
point.

In most plants, we want the inventory control system to use simple PID con-
trollers and be part of the basic (regulatory) control layer. This is because it is
generally desirable to separate the tasks of regulatory (stabilizing) control and su-
pervisory (economic) control. From this it follows that the structure of the inven-
tory control system is usually difficult to change later.

The importance of consistency of inventory control structures is often over-
looked. Our work is partly inspired by the many examples of Kida, who has given
industrial courses in Japan on control structures for many years. In a personal
communication (Kida, 2008) he states that “most process engineers, and even aca-
demic people, do not understand the serious problem of inconsistency of plantwide
control configurations. When writing a paper, you have to clearly explain this point
and make them convinced at the very outset. Otherwise they will not listen to or
read through your detailed statements, but skip them all” .

A very good early reference on inventory control in a plantwide setting is
Buckley (1964). He states that material balance control must be in the direction
of flow downstream a given flow and opposite the direction of flow upstream a
given flow. Price and Georgakis (1993); Price et al. (1994) extended this and state
that the inventory control must “radiate” outwards from the point of a given flow
(throughput manipulator). As shown in this paper, all these statements are a con-
sequence of requiring the inventory control system to be self-consistent.

Downs (1992) provides a very good discussion of material balance control
in a plantwide control environment, with many clarifying examples. However, it
is somewhat difficult for the reader to find a general rule or method that can be
applied to new cases.

Luyben et al. (1997) propose a mainly heuristic design procedure for plant-
wide control. Luyben ef al. procedure consist of, among others, “Step 6. Control
inventories (pressures and levels) and fix a flow in every recycle loop”. Possible
limitations of this guideline are discussed in the present paper. Another guide-
line of Luyben ef al. (1997) is to “ensure that the overall component balances for
each chemical species can be satisfied either through reaction or exit streams by
accounting for the component’s composition or inventory at some point in the pro-
cess”’. As discussed later, this guideline is a bit limited because entrance (feed)
streams is not considered.

Specific guidelines for designing inventory control structures are presented by
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Georgakis and coauthors (Price and Georgakis, 1993; Price et al., 1994). They
propose a set of heuristic guidelines for inventory control design in a plantwide
environment and also discuss consistency. The authors also state the importance
of a self-consistent inventory control structure: “Self-consistency appears to be the
single most important characteristic governing the impact of the inventory control
structure on system performance”.

As already mentioned, Fujio Kida from JGC Corporation in Japan has devel-
oped a lot of teaching material (Kida, 2008) and written several papers (e.g. Kida,
2004) on inventory control. Unfortunately, the work is published in Japanese only,
but nevertheless it is clear that there are many detailed rules and some require
detailed calculations. Our objective is to derive, if possible, a single rule for evalu-
ating the consistency of inventory control system that applies to all cases and that
only requires structural information.

The organization of the paper is as follows. First, we define self-consistent in-
ventory control in Section 2.2. The main result in this paper is the self-consistency
rule presented in Section 2.3. Thereafter, the rule is used to discuss consistency of
flow networks in Section 2.4, which also discusses more specific rules that can be
derived from the general self-consistency rule. Several examples in terms of inven-
tory control are given in Section 2.5, before the paper is concluded in Section 2.6.
Note that the present paper focuses on analysis of a given control structure. The
design of the inventory control system, which in particular is related to the place-
ment of the throughput manipulator, is discussed in more detail in a separate paper
(Chapter 3).

Remark on notation: In this paper, when a flow is left unused or with a flow
controller (FC), then this indicates that this is a given flow. By the term “given
flow” we mean that the flow is nof used for inventory control but rather given by
conditions outside the inventory control system. For example, a ”given flow” can
be

—_—

. a throughput manipulator (TPM),
2. aflow that comes from another part of the plant (disturbance for our part),

3. afixed flow

4. a flow that is used for other control tasks (eg., control of composition or
temperature).

2.2 Definition of self-consistent inventory control

The dynamic mass balance for total or component mass in any unit or process
section can be written (e.g. Downs, 1992):
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Inflow + Generation - Outflow - Consumption = Change in inventory

To keep the inventory within bounds, the change in inventory must be within
bounds, and over a long time (at steady-state) the change in inventory must be
zero. Thus, there must be a balance between the In-terms (inflow + generation)
and Out-terms (outflow + consumption). However, without control this is not nec-
essarily satisfied. The main objective of the inventory control system is to “stabi-
lize” or provide “self-regulation” of all inventories such that the mass balances are
satisfied. This leads to the self-consistency rule, which is the main result in this
paper, but let us first define some terms.

Definition 2.1. Consistency. An inventory control system is said to be consistent
if the steady-state mass balances (total, components and phases) are satisfied for
any part of the process, including the individual units and the overall plant.

Remark. The use of mass balances for a phase may seem odd, and is discussed in more
detail in the next section.

Since the mass balance must be satisfied for the overall plant, it follows that a
consistent inventory control system must be “able to propagate a production rate
change throughout the process and in particular if such a change produces changes
in the flow rates of major feed and product streams” (Price and Georgakis, 1993).

Definition 2.2. Self-regulation. Self-regulation is when an acceptable variation
in the output variable is achieved without the need for additional control when
disturbances occur.

Note that the above definition of consistency allows for “long loops” (not local
loops) where, for example, the feed rate controls the inventory at the other end
of the process (as illustrated in Figure 2.4). This is often undesirable and self-
consistency is when the steady-state mass balances are satisfied also locally. More
precisely, we propose the following definition:

Definition 2.3. Self-consistency. A consistent inventory control system is said to
be self-consistent if there is local “self-regulation” of all inventories. This means
that for each unit the local inventory control loops by themselves are sufficient to
achieve steady-state mass balance consistency for that unit.

Remark 1 “Self-regulation” here refers to the response of the process with its inventory
control system in operation. If self-regulation is achieved without active control then this
is referred to as “true” self-regulation.

Remark 2 The term “/ocal inventory control loops” means that no control loops involving
manipulated variables outside the unit are needed for inventory control of the unit (see
Figure 2.4 for a system that does not satisfy this requirement).
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Remark 3 The definitions require that the “steady-state mass balances” are satisfied. We
are here referring to the desired steady-state, because an inconsistent inventory control
system may give a steady-state which is not the desired one. For example, a component
with no specified exit will eventually have to exit somewhere but this may not be a desired
operation point.

Example 2.1. Self-regulation. “Self-regulation’ may or may not require “active”
control, as mentioned in Remark 1. As an example, consider regulation of liquid
inventory (m) in a tank; see Figure 2.1(a). The outflow is given by a valve equation

Moyt = CVf(Z) V Ap P [kg/S]

where z is valve position. The pressure drop over the valve is

Ap = p1—p2+pgh

where h is the liquid level, which is proportional to the mass inventory, e.g.,
m = hpA for a tank with constant cross section area A. If the pressure drop Ap
depends mainly on the liquid level h, then the inventory m is self-regulated. This
is the case in Figure 2.1(a) where p1 = p> so Ap = pgh and the entire pressure
drop over the valve is caused by the liquid level. Thus, ty,; ~ V'h, which means
that without control a doubling of the flow m,, will result an a four times larger
liquid level (h). If this change is acceptable, then we have self-regulation. In other
cases, it may be necessary to use “active’’ control to get sufficient self-regulation
of the inventory. Specifically: In Figure 2.1(b), py — p2 = 99 bar so the relative
pressure contribution from the liquid level (pgh) is much too small to provide ac-
ceptable self-regulation. For example, for a large tank of water with h = 10 m, the
contribution from the level is only about 1 % (pgh ~ 1000 kg/m>- 10 m/s* - 10 m
= 10° N/m* = 1 bar). In this case “active” control is required, where the level
controller (LC) adjusts the valve position z, see Figure 2.1(b).

@ p1 =1 bar @ p1 =100 bar
m m

h h
p2 = E p2 -
[:§:11 bar %
(a) Self-regulation is possible without (b) “Self-regulation” requires level control.

“active” control.

Figure 2.1: Self-regulation of inventory in a tank with a given feed rate.
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2.3 Self-consistency rule

As a direct consequence (implication) of the statements in Section 2.2, we propose
the following rule to check if an inventory control system is self-consistent.

Rule 2.1. “Self-consistency rule”: Self-consistency (local “self-regulation” of all
inventories) requires that

1. The total inventory (mass) of any part of the process (unit) must be “self-
regulated” by its in- or outflows, which implies that at least one flow in or
out of any part of the process (unit) must depend on the inventory inside that
part of the process (unit).

2. For systems with several components, the inventory of each component of
any part of the process must be “self-regulated” by its in- or outflows or by
chemical reaction.

3. For systems with several phases, the inventory of each phase of any part
of the process must be “self-regulated” by its in- or outflows or by phase
transition.

Remark 1 The above requirement must be satisfied for “any part of the process”. In
practice, it is sufficient to consider the individual units plus the overall process.

Remark 2 A flow that depends on the inventory inside a part of the process, is often said
to be on “inventory control”. Inventory control usually involves a level controller (LC)
(liquid) or pressure controller (PC) (gas and in some cases liquid), but it may also be a
temperature controller (TC), composition controller (CC) or even no control (“true” self-
regulation, e.g. with a constant valve opening). Obviously, a flow controller (FC) can not
be used for inventory control because flow is not a measure of inventory.

Remark 3 Itis possible to extend the “self-regulation” rule to energy inventory, but this is
not done here. We also doubt if such an extension is very useful, because in most cases the
energy balance will maintain itself by “true” self-regulation (without control), for example
because a warmer inflow in a tank leads to a warmer outflow.

Proof of self-consistency rule.

1. A boundary (control volume) may be defined for any part of the process. Let m [kg]
denote the inventory inside the control volume and let iz, and gy [kg/s] denote
in- and outflows. Then the (total) mass balance is

d
==Y it — Ynous [ks]

If all terms are independent of the inventory m, then this is an integrating process
where m will drift out of bounds (”il—’? = ( at steady-state) when there is a disturbance
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in one of the terms (e.g. iy, Moyt ). To stabilize the inventory we must have “self-
regulation” where 7, or rig,: depends on the inventory (m2), such that m is kept
within given bounds in spite of disturbances. More precisely, iz, must decrease
when m increases or 7y, must increase when m increases, such that m is kept
within given bounds in spite of disturbances.

2. Similarly, let n4 [mol A] denote the inventory of component A inside the control
volume and let 72, ;, and 724 oy [mol A/s] denote the in- and outflows. The mass
balance for component A is

dn . .
TIA = ZnA,in - znA,out +Gy [m01 A/S]

where G4 is the net amount generated by chemical reaction. To stabilize the inven-
tory we must have “self-regulation” where 714 i, 714,0ut Or G4 depend on ny such
that n4 is kept within given bounds in spite of disturbances.

An example where the inventory n, is self-regulated because of the reaction term
G 4 is the irreversible reaction 4 + B — P, where B is in excess and A4 is the limiting
reactant. In this case, an increase in inflow of A (71,,) will be consumed by the
chemical reaction.

3. The rule for the individual phase follows by simply defining the control volume as
the parts of the process that contain a given phase P and applying the mass balance
to this control volume. Let mP [kg] denote the inventory of the given phase inside
the control volume and let m”;, and m” .y [kg/s] denote the in- and outflows. The
mass balance for a given phase is then

dm” . P . P P
7 = Zmin - zmout +G [kg/S]

where G” is the net phase transition over the phase boundary. To stabilize the

inventory we must have “self-regulation” where 7irl, il or G” depends on the

inventory (m”) such that m” is kept within given bounds in spite of disturbances.

An example where we need to consider individual phases is a flash tank where a
two-phase feed is separated into gas and liquid.

O

Example 2.2. Stream with two valves. To demonstrate the self-consistency rule
on a very simple example, consider a single stream with two valves, see Fig-
ure 2.2(a). There is only a single (small) hold-up m in this simple process (il-
lustrated by the big dot), so consistency and self-consistency are here the same.
The pressure p depends directly on the inventory m (for a liquid the dependency
is very strong; for an ideal gas it is p = m—ﬁT) Thus, self-regulation of inventory
is the same as self-regulation of pressure. To apply the self-consistency rule, we
define a control volume (dotted box) as shown in Figure 2.2 and note that the in-
flow is on flow control in all four cases, that is, the inflow is independent of the
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FC, FC,

(b) Not consistent control structure since outflow is given.

FC, PC,

v

. ; r I ;

' ' ' '

* —@—

I m I
(c) OK (consistent control structure since outflow depends on inventory m).

FC, PC,
O ®

. . >

(d) Not consistent control structure since outflow does not depend correctly on
inventory m.

Figure 2.2: Four different control structures with two valves and given inflow.
Note: For the flow controllers (FC) it does no matter whether the valve is downstream (as
shown above) or upstream of the flow measurement.
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inventory m. Thus, according to Rule 2.1, to have consistency (self-regulation),
the outflow must depend on the pressure p (inventory m) and more specifically the
outflow must increase when p increases.

Four different control structures are displayed in Figure 2.2. According to
Rule 2.1, the structure in Figure 2.2(a) is consistent since the outflow increases
when the pressure p (inventory m) increases. Thus, we have “true’ self-regulation
with no need for active control.

The control structure in Figure 2.2(b) is not consistent because the outflow is
independent on the inventory m. Even if the set points for the two flow controllers
were set equal, any error in the actual flow would lead to an imbalance, which
would lead to accumulation or depletion of mass and the inventory would not be
self-regulated.

The structure in Figure 2.2(c) is consistent because the outflow increases when
the pressure (inventory m) increases.

Finally, the control structure in Figure 2.2(d) is not consistent because the
outflow depends on the inventory m (and pressure) in the wrong (opposite) manner.
1o understand this, consider a decrease in inflow, which will lead to a decreased
pressure in the control volume. A lower differential pressure over the pressure-
controlled valve leads to a smaller flow through the valve and the pressure at the
downstream measuring point will decrease, leading the pressure controller to open
the valve. The result is a further pressure decrease in the control volume, so the
pressure controller is actually working in the wrong direction. The opening of the
pressure-controlled valve will also affect the flow-controlled valve and, depending
on the set point of the controllers, either the flow-controlled valve or the pressure-
controlled valve will move to fully open. The other pressure-controlled valve or
Sflow-controlled valve will continue to control pressure or flow. It should also be
noted that the pressure control loop is in the direction opposite fo flow, which is
not correct when the inflow is given (see further discussion in Section 2.4.1).

This is confirmed by dynamic simulations of the simple configuration in Fig-
ure 2.2(d) using the flowsheet simulator Aspen HYSYS®(see Figure 2.3):

10% increase in FC set point: The FC saturates at fully open and the PC main-
tains its set point (Figures 2.3(a) and 2.3(b)).

10% decrease in FC set point: The FC maintains its set point and the PC satu-
rates at fully open (Figures 2.3(c) and 2.3(d)).

5% increase in PC set point: The FC maintains its set point and the PC satu-
rates at fully open (Figures 2.3(e) and 2.3(f)).

5% decrease in PC set point: The FC saturates at fully open and the PC main-
tains its set point (Figures 2.3(g) and 2.3(h)).
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In all cases the system is assumed to be at steady-state initially.

A remark about the sign of the controllers: Overall, the controller and the plant
should give a negative feedback loop:

1. Flow control. Opening a valve always increases the flow (positive gain), so
a flow controller is always “reverse acting” (with a negative feedback sign).

2. Level and pressure control. The controller sign depends on the location
of the valve relative to the inventory (level or pressure). If control is in the
direction of flow (with the inventory measurement for level or pressure up-
stream the valve) then the controller must be “direct acting” (positive feed-
back sign), if control is in opposite direction of flow then it must be “reverse
acting”.

These remarks were used when deciding the controller tunings in Figure 2.3.

Example 2.3. Units in series. 1o understand the difference between the terms con-
sistency (Definition 2.1) and self-consistency (Definition 2.3), consider inventory
control of the series process in Figure 2.4. The control structure is consistent and
is able to propagate a production rate change to a change in the feed rate. How-
ever, the in- and outflows for the last unit (dashed box) do not depend directly on
the inventory inside the unit and the control volume is therefore not self-consistent
according to the “self-consistency rule”(Rule 2.1). This can also be seen because
the inventory controllers are not in the direction opposite to flow as they should
be for a self-consistent process with a given product rate (see also Section 2.4.1).
1o make the structure consistent we have in Figure 2.4 introduced a “long loop”
where the inflow to the first unit is used to control the inventory in the last unit.

Example 2.4. Phase transition. In some cases, phase transition needs to be con-
sidered for self-consistency. Consider Figure 2.5 where the inflow F is given.
Thus, according to Rule 2.1, to have consistency the outflow must depend on the
inventory in the tank.

In Figure 2.5(a), the inflow is a single phase (liquid) and the outflow from the
single-phase tank is split in two liquid streams (L1 and L;). There is one inventory,
so for self-consistency, one of the outflows must be on inventory control whereas
the other outflow can be flow controlled. This follows because the adjustable split
introduces an extra degree of freedom, but the number of inventories that need to
be controlled is unchanged.

In Figure 2.5(b) the inflow is two-phase (liquid and vapor) and there are two
inventories (liquid and vapor) that needs to be regulated. To have a consistent
inventory control structure, both the outflows (vapor and liquid) must be used for
inventory control. In Figure 2.5(b) this is illustrated by the LC (liquid inventory)
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Figure 2.3: Dynamic simulations of the simple configuration in Figure 2.2(d). Left
column: Flow controller. Right column: Pressure controller. In all cases, one of

the valves moves to fully open.
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(a) Single-phase tank: Adjustable split. (b) Two-phase tank: Split indirectly given by
inventory control.

Figure 2.5: Self-consistent inventory control of split with one and two phases.

and PC (vapor inventory). In this case, the split does not actually give an extra
degree of freedom because the split is indirectly determined by the feed quality
(fraction of vapor).

2.4 Specific rules and consistency of flow networks

In a flow network there is at least one degree of freedom, called the throughput
manipulator (TPM), which sets the network flow. More generally, a TPM is a de-
gree of freedom that affects the network flow and which is not directly or indirectly
determined by the control of the individual units, including their inventory control
(see Chapter 3). Typically, a given flow (e.g. flow controller with an adjustable
set point) is a TPM. As discussed in more detail below, the location of the TPM is
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very important. In particular, if the flow network has no splits or junctions, then for
a given placement of the TPM, there is only one self-consistent inventory control
system.

However, at splits (e.g. multiple products) or junctions (e.g. multiple feeds),
there are several possibilities. At a split or junction, a common choice is to use
the largest flow for inventory control (Luyben et al., 1997). For example, with a
given feed, the largest product stream may be used for inventory control with the
flow rates of the smaller product streams used for quality control. Similarly, with
a given production rate, the largest feed rate is often used for inventory control
and the smaller feed flows are set in ratio relative to this, with the ratio set point
possibly used for quality control.

The objective is now to apply the self-consistency rule to analyze inventory
control structures for real processes (flow networks). We consider three network
classes:

1. Units in series
2. Recycle systems

3. Closed systems

A series network may have splits, provided the flow is still in the same direc-
tion. Note that each single-phase split introduces one extra degree of freedom (the
split ratio; see Figure 2.5). A recycle system contains one or more splits that are
(partly) fed back to the system. A closed system has total recycle with no feeds or
products.

2.4.1 Units in series (“radiating rule”)

As mentioned above, if there are no splits or junctions, the location of the through-
put manipulator determines the self-consistent inventory control structure. Specif-
ically, a direct consequence of the self-consistency rule is

* Inventory control must be in direction of flow downstream the location of a
given flow (TPM).

* Inventory control must be in direction opposite to flow upstream the location
of a given flow (TPM).

More generally, we have:

Rule 2.2. Radiation rule (Price and Georgakis, 1993): A self-consistent inventory
control structure must be radiating around the location of a given flow (TPM).

These rules are further illustrated in Figure 2.6.
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(c) General case with TPM inside the plant: Radiating inventory control

Figure 2.6: Self-consistency requires a radiating inventory control around a given
flow (TPM).

2.4.2 Recycle systems

A recycle system usually has an adjustable split, which (but not always) “intro-
duces an extra degree of freedom for control of the network flow” (Kida, 2008).
On the other hand, the requirement of self-consistency imposes limitations. As an
example, consider the simple single-phase recycle example with given feed and an
adjustable split in Figure 2.7 (there is a pump or compressor in the recycle loop
which is not shown). Figures 2.7(a) and 2.7(b) have consistent inventory control
structures, because the outflows from units 1 and 2 depend on the inventory inside
each unit. In both cases one flow in the recycle loop is given (flow controlled with
an adjustable set point that may be used for other purposes than inventory control).
Note that the inventory control in the recycle loop can be either in direction of flow
(Figure 2.7(a)) or direction opposite to flow (Figure 2.7(b)), because the flow rate
can be given at any location in the recycle loop.

In Figure 2.7(c) the inventory loops for units 1 and 2 are paired opposite. This
structure is not self-consistent because the inventory of unit 2 is not “self-regulated
by its in- or outflows” and thus violates Rule 2.1. In addition, the inventory con-
trol of unit 2 requires that the other inventory loop is closed, and thus violates
Definition 2.3.

Finally, Figure 2.7(d) is obviously not consistent since both the feed rate and
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(d) Not consistent inventory control.

Figure 2.7: Inventory control of simple recycle process with given feed.
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the product rate are given. In particular, the inflow and outflow to the dotted box do
not depend on the inventory inside this part of the process, which violates Rule 2.1.

Remark. This simple example seems to prove the rule that “one flow rate somewhere in
the recycle loop should be flow controlled” (Luyben, 1993¢). This rule follows because
there is an extra degree of freedom introduced by the split, but the number of inventories
that need to be controlled are unchanged. However, first one should note that the set point
of the flow controller is a degree of freedom which may be used for other purposes, for
example , control of composition. Second, a “counter-example” is provided by the self-
consistent reactor-separator-recycle process in Figure 2.11(a). In this case, the split is not
actually an extra degree of freedom because the split is indirectly determined by the feed
composition to the separator (distillation column), as discussed in Example 2.4.

2.4.3 Closed systems

Closed systems require particular attention. It is clear from the total mass balance
that the total inventory of a closed system cannot be self-regulated since there
are no in- or out streams. Thus, our previously derived rule (Rule 2.1) does not
really apply. As an example, consider a closed system with two inventories. In
Figure 2.8(a) we attempt to control both inventories, but the two loops will “fight
each other” and will drift to a solution with either a fully open or fully closed valve.
For example, a (feasible) solution is to have zero flow in the cycle. The problem
is that the flow is not set anywhere in the loop. To get a consistent inventory
control structure, one must let one of the inventories be uncontrolled, as shown in
Figures 2.8(b) and 2.8(c). The corresponding unused degree of freedom (flow) sets
the flow rate (“load”, throughput) of the closed system.

To be able to use our self-consistency rule (Rule 2.1) for closed systems there
are two alternative “fixes”:

1. Let the total inventory be uncontrolled (not self-regulated), which is how
such systems are usually operated in practice. Typically the largest single
inventory is uncontrolled. However, the remaining inventories must be self-
regulated, as usual, to have self-consistency of the inventory control system.

2. Introduce a “dummy” stream that keeps the total inventory constant. This
corresponds to allowing for filling (charging) or emptying the system. In
practice, this stream may be a make-up stream line that refills or empties the
largest inventory, e.g. on a daily or monthly basis.

Both approaches allow for disturbances, such as leaks or supply. The inven-
tory control system can then be analyzed using the normal self-consistency rule
(Rule 2.1). Figure 2.8(a) is clearly not allowed by Fix 1 as the total inventory is
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Figure 2.8: Inventory control for closed system.
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Figure 2.9: Absorber and regenerator example: Not consistent liquid inventory
control.
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not left uncontrolled. Figure 2.8(a) is also not consistent by Fix 2, since for self-
consistency the dummy stream must be used for inventory control instead of one
of the two flows in the recycle loop.

Example 2.5. Absorber-regenerator example. In this example, the consistency
rule (Rule 2.1) is used for an individual phase (liquid), which forms a closed sys-
tem. Consider the absorber and regenerator example in Figure 2.9 (Kida, 2008)
where a component (e.g. CO») is removed from a gas by absorption. The inlet gas
flow (feed) is indirectly given because there is a pressure control in the direction
of flow at the inlet. The gas outlet flows are on pressure control in the direction
of flow and thus depend on the gas holdup in the plant. Therefore the gas-phase
inventory control is consistent. However, the liquid flows between the absorber
and regenerator make up a “closed system” (expect for minor losses). There is a
flow controller for the recycled liquid, but its set point is given by the inventory in
the regenerator, hence all inventories in the closed system are on inventory control,
which violates the rule just derived. To get a consistent inventory control structure,
we must break the level-flow cascade loop and let the inventory in the bottom of
the regenerator remain uncontrolled.
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2.4.4 Summary of specific rules

In the literature there are many rules that deal with the inventory control structure.
In addition to the radiating rule, some useful rules that can be developed from the
self-consistency rule (Rule 2.1) are:

I.

All systems must have at least one given flow (throughput manipulator).

Proof. Assume there is no throughput manipulator. Then all flows must be on
inventory control, which will not result in a unique solution. For example, zero
flow will be an allowed solution. O

Component balance rule (Downs, 1992, p. 414): Each component, whether
important or insignificant, must have its inventory controlled within each
unit operation and within the whole process. Luyben et al. (1998, p. 56)
refers to this as “Downs drill”.

Proof. This comes from the requirement of component self-consistency (Rule 2.1).
O

. A stream cannot be flow controlled more than once, that is, a structure with

two flow controllers on the same stream is not consistent.

Proof. Make a control volume with the two flow-controlled streams as in- and
outflows. Then neither the inflow nor the outflow depends on the control volume
and the inventory is not self-regulated. This is demonstrated in Figure 2.2(b). [

Price and Georgakis (1993, p.2699): If a change in the throughput manip-
ulator does not result in a change in the main feed flow, then the control
Structure is inconsistent.

Proof. This follows from the requirement of satisfying the steady-state mass bal-
ances. U

Generalized from Price and Georgakis (1993, p.2699): A self-consistent
inventory control structure must use the feed or the product (or both) for
inventory control.

Proof. This follows from the steady-state mass balance. This is also discussed in
Section 2.4.1 and a clear illustration of this statement is found in Figure 2.6. O

For closed systems: One inventory must be left uncontrolled and one flow in
the closed system must be used to set the load.
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Proof. This follows from that all systems must have at least one given flow to
be unique. To be able to set the load for a closed system, one inventory must be
uncontrolled. O

The rules are summarized by the proposed procedure for inventory control system
design in Table 2.1, which is inspired by the inventory control guidelines in Price
et al. (1994).

1

Choose the location of the throughput manipulator

2

Identify inventories that need to be controlled including:
a) Total mass

b) Components

¢) Individual phases

Identify manipulators suitable for adjusting each inventory

Design a self-consistent radiation inventory control system

that controls all the identified inventories. This means:

a) Inventory control in direction of flow downstream the throughput
manipulator

b) Inventory control in direction opposite to flow upstream the throughput
manipulator

At junctions or splits a decision has to be made on which flow to use for
inventory control. Typically, the largest flow is used, or both streams are
changed such that their ratio is held constant (often the ratio is set by

a slower outer composition loop).

Recycles require special consideration. Make a block (control volume)
around the entire section and make sure that there is self-consistency for
total mass, (individual) components and phases (if relevant).

Assign control loops for any process external flow that
remain uncontrolled. Typically, “extra” feed rates are put on ratio control
with the ratio set point being set by an outer composition loop.

Table 2.1: Proposed guidelines for design of self-consistent inventory control sys-
tem. In case of doubt consult the general self-consistency rule (Rule 2.1).

2.5 Examples

In this section we apply the self-consistency rule to some examples from the aca-
demic literature.
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2.5.1 Distillation column with DB-configuration

An example of a recycle system is a distillation column. As seen from Figure 2.10,
a distillation column has one split in the condenser (V7 splits into L and D) and one
split in the reboiler (Lp splits into B and V). In both cases one of the streams is re-
cycled to the column (L and V, respectively). The two splits introduce two degrees
of freedom and this gives rise to many possible inventory control structures (“con-
figurations™), as has been discussed widely in the literature (e.g., see Skogestad
(2007) for a summary of this discussion).

Figure 2.10 displays the DB-configuration, which uses reflux L and boilup V'
for inventory control (condenser and reboiler level control), such that the flows of
D and B remain as degrees of freedom for other purposes. The DB-configuration
has earlier been labeled “impossible”, “unacceptable” or “infeasible” by distilla-
tion experts (e.g. Perry and Chilton 1973, p.22-123; Shinskey 1984, p.154). This
inventory control system also violates Luybens rule of “fixing a flow in the recycle
loop” and it is indeed true that this inventory control system is not self-consistent.
To see this, consider the dashed box in Figure 2.10 where we note that none of
the flows in or out of the column (F, D and B) depend on the inventory inside
the column. However, an inconsistent inventory control system can usually be
made consistent by adding control loops and the DB-configuration is workable
(and consistent) provided one closes at least one extra loop, for example by using
D to control a temperature inside the column (Finco ez al., 1989; Skogestad et al.,
1990). Thus, labeling the DB-configuration as “impossible” is wrong. In sum-
mary, the DB-configuration is not self-consistent, but it can be made consistent by
adding a temperature (or composition) control loop.

Remark 1 An example of a self-consistent inventory control structure for distillation is
the common LV-configuration, where the two level loops have been interchanged such
that D and B are used for level control and L and V' remain as degrees of freedom (e.g. on
flow control). In the LV-configuration, inventory is controlled in the direction of flow, as
expected since the feed is given.

Remark 2 An additional inventory issue for distillation columns is related to the split
between light and heavy components (component inventory). One may regard the column
as a “tank” with light component in the upper part and heavy in the lower part. Thus, one is
not really free to set the split between D and B and to avoid a “drifting” composition profile
(with possible “breakthrough” of light component in the bottom or of heavy component in
the top), one must in practice close a quality (e.g., temperature or pressure) loop to achieve
component self-consistency (Skogestad, 2007). For example, for the LV-configuration one
may use the boilup V' to control a temperature inside the column. This consideration about
controlling the column profile also applies to the DB-configuration. Thus, in practice,
the DB-configuration requires closing two quality loops to maintain mass and component
balances. This means that both D and B must be used for quality control for the DB-
configuration, rather than only one (L or V') for the LV-configuration.
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Figure 2.10: Example of inconsistent inventory control at recycle process: Distil-
lation column with DB-configuration.

