

Innovation and Creativity

Advanced Control of Nuclear Power Plants: Present Status and Future Trends

Federico Zenith
Department of Chemical Engineering
Norwegian University of Science and Technology
Trondheim, June 29, 2007

OUTLINE

Fundamentals of Nuclear Power

REACTOR DYNAMICS

REACTOR CONTROL

STEAM GENERATOR CONTROL

SEISMIC RESPONSE CONTROL

FUTURE OUTLOOKS

FUNDAMENTALS OF NUCLEAR POWER

- To generate heat from nuclear reactions, we can either:
 - 1. Split heavy atoms
 - 2. Merge light atoms

FUNDAMENTALS OF NUCLEAR POWER

- To generate heat from nuclear reactions, we can either:
 - 1. Split heavy atoms
 - 2. Merge light atoms
- Nuclear fission (splitting atoms) is the only current option:
 - Most reactors use neutrons to split fissile atoms
 - Fission reactions generate other neutrons that continue the fission process

FUNDAMENTALS OF NUCLEAR POWER

- To generate heat from nuclear reactions, we can either:
 - 1. Split heavy atoms
 - 2. Merge light atoms
- Nuclear fission (splitting atoms) is the only current option:
 - Most reactors use neutrons to split fissile atoms
 - Fission reactions generate other neutrons that continue the fission process
- Nuclear fusion has not yet produced one self-sustaining reactor and is still experimental; control of future plants is only speculation (however interesting), so it will not be discussed here

Nuclear Fission

- The most common fissile atom is by far 235 U:
 - Many reactions are possible to split ²³⁵U, one is:
 - $n + {}^{235}U \longrightarrow {}^{147}La + {}^{87}Br + 2n$
 - About 200 MeV per split atom of 235 U (≈ 19.3 TJ/mol; Norway's yearly total energy consumption is ≈ 1.5 EJ)

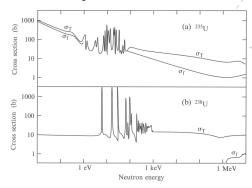
Nuclear Fission

- The most common fissile atom is by far 235 U:
 - Many reactions are possible to split ²³⁵U, one is:
 - $n + {}^{235}U \longrightarrow {}^{147}La + {}^{87}Br + 2n$
 - About 200 MeV per split atom of 235 U (≈ 19.3 TJ/mol; Norway's yearly total energy consumption is ≈ 1.5 EJ)
- Reaction products are usually unstable:
 - Some decay rapidly and contribute to heat and neutron production
 - Some take much longer to decay and become nuclear waste
 - Some can take neutrons from the reaction (reaction poisons)

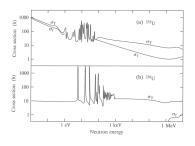
NEUTRON INTERACTIONS

— There are three ways a nucleus can interact with a neutron:

Scattering Neutron and nucleus "bump" into each other


Capture The neutron becomes part of the nucleus

Fission The neutron causes the nucleus to split

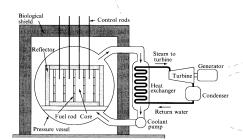

— There are three ways a nucleus can interact with a neutron:

Scattering Neutron and nucleus "bump" into each other Capture The neutron becomes part of the nucleus Fission The neutron causes the nucleus to split

- The total neutron *cross* section σ_T is the sum of these $(\sigma_s, \sigma_c, \sigma_f)$
- Cross sections are very dependent on neutron energy
- To split ²³⁵U, we need low-energy (*slow*) neutrons

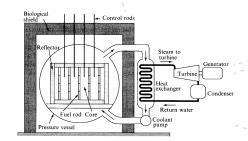
THERMAL NEUTRONS

- The fissile isotope 235 U is only 0.7% of natural uranium
- Slow neutrons are much more selective towards fission of ²³⁵U, rather than being captured by ²³⁸U
- We seek therefore to *thermalise* neutrons, so that their velocity (energy) is in equilibrium with surrounding temperature ($\approx 25 \, \text{meV}$)


NEUTRON MODERATION

- A neutron *moderator* has a high scattering cross-section for neutrons
- The scattering takes energy away from the neutron, thermalising it

Moderator	σ_{s}	$\sigma_f + \sigma_c$	Issues
H ₂ O	49.2	0.66	Requires enriched U
D_2O	10.6	0.001	Expensive
Graphite	4.7	0.0045	Černobyl


