# Innovation and Creativity

Data reconciliation and optimal operation . With applications to refinery processes

Tore Lid Department of Chemical Engineering June 20. 2007

### Introduction

- Data reconciliation and optimal operation
- Started December 1998
- Funded by Statoil
- Ph.D advisor professor Ph.D.Sigurd Skogestad
- Statoil advisor Ph.D. Stig Strand



# Thesis

- 1. Introduction
- 2. Steady state models for effective on-line applications
- 3. Data reconciliation
- 4. Data reconciliation and optimal operation of a catalytic naphtha reformer
- 5. On-line optimization of a crude unit heat exchanger network
- 6. Implementation issues for real time optimization of a crude unit heat exchanger network.
- 7. Conclusions and further work



# Data reconciliation and optimal operation



#### **Preferred properties**

- Open-equation formulation, f(z) = 0
- Equations written as unit models
- Standardization of equations
- Scaling
- Analytical first order derivatives
- Automatic generation of initial values
- Reuse of models



#### Models for effective on-line applications Data reconciliation

min

s.t. 
$$f(z) = 0$$
  
 $A_r z = b_r$   
 $z_{r \min} \le z \le z_{r \max}$ 

where 
$$J_r(z) = (Uz - y_m)^{\mathrm{T}} \Sigma^{-1} (Uz - y_m)$$



#### Models for effective on-line applications Optimization

 $\underset{Z}{\min} J_{opt}(Z)$ 

s.t. 
$$f(z) = 0$$
  
 $A_{opt}z = b_{opt}$   
 $Z_{opt \min} \le z \le Z_{opt \max}$ 

where  $J_{opt}(z) = -p^{T}z$  and  $b_{opt} = A_{opt}z_{r}$ 



 $\frac{\min}{z} J_s(z)$ 

s.t. 
$$f(z) = 0$$
  
 $A_s z = b_s$ 

where  $J_s(z) = 0$ 



www.ntnu.no

Tore Lid, Ph.D. Defence

Unit model





Tore Lid, Ph.D. Defence

#### **Process model**





10

Variables and equations

$$z = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_7 \\ \Theta_1 \\ \Theta_2 \\ \Theta_3 \end{bmatrix}$$

$$r_i = f_i(z)$$



#### Variables and equations

$$r = f(z) = \begin{bmatrix} f_1(z) \\ f_2(z) \\ f_3(z) \end{bmatrix}$$

$$\frac{\partial f(z)}{\partial z} = \begin{bmatrix} \frac{\partial f_1(z)}{\partial z} \\ \frac{\partial f_2(z)}{\partial z} \\ \frac{\partial f_3(z)}{\partial z} \end{bmatrix}$$



12

#### Models for effective on-line applications The scaled process model

 $\widetilde{f}(\widetilde{z}) = 0$  $\widetilde{A}_s \widetilde{z} = \widetilde{b}$ 

where  $\tilde{z} = S_v^{-1} z$ .

$$\begin{split} \widetilde{f}(\widetilde{z}) &= S_f f(S_v \widetilde{z}) \\ \widetilde{A}_s &= S_l A_s \\ \widetilde{J}(\widetilde{z}) &= S_o J(S_v \widetilde{z}) \end{split}$$

where  $\tilde{b} = S_l b_s$ .  $S_l$ ,  $S_f$  and  $S_v$  are fixed diagonal scaling matrices and  $S_o$  is a fixed factor.



- 1. Make a pairing of equations and variables.
- Scale all variables such that the scaled variable has a value close to one
- 3. Scale all equations such that the absolute value of the elements of the first order derivatives, corresponding to the equation and variable pairing, is close to one.
- 4. Scale the objective function such that the largest element of the first order derivative  $\tilde{J}(\tilde{z})$  has an absolute value close to one.



