

Innovation and Creativity

CONTROL OF FUEL CELLS

Federico Zenith
Department of Chemical Engineering
Norwegian University of Science and Technology
Trondheim, June 29, 2007

OUTLINE

Introduction

ELECTROCHEMISTRY

Buck-boost converters

Manifold composition and pressure control

STACK TEMPERATURE CONTROL

Introduction

Fuel cells

- Devices to convert chemicals (hydrogen, oxygen) into electricity
- No polluting emissions, scalable, efficient, no moving parts. /.
- This thesis focuses on proton-exchange-membrane fuel cells

Motivation for control of fuel cells

- Any fuel cell outside a lab needs control!
- Commercial applications require automation
- Even in the lab it would be useful: many phenomena
- Most research on the topic focuses on only one aspect at a time

CHOICE OF CONTROL VARIABLES

- Classical stumbling block: few fuel cell researchers are trained in control theory, let alone experts
- What do we want to control? With what are we going to do it?

CHOICE OF CONTROL VARIABLES

- Classical stumbling block: few fuel cell researchers are trained in control theory, let alone experts
- What do we want to control? With what are we going to do it?
- Common errors:
 - Assuming current or voltage can be manipulated directly
 - Choosing bad combinations: manipulate inflow to control power output (not strictly impossible)
 - Considering only part of the system (this is difficult to escape)

CHOICE OF CONTROL VARIABLES

- Classical stumbling block: few fuel cell researchers are trained in control theory, let alone experts
- What do we want to control? With what are we going to do it?
- Common errors:
 - Assuming current or voltage can be manipulated directly
 - Choosing bad combinations: manipulate inflow to control power output (not strictly impossible)
 - Considering only part of the system (this is difficult to escape)
- We first have to consider what the fuel cell is going to be used for, and how it will be connected
- Control insight may actually suggest design modifications to improve the system's controllability

Advantages of Polybenzimidazole Membranes

- Рві works at higher temperatures (125–200°C) than ordinary Nafion (80–90°C):
 - We simply don't have any water management
 - Streams contain more heat: no dedicated cooling loop?
 - Increased tolerance to CO
- PBI cells look better for control, but there are some issues:
 - Not as off-the-shelf as Nafion, less reproducibility
 - Less experimental data (influence of CO?)

Fuel-Cell Dynamics

— Many assume that there is only one dynamics of fuel cells: in fact, there are many dynamic modes

— Users are really interested only in the *last part*, the rest is "under the hood"

THE ELECTROCHEMICAL MODEL

- A common model for a fuel cell, with cathode only
- It consists of generator E^{rev} , internal resistance R_{MEA} , charge double layer C, Butler-Volmer law $f(\eta)$, crossover current density generator i_c

Multicomponent Diffusion

Can we simplify the Stefan-Maxwell and continuity equations?

Multicomponent Diffusion

Can we simplify the Stefan-Maxwell and continuity equations?

— Transients are fast enough to be neglected, especially since these transients lag behind other ones

STEPPING THE RESISTANCE LOAD

- Markers spaced by $\approx 0.06 \, s$
 - Notice the similar pattern for all transients!

THE INSTANTANEOUS CHARACTERISTIC

- The points in the i-V plane a cell can immediately reach
- Moves up and down with values of $\eta(i_r)$; inclination depends on r
- The actual voltage and current depend on the load's characteristic as well

THE INSTANTANEOUS CHARACTERISTIC

- The points in the i-V plane a cell can immediately reach
- Moves up and down with values of $\eta(i_r)$; inclination depends on r
- The actual voltage and current depend on the load's characteristic as well
- It is possible to step power output instantaneously to any value

CONTROL OF REACTION RATE

— Control of reaction rate i_r means control of the overvoltage η

$$\dot{\eta} = \frac{\dot{\iota} + \dot{\iota}_c - \dot{\iota}_r}{C}$$

- The only variable we can modify (albeit indirectly) is the external current i:
- To control the reaction rate, we will manipulate the external circuit and its relation $\mathfrak{i}(V)$
 - Mosfet
 - Rheostat
 - Converter
 - ... Anything that modifies the external circuit's characteristic

CONVERTERS

- Converters work by switching between two configurations
- Buck-boost converter: can deliver higher or lower voltages
- Neither configuration delivers power at steady-state

CONVERTERS

- Converters work by switching between two configurations
- Buck-boost converter: can deliver higher or lower voltages
- Neither configuration delivers power at steady-state