2.5.2 Reactor-separator-recycle example with one reactant

A common recycle example from the academic literature is the reactor-separator-
recycle system in Figure 2.11. The system has a continuous stirred-tank reactor
(CSTR) with an irreversible, isothermal, first order reaction A — B, followed by
separation (distillation) and recycle of the unreacted feed component back to the
reactor (e.g. Luyben 1993a,b; Price and Georgakis 1993; Larsson et al. 2003).
The feed (Fp) is pure reactant 4 and the component mass balances become

Component A:  Fy =k(T) x4V +B-xp4
———
~G4=Gp
Component B:  k(T) -x,4-V =B-xpp
—— —
Gp
where x is the mole fraction, V' is the reactor volume and k(7) is the reaction rate
constant. Note that B = Fy [mol/s] at steady-state. Component 4 enters the process
in the feed stream and its consumption in the reactor increases with the amount of
A. The inventory of component 4 is therefore expected to be self-regulated by the
reaction. Component B is produced in the reactor (Gp) and exits the process in
stream B. Component B is not self-regulated by the reaction (because the reaction
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(b) Composition control of reactor composition: Not consistent for component 4.

Figure 2.11: Reactor-separator-recycle process with one reactant (A).
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rate is independent of the amount of B) and thus requires a controller to adjust its
inventory.

Two different control structures for the reactor-separator-recycle process are
displayed in Figure 2.11. Both have given feed (Fp) and inventory control is the
direction of flow. Thus, both of them are self-consistent in total mass, because the
outflow B from the process depends on the inventory inside the process (indicated
by the dashed control volume) (Rule 2.1). Since the outflow B mainly consists of
component B, this implies that both structures are also consistent (self-regulated)
with respect to the inventory of component B. The difference between the two
structures is related to the control of component 4. The “conventional” structure
in Figure 2.11(a) uses the LV-configuration for the distillation column where the
reflux (L) controls the composition in the recycle (distillate) D. The structure in
Figure 2.11(b) uses the DV-configuration for the column where the reactor com-
position x,. 4 1s controlled instead of the recycle (distillate) composition.

As already mentioned, the inventory of component 4 is expected to be self-
regulated by the reaction 4 — B, so one would expect both structures to be con-
sistent with respect to component A. In fact, both structures would be consistent
if one removed the composition loop in the recycle loop (thus, setting reflux L
in Figure 2.11(a) and setting recycle D in Figure 2.11(b)). With the composi-
tion loop closed, the “conventional” structure in Figure 2.11(a) remains consis-
tent, but not the structure with control of reactor composition in Figure 2.11(b).
The reason for the inconsistency is that control of reactor composition elimi-
nated the self-regulation by reaction: The amount of 4 that reacts is given by
—Gy = Gg = k(T )x,4V and with given x, 4 (because of the controller), 7 and V
there is no self-regulation. The inconsistency of this control structure is pointed
out by e.g. Downs (1992) and Luyben (1994).

Remark 1 The control structures in Figure 2.11 would both be self-consistent without
closing the composition loop (CC) in the recycle part of the process, that is, with (a) L
given or (b) D given. The reason for closing these composition loops is therefore not for
consistent inventory control but rather for other (economic) reasons (Larsson et al., 2003).
The interesting point to note, is that cosing an extra loop can in some cases make the
system inconsistent (Figure 2.11(b)).

Remark 2 Luyben (1994) has proposed to make the system in Figure 2.11(b) consistent
by introducing an adjustable reactor volume, but this is not a good solution, because we
always want to use the maximum reactor volume for economic reasons (energy saving)
(Larsson et al., 2003).

Remark 3 The inventory of component 4 is expected to be self-regulated by the reaction
A — B. More precisely, the amount that reacts is —G4 = kx,.4J" and the composition x,. 4
will “self-regulate” such that at steady-state Fy ~ —Gy, that is, x,4 =~ Fy/(kV).
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Remark 4 We already noted that setting x,.4 (Figure 2.11(b)) breaks this self-regulation
and makes the system inconsistent. A related problem is when the reactor volume V" is too
small relative to the feed Fp, such that the required x,. 4 exceeds 1, which is impossible.
In practice, if we increase the feed rate Fp and approach this situation, we will experience
“snow-balling” (Luyben, 1993c) where the recycle D becomes very large, and also the
boilup V' becomes very large. Eventually, /' may reach its maximum value, and we loose
composition control and we will get “break-through” of 4 in the bottom product. Snow-
balling is therefore a result of a too small reactor.

Remark 5 Consider the same process (Figure 2.11), but assume that the fresh feed (Fp)
contains an inert component / in addition to the reactant 4. If / is more volatile than
component B, then component / will be recycled back to the reactor and will accumulate
in the process. None of the inventory control systems in Figure 2.11 are consistent for the
inert /.To make the system self-consistent for the inert, a purge stream must be introduced
where part of stream D is taken out as a by-product.

2.5.3 Reactor-separator-recycle process with two reactants

Another well studied recycle example is a reactor-separator-recycle process where
two reactants 4 and B reacts according to the reaction 4 + B — C (e.g. Tyreus and
Luyben, 1993). Component B is the limiting reactant as the recycle D contains
mostly component 4. Two different control structures are displayed in Figure 2.12.
In both cases the distillate flow D (recycle of A) is used to control the condenser
level (main inventory of A4).

In Figure 2.12(a), both fresh reactant feeds (Fy and Fp) are flow controlled
into the reactor, where reactant 4 is set in ratio to reactant B such that Fy/Fp = 1.
This control strategy is not consistent because the two feeds is not independent and
one of them needs to be dependent of the inventory inside since it is not possible
to feed exactly the stoichiometric ratio of the two reactants (Luyben et al., 1998,
p.37). Any imbalance will over time lead to a situation where the recycle of 4
either goes towards zero or towards infinity.

To get a consistent inventory control structure, the first requirement is that
one of the feed rates (F or Fp) must be dependent on what happens inside the
process, such that we at steady-state can achieve F4 = Fp. One solution is to set Fp
(the limiting reactant) and adjust Fs such that the desired excess of 4 is achieved,
resulting in the self-consistent control structure in Figure 2.12(b). Here F; depends
on the inventory of 4 as reflected by the recycle flow D by keeping the reactor feed
ratio (4 + D)/Fp constant at a given value (larger than 1 to make B the limiting
reactant). The structure is consistent for all components: C has an outlet in the
bottom of the column; B is self-regulated by reaction because it it the limiting
reactant, and the feed of 4 depends on the inventory of 4.

There exist also other consistent inventory control structures, e.g. see Luyben
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(b) Self-consistent structure where feed of reactant 4 depends on inventory of 4 (as
reflected by D)

Figure 2.12: Reactor-recycle system with two reactants (4 + B).



2.6. Conclusion 35

et al. (1998, Figure 2.11(b)), but these seem to be more complicated than the one
proposed in Figure 2.12(b). For example, one could keep the recycle D constant
and use F; to control the condenser level (main inventory of 4), but the dynamics
for this “long level” loop are not favorable and this consistent structure is not self-
consistent.

2.6 Conclusion

Consistency is a required property since the mass balances must be satisfied for
the individual units and the overall plant. An inventory control system can be
evaluated whether it is self-consistent (local “self-regulation” of all inventories)
by using the self-consistency rule (Rule 2.1). The self-consistency rule follows
from the mass balance that must be satisfied for the total mass, component and
individual phases.

A direct consequence of the self-consistency rule is the “radiation rule” (Price
and Georgakis, 1993), which states that the inventory control structure must be
radiating around the location of a given flow. Other useful rules that can be devel-
oped from the self-consistency rule, is that all system must have at least one given
flow (throughput manipulator). Thus, for closed systems, one inventory (prefer-
able the largest) must be left uncontrolled.

Luyben provides the rule to “fix a flow in each recycle”. If we interpret the
term “fix a flow” to mean “do not use a flow for inventory control”, then this
rule follows from the requirement of self-consistency provided the recycle loop
contains a split that introduced an extra degree of freedom (see Section 2.4.2). If
no degree of freedom is introduced by the recycle, as is in the case if we have a
separator or flash where the split is (indirectly) given by the feed properties, then
this rule is not a requirement, e.g. see Figure 2.11(a), where all the flows in the
recycle loop are on inventory control.






Chapter 3

Throughput maximization
requires tight bottleneck control

Based on paper presented at
8th International Symposium on Dynamics and Control of Process Systems
(DYCOPS) 2007, June 6-8, Cancun, Mexico

With sufficiently high product prices and the feed is available, it is shown
that maximum throughput is an optimal economic operation policy. This
paper discusses the maximum throughput case, which is characterized
by the existence of a bottleneck and the need for back off from active
constraints to ensure feasibility. To implement maximum throughput,
maximum flow in the bottleneck(s) must be realized. Obtaining tight
bottleneck control in practice requires that the throughput manipulator is
located close to the bottleneck (short effective delay). If the throughput
manipulator is located close enough compared to the disturbance time
constant, automatic control can reduce the back off significantly. Poor
control of the bottleneck, including any deviation or back off, implies a
reduction in throughput and an unrecoverable economic loss.

3.1 Introduction

In general, real-time optimization (RTO) based on a detailed process model may
be used to find the optimal operation conditions of a plant, including identifying
the optimal active constraints and computing the optimal set point for the uncon-
strained variables. However, in many cases, prices and market conditions are such
that optimal operation is the same as maximizing plant throughput. Hence, the
problem formulation can be simplified, and RTO based on a detailed nonlinear
process model is not needed.

37
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Maximum throughput in a network is a common problem in several settings
(e.g. Phillips et al., 1976; Ahuja et al., 1993). From network theory, the max-
flow min-cut theorem states that the maximum throughput in a plant (network) is
limited by the ”bottleneck” of the network. In order to maximize the throughput,
the flow through the bottleneck should be at its maximum flow. In particular, if
the actual flow at the bottleneck is not at its maximum at any given time, then this
gives a loss in production which can never be recovered (sometimes referred to as
a "’lost opportunity”).

To implement maximum throughput there are three important issues: 1) locate
the bottleneck unit(s), 2) implement maximum throughput in the bottleneck unit
and 3) minimize the back off from active constraints in the bottleneck unit. To
locate the bottleneck in the first place, there are several opportunities. The most
common is simply to increase the flow rate during operation (online) until feasible
operation is no longer possible. Alternatively, the location can be estimated using
a commercial flowsheet simulator or plant data. Litzen and Bravo (1999) discuss
how to estimate the capacity for process units and find the bottleneck(s) for debot-
tlenecking (design) purposes (steady-state). A third approach is to use the models
that are implemented in the model predictive controllers (MPC) to estimate the
available capacity for each unit on-line (dynamically) (Aske et al., 2008).

Maximizing throughput requires manipulation of the throughput manipulator
(TPM). This is usually the feed rate (Price et al., 1994), but it can more generally
be anywhere in the plant. Usually the location of the TPM is determined by the
original design of the control system for the plant, and cannot be easily changed be-
cause it requires reconfiguration of the inventory loops to ensure a self-consistent
inventory control system (Chapter 2). If one is free to place the TPM(s), then two
considerations may come into account. First, one must consider its effect on the
inventory control structure, including propagation of disturbances, dynamic lags,
process time constants and interactions (Luyben, 1999). A second consideration,
which is based on economics, is to locate the TPM such that tight control of the
bottleneck unit is possible. Skogestad (2004) propose to set the production rate at
the bottleneck.

Price and coauthors (Price and Georgakis, 1993; Price et al., 1994) propose
a plantwide design structure using a tiered framework with throughput, inventory
and product quality controls. They discuss the importance of proper selection of
the TPM and their general recommendation is to select an internal process flow
as the TPM because: 1) "they impede the propagation of disturbances through the
system” and 2) “internal flows have a substantial chance of more rapidly affecting
a throughput change”. On the other hand, Cheng et al. (2002) claim the opposite;
the TPM should be a feed or product flow, and internal flows should be avoided
from a dynamic interaction point of view. Price ef al. (1994) also mentioned on
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TPM location that “some plants have a single processing unit which is markedly
more difficult to control than the others. Selecting a flow very close to that unit
as the throughput manipulator will help minimize or control the variation affect-
ing the unit and so should make it easier to control.”” Moore and Percell (1995)
evaluated control alternatives by simulation on a three-unit module and concluded
that “the plant is capable of the highest production rate with the widest variation
in feed composition when the production rate is set at the column feed, which is
immediately before the process bottleneck”. However, there are no attempts try-
ing to explain the results from the simulation study. Luyben et al. (1997) propose
a heuristic design procedure for plantwide control. In the procedure, the authors
recommend locating the TPM so it provides a smooth and stable production rate
transitions and reject disturbances. However, all these approaches lack an eco-
nomic evaluation of the TPM selection; whereas Larsson and Skogestad (2000)
point out that the economics is a key factor for the placement of the TPM. They
suggest that for a plant running at maximum capacity, the production rate should
be set at the bottleneck, which is usually inside the plant.

From a literature search and based on our own industrial experience, it seems
like the feed valves (or more general the throughput manipulator) is very rarely
used in practice for closed-loop control, in spite of its great importance on the
plant economics in cases where maximum throughput is optimal. The reason is
probably the large effect the feed rate has on the operation of the entire plant, but
the result may be a loss in economic performance. The main goal of this paper is to
discuss the importance of using the throughput (often the feed rate) for closed-loop
control.

When operating at maximum throughput, the plant is at the limit to infeasibil-
ity. For this reason, a “safety factor” or “back oft” is required to achieve feasible
operation under presence of disturbances, uncertainties, measurement error and
other sources for imperfect control (Narraway and Perkins, 1993; Govatsmark and
Skogestad, 2005). More precisely, the back off is the distance between the active
constraint and the actual average value (set point). The necessary back off can gen-
erally be reduced by improving the control of the bottleneck unit, for example, by
retuning the control system to reduce the dynamic variation. The idea is that im-
proved control requires a smaller back off or, in short, “squeeze and shift” (squeeze
the variance - and shift the set point closer to the constraints) (e.g. Richalet ez al.,
1978; Richalet, 2007).

This paper addresses the maximized throughput case, and starts by considering
the case under which considerations this is optimal (Section 3.2). In Section 3.3,
back off is defined and reasons for why back off is needed together with its influ-
ence on the economics is discussed. The location of the throughput manipulator
is discussed in Section 3.4, whereas in Section 3.5 the characteristics of maximum
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throughput are treated. By using controllability analysis, an estimate of minimum
back off is given in Section 3.6 with a more detail description is given in Ap-
pendix 3.A. In Section 3.7 we discuss actions to reduce back off, followed by a
discussion in Section 3.8 before we conclude in Section 3.9.

3.2 Optimal operation (steady-state)

In this section, we discuss under which considerations, maximum throughput is
economically optimal.

3.2.1 Modes of optimal operation

Mathematically, steady-state optimal operation is to minimize the cost J (or maxi-
mize the profit -J), subject to satisfying given specifications and model equations
(f = 0) and given operational constraints (g < 0):

min J(x,u,d)

s. t. f(x,u,d) =0 (3.1)
glx,u,d) <0

Here are u the degrees of freedom (manipulated variables including the feed rates
F)), d the disturbances and x the (dependent) state variables.
A typical profit function is

-J =Y. pp,-Pj— 2. prFi— Y, po, - Ok (3.2)
j i k

where P; are product flows, £; the feed flows, O, are utility duties (heating, cooling,
power), and p (with subscript) denote the prices of the corresponding flow and
utility. Let ' be a measure of the throughput in the plant. Depending on market
conditions, a process has two main modes in terms of optimal operation:

Mode 1. Given throughput (F' given). The economic optimum is then usually the
same as optimal efficiency, that is, to minimize utility (energy) consumption for the
given throughput.

This mode of operation typically occurs when the feed rate is given (or limited) or
the product rate is given (or limited, for example, by market conditions), and the
optimization problem (3.1) is modified by adding a set of constraints on the feed
rate, F; = Fj.

Mode 2. Feed is available and the throughput F is a degree of freedom. We here
have two cases:



3.2. Optimal operation (steady-state) 41

(a) Maximum throughput. This mode of operation, which is the main focus
of this paper, occurs when product prizes are sufficiently high and feed is
available. We then have that the cost can be written J = - pF’ where p > 0
(see (3.6) below). Optimal economic operation then corresponds to max-
imizing the throughput F, subject to achieving feasible operation and this
does not depend on cost data. The optimum is constrained with respect to
the throughput, and we have d.J/dF; < 0 where the feed rates F; are degrees
of freedom.

(b) Optimized throughput. This mode of operation occurs when feed is avail-
able, but it is not optimal to go all the way to maximum throughput be-
cause the efficiency drops as the throughput increases. For example, in-
creased throughput may be possible by increasing the purge rate, but this
result in less efficient operation because of loss of valuable components.
The optimum is unconstrained with respect to the feed rates F; and we have
dJ/dF; = 0. Thus, increasing F; above its optimal value is feasible, but gives
a higher cost J.

3.2.2 Maximum throughput (Mode 2a)

We here want to show that when product prices are high compared to feed and
utility costs, optimal operation of the plant is the same as maximizing throughput
(Mode 2a). Let F' be a measure of the throughput in the plant, and assume that all
feed flows are set in proportion to F,

F; = kp,;F (3.3)

Then, under the assumption of constant efficiency in all units (independent of
throughput) and assuming that all intensive (property) variables are constant, all
extensive variables (flows and heat duties) in the plant will scale with the through-
put F' (e.g. Skogestad, 1991). In particular, we have that

Pi=kpiF' Ok = kol (3.4)

where the gains kp; and kg are constants. Note from (3.4) that the gains may be
obtained from nominal (denoted 0) mass balance data:

kpj = Pjo/Fo kri = Fio/Fo kox = Oro/Fo (3.5)

Substituting (3.3) and (3.4) into (3.2) gives

(-J) = (prj kpj— Y prkri— Y o, ~kQ7k> F =pF (3.6)
J i k
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where p is the operational profit per unit of feed F' processed. From the above
derivation, p is a constant for the case with constant efficiencies. We assume p > 0
such that we have a meaningful case where the products are worth more than the
feed stocks and utilities. Then, from (3.6) it is clear that maximizing the profit
(-J) is equivalent to maximizing the (plant) throughput . However, F' cannot go
to infinity, because the operational constraints (g < 0) related to achieving feasible
operation (indirectly) impose a maximum value for F.

In practice, the gains kp;, kr,; and ko are not constant, because the efficiency
of the plant changes. Usually, operation becomes less efficient and p in (3.6) de-
creases when F increases. Nevertheless, as long as p remains positive, we have that
d(-J)/dF = p > 0 is nonzero, and we have a constrained optimum with respect
to the throughput F'. From (3.6) we see that p will remain positive if the product
prices pp; are sufficiently high compared to the prices of feeds and utilities.

If the efficiency drops, for example because ko increases and kp; decreases
when the feed rate is increased, then p in (3.6) may become negative. Then there
is no bottleneck and Mode 2b (optimized throughput) is optimal. This mode of op-
eration is common for recycle systems. For example, this applies to the ammonia
synthesis problem (Araujo and Skogestad, 2008).

3.3 Back off

Back off is a general concept that applies to operation close to any “hard” output
constraint (not only to bottleneck operation). In this section we present a general
discussion of back off.

Arkun and Stephanopoulos (1980) discussed moving away from the nominal
optimal operation point to ensure feasible operation when there are disturbances.
Narraway and Perkins (1993) discussed this in more detail and introduced the term
“back off” to describe the distance from the active constraint that is required to
accommodate the effects of disturbances.

3.3.1 Definition of back off

We use the following definition of back off (also see Figure 3.1):

Definition 3.1. Back off. The (chosen) back off is the distance between the (op-
timal) active constraint value (Vconstrain) and its set point (ys) (actual steady-state
operation point),

Back off = b = ’yconstraint —J/s\, (3.7)

which is needed to obtain feasible operation in spite of:
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YVconstraint

Vs

Back off

time
Figure 3.1: Illustration of back off, b = |yeonstraint — Vs |

1. Dynamic variations in the variable y caused by imperfect control (due to
disturbances, model errors, effective delays and other sources of imperfect
control).

2. Measurement errors.

Remark 1 Here we assume integral action, such that on average y, = y where

1 T
y= lim

— t)dt
pim o ) ()

In this case, only the steady-state measurement error (bias) is of importance, and not its
dynamic variation (noise).

Remark 2 Back off was defined by Govatsmark and Skogestad (2005, eq. 20) as the
difference between the actual set points and some reference values for the set points:

b= Cs — Csref
where ¢y is the actual set point and ¢y .y is some reference value for the set point which

depends on the method for set point computation (e.g. nominal, robust, on-line feasibility
correction). Definition 3.1 coincides with their definition.

3.3.2 Required back off

Back off is needed to avoid constraints violation, and the required back off b de-
pends on whether the active constrained variable y is an input or an output.
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Output constraints

Generally, back off is always required for output constraints. Let us first distin-
guish between two constraint types:

* Hard constraint: Constraint cannot be violated at any time.

* Steady-state (average) constraint: Constraint must be satisfied at steady-
state average, but dynamic violation is acceptable.

Safety constraints, like pressure and temperature limitations, are usually hard con-
straints. An example of a steady-state constraint is the composition of the overhead
product from a distillation column which goes to a storage tank where mixing takes
place. Another example may be emissions from a plant which often are in terms
of hourly or daily averages.

For a steady-state (average) constraint, integral action is sufficient to ensure
that ¥ = Veonstraint = Vs (on average) and no back off is required for dynamic vari-
ations caused by imperfect control. However, back off is required to account for
possible steady-state measurement errors (bias).

In summary, we have:

* Hard output constraints: Required back off is sum of expected dynamic
variation and steady-state measurement error (bias).

» Steady-state (average) output constraint: Required back off is equal to
the steady-state measurement error (bias).

Note that there in addition may be maximum limits (hard constraints) on the al-
lowed dynamic variation even for steady-state (average) constraints.

If no constraint violation is allowed, then the worst-case variation gives the
required back off b together with the measurement error. However, in many cases
a small constraint violation for a short-time is acceptable and therefore the worst-
case variation may be too strict to determine the required back off. In practice,
for stochastic signals, one needs to specify an acceptable likelihood for constraint
violations. For example, the likelihood is 99.7% that the signal variation remains
within £3 times standard deviation (o), or 95% that the variations are within +
20 (for normal distribution). In this paper, we consider the worst-case variation
and do not include probability for constraint violation.

Input constraints

Inputs have no associated control error. However, for cases where the input con-
straint does not correspond to a physical (hard) constraint, we must introduce back
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off to guard against steady-state measurements errors. For example, there may be
a constraint on the allowed flow that goes to the effluent.

For hard input constraint, there is normally no need to introduce back off, be-
cause we may simply set the input at its constrained value (it cannot be violated
even if we want to). There is one exception and this is when the input variable is
optimally saturated and is used for (dynamic) control. For example, the cooling
rate to a reactor, which optimally should be at maximum, may be needed to stabi-
lize the reactor if the desired operating point is unstable. In other cases, the input
may be needed for dynamic control to obtain tight control of an important output
variable.

In summary, we have:

* Hard input constraint: No back off is normally required.

» Steady-state (average) input constraint: Required back off is equal to the
steady-state measurement error (bias).

3.3.3 Reducing effect of back off on economics

Any back off from an active constraint will results in an economic loss and should
be as small as possible. There are in principle two ways of reducing the economic
penalty caused by back off:

1. “Squeeze and shift” (e.g. Richalet, 2007): By improved control one can
reduce (“squeeze”) the variation and “shift” the set point towards the con-
straint to reduce back off. Also improved measurements that reduces the
measurements variation will reduce the required back off.

2. “Move variation to variables where the economic loss is small”: In many
cases one can reconfigure the control system (single-loop control) or change
the control weights (multivariable control) to obtain tighter control of eco-
nomically important variables. In practice, this means:

(a) Move variation to variables without hard constraints

(b) Move variation to variables where a back off has a small economic
effect. For example, this may be quantified by the Lagrange multiplier
(shadow prices) (e.g. Edgar et al., 2001).

Mathematically, for a constrained optimization problem, the economic loss
caused by back off from an active constraint is represented by the Lagrange multi-
plier A
a(-J")

dc

Loss =

Ac=A-b (3.8)
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where -J* 1s the optimal value of the profit, c is the active constraint variable with
back off b = Ac, and A is the Lagrange multiplier.

At the end, selecting the back off is a trade-off between the improved profit
resulting from a small back off and the cost of reducing the back off (e.g. by
improved measurements or improved control).

3.4 Throughput manipulator

In this section, we discuss and define the term throughput manipulator. The struc-
ture of the inventory control system depends mainly on where in the process
the throughput manipulator, see Figure 3.2 (Buckley, 1964; Price and Georgakis,
1993):

1. Feed as TPM (given feed): inventory control system in the direction of flow
(conventional approach).

2. Product as TPM (”on-demand”): inventory control system opposite to
flow.

3. TPM inside plant (general case): radiating inventory control.

These rules follow from the requirement of a self-consistent inventory control sys-
tem, as discussed in detail in Chapter 2.

In terms of location of the TPM, Scheme 1 (Figure 3.2(a)) is the natural choice
for Mode 1 with given feed rate, Scheme 2 (Figure 3.2(b)) is the natural choice
for Mode 1 with given product rate, whereas Scheme 3 (Figure 3.2(c)) is usually
the best choice for Modes 2a and 2b (feed rate is degree of freedom) where the
optimal throughput is determined by some conditions internally in the plant.

In the above discussion, we have used the term “throughput manipulator”
(TPM) without defining it. The term was introduced by Price and Georgakis
(1993), but they did not give a clear definition. From the discussions of Price and
coauthors (Price and Georgakis, 1993; Price ef al., 1994) on throughput manipu-
lator, it is implicitly understood that a plant has only one throughput manipulator,
which is related to the main feed stream. This 1s reasonable in most cases, because
if a plant has several feeds, then these are usually set in proportion to each other,
for example, based on the reaction stoichiometric. This was also used in (3.3)
and (3.4), were we assumed that all flows and utilities are set in proportion to the
throughput F'.

However, there are cases that are not quite as simple. First, some plants may
have several similar or alternative feeds that do not need to be set in proportion to
each other. Thus, fixing one feed rate does not indirectly determine the value of
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(c) Scheme 3: Throughput manipulator inside plant, radiating inventory control

Figure 3.2: Basic schemes for inventory control. IC stands for inventory control
and are typically a level controller (liquid) or a pressure controller (gas).

the others. Second, plants with parallel trains must have at least one TPM for each
train. There may also be parallel trains inside the process, and the corresponding
split may be viewed as a throughput manipulator. In addition, plants with parallel
trains may have crossover flows, which also affect the throughput and may be
viewed as throughput manipulators. To account for this, we propose the following
general definition:

Definition 3.2. Throughput manipulator (TPM). A throughput manipulator is
a degree of freedom that affects the network flows (normally including feed and
product flows), and which is not indirectly determined by other process require-
ments.

Thus, a TPM is an “extra” degree of freedom, which is not needed for the
control of individual units, but that can be used to set or optimize the network
flows. Splits and crossovers can be viewed as throughput manipulators but they do
not necessarily affect both the feed and the product flows. For example, if there is
a split and the parallel processes are combined further downstream, the split factor
will affect neither the feed nor the product flow. In Definition 3.2, “other process
requirements” are often related to satisfying the component material balances, as
discussed in the following examples.
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Example 3.1. Consider a process with two feeds, Fy of pure component A and
Fp of pure component B, where the reaction A+ B — P (product) takes place.
Normally, in order to avoid losses, the feeds should be stoichiometric. Thus, we
need Fy = Fp at steady-state, which indirectly removes one degree of freedom, so
the process has only one TPM.

Example 3.2. Consider the same process as in Example 3.1 with three feeds Fy,
Fp and F,p, where the latter consist of a mixture of A and B. The stoichiometry
imposes one constraint, but otherwise the optimal ratio between these feeds is
determined by plantwide economic arguments, and not by process requirements.
Thus, according to Definition 3.2, this process has two TPMs. For example, the
TPMs could be F4 and F4p, with Fg adjusted to satisfy the stoichiometry.

Example 3.3. Consider a process with two feeds, F4 with pure component A and
F4; with A plus some inert 1. The reaction A — P (product) takes place. This
process has two TPMs because the (optimal) amount of the two feeds is determined
by plantwide consideration.

Example 3.4. Consider a process with two feeds, Fy contains pure A and Fp
contains pure B. The reactions A — P+ X and B — P+ Y take place, where P
is the main product, and X and Y are byproducts. This process has two TPMs,
because the ratio Fy/Fg is not given by other process requirements.

In summary, we see from these examples that even quite simple processes can
have more than one TPM. In addition to these examples, we have the more obvious
cases of multiple TPMs, such as a process with parallel trains and crossovers.

3.5 Characteristics of the maximum throughput case

We have shown that maximum throughput is often the economically optimal mode
of operation. In this section, we want to identify the main characteristics of the
maximum throughput case.

3.5.1 Bottleneck

The max-flow min-cut theorem (Ford and Fulkerson, 1962, p.11) from linear net-
work theory states that: “for any network the maximal flow value from source to
sink is equal to the minimal cut capacity of all cuts separating source and sink™. In
simple terms, the theorem states that the maximum flow in a network is dictated by
its bottleneck. To study bottlenecks in more detail, we need to define some terms.
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Definition 3.3. Maximum flow (capacity) of a unit. The maximum flow (capacity)
of a unit is the maximum feed rate the unit can accept subject to achieving feasible
operation.

Mathematically, this corresponds to solving the maximum flow problem (3.1)
with (-J) = Fiax,i» Where Finay ; is the maximum feed for the unit i and u; are the
degrees of freedom for unit i. This means to find the maximum value of Fy,y ; that
satisfies the constraints f; = 0 and g; < 0 for the unit.

Definition 3.4. Maximum throughput of a plant. Let the throughput F be the
(weighted) sum of all the feed flows. The maximum throughput Fy.x of a plant
is the maximum network flow that a plant accept subject to achieving feasible
operation.

In the optimization problem, implied by Definition 3.4, all degrees of freedom
(all F;’s) should be used to maximize the throughput, subject to achieving feasible
operation (satisfying the constraints).

Definition 3.5. Bottleneck. A unit is a bottleneck if maximum throughput (maxi-

mum network flow for the system) is obtained by operating this unit at maximum
flow (see Definition 3.3).

