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FUNDAMENTALS OF NUCLEAR POWER

— To generate heat from nuclear reactions, we can either:

1. Split heavy atoms
2. Merge light atoms
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— To generate heat from nuclear reactions, we can either:
1. Split heavy atoms
2. Merge light atoms
— Nuclear fission (splitting atoms) is the only current option:

e Most reactors use neutrons to split fissile atoms
e Fission reactions generate other neutrons that continue the
fission process
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FUNDAMENTALS OF NUCLEAR POWER

— To generate heat from nuclear reactions, we can either:
1. Split heavy atoms
2. Merge light atoms
— Nuclear fission (splitting atoms) is the only current option:
e Most reactors use neutrons to split fissile atoms
o Fission reactions generate other neutrons that continue the
fission process
— Nuclear fusion has not yet produced one self-sustaining
reactor and is still experimental; control of future plants is only
speculation (however interesting), so it will not be discussed
here
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NUuUcLEAR F1ssiON

— The most common fissile atom is by far 2°U:
e Many reactions are possible to split U, one is:
e n+2°U — YWLa+%8Br+2n
e About 200 MeV per split atom of 2°U (= 19.3 TJ/mol; Norway’s
yearly total energy consumption is ~ 1.5 EJ)
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NUuUcLEAR F1ssiON

— The most common fissile atom is by far 2°U:

e Many reactions are possible to split U, one is:

e n-+ 2351) ., W71 4 + 87Br +2n

e About 200 MeV per split atom of 2°U (= 19.3 T /mol; Norway’s
yearly total energy consumption is ~ 1.5 EJ)

— Reaction products are usually unstable:

e Some decay rapidly and contribute to heat and neutron
production

e Some take much longer to decay and become nuclear waste

e Some can take neutrons from the reaction (reaction poisons)
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NEUTRON INTERACTIONS

— There are three ways a nucleus can interact with a neutron:
ScarterING Neutron and nucleus “bump” into each other
Carture The neutron becomes part of the nucleus
Fisston The neutron causes the nucleus to split
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NEUTRON INTERACTIONS

— There are three ways a nucleus can interact with a neutron:

ScarterING Neutron and nucleus “bump” into each other
Carture The neutron becomes part of the nucleus
Fisston The neutron causes the nucleus to split
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— The total neutron cross 1w
section o7 is the sum
of these (o5, 0¢, 0f)

(a) 25y

100

Cross section (b,

— Cross sections are very !
dependent on neutron

energy g

— To split 2°U, we need z
low-energy (slow) ' L kl L
€ 1 keV 4
neutrons Neutron energy He

Feperico ZeEn1TH, CONTROL OF NUCLEAR POWER PLAN




THERMAL NEUTRONS
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— The fissile isotope 2*U is only 0.7 % of natural uranium

— Slow neutrons are much more selective towards fission of
235U, rather than being captured by 233U

— We seek therefore to thermalise neutrons, so that their velocity
(energy) is in equilibrium with surrounding temperature
(=~ 25meV)
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NEUTRON MODERATION

— A neutron moderator has a high scattering cross-section for
neutrons

— The scattering takes energy away from the neutron,
thermalising it

Moderator o5 0f+ 0c Issues
H,O 492  0.66  Requires enriched U
D,0O 10.6  0.001 Expensive

Graphite 4.7  0.0045 Cernobyl
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A TyricAL NUCLEAR POWER PLANT

Biological
shield

Control rods

— Heat is produced it the
reactor core

Steam to
turbine

Generator

— Coolant brings heat to
exchanger

Heat
exchanger
Condenser

Return water

— A steam cycle generates
electricity

| Pressure vessel
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A TyricAL NUCLEAR POWER PLANT

Biological

— Heat is produced it the B Lt
reactor core
Steam to
. turbine
— Coolant brings heat to = Gensrtor
exchanger Hew ===
R (Y oo

— A steam cycle generates | —
electricity O

Control loops:
— Fission rate is set using the control rods
— Coolant temperature is controlled with the coolant pump
— Steam to the turbine is throttled to maintain boiler pressure

— Boiler water level is kept constant with the return-water pump
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REACTOR DYNAMICS

— The reaction must be self-sustaining: at least one neutron
produced by fission must split another atom

— The number of neutrons produced by fission that cause
another fission is the product of:
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REACTOR DYNAMICS

— The reaction must be self-sustaining: at least one neutron
produced by fission must split another atom

— The number of neutrons produced by fission that cause
another fission is the product of:

1N The number of fast neutrons produced by an absorption
p Probability that the neutron will skip the absorption
cross-section peaks of 28U during thermalisation
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REACTOR DYNAMICS

— The reaction must be self-sustaining: at least one neutron
produced by fission must split another atom

— The number of neutrons produced by fission that cause
another fission is the product of:
1N The number of fast neutrons produced by an absorption
p Probability that the neutron will skip the absorption
cross-section peaks of 28U during thermalisation
f Fraction of slow neutrons that will be absorbed in 2°U
1 —1 Fraction of neutrons that do not leak outside the reactor

