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Chapter 1

Introduction

1.1 Motivation

Optimization of the operation of chemical processes is primarily a search for profitable
operational opportunities. The objective is to maximize profit, given the process and
constraints in feeds and products. In this context the maximum profit is achieved by
adjusting operational parameters like mass flows, temperatures and pressures optimally.

The improvement in profit due to optimal adjustments in operational parameters are
small (in the range of 0-5%) compared to the total income. The day to day improve-
ment, compared operation without optimization, can also be difficult to measure due
to measurement errors and long term changes like changes in feed and product qual-
ity, catalyst degradation. It may be necessary to use estimation methods, like data
reconciliation, to verify the improvements made by optimization. Still, when these
small day-to-day improvements are summarized over a longer time (like one year) a
significant contribution to the overall profit is achieved.

A process model is necessary to perform data reconciliation and optimization. It can
also describe the relation between the state of the process equipment, operation and
the process economics. Which parameters have a significant influence on the process
economics and which have only a small or negligible influence? What is the cost of
instrument malfunction or a ”sticky” valve? What is the cost of poor control? What
is the cost of a product quality constraint? There is a long list of interesting questions
to be answered and decisions to be made.

The word optimization is used in many contexts in the chemical industry and this may
in some cases be confusing. In this thesis the word optimization is used to describe the
minimization of a mathematical objective function subject to a set of constraints. If
the objective function describes the negated profit and the constraints a process model,
the solution of this problem yields the optimal operation of the process.
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1.2 Summary

The key elements of on-line process optimization are data validation, model update,
optimization, result conditioning and implementation (Forbes and Marlin, 1996).

In this thesis, these key elements are groped into three main functions, data reconcil-
iation, optimization and control. First, the current process state is estimated using
data reconciliation (data validation and model update). The estimate is based on all
measured values and a first principles process model. Then, the optimal operation is
computed as the maximum profit, given the estimated current process state, the process
model and operational constraints (optimization) . Finally, the optimal operation is
implemented as set points in the control system (implementation).

The basis for data reconciliation and optimization is a process model. In chapter 2 a
modelling framework for deriving physically-based (first principle) nonlinear models is
proposed. The model is based on a unit model structure where first-order derivatives,
scaling and initial values are properties of each unit model. A new scaling procedure
based on equation and variable pairing is used to improve the numerical properties of
the model. The modeling framework and the use of the proposed scaling procedure are
demonstrated in two case studies. Case 1 is simulation of a simple pipe model. Case 2
is simulation, data reconciliation and optimization of a flash process.

Chapter 3 gives a detailed introduction to data reconciliation. This chapter does not
contain any new material but provides a justification for the methods used in later
chapters. It is also written to get a ”hands on” understanding of what is actually
gained using data reconciliation methods. In general, process measurements are conta-
minated with random and possibly systematic errors. For this reason, they do not obey
the conservation laws of the process, like the mass and energy balance. Data recon-
ciliation is a method of optimally adjusting these measurements, such that they obey
the conservation laws or process model. The process model is incorporated as a set
of equality constraints in an optimization problem where the objective is to minimize
the deviation between the measurement and the corresponding variable values in the
process model. As a basis for the adjustments or estimation, each process and its mea-
surements should be analyzed. The measurements are classified as redundant or non
redundant, the process model variables as measured or unmeasured, the unmeasured
variables as observable or unobservable. The above classification and the computation
of the estimate uncertainty give valuable information of the quality of the estimate. If
systematic errors also named gross errors are present, they are removed or a robust
objective function is used. These methods are applied to a small stream mixing process
as an example. Individual measurement validation and steady state detection is not
treated in this thesis.

Chapter 4, 5, and 6 are case studies where the modeling framework and the main
functions of on-line optimization are applied to a naphtha reformer and a crude unit
heat exchanger network.

The naphtha reforming process in chapter 4 converts low-octane gasoline blending com-
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ponents to high-octane components for use in high-performance gasoline fuels. The
reformer also has an important function as the producer of hydrogen to the refinery
hydrotreaters. There are large seasonal variations in the reformer product price and
two operational cases are studied. In case 1, the product price is high and throughput
is maximized with respect to process and product quality constraints. In case 2, the
product price is low and the throughput is minimized with respect to a low constraint
on the hydrogen production. A process model based on a unit model structure is
used for estimation of the process condition using data reconciliation. Measurements
are classified as redundant or non-redundant and the model variables are classified as
observable, barely observable or unobservable. The computed uncertainty of the mea-
sured and unmeasured variables shows that even if a variable is observable it may have
a very large uncertainty and thereby practically unobservable. The process condition
at 21 data points, sampled from two years of operation, is estimated and operation is
optimized. Based on the characteristics of the optimal operation a ”self optimizing”
control structure is suggested for each of the two operational cases.

Chapter 5 describes modeling and on-line optimization of a crude unit heat exchanger
network at the Statoil Mongstad refinery. The objective is to minimize the energy
input in the gas fired heater by optimally distributing the cold crude oil in the heat
exchanger network. The steady state mass and energy balance of the 20 heat exchangers
in the network yields the process model. This model is fitted to the measured values
using data reconciliation and unmeasured values like heat exchanger duty and heat
transfer coefficients are computed. The fitted model is used to compute the optimal
split fractions of crude in the network. This system has been implemented at the
refinery and has resulted in a 2% reduction in energy consumption. In operational
modes where the unit is constrained on energy input this gives a increased throughput
and a significant contribution to the refinery profit.

Chapter 6 provides a case study on the selection of controlled variables for the im-
plementation of real time optimization in a crude unit heat exchanger network. Two
different control strategies with 22 different control structures are evaluated. The idea
is to select the controlled variables that give the best plant economic (smallest loss)
when there are disturbances (self-optimizing control). The disturbances are correlated
and a simple principal component analysis is used to generate a more realistic set of
disturbance variations for evaluation of the different control structures. This analy-
sis shows a large variation of loss for different control structures and that a control
structure evaluation is necessary to obtain the benefits from a RTO system.
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Chapter 2

Scaled steady state models for
effective on-line applications

Accepted for publication in Computers & Chemical Engineering
Authors: Tore Lid and Sigurd Skogestad

Abstract

Applications for on-line data reconciliation and optimization must be efficient and nu-
merically robust. The models in these applications are rarely changed and the same
optimization problem is solved thousands of times with only minor changes in the para-
meters. This paper describes a suitable modeling framework for this type of applications
that, with the aim of simplifying the creation of new models, makes the application ro-
bust and avoids numerical difficulties. The model is based on a unit model structure
where first-order derivatives, scaling and initial values are properties of the unit model.
A new scaling procedure is proposed based on equation and variable pairing. The mod-
eling framework and the use of the proposed scaling procedure are demonstrated in two
case studies, case 1 is simulation of a simple pipe model, case 2 is simulation, data
reconciliation and optimization of a flash process.

2.1 Introduction

Typical process modeling tools are based on a unit model structure library, and then
using streams to connect these. Unit models typically included are heaters, flash drums,
heat exchangers, distillation columns, reactors and so on (Westerberg et al., 1979). The
resulting model equations are solved sequentially or simultaneously.

Most chemical engineers prefer tools like PRO/II from SIMSCI and Hysys from Aspen-
Tech. This may be due to an extensive unit model library, a high quality user interface
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and a sequential solver that solves one unit model at a time. In this environment it is
simple to locate a problem (like a non-converging unit model) and it is simple to do
changes to the model on the worksheet level. On the other hand, sequential solvers are
ineffective for solving optimization problems, including data reconciliation.

For optimization problems, as well as for simulation of more complex processes with
energy and mass recycles, simultaneous solvers are preferred. Examples of tools for
process modeling using simultaneous solvers are gProms from PSE, ASCEND from
Carnegie Mellon University and Custom Modeler from AspenTech. See Marquardt
(1996) for an overview of these tools and others.

The strength of the generic modeling tools mentioned above are the modeling capa-
bility, i.e. creation of new models, but this is rarely needed in on-line optimization
applications. On-line optimization of a process plant is typically separated into three
main tasks; estimation of current state (data reconciliation), optimization and imple-
mentation (White, 1997). Models for on-line applications should be derived with the
following in mind:

• An optimization problem may be solved thousands of times a year with only small
changes in objective functions and specifications and the models are only rarely
changed. Changes in the model are only required when the plant is modified
which may be only once every two to ten years.

• The execution of the optimizer is often automated and is generally not monitored
by modeling experts. Robust convergence properties of the solver are critical.

• The optimizer must have on-line data exchange with the control and process
planning systems. It is therefore often run on computers closely connected to the
control system with limited access for changes.

In summary, the requirements for an on-line application are: a model with no overhead
(unused functionality) to save computation time, an effective and robust solver and
simple interfaces to other systems for data transfer. The actual application is typically
”tailor made” and programmed in some object oriented programming language (C++
or similar).

This paper demonstrates a modeling procedure for this type of on-line applications.
Our experience is that too much time in such projects is spent on finding model errors
and avoiding numerical difficulties and too little time on result analysis. This modeling
guideline will hopefully improve this. The models are based on a unit model structure
and solved simultaneously using a general NLP (non-linear programming) solver. The
equations and variables are organized such that the same process model is used for
simulation, data reconciliation and optimization of the process.

Model residuals, first order derivatives of the models, scaling factors and initial values,
are properties of the unit model. The model equations and numerical properties of
each unit model are verified before they are added to the process model. The unit
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model equations are standardized to reduce the possibility of errors and simplify the
modeling work. For example, all mass balances have the same structure, similar scaling
and same engineering units. This simplifies the development of new unit models and
reduces the possibility of errors.

The examples given in this paper are simple, but the procedure has been applied
industrially on a crude unit pre-heater train (Lid et al., 2002) where the resulting
on-line application is still operating after several years. It has also successfully been
applied to a naphtha reformer model with more than 500 equations and variables.