Definition 3.6. Bottleneck constraints. The active constraints in the bottleneck
unit are called the bottleneck constraints.

The term “unit” in Definitions 3.5 and 3.6 needs some attention. For a simple
process, where the process units are in series, a “unit” is the same as a single pro-
cess unit. However, for integrated processes, one may need to consider a combined
system of integrated units as a ’unit”. For example, for a chemical reactor with re-
cycle, the combined “unit” may be the system of units consisting of the reactor,
separator and recycle unit (e.g. compressor or pump). This is because the maxi-
mum flow to the combined system is not necessarily determined by the maximum
flow in an individual unit. For example, if the chemical reactor is too small such
that the conversion is too small (and thus in practice is a bottleneck); then this will
result in increased recycle of unconverted reactant (also known as the “snowball
effect”), which eventually will overload the separator, the compressor or pump.
Thus, it will appear that one of these units is the bottleneck, whereas it is really the
entire reactor system, and the reactor in particular, which is the problem in terms
of capacity.

In Definition 3.5, note that if a flow inside a unit is at its maximum, this does
not necessarily mean that the unit is a bottleneck. The unit is only a bottleneck if it
operates at maximum feed rate according to Definition 3.3. For example, the heat
flow in a distillation column (the unit) may optimally be at its maximum, because



50 Throughput maximization requires tight bottleneck control

overpurification of the “cheap” product is optimal in order to recover more of the
valuable product. This does not mean that the column is a bottleneck, because it is
possible, by reducing the overpurification, to increase the feed rate to the column.
Only when all degrees of freedom are used to satisfy active constraints, do we have
a bottleneck.

Note that in Definition 3.6, the active constraints in a bottleneck unit do not
need to be flows or even extensive variables. For example, for the distillation col-
umn just mentioned, as the feed rate is increased, one will eventually reach the
purity constraint on the ’cheap” product, and if there are no remaining uncon-
strained degrees of freedom, the distillation column becomes the bottleneck unit.
The active purity constraints on the products together with the maximum heat flow
constraint then comprise the “bottleneck constraints”.

3.5.2 Back off

Back off is generally required to guarantee feasibility when operating at active
constraints (except for hard input constraints), as discussed in Section 3.3. We here
discuss the implication of this. As we reach the bottleneck (and encounter a new
active constraint), the throughput manipulator (e.g. feed rate) is the only remaining
unconstrained input. To operate at the bottleneck, the throughput manipulator must
be used as a degree of freedom to control this new active constraint. Based on the
discussion in Section 3.3, we have the following cases:

1. The new bottleneck constraint is an output variable. The result in terms of
control is “obvious”: the TPM controls this output at the active constraint
(with back off included).

2. The new bottleneck constraint is an input constraint. Here we have two
cases:

(a) The input variable is not used for control. Then the input is simply set
at its constraint (no back off for hard input constraints).

(b) The input variable is already used for control of a constrained output
variable. There are two possibilities, depending on which back off is
most costly:

1. The TPM takes over the lost task. However, we usually have to
increase the back off on this output, because of poorer dynamic
control, since the TPM is generally located farther away from the
output constraint than the saturated input.

il. Alternatively, we can let the original loop be unchanged, but we
must then introduce an additional a back off on the input to en-
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counter for dynamic variations. The TPM is then used to keep the
input in desired operation range.

3.5.3 Summary of characteristics of maximum throughput case

From the discussion above we derive the following useful insights (rules) for the
TPM in the maximum throughput case (Mode 2a):

Rule 3.1. All plants have at least one throughput manipulator and at maximum
throughput the network must have at least one bottleneck unit.

Rule 3.2. Additional independent feeds and flows splits may give additional TP Ms
(see Definition 3.2) and additional bottlenecks. The idea of "minimal cut” from
network theory may be used to identify the location of the corresponding bottleneck
Units.

Further, for tight control of the bottleneck unit and to minimize loss the fol-
lowing insights (rules) are stated for the maximum throughput case:

Rule 3.3. The throughput manipulator(s) (TPM) is the steady-state degree of free-
dom for control of the bottleneck unit(s). Typically, the TPM is used to control one
of the bottleneck constraints (Definition 3.6). The TPM should therefore be located
so that controllability of the bottleneck unit is good (Skogestad, 2004).

Rule 3.4. Bottleneck unit: focus on tight control on the bottleneck constraint with
the most costly back off in terms of loss in throughput.

The last rule follows because any deviation from optimal operation in the bot-
tleneck unit due to poor control (including any deviation or back off from the
bottleneck constraints) implies a loss in throughput which can never be recovered
(Section 3.3.3).

3.5.4 Moving bottlenecks

In the simplest maximum throughput case, the bottleneck is fixed and known and
we can use single-loop control (Skogestad, 2004), where the TPM controls the
constraint variable in the bottleneck unit.

If the bottleneck moves in the plant, then single-loop control requires reas-
signment of loops. Reassignment will involve the loop from TPM to the bottle-
neck (Rule 3.3), as well as the inventory loops needed to ensure self-consistency
in the plant (Chapter 2). In addition, the moving bottleneck(s) itself needs to be
identified.
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For moving bottlenecks, a better approach in most cases is to use multivariable
control were also input and output constraints can be included directly in the prob-
lem formulation (e.g. MPC). A case study using MPC for maximizing throughput
with moving bottlenecks is described in Aske et al. (2008). In this case study,
the capacity of the individual units is obtained using the models in the local (units)
MPC. The main TPMs are located at the feed (conventional inventory control, Fig-
ure 3.2(a)), but there are additional degrees of freedom (splits and crossovers) to
manipulate the throughput.

3.6 Obtaining (estimate) the back off

If we have a maximum throughput situation (Mode 2a) and the bottleneck has
been correctly identified, then operation is optimal, except for the economic loss
associated with the back off from active constraints. Back off is usually most
costly in the bottleneck unit. It is important to know (or estimate) the expected
back off in order to quantify the possible benefits of moving the TPM (changing
the inventory control system), adding dynamic degrees of freedom (Chapter 4),
changing or retuning the supervisory control system etc.

In the following we consider the case with a single input (TPM) that controls
an active output constraint () in the bottleneck unit. A back off is then required to
account for dynamic variations caused by imperfect control.

The magnitude of the back off for the dynamic control error should be obtained
based on information about the disturbances and the expected control performance.
Mathematically, this is given by the worst-case control error (variation) in terms of
the “ecc-norm” (maximum deviation). In the time domain the dynamic control error
(and hence the minimum back off) is given by:

bmm—fg?AXH)’(f) _ys||°° (39)
where d and A denotes disturbance and uncertainty, respectively. The optimal
(minimal) back off b is equal to the expected dynamic variation in the controlled
variable y. In practice, determining the expected dynamic variation is difficult.
However, the point here is not to estimate the minimum back off exactly, but to
obtain a rough estimate. The simple method is based on controllability analysis.

3.6.1 Model-based approach (controllability analysis)

Without control, we assume here that the effect of the disturbance on the output
(in this case a bottleneck constraint variable) is given by a first-order response with
steady-state gain k; (= |Ay|/|Ad|) and the time constant ;. Without control, the
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required minimum back off is then by, = kg|do|, where |dy| is the magnitude of
the disturbance. To counteract the effect of the disturbance using feedback control,
and thus be able to reduce the back off, the control system needs response with a
closed-loop time constant 7. less than about 7;. The main “enemy” of feedback
control, which limits the achievable 7., is the time delay 0. In practice, most
processes do not have a “pure” time delay, but they have an “effective” time delay
O.¢r, which can be estimated from the dynamic model, for example, using the “half
rule” of Skogestad (2003).

A simple example of a PI-controlled process with a first-order disturbance is
illustrated in Figure 3.3: We see from Figure 3.3(a) that when the delay 6 is equal
to about 7, or larger, then there is no significant improvement for a step distur-
bance. In fact, if we look at sinusoidal disturbances (Figure 3.3(b)), significant
improvement in the maximum peak (which determines the necessary back off) is
obtained by requiring 6 < 7;/4. A more realistic process with five units is given
in Example 3.5.

Example 3.5. Minimum back off for different TPM locations. Consider a pro-
cess with 5 units in series and a fixed bottleneck which is located at the outlet
of the last unit (Figure 3.4). The objective is to maximize the throughput using
single-loop control in spite of disturbances d to ds. The disturbances are of equal
magnitude, but dy is located closest to the bottleneck and has therefore the major
effect on the bottleneck. Consider three locations of the TPM:

* A: the conventional approach where the TPM is located at the feed,
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Location Location Location
A B C
from bottleneck flow from bottleneck flow '

VR TpN- o PN

Bottleneck

Figure 3.4: The process example with different placements of the TPM with recon-
figuration of inventory loops. Inventory control is in direction of flow downstream
TPM and in direction opposite to flow upstream TPM. The time constants for each
unit is displayed together with the effective dead time (6.¢) for each location for
the throughput manipulator.

* B: the TPM is located inside the process,

* C: the recommended approach in this paper where the TPM is located at
the bottleneck.

Each unit is represented by a second order model where the time constants
(T1,T2) are stated in Figure 3.4. In addition unit 1 has a delay 0, = 1. The dis-
turbances d to ds enter between the units. This gives the following disturbance
transfer functions (Gg,) from the disturbances (dy, dp, d3, ds, ds) to the bottleneck

flow (y):

le
=k
@ H ms+1) Tos—+1)

The disturbance gain is given by kd and is here selected to k; = 1. The process
transfer functions G4, Gp and G¢ from the input (TPM at location A, B, or C) are
the same as for the disturbances, except that the process gain is given by k and
here selected to k = 2.

The TPM (u) is adjusted using a PI feedback controller (y = Ku, K = K.(1 +
%) ) that controls the bottleneck flow (v) and tuned using the SIMC tuning rules

with T, = 30,y The resulting sensitivity function S = (I + GK)™! for the three
alternatives is showed in Figure 3.5. Note that the response is much faster with the
TPM located close to the bottleneck (location C).

The minimum back off by, for each disturbance |Sgy4| is displayed as a function
of frequency for the TPM located at feed (A), in the middle (B) and at the bottleneck
(C) in Figure 3.6(a), 3.6(b) and 3.6(c), respectively. Note that a linear scale on
back off b is used since the cost is linear in back off (Equation (3.8)).
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Figure 3.5: Sensitivity |S| as a function of frequency for different placement of the
TPM (location A,B and C) in Example 3.5. S = (/+GK) ! and K is a PI-controller.

With the TPM located at the bottleneck (Figure 3.6(c)), the peak of |Sg4| is
reduced significantly, and especially disturbances d, to ds (upstream the TPM)
have a very small effect on the bottleneck flow. With the TPM placed at the feed
(Figure 3.6(a)), all the disturbances have almost the same effect on the bottleneck.
At the worst-case frequency, the peak of |Sgq| is about 1.25 which is higher than
the value of 1 (because the peak of |S| is My = 1.25). Of course, we need to apply
control to avoid steady-state drift, but this indicates that further detuning of the
controller should be considered (the larger T, will reduce Ms), but this will lead
to poorer set point tracking. For the TPM located inside the process string (Fig-
ure 3.6(b)), the peak of |Sga| for dy (the most important disturbance) has almost the
same magnitude as for TPM located at the feed, but the effect of the disturbances
d> to ds is reduced.

The peak of |Sgq| with TPM located at the bottleneck is reduced from 0.7 to
0.3 by using a PID-controller instead of a PI. For the two other locations there is
only a very small difference in the peak of |Sg4| between PI- and PID-controllers.
In practice, Pl-controllers are more common to use than PID since the latter is
sensitive to noise and therefore a Pl-controller is used here.

From the more detailed derivations of estimating minimum back off (Ap-
pendix 3.A.1) we have:

* An “easy” (slow) disturbance has a time constant 7; > 460.¢. In this case tight
bottleneck control (tight control of y) is helpful for rejecting the disturbance.
The worst-case frequency is @, ~ Tld and the resulting minimum back off

assuming PI-control with “tight” control is given by by, & zf;’ff kaldo| <
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(c) TPM at bottleneck (location C) where T, = 3 0., Oefr = 3

Figure 3.6: Minimum back off (|Sgy|) as a function of frequency for the distur-
bances d; to ds on the bottleneck flow, for the three different locations of TPM (4,
B, C) in Figure 3.4.
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ka|do| (assuming a SIMC Pl-controller with 7. = 6). This shows that the
back off can be significantly reduced if B¢ 1s small compared to 7,.

» A “difficult” (fast) disturbance has a time constant 7; < 20.s. In this case,
control actually gives a larger back off than no control. However, con-
trol is necessary for set point tracking. The worst-case frequency is @, ~
Opeaks Where peqrs is the peak frequency of [S| defined as |S(j®pears)| =
maxg [S(j®)| = Ms. To reduce the peak Ms, it is recommended to used
“smooth” control (with 7. > 20), that is , for following slow changes in the
bottleneck constraints. The minimum back off is given by byin &~ Ms - ky|dp|.

In summary, the requirement B¢ < % to have benefit of control implies that the
TPM must be located very close to the bottleneck to have any benefit of improved
control and reducing back off. This also explains in most cases why the loss with
manual control, where the operator adjusts the TPM, is usually small.

A more detail mathematical model-based approach for estimating the mini-
mum back off is discussed by Narraway et al. (1991); Heath et al. (1996) and
Loeblein and Perkins (1999) (see Appendix 3.A.2 for more details). The approach
requires a nonlinear dynamic model of the process and optimizes simultaneously
the control structure and controller parameters in order to find the minimum back
off required accommodating the effects of disturbances. However, this approach is
too rigorous to be useful as a practical engineering tool.

3.6.2 On-line identification

On-line identification or simply manual adjustment based on experience is the most
common approach to determine the back off. In practice, instead of identifying
the disturbances itself, it is easier to identify from plant data the output variance.
The back off must be set larger than the observed variations to ensure feasible
operation even with worst-case disturbances. The back off may be successively
reduced from the initial value with increasing disturbance experience. On-line
identification is the simplest method, but may be time consuming and requires
extensive monitoring of the plant.

3.7 Reducing the back off

Reducing the back off may possibly increase the throughput and give large im-
provements in profit. To reduce the back off, the first step is to reduce the dynamic
variation (squeeze) in the variables with the most costly back off. In the following,
suggestions to obtain less dynamic variation are listed.
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Improvement 1: Retune the control loops, especially those associated with the
bottleneck unit in order to reduce dynamic variations, primarily in the active “hard”
constraints variables.

Improvement 2: Move, add or make use of additional degrees of freedom, that
influence the flow through the bottleneck (e.g. throughput manipulator, crossovers,
splits, extra feeds, inventories) to obtain tighter dynamic control of the bottleneck
unit.

Improvement 3: Introduce feedforward control from measured disturbances to
obtain tighter control.

Improvement 4: Introduce feedforward control from expected changes in the ac-
tive constraint variable (Veonstraint) t0 the set point (yy) to keep the back off b un-
changed.

Improvement S: Adjust the back off » depending on expected disturbance level.
Importantly, the back off b can be reduced (move y; closer to yconstraint) When the
expected disturbance level is low (“calm periods™).

Improvement 6: Exploit the hold-up volume in buffer volumes as a dynamic de-
gree of freedom to obtain tighter bottleneck control.

Improvement 7: Add buffer tank to dampen disturbances that affect the active
constraints.

A more detailed discussion of each Improvement is given below.

Improvement 1: Retune control loops

As shown in Section 3.6, the possibility to reduce the back off by achieving tight
control of the bottleneck unit itself is limited in most cases, unless the TPM 1is
located close to the bottleneck. However, this does not mean that retuning is not
important, because retuning the control loop may avoid unnecessary variations
in variables that may propagate dynamic variations to the bottleneck unit. An
example is a poorly tuned temperature controller in a distillation column upstream
the bottleneck unit. The temperature controller performance can be acceptable for
composition control in the distillation column itself, but it may lead to unnecessary
flow variations that disturb the downstream (bottleneck) unit(s).

Improvement 2: Move, add or use additional degrees of freedom

As mentioned in Section 3.5.3, the TPM should be moved close to the bottleneck
unit in order to reduce the effective time delay from the TPM to the bottleneck.
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However, other alternatives should be considered because moving the TPM re-
quires reconfiguration of the inventory loops to obtain a self-consistent inventory
control system (see Section 3.4). Note that it is possible to move the TPMs without
reconfiguration, but then the inventory control system will only be consistent and
may consist of “long loops”. Such a “long loop” requires larger hold-up volume
because of longer physical distance and hence longer effective time delay. Other
ways to shorten the possible “long loop” from the TPM to the bottleneck unit is
to use other variables that affect the throughput, like crossovers between parallel
units and feed splits (see Rule 3.2). The key point for using additional degrees of
freedom is to reduce the effective time delay from the manipulated variable to the
active constraint in the bottleneck unit.

Improvement 3: Feedforward control from measured disturbances

Feedforward control from (important) disturbances can reduce the dynamic varia-
tion in the controlled variable (bottleneck constraint) y. This leads to tighter control
and the back off can be reduced.

Improvement 4: Follow changes in yconstraint (feedforward action)

From (3.7), the back off is b = |Vconstraint — Vs|» S0 the actual set point yy is set by
Veonstraint and the back off . The “hard” constraint yonstraint may change due to
disturbances and we want y; to follow these variations (at least to some extent) to
avoid an unnecessary change in back off (b). For example, consider a distillation
column operating at maximum throughput. The maximum feed rate to the column
depends on the feed composition, and a change in the feed composition may in-
crease the maximum feed rate, hence an increase in yconstraint OCCUrS. By increasing
v correspondingly to yeonstraint, the back off & will remain constant. With available
disturbance measurements, feedforward can be applied to adjust y;.

Improvement S: Adjust back off depending on disturbance level (feedforward
action)

Compared to Improvement 4, where y; is adjusted to keep a constant back off, we
want here to adjust the back off b itself depending on the expected disturbance
level. The idea is that the back off can be reduced in (expected) “calm periods”.
For example, consider a plant that receives feed gas at high pressure through a
long pipeline, where the feed composition is monitored at the pipe inlet. The feed
composition is an important disturbance, and by monitoring the feed composition
in the pipeline, one will know in advance when the changes will occur. In periods
with no feed composition changes, the back off b can be reduced. It is important
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that the monitoring of disturbance level is reliable, so that the back off can be
increased again during periods with larger disturbances.

Improvement 6: Buffer volume as dynamic degree of freedom

The hold-up volume in a process can be exploited as dynamic degree of freedom to
obtain faster (short-term) corrections of the flow to the downstream unit. When us-
ing inventories, the hold-up volume must be refilled from upstream source to avoid
emptying, so this requires acceptable speed of the inventory control systems. The
hold-up volume should be large enough to change the throughput in the down-
stream unit for the period it takes to refill it. Implementing hold-up volumes can
be done by by using ratio control (single-loop) or a multivariable dynamic con-
troller (e.g. MPC) that manipulate on the buffer volume (level). These issues are
discussed in more detail in Chapter 4.

Improvement 7: Add buffer volume

The buffer volume can dampen the variations (or the disturbances) by exploiting
its hold-up volume. This requires smooth tuning of the buffer volume, otherwise
inflow ~ outflow and no smoothing will be obtained. Buffer volumes that is added
to smooth out disturbances that affect the bottleneck must be placed upstream the
bottleneck. Buffer volumes downstream the bottleneck has no effect on the bottle-
neck (the active constraint) and no reduction in back off will be obtained. However,
note that hold-up volumes placed between the throughput manipulator and the bot-
tleneck increases the effective time delay for flow rate changes, and tight control
of the bottleneck unit becomes more difficult if the buffer volume is not exploited.

Example 3.6. Using buffer volumes as dynamic degrees of freedom to obtain
tighter bottleneck control. This example illustrates tighter bottleneck control by
using hold-up volumes as dynamic degrees of freedom. Consider three units, each
followed by a buffer (hold-up) volume, as displayed in Figure 3.7. Maximum ca-
pacity for each unit changes due to disturbances and the bottleneck moves. The
objective is maximum throughput and the throughput manipulator is located at the
feed but the hold-up volumes are exploited for tighter control of the bottleneck.
Three different control structures are studied:

1. Manual control where the TPM is set at a rate that ensures feasibility in
spite of the predefined disturbances.

2. An MPC controller that uses only the TPM as manipulator to maximize
throughput and consider the constraints in each unit.
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Figure 3.7: Diagram of the simulated process in Example 3.6 with MPC that uses
the feed rate and the buffer volumes to maximize throughput (control structure 3).

3. An MPC controller that uses the TPM in addition to the set point to the level
controller in the three buffer volumes as manipulated variables to maximize
throughput and consider the constraints in each unit.

The predefined step-disturbances are regarded as unmeasured and not included as
disturbance variables (DVs) in the MPC controller. The necessary back off from
the hard capacity constraints in the units are found by trial-and error. With the
predefined step-disturbances present, accumulated production for the three control
structures is given in Figure 3.8. Using the hold-up volumes (structure 3) tighter
bottleneck control is obtained and the accumulated production is increased. Using
only the feed rate is only marginally better than manual control. This is due to the
long effective delay (“long loop”) from the feed valve to the constraint and hence
a large back off is needed.

3.8 Discussion

3.8.1 Network theory

The maximum throughput case in production systems is closely related to the max-
imum flow problem in networks considered in operations research. Such a network
consists of sources (feeds), arcs, nodes and sinks (products) (e.g. Phillips et al.,
1976). An arc is like a pipeline or unit with a given (maximum) capacity and the
nodes may be used to add or split streams. We assume that the network is linear,
which requires that the splits are either free variables (“actual” splits or crossovers
in process networks) or constant (typically, internal splits in the units in process
networks, for example, a distillation column that splits into two products). We
then have a linear programming problem, and the trivial but important conclusion
is that the maximum flow is dictated by the network bottleneck. To see this, one
introduces “cuts” through the network, and the capacity of a cut is the sum of the
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Figure 3.8: Accumulated product rate manual control (TPM constant, dotted line),
TPM in closed-loop (dashed) and both using TPM and hold-up volumes (solid).

capacity of the forward arcs (arcs that is leaving the node) that it cuts through.
The max-flow min-cut theorem (Ford and Fulkerson, 1962) says that the maximum
flow through the network is equal to the minimum capacity of all cuts (the minimal
cut). We then reach the important insight that maximum network flow (maximum
throughput) requires that all arcs in some cut have maximum flow, that is, they
must all be bottlenecks (with no available capacity left). Figure 3.9 illustrates
parts of a chemical plant with sources (s1 —s3), arcs, nodes (units 1 —u11 and
junctions m1 —m3 in our terms) and sinks (n1 —n12) and a possible location of the
minimal cut. The location of the minimum cut shows that the units #1 and »11 are
bottlenecks units. Note that a cut separating the source and the sink is a partition
of the nodes into two subset S and S where the source nodes are in S and the sink
nodes are in S (e.g. Phillips et al., 1976). The arc denoted ¢ (crossover) is not
included in the summation of the capacity in the minimal cut since it is directed
from a node in S to a node in S. A network like the one displayed in Figure 3.9
with multiple sources and sinks can be converted to a single-source single-sink by
creating an imaginary super source and an imaginary super sink (Phillips et al.,
1976), but this is not included here. Therefore it does not seem like all the sink
nodes are located in the subset S in Figure 3.9.
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Figure 3.9: A part of a gas plant illustrated as a flow network, with a possible
minimal cut. The corresponding flow sheet of the gas processing plant is displayed
in Figure 5.3.

To apply network theory to production systems, we first need to obtain the
capacity (maximum flow) of each unit (arc). This is quite straightforward, and
involves solving a (nonlinear) feasibility problem for each unit (see Definition 3.3).
The capacity may also be computed on-line, for example, by using local MPC
implementations as proposed by Aske ez al. (2008).

The main assumption for applying network theory is that the mass flow through
the network is represented by linear flow connections. Note that the nonlinearity of
the equations within a unit is not a problem, but rather the possible nonlinearity in
terms of flows between units. The main problem of applying linear network theory
to production systems is therefore that the flow split in a unit, e.g. a distillation
column, is not constant, but depends on the state of its feed, and, in particular, of
its feed composition. The main process unit to change composition is a reactor,
so decisions in the reactor may strongly influence the flow in downstream units
and recycles. Another important decision that affects composition, and thus flows,
is the amount of recycle. One solution to avoid these sources of nonlinearity is
to treat certain combinations of units, like a reactor-recycle system, as a single
combined unit as seen from maximum throughput (bottleneck) point of view.

Although the linearity assumptions will not hold exactly in most of ”our” sys-
tems, the bottleneck result is nevertheless likely to be optimal in most cases. The
reason is that the location of active constraints (bottleneck) is a structural issue.
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3.8.2 Issues on estimation of back off

Estimating the dynamic variation in a controlled variable y by using controllability
analysis has some limitations. The back off estimation is only valid for single-loop
control where the controller is tuned by using the SIMC-tuning rules. The tuning
rules are not really a limitation, since the speed of the closed-loop response is a
degree of freedom. However, the simplified analytic estimation needs a model of
the disturbance and assumes that the shape of Gy is flat up to the break frequency
where the disturbance rolls off. The asymptotic consideration of the disturbance
will be wrong, especially for higher order. For a higher order disturbance, the
assumption that G, is “flat” up to @y, will not be correct, since the disturbance
starts to roll of at a lower frequency.

With our experience from industry today, on-line identification is by far the
most used. A model is not required in this case, only plant data. For a new plant,
estimating necessary back off has minor importance; because during a plant start
up, optimal production is not the issue, but rather to obtain stabilized production.
After reaching nominal production, reducing back off and optimal production be-
comes an operating issue, but at that time plant data is available. Operating mar-
gins is typically reduced gradually. With close follow-up from personnel, the time
spent to move the plant from nominal to optimal production can be reduced.

Back off is based on experience and therefore the importance of the manual
control should not be underestimated. However, a new regime of closed-loop con-
trol of the throughput can be fulfilled, but now with the back off as the available
manipulator for the operators instead of the throughput. This makes the back off
(and also the loss) more visual instead of being “baked into” the throughput set
point.

3.9 Conclusion

In this paper, we have shown that “maximum throughput” is an optimal economic
operation policy in many cases. To implement maximum throughput, the key is to
achieve maximum flow through the bottleneck unit(s). However, to achieve fea-
sible operation (no constraint violation), is usually necessary to “back oft” from
the optimally active constraints. Back off leads to a lower flow through the bot-
tleneck and an unrecoverable economic loss. This leads to the obvious but impor-
tant conclusion that “throughput maximization requires tight bottleneck control”.
However, achieving tight bottleneck control in practice is not so simple because
the throughput manipulator is often located too far away from the bottleneck unit
(with a large effective delay O.¢) to be effective for reducing the effect of distur-
bances on the key bottleneck variables. For example, to significantly reduce the
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effect of a first-order disturbance (and be able to reduce the back off), we must
require O < T7/4 where 1, is the first-order response times for the disturbance.
In practice, the requirement 6. < 77/4 is unlikely to be satisfied unless the TPM
is located at the bottleneck unit. Thus, “tight bottleneck control” (and reducing
the back off) in practice requires that the TPM is located close to the bottleneck
unit. This can either be achieved by moving TPM (which requires reconfigura-
tion of the inventory control system) or for some plants, to utilize “extra” TPMs
such as crossovers and splits (Chapter 5). Another alternative is to make use of
dynamic degrees of freedom (variations in the inventories) as is further discussed
in Chapter 4. Increased throughput can also be achieved by strategies where the
back off is reduced in “calm” periods where there are less disturbances. Possible
improvements to reduce back off are listed in Section 3.7.
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3.A Estimation of minimum back off

We here use a controllability analysis for identifying the dynamic control varia-
tions. This requires a model of the process together with assumption of the ex-
pected frequency and amplitude of the disturbances. Controllability is a property
that is independent of the detailed controller tuning, but here we assume that IMC-
tuning are used. The issue here is to estimate the minimum required back off from
a model without designing a controller.

3.A.1 Simplified analytic estimation for single-loop control

Let y denote the controlled active constraint in the bottleneck unit, for which we
want to estimate the expected dynamic variation which is equal to the minimum
back off. Let # denote the manipulated variable (e.g. TPM or a dynamic variable
that affects y) and d the disturbance. For the linearized system y = Gu + G,d,
the closed-loop transfer function from a disturbance d to y is (e.g. Skogestad and
Postlethwaite, 2005)

y=(I+GK)'" Gyd=SG,d (3.10)

where G is the process model, X is the feedback controller, S = (/4 GK) ! is the
sensitivity function and Gy is the disturbance model. Assume that the disturbances
are sinusoidal, d(7) = dpsin(ot), and that |dy| is bounded. We consider only scalar
disturbances (i.e. one disturbance at a time). The worst-case amplification (peak
output variation as a function of disturbance frequency) from d to y then gives the
optimal (minimum) back off, thus

b > bmin = max |y| = max ||Sgy/||« - |do| (3.11)
w,d d

)

where max,, 4 |y| represents the effect of the worst-case disturbance over all fre-
quencies and directions and therefore represents the minimum back off. Note that

A . .
15ga | = max|Sga(j@)| = [Sga(j@wuc)] (3.12)

where m,, is the worst-case frequency where |Sg,| has its peak.

Worst-case frequency

The minimum back off for a given disturbance is given by ||Sgy|| = Sga(jOue),
but what is the worst-case frequency (peak frequency) w,,.? It is difficult to know
o, beforehand, but typically the peak frequency for |Sgy| is located around the
closed-loop bandwidth frequency. Thus, two interesting frequencies are the peak
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% 0 1 2 3 4 5
ws-6 | 0741 0511 0414 0357 0319 0.291
Opeaks- 0 | 138 114 1.02 0947 0.891 0.849

M 3.13  1.59 135 125 1.19 1.16

Table 3.1: Frequencies for sensitivity function (S) and robustness margins for dif-

ferent 7. using SIMC-settings (K. = %efﬁ, T; = T1, Tp = T») in the PID-controller.

frequency for |S| defined as |S(j®Wpears)| = maxy, [S(j®)| = Ms, and the frequency
ws defined as |S(jws)| = 1. Using these two specific frequencies we have

ISga(jos)| - |do| = |ga(jos)]| - |do
1584 (J Wpeats)| - |do| = Ms - |2a(j®pears)| - |do]
(3.13)

buin > 152 jowe)| - [do] > {

These two lower bounds on the minimum back off are fairly tight for a first-order
model of g;. For a disturbance model g, of higher order, general rules for estimat-
ing the minimum back off b, = max, ||SGy||- is difficult to state. For example,
a gg of high order will roll off quickly at higher frequencies and ws and ®paxs
may not represent the worst-case frequencies.

