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Introduction

— Data reconciliation and optimal operation
— Started December 1998
— Funded by Statoil
— Ph.D advisor professor Ph.D.Sigurd Skogestad
— Statoil advisor Ph.D. Stig Strand
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Thesis

1. Introduction
2. Steady state models for effective on-line applications
3. Data reconciliation
4. Data reconciliation and optimal operation of a catalytic

naphtha reformer
5. On-line optimization of a crude unit heat exchanger network
6. Implementation issues for real time optimization of a crude unit

heat exchanger network.
7. Conclusions and further work
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Data reconciliation and optimal
operation
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Models for effective on-line applications

Preferred properties
— Open-equation formulation, f (z) = 0
— Equations written as unit models
— Standardization of equations
— Scaling
— Analytical first order derivatives
— Automatic generation of initial values
— Reuse of models
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Models for effective on-line applications
Data reconciliation

min
z Jr (z)

s.t. f (z) = 0
Ar z = br

zr min ≤ z ≤ zr max

where Jr (z) = (Uz − ym)TΣ−1(Uz − ym)
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Models for effective on-line applications
Optimization

min
z Jopt (z)

s.t. f (z) = 0
Aoptz = bopt

zopt min ≤ z ≤ zopt max

where Jopt (z) = −pTz and bopt = Aoptzr
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Models for effective on-line applications
Simulation

min
z Js(z)

s.t. f (z) = 0
Asz = bs

where Js(z) = 0
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Models for effective on-line applications

Unit model
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Models for effective on-line applications

Process model
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Models for effective on-line applications

Variables and equations

z =



S1
S2
...

S7
Θ1
Θ2
Θ3


ri = fi(z)
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Models for effective on-line applications

Variables and equations

r = f (z) =

 f1(z)
f2(z)
f3(z)

 ∂f (z)

∂z
=


∂f1(z)

∂z
∂f2(z)

∂z
∂f3(z)

∂z


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Models for effective on-line applications
The scaled process model

f̃ (z̃) = 0

Ãsz̃ = b̃

where z̃ = S−1
v z.

f̃ (z̃) = Sf f (Sv z̃)

Ãs = SlAs
J̃(z̃) = SoJ(Sv z̃)

where b̃ = Slbs. Sl , Sf and Sv are fixed diagonal scaling matrices
and So is a fixed factor.
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Models for effective on-line applications
Scaling

1. Make a pairing of equations and variables.
2. Scale all variables such that the scaled variable has a value

close to one
3. Scale all equations such that the absolute value of the

elements of the first order derivatives, corresponding to the
equation and variable pairing, is close to one.

4. Scale the objective function such that the largest element of
the first order derivative J̃(z̃) has an absolute value close to
one.
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Models for effective on-line applications
Scaling

P(i , j) = 1 if variable number j is paired with equation number i

z̃ = S−1
v z ≈ 1

Sfi =

∣∣∣∣∣
[
I ×
(

∂fi(z)

∂z
Sv PT

ni

)]−1
∣∣∣∣∣

So = 1/ max
∣∣∣∣∂J(z)

∂z
Sv

∣∣∣∣ (1)
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Models for effective on-line applications
Example

S1(F,T) S2(T) S3(T)

S4(F,P)

S5(T)

S6(x1,F,T)

Q

Q,U

Cond.no. Number of iterations Active
H̃ Rec. Opt. dest Jopt Constraints

Unscaled 5.0E+09 23 11 2.99 -9.34 x6(1)
Method 1 4.8E+05 14 7 0.30 -9.85 P4,x6(1),QHT
Method 2 7.0E+09 9 3 3.49 -5.84 QHT
Method 3 4.0E+03 28 10 0.30 -9.85 P4,x6(1),QHT
New method 5.1E+01 12 5 0.30 -9.85 P4,x6(1),QHT
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Optimal operation of a naphtha reformer
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Optimal operation of a naphtha reformer

Octane number

The octane number is a measure
of the autoignition resistance of
gasoline.
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Optimal operation of a naphtha reformer
Process model
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Optimal operation of a naphtha reformer
Nominal operation
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Optimal operation of a naphtha reformer