The model representation in this paper is very simple and a comprehensive definition,
more suited for commercial use, can be found in Bogusch and Marquardt (1995).

In this paper all models are steady state, which is suitable for most process plants with
continuous operation. In the case of processes where dynamic changes are central, the
use of a dynamic model should be considered.

The most important notation is summarized in table 2.1.

2.2 Simulation, data reconciliation and optimiza-

tion problems

This section defines the simulation, data reconciliation and optimization problems con-
sidered in this work.

All three problems use a nonlinear steady state model of the process, which is incorpo-
rated as a set of nonlinear equality constraints f(z) = 0. In addition, known variables
are specified by linear equality constraints Az = b. For each specification i, the matrix
A has a row A(i) with a single nonzero element A(i, j) = 1, such that the value of z(j)
is specified to equal b(i).

The number of equations in the process model (f(z) = 0, Az = b) should be less than
the number of variables, i.e. nf < nz. The difference nz − nf − ns is the number of
degrees of freedom for the problem.

2.2.1 Simulation

In the simulation case, specifications are added in As such that there are zero degrees
of freedom, i.e. nz − nf − ns = 0. The simulation problem is formally defined as

min
z Js(z)

s.t. f(z) = 0

Asz = bs

(2.1)
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Description Dimension
z process model variables nz × 1
z̃ scaled process model variables nz × 1
nz number of process model variables
f process model equations nf × 1

f̃ scaled process model equations nf × 1
r residual vector nf × 1
nf number of process model equations
J objective to be minimized
y measurement vector ny × 1
Q measurement weighting matrix ny × ny

U measurement incident matrix ny × nz

Pn equation and variable pairing matrix nf × nz

Ps equation and variable pairing matrix ns × nz

ny number of measurements
As fixed values matrix ns × nz

bs vector of fixed values ns × 1
ns number of specified variables
Ar fixed values matrix nr × nz

br vector of fixed values nr × 1
nr number of specified variables
Aopt fixed values matrix nopt × nz

bopt vector of fixed values nopt × 1
nopt number of specified variables
z model variables nz × 1
zs simulation result nz × 1
zr data reconciliation result nz × 1
zopt optimization result nz × 1
z0 initial value nz × 1
p cost vector nz × 1
Sn nonlinear equations scaling matrix nf × nf

Sl linear equations scaling matrix ns × ns

Sv variable scaling matrix nz × nz

So objective scaling factor
H linearized equality constraints

H̃ scaled linearized equality constraints
dest Estimation error
Init. initial values
Sim. simulation results
Rec. data reconciliation results
Opt. optimization results

Table 2.1: Nomenclature
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where the ”dummy” objective function is chosen as Js(z) = 0. This is because with
no degrees of freedom the objective function has no influence on the solution. Note
that the specifications in Asz = bs must be selected such that there are no dependent
equations in f(z) and As, that is such that the matrix[

∂f
∂z

As

]
(2.2)

has full rank.

2.2.2 Data reconciliation

Data reconciliation is used to estimate the actual condition of the process and is ob-
tained as the solution of

min
z J(z)

s.t. f(z) = 0

Arz = br

zr min ≤ z ≤ zr max

(2.3)

where J = (y−Uz)TQ(y−Uz). All ny measurements are collected in the measurement
vector y. The ”selection” matrix U gives a mapping of the variables z into the mea-
surements, such that Uz represents the estimated value of the measurements y. The
matrix U has ny rows and in each row there is only one nonzero element U(i, j) = 1,
that is y(i) corresponds to z(j).

The diagonal weighting matrix Q has elements Q(i, i) equal to 1/σ(i)2, where σ(i)2

is the variance of the measurement noise of measurement number i. Minimizing
the objective function is the same as maximizing the Gaussian frequency function,∑

i fi = 1/(σ(i)
√

2π) exp(−0.5(y(i) − U(i)z)2/σ(i)2), which results in a least squares
or maximum likelihood estimate of the process state. More about this and other ob-
jective functions can be found in Tjoa and Biegler (1991) and Chen et al. (1998).

Upper and lower bounds on variables are used to limit the solution to acceptable values.
For example all flows, temperatures and pressures must satisfy z(j) ≥ 0.

If the value of a variable is known it can be specified using the linear constraints.

The variables must be observable based on the measured values and the process model
(Stanley and Mah, 1981). A minimal requirement is that the number of measurements
satisfies ny > nz−nf −nr, where nr is the number of rows in Ar. If some variables are
not observable then measurements must be added or the actual variable value must be
specified.
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2.2.3 Optimization

Optimal operation is calculated by minimization of a cost function subject to the
process model, specified values and operating constrains.

min
z J(z)

s.t. f(z) = 0

Aoptz = bopt

zopt min ≤ z ≤ zopt max

(2.4)

where J(z) = p(z)Tz. In most cases p is a vector of fixed prices related to feed cost,
energy cost and product values.

Values for variables like model parameters, feed conditions and other variables, not
available for optimization, are specified using the linear equality constraints Aoptz =
bopt. These variables are set equal to the reconciled variable, bopt = Aoptzr.

Operating constraints are added as upper and lower bounds on variables, zopt min and
zopt max.

2.2.4 NLP Solver

An NLP solver is used for solving the simulation, data reconciliation and optimization
problems. In this paper a general NLP solver is required to at least handle the following
optimization problem definition:

Objective to be minimized J(z)
Linear equality constraints Az = b
Nonlinear equality constraints f(z) = 0
Variable bounds zmin < z < zmax

In addition it is expected to be able to utilize user specified first order derivatives of
the objective and of the nonlinear constraint functions.

Objective first order derivatives ∂J(z)
∂z

NL constraints first order derivatives ∂f(z)
∂z

The linearized equality constraints

H =

[
∂f(z)

∂z

A

]
(2.5)

are used for analysis of the numerical properties of the optimization problem. If the
condition number of H is large, then the problem is said to be ill-conditioned and
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numerical problems may be expected (based on personal experience large, in this case,
means > 106).

In this paper the solver fmincon from the Matlab Optimization ToolboxR© is used.

2.3 Modeling framework

2.3.1 Model structure

In the suggested model structure, a process model is a collection of one or more unit
models. A unit model describes a small part of the process like a flash drum, heater or
a reactor. The boundary of the unit model is selected such that the connection to other
unit models is by process streams. A general unit model, as shown in figure 2.1, can

S1
S2

SNSn

Sn+2

Sn+1

Θi

Figure 2.1: UnitModel

have one or more input and output streams, shown as S1 − SN and internal variables
shown as Θi. A process stream, connecting two unit models, is simply a set of shared
variables describing the properties of the process stream. A process model with three

S3

S2

Θ1

S4

Θ2 S5

S7

S6

Θ3S1

Figure 2.2: Process model

unit models and seven process streams is shown in figure 2.2. Each unit model has a
set of equations fi(z) = 0 and the overall process model is a collection of equations
from these unit models.

r = f(z) =

 f1(z)
f2(z)
f3(z)

 (2.6)

The process model, r = f(z), as shown in equation (2.6), is a collection of unit models
where each unit model is represented by equations written as ri = fi(z).
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All unit models share the variable vector z. This variable vector contains variables
from all process streams and internal variables from all unit models.

z =



S1

S2
...
S7

Θ1

Θ2

Θ3


(2.7)

Variables describing a process stream are typically component molar fractions, flow,
temperature and pressure. Some cases may require other variables. For example, in
units with two-phase streams, enthalpy may replace temperature as a variable. In this
paper process stream variables are selected as Si = [xT

j Fj Tj Pj]
T

The unit model internal variables Θi, can be heater duty, heat transfer coefficient and
compressor efficiency.

With this fixed ordering of the variables in the variable vector z, a variable mapping is
created. The variable mapping is used to obtain the values of input and output stream
variables and internal variables from the variable vector z, within each unit model.
This requires that the stream number of the input and output streams is known within
each unit model. The stream numbers can be passed to the unit model as parameters
in the actual function call.

The first order derivatives of the process model are also calculated on a unit model
basis.

∂f(z)

∂z
=

 ∂f1(z)
∂z

∂f2(z)
∂z

∂f3(z)
∂z

 (2.8)

where ∂fi(z)
∂z

is a nfi×nz matrix. The above mentioned variable mapping is used in the

column mapping of the individual elements in ∂fi(z)
∂z

.

2.3.2 Unit Models

A unit model describes the behavior of some process unit or process equipment and is
based on equations of mass balance, energy balance and pressure-flow relations. Even
if the individual units may be different, the equations describing their behavior is very
similar and there are benefits of standardization of these equations.

The simplest unit model possible is a unit model with one inlet stream and one outlet
stream. The unit model has no holdup, no reactions, no heat loss or pressure drop. It
is visualized as a ”pipe model” and is stated in equation (2.21).

This ”pipe model” is of no practical use as a unit model but works well as a basic
template for other unit models. Some examples:
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• A heater unit model can be made by adding a simple heat input term Q in the
energy balance. The heat input is an internal variable in the model.

• A heat exchanger can be made by combining two pipes. The energy balance in
the two models is modified by adding a heat term, one negative and one positive.
One additional equation is added in the models describing the heat transfer. This
can be based on LMTD (log mean temperature difference), ε-Ntu or other.

• A CSTR reactor can be made by adding a reaction term, V NTr, in the pipe model
mass balance, where V is the reactor volume, N is the reaction stoichiometric
matrix and r is a vector of reaction rates.

• A flash drum can be made as a pipe with two outlet streams, one vapor flow
and one liquid flow. Equations for vapor-liquid equilibrium (y −K(T, P )x = 0),
sum of vapor components, equal vapor-liquid pressure and temperature have to
be added.