Nevertheless, the two frequencies will always provide a lower bound, so it
is interesting to estimate s and Wpeqs. Table 3.1 gives the peak of |S| (= M)
and the frequencies @y and @eqis for a first-order process with time delay, G| =
ke % /(1154 1), controlled with a PI-controller using the SIMC-tunings rules (K, =
%#‘TC, T; = T1) as a function of the tuning parameter 7. (the closed-loop time
constant). The same values apply to a second order with time delay process delay
(G, = e % /((115 4 1)(1p5 + 1)) controlled with a PID-controller if we select the
derivative time Tp = 7. In both cases the closed-loop transfer function becomes

e-@s
L=GC= (T.4+0)s"

Selection of the tuning variable 7,

The sensitivity function depends on the controller tuning K, that is, the closed-loop
time constant 7.. Here we want to state some recommendations for selection of 7,
in our further development of an assumption of minimum back off.

1. We want to minimize ||SG||- to minimize the back off. This leads to se-
lecting a small 7, to reject “easy” disturbances upstream the input u (tight
control) and a large 7. to reject “difficult” disturbances after the input u
(leads to M, small).
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2. For robustness we want ||S||. = M, < 1.6, which implies 7. > 6 approxi-
mately, see Table 3.1.

3. We want to minimize 7. to have fast set point tracking.

To make some more specific recommendations of what 7. should be, consider the
disturbance break frequency @, defined as

1
Wpg = — (3.14)
Td
where 7, is the largest disturbance time constant in g;. In other words, @y, is the
frequency where the disturbance gain starts dropping. Consider two cases:

Case 1: ““Difficult” (“fast”) disturbances with w,q > ws. Here, |g;| is “flat”
at the frequency ws (and approximately “flat” at @peqks), so the use of feedback
will give worse response than with no control at some frequencies because |S| has
an unavoidable peak at the resonance frequency ®p.qs. This leads to the worst-
case frequency .. = Wpeaks, and we have |[Sgqlw ~ Ms|ga(jOpeaks)| - |do| = Ms -
ka|do|. To reduce Ms we want 7. large (but on the other hand we want 7. small for
set point tracking (yy)). In summary, a steady-state analysis is sufficient for back
off estimation and we have by, &~ Ms - ky|dy| where k; = g4(0) is the steady-state
disturbance gain. To minimize Mg we want 7. large.

Case 2: “Easy” (“slow”) disturbance with wyg < ws. In this case @,y 1s approx-

imately the worst-case frequency because |S| ~ a)% increases linearly with @ in a

log-log plot in the frequency region up to wg (Skogestad and Postlethwaite, 2005)
Wp,

and |gy| = kg up to Wpy. In summary, byin ~ [Sga(jwpa)| ~ deSd and we want wg

as large as possible for disturbance rejection, which corresponds to 7, small.

In the above case definitions, s is used to determine the disturbance case and
hence decide the tuning parameter 7.. However, ws depends on the selection of
T.. From Table 3.1 a relation between wg, 6 and 7. are given, and we can state g

approximately

1
We ~ 3.15
S~ T8 (3.15)

From the arguments above, we can suggest a “rule of thumb” for selection of 7,:

o 30, for wy; > % or 7; <20

T. = | (3.16)
0, for wpy < z5 or 77> 46

The choice of 7. = 30 is a trade-off between disturbance rejection and set point
trajectory: we want to minimize 7, to track set points, but at the same time we want
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to maximize T, to reduce Ms. The choice 7, = 30 gives Mg ~ 1.25 (see Table 3.1),
so the use of feedback gives 25% extra back off.

The recommendations (3.16) do not state a selection of 7. in the intermediate
range 20 < 1; < 40. The disturbances with 7; > 46 are “slow” disturbances and
the control system are able to reject them fairly good. For 7; < 26 the disturbances
are fast and here the control is poorer for disturbance rejection than no control
because of the peak of |S|. In the intermediate range 7. should be increased from
6 up to 36.

Summary of simplified analytic estimation of back off

The minimum back off by, 1s given by (3.11). The frequencies ws and ®peqks
are expressed by 6 and 7. in Table 3.1, and the recommendations for 7, are given
in (3.16). In the idealized case we assume that Tld = Wpy and that g; is approx-
imately “flat” at frequencies below @j,. In addition, we assume that [S] ~
between ws and Wpeuks, in other words, the slope of |S| is approximately +1 in
the given range. Then the location of the peak frequency and the magnitude of the
necessary back off can be summarized as:

For “difficult” disturbance with 7q <20 : @y = Opeaks
bimin = Ms - kql|do| (3.17)

. ) 1
For “easy” disturbance with 74 >460: o,.~ —

Td

20
bmin & . “kaldo| < kaldo| (3.18)

To conclude the estimation of back off, we see from (3.17) and (3.18) that
control is helpful for t; > 46.¢. Otherwise the back off is given by steady-state
disturbance effect.

To illustrate the estimation of back off, consider the introductory example.
Example 3.5 (continued). Minimum back off for different TPM locations. The
necessary back off for the “difficult” disturbance d, (difficult because it is located
close to the bottleneck) is calculated using Table 3.1 and Equations (3.17)-(3.18).
The tuning variable is selected to 1. = 30 for all three TPM locations. The distur-
bance time constant for dy is T4 = 8 or equivalent Wpy = 0.125. The calculated fre-
quencies and minimum back off are compared with the observed ones in Table 3.2.
Note that location C with 6.5 = 3 is in the intermediate range 26 < 1, < 40 and
it is not clear if (3.17) or (3.18) should be used. Here, (3.18) is selected since the
disturbances have started to roll off and a stationary analysis will be less correct.
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Location A (Octr = 87) Os | Opeaks | Owe | Dmin
Estimated | Tab. 3.1, Eq. (3.17) | 0.004 | 0.011 | 0.011 | 1.25
Observed Fig. 3.6(a) 0.004 | 0.010 | 0.010 | 1.23
Location B (6.6 = 39) Ws Opeaks | Owe | bmin

Estimated | Tab. 3.1, Eq. (3.17) | 0.009 | 0.024 | 0.024 | 1.25
Observed Figure 3.6(b) 0.009 | 0.022 | 0.021 | 1.22
Location | C (Oerr=3) Os | Opeaks | Owe | Duin
Estimated | Tab. 3.1, Eq. (3.18) | 0.12 | 0.32 0.13 | 0.75
Observed Figure 3.6(c) 0.11 0.22 0.12 | 0.70

Table 3.2: Estimated and observed frequencies (@, ®peqks and @,,) and minimum
back off (hpin) to account for disturbance d; (with 7; = 8) from Example 3.5. The
frequencies and back off are estimated by using Table 3.1, Equation (3.17) and
(3.18). The observations are from Figure 3.6.

We see that Wpeqrs provides a good estimate of the worst-case frequency for
processes with long effective time delay 0 (location A and B) whereas wp, provides
a good estimate for the worst-case frequency for processes with a short effective
time delay 0 (location C). For the back off calculation, M- kg|dy| gives a good
estimate for long effective time delay. For a short effective time delay 0 the back
off estimate is also good. However, by using the estimated frequency of ®s instead
of the approximation of g ~ %, the estimated minimum back off becomes larger
than the observed minimum back off, since the disturbance has started to roll off (it
is not really a “fast” disturbance but an “intermediate”). Note that the location of
the peak to |Sga| moves from ®peqrs towards wypg with smaller effective time delay
between TPM and bottleneck. To move the TPM from location A to location B has
very little effect in terms of reducing minimum back off. The disturbances are still
fast compared to the closed-loop response and control is not helpful for rejecting
the major disturbance.

Assume that it is possible (and preferable in terms of costs) to increase the
hold-up between the inlet of the plant and the middle of the plant (refer to location
A and B in Example 3.5). To evaluate the effect of larger holdups between location
A and B in terms of minimum back off, consider a new example.

Example 3.7. Minimum back off in a process with large hold-up volumes. Con-
sider the same process string as in Example 3.5, but now with significantly larger
hold-up volumes in unit 1 and 2. The bottleneck flow (v) is considered fixed at the
outlet of the last unit. The time constants for each unit are displayed in Table 3.3.
The minimum back off by for each disturbance |Sgy4| is displayed as a function
of frequency for the TPM located at feed (A), in the middle (B) and at the bottleneck
(C) in Figure 3.10., With the TPM located at the bottleneck (Figure 3.10(c)), the
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Unit T (%)
| 200 | 100
2 50 50
3 16 8
4 20 10
5 8 1

Table 3.3: Time constants 7, and 7, for the units in Example 3.7.

peak of |Sg4| is reduced significantly compare to when the TPM is located in A
and B. For TPM located in A an B there is almost no difference for the worst
disturbance d, but the effect of the disturbances d, to ds is reduced when TPM is
moved from location A to B.

By using Table 3.1 together with (3.17) and (3.18), the frequencies ®s, Wpeaks
and . are estimated together with minimum back off. The observed and the
estimated frequencies and back off are compared in Table 3.4. Here location A
and B is in the area for steady-state analysis (t; < 20). For location C the worst
disturbance d\ is fast compared to the closed-loop response (1; > 40).

Location A (Ber = 214) Ws Opeaks Wy bmin
Estimated | Tab. 3.1, Eq. (3.17) | 0.0017 | 0.0044 | 0.0044 | 1.25
Observed Fig. 3.6(a) 0.0017 | 0.0040 | 0.0040 | 1.26
Location B (B = 36) Ws Opeaks Wy bmin

Estimated | Tab. 3.1, Eq. (3.17) | 0.010 | 0.026 | 0.026 | 1.25
Observed Figure 3.6(b) 0.010 | 0.024 | 0.023 | 1.22

Location C(Ber=1.5) Ws Opeaks Wy bmin
Estimated | Tab. 3.1, Eq. (3.18) | 0.24 0.62 0.13 | 0.38
Observed Figure 3.6(c) 0.22 0.48 0.18 | 0.49

Table 3.4: Estimated and observed frequencies (@, ®pears and @) and the mini-
mum back off (b, to account for disturbance d; (with 7; = 8) from Example 3.7.
The frequencies and back off are estimated by using Table 3.1, Equation (3.17) and
(3.18). The observations are from Figure 3.10.

We see that Wpears provides a good estimate of the worst-case frequency for
processes with long effective time delay 0 (location A and B) whereas @y, provides
a good estimate for the worst-case frequency for processes with a short effective
time delay 0 (location C). For the back off calculation, M- kg|dy| gives a good
estimate for long effective time delay. For location C the worst-case disturbance is
categorized as “easy” and here the estimate is lower than the observed minimum
back off. However, by using the estimated frequency of Ws instead of the approxi-
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(c) TPM at bottleneck (location C) where T, = 36,¢7, Oeir = 1.5

Figure 3.10: |Sg,| as a function of frequency; effect of the disturbances d, to ds on
the bottleneck flow, for the three different locations of TPM given in Example 3.7.
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mation of s ~ %, the estimated minimum back off becomes slightly larger than
the observed back off. Note that even though the difference in effective time delay
between location A and B is now much larger than in Example 3.5, the minimum
back off is almost the same. The effective time delay with TPM at location B is still
large compared to the most important disturbance time constants, so a stationary
analysis is still valid.

3.A.2 Comments on mathematical approach

A mathematical approach to estimate the necessary back off is treated by e.g.
Perkins and coauthors (Narraway et al., 1991; Narraway and Perkins, 1993, 1994;
Heath ef al., 1996; Loeblein and Perkins, 1998, 1999) and Romagnoli and coau-
thors (Bandoni ef al., 1994; Bahri et al., 1996; Figueroa et al., 1996).

Narraway et al. (1991) present a method to assess the impact of disturbances on
plant economics. Their approach is to perform an economic evaluation of the nec-
essary back off (dynamic economics) to select the control structure (pairing) that
minimize the economic impact of disturbances on the process economics. They
consider so-called stationary disturbances that are fast disturbances which do not
change the steady-state optimum but requires back off since they affect the size of
the dynamic operating region. The analysis is performed to a linearized plant dy-
namic model with assumption of perfect control to the chosen control objectives.

Narraway and Perkins (1993) presents a modification of the method proposed
in Narraway et al. (1991) for the a priori assessment of the effect of disturbances
on the economics, in addition to a branch and bound algorithm for the choice
of control structure based on the economic criteria. Further, Heath ez al. (1996)
modifies the method by using multiloop PI structures tuned by Ziegler Nichols
gains/resets instead of the assumption of perfect control in the control structure
selection algorithm.

Loeblein and Perkins (1999) integrate dynamic economics and average devi-
ation from optimum in order to obtain a unified measure for the economic per-
formance by adding the back off from the dynamic economics and from average
deviation from optimum. Regulatory back off is evaluated using the unconstrained
MPC law with QP algorithm for a stochastic description of disturbances. This
leads to a quadratic program which can be solved analytically since the inequal-
ity constraints on the input variables are neglected during the back off calculation.
The statistical variation of the variables to which constraint are to be applied is de-
scribed by a density function of a Gaussian distribution with zero mean and known
covariance. The regulatory back off is described with a probability that is specified
a priori.

To find the necessary back off by using a detailed model-based approach is
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unrealistic to solve exact for real systems. It requires a dynamic model of the
plant together with disturbance characteristics, where the information is limited,
especially prior to plant operation. In addition, the variations in the controlled
variables are dependent on the regulatory control structure and its parameters and
the use of advanced process control (e.g. MPC).



Chapter 4

Dynamic degrees of freedom for
tigchter bottleneck control

Submitted to Comput. Chem. Eng.

In many cases, optimal plant operation is the same as maximum through-
put. To realize maximum throughput, tight control of the bottleneck
unit(s) is necessary. Dynamic degrees of freedom can be used to ob-
tain tighter bottleneck control. Here, “dynamic” means that the degree
of freedom has no steady-state effect on plant operation. For exam-
ple, most inventories (levels) have no steady-state effect. Nevertheless,
temporary changes of inventories can allow for dynamic changes in the
flow through the bottleneck that keeps the process closer to its bottle-
neck constraint and increase the throughput. A simple structure is to use
a single-loop bottleneck controller that adjusts the feed flow, combined
with a simple ratio control scheme that adjusts the dynamic degrees of
freedom. The idea is to change all the flows upstream of the bottle-
neck simultaneously, instead of waiting for inventory loops to move the
feed rate change through the units. The required buffer volume for plant
design is analyzed for upstream disturbances and bottleneck set point
changes.

4.1 Introduction

In many cases, prices and market conditions are such that optimal operation is the
same as maximizing plant throughput. In this case, the optimum lies at constraints,
and in order to maximize throughput, the flow through the bottleneck(s) should be
at its maximum at all times (Chapter 3). If the actual flow through the bottle-
neck is not at its maximum at any given time, then this gives a loss in production
that can never be recovered (sometimes referred to as a "’lost opportunity”). Tight
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bottleneck control is therefore important for maximizing throughput and avoiding
losses.

In existing plants, the most common approach for controlling the throughput
is to set the feed flow at the inlet of the plant and use inventory control in the
direction of flow (Price et al., 1994). One reason for this is that most of the control
structure decisions are done at the design stage (before the plant is built), where one
usually assumes a fixed feed rate. However, tight bottleneck control requires that
the throughput manipulator (TPM) is located close to the bottleneck (Skogestad,
2004). The term “close to the bottleneck” means that there is a short effective
delay from the input (TPM) to the output (bottleneck flow).

Ideally the TPM should be located at the bottleneck, but this may not be desir-
able (or even possible) for other reasons. First, if the TPM is moved, the inventory
loops must be reconfigured to ensure self-consistency (Chapter 2). Second, there
may be dynamical reasons for avoiding a so-called on-demand control structure
with inventory control opposite the direction of flow, which is required upstream
of the TPM to ensure self-consistency. Luyben (1999) points out several inher-
ent dynamic disadvantages with the on-demand structure, including propagation
of disturbances, dynamic lags, process time constants and interactions. Third, if a
bottleneck(s) moves in the plant due to disturbances, then single-loop control re-
quires relocation of TPM and reconfiguration of inventory loops. Thus, in practice
one is often left with a fixed throughput manipulator, usually the feed rate. This
usually leads to a large effective delay (“long loop”) because the bottleneck is usu-
ally located inside the plant. This leads to an economic loss because of a large
required back off from the bottleneck constraints.

Instead, with the TPM fixed, for example at the feed, one may introduce addi-
tional degrees of freedom to reduce the back off:

1. For plants with parallel trains one may use crossover and splits (Aske et al.,
2008). This are “extra” degrees of freedom that usually cannot be used by a
single unit.

2. More generally, one may use “dynamic” degrees of freedom. This is the
topic of the present paper. By “dynamic” degrees of freedom we mean ma-
nipulated variables with no steady-state effect. The most common examples
are liquid inventories (levels) and buffer tank inventories.

The idea is to change the inventory to make temporary flow rate changes in the
units between the TPM (feed) ant the bottleneck. This may give tighter bottleneck
control, but the cost is that the inventory itself will be less tightly controlled. How-
ever, in many cases, inventories need only to be kept within a given range and tight
set point control is not needed.



4.2. Alternative strategies for bottleneck control 77

Faanes and Skogestad (2003) defined a buffer tank (surge tank) as a unit where
the holdup (volume) is exploited to provide improved operation. They applied con-
trol theory to the design of buffer tanks, including deciding on the number of tanks
and tank volumes required to dampen the fast (i.e., high-frequency) disturbances,
which cannot be handled by the feedback control system. In this paper, the issue
is to use the buffer volume to introduce dynamic flow rate changes.

There are also related issues in business systems. Supply chains are sometimes
modelled as continuous processes and Schwartz et al. (2006) used simulation to
study decision policies for inventory management. To improve the financial bene-
fits, they use the inventory set points for intermediate storage subject to maintain
acceptable performance in the presence of significant supply and demand variabil-
ity and forecast error as well as constraints on production, inventory levels, and
shipping capacity.

The organization is as follows. Section 4.2 explains how to include dynamic
degrees of freedom using either single-loop with ratio control or using a multi-
variable controller. The use of dynamic degrees of freedom for tighter bottleneck
control is demonstrated by an example in Section 4.3. Transfer functions are de-
veloped for the single-loop with ratio control structure in Section 4.4 and these
functions are further analyzed to estimate the required inventory for disturbances
(Section 4.5). A discussion follows in Section 4.6. A summary of the implications
for design of inventory tanks is given in Section 4.7 before the paper is concluded
in Section 4.8.

4.2 Alternative strategies for bottleneck control

Assume that the objective is to maximize the flow through the bottleneck and that
the feed rate is available as a degree for freedom (throughput manipulator, TPM).
Figure 4.1 shows four ways of achieving this using simple single-loop control
structures.

In the traditional configuration in Figure 4.1(a), the feed rate is the degree
of freedom for manipulating throughput (TPM), and inventory control is in the
direction of flow. To maximize the flow through the bottleneck, the operators
change the feed valve manually based on information about the plant operation
and experience. However, careful attention by the operators is required in order
to keep the bottleneck flow close to its maximum at all times, so we want to use
automatic control.

Alternative 1: Single-loop control of bottleneck flow using the feed rate. (Fig-
ure 4.1(b))
The simplest is to use single-loop feedback control where the feed rate (TPM) is
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in serial process. IC stands for inventory controller (e.g. level controller).
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manipulated to keep the bottleneck flow close to its maximum. However, there is
often a large effective delay from the feed flow (input) to the bottleneck flow (out-
put), so tight control of the bottleneck flow is not possible because of disturbances.

Alternative 2: Move TPM from feed to bottleneck and let feed control “lost
task”. (Figure 4.1(c))

The bottleneck flow is set directly at its maximum, which corresponds to moving
the throughput manipulator to the bottleneck. The inventory loops are not recon-
figured, so the feed rate now needs to take over the “lost task™ which in this case is
control of the inventory upstream of the bottleneck. In this case, tight bottleneck
control is achieved, but inventory control may be poor, leading to possibly empty-
ing or overflowing the upstream tank because of a large effective delay from the
feed flow (input) to the tank (output).

Alternative 3: Reconfigure inventory control. (Figure 4.1(d))

The TPM is moved to the bottleneck and all the upstream inventory loops are
reconfigured to be in the opposite direction of flow upstream the bottleneck. In this
case, both tight bottleneck control and good inventory control may be achieved.
However, the reconfiguration of inventory loops is usually very undesirable from
a practical point of view.

In summary, none of these alternatives are desirable. To improve control and
keep the flow through the bottleneck closer to its maximum at all times, we would
like to have additional degrees of freedom, and the only ones that are normally
available are the inventories (holdups) in the buffer tanks, which can be used to
make dynamic flow changes. The word ”dynamic” is used because most invento-
ries have no steady-state effect on plant operation.

The main idea is as follows: To change the flow through the bottleneck, for ex-
ample, to increase it, we temporarily reduce the inventory in the upstream holdup
volume. However, this inventory needs to be kept within bounds, so if we want
to increase the bottleneck flow permanently, we need to increase the flow into this
part of the process and so on, all the way back to the feed (throughput manipula-
tor). The simplest (but not generally optimal) approach is to use a “ratio” control
system where all flows upstream the bottleneck are increased simultaneously by
the same relative amount. The idea is illustrated in Figure 4.2.

Alternative 1D: Single-loop plus ratio control. (Figure 4.2(a))

The idea is to control the bottleneck flow by simultaneously changing all the flows
upstream of the bottleneck by the same relative amount. The advantage is that the
effective delay from the feed to the bottleneck may be significantly reduced and
even eliminated in some cases. However, the dynamic flow changes are counter-
acted by the inventory controllers. In particular, note that the feed flow is the only
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degree of freedom that has a steady-state effect on the bottleneck flow. The strat-
egy may also be viewed as a “ratio feedforward controller” from the feed flow to
the downstream flows.

Alternative 2D: Move TPM to bottleneck and add ratio control to “lost task”.
(Figure 4.2(b))

The TPM is moved to the bottleneck and the “lost task™ (inventory upstream the
bottleneck) is controlled by the feed rate. The use of ratio control is the same as
for Alternative 1D. The effective delay from the feed rate to the lost task is reduced
by using ratio control.

Alternative 4: Multivariable controller. (Figure 4.2(c))

A multivariable controller (e.g. MPC) uses the feed rate and the inventories as
manipulated variables (MVs). The controlled variables (CVs) are the bottleneck
flow and inventory constraints.

In this paper we focus on Alternative 1D. One reason is that the analytic treat-
ment is quite simple. To understand how the “ratio control” works, consider first
inventory control of an individual buffer tank. The “normal” feedback inventory
controller (IC) can be written

q=K(s)(I=15) +q0 (4.1)

where / is the inventory (e.g. level), I is its set point, g is the flow in our out of
the tank (output from controller) and g is the flow bias term of the controller. The
feedback controller K(s) has a negative sign if ¢ is an inflow and a positive sign if
g is an outflow. Now, to introduce the inventory as a degree of freedom one can
either adjust the inventory set point (/) or adjust the bias (gg). The most obvious
is to adjust the inventory set point /;, but it is more direct in terms of flow changes
to adjust the bias. Actually, the two approaches are not very different, because a
change in g¢ can equivalently be implemented as a set point change by choosing
I; = —qo/K(s). In this paper, we choose to use the bias g as the dynamic degree
of freedom for ratio control.

Let now gr be the feed flow computed by the flow controller (FC) in Fig-
ure 4.2(a). Then, the bias adjustment in all the inventory controllers (IC) in the
figure is

Agqo = K. Aqr (4.2)

where K, is the steady-state gain for the effect of gr on gg. The overall IC then
becomes
Ag =K(s)(I — 1) + KAqr (4.3)
——

Aqo
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Figure 4.2: Structures for controlling bottleneck flows that use inventories as dy-
namic degrees of freedom (with no reconfiguration of the inventory loops). Al-
ternative 1D is studied in this paper. IC stands for inventory controller (e.g. level
controller) and K is a constant gain (ratio controller).
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De- De- De- Butane
ethanizer | propanizer | butanizer | splitter
Number of trays 32 48 40 92
Feed tray 20 20 19 45
Nominal feed [kmol/min] 75.6 29.4 11.6 8.1
Holdup sump (Mp) [Kmol] 121 38 18 66
Holdup condenser (Mp) [Kmol] 226 227 62 88
Nominal boil up [Kmol/min] 88.6 323 9.9 34.5
Nominal reflux [Kmol/min] 71.5 27.1 8.6 259

Table 4.1: Sizes and nominal flows for the distillation columns in Example 4.1.

The important point to note is that there are no dynamics in K,. This means that
all the flows ¢ are changed simultaneously when gy changes. This is not generally
optimal, but it is the simplest and is used in this paper.

4.3 Introductory example

The example given below illustrates how tight bottleneck control can be obtained
by use of dynamic degrees of freedom.

Example 4.1. Four distillation columns in series. Consider four distillation
columns in series, as shown in Figure 4.3. The four columns represent the lig-
uid upgrading part of a gas processing plant and consist of a deethanizer, a de-
propanizer, a debutanizer and a butane splitter. Assume that the butane splitter
(the last unit) has the lowest processing capacity and is therefore the bottleneck
unit. The throughput is manipulated at the feed to the first column. The idea is to
use the column inventories (sump or condenser drum holdup) as dynamic degrees
of freedom to obtain tighter bottleneck control.

The distillation column models are implemented in Matlab/Simulink. Each of
the four columns is modelled as multicomponent distillation with one feed and two
products, constant relative volatilities, no vapor hold-up, constant molar flows, to-
tal condenser and liquid flow dynamics represented by the Francis weir formula.
All columns use the “LV-configuration” where distillate (D) and bottoms flow (B)
are used for inventory control (Mp and Mp). To stabilize the column composition
profile, all columns have temperature control in the bottom section by manipulat-
ing the boilup. Some relevant sizes and flows for the columns are given in Ta-
ble 4.1. Note that there is a crossover flow from the bottoms of the deethanizer
where g5 = 15.8 kmol/min, as displayed in Figure 4.3.

Four different control structures for maximizing throughput are tested.

1. Manual. Traditional (manual) control of the throughput.
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Figure 4.3: Distillation process: Four columns in series, here shown with through-

put controlled by using single-loop with ratio control (Alternative 1D).
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2. Single-loop. Single-loop control where the bottleneck flow is controlled us-
ing the feed rate (Alternative 1 in Section 4.2).

3. Single-loop with ratio. Use of the inventories as dynamic degrees of freedom
by adding a bias (qq) to the inventory controller outputs as in Figure 4.3.
(Alternative 1D in Section 4.2).

4. Multivariable. MPC with the feed rate and the inventory set points as MVs
and the bottleneck flow and level constraints as CVs (Alternative 4 in Sec-
tion 4.2).

The column inventories Mp and Mp are controlled with P-controllers with gain
K. =1/1y. Here we use “smooth” level control where we set Ty = Viank/ qour (Sko-
gestad, 2006) where ¢, is the flow out of the volume (D or B). With a nominal
half-full tank we can then handle a 50% change in the product flow (D and B)
without emptying or overfilling. Actually, the flow into the inventory is consider-
ably larger, but disturbances in boilup (or reflux) are counteracted by the tempera-
ture controller (Skogestad, 2007). The temperature controllers (TC) are tuned with
SIMC PI-tuning (Skogestad, 2003) with t. = 0.5 min. The TCs and ICs tunings are
identical in all four columns and in the four tested control structures.

Two disturbances are considered. First, at t = 10 min, we make a set point
change in the bottleneck flow, for example, caused by a disturbance in the bottle-
neck unit (the butane splitter). Second, att = 210 min, there is an unknown change
in the feed rate.

1. For manual control, we assume that a skilled operator can immediately
change the feed rate to the value corresponding to the new bottleneck flow
set point. However, we assume that the operator does not notice the unmea-
sured feed flow disturbance, so no adjustment is therefore done for the feed
rate disturbance.

2. For the single-loop control structure we want smooth tuning to avoid over-
shoot and “aggressive” use of the feed valve. Therefore, the bottleneck flow
controller (FC) is tuned with SIMC tunings with t. = 30 for smooth tuning
(Skogestad, 2006). This gives a PI-controller with K. = 3.0 and t; = 14 min.

3. For the single-loop control with ratio (bias) adjustment (Alternative 1D),
there is no effective delay and the bottleneck flow controller (FC) is tightly
tuned with a short integral time (K. = 0.5 and 1, = 0.3 min), which are
typical FC tuning parameters.

4. In the multivariable structure the FC at the feed is omitted and the MPC
manipulates directly the feed valve. The built-in MPC toolbox in Matlab is
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used and tuned with a low penalty on the use of inventories (MV moves) and
a high penalty on the deviation from the bottleneck flow set point (CV set

point).

The four control structures are evaluated in terms of how tightly the bottleneck
flow (qp) is controlled in spite of disturbances. As mentioned, two disturbances
are considered.

» Att =10 min: 5% increase in bottleneck flow set point (qp ).

o At t =210 min: 8% decrease in the feed rate to the deethanizer (qr). The
net feed flow is qr = qru + qr.a, Where qr,, is the flow contribution from
the controller (initially qr 4 = 0 and qr = qr, = 100, but then qr 4 = —8 at
t =210).

The resulting bottleneck flow (qp), the net feed flow (qr) and the inventories
used as dynamic degrees of freedom (deethanizer Mp, depropanizer Mp and debu-
tanizer Mp) for the four different control structures are displayed in Figure 4.4.
The first observation is that we have significantly tighter bottleneck control with
ratio control and MPC (Alternative 3 and 4) where inventories are used as dy-
namic degrees of freedom (Figure 4.4(a)). The inventories (levels) are quite tightly
controlled with surprisingly small variations as shown in Figure 4.4. There is some
steady-state offset because we use P-control (no integral action).

In summary, we can operate closer to the capacity constraint of the butane
splitter (reduce the back off) and hence increase the throughput when dynamic
degrees of freedom (inventories) are used.

4.4 Analysis of use of dynamic degrees of freedom

In this section, the single-loop with ratio control scheme (Alt. 1D in Section 4.2)
is analyzed in more detail. The main reason is to later use the results to estimate
the required buffer volume for dynamic degrees of freedom (Section 4.5). The
dynamic degrees of freedom are either the inventory set point (¥5) or the bias ad-
justment (qo), but here we only consider gy.