P(i,j) = 1 if variable number *j* is paired with equation number *i* 

$$\tilde{z} = S_v^{-1} z \approx 1$$

$$S_{f_i} = \left| \left[ I \times \left( \frac{\partial f_i(z)}{\partial z} S_v P_{n_i}^{\mathrm{T}} \right) \right]^{-1} \right|$$
$$S_o = 1/\max \left| \frac{\partial J(z)}{\partial z} S_v \right|$$
(1)





|            | Cond.no. | Number | of iterations |                  | Active |                           |
|------------|----------|--------|---------------|------------------|--------|---------------------------|
|            | Ĥ        | Rec.   | Opt.          | d <sub>est</sub> | Jopt   | Constraints               |
| Unscaled   | 5.0E+09  | 23     | 11            | 2.99             | -9.34  | $x_{6}(1)$                |
| Method 1   | 4.8E+05  | 14     | 7             | 0.30             | -9.85  | $P_4, x_6(1), Q_{HT}$     |
| Method 2   | 7.0E+09  | 9      | 3             | 3.49             | -5.84  | Q <sub>HT</sub>           |
| Method 3   | 4.0E+03  | 28     | 10            | 0.30             | -9.85  | $P_{4}, x_{6}(1), Q_{HT}$ |
| New method | 5.1E+01  | 12     | 5             | 0.30             | -9.85  | $P_{4}, x_{6}(1), Q_{HT}$ |



16

#### Optimal operation of a naphtha reformer





Tore Lid, Ph.D. Defence

www.ntnu.no

17

#### Optimal operation of a naphtha reformer

#### Octane number

The octane number is a measure of the autoignition resistance of gasoline.





#### Optimal operation of a naphtha reformer Process model





www.ntnu.no

#### Optimal operation of a naphtha reformer Nominal operation



Innovation and Creativity

#### Optimal operation of a naphtha reformer

#### Data reconciliation results













D NTNU Innovation and Creativity

#### Optimal operation of a naphtha reformer

#### Data reconciliation results





www.ntnu.no

22

#### Optimal operation of a naphtha reformer Optimal operation

| Description                   | Variable                | Unit | Min.  | Max.  | Rec.  | Case 1  | Case 2  | Price   |
|-------------------------------|-------------------------|------|-------|-------|-------|---------|---------|---------|
| Feed flow                     | $\tilde{F}_1$           | t/h  |       |       | 89.2  | 95.6    | 84.1    | -60.0   |
| Reformate flow                | $\tilde{F}_{52}$        | t/h  |       |       | 84.2  | 90.6    | 79.7    | **100.0 |
| Gas flow (LPG)                | $\widetilde{F}_{53}(G)$ | t/h  |       |       | 1.2   | 1.0     | 0.9     | 50.0    |
| H <sub>2</sub> mass flow      | $\widetilde{F}_{53}(H)$ | t/h  | 3.5   |       | 3.8   | 4.0     | *3.5    |         |
| Reformat octane               | RON                     |      | 103.0 |       | 103.9 | * 103.0 | * 103.0 |         |
| Reactor 1 temp.               | $T_5$                   | K    |       | 810.0 | 794.0 | 790.7   | 794.1   |         |
| Reactor 2 temp.               | $T_{16}$                | K    |       | 810.0 | 788.6 | 782.7   | 788.8   |         |
| Reactor 3 temp.               | T <sub>27</sub>         | K    |       | 810.0 | 801.2 | 799.9   | 798.8   |         |
| Reactor 4 temp.               | T <sub>38</sub>         | K    |       | 810.0 | 799.6 | 791.6   | 780.4   |         |
| Heater 1 duty                 | $Q_1$                   | MW   |       | 9.5   | 9.3   | * 9.5   | 8.6     | -0.015  |
| Heater 2 duty                 | $Q_2$                   | MW   |       | 13.0  | 12.7  | * 13.0  | 12.2    | -0.015  |
| Heater 3 duty                 | $Q_3$                   | MW   |       | 13.0  | 12.1  | * 13.0  | 11.3    | -0.015  |
| Heater 4 duty                 | $Q_4$                   | MW   |       | 10.0  | 10.0  | * 10.0  | 7.6     | -0.015  |
| Compressor duty               | Ŵ                       | MW   |       |       | 0.88  | 0.48    | 0.39    | -0.015  |
| Feed H <sub>2</sub> /HC ratio | H2/HC                   |      | 3.0   |       | 5.0   | * 3.0   | * 3.0   |         |
| Separator pres.               | P <sub>53</sub>         | bar  | 8.0   | 10.0  | 8.0   | * 10.0  | * 10.0  |         |
| Profit                        |                         | \$/h |       |       | 2638  | 2883    | -249    |         |