The idea in section 2.4 is to develop a ”pipe model” with good numerical properties
to serve as a template. Other unit models will then inherit these properties and only
small adjustments will be necessary. See Appendix A for unit models of

• Heater

• Reactor (CSTR)

• Separator (flash drum)

• Compressor

• Heat exchanger

• Stream split

• Stream mix

In formulating models, it is easy to miss an equation. A general recommendation or
rule in modeling is to use set assignment and formally pair equations and variables.
Since most variables appear in more than one equation this pairing is not unique.
Nevertheless this rule gives a valuable overview of the model and the pairing turns out
to be useful in adding proper variable specifications and scaling of the variables and
equations.

A systematic approach to the equation-variable pairing is found in Maurya et al. (2003)
and Mah (1990) where the equations and variables are defined as nodes in a graph.
The equations and variables are grouped into two disjoint subsets where arcs connect
the variables and equations. If all equation nodes are connected to only one variable
node and no nodes are left unmatched, the set of equations and variables is said to
have perfect matching.
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2.3.3 Initial values

When creating a large process model it is reasonable to start with a small part of the
process, verify the results, and then add more process streams and process units until
the total model is finalized.

In this construction process the variable vector z will vary in size and the position of
the individual variables in z will change and the generation of initial values, z0, will be
a tedious task.

A simple solution is to let all unit models generate initial values for all unit model
internal variables and for variables related to unit model exit streams. This may not
result in initial values close to a solution but it may still be sufficient as a starting value
for generation of an improved set of initial values by simulation. In addition, initial
values for feed streams must be generated.

In a steady state model, assuming no multiple steady-states, the initial value may
influence convergence properties but has no influence on the final solution itself. This
is different for differential algebraic (DAE) systems where the initial value affects the
solution and must be a valid solution of the DAE system at t = 0 (Pantelides, 1988).
In this case the method described above may be an initial value for solving the DAE
system at t = 0

2.3.4 Scaling

The performance of the NLP solver depends crucially on how the problem is formulated.
An important issue is proper scaling. Note that the scaling is performed off-line.
Thus, the computational complexity of the scaling itself is not important. Rather, the
objective of the scaling is to minimize the computation time and robustness for the
subsequent on-line computations.

An unconstrained optimization problem is said to be poorly scaled if a change in x
in one direction produces a much larger change in f = f(x) than in another direction
(Nocedal and Wright, 1999). The measure of poor scaling is not so clear in constrained
optimization. Some of the methods are said to be scaling invariant, like the SQP
algorithm with BFGS update of the Hessian (as used in this paper), but they are still
influenced by scaling (Biegler and Cuthrell, 1985). This is related to two issues. First,
the initial value of the Hessian is normally set equal to the identity matrix. If the
true Hessian of the scaled problem is closer to the identity matrix than the case of the
unscaled model this should result in an improved estimate of the Hessian and improved
performance of the algorithm. Second, a poorly scaled model is likely to generate larger
rounding errors which may degrade the performance of the algorithm.

Scaling methods used within or as a part of an NLP solver are in general based on
properties of the estimated Hessian (Zhu, 2005; Roma, 2005). The scaling methods
related to the process model or constraints are based on residuals, variable values and
first order derivatives (Jacobian).
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A scaled process model is written as

f̃(z̃) = 0 (2.9)

Ãsz̃ = b̃ (2.10)

where the scaled variable z̃ = S−1
v z. The scaled model f̃(z̃) = Snf(Svz̃) and for the

scaled specification Ãs = SlAs and b̃ = Slbs. Sl, Sn and Sv are fixed diagonal scaling
matrices.

The scaled objective function J̃(z̃) = SoJ(Svz̃) where So is a fixed factor.

Three methods for scaling found in literature are:

Method 1. Scaling based on variable bounds and initial equation residual (Biegler
and Cuthrell, 1985).

Svjj
= 2aj where aj = int[log2(zmaxi

− zmini
)] (2.11)

Snii
= 2−ai where ai = int[log2(|f(z0)|i)] (2.12)

Slii = 2−ai where a =i int[log2(|Asz0 − bs|i)] (2.13)

where z0 is the initial value. The equation scaling factor is limited to some maxi-
mum value in case the equation residual is close to zero. More details and suggested
improvements can be found in the reference.

Method 2. Scaling based on first order derivatives (Kelly, 2004).

C =

[
∂f(z0)

∂z

As

]
(2.14)

Svjj
= ||Cj||−1

2 where j = 1...nz (2.15)

Snii
= ||Ci||−1

2 where i = 1...nf (2.16)

Slii = ||Ci||−1
2 where j = nf + 1...nf + ns (2.17)

where Cj and Ci denotes the columns and rows of C respectively. Other norms like the
1-norm (|| · ||1) or the infinity norm (|| · ||∞) may also be used.

Method 3. Scaling based on order of magnitude (Rodriguez-Toral et al., 2001).

Svjj
= 10−aj where aj = int[log10(z0)j] (2.18)

The equation scaling factor is the reciprocal of an integer power of 10 of the value of a
given term or group of terms, normally related to the scale factor of a relevant variable.
As an example, let a typical value of a mass balance term xiF be 0.5 · 0.3 = 0.15.
The scaling factor for the mass balance equation is then 10(−int(log10(0.15))) = 10. The
objective scaling factor is divided by an integer power of 10 close to its typical value.

Method 4. New proposed scaling method based on variable and equation pairing.

This new scaling method is similar to method number 3 but uses to a larger extent the
structure of the model. The equation scaling factors are not based on the constraint
term values but on values of the first order derivatives matrix. The proposed scaling
procedure is
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1. Make a pairing of equations and variables:

The equation and variable pairing is given in the matrix P where P (i, j) = 1 if
variable number j is paired with equation number i. All other elements in P are
zero.

The equation and variable pairing for a unit model fi(z) is given in a matrix Pni

of dimension nfi
×nz and variable pairing for the specifications Asz = b is stated

in Ps of dimension ns × nz.

2. Scale all variables such that the scaled variable has a value close to one

The variable scaling matrix Sv(j, j) = z̄j where z̄j is a typical value of variable
number j. The initial value, z0, is used in this case.

3. Scale all equations such that the absolute value of the elements of the first order
derivatives, corresponding to the equation and variable pairing, is close to one.

Sni =

∣∣∣∣∣
[
I ×

(
∂fi(z)

∂z
SvP

T

ni

)]−1
∣∣∣∣∣ (2.19)

Sl =
∣∣∣[I × (AsSvP

T

l )]−1
∣∣∣ (2.20)

where× denotes element by element multiplication so that Sni and Sl are diagonal
matrices.

4. The scaling factor for the objective function So is selected such that the largest
element of the first order derivative J̃(z̃) has an absolute value close to one.

5. If any of the elements in the matrix H̃ =
[
f̃(z̃)T ÃT

s

]T

have large absolute values

(where large is > 100) then the equation and variable pairing or variable scaling
should be revised. A possible solution is to pair the equation with the variable
corresponding to the large value in H̃.

In order to illustrate the idea of this scaling strategy, assume that the variables and
equations are reordered such that the elements along the diagonal of the first order
derivatives correspond to the selected equation-variable pairing. The diagonal elements
of this matrix are now all equal to one and the off-diagonal elements are preferably
smaller than one. With this scaling the set of constraints will be balanced where
a change in one variable will result in a change of same magnitude in the equation
residual.

The condition number of H̃ is used as a measure of improved scaling. This measure
is based on the definition of poor scaling in the unconstrained case where a change in
the variable vector z in one direction produces a much larger change in the residual
r = f(z) than in another direction.
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A process model with a large condition number of the first order derivatives will have
larger rounding errors. If the matrix of first order derivatives ∂f

∂z
has a high condition

number a small change in ∆z, caused by rounding errors, may cause a large change in
∆r.

The objective function scaling factor, So, has a large influence on the solution path
of the solver during the iterations. A large scaling factor gives large deviations in the
model equations in the solution path and rapid decrease in the objective. In case of
numerical problems, like temporarily negative values of flows and compositions, the
scaling factor of the objective function should be reduced.

2.4 Case study 1: ”Pipe model”

A simple model of a pipe, as described in section 2.3.2, demonstrates the use of the
suggested modeling procedures. This model has two process streams, one inlet stream

S1 S2

Figure 2.3: Pipe

and one outlet stream. The fluid is a mixture of two components, propane and butane
(NC = 2). The variables are the composition, flow, temperature and pressure of the
two process streams. The variable vector organized as zT = [ST

1 ST
2 ] where ST

i =
[xT

i Fi Ti Pi]. There are no internal variables in this model.

The equations of the pipe model are written as

F1x1 − F2x2 = 0∑
x2 − 1 = 0

F1h(T1,x1)− F2h(T2,x2) = 0

P1 − P2 = 0

(2.21)

These equations represent the mass balance, mole fraction summation, energy balance
and pressure-flow relation (with no pressure drop in this case).

The pipe model is in this case unit model number 1 and is in short-hand notation
written as f1(z) = 0.