To make the control structure in Figure 4.2(a) clearer, consider a similar struc-
ture, which consists of only one unit, or more precisely, a process unit (G) fol-
lowed by an inventory (Gy), as displayed in Figure 4.4. The outflow g from the
inventory is assumed to be the bottleneck flow that should be tightly controlled.
However, g cannot be set freely because it is already used for level control. Thus,
to improve the dynamic response, we add a bias term go which is set in proportion
to the net feed flow gr, computed by the bottleneck controller. This single-loop
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v

with static ratio control structure can be viewed as feedforward control combined
with feedback, where the flows in downstream units are increased proportionally
to the feed rate gr. This idea is also used sometimes by skilled operators, e.g.
during start-up of a plant. We will now analyze this system in more detail.

The mass balance for the holdup volume V', assuming constant density, is

av

a - 4.4
o —dv—4s (4.4)

where gy is the inflow and ¢p is the outflow (see Figure 4.4). Upon taking the
Laplace transform and introducing deviation variables, we get

1

N

V(s)=~(qr —qa) (4.5)

Thus, the transfer function for the inventory is Gy (s) = % Next, assume that the
inlet flow to the buffer volume gy is given by

qy = G(s) - qr (4.6)

where G is the process transfer function for the upstream process between the feed
and the buffer volume. The net feed flow g is defined as

qF =4Fu+4qFd 4.7)

where gr,, is the flow contribution from the bottleneck (flow) controller and gz 4
is an unmeasured disturbance in the flow. The bottleneck flow ¢p is given by the
level controller with transfer function Ky (s) plus the ratio (bias) contribution go,

g8 =Ky (s)(V =V;)+qo (4.8)
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Figure 4.5: Corresponding block diagram of Figure 4.4 in the Laplace domain. g
(bias) and V§ (inventory set point) are the dynamic degrees of freedom for control
of the bottleneck flow ¢5.

where V; is the set point for the inventory volume. Note that we want the level con-
troller to be a “slow” (averaging) level controller, because otherwise no exploita-
tion of the holdup volume can be obtained. In most cases, we use a proportional-
only controller, where Ky (s) = 1/1y (a constant). Typically, to be able to exploit
all the volume, 7y is chosen equal to the nominal residence time (V' /q) of a half-full
tank (Skogestad, 2006).

The corresponding block diagram of the control structure in Figure 4.4 is given
in Figure 4.5. The block Kp is the bottleneck flow controller (FC in Figure 4.4),
Ky is the level controller (LC in Figure 4.4) and K, is the ratio (bias) controller.
The block Gy gives the closed-loop transfer function from the flow into the inven-
tory gy to the bottleneck flow g and consists of the buffer volume plus the level
controller. This block also has the two dynamic degrees for bottleneck control as
inputs, namely V5 and gq.

Without active bottleneck control

With only the inventory controller (i.e., without the bottleneck control active, Kp =
0) we get from the block diagram (in deviation variables)

Ky GyG 1 Ky

_ Y g — 2V 4.9

B=11k6, " 1ikG T 1kG (4.9)
Gy G Gy Ky Gy

-7 - . IV 4.10

1 +KVGV qr 1 —|—KVGV q0 T 1 +KVGV § ( )



90 Dynamic degrees of freedom for tighter bottleneck control

Introducing Gy (s) = 1/s gives

Ky G Ky Kys
- : go— % 411
%= 7Ky qF+s+KV TR (4.1
G 1 Ky
y = qr— - 7, 4.12
stk T STK, q°+s+KV s (4.12)

The steady-state effect is obtained by setting s = 0. Thus, we note, as expected,
that only gr has a steady-state effect on the bottleneck flow ¢gp.
For the further analysis, we assume that the process G(s) is first-order with

gain K, and time constant 7

K,
G= 4.13
Tgs+ 1 ( )

We assume that the level controller is a proportional controller

K2 — (4.14)

Now, Equations (4.11) and (4.12) become:

K. s s

= . -qo — -V, 4.15

95 (TGS—1— 1)(TVS—{— 1) qr+ s+ 1 90 s+ 1 y ( )
K.ty Ty

_ O — . 4 4.16

(tgs+1)(tps+1) r s+ 1 qO+TVs—|—1 * (4.16)

The effective delay from gz to g in this simple case with PI control is, using the
half rule (Skogestad, 2003), Oer = min( 4, % ). From Equation (4.15) and (4.16),
the block Gy in Figure 4.5 is summarized in Table 4.2. The transfer functions
given in Table 4.2 are of interest also for MPC.

qv g0 Vs
l l !
1 TS —S N
Tys+1 Tys+1 ’L'VSI—{—I 9B
Ty — Ty
Tys+1 Trs+1 Trs+1 —V

Table 4.2: Block Gy in Figure 4.5 with Gy (s) = 1 /s and Ky (s) = 1 /7y (P-control).

4.5 Analysis of single-loop with ratio control

In this section, the objective is to find the required buffer tank volume V,;,. In
principle, this can be done by either dynamic simulation or analytically. Here we
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choose to use the single-loop with ratio control result from the previous section to
derive an analytical expression for the required inventory to find an estimate. The
most common control structure for dynamic degrees of freedom would probably be
MPC, but as shown in the introductory example (Figure 4.4), the inventory volume
variations in these two control structure were similar (see also Tables 4.4 and 4.5),
although they will depend on the MPC tuning. Note that J” denotes the volume of
the liquid in the tank and V;,, is the actual tank volume.

4.5.1 Developing transfer functions for single-loop with ratio control

Consider Figure 4.4, with one unit followed by a volume where its inventory is
exploited dynamically by single-loop with ratio control structure.

Response with ”perfect” bias adjustment (ratio controller)

We assume “perfect” static bias adjustment where a feed change is accomplished
by a corresponding relative change in downstream flows. This corresponds to the
static bias adjustment

q0 = K qru (4.17)

where K is the nominal steady-state ratio Agg/Aqgr,,. If there are no flow splits or
junctions between the feed and the bottleneck unit, then K, = 1. We now want to
study the effect of adding the bias ratio adjustment. We assume that the inventory
set point is constant (V5 = 0). Then, from Equation (4.15), the effect of gr, and
qr.q4 on the bottleneck flow gp is

1+ tys(tgs+1) 1
K. qp, -
TyS + 1)(1'(;5‘—1— 1) IFu (

(
= h‘]BqRu (S) “qFut hquF.d (S) “qFd

‘Kr “qrd

95 s+ 1) (t6s + 1) (4.18)

Note that there is a “direct effect” from gr, to gp, because of the bias from the
static ratio controller. Thus, the effective delay from gr, to gp 1s zero and “per-
fect” control of g is in theory possible. However, one must take into account the
variations in g, and the volume (level) constraints.

Similarly, from Equation (4.16), the effect of gr, and gr, on the volume
(level) V' is

—TGTysS Ty

V= Ky G+
(s + D(tgs+ 1) I T s D) (tos + 1

sKeara (419
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Response with “perfect” bottleneck flow controller

To study the expected variations in volume (level), assume a “perfect” bottleneck
flow controller Kp that gives gp = ¢gp at all times. This assumption requires the
fastest variations in the manipulated input may be expected to lead to the worst-
case variation in inventory (V') with the given inventory controller tuning.

Setting gp = gp s (perfect bottleneck control), the resulting change in the feed
rate from (4.18) is:

. 1 hCIBQF,d
qru = h 4B — h— "qrd
4BYFu 4BY4Fu (420)
_(ws+1D(tgs+1) T B 1
l+1tys(tgs+1) K, 1Bs = +1ps(tgs+1) Ird

and from Equations (4.19) and (4.20), the resulting change in the inventory with
perfect bottleneck control is:

—TGTys Ty
V= .
1 —{—TVS(TGs—I— 1) 9B+

= thB,s "qBs+ hVCIF,d "qF.d

K,
1+ 1ps(tgs+ 1) rd (4.21)

We note that a feed disturbance gr 4 has a steady-state effect on the volume (level)
because we use a P-only level controller. However, these should be within the
allowed bounds when we use an averaging (smooth) level controller when gain
Ky =1/t = |Aqo|/|AVmax| (Skogestad, 2006, Eq.25). A bottleneck flow change
qB,s has no steady-state effect of J/, but there will be dynamic variations, as studied
in more detail below.

4.5.2 Required inventory volume for single unit

The following results are for a single unit (Figure 4.4).

Requirements for bottleneck flow gz

From (4.21), the transfer function from bottleneck flow changes (gp ) to volume
changes (V') with “perfect” bottleneck control is

—125

1 Ty
h = h =/ ==,/ — 4.22
Vs 252 4+ 218s+ 1 where t w66 2\ 16 (4.22)
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The peak magnitude for Ay, occurs at frequency @pear = % = 1/\/T¢Tr (see
Appendix 4.A for details) and we get
_Tzwpeak

‘AVpeak,B‘ — 5
\/(1 — 0 1T+ (20pearTE)?

-|Agp s =16 |Aqp |

T
2C ’ qB,S

(4.23)
This means that the peak of |V| is equal to 7g - |Agp| and is independent of the
level tuning 7. This somewhat surprising result follows because of the assumption
of perfect bottleneck control, which means that the bottleneck flow controller will
counteract the level controller actions.

Requirements for upstream disturbances g 4

Consider next unmeasured disturbances in the feed rate. From (4.21), assuming no
overshoot (i.e. { > 1 or 1ty > 41), the largest volume change is found at steady-
state and is given by

K.ty
1+ TVS(TGS+ 1) =0

\AV peakd| = - |AqFa| = Koty - |AqF 4l (4.24)
Note here that the volume variation depends directly on the level tuning 7y, so we
may use (4.24) to derive the slowest allowed level tuning.

Acceptable variations in feed rate g5,

We want to avoid too large variations in the feed rate caused by bottleneck set
point changes. The transfer function from gp to gr, is given by 1/hy,q, . (s)
(Equation (4.20)). Let us assume gp ¢ can vary sinusoidally and that we do not
want more than 50% overshoot in the manipulated feed rate, that is, |qr./qF.ss| <

M = 1.5 at all frequencies, where the steady-state change is gr s = gp,s/K;. To
achieve this we must require

TG

Ty >
Y= M-

— 21 (4.25)

as derived in Appendix 4.B.

4.5.3 Required inventory volume for units in series

We here consider units in series, for example, as shown for the distillation columns
in Figure 4.3. In this case, the above expressions do not strictly hold, even for the
case when we can approximate the flow dynamics in each part of the process by
a first-order response with time constant 7. Consider three units in series, where
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1 is the first unit, 2 is the intermediate unit, and 3 is the last unit upstream of the
bottleneck.

The above expressions do not hold because the counteracting effect of the level
control in upstream units is neglected. Nevertheless, let as assume that with perfect
bottleneck control the resulting feed rate change is given by (4.20), except that we
must use the dynamics for the last unit (unit 3). We then have for the effect of gp
ongry:

qFu _ (ty3s+ 1)(’L'G73S +1) 1 (4.26)
qs 1+ 13s(t635+1) K3
This is the flow rate change into the first unit (unit 1). Note that if we assume
that 7y 3 >> 7 3 then this transfer function approaches (1/K,.3), which means that
gr.. changes to its steady-state value (which is ¢p ¢/K}.3) and stays there (with no
overshoot). We assume in the following that this holds, that is

qriu = 4ru = (I/Kr,?a)QB,s (427)

For the other units we similarly get if we neglect the counteracting effect of the
upstream level controller.

gr2u =q01 = (K1 /Kr3)qB.s (4.28)
gr3u =q02 = (K2/Kr3)qB.s (4.29)
qFau =403 =By (4.30)

Requirements for bottleneck flow g

In (4.23), Agp s 1s the flow into the next bottleneck unit (unit 4 in our case). With
our assumptions of immediate flow changes, the same expression applies also to
the other units and we have that the expected maximum change in inventory vol-
ume is

\AVpeak,B.il = TG,i- AgB,i (4.31)

where Agp; = (K:.i/K:3) - Agps is the steady-state flow change in tank 7 resulting
from a change in the bottleneck flow. We note from the derivation that this formula
is only approximate, but nevertheless we find by comparing with simulations that
it holds quite well (see below).

Requirements for upstream disturbances

The maximum volume change for disturbances occurs at steady state, which means
that (4.24) will hold well also for units in series. The general expression for tank i
becomes

|AVpeak,d7i| =T, Adai (4.32)
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where Agg; 1s the effect of a disturbance on the flow in tank i. For a feed flow
disturbance we have Agy; = K,.; - Aqr .

Acceptable variation in feed rate g5,

The feed rate change is primarily determined by the dynamics in the last unit,
see (4.26). Equation (4.25) therefore applies to the last unit only, that is, for the
last unit (here denoted 3) we must require to have an overshoot in the feed rate of
less than a factor M for sinusoidal variations in gp s:

Ty > 6. (4.33)

M—1

which is equal to 2753 when M = 1.5 (50% overshoot).

4.5.4 Example of required inventory size using single-loop with ratio
control

To check the required inventory, we compare for the introductory example the
observed volume variations with the estimated volume variation derived in (4.31)
and (4.32).

Example 4.1 (continued). Required buffer volume for four distillation columns
in series. The relevant flow dynamics for each column is approximated by a first-
order transfer function K,./(tgs + 1) where 1¢ is found from simulations. The time
constant Tg was found as the time for the flow rate into the inventory to reach 63%
of its steady-state change following a step change in column feed rate (outflow of
previous inventory). The time constants and gains are summarized in Table 4.3.
For example, following a step change in the deethanizer column feed rate, it takes
T = 0.85 min before the liquid flow into the column reboiler has changed 63%.

Inventory TG [min] | Ty [min] K,

1. Deethanizer sump (Mp) 0.85 2.7 0.602
2. Depropanizer sump (Mp) 3.9 33 0.254
3. Debutanizer condenser (Mp) 1.2 7.7 0.209

Table 4.3: Time constant flow change (7g, approximated), inventory (7y) and the
static ratio gain (K, for the distillation columns in Example 4.1.

The observed variations in the volumes (deethanizer Mg, depropanizer My and
debutanizer Mp) are normalized to find AV /| Aqr 4 and AV | Aqp s and are compared
with the estimated volume variations given by (4.31) and (4.32). For example,
Jor the deethanizer the estimate from (4.31) is |AV|/|Aqps| = T6.1 - K1 /K3 =
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0.85 min-0.602/0.209 = 2.4 min, and from (4.32) the estimate is |AV|/|Aqrq| =
Tv,1K,1 = 2.7 min-0.602 = 1.6 min. From Table 4.4 we see that the estimated vol-
ume variations compare well with the observed variations. There is some differ-
ence for the bottleneck set point change, but this is expected since the time constant
Tg is only an approximation. For the feed rate disturbance the steady-state volume
is the same as estimated, but there are slight overshoots in the volume. This is
caused by the overshoot in the manipulated feed rate qr.,, (see Figure 4.4(D)).

1. Deethanizer | 2. Depropanizer | 3. Debutanizer
Mp [min] Mp [min] Mp [min]

Observed at f = oo 0 0 0.026
il | Observed max 0.69 1.4 1.8
' Estimated max (4.31) 2.4 4.7 1.2
Observed at f = oo 1.6 0.83 1.6
\Alilﬂ Observed max 1.7 0.97 1.8
7 Estimated max (4.32) 1.6 0.84 1.6

Table 4.4: Calculated and observed volumes variations in Example 4.1 for single-
loop with static bias adjustment (Alternative 1D in Section 4.2).

The corresponding volume variations with MPC are given in Table 4.5. The
inventory usage is about the same initially for the two control alternatives, but the
MPC has integral action so the inventories return to their set points. However,
note that the variations depend on the specific set points weights and penalty on
MV moves used in MPC.

1. Deethanizer | 2. Depropanizer | 3. Debutanizer
Mp [min] Mp[min] Mp[min]
|av| | Observed at ¢ = oo 0 0 0
Agps| | Observed max 2.2 3.7 3.0
|AV| Observed at f = oo 0 0 0
1Aqral | Observed max 1.2 0.86 1.6

Table 4.5: Observed volumes variations in Example 4.1 with MPC (Alternative 4
in Section 4.2).

The advantages of including dynamic degrees of freedom in throughput max-
imization are clear. Including buffer volumes leads to tighter control at the bot-
tleneck unit and less back off is required under presence of disturbances, leading
to improvement of the plant throughput. The simple formulas developed here can
be used to determine the buffer tank volume in plant design. For upstream distur-
bances the required buffer volume is given by (4.32), and for bottleneck set point
changes the required buffer volume is given by (4.31); see also the discussion.
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4.6 Discussion

Effect of level control tuning

In the above simulations, the level controllers were actually quite tightly tuned
(Figure 4.4). A tight inventory controller counteracts the bias added to the inven-
tory output (go) and this leads to poorer bottleneck control. It may also lead to
some overshoot in g, because the flow controller must generate a larger signal
to go. On the other hand, with a smoother tuning there is a risk for overfilling or
emptying the tank. Thus, tuning of the level controller is a trade-off. This is illus-
trated by simulation in Figure 4.6 where smoother level tunings are used (7, about
7 times larger). The results are summarized in Table 4.6. We see, as expected, that
the volume variations are significantly larger, but the control of the bottleneck is
better. There is now no overshoot in g for the ratio structure. Again, the observed
and estimated volume variations are close (Table 4.6).

1. Deethanizer | 2. Depropanizer | 3. Debutanizer
Mp [min] Mp [min] Mp [min]

Observed at f = oo 0 0.02 0.05

‘E]ZL‘ Observed max 1.42 3.2 2.5
" | Estimated max (4.31) 2.4 4.7 1.2
Observed at f = oo 12 5.1 10

| ingA Observed max 12 5.1 10
’ Estimated max (4.32) 12 5.1 10

Table 4.6: Calculated and observed volumes variations for the introductory exam-
ple with smooth inventory tunings. The control structure is single-loop with static
bias adjustment.

Finally, note that with smoother level tunings, manual or single-loop bottle-
neck control is poorer, because it then takes longer time for the flow rate change
to move through the system. An important conclusion is that for manual or single-
loop bottleneck control we should have tight the level control on the path from
the feed (TPM). However, the conclusion is opposite of we make use of the levels
as dynamic degrees of freedom. In practice, this may imply that we may need to
detune the level loops if we want to use the levels as dynamic degrees of freedom.

Bias or set point adjustment?

Use of the inventories as dynamic degrees of freedom can be realized with either
bias adjustment (used here for the ratio scheme) or with set point changes (used
here in MPC). Use of bias adjustment does not affect the control system directly,
and the inventory set point is still available to operators. However, it may not be
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Figure 4.6: Same as in Figure 4.4, but with slower (smoother) inventory control.
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possible in practice to include bias adjustment because it is not available in the
digital control system (DCS). On the other hand, with use of set point adjustment,
the use of inventories is very dependent on the inventory tuning.

Placement of the buffer volume

When the feed is the throughput manipulator, the inventory must be placed (and
exploited) upstream the bottleneck on the path from the throughput manipulator.
Alternatively, they may be placed at the path from important disturbances. If the
bottleneck is fixed, then all inventories should be upstream the bottleneck. If the
bottleneck is moving, then inventories should be distributed in the plant.

Variations in static ratio gain

The single-loop with ratio control scheme is sensitive to errors in the static ratio
gains. This follows because the static ratio gain gives a feedforward control action
and feedforward is in general sensitive to modelling errors. In particular, with a
too small value of K., one will get an overshoot in the feed rate (gr).

4.7 Summary: Implications for design of inventory tanks

We have derived two formulas, (4.31) and (4.32), for the expected volume varia-
tions when inventories are used as dynamic degrees of freedom to achieve bottle-
neck control. The validity of (4.32) and to some extent (4.31) have been confirmed
by simulations. We here summarize the practical use of these formulas for design
of inventory tanks.

Tank size

A desired change in tank throughput Agp results in a volume variation AV and
from (4.31) we have

AV | = 16+ |Ags| (4.34)

where 7 is the time constant for “refilling” the tank. In practice, 7 is the time
for the flow rate into V' to reach 63% of its steady-state change following a step in
flow rate out of the (closest) upstream inventory. This is for the normal case when
the TPM is upstream the bottleneck; the same formula applies also when it is
downstream. For design purposes, the flow change |Agp| is the (steady-state) flow
change through tank resulting from the largest expected throughput (bottleneck
flow) change. (Here, “largest change” should be evaluated over a time period
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shorter than 75, approximately, because slower changes do not pose a problem in
terms of dynamic changes in tank volume).

Equation (4.34) is useful for sizing the tank (inventory volume). In words,
(4.34) says that the expected volume variation for an inventory used for bottleneck
control (V [m?]) is approximately the expected variation in flow through the unit
(Agp [m? /min]) multiplied by the time constant (7 [min]) for the flow dynamics
for “refilling” V' from the upstream inventory. As expected, a large tank is required
if 75 is large.

For our distillation columns process, we get from (4.34) the following mini-
mum inventories if we assume a 5% desired change in the throughput (bottleneck
flow). Note that we here give the inventory in kmol (M) rather than in m> (V).

Deethanizer: Mp = 0.85 min-29.4 kmol /min-0.05 = 1.2 kmol
Depropanizer: Mg = 3.9 min- 11.6 kmol /min-0.05 = 2.3 kmol
Debutanizer: Mp = 1.2 min- 8.1 kmol /min - 0.05 = 0.49 kmol

For comparison, the actual holdups are 121 kmol, 38 kmol and 62 kmol, respec-
tively, which is from about 40 to 200 times larger than the minimum. This explains
why the variations in the inventories for the first 200 min in the simulations (Fig-
ure 4.4 and Figure 4.6) are so small for the cases 3 and 4 where the inventories are
used as degrees of freedom for bottleneck control.

Level control tuning

Next consider (4.32), which involves the closed-loop time constant (7)) for the
level control loop in the inventory tank. We get

| AV peak| = v - |Aqa| (4.35)

where Ag, is the flow rate change through the tank in question. Equation (4.35)
can be used to tune the level controller, and then gives the well-known formula for
smooth (averaging) level control. To see this, note that for a nominally half-full
tank we must require |AVpeqk| < 0.5 Viank to avoid overfilling or emptying. If we
furthermore assume that the maximum expected change in flow through the tank
is 50% of the nominal flow, then g; = 0.5 ¢. Inserting into (4.35) then gives

.
Ty < Sk (4.36)
q

where 7y is the closed-loop time constant for the level control loop. Thus, selecting
Ty = Viank/q (the well-known value for smooth level control, (e.g. Skogestad,
2006), gives the slowest possible controller tuning subject to not overfilling or
emptying the tank for 50% flow rate changes.
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Applying the formula Ty = Viunx /g to our distillation column example gives
(the factor 2 1s because we assume that the tank is nominally half full).

Deethanizer: 1y =2 - 121 kmol /(29.4 + 15.8) kmol /min = 5.4 min
Depropanizer: 7y = 238 kmol /11.6 kmol /min = 6.6 min
Debutanizer: 7y =262 kmol /8.1 kmol /min = 15.3 min

The actual values used in the simulations were 2.7 min, 3.3 min and 7.7 min,
respectively, which is half of the values given above and results in smaller varia-
tions in the volumes. In addition, the flow rate disturbance was only 8%, and this
is why the variations in the inventories for the last 200 min in the simulations were
so small. In the later simulations (Figure 4.6), T was increased by about a fac-
tor 7 in all three level loops. As expected, this resulted in much larger variations
in the inventories (about 7 times larger for the last 200 min of simulations), but
it also resulted in better bottleneck control (for ratio control and MPC where the
inventories are used as dynamic degrees of freedom).

We have also derived a formula (4.33) which applies for the level tuning in the
last tank upstream of the bottleneck. It says that we should have 1) for the last
tank significantly larger than 7. In our case we have TG = 1.2 min for the last unit
upstream of the bottleneck (debutanizer), whereas 7y = 7.7 min for the last tank,
so this is satisfied.

By comparing Figure 4.4(a) and 4.6(a) we note that bottleneck control is only
weakly dependent on the inventory control tuning (value of 7.) for cases 3 and 4
where the inventories are used as degrees of freedom for bottleneck control (bot-
tleneck control is slightly better in Figure 4.6(a) with smoother inventory control).
This is good, because it means that the inventory controllers (value of 7.) can be
tuned independently of the plantwide issue of throughput control.

On the other hand, for cases 1 and 2 where we only use the feed rate as a
degree of freedom, bottleneck control is much better with tight inventory control
(Figure 4.4(a)) because the effective deadtime from the feed flow to the bottleneck
is then reduced. On the other hand, tight inventory control results in little damping
of flow disturbances. Thus, there will be a trade-off between wanting tight inven-
tory control (for good bottleneck control) and slow inventory control (to dampen
flow disturbances).

4.8 Conclusion

Tight bottleneck control is important for maximizing throughput and avoiding eco-
nomic losses. However, achieving tight bottleneck control in practice is not so sim-
ple because the throughput manipulator is often located away from the bottleneck
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unit (with a large effective delay O.f). In this paper we propose to reduce the effec-
tive delay by using dynamic degrees of freedom. The main idea is as follows: To
change the flow through the bottleneck, for example, to increase it, we temporar-
ily reduce the inventory in the upstream holdup volume. However, this inventory
needs to be kept within bounds, so if we want to increase the bottleneck flow per-
manently, we need to increase the flow into this part of the process and so on, all
the way back to the feed (throughput manipulator). The simplest approach is to
make a control system where all flows upstream the bottleneck are increased si-
multaneously by the same relative amount, like a single-loop bottleneck controller
that adjusts the feed flow, combined with ratio controllers that adjust the dynamic
degrees of freedom. In this paper a static bias adjustment is studied. Two formulas
(4.31) and (4.32) are derived for the expected volume variations when inventories
are used as dynamic degrees of freedom to achieve bottleneck control. These two
formulas can be used for inventory design purposes.
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4.A Derivation of the peak frequency for second order
transfer function
4.A.1 Peak frequency for a second order system

The transfer function 4y, is of second order. To analyze the transfer function,
consider first a general second order system

G(s) £

T 7252 +278s+1
where K is gain of the second order model, 7 is the system time constant and { is
the damping factor. The magnitude |G| as a function of frequency  is given by
(e.g., Seborg et al. (1989, eq. 14-35a))

(4.37)

G| = £ (4.38)
V(1 —0?212)2 4+ (2018)?

The transfer function hy,, = (—t6trs)/(1 + trs(tgs + 1)) has a differentia-
tion (s) in the numerator and a second order system in the denominator. The differ-
entiation has a slope of +1 in the whole frequency range. The peak frequencies of
hy,p s 1s where the derivative with respect to frequency are zero, thus the denomina-
tor should have slope —1 in this point, since the integrator in the numerator always
has the slope +1.

The phase to a second order system is always —90° at @ = %, see Seborg et al.
(1989, Figure 14.3). For stable minimum-phase systems the slope is approximately
—1 at ¢ = —90° (Skogestad and Postlethwaite, 2005, Eq. 2.12), and this is a
commonly used approximation. Thus, the peak frequency of &y, is located at

the break frequency, ®peqar = % The peak frequency can also be found analytically
by differentiating (4.22) with respect to @ and let the derivative be zero, as shown
in Appendix 4.A.2. Note that in this case the peak frequency is independent of the
damping factor (.

4.A.2 Analytic derivation of peak frequency

Here the peak frequency for Equation (4.22) is derived analytically and we confirm
the arguments in Section 4.A.1. To evaluate the magnitude of 7y, , replace s with
join (4.22)

—1%jw
h = 4.39
Vs 2(jo)2+2lto+1 (4.39)
The magnitude is given by
T’
gy | = (4.40)

V(1 =120%)2+ (20 tw)?
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Differentiation with respect to @

d|hygg,| u\' v -v—v-u
P (;) =7 where (4.41)
u=10
y=[(1-12w?)?+(21lw)*)? = n2
du )
do "
dv 1 1dn
— = —n 2
do 2 do
4 _((1- 2P + ott))
do
= 4?0 +417"0’ + 87°%w
d 1
ﬁ = zn'% (—4t’0 +47% 0’ + 872 8% 0)

= (—27%0 +27%0® + 4722 w) 2

Inserting for u and v in (4.41) gives

dlhyg.| 1202 — (—21%0 +27%0° +4120%0) 12 - TPo
= (4.42)
do n
Multiply numerator and denominator with n gives
d\h n— (2720 427w’ + 472 0) - T*0
’ V‘IB,S‘ _ n ( + . -+ C ) (443)
dw 0

We want to find the peak frequency, which corresponds to setting the derivative to
zero. Here it is sufficient to evaluate the numerator in Equation (4.43). This yield

n— (=270 + 210’ +41*%0) - P00 =0

1 -27%0° + T*0* + 410 + 27° 0 - 21%0* — 477 0? = 0

1—t*w* =0
1
4_
O =n
1
O
T

Hence, the peak frequency for Ay, is derived analytically to be @ = % = \/TIGTV
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4.B Analytic derivation of acceptable variations in feed
rate

The variations in feed rate caused by bottleneck set point changes is given by (4.20)
and we have |qru/qFss| = |qruKr/qB,s| Where

qFJ,K,, _ TVTGS2 + (TV + Tg)s +1

5 (4.44)
4B.s Ty TS~ + Tys+ 1
which can be written as a second order system
qr.K- _ Ts% + ZTCnS +1 with
dB.s T2+ 2185+ 1
T=+/TgTy
¢ CwHt 1 T_VTV+TG>C (4.45)
n_ZN/TGTV_Z T T¢ d
1 Ty
Ca = 5 / o
The magnitude of a second-order system is given in Equation (4.38).
|qp,u-1<r V=P Ratg,)? wa6)
qB.s V(1 —0?12)2+ 2wts,)? '

From Section 4.A.1, a stable minimum-phase, second-order system has its magni-
tude peak at frequency @ = 1/7 = 1/,/T¢Ty and inserting this gives:

K Ty +17g T
‘ dru B _ VW _ gL 16 (4.47)
4B.s

max /% TV
TG

Let M denote the allowed overshoot (e.g. M = 1.5 if us allow 50% overshoot).
Then we must require

-K
‘ Aru Bl (4.48)
qdB.s
and from (4.47) we get
1+5% <y (4.49)
Ty
TG
Ty >
gV

For example, with M = 1.5 we get 1 > 215.



