O N'I'NU Innovation and Creativity

Data reconciliation and optimal operation With applications to refinery processes

Tore Lid Department of Chemical Engineering June 20. 2007

Introduction

- Data reconciliation and optimal operation
- Started December 1998
- Funded by Statoil
- Ph.D advisor professor Ph.D.Sigurd Skogestad
- Statoil advisor Ph.D. Stig Strand

Thesis

- 1. Introduction
- 2. **Steady state models for effective on-line applications**
- 3. Data reconciliation
- 4. **Data reconciliation and optimal operation of a catalytic naphtha reformer**
- 5. On-line optimization of a crude unit heat exchanger network
- 6. Implementation issues for real time optimization of a crude unit heat exchanger network.
- 7. Conclusions and further work

Data reconciliation and optimal operation

Preferred properties

- Open-equation formulation, $f(z) = 0$
- Equations written as unit models
- Standardization of equations
- Scaling
- Analytical first order derivatives
- Automatic generation of initial values
- Reuse of models

Models for effective on-line applications Data reconciliation

min $J_r(z)$

s.t.
$$
f(z) = 0
$$

 $A_r z = b_r$

 $Z_{r \text{ min}} \leq Z \leq Z_{r \text{ max}}$

 $\mathsf{where} \; J_r(z) = (Uz - y_m)^{\mathrm{T}} \Sigma^{-1} (Uz - y_m)$

O NTNU

Models for effective on-line applications Optimization

min $\frac{1}{Z}$ *J_{opt}*(*z*)

s.t.
$$
f(z) = 0
$$

\n $A_{opt}z = b_{opt}$
\n $Z_{opt min} \le z \le Z_{opt max}$

where $J_{opt}(z) = -p^T z$ and $b_{opt} = A_{opt} z$

min $J_s(z)$

$$
\text{s.t.} \qquad f(z) = 0
$$
\n
$$
A_s z = b_s
$$

where $J_s(z) = 0$

Unit model

www.ntnu.no the contract of th

Process model

www.ntnu.no the contract of th

Variables and equations

$$
z = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_7 \\ \Theta_1 \\ \Theta_2 \\ \Theta_3 \end{bmatrix}
$$

$$
r_i=f_i(z)
$$

Tore Lid, [Ph.D. Defence](#page-0-0)

Variables and equations

$$
r = f(z) = \left[\begin{array}{c} f_1(z) \\ f_2(z) \\ f_3(z) \end{array}\right]
$$

$$
\frac{\partial f(z)}{\partial z} = \begin{bmatrix} \frac{\partial f_1(z)}{\partial z} \\ \frac{\partial f_2(z)}{\partial z} \\ \frac{\partial f_3(z)}{\partial z} \end{bmatrix}
$$

Tore Lid, [Ph.D. Defence](#page-0-0)

Models for effective on-line applications The scaled process model

 $ilde{f}(\tilde{z}) = 0$ $\widetilde{A}_s \widetilde{z} = \widetilde{b}$

where $\tilde{z} = S_v^{-1}z$.

$$
\begin{aligned}\n\tilde{f}(\tilde{z}) &= S_f f(S_v \tilde{z}) \\
\tilde{A}_s &= S_l A_s \\
\tilde{J}(\tilde{z}) &= S_o J(S_v \tilde{z})\n\end{aligned}
$$

where $\tilde{b} = S_l b_{\rm s}$. S_l , S_f and $S_{\rm v}$ are fixed diagonal scaling matrices and *S^o* is a fixed factor.

Scaling

- 1. Make a pairing of equations and variables.
- 2. Scale all variables such that the scaled variable has a value close to one
- 3. Scale all equations such that the absolute value of the elements of the first order derivatives, corresponding to the equation and variable pairing, is close to one.
- 4. Scale the objective function such that the largest element of the first order derivative $J(\tilde{z})$ has an absolute value close to one.