The number of variables in the variable vector z is 2(NC + 3) = 10, with NC = 2 and
the number of equations in the pipe model is NC + 3 = 5. In order to solve the model
equations, as in the simulation case, NC+3 = 5 variables have to be specified. In this
case the inlet stream molar fraction, flow, temperature and outlet stream pressure are
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specified.

x1 = xs (2.22)

F1 = Fs (2.23)

T1 = Ts (2.24)

P2 = Ps (2.25)

The specifications are implemented as linear constrains Asz = bs, where As has nz

columns and ns = 5 rows, one row for each specification. As is written as

As =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

 (2.26)

The values of the specific variables are collected in bs and bTs = [xT
s Fs Ts Ps]. The

specification values Fs = 0.27kmol/s, Ts = 285K, Ps = 30bar and xs = [0.5 0.5]T which
gives bs = [0.5 0.5 0.27 285 30 ]T

Description Equation Pairing

Unit model MB Eq. 1 x1(1)F1 − x2(1)F2 = 0 F2

Unit model MB Eq. 2 x1(2)F1 − x2(2)F2 = 0 x2(2)
Sum of compositions

∑
x2 − 1 = 0 x2(1)

Energy balance F1h(T1,x1)− F2h(T2,x2) = 0 T2

Pressure-flow rel. P1 − P2 = 0 P1

Specification no. 1 A(1)z = b1 x1(1)
Specification no. 2 A(2)z = b2 x1(2)
Specification no. 3 A(3)z = b3 F1

Specification no. 4 A(4)z = b4 T1

Specification no. 5 A(5)z = b5 P2

Table 2.2: Equation variable assignment for the pipe unit model

The selected equation-variable pairings are listed in table 2.2. The equation-variable
pairing is not unique and other valid combinations exist. An obvious requirement is
that, if an equation is paired with a variable, this variable must exist in the actual
equation. In the pipe model this leaves two choices for pairing of the outlet stream F2,
component balance one (propane) or component balance two (butane). In this case
the recommendation is to pair F2 with the component balance of the component with
the largest molar fraction. This will in fact simplify the variable and equation scaling
and remove the need for ”extreme” scaling factors.
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The first order derivatives of the pipe unit model,∂f1(z)
∂z

, is written as a nf1 ×nz matrix
where nf1 is the number of equations in unit model number 1 and nz the total number
of variables in the process model.

∂f1(z)
∂z

=


F1 0 x1(1) 0 0
0 F1 x1(2) 0 0
1 1 0 0 0

F1
∂h(x1,T1)

x1(1)
F1

∂h(x1,T1)
x1(2)

h(x1, T1) F1
∂h(x1,T1)

T1
0

0 0 0 0 1

−F2 0 −x2(1) 0 0
0 −F2 −x2(2) 0 0
0 0 0 0 0

−F2
∂h(x2,T2)

x2(1)
−F2

∂h(x2,T2)
x2(2)

−h(x2, T2) −F2
∂h(x2,T2)

To
0

0 0 0 0 −1



(2.27)

A simple verification of the model equations and calculation of first order derivatives
is recommended.

• Compare ∂fi(z)
∂z

with numerically calculated derivatives.

• Verify that equations are linearly independent. The rank of the first order deriv-
ative ∂fi(z)

∂z
must equal the number of equations nfi

.

• Specifications added in A (ref. equation (2.1-2.4)) must be linearly independent

of any unit model equation. I.e. the matrix [∂fi(z)
∂z

T

AT]T must have full rank

The matrix of the first order derivatives of the specifications and pipe model, where
∂f(z)

∂z
= ∂f1(z)

∂z
, are shown in equation (2.28).

H =

[
∂f(z)

∂z

As

]
=



0.27 0 0.50 0 0 −0.27 0 −0.50 0 0
0 0.27 0.50 0 0 0 −0.27 −0.50 0 0
0 0 0 0 0 1 1 0 0 0

9203 10190 35913 34 0 −9203 −10190 −35913 −34 0
0 0 0 0 1 0 0 0 0 −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1



(2.28)
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The condition number of H is 8.13 · 107. The main cause of the high condition number
is the energy balance equation. This equation has large values compared to the other
equation and changes in the paired variable, T2, has the least significant influence on
the equation residual.

In order to reduce the condition number, the model is scaled according to the proposed
method (method 4 in section 2.3.4).

The matrix of equation and variable pairing, P , is derived from Table 2.2 and the
pairing is shown in equation (2.28) using bold font.

The values of flow, temperature and pressure variables are approximately 0.25kmol/s,
280K and 30bar and the variable scaling matrix
Sv = diag([1 1 0.25 280 30 1 1 0.25 280 30]).

The equation scaling matrices Sn and Sl are computed according to step three in the
proposed scaling procedure. This gives Sn = diag([10.0 2.0 1.0 0.000056 0.033]) and
Sl = diag([1.0 1.0 4.0 0.0036 0.033]).

The matrix of specifications and first order derivatives are written as:

H̃ =

[
∂̃f(z)

∂z

Ãs

]
=

[
Sn 0
0 Sl

] [
∂f(z)

∂z

As

]
Sv =



2.0 0 1.75 0 0 −5.0 0 −1.0 0 0
0 0.4 0.15 0 0 0 −1.0 −0.3 0 0
0 0 0 0 0 1.0 1.0 0 0 0

0.37 0.41 0.48 0.39 0 −0.91 −1.0 −0.48 −1.0 0
0 0 0 0 1.0 0 0 0 0 −1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.0 0 0 0 0 0 0 0 0 0
0 1.0 0 0 0 0 0 0 0 0
0 0 1.0 0 0 0 0 0 0 0
0 0 0 1.0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.0



(2.29)

As a result of the applied scaling the condition number of H̃ is reduced from 8.1 · 107

to 6.8.

The pipe model is solved using Matlabs fsolve and fmincon. fsolve is based on a
nonlinear least squares algorithm and fmincon is an SQP algorithm with BFGS Hessian
update (Matlab, 2000). The initial value z0 = [0.7 0.3 0.2 278 20 0.4 0.6 0.5 270 25]T is
used as a starting point for both solvers..

The unscaled model was solved using 14 iterations using fsolve and the scaled model
was solved using 4 iterations. The scaled and unscaled model where both solved in 3
iterations using fmincon and scaling does not seem to have any significant effect in this
case. Still, when a unit model becomes part of a larger model the condition number
will increase further and the effect of scaling will be significant. To compare, the three
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Iterations Condition number of

Scaling fsolve fmincon H̃
Unscaled 14 3 8.1 · 107

Method 1 5 3 4.3 · 103

Method 2 * 3 3.7 · 106

Method 3 5 3 30
Method 4 4 3 6.8

Table 2.3: Comparison of scaling procedures

scaling methods presented in section 2.3.4 where also applied to the pipe model. The
results are summarized in table 2.3. The condition number for the unscaled model was
8.1 · 107. The smallest condition number for the scaled model, 6.8, was obtained using
scaling method 4. Note that fsolve did not converge to a valid solution using scaling
method 2. The solver terminated (successfully) in 3 iterations at a solution where there
was a 2.5K difference in inlet and outlet temperature. The scaled variables had values
in the order of 1 · 104 which may have caused the failure of convergence.

2.5 Case study 2: Flash process with preheating

A simple flash process is here studied in order to demonstrate the use of the above
modeling guidelines in simulation, data reconciliation and optimization. The process,
shown in figure 2.4, has three unit models, a heat exchanger, a heater and a flash drum
(see Appendix A for details). The three unit models are connected using six process
streams.

S1(F,T) S2(T) S3(T)

S4(F,P)

S5(T)

S6(x1,F,T)

Q

Q,U

Figure 2.4: Flash process

The model has three chemical components, propane, butane and pentane (NC = 3).
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The process operating constraints are S1 (flow) < 0.3kmol/s, S4 (pressure) > 28 bar
and < 40 bar, H1 (heat duty) < 5500 kW, S3 (temperature) < 485K and S6 (propane
content) < 0.2 mol/mol. The feed and energy price are respectively 100$/kmol and
0.001$/kW and the product price are 50$/kmol for vapor product and 200$/kmol for
liquid product.

The variables in the model include 6(NC + 3) = 36 process stream variables (6(NC +
3)), two internal variables in the heat exchanger (duty and heat transfer coefficient)
and one internal variable in the heater (duty). This gives a total number of nz = 39
variables.

The heat exchanger unit model has 2NC+7 = 13 equations, the heater has NC+3 = 6
equations and the flash drum has 2NC+6 = 12 equations. This gives the total number
of nf = 31 equations. The number of degrees of freedom is then nz − nf = 8.

There are ten measurements; the propane composition, three flows, five temperatures
and pressure. The measurements are shown on the figure using the symbols x1, F ,
T and P . The measurements are generated by adding normal distributed noise to a
simulation result, y = Uzy + ey where ey = N(0, σ).

In the simulation problem, as defined by equation (2.1), eight variables have to be
specified. In this case feed composition (three variables), feed flow, feed temperature,
heater outlet temperature, vapor product pressure and heat transfer coefficient are
specified.

In data reconciliation, as defined by equation (2.3), only the feed composition is spec-
ified.

The objective of operation is to maximize the profit within constraints. In process
optimization, as defined by equation (2.4), feed composition, feed temperature and
the heat transfer coefficient are specified. The specification values are set equal to the
reconciled values. Table 2.4 shows the optimization results. Only variables related to

Init. Sim. Rec. Opt.
Var. y σ p zmin zmax z0 zs zr zopt

F1 0.20 0.025 100 0.30 0.20 0.25 0.20 0.28
T1 289.92 0.250 280.00 280.00 289.97 289.97
T2 308.06 0.250 320.00 301.77 308.02 302.78
T3 474.53 0.250 485.00 370.00 480.00 474.51 438.52
F4 0.11 0.025 -50 0.10 0.14 0.10 0.09
P4 31.45 0.500 28.00 40.00 30.00 31.50 30.22 28.00
T5 418.29 0.250 400.00 417.18 418.36 405.81
x6(1) 0.15 0.005 0.20 0.20 0.18 0.15 0.20
F6 0.10 0.025 -200 0.20 0.11 0.10 0.20
T6 383.90 0.250 380.00 369.75 383.88 387.92
UHX 0.010 0.015 0.010 0.010
QHT 0.001 5500 2000 6264 4856 5500
Jopt(z) 2.48 -0.206 -9.848

Table 2.4: Results for flash process

measurements and constraints are shown.