Data reconciliation results
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Optimal operation of a naphtha reformer

Data reconciliation results
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Optimal operation of a naphtha reformer
Optimal operation

Description Variable Unit Min. Max. Rec. Case 1 Case 2 Price
Feed flow F̃1 t/h 89.2 95.6 84.1 -60.0
Reformate flow F̃52 t/h 84.2 90.6 79.7 ∗∗100.0
Gas flow (LPG) F̃53(G) t/h 1.2 1.0 0.9 50.0
H2 mass flow F̃53(H) t/h 3.5 3.8 4.0 ∗3.5
Reformat octane RON 103.0 103.9 ∗103.0 ∗103.0
Reactor 1 temp. T5 K 810.0 794.0 790.7 794.1
Reactor 2 temp. T16 K 810.0 788.6 782.7 788.8
Reactor 3 temp. T27 K 810.0 801.2 799.9 798.8
Reactor 4 temp. T38 K 810.0 799.6 791.6 780.4
Heater 1 duty Q1 MW 9.5 9.3 ∗9.5 8.6 -0.015
Heater 2 duty Q2 MW 13.0 12.7 ∗13.0 12.2 -0.015
Heater 3 duty Q3 MW 13.0 12.1 ∗13.0 11.3 -0.015
Heater 4 duty Q4 MW 10.0 10.0 ∗10.0 7.6 -0.015
Compressor duty W MW 0.88 0.48 0.39 -0.015
Feed H2/HC ratio H2/HC 3.0 5.0 ∗3.0 ∗3.0
Separator pres. P53 bar 8.0 10.0 8.0 ∗10.0 ∗10.0
Profit $/h 2638 2883 -249

(∗ = active constraint,∗∗= in case 2 the price of reformate is 65$/t)
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Optimal operation of a naphtha reformer

Control
Manipulated Controlled variables Controlled variables
variables Case 1 Case 2
Feed flow Reformate RON H2 product flow
Heater 1 duty Maximum∗ Reformate RON
Heater 2 duty Maximum∗ TR1i -TR2i (=0)
Heater 3 duty Maximum∗ TR2i -TR3i (=0)
Heater 4 duty Maximum∗ TR3i -TR4i (=0)
Pressure Maximum∗ Maximum∗

Compressor work H2/HC ratio H2/HC ratio

(∗Manipulated variable fixed at maximum value)
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Summary

— Modeling framework simplifies the development of on-line
models.

— Proposed scaling shows promising results, also for larger
models.

— Data reconciliation and problem analysis gives useful
knowledge of the measurements and process behavior.

— Proper selection of controlled variables simplifies the
implementation of the optimal result.

www.ntnu.no Tore Lid, Ph.D. Defence



26

Crude unit heat exchanger network
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Models for effective on-line applications
Scaling

Method 1. Scaling based on variable bounds and initial equation
residual

Svjj = 2aj where aj = int[log2(zmaxi − zmini )] (2)

Snii = 2−ai where ai = int[log2(|f (z0)|i)] (3)
Slii = 2−ai where a =i int[log2(|Asz0 − bs|i)] (4)

where z0 is the initial value. The equation scaling factor is limited to
some maximum value in case the equation residual is close to zero.
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Models for effective on-line applications
Scaling

Method 2. Scaling based on first order derivatives

C =

[
∂f (z0)

∂z
As

]
(5)

Svjj = ||Cj ||−1
2 where j = 1...nz (6)

Snii = ||Ci ||−1
2 where i = 1...nf (7)

Slii = ||Ci ||−1
2 where j = nf + 1...nf + ns (8)

where Cj and Ci denotes the columns and rows of C respectively.
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Models for effective on-line applications
Scaling

Method 3. Scaling based on order of magnitude

Svjj = 10−aj where aj = int[log10(z0)j ] (9)

The equation scaling factor is the reciprocal of an integer power of
10 of the value of a given term or group of terms, normally related
to the scale factor of a relevant variable.
As an example, let a typical value of a mass balance term xi F be 0.5 · 0.3 = 0.15. The scaling factor for the mass

balance equation is then 10(−int(log10(0.15))) = 10. The objective scaling factor is divided by an integer power of 10

close to its typical value.
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