Chapter 5

Coordinator MPC for
maximizing plant throughput

Comput. Chem. Eng. 32(1-2), 195-204 (2008)

In many cases economic optimal operation is the same as maximum
plant throughput, which is the same as maximum flow through the bot-
tleneck(s). This insight may greatly simplify implementation. In this
paper, we consider the case where the bottlenecks may move, with par-
allel flows that give rise to multiple bottlenecks and with crossover flows
as extra degrees of freedom. With the assumption that the flow through
the network is represented by a set of units with linear flow connections,
the maximum throughput problem is then a linear programming (LP)
problem. We propose to implement maximum throughput by using a
coordinator model predictive controller (MPC). Use of MPC to solve
the LP has the benefit of allowing for a coordinated dynamic implemen-
tation. The constraints for the coordinator MPC are the maximum flows
through the individual units. These may change with time and a key idea
is that they can be obtained with almost no extra effort using the models
in the existing local MPCs. The coordinator MPC has been tested on a
dynamic simulator for parts of the Kérsto gas plant and performs well
for the simulated challenges.

5.1 Introduction

Real-time optimization (RTO) offers a direct method of maximizing an economic
objective function. Most RTO systems are based on detailed nonlinear steady-state
models of the entire plant, combined with data reconciliation to update key param-
eters, such as feed compositions and efficiency factors in units, see for example
Marlin and Hrymak (1997). Typically, the RTO application reoptimizes and up-
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dates on an hourly basis the set points for the lower-layer control system, which
may consists of set points of local MPCs based on simple linear dynamic mod-
els. A steady-state RTO is not sufficient if there are frequent changes in active
constraints of large economic importance. For example, this could be the case if
the throughput bottleneck in a plant moves frequently, which is the case for the
application studied in this paper. At least in theory, it is then more suitable to use
dynamic optimization with a nonlinear model, which may be realized using dy-
namic RTO (DRTO) or nonlinear MPC with an economic objective (Tosukhowong
et al., 2004; Kadam et al., 2003; Strand, 1991). However, a centralized dynamic
optimization of the entire plant is undesirable (Lu, 2003). An alternative is to use
local unit-based MPCs, but the resulting steady-state target calculation may be far
from optimal (Havlena and Lu, 2005). Coordination of multiple local MPCs has
been studied by several authors. Cheng et al. (2004, 2006, 2007) have suggested to
approach this “coordination” problem by identifying appropriate interactions for
linking constraints to find the steady-state targets for the local MPCs. Rawlings
and Stewart (2007) discuss a cooperative distributed MPC framework, where the
local MPC objective functions are modified to achieve systemwide control objec-
tives. Ying and Joseph (1999) propose a two-stage MPC complement that track
changes in the optimum caused by disturbances. The approach permits dynamic
tracking of the optimum which is not achievable with a steady-state RTO used in
conjunction with a single-stage MPC.

In this paper, we present a different and simpler solution that achieves eco-
nomic optimal operation without any of these complexities. This solution applies
to the common case where prices and market conditions are such that economic
optimal operation of the plant is the same as maximizing plant throughput. The
main objective is then to maximize the feed to the plant, subject to achieving fea-
sible operation (satisfying operational constraints in all units). This insight may be
used to implement optimal operation, without the need for dynamic optimization
based on a detailed model of the entire plant.

The max-flow min-cut theorem (Ford and Fulkerson, 1962) from linear net-
work theory states that the maximum throughput in a linear network is limited by
the “bottleneck(s)” of the network (Aske et al., 2007). In order to maximize the
throughput, the flow at the bottlenecks should always be at their maximum. In
particular, if the actual flow at the bottleneck is not at its maximum at any given
time, then this gives a loss in production that can never be recovered (sometimes
referred to as a ’lost opportunity”).

The throughput manipulators (TPMs) are the degrees of freedom available for
implementing maximum throughput. They affect the flow through the entire plant
(or at least in more than one unit), and therefore cannot be used to control an in-
dividual unit or objective. Ideally, in terms of maximizing plant production and
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Figure 5.1: The coordinator uses the throughput manipulators (¢ = TPMs) to
control the remaining capacity () = R) in the units.

minimizing the back off, the TPM should be located at the bottleneck (Aske et al.,
2007). However, the bottleneck may move depending on plant operating condi-
tions (e.g. feed composition), and it is generally very difficult to change the TPM,
once a decision on its location has been made. The reason is that the location of the
TPM affects the degrees of freedom available for local control, and thus strongly
affects the structure of the local control systems and in particular the structure of
the inventory control system (Buckley, 1964; Price and Georgakis, 1993). The
TPM will therefore generally be located away from the bottleneck, for example at
the feed. For dynamic reasons it will then not be possible to achieve maximum
flow through the bottleneck at all times, and a loss in production is inevitable.

The use of a coordinator controller that uses the throughput manipulators (u€ =
TPMs) to control the remaining local capacity ()¢ = R = F! _— F') in the units as
illustrated in Figure 5.1. In the simplest case with a fixed bottleneck and feed rate
as the TPM, the coordinator may be a single-loop PI-controller with the feed rate
as the manipulated variable () and the bottleneck flow as the controlled variable
(°) (Skogestad, 2004). However, more generally the coordinator must be a mul-
tivariable controller. Note from Figure 5.1 that the “coordinator” and the “local”
controllers for the individual units are actually on the same level in the control
hierarchy, like in decentralized control. Nevertheless, the term coordinator is used
because the TPMs strongly affect all the units and because in general the coordina-
tor controller must be designed based on a flow network model of the entire plant.
An alternative to the decentralized structure is to combine all the local MPCs into
a large combined MPC application that include the throughput manipulators as
degrees of freedom.

Optimal operation corresponds to R = 0 in the bottleneck, but if the maximum
flow through the bottleneck is a hard constraint, then to avoid infeasibility (R < 0)
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Figure 5.2: Proposed control structure where the coordinator MPC receives infor-
mation from the local MPC about the remaining capacity (R) in the units.

dynamically, we need to “back off” from the optimal point

Back off (b)) =R, = F!  —F! (5.1)

max

More generally, the back off is the distance to the active constraint needed to avoid
dynamic infeasibility in the presence of disturbances, model errors, delay and other
sources for imperfect control (Narraway and Perkins, 1993,

Govatsmark and Skogestad, 2005). The back off is a “safety factor” and should
be obtained based on information about the disturbances and the expected control
performance.

In this paper, we consider cases where the bottlenecks may move and with
parallel trains that give rise to multiple bottlenecks and multiple throughput ma-
nipulators. This requires multivariable control and the proposed coordinator MPC
both identifies the bottlenecks and implements the optimal policy. The constraints
for the coordinator MPC are non-negative remaining capacities (R > b > 0) in all
units. The values of R may change with time and a key idea is that they can be
obtained with almost no extra effort using the existing local MPCs, as illustrated
in Figure 5.2.

The paper is organized as follows. Economic optimal operation and the special
case of maximum throughput is discussed in Section 5.2. Section 5.3 describes
the coordinator MPC in addition to the capacity calculations in the local MPCs.
Section 5.4 describes a dynamic simulation case study for a gas plant. A discussion
follows in Section 5.5 before the paper is concluded in Section 5.6.
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5.2 Maximum throughput as a special case of optimal op-
eration

Mathematically, the optimum is found by minimizing the costJ (i.e., maximize the
profit (-J)), subject to satisfying given specifications and model equations (f = 0)
and operational constraints (g < 0). At steady-state:

min J(x,u,d) (5.2)
s. t. f(x,u,d)=0
g(x,u,d) <0

Here u are the degrees of freedom (or manipulated variables, MVs), d the
disturbances and x the (dependent) state variables. The degrees of freedom are split
into those used for local control (') and the TPMs used for throughput coordinator

(),
!
u
u= L‘c} (5.3)
A typical profit function is
(-7) = 2.pp Py = 2P Fi= 2 po.- O (5.4)
j i k

where P; are the product flows, F; the feed flows, O, the utility duties (heating,
cooling, power), and p denote the prices.

In many cases, and especially when the product prices are high, optimal op-
eration of the plant (maximize -J) is the same as maximizing throughput. To
understand this, let /' denote the overall throughput in the plant, and assume that
all feed flows are set in proportion to F,

F; = kg, F (5.5)

Then, under the assumption of constant efficiency in the units (independent of
throughput) and assuming that all intensive (property) variables are constant, all
extensive variables (flows and heat duties) in the plant will scale with the through-
put F' e.g, Skogestad (1991). In particular, we have that

P;=kp;F; OQr = kol (5.6)

where the gains kp; and kg ; and are constants. Note from (5.6) that the gains may
be obtained from nominal (denoted 0) mass balance data:

kpj = Pjo/Fo; kri = Fo/Fo; kox = Oro/Fo (5.7)
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Substituting (5.5) and (5.6) into (5.4) gives

(-J) = (2[91’; ~kpj —ZPFi “kFi— Zka -kQ,k> F = pF (5.8)
J i k

where p is the operational profit per unit of feed F' processed. From the above
derivation, p is a constant for the case with constant efficiencies. We assume p > 0
such that we have a meaningful case where the products are worth more than the
feedstocks and utilities. Then, from (5.8) it is clear that maximizing the profit (-J)
is equivalent to maximizing the throughput . However, F' cannot go to infinity,
because the operational constraints (g < 0) related to achieving feasible operation
(indirectly) impose a maximum value for F'.

In practice, the gains kp; and kg and are not constant, because the efficiency
of the plant changes. Usually, operation becomes less efficient and p decreases
when F increases. Nevertheless, as long as p remains positive, d(-J) /dF = p > 0
is nonzero, and we have a constrained optimum with respect to the throughput F.
From (5.8) we see that p will remain positive and optimal operation is the same as
maximum throughput if the feed is available and product prices pp; are sufficiently
high compared to the prices of feeds and utilities.

5.3 Coordinator MPC for maximizing throughput

The overall feed rate (or more generally the throughput) affects all units in the
plant. For this reason, the throughput is usually not used as a degree of freedom for
control of any individual unit, but is instead left as an “unused” degree of freedom
to be set at the plant-wide level. Most commonly, the throughput manipulators
(u€) are set manually by the operator, but the objective here is to coordinate them
to achieve economic optimal operation.

It is assumed that the local controllers (e.g. local MPCs) are implemented on
the individual units. These adjust the local degrees of freedom #' such that the
operation is feasible. However, local feasibility requires that the feed rate to the
unit Fkl is below its maximum capacity, Fkl,m .- and one of the tasks of the plant-
wide coordinator is to make sure that this is satisfied. £, k] na Ay change depending
on disturbances (e.g. feed composition) and needs to be updated continuously.
One method is to use the already existing models in the local MPCs, as discussed
in Section 5.3.2.

5.3.1 The coordinator MPC

The steady-state optimization problem (5.2) can be simplified when the optimal
solution corresponds to maximizing plant throughput. Consider the steady-state
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optimization problem

max(-J) s.t. (5.9)
uC

Fl' = Gu* (5.10)

R=F _—F'>b>0 (5.11)

ufnz’n Suc S uzmx (512)

Here F' is a vector of local feeds to the units and R is a vector of remaining capaci-
ties in the units. If the objective is to maximize throughput with a single feed, then
(-J) = F. More generally, with different values of the feedstocks and products, the
profit function in (5.4) is used. G is a linear steady-state network model from the
throughput manipulators #¢ (independent feed and crossover flows) to all the local
flows F'. In order to achieve feasible flow through the network, it is necessary that
R > 0 in all units. However, to guarantee dynamic feasibility, an additional back
off from the capacity constraint may be required, which is represented by the vec-
tor b in (5.11). The main difference from the original optimization problem (5.2)
is that only u¢ (TPMs) are considered as degrees of freedom for the optimization
in (5.9)-(5.12) and that the original constraints for the units (f = 0,g < 0) are
replaced by a linear flow network and flow constraints (R > b).

It is assumed that the local controllers generate close-to optimal values for the
remaining degrees of freedom #/, while satisfying the original equality (f = 0)
and inequality constraints (g < 0). This implies that no coordination of the local
controllers is required, or more specifically that constant set points for the local
controllers give close to optimal operation. In other words, it is assumed that we
for the local units can identify “self-optimizing” controlled variables Skogestad
(20000). If this is not possible then centralized optimization (RTO or maybe even
DRTO) is required.

With the linear profit function (-J) in (5.4), the optimization problem in (5.9)-
(5.12) is an LP problem. The optimal solution to an LP problem is always at
constraints. This means that the number of active constraints in (5.11) and (5.12)
must be equal to the number of throughput manipulators, #¢. Note that an active
constraint in (5.11) corresponds to having R; = Frimx’k —Fkl = by, that is, unit £ is
a bottleneck. This agrees with the max-flow min-cut theorem of linear network
theory. However, to solve the LP problem, we will not make use of the max-flow

min-cut theorem.

The steady-state optimization problem in (5.9)-(5.12) can be extended to the
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dynamic optimization problem:

min (J—J)? + AT QM6 s t. (5.13)
F!' = Gyt (5.14)

R=F —F'>b>0 (5.15)

Uiy < u° < U (5.16)

Aulyi, < Aut < Auy,,, (5.17)

Maximum throughput under the presence of disturbances is dynamic in nature, and
here, Gy, 1s a linear dynamic model from »¢ (manipulated variables, MVs) to the
remaining capacity in each unit, R;. Obtaining the dynamic models may be time
consuming. However, it is possible to use simple mass balances to calculate the
steady-state gains of Gy, see (5.7).

The dynamic cost function (5.13) includes penalty on the MV moves to ensure
robustness and acceptable dynamic performance. The constraints are: back off on
capacity to each unit (5.15), MV high and low limits (5.16) and MV rate of change
limits (5.17). MV rate of change is mainly a safeguard for errors and is normally
not used for tuning.

The term AuT O, Au¢ makes the objective function quadratic, whereas the ob-
jective function in the original problem (5.9) is linear. To obtain a quadratic ob-
jective function that fits directly into the MPC software used here, we have used
a common trick of introducing a quadratic term (J —J;)?. The profit set point Jj
is high and unreachable with a lower priority than the capacity constraints. An
alternative approach would be to include a linear term in J in (5.13).

Standard MPC implementations perform at each time step two calculations
(Qin and Badgwell, 2003). First, the steady-state optimization problem with all
the constraints is solved to obtain a feasible steady-state solution. Second, the
dynamic problem is solved using the feasible targets obtained from the steady-
state calculation. In our case, the steady-state part gives a feasible set point for
the profit (or total flow) that replaces J; in the subsequent solution of the dynamic
problem. The dynamic terms involving Au“ do not matter in the steady-state part,
so the steady-state solution is identical to the LP problem in (5.9)-(5.12).

It is assumed that the local controllers (including local MPCs) are closed before
obtaining the dynamic flow model Gg,,. To ensure good performance, it is then
advisable that the coordinator operates with a longer time horizon than the local
MPCs.
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5.3.2 Capacity calculations using local MPCs

An important parameter for the coordinator is the maximum flow for the individual
(local) units, £ ,. A key idea in the present work is to obtain updated values
using on-line information (feedback) from the plant. Note that it is not critical that
the estimate of the maximum capacity is correct, except when the unit is actually
approaching its maximum capacity and the corresponding capacity constraint R =
E! . —F" > bbecomes active. The use of on-line information from the actual plant
will ensure that this is satisfied.

In simple cases, one may update the maximum capacity using the distance
(Aconstraint > 0) to a critical constraint in the unit,

Fnlmx — F' 4 ¢ Aconstraint

where ¢ is a constant and F! is the present flow through the unit. For example, for
a distillation column Aconstraint = Ap;uqx — Ap could be difference between the
pressure drop corresponding to flooding and the actual pressure drop.

In more complex cases, there may be more than one constraint that limits the
operation of the unit and thus its maximum capacity. MPC is often implemented
on the local units to improve dynamic performance and avoid complex logic. The
maximum feed for each unit k& can then be easily estimated using the already ex-
isting models and constraints in the local MPC applications. The only exception
may be that the model must be updated to include the feed to the unit, F/, as an
independent variable. The maximum feed to the unit & is then obtained by solving
the additional steady-state problem:

F{ e = max F{ (5.18)

! ol
gy

subject to the linear model equations and constraints of the local MPC, which is a
LP problem. Here “2 is the vector of manipulated variables in the local MPC, and
the optimization is subject to satisfying the linear constraints for the unit. To in-
clude past MV moves and disturbances, the end predictions of the variables should
be used instead of the present values.

5.4 Karste gas processing case study

The Karsto plant treats gas and condensate from central parts of the Norwegian
continental shelf. The products are dry gas, which is exported through pipelines,
and natural gas liquids (NGL) and condensate, which are exported by ships. The
Karsto plant plays a key role in the pipeline structure in the Norwegian Sea and
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Figure 5.3: The simulated parts of the Kéarste plant

therefore is maximum throughput usually the main objective. Also, from an iso-
lated Kérste point of view, the plant has relative low feed and energy costs and
high product prices that favor high throughputs. There are no recycles in the plant.
Usually, feed is available and can be manipulated within given limits.

The feed enters the plant from three different pipelines and the feed composi-
tion may change frequently in all three lines. Changes in feed compositions can
move the main bottleneck from one unit to another and affect the plant through-
put. The coordinator MPC approach has been tested with good results using the
Karste Whole Plant simulator. This is a dynamic simulator built in the software
D-SPICE®.

5.4.1 The case

To demonstrate the applicability of the coordinator MPC, we use a detailed sim-
ulator model of parts of the Karsto plant. To avoid the need for large computer
resources to run the process simulator, only parts of the whole plant are used in
the case study, see Figure 5.3. The selected parts include two fractionation trains,
T100 and T300. Both trains have a deethanizer, depropanizer, debutanizer and
a butane splitter. In addition T300 has two stabilizers in parallel. There are six
throughput manipulators () as indicated by valves in Figure 5.3: two main train
feeds, two liquid streams to the trains from the dew point control unit (DPCU), a
crossover from train T100 to T300, and a flow split for the parallel stabilizers in
train T300.

The local MPCs and the coordinator are implemented in Statoils SEPTIC*

*Statoil Estimation and Prediction Tool for Identification and Control
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MPC software (Strand and Sagli, 2003). Data exchange between the simulator and
the MPC applications is done by the built-in D-SPICE® OPC server. The detailed
dynamic simulator was used to obtain “experimental” step response models (Ggy,)
in the coordinator MPC. This approach has been found to work well in practice
(Strand and Sagli, 2003).

5.4.2 Implementation of the local MPCs

The main control objective for each column is to control the quality in the top
and bottom streams, by manipulating boil-up (V) and reflux flow (L). In addition
the column must be kept under surveillance to avoid overloading, which is an
important issue when maximizing throughput. Column differential pressure (Ap)
is used as an indicator of flooding (Kister, 1990). The remaining feed capacity for
each column (Ry) is calculated in the local MPC.

The LV-configuration with a temperature loop is used for regulatory control of
the columns (Skogestad, 2007), and the local MPCs are configured as follows:

CV (set point + constraint): Impurity of heavy key component

CV (set point + constraint): Impurity of light key component

CV (constraint): Column differential pressure

MYV: Reflux flow rate set point

MYV: Tray temperature set point in lower section

DV: Column feed flow

These M Vs correspond to u’ (local degrees of freedom), and CVs are the same
as /. The feed rate is a disturbance variable (DV) for the local MPC, and is used
as a degree of freedom when solving the extra LP problem to obtain the remaining
capacity (R) to be used by the coordinator. Some of the columns have additional
limitations that are included as CVs in the local MPC. The product qualities are de-
scribed as impurity of the key component and a logarithmic transformation is used
to linearize over the operating region (Skogestad, 1997). The high limits on the
product qualities are given by the maximum levels of impurity in the sales speci-
fications and the differential pressure high limit is placed just below the flooding
point.

The control specification priorities for solving the steady-state feasibility prob-
lem for the local MPC are as follows:

1. High limit differential pressure
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2. Impurity limits
3. Impurity set points

where 1 has the highest priority. The priority list is used in the steady state part in
the MPC solver and leads to relaxation of the impurity set points (and in worst case
limits) to avoid exceeding the differential pressure high limit (Strand and Sagli,
2003). By quality relaxation the column can handle the given feed rate without
flooding the column. The low-priority quality set points are not used when solving
the extra steady-state LP problem to obtain the remaining capacity R, because set
point deviations are acceptable if the alternative is feed reduction. In the dynamic
optimization part the constraints violations are handled by adding penalty terms to
the objective function.

The local MPC applications are built with experimental step response models
as described in Aske et al. (2005). The prediction horizon is 3 to 6 hours, which
is significantly longer than the closed-loop response time. The sample time in
the local MPC is set to 1 minute. From experience this is sufficiently fast for the
distillation column applications and is the actual sample time used in the plant
today.

5.4.3 The design and implementation of the coordinator MPC

The objective function for the coordinator is to maximize the total plant feed,
-J = F =Y F;, which is the sum of the train feeds and the flows from the DPCU
(FEEDT300VWA + 21FC5288VWA + 21FC5334VWA + 21FR1005VWA). The
CVs and M Vs for the coordinator MPC are:

* CV (high set point): Total feed flow F' to the plant (PLANT FEED).

* CVs (constraints): Remaining feed capacity Ry in columns, 10 in total (R-
ET100, R-PT100, R-BT100, R-BS100, R-STAB1, R-STAB2, R-ET300, R-
PT300, R-BT300, R-BS300)

* CV (constraint): T100 deethanizer sump level controller output (LC OUT-
LET)

* MV: Feed train 100 (21FR1005VWA)
* MV: Feed train 300 (FEEDT300VWA)
* MV: Feed from DPCU to train 100 (21FC5334VWA)

* MV: Feed from DPCU to train 300 (21FC5288VWA)
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* MV: Crossover flow from T100 to T300 (24FC5074VWA)
* MV: Stabilizers feed split (27FC3208VWA)

These MVs correspond to u¢ (coordinator degrees of freedom). The deetha-
nizer sump level controller output CV (gives the feed to PT100) is used to avoid
emptying or overfilling up the sump level in ET100 when manipulating the cross-
over. The total plant feed has a high unreachable set point with low priority. The
remaining feed capacity low limits, and high and low limits of the level controller
output have high priority.

Note that each train has two feeds; one train feed and one from the dew point
control unit (DPCU). The two feeds have different compositions, and this makes it
possible for the coordinator to adjust the feed composition, and thus adjust the load
to specific units. The two stabilizers are identical in the simulator, so the stabilizer
split (27FC3208VWA) will ensure equal load to the stabilizers. The coordinator
uses experimental step response models, obtained in the same way as for the local
MPCs. The models were obtained at 80-95% of the maximum throughput, which
is typical for the current plant operation. The coordinator execution rate is slower
than in the local MPCs to ensure robustness and is here chosen to be 3 minutes.
The prediction horizon is set to 20 hours.

The coordinator attempts to maximize the total feed rate while satisfying the
capacity constraints for the units. Since the capacity constraints are “hard”, it is
necessary to introduce at steady-state a back off b to ensure R > 0 also dynamically.
Tuning of the coordinator MPC is a trade-off between robustness and MV (feed)
variation on the one side and keeping the flows through the bottlenecks close their
maximum on the other side. The required back off b needs to be obtained after
observing over some time the performance of coordinator MPC. In the case study,
the value of b is about 1-2% of the feed to the unit.

5.4.4 Results from the simulator case study

The coordinator MPC performance is illustrated with three different cases:

1. Take the plant from unconstrained operation (with given feed rate) to maxi-
mum throughput (at # = 0 min)

2. Change in feed composition (at # = 360 min)
3. Change in a CV limit in a local MPC (at = 600 min)

All three cases are common events at the Karsto plant. Feed composition
changes are the most frequent ones. The coordinator should also be able to handle
operator changes in the local MPCs as illustrated by changing a local CV limit.
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The most important CVs in the coordinator MPC are displayed in Figure 5.4
and the corresponding coordinator MVs are shown in Figure 5.5. CVs far from
their constraints are omitted. The vertical lines in the Figures indicate the time
where disturbances are introduced (Cases 2 and 3). The back off from the capacity
constraints is indicated by dashed horizontal lines in Figure 5.4. Figure 5.6 shows
the response of a local MPC application (BS100).

Case 1: Take the plant to maximum throughput

Initially, the plant is not operating at maximum throughput, and Figure 5.5 shows
that all four feed rates are ramped up over the first hour. The crossover (named
24FC5074VWA in Figure 5.5) is reduced to unload train 300 where BS300 is
close to its capacity limit even initially (the plant is not steady state at # = 0 min).
From Figure 5.4, ET100 and the T300 stabilizers (Stab1 and Stab2) impose a bot-
tleneck upstream of the crossover, whereas BS300 is a bottleneck downstream the
crossover, at least for some period. The remaining capacity in BS300 violates its
lower limit of 5 = 1.6 t/h, and is actually just below zero for some time. Hence the
back off b is not sufficiently large to keep the remaining capacity just above zero
in this case. From Figure 5.6, we see that the local MPC application for BS100
relaxes the quality set points because the column reaches the differential pressure
high limit.

Case 2: Change in feed composition

A feed composition step change is introduced to the train 100 feed (which is sum
of 2IFR1005VWA and 21FC5335VWA). The composition change is given in Ta-
ble 5.1 and occurs at time # = 360 minutes, at the first vertical line in Figures 5.4,
5.5 and 5.6. The reduction in ethane content leads to an increase in the remaining
feed capacity in ET100, which is a bottleneck at that time, and the coordinator can
increase the train feed. However, the increase in iso-butane content reduces the
remaining feed capacity in the further downstream butane splitter (BS100), which
becomes a new bottleneck. The coordinator increases the crossover to make use of
some remaining capacity in train 300.

Case 3: Change in a CV limit in a local MPC

The bottom quality high limit in BS100 is reduced at a time where BS100 is already
operating at its capacity limit, as can be seen at # = 600 minutes in Figure 5.6. This
leads to a reduction in the remaining feed capacity in BS100 of about 2 t/h. The
coordinator MPC responds by increasing the crossover flow from T100 to T300 in
addition to T100 feed reduction. The two butane splitters (BS100 and BS300) are
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Component | Nominal [mol%] | Points change [%]
Ethane 37.3 -1.1
Propane 354 0.71
Iso-butane 5.64 5.6
N-butane 11.3 -0.34
[so-pentane 1.79 0.09
N-pentane 1.79 0.10

Table 5.1: The feed composition change in the T100 feed at 1 = 360 minutes

now the bottlenecks together with the stabilizers. As expected, the overall effect of
the stricter quality limit is reduction in the total plant feed. The reduction takes a
long time, however, because the bottleneck in the butane splitters is quite far from
the plant feeds.

5.5 Discussion

The main assumption behind the proposed coordinator MPC (see (5.13)-(5.17)),
is that optimal operation corresponds to maximum throughput. This will always
be the case if the flow network (Ggy,) 1s linear because we then have a LP prob-
lem. However, as discussed in Section 5.2, even a nonlinear network will have
maximum throughput as the optimal solution provided the product prices are suf-
ficiently high. Thus, the use of a linear flow network model (Ggy,,) in the coordi-
nator MPC is not a critical assumption. The coordinator identifies the maximum
throughput solution based on feedback about the remaining capacity in the individ-
ual units, and the main assumption for the network model is that the gains (from
feed rates to remaining capacities) have the right sign. Nevertheless, a good net-
work model, both static and dynamic, is desired because it improves the dynamic
performance of the coordinator MPC.

In this application, the remaining capacity is obtained for individual units.
However, in some cases, for example, reactor-recycle systems, it may be better
to consider system bottleneck caused by the combination of several units (Aske et
al., 2007).

By using a decoupled strategy based on the remaining feed capacity in each
unit, the coordinator MPC exploits the already existing models in the local MPCs.
This leads to a much smaller modelling effort compared to alternative approaches,
like RTO based on a detailed nonlinear model of the entire plant. The computation
time in the coordinator MPC is small, and facilitates fast corrections of distur-
bances, model errors and transient dynamics. The coordinator MPC effectively
solves the DRTO problem with acceptable accuracy and execution frequency.
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An alternative coordinator MPC strategy would be to combine all the local
MPCs into one large combined MPC application including the throughput ma-
nipulators. However, for a complete plant the application will be over-complex
leading to challenging modelling and maintenance. The improvement by using a
combined approach compared to our simple coordinator MPC is expected to be
minor since the set points to the MPC are not coordinated. Set point coordination
would require a nonlinear model for the entire plant, for example, RTO.

A back off from the maximum throughput in the units is necessary due to
unmeasured disturbances and long process response times. The back off should
be selected according to the control performance and acceptable constraint viola-
tions. In general, the back off can be reduced by improving the dynamic network
model and including more plant information to allow for feed-forward control.
For example, feed composition changes could be included in the coordinator MPC
to improve performance. Due to the lack of fast and explicit feed composition
measurements in the plant, feed composition changes are treated as unmeasured
disturbances in the simulations in the current concept. However, the concept can
be extended by using intermediate flow measurements as indicator for feed compo-
sition changes. Therefore, the use of alternative model structures that will simplify
and propagate model corrections from intermediate flow measurements should be
evaluated.

The most effective way of reducing the back off is to introduce throughput
manipulators that are located closer to the bottlenecks. This reduces the dynamic
response time and gives tighter control of the flow through the bottleneck. In the
case study, the crossover flow introduces a throughput manipulator in the mid-
dle of the plant, which improves the throughput control of the units downstream
the crossover. It is also possible to include additional dynamic throughput ma-
nipulators that make use of the dynamic buffer capacity in the various units and
intermediate tanks in the network.

The coordinator requires that the local MPC are well tuned and work well. If
the local MPC is not well tuned, a larger back off is needed to avoid constraint
violation in the coordinator MPC. In the case study, the BS300 MPC should be
retuned to give less oscillation at high throughputs.

The term coordinator” is used by authors (Venkat ef al. and Cheng et al.) to
describe coordination of multiple MPCs where the coordinator is at the level above
and generates set points to the local MPCs. In this work the term “coordinator” is
used in the meaning of coordinating the flow through the plant, and the coordina-
tor at the same level in the control hierarchy as the local MPCs (see Figure 5.1).
However, the tuning is assumed to be done sequentially, with the local MPCs being
closed before obtaining the flow network model and tuning the coordinator MPC.
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5.6 Conclusion

In many cases, optimal operation is the same as maximum throughput. In terms of
realizing maximum throughput there are two issues, first identifying bottleneck(s)
and second, implementing maximum flow at the bottleneck(s). The first issue is
solved by using the models and constraints from the local unit MPC applications to
obtain an estimate of the remaining feed capacity of each unit. The second issue is
solved using a standard MPC framework with a simple linear flow network model.
The overall solution is a coordinator MPC that manipulates on plant feeds and
crossovers to maximize throughput. The coordinator MPC has been tested on a
dynamic simulator for parts of the Kérsto gas plant, and it performs well for the
simulated challenges.