The optimal solution has three active constraints; minimum pressure (28.00), maximum
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liquid product propane content (0.20) and maximum heater duty (5500). The opera-
tional profit was increased from a starting point of 0.2$/s (reconciled) to an optimal of
9.8$/s.

To compare the results of solving the scaled (method 4) and unscaled data reconciliation
problem, the relative estimation error, dest = Σ

ny

j=1|((Uzr−y)j/yj|, is used. Ten different
sets of normal distributed measurement error where generated and for each set the
unscaled and scaled data reconciliation and optimization problem was solved.

In eight of ten runs the unscaled data reconciliation problem converges to a local
optimum where dest ≈ 3. In these runs the scaled problem converges with an average
of ten iterations and an average estimation error dest ≈ 0.3. In the other two runs the
scaled and unscaled problem converge to the same solution. In this case the unscaled
problem converged using 45 and 50 iterations and the scaled problem 9 and 10 iterations
respectively.

The optimization problem was solved using the reconciled values as described above.
In ten of ten runs the scaled optimization problem converged to the optimal solution
with pressure, product composition and heater duty as active constraints. In ten of
ten runs the unscaled optimization problem failed to converge to the optimal solution
and converged to a solution where only the product composition constraint was active.
In this case the average objective was Jopt ≈ −9.3.

Cond.no. Number of iterations Active
H̃ Sim. Rec. Opt. dest Jopt Constraints

Unscaled 5.0E+09 5 23 11 2.99 -9.34 x6(1)
Method 1 4.8E+05 4 14 7 0.30 -9.85 P4,x6(1),QHT

Method 2 7.0E+09 4 9 3 3.49 -5.84 QHT

Method 3 4.0E+03 4 28 10 0.30 -9.85 P4,x6(1),QHT

Method 4 5.1E+01 4 12 5 0.30 -9.85 P4,x6(1),QHT

Table 2.5: Scaling methods applied to flash process

To compare the four scaling methods presented in section 2.3.4 the simulation, data
reconciliation and optimization problem is solved for the flash process. The results are
summarized in table 2.5.

A valid solution of the data reconciliation and optimization problem are found using
scaling method 1, 3 and 4. A common property of these methods is a reduction of the
condition number of the constraint first order derivatives, H̃. The smallest condition
number (5.1) is achieved using method 4 which also solves these problems using the
fewest number of iterations. The condition number of a model increases with the model
size and large models will benefit more from the use of scaling methods that gives a
large reduction in condition number.
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ON-LINE APPLICATIONS

2.6 Discussion

Multiple steady states are not handled by this method. Rather, the scaling is performed
at the desired steady-state.

Nonlinear inequality constraints can be added in this framework by introduction of
slack variables according to Luenberger (1984). As a simple example we have that
g(x) < c is equivalent to g(x)− v = 0, v < c where v is a slack variable.

The simplified thermodynamic relations used in the case studies are all explicit func-
tions and have explicit functions for their first order derivatives. For example, specific
enthalpy is calculated as h = Cpx

T. The specific heat of a component, Cpi, is a fixed
value for the liquid phase and a function of temperature for the vapor phase (sixth
order polynomial fitted to data from NIST (2005)). Vapor-liquid equilibrium is based
on Raoult’s law and Antoine vapor pressure with parameters from the same source.

The described unit model structure is well suited for object oriented programming.
A model written in C++ or similar programming language, most commonly used in
applications, will be far more effective than the Matlab code used in the examples.

The use of sparse matrices and sparse math in the model and solver code will also
give a significant reduction in computational load. In the flash process case study the
matrix H has 1521 elements of which only 169 are nonzero.

2.7 Conclusions

A procedure for building steady state models has been presented. The procedure is
based on unit models which interact through a shared variable vector. The unit models
and specifications form an ”open equation” set, well suited as nonlinear constrains in
an optimization problem. In the suggested structure each unit model can be developed,
tested and scaled before it is added to the overall process model. This simplifies the
modeling work and saves a lot of troubleshooting.

The scaling procedure, which is applied at unit model level, results in a significant
improvement in the overall numerical properties of the model. The numerical examples
of the flash process optimization shows that proper scaling reduces the number of
iterations used for solving each case. More important though, it makes the results
more reliable. In both data reconciliation and optimization, the solver failed in finding
the optimal solution when using an unscaled model.
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Chapter 3

Data Reconciliation

Abstract

Process measurements are contaminated with random and possibly systematic errors.
For this reason, they do not obey the conservation laws of the process, like the mass and
energy balance. Data reconciliation is a method of optimally adjusting these measure-
ments, such that they obey the conservation laws or process model. The process model
is incorporated as a set of equality constraints in an optimization problem where the
objective is to minimize the deviation between the measurement and the corresponding
variable values in the process model. As a basis for the adjustments or estimation, each
process and its measurement should be analyzed. The measurements are classified as
redundant or nonredundant, the process model variables as measured or unmeasured,
the unmeasured variables as observable or unobservable. The above classification and
the computation of the estimate uncertainty give valuable information of the quality
of the estimate. If systematic errors also named gross errors are present, they are
removed or a robust objective function is used. These methods are applied to a small
stream mixing process as an example.

3.1 Introduction

Estimation of the current state of the process is the basis for economical optimiza-
tion and performance monitoring. The process state is the collection of measured and
unmeasured variables describing the mass and energy balance, reactions, vapor-liquid
equilibrium and so forth. The constrained estimation problem is in chemical engineer-
ing called data reconciliation.

Data reconciliation is the procedure of optimally adjusting measured data
so that the adjusted values obey the conservation laws and other constraints
(Crowe, 1996).
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In this chapter some of the methods of data reconciliation are evaluated using a small
two stream mixing process. The objective is to gain some ”hands on” experience, and
insight in what is actually gained, by the use of these methods.

Process measurements do not obey the conservation laws (mass and energy balance)
due to measurement errors. The measurement errors are caused by measurement noise,
process variability due to disturbances and dynamic variance. The conservation laws
are given as a process model (f(z) = 0) where the variable vector z holds both measured
and unmeasured variables.

The reconciled values are the solution of

min
z J(y − ym)

s.t. f(z) = 0
(3.1)

where ym are the measured values and y the corresponding values in the variable vector
z. The objective is to adjust the variables z, given the process model f(z) = 0, such
that the deviation from the measured values are minimized.

In addition to the estimated process state, information describing uncertainty in the
estimate, observability of unmeasured values and a measurement redundancy analysis
should be present.

The local error in the estimate is calculated using a linearized process model (Britt
and Luecke, 1973) and the estimated variables are classified as observable or unobserv-
able (Stanley and Mah, 1981). The measured variables are classified as redundant or
nonredundant (Crowe, 1989).

For some measurements the mean of the measurement error is different from zero. In
this case the measurement is said to have a systematic error, to be biased or to have a
gross error. This error may be due to instrument malfunction, miscalibration or drift,
poor sampling or possible a leakage. If some measurements have gross errors, precau-
tions have to be taken to avoid biased measurement adjustments or estimate. Gross
errors is detected and identified using statistical tests (Romagnoli and Stephanopoulos,
1981) or by the use of robust objective functions (Johnston and Kramer, 1995; Tjoa
and Biegler, 1991; Chen et al., 1998).

This section does not cover the use of dynamic models or multiple data sets.

3.2 Example process and model

A process where two process streams are mixed into one process stream is used as an
example. A simple example is preferable in order to get an understanding of what is
achieved using these methods and their advantages and disadvantages. The process
model of the mixing process, shown in figure 3.1, are a simple mass and energy balance.
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S1

S2

S3

Figure 3.1: Simple mix process

Assuming equal specific heat capacity of the inlet streams the process model (mass and
energy balance) can be written as

f(z) =

[
F1 + F2 − F3

F1T1 + F2T2 − F3T3

]
= 0 (3.2)

where the variable vector z = [F1 T1 F2 T2 F3 T3]
T.

The measured values are the process values with some measurement noise added

ym = Uz∗ + ω (3.3)

where z∗ is a valid solution of the process model, ω is normal distributed N(0, σω)
measurement noise and U is a measurement mapping matrix. Each measured value is
defined by a row in U where U(i, j) = 1 defines measurement i as a measurement of
variable number j.

The variables, values and measurement uncertainty are shown in table 3.1.

Description Variable Unit z∗ σω

Inlet flow 1 F1 kg/s 10 0.3
Inlet temperature 1 T1 K 300 1.0
Inlet flow 2 F2 kg/s 20 0.3
Inlet temperature 2 T2 K 350 1.0
Inlet flow 3 F3 kg/s 30 0.3
Inlet temperature T3 K 333.3 1.0

Table 3.1: Variable values and measurement uncertainties.
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3.3 Data reconciliation

The data reconciliation problem is defined as

min
z J(Uz, ym)

s.t. f(z) = 0

Az = b

(3.4)

where the objective function J(Uz, ym) is selected based on the measurement error
characteristics. The measured values are collected in the measurement vector ym and
the matrix U is a mapping of the variables z into the measurements y (y = Uz). The
constraints are the process model equations f(z) = 0. If some of the variables are
known or unobservable their values must be specified using a set of linear constraints,
Az = b. For each row in a we have A(i, j) = 1 if variable j is to be set equal to the
value of b(i), all other elements in row i equals zero.

There are nz variables in z and ny measurement values in ym. The dimension of f(z)
is nf × 1, A is ns × nz and b is ns × 1.

3.3.1 Variable classification

Classification of variables gives valuable information about the data reconciliation re-
sults. Is the solution to problem 3.4 unique? In case of measurement failure, is the
failed measurement redundant? If the failed measurement is removed from the set
of measurements, are the unmeasured variables still observable? Answers to these
questions are found by the following variable classification.

The variables in z are classified into three groups, measured (y), unmeasured (x) and
known variables (v).