— The reaction will be in equilibrium (“critical”) when
k=npf(l—-1)=1
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Dynamic EQuATION

— Define:

dk to be the deviation from criticality (0k =k — 1), and
A to be the neutron lifetime
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Dynamic EQuATION

— Define:
dk to be the deviation from criticality (0k =k — 1), and
A to be the neutron lifetime

— The dynamic equation for neutrons becomes:

dn_ék

dt A"
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Dynamic EQuATION

— Define:
dk to be the deviation from criticality (0k =k — 1), and
A to be the neutron lifetime

— The dynamic equation for neutrons becomes:

dn 8k .
dt A
— In general, we change 6k to maintain the reactor at criticality:
this system is unstable and nonlinear
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Dynamic EQuATION

— Define:
dk to be the deviation from criticality (0k =k — 1), and
A to be the neutron lifetime

— The dynamic equation for neutrons becomes:

dn 8k .
dt A
— In general, we change 6k to maintain the reactor at criticality:
this system is unstable and nonlinear
— Feedback is necessary to control the reactor. However, A is
very small (= 1ms), and requires an unreasonably large
bandwidth requirement on sensor, controller and actuator
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ProMPT AND DELAYED NEUTRONS

— Not all neutrons come from fission: 0.75 % come from decay of
fission products

— This has very fortunate consequences, since delayed neutrons
take a much longer time to appear
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ProMPT AND DELAYED NEUTRONS

— Not all neutrons come from fission: 0.75 % come from decay of
fission products

— This has very fortunate consequences, since delayed neutrons
take a much longer time to appear

— The dynamic equation has now become:

dn _8k=) B —I—Z?\C

dt A
dCi Bl
it An A Gy

— Most detailed models assume six groups of delayed neutrons;
assuming only one, we have a new dynamics with T ~ 12.5s
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PromPT CRITICALITY

— Aslongas 8k < }_; B3, the fast dynamics is stable

— The system is still unstable, but we have now a manageable
bandwidth
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PromPT CRITICALITY

— Aslongas 8k < }_; B3, the fast dynamics is stable

— The system is still unstable, but we have now a manageable
bandwidth

— If k ever reaches 1.0076, prompt neutrons will be able to
escalate the reaction unassisted by delayed neutrons. This is a
situation of prompt criticality which must be avoided, as it can
lead to meltdowns

— For this reason, a common control requirement on ok is to limit
its transients in a band of £6 mk
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INTERNAL FEEDBACKS

— In addition, there are several internal feedback phenomena:

Feperico ZeniTH, CONTROL OF NUCLEAR POWER PLAN



INTERNAL FEEDBACKS

— In addition, there are several internal feedback phenomena:
TempPERATURE Due to Doppler broadening, neutrons are much more easily
absorbed by 2®U at higher temperatures. This stabilises the
dynamics of a nuclear plant, but only mathematically
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INTERNAL FEEDBACKS

— In addition, there are several internal feedback phenomena:

TempPERATURE Due to Doppler broadening, neutrons are much more easily
absorbed by 2®U at higher temperatures. This stabilises the
dynamics of a nuclear plant, but only mathematically

Xexon '¥Xe is formed mostly from 3~ decay of '*°I, which has an
half-life of 6.57 hours. **Xe has a large cross-section for
neutron absorption and is a reactor poison. It can be stabilising,
but its long time constants make it more of a nuisance
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Xexon '¥Xe is formed mostly from 3~ decay of '*°I, which has an
half-life of 6.57 hours. **Xe has a large cross-section for
neutron absorption and is a reactor poison. It can be stabilising,
but its long time constants make it more of a nuisance

DerreTION ObvVviously the amount of fissile material will decrease. This is
also mathematically stabilising
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INTERNAL FEEDBACKS

— In addition, there are several internal feedback phenomena:

TempPERATURE Due to Doppler broadening, neutrons are much more easily
absorbed by 2®U at higher temperatures. This stabilises the
dynamics of a nuclear plant, but only mathematically

Xexon '¥Xe is formed mostly from 3~ decay of '*°I, which has an
half-life of 6.57 hours. **Xe has a large cross-section for
neutron absorption and is a reactor poison. It can be stabilising,
but its long time constants make it more of a nuisance

DerreTION ObvVviously the amount of fissile material will decrease. This is
also mathematically stabilising
Voip If aliquid is used in the core, its evaporation will leave a “void”
for neutron interactions: this is stabilising if the liquid is the
moderator (PwR, PBR) and destabilising if it is only absorbing
neutrons (remk, Cernobyl)
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TaeE CoNTROL RODS

— Control rods are highly neutron-absorbing material (cadmium,
boron)

— When they are inserted, neutrons are removed from the
reaction
— There are three main types of control rods:

RecuLaTOR a few, used to fine-tune the reactor’s activity
Suim to compensate for long-term reactivity changes (xenon
poisoning, uranium depletion)
ScraM emergency rods to be inserted in case of loss of control

— Rods are usually placed so that moving the regulators
completely out will not exceed the limit of £6 mk
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MEASUREMENT OF REACTOR POWER OuTPUT

— Neutron flux is a good
measurement of heat
generation

— Placing neutron sensors
is a design issue G

— Measuring the coolant temperature and flow is also possible,
but it has a too large lag to be useful

— Measurements are much slower at low power: operation at
low power can be dangerous
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Crassic CONTROL

COMPARATOR [ controL rop servo TEMPERATURE
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— Control strategy by Schultz (1955) for a generic reactor
— Error signal given as ®2—* to compensate for nonlinearity

— Itignores the increased measurement lag at low powers
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Crassic CONTROL
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— Controller for a canpu reactor, 1975 paper (Mehta) from
Whiteshell Laboratories: probably used in actual practice

— Seems to have been synthesised by trial and error

— The logarithm is probably to slow down low-power operation
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Or1riMmAL CONTROL

— Interest for 3, control in 70 and early "80
— Most approaches were of the full-state feedback type

— Kalman filtering is necessary for all six species of delayed
neutrons, 13°Xe, 13°7; only neutron flux is measurable
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Or1iMmAL CONTROL

— Interest for 3, control in 70 and early "80
— Most approaches were of the full-state feedback type

— Kalman filtering is necessary for all six species of delayed
neutrons, 13°Xe, 13°7; only neutron flux is measurable
— Not many practical applications:
e Neophobia?
e Safety has priority over performance
o Nuclear plants are usually in base-load mode, not
load-following
e “Slower is safer”
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RECENT APPROACHES

— Most new work uses fuzzy logic and/or neural networks

— Combination of different techniques: Adaptive fuzzy model based
predictive control. .. by Eliasi et al., 2007
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RECENT APPROACHES

— Most new work uses fuzzy logic and/or neural networks

— Combination of different techniques: Adaptive fuzzy model based
predictive control. .. by Eliasi et al., 2007

— Neural networks are used to make up for system complexity

¢ No first-principle modelling required
¢ Training of the network is however necessary
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RECENT APPROACHES

— Most new work uses fuzzy logic and/or neural networks
— Combination of different techniques: Adaptive fuzzy model based
predictive control. .. by Eliasi et al., 2007
— Neural networks are used to make up for system complexity
¢ No first-principle modelling required
e Training of the network is however necessary
— A fuzzy or neural-network controller will be no smarter than
the trainer
— Performance is usually compared to Pip control, no more
advanced techniques (loop shaping, H,, nonlinear control. . .)
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STEAM GENERATOR CONTROL

— Many reactors transfer heat
from the (primary) cooling cycle
to the (secondary) turbine cycle 12

steam outlet

'
steam dome r——

— Bad control of steam generators

dryer

causes 25 % of reactor stops — e u—ﬂﬂﬂf N
— Inverse response in water level Ng. \_ ccvaer e

when steam flow is changed

due to “swell-and-shrink” wbe bundie wraper

behaviour downcomer {———

tube bundle

— New approaches include . i
adaptive, linear‘ iy i)
parameter-varying and
model-predictive control

—— primary fluid outlet

N
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SeEismiCc REsPONSE CONTROL

+5788m

— Interest especially in Japan PRESSURE
VESSEL

— Active compensation of ’
earthquakes has been studied agom f
since the ‘80s :

— High requirements in power
and bandwidth for actuators -925m

_BASE
ISOLATION
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Future OUTLOOKS

— The main challenge is to make active control unnecessary
— Plant designed to be stable, rather than stabilised
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— Is one solution going to cause many problems?
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Future OUTLOOKS

— The main challenge is to make active control unnecessary
— Plant designed to be stable, rather than stabilised

— Is one solution going to cause many problems?
— The Pebble-bed reactor is often touted to be inherently safe:
o Reactivity decreases rapidly with escalating temperature
e The core has very low power density, making natural
dissipation possible
e The graphite cannot burn with the coolant (helium)
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PEBBLE-BED REACTORS

But. ..

— “Natural dissipation” means the
core will be cooled by
atmospheric air

— Therefore, no meaningful
containment building will be
present

— Helium will be run through a
compressor: surge problems may
be catastrophic

— Surge control will be of critical
importance
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CONCLUSIONS

— Nuclear plants are operated with a “play-it-safe” philosophy,
no fancy control unless necessary

— As fossil sources become more expensive, nuclear power may
be used for load following

— Performance requirements, and with it advanced control, may
become more important

— New reactor types may introduce new types of control issues
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CONCLUSIONS

— Nuclear plants are operated with a “play-it-safe” philosophy,
no fancy control unless necessary

— As fossil sources become more expensive, nuclear power may
be used for load following

— Performance requirements, and with it advanced control, may
become more important

— New reactor types may introduce new types of control issues

Thank you for your attention!
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