Chapter 6

Industrial implementation of a
coordinator MPC for maximizing
throughput at a large-scale gas
plant

Based on a paper submitted to International Symposium on Advanced Control of
Chemical Processes, July 2009, Istanbul, Turkey.

A coordinator MPC has been earlier proposed as a way to implement
maximum throughput (Aske et al., 2008). The coordinator manipulates
feed rates, crossovers and flow splits that affect the flows through the
units, but which are not used as degrees of freedom by the local MPCs
on the individual units. In this paper, an industrial implementation of a
coordinator MPC at the large-scale Karsto gas plant is described, includ-
ing design, modelling and tuning. The local MPC applications estimate
the remaining capacity of each unit. Although not fully implemented,
the coordinator MPC is found to be a promising tool for implementing
maximum throughput.

6.1 Introduction

In this paper, we describe an actual industrial implementation of the method for
maximum throughput proposed earlier by Aske et al. (2008). The application is
the Karsto gas processing plant, which plays a key role in the transport and treat-
ment of gas and condensate from the Norwegian continental shelf. The products
from the plant are dry gas, which is exported in pipelines, and natural gas liquids
(NGL) and condensate, which are exported by ships. The plant receives rich gas

127



128 Implementation of a coordinator MPC at a large-scale gas plant

and unstabilized condensate through pipelines from more than 30 producing fields.
This set high demands, not only to the plant efficiency and its regularity, but also to
the plant throughput. Limited gas plant processing capacity means that one or more
fields must reduce production or even shut down. Therefore, it is important that
the Kérsto plant does not become a “bottleneck™ in the Norwegian gas transport
system. The Karsto plant has no recycles or reactors, but it has several independent
feeds and parallel flows that make it possible to have multiple bottlenecks at the
same time. In addition, the bottlenecks may move due to disturbances. The coor-
dination problem of maximizing the throughput is thus a challenging multivariable
problem.

The overall feed rate (or more generally the throughput) affects all units in the
plant. For this reason, the throughput is usually not used as a degree of freedom for
control of any individual unit, but is instead left as an “unused” degree of freedom
(u°) to be set at the plant-wide level.

The throughput at the Karsto plant is presently set by the operators who ma-
nipulate the feed valves to satisfy orders from the gas transport system (operated
by another company). The orders may be given as pipeline pressures, feed rates
and export gas rates, which may change on an hourly basis. The objective of this
work is to coordinate the throughput manipulators (x¢) to achieve economic opti-
mal operation.

In general, to optimize the economic operation of a plant, one may use real-
time optimization (RTO), normally based on (rigorous) steady-state models. Stan-
dard RTO methods require the plant to be close to steady state before performing
a reoptimization based on data reconciliation or parameter estimation (Marlin and
Hrymak, 1997). However, many plants are rarely at steady state or important eco-
nomic disturbances occur more frequent than the controlled plant response times.
At least in theory, it is then more suitable to use dynamic optimization with a
non-linear model, which may be realized using dynamic RTO (DRTO) or non-
linear model predictive controller (MPC) with an economic objective, e.g. Engell
(2007); Kadam et al. (2003); Backx et al. (2000); Strand (1991).

In this study, a different approach is used. We assume that optimal economic
operation is the same as maximizing plant throughput, subject to achieving feasible
operation (satisfying operational constraints in all units) with the available feeds.
This corresponds to a constrained operation mode with maximum flow through
the bottleneck(s). At maximum throughput, all throughput manipulators («) are
used to satisfy active constraints (bottleneck). Thus a nonlinear model of the entire
plant is not needed, and instead linear MPC may be used (Aske et al., 2008). One
option is to combine all the MPCs in the plant into a single application. However,
here we choose to decompose the problem by keeping the local MPC applications
and introducing a coordinator MPC (Aske ef al., 2008) to maximize throughput.
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Figure 6.1: Plant decomposition by coordinator MPC. The local MPC applications
uses ' to control the local targets y, whereas the coordinator uses the throughput
manipulators (# = TPMs) to control the remaining capacity () = R) in the units.

The coordinator uses the remaining degrees of freedom () to maximize the flow
through the network subject to satisfying given constraints. The remaining degrees
of freedom (u°) include feed rates, feed splits and crossovers. The constraints are
the feasible remaining capacities of the individual units (R, > 0). The feasible
remaining capacity Ry is how much more feed unit £ can receive while operating
within its constraints. For most units, R is not a quantity that can be measured,
because it depends on the operation of the unit. For example, the capacity may be
increased by producing less pure products. A key idea in the approach of Aske et
al. (2008) is to use the local MPC to estimate R;. By estimating R for each unit,
the plant-wide control problem is decomposed. The main advantage of decompo-
sition is that the application becomes smaller in size and hence easier to understand
and maintain. The plant decomposition is illustrated in Figure 6.1.

All MPC applications at the Kérste plant use the in-house SEPTIC* technol-
ogy (Strand and Sagli, 2003). SEPTIC minimizes a quadratic objective function
using linear models and constraints and handles relaxation of the constraints. Even
though SEPTIC is capable of using non-linear models, linear SISO step response
models are used in all applications described here.

This paper considers about half of the Karsto gas processing plant. The ap-
plication presently includes 12 distillation columns, 2 compressor stages, 4 feed
valves and 2 crossovers (splits). The main reason for not including the entire plant
is that local MPC applications are yet not implemented on all units.

This paper is organized as follows. The local MPC controllers for the indi-
vidual units are discussed briefly in Section 6.2. The local MPCs adjust the local
degrees of freedom (u') such that the operation is locally feasible. However, local

*Statoil Estimation and Prediction Tool for Identification and Control



130 Implementation of a coordinator MPC at a large-scale gas plant

feasibility requires that the feed rate to the unit Fkl is below its maximum capacity,
Fk’m . and one of the tasks of the plant-wide coordinator is to make sure that this
is satisfied (R; = Fklm P Fkl > 0). The maximum capacity for a unit (Fk{m 2c) MAY
change depending on disturbances (e.g. feed composition) and needs to be updated
continuously. A key idea of this work is to use the already existing models in the
local MPCs to estimate F,ém . and is discussed in Section 6.3. Section 6.4 discusses
the coordinator MPC, including control design choices, model development, tun-
ing issues and test runs. Experience from the implementation at the Kérsto site is
summarized in Section 6.5. All the time series displayed in this paper are from
closed-loop operation of the coordinator MPC at the Karste plant. The experience
with the coordinator MPC is so far limited, but it seems to be a promising tool for

implementing maximum throughput (Section 6.6).

6.2 Local MPC applications

Presently, all the local MPC applications for the coordinator are on two-product
distillation columns. A short description of these applications is given below.

The main control objective for each distillation column is to control the qual-
ity of the distillate- (D) and bottoms (B) products. In addition, the column must
be kept under surveillance to avoid overloading, which is an important issue for
maximizing throughput. Column differential pressure (Ap) is used as an indicator
of flooding (Kister, 1990), but so far the differential pressure is controlled for only
a few of the columns. The LV-configuration is used for the distillation columns,
which means that reflux L and boilup V' remain as degrees of freedom after closing
the level loops using D and B. In addition, column temperature is controlled using
boilup V in the regulatory control layer.

The local MPCs are configured with the following controlled variables (CVs),
manipulated variables (MVs) and disturbance variables (DVs):

CV (set point + max constraint): Impurity of heavy key component in D.
CV (set point + max constraint): Impurity of light key component in 5.
CV (max constraint): Column differential pressure (Ap).

MYV: Reflux flow rate set point (L).

MYV: Tray temperature set point (7).

DV: Column feed flow.

These M Vs correspond to the local degrees of freedom (u') and the CVs corre-
spond to the local outputs (3), see Figure 6.1. Some of the columns have additional
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CV constraints, like valve opening, temperatures and levels. One column has an
additional MV and some columns have additional DVs, but in principle, all the
columns have the same control configuration.

The product qualities are given by the mole fraction of the key component ra-
tios and a logarithmic transformation is used to linearize over the operating region
(Skogestad, 1997). The high limits on the product impurities follow from the sales
specifications and the differential pressure high limit is set to avoid flooding.

The local MPC problems are solved at each sample time using a standard two-
step approach, where first a steady-state problem is solved with constraint relax-
ation until the predicted final steady state is feasible, and then the “standard” dy-
namic MPC problem is solved with the possibly recalculated (reachable) set points
and constraints. The priority order for solving the steady-state feasibility problem
in the local MPC (Strand and Sagli, 2003) is:

1. High limit differential pressure
2. Impurity limits
3. Impurity set points

This priority hierarchy may lead to a relaxation of the impurity set points (and in
worst case the limits) to avoid exceeding the differential pressure high limit. By
using relaxation, the column can handle the given feed rate without flooding the
column, but note that the exceeding the limits may result in an unsellable product.
In the dynamic optimization part, constraints are handled by adding penalty terms
to the objective function.

The local MPC applications are based on experimental step response models
as described in Appendix A. The prediction horizon is 3 to 6 hours, which is
longer than the closed-loop response time. The sample time is 1 minute, which is
sufficiently fast for the distillation column applications.

6.3 Estimate of remaining capacity

In this section, the procedure used by the local MPCs for estimating the remaining
capacity in each unit (Ry) is explained.
The remaining capacity for unit & is the difference between the current feed Fkl

and the feasible maximum feed Fkl i

The feed to the local unit Fkl is assumed to be a DV in the local MPC application.
The maximum feed to the unit & is then easily obtained by solving an additional
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steady-state LP-problem:
F  —=max F| (6.2)
’ ul F!
ko k
subject to the present initial state, linear model equations and constraints used in
the local MPC. Here ufc is the vector of manipulated variables in the local MPCs,

and at the optimal solution F}fmax, all these degrees of freedom (u) are used to

satisfy constraints (feasibility limit). Note that Fkl nae 18 calculated using the end
predictions (steady-state model) for the variables. This is to include both past MV
moves and disturbances and future MV moves for the local MPC. This indirectly
assumes that the closed-loop response time for the local MPC is faster than for the
coordinator. The algorithm included in the MPC software uses a Simplex method
to solve the LP problem.

Note that Fk’ mae €an change due to updated measurements, disturbances (e.g.
feed compositiofls changes), changes in the constraints and model changes (that is,
the steady-state gain in the models) in the local MPCs. The current feed to the unit
(Fk’ ) is measured, either by a flow transmitter or by a level controller output (valve
opening) if a flow transmitter is not available.

The accuracy of the estimated remaining capacity depends on:

 The validity of the models used in the local application. The algorithm uses
the end prediction; hence, the steady-state gain in the models is important.

* The appropriate use of gain scheduling for CV-MV pairs with larger nonlin-
earities, in particular, for distillation column flooding indicators (differential
pressure). Here “gain scheduling” means that the model gain is updated
(scaled) based on the current operation point. Gain scheduling on differen-
tial pressure is included for some columns.

* The CV constraints must reflect the true operational limits and the MV con-
straints must be reasonable.

Let us explain the first two points in more detail. An incorrect steady-state gain
leads to a poor estimate of the remaining capacity (controlled variable) and be-
cause the coordinator MPC has slow dynamics, it will take a long time before the
feedback can correct for the error. A too high remaining capacity estimate (too
small steady-state gain) lead to a oscillating behavior because of the long delays in
the flow network. In such cases, detuning may be necessary (high move penalty on
MV5s) to avoid amplifying the oscillations. Another issue is that the operators will
not trust the remaining capacity estimates if the estimates are far away compared
to their own experience.

Ideally, the calculation of remaining capacity uses directly the model and con-
straints used in the existing local MPC. However, in some cases “artificial” (non-
physical) constrains are added for tuning reasons in the local MPCs and these
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should not be included. For example, in the demethanizer MPC application there
is a temperature constraint in the column mid-section (high limit) with the same
priority as the CO; content in distillate (high limit). Here, only the CO, content
should be a limiting factor on the feed rate. The temperature high limit is in-
cluded to obtain better boiler distribution in the column and should not limit the
throughput. In this case we choose to replace the “artificial” constraints with a
wider constraint, since our version of the LP algorithm does not handle relaxation
of constraints and may risk infeasibility. Another option would be to omit the con-
strained variable from the remaining capacity calculation, but for the temperature
variable mentioned above, it has a low limit that must be considered in the capacity
calculation and the variable must therefore be included.

For distillation columns that frequently operate close to their capacity limit,
the estimated capacity is generally good. For these units we have more experi-
ence in the actual operation range, and the models in the local MPC applications
are typically obtained in this range. For some columns, the differential pressure
is included in the remaining capacity calculation, and for these columns, the es-
timate of remaining capacity is better. Another issue is that the estimate uses the
CV constraints and not the CV set points. For a distillation column, the distillate
and bottoms quality constraints are used instead of the CV set points because set
point deviations are acceptable if the alternative is feed reduction. This leads to an
estimated capacity that is larger than expected by the operators.

For units with several feeds, the LP optimization will maximize the feed with
the smallest steady-state gain (smallest predicted effect on capacity), whereas the
other feeds will go to zero. However, some feeds cannot be set to zero, because
they are outlet from an upstream unit with no possibility for routing it elsewhere.
In this case, the LP optimization is set to maximize the feed from the flow line the
unit must process and the other feeds are held constant in the optimization.

The estimation of remaining capacity described above is given for distilla-
tion columns. However, compressors are also included in the application, but at
present, there are no MPC applications implemented on these. To estimate the re-
maining capacity of the compressors one option could be to consider the percent
load (given by the speed). However, it may not always be possible to reach 100%
load due to other constraints, for instance the turbine exhaust gas temperature. To
consider several constraints, we therefore use “dummy” MPC applications, with
only CVs and DVs and models between them to estimate the remaining capacity
for the compressors.

The use of the local MPCs to estimate the remaining capacity decomposes the
control problem to a large extent, and the coordinator MPC has a “reasonable”
size, even though if it is a plantwide controller. At present, the estimate is based
on experimental models. However, rigorous models for local units can also be
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used to predict the remaining capacity. This is attractive for units where experi-
mental modelling is difficult, for example, due to nonlinearities. This illustrates
the flexibility with this decomposition where the best available model can be used
to predict the remaining capacity.

6.4 Coordinator MPC

In this section the objective, variables, modelling and tuning of the coordina-
tor MPC is described. Note that the coordinator MPC coordinates the network
flows and not the local MPC applications. Its main objective is to maximize plant
throughput subject to achieving feasible operation.

6.4.1 Objective, variables and constraints

The Kérste plant is shown in Figure 6.2 where most of the CVs, MVs and DVs for
the coordinator MPC are indicated. The coordinator MPC maximizes sum of the
total plant feed which is the sum of the feeds to train 100 (T100), train 200 (T200),
train 300 (T300), train 400 (T400) and the dew point control unit (DPCU). The
application consists of:

* 6 MVs: 4 feed rates, 1 crossover, 1 feed split.

* 22 CVs: Remaining capacity of 12 distillation columns and 2 compressors
steps, 7 other constraints plus the main objective: total plant feed with a
high, unreachable set point with lower priority.

» 7 DVs: 3 feed rates, 2 feed compositions, 1 crossover, 1 feed split.

The MVs (throughput manipulators) are the feed rates, a crossover between
parallel trains (from T100 to T300) and a feed split to T300. Other throughput
manipulators that affect the CVs in the sub-application are included as DVs. Later,
if the coordinator MPC is extended to the whole plant, most of these DVs will
become MVs. The feed compositions (DVs) reflects the gas/liquid split, and de-
termine the split between gas flow to the compressors and liquid flow to the frac-
tionation and are estimated from flow- and temperature measurements.

The CVs are the remaining capacities of the units, in total 2 compressor stages
and 12 distillation columns. Even though there are three compressors at each stage,
the remaining capacity of each stage is used as a CV, because local control handles
the distribution between parallel compressors (equal distance to the compressor
control line). The “other” 7 CV constraints are related to the use of MVs, that is,
levels constraints to avoid filling or emptying of buffer tanks and sump volumes,
pressure constraints in the pipelines and pressure controller outputs.



135

6.4. Coordinator MPC

Overhead compressors

Feed from

1]

Asgard pipe T400

O

DV
[K]

Y

DPCU

b4

Feed from

MV
r@
21FC5219

21FC4125A

21FC4225A

e

Sales gas compressors

Product to
Europipe 11

]

Sales gas

Booster

COMPIESSOIS compressors

W

Q___

Product to
Draupner

) T100
Statpipe MV
T200
= ]
20FC2001A _/,_\
-
DV ﬁmw
Feed from MV &
Sleipner

Buffer tanks

Al*m/\ 4
27FC3108
MV Cv

Nq_uowmow

Distillation columns

w

Q__—

Figure 6.2: Overview of the Karstg plant, including the coordinator MPC vari-

ables.



136 Implementation of a coordinator MPC at a large-scale gas plant

Each variable (CV, MV and DV) belongs to one or more sub-groups that will be
deactivated if one critical variable in the sub-group is deactivated. For instance, if
a local MPC application is turned off, the corresponding remaining capacity CV is
deactivated, and this critical variable suspends the whole sub-group. By using this
condition-based logic, the coordinator MPC can operate even if parts of the plant
are not running or not available for throughput maximization. For the coordinator
MPC, each MV defines a sub-group with corresponding CVs as members.

The CV “total plant feed” is the sum of the plant feeds and is given by

TOTALFEED = 20FC1001A +20FC2001A +27FC3108
+27FC3208 +21FC4125A +21FC4225A +21FC5219  (6.3)

where the variables are marked in Figure 6.2. In general, the feeds could have
different weighting, but at present, their weights are equal. Of the 22 CVs, only
the total plant feed is set point controlled; the other CVs are constraints. The
objective function in the SEPTIC MPC algorithm is quadratic, while the objective
function for the the maximum throughput problem is linear

J = —-TOTALFEED (6.4)

To obtain a quadratic objective function that fits directly into our quadratic MPC
algorithm, we have used the common trick of introducing a quadratic set point
deviation term with a high and unreachable set point TOTALFEED; with a lower
priority than the capacity constraints, J = (TOTALFEED, — TOTALFEED)?. (Of
course, the actual case function used by the coordinator MPC has additional terms
and weights). The first step of the coordinator MPC solution will then result in a
recalculated (reachable) set point for the total feed.

The MV feeds have ideal values (IV) for dynamic reasons that are discussed
in Section 6.4.3. The crossover has an ideal value to keep its flow in the middle
of the operation range when constraints do not determine the crossover flow. The
detailed control structure including priorities (CV limits, CV set points and MV
ideal values) and groupings is summarized in Table 6.1.

The decomposition requires that the coordinator receives three variables from
each of the 12 local MPC applications:

 Estimated remaining capacity (value)
* Quality of the remaining capacity value (good/bad)
« Status of the local MPC (on/ofY)

If the estimated remaining capacity has a bad value, that is, the LP formulation is
not feasible, then the status of the remaining capacity CV is set to ERROR and
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MVs
Name Description Priority Sub-group
20FC1001A Feed T100 3 1*
24FC5074 Crossover T100 to T300 4 2%
27FC3108 Feed Stabilizer 1 T300 3 3*
27FC3208 Feed Stabilizer 2 T300 3 4%
21FC5219 Feed DPCU (T500) 3 5*
21FC5288 From DPCU to T300 3 6*
CVs
Name Description Priority Sub-group
RemCapMT100 R demethanizer T100 1 1* 2
RemCapET100 R deethanizer T100 1 * 2 5% 6%
RemCapPT100 R depropanizer T100 1 1* 2% 5% 6%
RemCapBT100 R debutanizer T100 1 1* 2% 5% 6%
RemCapBS100 R butane splitter T100 1 1* 2% 5% 6%
RemCapSTBI R stabilizer 1 T300 1 3% 5 6
RemCapSTB2 R stabilizer 2 T300 1 4% 5 6
RemCapET300 R deethanizer T300 1 3 4% 5 6%
RemCapPT300 R depropanizer T300 1 2% 3% 4% 5 6*
RemCapBT300 R debutanizer T300 1 2% 3% 4% 5 6*
RemCapBS300 R butane splitter T300 1 2% 3% 4% 5 6*
RemCapDPCU R DPCU 1 5
RemCapSTPSGC R Statpipe sales gas compressors 1 1* 2
RemCapSTPCC R Statpipe booster compressors 1 * 2
15P10039 Pressure Statpipe 1 1*
15PC0002VYA Pressure control output Statpipe 1 1*
24LC1001VYA Sump level output deethanizer T100 1 1 2% 5
36LI13054 Level buffer volume 1 1 3k 4% 6*
36L13914 Level buffer volume 2 1 3% 4% 6*
15P12025 Pressure Asgard pipe 1 5*
15P12028VYA Pressure control output Asgard pipe 1 5%
TOTALFEED Total plant feed 2 1 3 4 5
DVs
Name Description Sub-group
FEEDCOMPTI100 | Feed composition T100 1 2 5
FEEDCOMPT200 | Feed composition T200 1 2 5
20FC2001A Feed T200 1 2 5
24FC5071 Crossover T200 to T300 2 3 4 5
21FC5334DEV From DPCU to T100 1 2 5 6
21FC4125A Feed T410 5
21FC4225A Feed T420 5

Table 6.1: MVs, CVs and DVs in coordinator MPC with its 6 subgroups. *: Criti-
cal variable for the sub-group.
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the corresponding MVs, given by the sub-grouping in the coordinator, are then
suspended. If a local MPC application is deactivated, then the unit remaining ca-
pacity CV is set to OFF in the coordinator and the sub-group in the coordinator
is suspended. The coordinator still runs, but the MVs in the sub-group are deac-
tivated. This is done because we require that the local MPC application is active
before the coordinator can operate.

6.4.2 Dynamic modelling for the coordinator MPC

The model for the coordinator MPC is a linear dynamic model for the flows through
the plant network with the local MPC applications in service. The current im-
plementation of the coordinator uses individual (SISO) step response models, or
more precisely a single-input multiple-output representation of a multi-input multi-
output system. The advantage with SISO models is that it is easy to adjust the
models independently for input-output pairs. However, SISO models imply that
the structure of the model is lost and, for instance, disturbances may not propa-
gate as they would in a state-space model. The loss of structure leads to some
additional work around the DPCU. The feed to the DPCU is an MV, and from the
DPCU there are three liquid streams, where two are DVs and one is a MV in the
coordinator. The two DVs need to be corrected for the changes caused by the two
MVs, to avoid modelling the same effect twice. This is done by let the two DV be
the difference between measured and modelled response instead of the measure-
ment directly. In other words the changes in the DVs caused by the two MVs are
“subtracted”.

The models are obtained from step tests and historical plant data. The steady-
state gains found from step-tests are verified by calculating the gains using typical
feed compositions.

The sampling time for the coordinator MPC is 3 minutes. The prediction and
control horizon are set to 6 hours, whereas the longest response models reach
steady state at approximately 4.5 hours.

6.4.3 Tuning the coordinator MPC

The tuning of the coordinator MPC is a trade-off between robustness and MV (e.g.
feed) variations on one side and keeping the flows through the bottlenecks close to
their maximum on the other side. The coordinator MPC was gradually operating
in closed-loop and tuned in several tests in February 2008.
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Figure 6.3: From test run 05 Feb. 2008: why IV is needed on MV feed rates. MV
and CV values (solid), high and low limits (dashed) and ideal values (dotted).

MYV tuning

From the early tests, it became clear that the trick of using a CV of total plant feed
with a high, unreachable set point to maximize throughput, requires ideal values on
the MV plant feeds to obtain satisfactory dynamic performance. This is illustrated
from a plant test using two MVs and a CV in Figure 6.3. The buffer tank level CV
(Figure 6.3(a)) is predicted to reach its low limit (prediction not shown here), and
the recalculated (reachable) set point for the CV total plant feed is then reduced. To
reach the new recalculated set point for CV total plant feed, a// MVs that constitute
the CV total plant feed (see Equation (6.3)) are reduced dynamically (two of them
shown in Figures 6.3(c) and 6.3(b)), even though only the latter aftects the buffer
tank level. This leads to the “jagged” use of the MVs at# = 215 min (marked with
a circle). In this case, only the MVs that effects the CV that meets its constraint
should be used to reach the recalculated set point for CV total plant feed. This
is solved by introducing ideal values on the MV plant feeds. The dotted vertical
line in the MV plots indicates the time where ideal values are turned on and then
the MV Feed T100 are increased up to its high limit. The reduction in MV Feed
T100 at around # = 270 min is due to another constraint not shown here. The ideal
values that are added to the MV plant feeds are high and unreachable with a lower
priority than the total plant feed set point and have a low penalty on the deviation
from the ideal value.

When ideal values (IV) for the MVs are introduced, the rate of change towards
the ideal value is specified to obtain ramping rate independent of the penalty on
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the deviation from ideal value (Strand and Sagli, 2003). The ideal ramping rate is
set to typical 500-750 kg/h. Maximum increase and decrease of the MV at each
sample is chosen based on typically rate changes operators choose to implement.

CV tuning

The most important tuning variables for the CVs are the penalties on constraint
violation (see Appendix A) used in the dynamic step of the MPC algorithm. The
constraint violation is “balanced” by using penalties on MV moves to obtain a sat-
isfactory dynamic behavior when CV constraints are violated. Even though a CV
constraint is violated, the use of MVs should not be too aggressive to avoid un-
necessary throughput variations. Importantly, the CV constraints are not absolute
because back off is included to handle disturbances and imperfect control. Specif-
ically, the lower value of the remaining capacities is not set to zero, but rather to a
positive back off value, Rff > back off; > 0. The value of the back off is a tuning
parameter decided by disturbance handling and model accuracy.

The coordinator MPC has four integrating CVs; two buffer volumes (levels)
and two pipelines pressures. For an integrator, the horizon length is a tuning pa-
rameter. To see this, consider an increase in feed rate that draws more out of the
controlled volume, hence the derivative to the integrating CV is negative. The
maximum allowed change in level (CV) or slope (the derivative) is given by the
current distance to the level constraint divided by the horizon length. A shorter
horizon length will give a larger slope and allow for larger feed rate changes. The
integrating variables have a prediction horizon of 3 hours, which is half the predic-
tion length to the other variables. The prediction horizon is shortened because it
is likely that disturbances occur within the 6-hour period that counteracts the level
change.

6.5 Experience from implementation

Some experiences from the implementation at the Karstg site are summarized in
this Section.

6.5.1 Estimate of remaining capacity

To estimate the remaining capacity in each unit, the corresponding local MPC
application requires, in general, acceptable product quality control within some
operational constraints. One observation is that when a large disturbance occurs,
the predicted steady-state values may violate their limits and, if this violation is
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sufficiently large, the LP optimization does not find a feasible solution and the es-
timate of maximum capacity (Fk’m ) fails. The end prediction values are in such
cases often not reasonable because the MPC application assumes that the distur-
bances will maintain constant (possible reduced with a low-pass filter) throughout
the prediction horizon, which is rarely the case.

We have observed oscillations in the estimated capacity with periods of 1-2
hours. These variations are challenging because this corresponds to the closed-
loop time constant of the coordinator; hence, these variations cannot be reduced
by signal filtering. The variations in the estimated capacities usually arise due to
model errors from the feed to the unit (DV). A systematic evaluation of the infer-
ential models (estimators of product quality) and models in the local MPC appli-
cations is necessary to obtain satisfactory performance of the coordinator MPC.
Since some of the local MPC applications were commissioned several years ago,
a validation of the models was found necessary.

To improve the estimation of remaining capacity, several approaches are used:

» With a known, measured, short-time disturbance: The maximum capacity
(Fk’ ) 18 held constant during the period of the disturbance. For example,
this is used for the disturbances that occur at each dryer exchange.

* For each unit, a minimum value of the maximum capacity (Fk’ may) 18 10-
cluded.

* CV constraints included in the local MPCs that should not limit the through-
put were replaced with wider constraints. This applies to “non-physical”
constraint that may have been added in the MPC for tuning reasons.

* Gain scheduling is included for some differential pressure models.

During implementation and test-runs of the coordinator MPC, the local MPC
applications were followed up closely and some changes were made. The changes
include updating inferential models, updating response models and adding new
models in the local applications (mostly for differential pressures).

The main structural weakness in the estimation of remaining capacity is that
the LP solver may “give up” to find a solution because there is no possibility for
relaxation of constraints. When the LP solver does not find a solution, it returns
a “bad quality” value to the coordinator and its variable subgroup is turned off. It
would be preferable that the coordinator finds the best possible solution instead of
“giving up”. This can be realized with a LP solver that includes relaxation of the
constraints. This improvement of the LP algorithm is planned to be included in the
future.
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6.5.2 Experience with the coordinator MPC

A test run of the coordinator MPC from 07 Feb. 2008 is displayed in Figure 6.4.
The coordinator is turned on at # = 18 min and the coordinator starts to increase
the feed to T100 (Figure 6.4(a)) until the pipeline pressure in Statpipe reaches
its low constraint (Figure 6.4(b)). During this start-up period, the crossover flow
ramps towards its ideal value (Figure 6.4(c)). The remaining capacity in the butane
splitter T100 reaches its low constraint (Figure 6.4(d)) and the crossover increases
again to avoid reduction in the throughput. However, the use of the crossover
is “aggressive” and actually generates oscillations in the downstream remaining
capacities because of the delays in the flow network if the model gain was too low.
The adjustment of the model gain was based on comparing the model prediction
and actual value (not included) that showed that the model gain was too low. To
avoid the oscillations, the model gain was almost doubled around # = 250 minutes
and the crossover is now able to control the remaining capacity towards its low
constraint.

The accuracy of the estimate of remaining capacity for demethanizer T100
(Figure 6.4(e)) was poor. This column has operation problems like gas flooding
(that occurs at different differential pressures), and large duty changes in side boil-
ers because of large shift in the column temperature profile. In this test, the model
gain from column feed to differential pressure was increased at # = 320 minutes,
and the new value seems to give a more correct estimate of the remaining capacity
for the column. Again, this adjustment of the model gain was based on comparing
the model prediction an the actual value that showed that the model gain was too
low. Note that the remaining capacity of the demethanizer T100 became close to
zero at about # = 330 min. To avoid this, the lower constraint value (back off) was
increased at # = 500 min.