 $P(i, j) = 1$ if variable number *j* is paired with equation number *i*

$$
\tilde{z}=S_{V}^{-1}z\approx 1
$$

$$
S_{f_i} = \left| \left[I \times \left(\frac{\partial f_i(z)}{\partial z} S_{\nu} P_{ni}^{T} \right) \right]^{-1} \right|
$$

$$
S_o = 1 / \max \left| \frac{\partial J(z)}{\partial z} S_{\nu} \right|
$$
 (1)

Optimal operation of a naphtha reformer

www.ntnu.no the contract of th

Optimal operation of a naphtha reformer

Octane number

The octane number is a measure of the autoignition resistance of gasoline.

Tore Lid, [Ph.D. Defence](#page-0-0)

Optimal operation of a naphtha reformer Process model

www.ntnu.no the contract of th

Optimal operation of a naphtha reformer Nominal operation

Innovation and Creativity

Optimal operation of a naphtha reformer

Data reconciliation results

Reactor 3 outlet temperature

5 10 15 20

O NTNU Innovation and Creativity

Optimal operation of a naphtha reformer

K

Data reconciliation results

10 15 20

Reactor 2 efficiency factor

Reformate product flow

Optimal operation of a naphtha reformer Optimal operation

[∗] = active constraint,∗∗= in case 2 the price of reformate is 65\$/t)

Optimal operation of a naphtha reformer

Control

([∗]Manipulated variable fixed at maximum value)

Summary

- Modeling framework simplifies the development of on-line models.
- Proposed scaling shows promising results, also for larger models.
- Data reconciliation and problem analysis gives useful knowledge of the measurements and process behavior.
- Proper selection of controlled variables simplifies the implementation of the optimal result.

Crude unit heat exchanger network

O NTNU Innovation and Creativity

Method 1. Scaling based on variable bounds and initial equation residual

$$
S_{V_{jj}} = 2^{a_j} \text{ where } a_j = \text{int}[log_2(z_{\text{max}_i} - z_{\text{min}_i})] \qquad (2)
$$

\n
$$
S_{n_{ij}} = 2^{-a_i} \text{ where } a_j = \text{int}[log_2(|f(z_0)|_i)] \qquad (3)
$$

\n
$$
S_{l_{ij}} = 2^{-a_i} \text{ where } a =_i \text{int}[log_2(|A_s z_0 - b_s|_i)] \qquad (4)
$$

where z_0 is the initial value. The equation scaling factor is limited to some maximum value in case the equation residual is close to zero.

Method 2. Scaling based on first order derivatives

$$
\begin{array}{rcl}\n\mathbb{C} & = & \left[\begin{array}{c} \frac{\partial f(z_0)}{\partial z} \\ A_s \end{array} \right] \\
S_{v_{jj}} & = & ||C_j||_2^{-1} \quad \text{where } j = 1...n_z \\
S_{n_{jj}} & = & ||C_j||_2^{-1} \quad \text{where } i = 1...n_f \\
S_{l_{jj}} & = & ||C_j||_2^{-1} \quad \text{where } j = n_f + 1...n_f + n_s\n\end{array} \tag{7}
$$
\n
$$
\begin{array}{rcl}\nS_{l_{jj}} & = & ||C_j||_2^{-1} \quad \text{where } j = n_f + 1...n_f + n_s\n\end{array} \tag{8}
$$

where \mathbb{C}_i and \mathbb{C}_i denotes the columns and rows of \mathbb{C} respectively.

Method 3. Scaling based on order of magnitude

$$
S_{v_{jj}} = 10^{-a_j} \text{ where } a_j = \text{int}[\log_{10}(z_0)_j] \tag{9}
$$

The equation scaling factor is the reciprocal of an integer power of 10 of the value of a given term or group of terms, normally related to the scale factor of a relevant variable.

As an example, let a typical value of a mass balance term x_i *F* be 0.5 \cdot 0.3 = 0.15. The scaling factor for the mass balance equation is then $10^{(-\text{int}(\log_{10}(0.15)))} = 10$. The objective scaling factor is divided by an integer power of 10 close to its typical value.

O NTNI I

Innovation and Creativity