A Typical Nuclear Power Plant

- Heat is produced it the reactor core
- Coolant brings heat to exchanger
- A steam cycle generates electricity

A Typical Nuclear Power Plant

- Heat is produced it the reactor core
- Coolant brings heat to exchanger
- A steam cycle generates electricity

Control loops:

- Fission rate is set using the control rods
- Coolant temperature is controlled with the coolant pump
- Steam to the turbine is throttled to maintain boiler pressure
- Boiler water level is kept constant with the return-water pump

- The reaction must be self-sustaining: at least one neutron produced by fission must split another atom
- The number of neutrons produced by fission that cause another fission is the product of:

- The reaction must be self-sustaining: at least one neutron produced by fission must split another atom
- The number of neutrons produced by fission that cause another fission is the product of:
 - η The number of fast neutrons produced by an absorption

- The reaction must be self-sustaining: at least one neutron produced by fission must split another atom
- The number of neutrons produced by fission that cause another fission is the product of:
 - η The number of fast neutrons produced by an absorption
 - p Probability that the neutron will skip the absorption cross-section peaks of ²³⁸U during thermalisation

- The reaction must be self-sustaining: at least one neutron produced by fission must split another atom
- The number of neutrons produced by fission that cause another fission is the product of:
 - η The number of fast neutrons produced by an absorption
 - p Probability that the neutron will skip the absorption cross-section peaks of ²³⁸U during thermalisation
 - f Fraction of slow neutrons that will be absorbed in ²³⁵U

- The reaction must be self-sustaining: at least one neutron produced by fission must split another atom
- The number of neutrons produced by fission that cause another fission is the product of:
 - η The number of fast neutrons produced by an absorption
 - p Probability that the neutron will skip the absorption cross-section peaks of ²³⁸U during thermalisation
 - f Fraction of slow neutrons that will be absorbed in ²³⁵U
 - 1 l Fraction of neutrons that do not leak outside the reactor

- The reaction must be self-sustaining: at least one neutron produced by fission must split another atom
- The number of neutrons produced by fission that cause another fission is the product of:
 - η The number of fast neutrons produced by an absorption
 - p Probability that the neutron will skip the absorption cross-section peaks of ²³⁸U during thermalisation
 - f Fraction of slow neutrons that will be absorbed in ²³⁵U
 - 1 l Fraction of neutrons that do not leak outside the reactor
- The reaction will be in equilibrium ("critical") when $k = \eta \, p \, f \, (1-l) = 1$

- Define:
 - δk to be the deviation from criticality ($\delta k = k 1$), and Λ to be the neutron lifetime

- Define:
 - δk to be the deviation from criticality ($\delta k = k-1$), and Λ to be the neutron lifetime
- The dynamic equation for neutrons becomes:

$$\frac{d n}{d t} = \frac{\delta k}{\Lambda} n$$

— Define:

 δk to be the deviation from criticality ($\delta k = k - 1$), and Λ to be the neutron lifetime

— The dynamic equation for neutrons becomes:

$$\frac{d\ n}{d\ t} = \frac{\delta k}{\Lambda}\, n$$

— In general, we change δk to maintain the reactor at criticality: this system is *unstable* and *nonlinear*

— Define:

 δk to be the deviation from criticality ($\delta k = k - 1$), and Λ to be the neutron lifetime

— The dynamic equation for neutrons becomes:

$$\frac{d\ n}{d\ t} = \frac{\delta k}{\Lambda}\, n$$

- In general, we change δk to maintain the reactor at criticality: this system is *unstable* and *nonlinear*
- Feedback is necessary to control the reactor. However, Λ is very small (\approx 1 ms), and requires an unreasonably large bandwidth requirement on sensor, controller and actuator

PROMPT AND DELAYED NEUTRONS

- Not all neutrons come from fission: 0.75 % come from decay of fission products
- This has very fortunate consequences, since *delayed neutrons* take a much longer time to appear

PROMPT AND DELAYED NEUTRONS

- Not all neutrons come from fission: 0.75 % come from decay of fission products
- This has very fortunate consequences, since *delayed neutrons* take a much longer time to appear
- The dynamic equation has now become:

$$\begin{cases} \frac{d n}{d t} = \frac{\delta k - \sum_{i} \beta_{i}}{\Lambda} n + \sum_{i} \lambda_{i} C_{i} \\ \frac{d C_{i}}{d t} = \frac{\beta_{i}}{\Lambda} n - \lambda_{i} C_{i} \end{cases}$$