A key idea with the coordinator MPC is that the coordinator should maintain
maximum throughput in spite of feed composition changes. Feed composition
changes are important disturbances and affect the remaining capacity to the units.
The feed composition in the Statpipe (T100) (Figure 6.4(f)) is rather stable until
t = 580 min when the feed becomes significantly heavier and thereafter (at 1 =
610 min) significantly lighter. In this case, the coordinator uses the crossover
(Figure 6.4(c)) and the T100 feed rate (Figure 6.4(a)) to control the remaining
capacity for the butane splitter T100 (Figure 6.4(d)) at its constraint.

In another test run of the coordinator MPC (08 Feb. 2008), one of the three
booster compressors was not running due to maintenance, so the capacity of the
booster compressor was a bottleneck. During the test period, the feed composition
became slightly lighter (increased gas content) and this change was large enough
to affect the capacity of the booster compressors. The back off in the booster
compressors was reduced to be able to maintain the production with higher gas



6.5. Experience from implementation

143

10°[kg/h]

120 240 360 4 0 600 720
time [min

(a) MV: Feed T100

5 x10%
=
)
=}
s
=
3, _
2.5k
0 120 240 3 0 4 O 600 720
time |min
(c) MV: Crossover
7, -
s 5 1
)
=
<
=

0 120 240 360 480 600 720
time [min
(e) CV: Remaining capacity demethanizer

T100

d) CVv:

0 1202403040600
time [min

(b) CV: Pressure Statpipe

—
N
T

0 120 240 360 450 600
time |min

T100

10*[kg/h]

720

Remaining capacity butane splitter

0 120 240 360 4?0 600
time [min

720

(f) DV: Feed composition changes T100
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content in the feed. Running the compressors at this high load is possible, but is
not recommended over longer periods.
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Figure 6.5: From test run 08 Feb. 2008 where Statpipe booster compressors are
bottleneck. MV, CV and DV values (solid), high and low limits (dashed).

The guidelines from the gas pipeline network manager are typically given as
“reduce the feed 40 t/h to keep the pipeline pressure above 134 bar”. However,
while testing the coordinator it became clear that these two values do not coincide.
For the gas pipeline network operation, it is the pressure profile in the pipeline
which is most important, but for the gas plant operators it easier to relate to the
feed flows. With the coordinator MPC, it is possible to specify a low limit on the
pipeline pressure, and let the feed to the plant be given by the pipeline pressure (if
the plant itself is not limiting the feed).

When in closed loop, the coordinator MPC manipulates directly on the plant
production. This directly involves the shift manager at Karsto and also close co-
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operation with the manager at the gas pipeline (which is operated by another com-
pany) is necessary. The plant is operated by three control panels, so a close dialog
between the operator personnel and the shift manager is crucial.

The operators are familiar with the MPC interface from several years of experi-
ence with local MPC applications. This is a big advantage because the coordinator
MPC has the same interface and operates in the same manner, so it is easier to
get operator acceptance. However, the coordinator MPC introduces a “new way
of thinking” for both operators and shift managers. The coordinator introduces the
back off constraint as a new handle, in addition to pressure pipeline constraints,
instead of the feed valves.

Using an in-house MPC tool has the advantage of allowing for quick and ap-
propriate software changes, which has been very useful, for example, in changing
the algorithm for estimate remaining capacity. In addition, the use of own person-
nel, from the research center and the plant site, keeps the knowledge within the
company. A successful implementation also requires that the project gets priority
by the managers, especially since this application is plant-wide and involves most
of the control room operators.

6.6 Conclusion

A coordinator MPC to maximize production is currently under implementation on
a large-scale gas plant. The Karsto gas plant is an important part of the Norwegian
gas transport system and the plant should process as much as possible to avoid
being a bottleneck in the gas transport network. There are frequent changes in feed
composition, pipeline pressures and other disturbances which require a dynamic
model for optimization, and a coordinator MPC was earlier proposed as a way to
implement maximum throughput (Aske et al., 2008).

A key factor in the implementation is the estimate of the remaining capacity Ry
for each unit, which tells how much more feed unit £ can receive while operating
within its constraints. The remaining capacity for each unit is estimated by the
local MPC applications and is treated as CVs in the coordinator MPC. This de-
composition leads to a plantwide application with “reasonable” size. The first part
of the implementation includes about half of the plant and has 22 CVs, 6 MVs and
7 DVs. A future coordinator that includes the whole plant will have about twice
as many CVs and MVs. The coordinator MPC is built with SISO step response
models, similar to the local MPC applications.

There are some pitfalls in estimating the remaining capacity. The estimate re-
lies on the accuracy of the steady-state models in the local MPC application, cor-
rect and reasonable CV and MV constraints and the use of gain scheduling to cope
with larger nonlinearities. We have found that it is crucial to inspect the models
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and tuning of the local applications in a systematic manner. The estimate of the re-
maining capacity was found to be reasonable for the distillation columns where the
differential pressure is included as a CV and the flooding point is approximately
known.

Although the experience with the actual implementation of the coordinator
MPC is limited, it is nevertheless clear that this is a promising tool for implement-
ing maximum throughput at the Kérsto gas plant. The implementation leads to
more focus among operating personnel on the capacity of each unit and it became
clearer that several units were operating far from their constraints. In addition, the
coordinator provides a plant-wide perspective which is required to properly adjust
the plant- and crossover flows.
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Chapter 7

Conclusions and directions for
further work

7.1 Conclusions

This thesis has discussed plantwide control configuration with focus on the max-
imum throughput case. In the general case, an important task for the plantwide
control system, if not the most important, is to maintain the plant mass balances.
The proposed self-consistency rule in Chapter 2 fills this lack of a general rule
that applies to all cases. It may be regarded as an obvious rule, but is often forgot-
ten in a plantwide perspective.We believe the self-consistency rule states the mass
balances in a clear manner and will be very useful for students and newcomers in
the field.

In Chapter 3 we have shown that “maximum throughput” is an optimal eco-
nomic operation policy in many cases. This occurs when product prices are suf-
ficiently high and feed is available and the throughput F' is a degree of freedom.
Optimal economic operation then corresponds to maximizing the throughput F
subject to achieving feasible operation.

From a literature search and based on our own industrial experience, it seems
like the feed valve (or more general the throughput manipulator) is very rarely
used in practice for closed-loop control, in spite of its great importance on the
plant economics in cases where maximum throughput is optimal. The reason is
probably the large effect of feed rate on the operation of the entire plant, but the
result may be a loss in economic performance.

This thesis discussed several methods for implementing maximum throughput
in the control layer. The nature of maximum throughput simplifies the implemen-
tation because the optimum is constrained and corresponds to maximum through-
put in the bottlenecks(s). Maximum throughput can then be implemented in the
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control layer and the approaches discussed in this thesis are:

Chapter 3: To obtain tight bottleneck control, move the throughput manipulator
to the bottleneck unit and control the bottleneck flow with single-loop con-
trol. The approach requires the bottleneck to be fixed in one unit. The disad-
vantage is that the inventory loops upstream the bottleneck must be recon-
figured when moving the throughput manipulator to ensure self-consistency.

Chapter 4: In cases where it is not desired to move the throughput manipulator,
dynamic degrees of freedom can be included to shorten the effective time
delay from the throughput manipulator to the bottleneck. With dynamic
degrees of freedom, we mean manipulated variables with no steady-state ef-
fect. The most common examples are liquid levels and buffer tank levels.
To include dynamic degrees of freedom in single-loop control, the struc-
ture single-loop with ratio control is proposed. This control structure uses
the original location of the throughput manipulator (usually the feed rate)
and use inventories dynamically by adding bias to the inventory controller
outputs. The structure can be used for cases with fixed bottleneck. The
single-loop with ratio control structure has no need for reconfiguration of the
inventory loops, even the control parameter tunings can remain unchanged
(except if the inventories are poorly tuned). An multivariable controller (e.g.
MPC) can also be used to include dynamic degrees of freedom with through-
put manipulator (feed rate) and inventories (inventory controller set point or
directly manipulating the valve) as manipulated variables.

Chapters S and 6: In larger plants, there are often independent feeds and parallel
trains with crossovers and splits between them that give rise to multiple bot-
tlenecks and multiple throughput manipulators. This requires multivariable
control and the proposed coordinator MPC both identifies the bottlenecks
and implements the optimal policy. The coordinator uses the remaining de-
grees of freedom (u“) to maximize the flow through the network subject to
given constraints. The remaining degrees of freedom () include feed rates,
splits and crossovers and the local MPCs provide estimates of the available
capacity constraints (R; > 0) in each node for the network. The constraints
for the coordinator MPC are non-negative remaining capacities (Ry) for each
unit &, that is, how much more the unit is able to receive within feasible op-
eration. The values of R; may change with time and a key idea is that they
can be obtained with almost no extra effort using the existing local MPCs.

In the latter approach, coordinator MPC for maximizing throughput, the plant-
wide control problem is decomposed by estimating the remaining capacity of each
unit in the local MPC applications. The remaining capacity (Ry) is estimated from
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the present initial state, linear model equations and constraints used in the local
MPC. To calculate the current maximum feed for each unit, the end predictions
(steady-state gain) for the variables are used. In this thesis, the estimate is based
on experimental models, most of them linear (some are gain scheduled). However,
rigorous models for local units can also be used to predict the remaining capac-
ity and makes decomposition flexible where the best available model can be used
to predict the remaining capacity. The major advantage of decomposition is that
the overall plant application becomes smaller in size and hence easier to under-
stand and maintain. The coordinator MPC can also easily be built in steps with
successive local MPC applications included in the coordinator.

The coordinator MPC 1is an effective tool for plantwide dynamic optimiza-
tion. It uses simple models and by estimating remaining capacity of each unit, the
plant is decomposed in an effective way. Dynamic optimization with simple mod-
els and decomposition of the plantwide control problem is satisfactorily in many
cases compared to traditional (steady-state) RTO. This thesis discusses an objec-
tive function equal to maximum throughput and dynamic optimization using linear
models. However, the coordinator MPC is not imitated to this. The objective func-
tion can be economic, for example with a price weighting between the feeds. The
coordinator can also use non-linear, rigorous models when it is necessary.

To implement maximum throughput, the key is to achieve maximum flow
through the bottleneck unit(s). However, to achieve feasible operation it is usually
necessary to “back off” from the optimally active constraints. Back off leads to a
lower flow through the bottleneck and an unrecoverable economic loss. This leads
to the obvious conclusion that “throughput maximization requires tight bottleneck
control”. It is important to know (or estimate) the expected back off in order to
quantify the possible benefits of moving the throughput manipulator (changing the
inventory control system), adding dynamic degrees of freedom, changing or re-
tuning the supervisory control system etc. The magnitude of the back off should
be obtained based on information about the disturbances and the expected control
performance. In practice, determining the expected dynamic variation is difficult.
In this thesis, we obtain a rough estimate of the necessary back off based on con-
trollability analysis. In summary, the requirement that that the effective time delay
in the bottleneck controller loop should be less than 1/4 of the disturbance time
constant to have benefit of control. This implies that the throughput manipula-
tor must be located very close to the bottleneck to have any benefit of improved
control and reducing back off.

7.2 Directions for further work

Within the scope of this thesis, some issues for further work are listed below.
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Uncertainty in the static ratio gain

In the single-loop with ratio control, the bias adjustment is considered constant
(static). However, this gain may change, for example due to feed composition
changes. The performance of the control structure is not considered if the static
ratio changes significantly. An alternative implementation can be a nonlinear bias
adjustment to account for significant gain changes, but this structure is not studied
in detail.

Information loss in plantwide control decomposition

In the estimate of the remaining capacity of a unit, only a single unit is consid-
ered in the local MPC application. Thus, some information between the units is
therefore lost in the decomposition. For example, the capacity of one unit may
depended on how an another unit is operated. Are there any effective ways to add
cross-information between the units but still be able to decompose the plant and
not include all variables? How large is this loss in cross-information in terms of
economics? How much more effort must be added to avoid this loss?

Further implementation of the coordinator MPC

The coordinator MPC is implemented at the Karsto gas plant, covering about half
of the processing units. This should be extended to cover the whole plant and
include export gas quality to achieve the real maximum plant throughput. In the
estimation of remaining capacity, an LP solver that includes relaxation of the con-
straints should be implemented. It is preferable that the estimate returns the best
possible solution instead of “giving up” and this improves the robustness of the
coordinator MPC.

Throughput maximization in recycle systems

The maximum throughput case in production systems is closely related to the max-
imum flow problem in networks considered in operations research. The main as-
sumption for applying network theory is that the mass flow through the network is
represented by linear flow connections. The main process unit that creates nonlin-
earity in terms of flows between the units is a reactor. Another important decision
that affects composition, and thus flows, is the amount of recycle. In this thesis,
these sources of nonlinearity are viewed as a single combined unit as seen from
maximum throughput (bottleneck) point of view. Combined units are not treated
in detail and should be understand better in terms of maximum throughput. How-
ever, such systems with reactors will often be in Mode 2b, optimized throughput,



7.2. Directions for further work 151

with an unconstrained optimum with no bottlenecks, but there might be cases when
such plants are in Mode 2a, maximum throughput.

Obtain an back-off estimate on more realistic example

In Chapter 3, controllability analysis is used to obtain necessary back off to en-
sure feasibility in spite of disturbances. The controllability analysis should be
performed on more realistic example.
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Appendix A

Implementation of MPC on a
deethanizer at Karste gas plant

Presented at
16th IFAC World Congress, July 2005, Prague, Czech Republic

Model predictive control (MPC) is implemented on several distillation
columns at the Kérste gas processing plant, Norway. The paper de-
scribes the procedure in the implementation of MPC at a deethanizer
using the SEPTIC* MPC tool, including design, estimator development,
model development and tuning. For the deethanizer, the variance in the
product quality has been reduced with about 50%. The number of flar-
ing episodes has also been reduced. An increase in impurities has not
been challenged yet, so the average reflux flow and steam consumption
to feed ratios are almost unaltered.

*SEPTIC: Statoil Estimation and Prediction Tool for Identification and Con-
trol

A.1 Introduction

A.1.1 Plant description

The Kérsto gas processing plant plays a key role in the transport and treatment
of gas and condensate from central parts of the Norwegian continental shelf. This
plant receives rich gas and unstabilized condensate through pipelines and separates
the feed into its various components. The products from the plant are sales gas,
which is exported in pipelines, and ethane, propane, iso-, normal butane, naphtha
and condensate, which are exported by ships. The rich gas processing design ca-
pacity at Kérste is today at 74 MSm3/d. The facility had 575 ship calls in 2002 to
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load the liquid products, and is one of the largest producers of liquefied petroleum
gases (LPG) in the world.

A.1.2 Model predictive control

MPC is sometimes defined as the family of controllers where there is a direct use
of an explicit and separately identifiable model, where the model provides predic-
tions of the process response to future changes in the manipulative variables and
to predicted process disturbances (Garcia ef al., 1989). In practice, MPC is char-
acterized by its ability to handle constraints in both manipulated and controlled
variables. MPC techniques provide the only methodology to handle constraints in
a systematic way during the design and implementation of the controller. More-
over, in its most general form MPC is not restricted in terms of the model, ob-
jective function and/or constraint functionality. These are the primary reasons for
the success of these techniques in numerous applications in the chemical process
industries (Garcia et al., 1989; Qin and Badgwell, 2003).

The most important issues for the Kérsto processing plant are regularity and
capacity, to avoid being a bottleneck in the large gas transportation system in the
Norwegian Sea. While several extension projects gradually increase the plant size
and complexity, the resulting regularity challenges are met with MPC implemen-
tation. Moreover, large value creations take place, and pushing the capacity limits
requires a control tool like MPC to handle the varying set of active constraints.

A.2 SEPTIC MPC

SEPTIC is an in-house software system for MPC, real-time optimization (RTO),
dynamic process simulation for simpler case studies, and off- and on-line param-
eter estimation in first principle based process models. At Kérsto, SEPTIC was
selected as a tool for MPC. The MPC issues of SEPTIC are described by Strand
and Sagli (2003).

Currently, most SEPTIC MPC applications in Statoil use experimental SISO
step response models. SEPTIC is also capable of running generally non-linear
models implemented in a compact model object. However, the SISO models rep-
resent to a large extent the process dynamics sufficiently accurate to achieve good
controller performance.

The SEPTIC MPC is configured with

* controlled variables (CV), specified with setpoint (SP), high limit and low
limit,
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» manipulated variables (MV), specified with rate of change, high and low
limit and ideal value (IV),

* disturbance variables (DV).
The control specifications are explicitly prioritized by:
1. MV rate of change limits
2. MV high and low limits
3. CV hard constraints, hardly ever used

4. CV setpoints, CV high and low limits and MV ideal values with priority
level /

5. CV setpoints, CV high and low limits and MV ideal values with priority
level n

6. CV setpoints, CV high and low limits and MV ideal values with priority
level 99

MYV rate of change and MV high and low limits are always activated and re-
spected unless there is a dynamic conflict between those two specifications. Then
a sequence of steady-state quadratic programs is solved to respect the remaining
specifications 3) - 6), giving the achievable steady-state targets. The control spec-
ifications are adjusted accordingly for the dynamic optimization problem.

A.3 Deethanizer MPC

The implementation of MPC for the Sleipner train deethanizer is described in the
following chapter.

A.3.1 Column description

The deethanizer has 34 trays, a partial condenser with propane coolant, a reflux
drum, and a reboiler with LP steam as heating medium. The gas from the reflux
drum goes to the steam boilers as fuel gas, and the liquid splits to reflux and dis-
tillate. The column feed is the top product from two stabilizers that consists of
butane and lighter components. The feed passes through the gas dryers to remove
water before it enters the column.

The deethanizer basic control structure can be summarized as follows:

* Reflux drum level control with distillate
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* Reflux flow control

* Column bottom level control

 Tray 1 temperature control with condensate

* LP steam pressure control

* Column pressure control by reflux drum gas valve

The column including the basic control structure is displayed in figure A.1.
The performance to the PID controllers around the column is verified and tuned if
necessary before any MPC modelling take place.

Split range 0-65%
[PC } H
T i 65-100%

Quality estimator

Fuel gas
to boilers

- Ethane to
ethane treatment

Reflux pumps Product pumps

e ©
LP steam —_—r 1 | 7T N
\_1 Quality estimator

LP condensate 4—w | I :

Figure A.1: The deethanizer including the basic control

I

To depropanizer

There are three main disturbances to consider in operation. First, the feed rate
may be reduced to the half of its nominal value in less than 15 minutes. This
occurs when one of the two stabilizers are taken out of production. Second, the
feed flow composition may change. There are analyzers on both feed streams, but
the sampling time is about 15 minutes, so the column responds to the variations
before the analyzers. The third disturbance is feed temperature variations due to
the 1-2 days gas drier regeneration cycle.

A.3.2 MPC design

The MPC design starts with MV, CV and DV selection. The system components
are the column, condenser, reflux drum and reboiler, while the input and output
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MV:Reflux | MV: Temperature | DV:Column Feed
CV:C3mC2 - + +
CV:C2in C3 + - +
CV: PC output + - 0

Table A.1: The selected variables in the MPC including steady state gain

streams are feed and products. The main control objective is to control the quality
of the top and bottom streams, by manipulating boil-up and reflux flow.

The temperature controller set point is selected as an MV. An option is to
manipulate the steam flow, which is a direct manipulation on the energy input.
However, the original configuration is kept and leaves the basic control scheme
unchanged for the operators. Manipulating the temperature controller set point
requires that the temperature controller dynamics must be included in the MPC
models.

Also, the column must be kept under surveillance to avoid overloading. The
differential pressure is a good indicator for flooding (Kister, 1990), but is not mea-
sured for the actual column. In addition, limitations in the basic level control and
in the process equipment must be considered. The pressure controller output is
included as a CV to avoid the flare valve opening when the controller exceeds
65%.

Only the feed flow is included as a DV in the MPC. The unmeasured feed com-
position changes are suppressed by the MPC feedback action. The feed tempera-
ture is measured and may be used as a DV if some special gas drier considerations
are made.

Manipulating the column pressure is a trade-off between energy savings and
flooding limit. The pressure is not included as an MV, but could have lead to a
more optimal operation of the column.

The steady state gain between the reflux flow and the bottom quality is positive.
The temperature controller is in closed loop and to some extent compensates for
the reflux flow. However, if the temperature controller was located higher in the
column, the steady state gain may have been negative. The other steady-state gains
are as expected. The deethanizer MPC design including the steady state gains is
summarized in table A.1.

The top and bottom product qualities must be measured in some way. The top
quality is expressed in propane mol% in ethane (C3 IN C2), whereas the bottom
quality is expressed in ethane mol% in propane (C2 IN C3). There are on-line gas
chromatographs (GC) at the deethanizer distillate and at the depropanizer distillate.
The GC sample rate is 10 minutes, which from a control point of view is too in-
frequent. In addition, the GC is occasionally inoperative due to maintenance. The
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product qualities are therefore estimated by the temperature profile in the column.
A more detailed description of the quality estimators is found in section A.3.3.
The CV prioritizing for the deethanizer application is as follows:

1. High and low limit pressure controller output, high limit top and bottom
quality

2. Set point top and bottom quality

where 1 is the highest priority. The priority list leads to relaxation of the quality set
points when the application predicts on one of the limits to the pressure controller
output.

Application subgrouping must be considered in the design. In this MPC, the
top quality and the reflux flow are in one subgroup and both are critical variables.
The bottom quality and the temperature are in another subgroup and both are criti-
cal members of the group. The pressure controller output and the column feed are
members of both subgroups but are stated as non-critical members. This means
that top quality is still allowed to be controlled with reflux but not with tempera-
ture if bottom quality is deactivated and vice versa.

A.3.3 Obtaining estimators

The deethanizer data history had sufficient variance in the product qualities, so no
test period was needed to enrich the data. The calibration data represented a two
month period with 20 minute averages.

The deethanizer and depropanizer GC values are time shifted 10 and 25 min-
utes respectively, to account for sampling delay and process dynamics.

Distillation columns are known to be strongly nonlinear due to the vapor-liquid
equilibrium (VLE). Logarithmic compositions reduce the nonlinearity and the be-
havior becomes much less dependent on the operation point (Skogestad, 1997).
Different quality transformations were tried for the estimator calibration, and the
square root gave the best fit.

The least squares regression gave that to describe the top product quality only
the tray 28 and top temperatures are needed, whereas the tray 10 and bottom tem-
peratures are needed for the bottom product quality.

A.3.4 Dynamic modelling

The deethanizer modelling took two days with step testing, with the MV steps and
DV (feed rate) variations shown in figure A.2. The resulting CV’s are displayed
in figure A.3. The GC is compared with the estimator and shows a satisfactory
match, illustrated by the top quality in figure A.4.



A.3. Deethanizer MPC 167

MANIPULATED VARIABLES AND DISTURBANCE VARIABLE

EN

©
m

©
<

© © ©
= o o

© ©

REFLUX FLOW
© SN W o
L L L

m

&

0
T
|

TEMPERATURE
2 @
>
T

COLUMN FEED

i
o 200 » ) 800 1080 1280 1a00 1680 1880 2000
Samples

Figure A.2: Step test period for MVs and DV

C3IN C2
N »

o
T
I

1.6

0 500 1000 1500 2000

Figure A.3: Resulting CV’s from the step test period



168 Implementation of MPC on a deethanizer at Karste gas plant

_4

9

o 3}

E

S 2

z 4L

™

(&) 0 . . . ;

0 200 400 600 800 1000
Samples

Figure A.4: Top quality, GC (dotted) versus estimator (solid)

The dynamic models are identified by Tai-Ji ID (Zhu, 1998). The Tai-Ji ID
identification is based on the asymptotic method (ASYM), which calculates time
domain parametric models using frequency domain criterion. The step response
models from the Tai-Ji ID tool is displayed in figure A.5. The grading A to D is
determined from the upper error bounds in a frequency plot. The steady state gains
in the models are as expected, except the column feed influence on the top quality
that turns out to be negative. A positive steady state gain effect for this model is
found from data with more variations in the feed. The model fit is displayed in
figure A.6.

REFLUX FLOW TEMPERATURE COLUMN FEED

-0.00035675 3.403 -1.4809e-005 D

C3INC2

1.2147e-005 =0.77761

C2INC3

3.1498e-005

0.0015549

-0.00018799

PC OUTLET

Figure A.5: Step response models for the deethanizer application

Experience from other MPC applications have shown that using the logarith-
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Figure A.6: The model fit. Measured CV’s (solid) and simulated CV’s (dashed)

mic qualities gives better adaption to step response models. The logarithmic com-
position is defined as the logarithm between the ratio of the key components (Sko-
gestad, 1997) and is written as
0.01-y
X=log—— A.l

12001y A1)
where y is the impurity component in mol% . The step response models and the
model fit of the transformed CV’s are displayed in figure A.7 and A.8 respectively.

The improvement by using logarithmic quality is not that clear in this applica-
tion. There is reduced error in the models between the logarithmic qualities versus
the column feed, leads to an improvement from C to B model for the top and D
to C model for the bottom, indicating a better initial response. Changes in reflux
have a small effect on the bottom quality, and the identification found only a D
model in both cases. The frequency plot of the error bounds show a acceptable
initial response, which is caused by the temperature controller do not compensate
for the reflux change immediately, so the D model is kept in the application.

The models between the CV’s and the column feed are verified through a new
data set with more variation in the feed. In the new models from column feed, the
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Figure A.7: Step response models with logarithmic transformation of the qualities
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Figure A.8: The logaritmic model fit. Measured CV’s (solid) and simulated CV’s
(dashed)
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steady state gain for the top quality and the pressure controller outlet changed sign.
The column feed have a small influence on the pressure controller outlet in general
so the model is omitted from the application.

A.3.5 MPC tuning

Several tuning parameters must be decided to obtain a rational use of the MV’s to
reach the control targets. The available set of SEPTIC MPC tuning parameters are:

CV and MYV span internal scaling reflecting the “acceptable” standard deviation
of each variable

CV Fulf set point deviation penalty

MYV Fulf ideal value deviation penalty

CV HighPnlty/ LowPnlty high and low limit violation penalty

CV SetpTref time constant for first order low pass filtering of set point changes

CV ConsTfilt time constant for first order low pass filtering of high and low limit
changes

MY MovePnlty change penalty
MYV MaxUp/ MaxDown rate of change limits
MYV IVROC desired rate of change for IV fulfillment

All penalties are quadratic, including the ones for deviation, violation and move
penalty.

A summary of the MPC tuning parameters are given in table A.2. The High-
Pnlty and LowPnlty for the pressure controller output are lower than for the qual-
ities to avoid too aggressive use of the MV’s when pressure controller outlet op-
erates close to its limits. The scaling have already proportionate the variables, so
the MovePnlty parameter is set to 1. SetpTrefand ConsTfilt are not used in the
application. Also typical operation values are listed in table A.2. The qualities
are specified with a set point value and a high limit value, while the pressure con-
troller output is specified with a high limit and a low limit. The bottom quality high
limit is lower than the product specification because of too high ethane content in
propane leads to condensation problems in the depropanizer condenser. The pres-
sure controller output high limit is the limitations in the fuel gas system whereas
the low limit is introduced to provide a minimum fuel gas stream.
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Ccv: Cv: Cv: MV: MV:

Parameter C3inC2 | C2inC3 | PCoutput | Reflux flow | Temperature

[mol%] [mol%] [%] [kg/h] [°C]
SP/IV 1.2 (2) 1.2 (2)
High Limit 4(1) 2.5(1) 60 (1) 110000 86.3
Low Limit 15 (1) 55000 84.5
Span 0.3 0.3 1 2000 0.2
Fulf 0.5 0.5
HighPnlty 5 5 2.5
LowPnlty 2.5
MovePnlty 1 1
MaxUp 2000 0.15
MaxDown -500 -0.15

Table A.2: Typical operation values and MPC tuning parameters for the deetha-
nizer, CV priority level in parenthesis

At last, the parameters that specify the model updating are determined. The
bottom quality has some noise and the deviation between the model and the CV is
filtered through a 2 minutes low pass filter. Both the top quality and the pressure
controller outputs have non-modeled disturbances that influence on the variables.
Letting the MV’s react fast suppresses these disturbances, so both variables have a
first order prediction of the disturbances with 5 minutes time constant. The cost is
a more aggressive use of the reflux flow.

A.4 Results from implementation

A4.1 Column operation without MPC

As opposed to other distillation columns at Kérste, the deethanizer did not operate
with particularly high purity in both ends. However, the deethanizer is one of the
most sensitive columns with respect to disturbances and changes in reflux flow and
boil-up. The basic control scheme gave large variations in product quality due to
feed disturbances.

Finding the right combination of temperature set point and reflux flow rate
was not easy. This combination changes with feed flow and feed composition, so
the operator must be awake and adjust the temperature and the reflux flow several
times during a shift.

A.4.2 Column operation with MPC

A 20 days period with 20 minutes interval have been sampled, to compare opera-
tion before and after MPC implementation. The most distinctive improvement is
the variance in the product qualities. The standard deviation for the top product is
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reduced with 46% for the collected data series, whereas the standard deviation for
the bottom product is reduced with 56%. The top and bottom quality without and
with MPC operation is displayed in figure A.9.

Top product quality [mol%] without MPC Top product quality [mol%] with MPC
2

1.5 1.5

1 1

0.5 0.5

00 400 800 1200 00 400 800 1200
Bc;ttom product quality [mol%] without MPC Izottom product quality [mol%] with MPC
1.5 1.5

1 1
0.5 0.5

00 400 800 1200 00 400 800 1200

Figure A.9: Product quality from the column without (left) and with(right) MPC

The product qualities have not been changed significantly. The impurities can
be increased 1-1.5 mol%, but the limits have not been challenged yet. Therefore
the average changes in reflux flow and steam consumption are small. From the
data period, the reflux flow per unit feed is unaltered. The steam consumption per
unit feed has decreased with 2%. The average bottom impurity is slightly higher,
which can explain the steam consumption reduction.

With too much methane in the feed, flaring is unavoidable since the fuel gas
system has limited capacity. However, data from a two months period indicates
a 20-40% flaring frequency reduction and the flaring episodes have most often a
shorter duration.

A.5 Conclusions

A successful MPC implementation at the Karste gas processing plant has been de-
scribed in detail. Reduced variance in the product qualities and less flaring have
been obtained. Also the opportunity to specify the product qualities directly is
an advantage gained with MPC. The product qualities have not been changed sig-
nificantly after implementation of MPC and therefore the average reflux flow and
steam consumption to feed ratios are almost unaltered.
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