The measured variables, corresponding to the measurements in ym, are classified as
redundant or non-redundant. The definition of a redundant measurement is stated as

A measured quantity is redundant if it would be observable if that quantity
were not measured. (Crowe, 1989)

The unmeasured variables are classified as observable, barely observable or unobserv-
able where the definition of an observable variables is stated as

An unmeasured quantity in a steady state process is observable, if it can
be uniquely determined from a fixed set of values, corresponding to the
measurements, which are consistent with all of the given constraints. Any
unmeasured quantity which is not so determinable is unobservable (Crowe,
1989).
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It is important to recognize that, if one ore more of the unmeasured variables are
unobservable, then the solution z∗ of the data reconciliation problem in equation 3.4
is not unique. A barely observable variable is defined by

An observable unmeasured variable is barely observable if there is a nonre-
dundant measurement whose removal makes the observable variable unob-
servable (Crowe et al., 1983).

In order to make the above variable classification the process model is linearized around
z∗ where z∗ is a valid solution of the data reconciliation problem in equation 3.4. Since
the variable classification is based on a linearized process model the results are valid
only locally.

The linearized process model is written as

f(z) ≈ f(z∗) +H(z − z∗) = 0 (3.5)

where H = ∂f(z)
∂z

∣∣∣
z=z∗

. The linearized process model and the linear constraints in the

data reconciliation problem, in equation 3.4, are rewritten in terms of the differential
variable z̃ = z − z∗

Hz̃ = −f(z∗) (3.6)

Az̃ = b− Az∗ (3.7)

where by definition f(z∗) = 0 and b − Az∗ = 0 given z∗ as a solution of equation 3.4.
The data reconciliation problem, with linear constraints, is now written in terms of z̃
as

min
z̃

J(Uz̃, ym)

s.t. Hz̃ = 0

Az̃ = 0

(3.8)

There are two methods for variable classification. The first are from Stanley and Mah
(1981) and the second from Crowe et al. (1983). They are both based on linear analysis
of the linearized data reconciliation problem in equation 3.8.

Using the results from Stanley and Mah (1981), the observability for unmeasured vari-
ables is verified using the first order local observability sufficient condition. That is, if
rank(D) = nz then the system is locally observable. The matrix D is defined as

D =

 H
A
U

 (3.9)

A requirement is that the process model constraints are continuously differentiable
close to z∗.
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Redundancy of a measured value is verified by a similar test where one measurement
is removed at a time. A new measurement mapping matrix Ui is created by removal
of row i in the measurement matrix U .

Di =

 H
A
Ui

 (3.10)

Based on the definition in Crowe et al. (1983) the removed measurement is redundant
if rank(Di) = nz.

If a nonredundant measurement is removed from U the resulting unobservable variables
is said to be barely observable.

Using the results from Crowe et al. (1983) the variables are separated into three groups;
measured variables y, unmeasured variables x and known or fixed variables v. The
linearized process model in equation 3.8 is rewritten as

H1ỹ +H2x̃+H3ṽ = 0 (3.11)

whereH1, H2 andH3 are the columns ofH corresponding to the measured, unmeasured
and specified variables respectively.

In addition we have from equation 3.8 that Az̃ = 0. Since the nonzero elements of A
are located in the columns corresponding to the fixed variables Az̃ = 0 ⇔ A3ṽ = 0.
A3 are the columns of A corresponding to the fixed variables. A3 is an nv × nv matrix
with full rank and A3ṽ = 0 ⇒ ṽ = 0. By insertion of v = 0 the fixed variables are
removed from the equation. The unmeasured variables are removed by pre-multiplying
equation 3.11 by a matrix Y , defined such that

ÃT

2Y = 0 (3.12)

The matrix Y spans the null space of ÃT
2 and pre-multiplication with Y projects the

measured variables into the subspace defined by H2. The reduced process model is
written as

Y TH1ỹ = 0 (3.13)

and using y = Uz the linearized data reconciliation problem from equation 3.8 is
rewritten in the terms of the measured values only

min
ỹ

J(ỹ, ym)

s.t. Y TH1ỹ = 0
(3.14)

Given the solution of equation 3.14, ỹ∗ the values of the unmeasured variables x̃∗ are
calculated, using H1ỹ +H2x̃ = 0, as
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x̃∗ = (HT

2H2)
−1HT

2H1ỹ
∗ (3.15)

Using equation 3.15 the unmeasured values can be calculated from the values of the
measured variables if HT

2H2 is invertible. That is, the columns of H2 must be inde-
pendent (rank(H2) = nx). If the rows of H2 are dependent, the unobservable variables
correspond to the dependent columns, and can be identified by column reduction of
H2.

A variable xi is barely observable if the removal of a nonredundant measurement yj

would make xi unobservable. Such a variable corresponds to a column of H2 which is
linearly independent of other columns of H2 but is dependent of those columns together
with the column of H1 corresponding to the nonredundant measurement.

The nonredundant measurements correspond to zero columns of Y TH1 and do not
contribute to the calculation of the unmeasured values. If the weighting matrix Q is
diagonal we also have that y∗i = ymi

for the nonredundant measurements.

As a example, the two methods of variable classification are applied to the stream mix
process. In this case there are no fixed values which makes A an empty matrix. The
linearized model at z∗ = [10 300 20 350 30 333] is given as

H =

[
1 0 1 0 −1 0

300 10 350 20 −333 −30

]
(3.16)

Using the first method (Stanley and Mah, 1981) the matrix D is, in the case where all
variables are measured, written as

D =



1 0 1 0 −1 0
300 10 350 20 −333 −30
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(3.17)

where the measurement mapping matrix U = I and I is a 6× 6 identity matrix. The
columns of D correspond to the variable vector z = [F1 T1 F2 T2 F3 T3]

T.

When all six variables are measured they are all observable (rank(D) = 6) and all
measurements are redundant (rank(Di) = 6 for i = 1...6).

If five process variables are measured, all variables are observable but not all measure-
ments are redundant. Computation of rank(Di), using only five measurements, shows
that if one temperature is unmeasured the two remaining temperature measurements
are nonredundant. By inspection of D, we see that removal of two rows in U cor-
responding to two temperature measurements, makes the columns corresponding the
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same measurements dependent. With two dependent columns rank(Di) < nz. If one
flow is unmeasured all measurements will be redundant, given different inlet tempera-
tures.

If one of the temperatures is unmeasured, the temperatures are defied as ”barely ob-
servable”. According to the definition, removal of one of the temperature measurements
which are nonredundant, will make the temperatures unobservable.

If four process variables are measured all variables are observable as long as at least
two of the temperatures are measured. There are no redundant measurements in this
case and all variables are ”barely observable”.

The second variable classification method is applied to the stream mix process using
five measurements. The measurements are y = [F1 F2 T2 F3 T3]

T and unmeasured
variables are x = T1. The matrices H1, H2 are written as

H1 =

[
1 1 0 −1 0

300 350 20 −333 −30

]
H2 =

[
0
10

]
(3.18)

which gives

P TH1 =
[
−1 −1 0 1 0

]
where P =

[
−1
0

]
(3.19)

The nonredundant measurements,T2 and T3, are identified by the zero columns of
P TH1. The columns (one column only in this case) of H2 are independent and the
unmeasured variable T1 is observable. The variables T2 and T3 are ”barely observable”
since the corresponding columns of H1 are linearly dependent of the column in H2.

3.3.2 Error in the estimates

In the case where the measurement errors have a Gaussian distribution with zero mean
(N(0, σ)) the estimate in 3.14 is obtained by minimization of the negated probability
density function. The gaussian probability density function is given as

Φ =
1

σ
√

2π
exp

(
−1

2

(y − ym)2

σ2

)
(3.20)

The minimization of J = −Φ has the same solution as the minimization of J =
log(1/Φ). Using the later, the objective function J reduces to the well known least
squares objective function J = (y − ym)2/σ2. Normally there are more than one
measurement and the objective function based on the sum of the probability density
functions is written as

J = (y − ym)TΣ−1(y − ym) (3.21)
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where Σ(i, i) = σ2
i . The data reconciliation problem as written in equation 3.14 with a

least squares objective function has a known solution. In this case the uncertainty of
the estimated values can be calculated analytically.

The propagation of error rule states that if y = f(x1, x2...xn) and the uncertainty of
the variables x1, x2...xn are known, described by the standard deviation σx1 , σx2 , ...σxn ,
then

σ2
y =

(
∂f

∂x1

)2

σ2
x1

+

(
∂f

∂x2

)2

σ2
x2

+ ...+

(
∂f

∂xn

)2

σ2
xn

(3.22)

In the case where y = Ax and Σx the covariance matrix of x the propagation of error
rule gives Σy = AΣxA

T.

The least squares objective function is expanded and terms with fixed values are re-
moved (constant values in the objective function do not contribute to the solution).
The objective is then multiplied by 1

2
and finally written as

J =
1

2
ỹTQỹ + (y∗ − ym)Qỹ (3.23)

where Q =
∑−1

m and the measurement error covariance matrix
∑

m(i, i) = σ2
ω(i).