— Most detailed models assume six groups of delayed neutrons; assuming only one, we have a new dynamics with $\tau \approx 12.5 \, s$

PROMPT CRITICALITY

- As long as $\delta k < \sum_i \beta_i$, the fast dynamics is stable
- The system is *still unstable*, but we have now a manageable bandwidth

PROMPT CRITICALITY

- As long as $\delta k < \sum_i \beta_i$, the fast dynamics is stable
- The system is *still unstable*, but we have now a manageable bandwidth
- If k ever reaches 1.0076, prompt neutrons will be able to escalate the reaction unassisted by delayed neutrons. This is a situation of *prompt criticality* which must be avoided, as it can lead to meltdowns
- For this reason, a common control requirement on δk is to limit its transients in a band of ± 6 mk

— In addition, there are several internal feedback phenomena:

— In addition, there are several internal feedback phenomena:

Temperature Due to *Doppler broadening*, neutrons are much more easily absorbed by ²³⁸U at higher temperatures. This stabilises the dynamics of a nuclear plant, but *only mathematically*

— In addition, there are several internal feedback phenomena:

Temperature Due to *Doppler broadening*, neutrons are much more easily absorbed by ²³⁸U at higher temperatures. This stabilises the dynamics of a nuclear plant, but *only mathematically*

Xenon 135 Xe is formed mostly from β^- decay of 135 I, which has an half-life of 6.57 hours. 135 Xe has a large cross-section for neutron absorption and is a reactor poison. It can be stabilising, but its long time constants make it more of a nuisance

— In addition, there are several internal feedback phenomena: Temperature Due to Doppler broadening, neutrons are much more easily absorbed by 238 U at higher temperatures. This stabilises the dynamics of a nuclear plant, but only mathematically Xenon 135 Xe is formed mostly from β decay of 135 I, which has an half-life of 6.57 hours. 135 Xe has a large cross-section for neutron absorption and is a reactor poison. It can be stabilising, but its long time constants make it more of a nuisance Depletion Obviously the amount of fissile material will decrease. This is also mathematically stabilising

— In addition, there are several internal feedback phenomena:

Temperature Due to *Doppler broadening*, neutrons are much more easily absorbed by ²³⁸U at higher temperatures. This stabilises the dynamics of a nuclear plant, but *only mathematically*

Xenon 135 Xe is formed mostly from β^- decay of 135 I, which has an half-life of 6.57 hours. 135 Xe has a large cross-section for neutron absorption and is a reactor poison. It can be stabilising, but its long time constants make it more of a nuisance

Depletion Obviously the amount of fissile material will decrease. This is also mathematically stabilising

Void If a liquid is used in the core, its evaporation will leave a "void" for neutron interactions: this is stabilising if the liquid is the moderator (PWR, PBR) and destabilising if it is only absorbing neutrons (RBMK, Černobyl)

THE CONTROL RODS

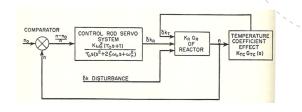
- Control rods are highly neutron-absorbing material (cadmium, boron)
- When they are inserted, neutrons are removed from the reaction
- There are three main types of control rods:

REGULATOR a few, used to fine-tune the reactor's activity

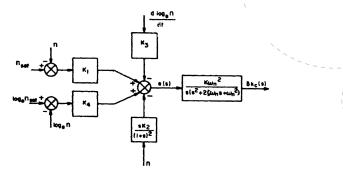
Sнім to compensate for long-term reactivity changes (xenon poisoning, uranium depletion)

SCRAM emergency rods to be inserted in case of loss of control

— Rods are usually placed so that moving the regulators completely out will not exceed the limit of $\pm 6 \,\mathrm{mk}$


MEASUREMENT OF REACTOR POWER OUTPUT

- Neutron flux is a good measurement of heat generation
- Placing neutron sensors is a design issue


- Measuring the coolant temperature and flow is also possible, but it has a too large lag to be useful
- Measurements are much slower at low power: operation at low power can be dangerous

CLASSIC CONTROL

- Control strategy by Schultz (1955) for a generic reactor
- Error signal given as $\frac{n_0-n}{n}$ to compensate for nonlinearity
- It ignores the increased measurement lag at low powers