(\* = active constraint, \* \* = in case 2 the price of reformate is 65\$/t)



Tore Lid, Ph.D. Defence

## Optimal operation of a naphtha reformer

#### Control

| Manipulated     | Controlled variables     | Controlled variables        |
|-----------------|--------------------------|-----------------------------|
| variables       | Case 1                   | Case 2                      |
| Feed flow       | Reformate RON            | H <sub>2</sub> product flow |
| Heater 1 duty   | Maximum*                 | Reformate RON               |
| Heater 2 duty   | Maximum*                 | $T_{R1_i} - T_{R2_i} (=0)$  |
| Heater 3 duty   | Maximum*                 | $T_{R2_i} - T_{R3_i} (=0)$  |
| Heater 4 duty   | Maximum*                 | $T_{R3_i} - T_{R4_i} (=0)$  |
| Pressure        | Maximum*                 | Maximum*                    |
| Compressor work | H <sub>2</sub> /HC ratio | H <sub>2</sub> /HC ratio    |

(\* Manipulated variable fixed at maximum value)



### Summary

- Modeling framework simplifies the development of on-line models.
- Proposed scaling shows promising results, also for larger models.
- Data reconciliation and problem analysis gives useful knowledge of the measurements and process behavior.
- Proper selection of controlled variables simplifies the implementation of the optimal result.



#### Crude unit heat exchanger network





**Method 1.** Scaling based on variable bounds and initial equation residual

$$\begin{aligned} S_{v_{jj}} &= 2^{a_j} & \text{where } a_j = \inf[\log_2(z_{\max_i} - z_{\min_i})] & (2) \\ S_{n_{ji}} &= 2^{-a_i} & \text{where } a_i = \inf[\log_2(|f(z_0)|_i)] & (3) \\ S_{l_{ji}} &= 2^{-a_i} & \text{where } a_{=i} \inf[\log_2(|A_s z_0 - b_s|_i)] & (4) \end{aligned}$$

where  $z_0$  is the initial value. The equation scaling factor is limited to some maximum value in case the equation residual is close to zero.

Method 2. Scaling based on first order derivatives

$$\mathbb{C} = \begin{bmatrix} \frac{\partial f(z_0)}{\partial z} \\ A_s \end{bmatrix}$$
(5)  

$$S_{v_{jj}} = ||\mathbb{C}_j||_2^{-1} \text{ where } j = 1...n_z$$
(6)  

$$S_{n_{ij}} = ||\mathbb{C}_i||_2^{-1} \text{ where } i = 1...n_f$$
(7)  

$$S_{l_{ij}} = ||\mathbb{C}_i||_2^{-1} \text{ where } j = n_f + 1...n_f + n_s$$
(8)

where  $\mathbb{C}_i$  and  $\mathbb{C}_i$  denotes the columns and rows of  $\mathbb{C}$  respectively.



Method 3. Scaling based on order of magnitude

$$S_{v_{ij}} = 10^{-a_j} \text{ where } a_j = \text{int}[\log_{10}(z_0)_j]$$

The equation scaling factor is the reciprocal of an integer power of 10 of the value of a given term or group of terms, normally related to the scale factor of a relevant variable.

As an example, let a typical value of a mass balance term  $x_i F$  be  $0.5 \cdot 0.3 = 0.15$ . The scaling factor for the mass balance equation is then  $10^{(-int(\log_{10}(0.15)))} = 10$ . The objective scaling factor is divided by an integer power of 10 close to its typical value.