The known solution of the QP problem with linear equality constraints is written as
Luenberger (1984)

ỹ = −Q−1
[
I − AT(AQ−1AT)−1AQ−1

]
Q(yo − ym) (3.24)

where A = P TH1. Applying the propagation of error rule and substituting Q = Σ−1
m ,

where Σm is the diagonal measurement covariance matrix, the covariance matrix if the
estimation error Σy is computed as

Σy = Σm − ΣmA
T(AΣmA

T)−1AΣm (3.25)

When the measured values are known, the values of the unmeasured variables are
calculated as

x̃ = (AT

2A2)
−1AT

2A1ỹ (3.26)

and the covariance matrix of the estimation error is calculated as

Σx = (AT

2A2)
−1AT

2A1ΣyA
T

1A2(A
T

2A2)
−1 (3.27)

As an example, the uncertainty of the estimates of the mixing process variables using
four, five and six measurements are computed using the method outlined above and
the results are shown in table 3.2.
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Description Variable yt Unit σm σ σ σ
ny = 4 ny = 5 ny = 6

Inlet flow 1 F1 10 kg/s 0.30 0.30∗ 0.24∗ 0.24∗

Inlet temperature 1 T1 300 K 1.0 1.0∗ 1.0∗ 0.97∗

Inlet flow 2 F2 20 kg/s 0.30 0.30∗ 0.24∗ 0.24∗

Inlet temperature 2 T2 350 K 1.0 1.0∗ 1.0∗ 0.85∗

Inlet flow 3 F3 30 kg/s 0.30 0.42 0.24∗ 0.24∗

Inlet temperature T3 333 K 1.0 0.83 0.83 0.63∗∑
σi 3.9 3.85 3.55 3.17

Table 3.2: Uncertainty of the estimated values. (True value yt. Measured variables are
marked with an asterisk ∗)

Using four measurements, there are no redundant measurements and the uncertainty
of the estimated measured values y are equal to the uncertainty of the measurements.
An observation is that the uncertainty of the reconciled outlet temperature is less than
the uncertainty of the measurement value.

The uncertainty in the estimates are further reduced when using five and six measure-
ments. The ”interaction” between the mass and energy balance is in this case less than
expected. The addition of a temperature measurement gives a significant reduction
of the uncertainty in the estimate of temperatures but close to zero reduction of the
uncertainty estimates of the flows. Similar with the addition of a flow measurement,
the uncertainty of the flow estimates is reduced but this gives only an insignificant
reduction in the error of the temperature estimates.

3.3.3 Gross error detection

If the mean value of the measurement error is different from zero a systematic error,
also named a gross error, is present. The estimate using data reconciliation will be
biased due to the gross error. There are several methods dealing with this problem
where one solution is to detect and remove the measurements containing the gross
error. The estimate is then computed based on the remaining measurements. The
variable, corresponding to the biased measurement, which is currently defined as a
measured value is redefined as an unmeasured value. A second method is to use an
objective function less sensitive to large errors. The estimate computed using these
robust functions will still result in a biased estimate but the bias will be reduced. The
use of robust objective functions is described in section 3.4.

The first method for gross error detection (Crowe et al., 1983) uses a statistical test
which detects the presence of a gross error. When the gross error detection test is true
the measurement containing the gross error is identified using a second test.

The imbalance in the model equations, due to measurement error, is written in terms
of the measured values as
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δ = Y TB1(ỹ + ω) = Y TB1ω (3.28)

where ỹ is the vector with the measured variables and the measurement error ω =
ym − ỹ − y∗ . The estimate of the measured variables obeys the model equations
and we have that Y TB1ỹ = 0. The covariance matrix of the imbalance in the model
equations, due to measurement error, is written as

Σδ = Y TB1ΣmB
T

1 Y (3.29)

A gross error test function based on this imbalance is defined (Romagnoli and Stephanopou-
los, 1981)

h = δTΣδδ (3.30)

which is χ2(k) distributed with k = rank(Y ) degrees of freedom. The gross error
detection test is defined by

h > χ2
(1−α)(k) (3.31)

If the condition above is true a gross error is present with the probability of α.

The measurement containing a gross error is identified as the measurement with the
largest contribution to the objective function (Crowe et al., 1983). For each measure-
ment (ym−y)/σ is calculated and the largest absolute value identifies the measurement
containing a gross error.

yt ym y y y y y
µ = 0 µ = 0 µF1 = 2 µT1 = 10 µF3 = 2 µT3 = 10

F1 10.0 9.7 9.9 11.2∗ 10.0 10.6 9.4
T1 300.0 300.6 300.2 300.5 309.5∗ 300.2 302.0
F2 20.0 20.2 20.2 19.6 20.1 20.9 20.6
T2 350.0 351.7 350.8 351.5 349.4 350.9 354.8
F3 30.0 30.2 30.1 30.7 30.1 31.4∗ 30.0
T3 333.3 332.7 334.1 333.0 336.1 333.9 338.2∗

h 3.6 10.5 19.5 22.4 34.8

Table 3.3: Gross error detection. The true value yt, measured value ym and estimated
value y (Gross error is present if h > 4.6 and identified gross errors are marked with
an asterisk ∗)

In order to verify this gross error detection test, gross errors are added sequentially to
the following measured values, F1, T1, F3 and T3. The results are shown in table 3.3.

In this case the rank(P ) = 2 and the cumulative χ2(2) distribution is shown in figure
3.2. The probability of a gross error α = 0.1. The χ2 cumulative distribution where
χ2

(0.9)(2) gives h > 4.6 as the threshold for the gross error detection test.
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Figure 3.2: χ2 cumulative distribution

As shown in table 3.3 all four gross errors are correctly detected and the measurement
containing the gross errors are identified. The final estimate is computed using the
remaining measurements.

3.4 Data reconciliation using data containing gross

errors

In the presence of gross errors the estimate of the process states is biased using the
least squares objective function in the data reconciliation. This bias may be reduced
using an objective function less sensitive to large errors. In this case the measurements
containing a gross error are not removed prior to solving the data reconciliation prob-
lem. As a compensation, an objective function less sensitive to gross errors is applied
in the data reconciliation.

The error sensitivity is described by the influence function IF = ∂J/∂e where J is
the objective function and e the measurement error e = (ym − y). In the case of
the quadratic objective function ,J = (ym − y)TQ(ym − y), the influence function
IF = 2Q(ym − y) increases linearly with the size of the error. In presence of gross
error this objective function is not robust and its ability to ignore the contribution of
extreme data is poor.

In the following sections some of the objective functions less sensitive to gross errors
are evaluated. These are the contaminated Gaussian function, Fair function and the
Lorentzian or Cauchy function. The Gaussian distribution is used for reference only.
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3.4.1 Gaussian distribution

The quadratic objective function is derived from the assumption of normal distributed
measurement errors with zero mean µ = 0 and variance σ2.

The probability density function of the Gaussian distribution of a single measurement
error e ∼ N(0, σ) is written

pG(e) =
1

σ
√

2π
exp

(
−1

2

e2

σ2

)
(3.32)

The maximum likelihood estimate is obtained by maximizing

pG(e1, e2, ..., eny |µi, σi) =

ny∏
i=1

1

σi

√
2π

exp

(
−1

2

e2i
σ2

i

)
(3.33)

subject to the process model equality constraints. Minimization of the log reciprocal
of the likelihood function yields the same minima and simplifies the computation of
the estimates

ψG(e) = ln

(
1

pG(e)

)
=

ny∑
i=1

1

2

e2i
σ2

i

−
ny∑
i=1

ln(σi)− ny ln(
√

2π) (3.34)

Fixed value terms have no influence on the solution and are removed from the data
reconciliation objective function

JG =

ny∑
i=1

e2i
σ2

i

(3.35)

The objective function can also be written as JG = eTQe where the weighting matrix
Q is diagonal with Q(i, i) =

∑−1
m = 1/σ2

i .

The error sensitivity or influence function is given as

IFG =
∂JG

∂e
= 2

ny∑
i=1

ei

σ2
i

= 2Qe (3.36)

The objective and influence function are shown in figure 3.3. The influence function is
unbounded for large errors.

3.4.2 Combined Gaussian distribution

In presence of gross errors a linear combination of two normal distribution functions,
based on their likelihood, is used (Tjoa and Biegler, 1991). With the probability of a



40 CHAPTER 3. DATA RECONCILIATION

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

20

40

60

80

100

Measurement error: e

O
b

je
ct

iv
e:

 J
G

Gaussian distribution

-10 -8 -6 -4 -2 0 2 4 6 8 10
-20

-10

0

10

20

Measurement error: e

In
flu

en
ce

 fu
n

ct
io

n
: I

F
G

Figure 3.3: Objective function and influence function.

gross error in the measurements p (p < 0.5) and the ratio of the standard deviations of
the gross errors to that of the random errors is b (b > 1), then the frequency function
for the combined Gaussian distribution of a single measurement error is written

pCG(e) =
1

σ
√

2π

[
(1− p) exp

(
−1

2

e2

σ2

)
+
p

b
exp

(
−1

2

e2

σ2b2

)]
(3.37)

In figure 3.4 we can see that the probability of a measurement error in the range of
2 − 8 × σ has increased, compared with the Gaussian distribution. This makes the
estimates less sensitive to large errors in this area. The maximum likelihood estimate
is obtained by maximizing

pCG(e1, e2, ..., eny |µi, σi) =
ny∏
i=1

1

σi

√
2π

[
(1− p) exp

(
−1

2

e2i
σ2

i

)
+
p

b
exp

(
−1

2

e2i
σ2

i b
2

)]
(3.38)

subject to the process model equality constraints. Minimization of the log reciprocal
of the likelihood function yields the same minima and simplifies the computation of
the estimates. The resulting objective function is written as
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Figure 3.4: Gassian and combined Gaussian frequency function. The standard devi-
ation σ = 1, probability for an outlier p = 0.4 and ratio of the standard deviations
b = 3.

JCG(e) = ln

(
1

pCG

)
= −

ny∑
i=1

ln

[
(1− p) exp

(
−1

2

e2

σ2

)
+
p

b
exp

(
−1

2

e2

σ2b2

)]
(3.39)

The influence function ∂JCG/∂e

IFCG(e) =
∂JCG

∂e
=

e

σ2

[
1 +

1

b2
p(b2 − 1) exp( e2

2σ2 )

b(p− 1) exp( e2

2b2σ2 )− p exp( e2

2σ2 )

]
(3.40)

Figure 3.5 and 3.6 show the objective function and the influence function for a single
measurement with different values of p and b. In figure 3.5 we can see how an increase
in the standard deviation ratio gives a reduction in the influence function for large
errors.