CLASSIC CONTROL

- Controller for a CANDU reactor, 1975 paper (Mehta) from Whiteshell Laboratories: probably used in actual practice
- Seems to have been synthesised by trial and error
 - The logarithm is probably to slow down low-power operation

OPTIMAL CONTROL

- Interest for \mathcal{H}_2 control in '70 and early '80
- Most approaches were of the full-state feedback type
- Kalman filtering is necessary for all six species of delayed neutrons, ¹³⁵Xe, ¹³⁵I; only neutron flux is measurable

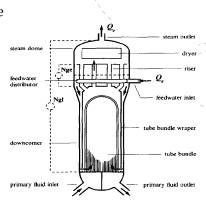
OPTIMAL CONTROL

- Interest for \mathcal{H}_2 control in '70 and early '80
- Most approaches were of the full-state feedback type
- Kalman filtering is necessary for all six species of delayed neutrons, ¹³⁵Xe, ¹³⁵I; only neutron flux is measurable
- Not many practical applications:
 - Neophobia?
 - Safety has priority over performance
 - Nuclear plants are usually in base-load mode, not load-following
 - "Slower is safer"

RECENT APPROACHES

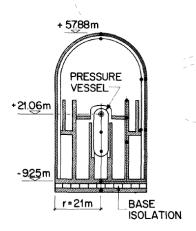
- Most new work uses fuzzy logic and/or neural networks
- Combination of different techniques: *Adaptive fuzzy model based predictive control...* by Eliasi et al., 2007

RECENT APPROACHES


- Most new work uses fuzzy logic and/or neural networks
- Combination of different techniques: *Adaptive fuzzy model based predictive control...* by Eliasi et al., 2007
- Neural networks are used to make up for system complexity
 - No first-principle modelling required
 - Training of the network is however necessary

RECENT APPROACHES

- Most new work uses fuzzy logic and/or neural networks
- Combination of different techniques: *Adaptive fuzzy model based predictive control...* by Eliasi et al., 2007
- Neural networks are used to make up for system complexity
 - No first-principle modelling required
 - Training of the network is however necessary
- A fuzzy or neural-network controller will be no smarter than the trainer
- Performance is usually compared to PID control, no more advanced techniques (loop shaping, \mathcal{H}_{∞} , nonlinear control. . .)


STEAM GENERATOR CONTROL

- Many reactors transfer heat from the (primary) cooling cycle to the (secondary) turbine cycle
- Bad control of steam generators causes 25 % of reactor stops
- Inverse response in water level when steam flow is changed due to "swell-and-shrink" behaviour
- New approaches include adaptive, linear parameter-varying and model-predictive control

SEISMIC RESPONSE CONTROL

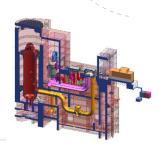
- Interest especially in Japan
- Active compensation of earthquakes has been studied since the '80s
- High requirements in power and bandwidth for actuators

FUTURE OUTLOOKS

- The main challenge is to make active control unnecessary
- Plant *designed* to be stable, rather than stabilised

FUTURE OUTLOOKS

- The main challenge is to make active control unnecessary
- Plant designed to be stable, rather than stabilised
- Is one solution going to cause many problems?


FUTURE OUTLOOKS

- The main challenge is to make active control unnecessary
- Plant *designed* to be stable, rather than stabilised
- Is one solution going to cause many problems?
- The Pebble-bed reactor is often touted to be *inherently* safe:
 - Reactivity decreases rapidly with escalating temperature
 - The core has very low power density, making natural dissipation possible
 - The graphite cannot burn with the coolant (helium)

PEBBLE-BED REACTORS

But...

- "Natural dissipation" means the core will be cooled by atmospheric air
- Therefore, no meaningful containment building will be present
- Helium will be run through a compressor: surge problems may be catastrophic
- Surge control will be of critical importance

Conclusions

- Nuclear plants are operated with a "play-it-safe" philosophy, no fancy control unless necessary
- As fossil sources become more expensive, nuclear power may be used for load following
- Performance requirements, and with it advanced control, may become more important
- New reactor types may introduce new types of control issues

Conclusions

- Nuclear plants are operated with a "play-it-safe" philosophy, no fancy control unless necessary
- As fossil sources become more expensive, nuclear power may be used for load following
- Performance requirements, and with it advanced control, may become more important
- New reactor types may introduce new types of control issues

Thank you for your attention!