CONVERTER CONTROL

- Not a simple problem: no steady state
- Two strategies considered:
 - Pulse-width modulation: we use a continuous variable for the fraction of time we are in the ON mode
 - Switching rules: the switch is set ON and OFF according to some rule

CONVERTER CONTROL

- Not a simple problem: no steady state
- Two strategies considered:
 - Pulse-width modulation: we use a continuous variable for the fraction of time we are in the ON mode
 - Switching rules: the switch is set ON and OFF according to some rule
- Pulse-width modulation is better for calculations, but gives a nonlinear problem of difficult solution
- The switching rules have a better performance, but their simulation is very slow

Composition and pressure control

- Two separate equations for cathode and anode
- Cathode side must be open-ended (water production)
- Anode side may be dead-ended if hydrogen is (reasonably) pure, possibly with periodic purging
- Reactant concentration does not determine the rate of reaction—It is the reaction that requires a certain concentration!

DEAD-END FLOWS

- Typical case for an anode fed on pure hydrogen
- Fairly simple balance on a single component:

$$\frac{d\,n_{H_2}}{d\,t}=\dot{n}_{H_2}^{in}-\frac{\dot{\iota}_r\,A}{2\,F}$$

- $\dot{n}_{H_2}^{in}$ is our manipulated variable, and we have to maintain n_{H_2} despite variations in i_r
- We control anode pressure, but the system is unstable and needs feedback
- Control Pi feedback controller with a pressure measurement with a feedforward component

OPEN-END FLOWS

- Typical with inert components such as nitrogen, or taking up product water (air, impure hydrogen)
- Assume perfect mixing in the bulk (CSTR)
- Diffusion will occur, and with it mass-transport barriers
- Mass-transport barriers will move to higher values of current for higher reactant concentration in the bulk

$$\frac{p\,\mathcal{V}}{R\,T}\frac{d\,x_i}{d\,t} = \overbrace{\dot{n}^{in}\,\left(x_i^{in} - x_i\right)}^{Feed} + \underbrace{\frac{\dot{i}_r\,A}{F}}_{}^{Reaction}\underbrace{\begin{array}{c} \text{Dilution} \\ \hline \nu_i \end{array} - x_i \sum_i \nu_i$$

— Mole fraction dynamics for a generic component i:

$$\frac{p \, \mathcal{V}}{R \, T} \frac{d \, \mathbf{x_i}}{d \, t} = \underbrace{\dot{\mathbf{n}}^{\text{in}} \, \left(\mathbf{x_i}^{\text{in}} - \mathbf{x_i} \right)}_{\text{F}} + \underbrace{\dot{\mathbf{l_r}} \, A}_{F} \left(\underbrace{\begin{array}{c} \text{Reaction} \\ \\ \end{array}}_{i} \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \end{array}}_{i} \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \\ \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \end{array}}_{i} \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \\ \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \\ \\ \end{aligned}}_{i} \underbrace{\begin{array}{c} \text{Dilution} \\ \\ \\$$

— Manipulate \dot{n}^{in} to control x_i despite i_r

$$\frac{p\,\mathcal{V}}{R\,T}\frac{d\,x_i}{d\,t} = \overbrace{\ddot{n}^{in}\,\left(x_i^{in} - x_i\right)}^{Feed} + \frac{\dot{\iota}_r\,A}{F} \left(\overbrace{\nu_i}^{Reaction} - x_i\sum_i \nu_i\right)$$

- Manipulate \dot{n}^{in} to control x_i despite i_r
- We have a slow composition measurement in the feedback loop compared to requirements (at our temperatures)

$$\frac{p\,\mathcal{V}}{R\,T}\frac{d\,x_i}{d\,t} = \overbrace{\dot{\mathfrak{n}}^{in}\,\left(x_i^{in}-x_i\right)}^{Feed} + \frac{\dot{\iota}_r\,A}{F} \left(\overbrace{\boldsymbol{\nu}_i}^{Reaction} \underbrace{-x_i\sum_i \nu_i}_{i}\right)$$

- Manipulate \dot{n}^{in} to control x_i despite i_r
- We have a slow composition measurement in the feedback loop compared to requirements (at our temperatures)
- The dynamics is stable for air, where $\sum_i v_i > 0$: we do not need feedback

$$\frac{p \, \mathcal{V}}{R \, T} \frac{d \, x_i}{d \, t} = \overbrace{\dot{n}^{in} \, \left(x_i^{in} - x_i \right)}^{\text{Feed}} + \frac{\mathbf{i}_r \, A}{F} \left(\overbrace{\boldsymbol{\nu}_i}^{\text{Reaction}} \underbrace{-x_i \, \sum_i \nu_i}_{\text{i}} \right)$$

- Manipulate \dot{n}^{in} to control x_i despite i_r
- We have a slow composition measurement in the feedback loop compared to requirements (at our temperatures)
- The dynamics is stable for air, where $\sum_i v_i > 0$: we do not need feedback
- Current is available as a precise measurement of disturbance

$$\frac{p\,\mathcal{V}}{R\,T}\frac{d\,x_i}{d\,t} = \overbrace{\dot{n}^{in}\,\left(x_i^{in} - x_i\right)}^{\text{Feed}} + \underbrace{\frac{i_r\,A}{F}}_{\text{F}} \left(\overbrace{\nu_i}^{\text{Reaction}} - x_i\sum_i \nu_i\right)$$

- Manipulate \dot{n}^{in} to control x_i despite i_r
- We have a slow composition measurement in the feedback loop compared to requirements (at our temperatures)
- The dynamics is stable for air, where $\sum_i v_i > 0$: we do not need feedback
- Current is available as a precise measurement of disturbance
 Control Pure feedforward

— Enthalpy balance:

$$A \ \hat{c}_p \ \frac{d \ T}{d \ t} = \underbrace{\dot{H}^{in} - \dot{H}^{out}}_{} - \underbrace{\dot{V} \, \dot{\iota} \, A}_{} - \dot{H}^{loss}$$

— Use air flow to control temperature

$$A \, \hat{c}_p \, \frac{d\,T}{d\,t} = \underbrace{\overset{Usually \, < \, 0}{\dot{H}^{in} - \dot{H}^{out}}}_{} - \underbrace{\overset{Electric \, power}{\bigvee i\, A}}_{} - \dot{H}^{loss}$$

- Use air flow to control temperature
- Simplification are necessary to get it in a better form

$$A \ \hat{c}_p \ \frac{d \ T}{d \ t} = \underbrace{\dot{H}^{in} - \dot{H}^{out}}_{} - \underbrace{\dot{V} \, \dot{\iota} \, A}_{} - \underbrace{\dot{H}^{loss}}_{}$$

- Use air flow to control temperature
- Simplification are necessary to get it in a better form
- Possibility of significant unmodelled disturbances

$$A \ \hat{c}_p \ \frac{d \ T}{d \ t} = \underbrace{\dot{H}^{in} - \dot{H}^{out}}_{} - \underbrace{\dot{V} \, \dot{\iota} \, A}_{} - \dot{H}^{loss}$$

- Use air flow to control temperature
- Simplification are necessary to get it in a better form
- Possibility of significant unmodelled disturbances
- With feedback control, do not use integral action, it will cause windup (resource competition with oxygen-fraction control)

— Enthalpy balance:

$$A \ \hat{c}_p \ \frac{d \ T}{d \ t} = \underbrace{\dot{H}^{in} - \dot{H}^{out}}_{} - \underbrace{\dot{V} \, \dot{\iota} \, A}_{} - \dot{H}^{loss}$$

- Use air flow to control temperature
- Simplification are necessary to get it in a better form
- Possibility of significant unmodelled disturbances
- With feedback control, do not use integral action, it will cause windup (resource competition with oxygen-fraction control)

CONTROL P controller, possibly with feedforward assistance

$$A \, \hat{c}_p \, \frac{d \, T}{d \, t} = \underbrace{ \overset{Usually \, < \, 0}{\dot{H}^{in} - \dot{H}^{out}} - \overset{Electric \, power}{\overbrace{V \, i \, A}} - \dot{H}^{loss}}_{}$$

- Use air flow to control temperature
- Simplification are necessary to get it in a better form
- Possibility of significant unmodelled disturbances
- With feedback control, do not use integral action, it will cause windup (resource competition with oxygen-fraction control)
- CONTROL P controller, possibly with feedforward assistance
 - No additional requirement on air flow capacity

Overall Control Structure

TIME SCALES OF FUEL-CELL DYNAMICS

Conclusions

- Fuel-cell systems can deliver power very rapidly; there are slower *internal* dynamics
- The electrochemical transient's nature allows perfect control of power output from a cell
- Simple control algorithms for pressure, composition and temperature are good enough
- Converter control is somewhat less friendly, and is critical for system performance

ACKNOWLEDGEMENTS

Support from Statoil and the Norwegian Research Council is gratefully acknowledged.

ACKNOWLEDGEMENTS

Support from Statoil and the Norwegian Research Council is gratefully acknowledged.

Thank you for your attention!