In figure 3.5 we can see how an increase in the probability p for a gross error reduces
the penalty for a large error. The sensitivity to large errors is almost unchanged.

Each measurement error can be tested against the combined distribution. If the prob-
ability associated with an error is greater than the probability of a random error, then
the measurement error is identified as a gross error. The distribution function may be
used as a rational gross error detection test. That is, if
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Figure 3.5: Combined Gaussian frequency function with different values of b. σ = 1
and p = 0.4.
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Figure 3.6: Combined Gaussian frequency function with different values of p. σ = 1
and b = 3.
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p
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exp
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e2
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i b

2

)
> (1− p) exp

(
−1

2

e2

σ2
i

)
(3.41)

or if

| ei |> σi

√
2b2

b2 − 1
ln

(
b(1− p)

p

)
(3.42)

a gross error in measurement i is present.

3.4.3 Cauchy distribution

The probability density function of the Cauchy distribution, also called the Lorentzian
distribution or Lorentz distribution, is written as

pC(e) =
1

πγ
[
1 + e2

γ2

] (3.43)

where γ is a ”half width at half maximum” parameter. An objective function, corre-
sponding to the maximum likelihood estimate, is obtained from the log reciprocal of
pC(e1, e2, ..., eny) where

J̀C = ny ln(πγi) +

ny∑
i=1

ln

(
1 +

e2i
γ2

i

)
(3.44)

removing fixed value terms and selecting γi = σi

JC =

ny∑
i=1

ln

(
1 +

e2i
σ2

i

)
(3.45)

The influence function of the Cauchy distribution IFC is written as

IFC =
∂JC

∂e
=

2

σ2

e(
1 + (e)2

σ2

) (3.46)

The influence function, using the Cauchy distribution approaches zero for large values
of e .
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Figure 3.7: Cauchy function and influence function

3.4.4 The Fair function

The Fair function for a single measurement error is given as (Özyurt and Pike, 2004)

ψF = c2
[
| e |
cσ

− ln

(
1 +

| e |
cσ

)]
(3.47)

where c is a tuning parameter. In data reconciliation the sum of the Fair function of
each measurement is used as the objective function

JF = c2
[
| ei |
cσi

− ln

(
1 +

| ei |
cσi

)]
(3.48)

The influence function is written as

IFF =
∂JF

∂e
= sign(ei)

1

σ

(
c− c2

|ei|
σ

+ c

)
(3.49)

The Fair function and its influence function is shown in figure 3.8. The influence
function of large values is bounded by the tuning parameter c such that −c < IFF (e) <
c. This gives a close to linear penalty on large errors.
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Figure 3.8: Fair function and influence function with different values of c

3.4.5 Case study

The objective functions described above are applied to the stream mixing process. The
objective is to compare the effects of gross errors added to the measured values. Figure
3.9 shows the value of the objective functions and the influence functions in the range
−20 < e < 20 with the measurement error standard deviation σ = 1.

In order to compare the behavior of the objective functions the measurement error
is separated into three ranges; |e| < 1, 1 < |e| < 5 and 5 < |e| < 10. The tuning
parameters are p = 0.4, b = 3 and c = 1. In the range of |e| < 1, the Combined
Gaussian, Cauchy and Fair function have similar behavior, by a scale factor, and are
in this range similar to the gaussian function (see figure 3.9). In the error range of
1 < |e| < 5 the Combined Gaussian and the Cauchy function have similar behavior
and the Fair function has a lower ”penalty”. In the range of 5 < |e| < 10 the Combined
Gaussian and Fair function have similar behavior and the Cauchy function has a lower
”penalty”.

The data reconciliation problem is solved using the Gaussian, Combined Gaussian,
Cauchy and Fair objective functions when a gross error is sequentially added to the
variables F1, T1, F3 and T3. The gross error detection method, as described in section
3.3.3 is also applied to this example for comparison.

The results are shown in the tables 3.4 to 3.7. The columns contain the results for each
method where the subscripts identify the methods as follows
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Figure 3.9: Gaussian, Combined Gaussian, Cauchy and Fair objective functions

• GED: Gross error detection, identification and removal of measurement contain-
ing gross error. Finally, data reconciliation using a Gaussian objective function
as described in section 3.4.1. (The parameters p=0.1, b=12)

• G: Data reconciliation using a Gaussian objective function with no removal of
gross errors.

• CG: Data reconciliation using a Combined Gaussian objective function

• C: Data reconciliation using the Cauchy function

• F: Data reconciliation using the Fair function

The estimation error is computed as the absolute value of the difference between the
estimate and the true value. The overall estimation error is computed as the sum of
all individual estimation errors.

Table 3.4 shows the results where a gross error (µF1 = 2) is added to the variable F1.
The GED method has the best performance followed by the G method. An observation
is that the G method performs better than the CG, C and F methods in this case.

Table 3.5 shows the results where a gross error (µT1 = 10) is added to the variable
T1. In this case the CG method has the best performance and the C method a close
number two. The G and F methods has significantly poorer performance. The CG
and C methods have an estimation error of T1 ≈ 5 but the C and F methods have an
estimation error of T1 ≈ 10. That is, they both fail to reduce the gross error.
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True ym yGED yG yCG yC yF

value µF1 = 2
F1 10.0 11.7 10.3 11.2 11.7 11.7 11.2
T1 300.0 300.6 300.3 300.5 300.6 300.6 300.5
F2 20.0 20.2 20.0 19.6 20.1 20.1 19.5
T2 350.0 351.7 351.0 351.5 351.6 351.6 351.6
F3 30.0 30.2 30.3 30.7 31.8 31.7 30.7
T3 333.3 332.7 333.8 333.0 332.8 332.9 332.9∑
|yt − y| 2.24 4.69 6.31 6.11 5.04

Table 3.4: Data reconciliation of mixing process where a Gross Error is added to the
measured inlet flow F1. (µF1 = 2)

True ym yGED yG yCG yC yF

value µT1 = 10
F1 10.0 9.7 9.8 10.0 9.8 9.8 9.9
T1 300.0 310.6 293.4 309.5 295.1 294.4 310.2
F2 20.0 20.2 20.3 20.1 20.2 20.2 20.2
T2 350.0 351.7 351.7 349.4 351.5 351.6 350.5
F3 30.0 30.2 30.1 30.1 30.1 30.1 30.1
T3 333.3 332.7 332.7 336.1 333.0 332.9 337.2∑
|yt − y| 9.43 13.06 7.17 8.05 14.97

Table 3.5: Data reconciliation of mixing process where a Gross Error is added to the
measured inlet flow T1. (µT1 = 10)

True ym yGED yG yCG yC yF

value µF3 = 2
F1 10.0 9.7 9.8 10.6 9.8 9.8 11.0
T1 300.0 300.6 300.1 300.2 300.4 300.5 300.4
F2 20.0 20.2 20.1 20.9 18.2 20.2 20.6
T2 350.0 351.7 350.7 350.9 351.2 351.4 351.3
F3 30.0 32.2 29.9 31.4 28.0 30.0 31.6
T3 333.3 332.7 334.1 333.9 333.4 334.8 333.6∑
|yt − y| 1.98 4.50 5.57 3.77 5.06

Table 3.6: Data reconciliation of mixing process where a Gross Error is added to the
measured inlet flow F3. (µF3 = 2)
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Table 3.6 shows the results where a gross error (µF3 = 2) is added to the variable
F3. The GED method has again the best performance with the C method as number
two. The G, CG and F methods has similar performance and all fails to significantly
reduce the gross error in F3. Also in this case the G method has surprisingly good
performance.

True ym yGED yG yCG yC yF

value µT3 = 10
F1 10.0 9.7 9.8 9.4 9.8 9.8 9.7
T1 300.0 300.6 300.6 302.0 300.6 300.7 301.0
F2 20.0 20.2 20.3 20.6 20.3 20.3 20.4
T2 350.0 351.7 351.7 354.8 351.7 351.8 353.1
F3 30.0 30.2 30.1 30.0 30.1 30.1 30.1
T3 333.3 342.7 335.0 338.2 335.1 335.1 336.3∑
|yt − y| 4.53 12.85 4.63 4.79 7.83

Table 3.7: Data reconciliation of mixing process where a Gross Error is added to the
measured inlet flow T3. (µT3 = 10)

Table 3.7 shows the results where a gross error (µT3 = 10) is added to the variable T3.
In this case the GED, CG and C methods have similar and good performance. The G
and F methods have less reduction in the estimation error of T3 and in this case the G
method has significantly poorer performance.

3.5 Conclusion

The application of methods for measurement redundancy analysis, observability analy-
sis and uncertainties of the estimates gives valuable understanding of the process and
its measurements. It also levels the expectations of what can be achieved by the use
of data reconciliation methods.

If only random measurement errors are present the least squares objective function,
based on a Gaussian error distribution, results in a maximum likelihood estimate of
the process state. The standard deviation of the measured values can be based on data
from the instrument installed or general guidelines regarding measurement uncertainty.
It may also be possible to estimate from the measured values (Keller et al., 1992).

When systematic or gross errors are present, the data reconciliation problem is more
challenging. The simple evaluation in section 3.4 does not give a clear indication of
which method or objective function to select. The preferred method is dependent
of its numerical properties and the error characteristics. The gross error detection
method with measurement removal is a sequential method where one measurement is
removed as long as a gross error is detected. For each iteration, the data reconciliation
problem has to be solved. The Cauchy function has good performance but has poor
numerical properties. The influence function approaches zero for large values of e
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and the probability of converging to a local minimum is high, compared to the other
methods. The Gauss, Combined Gaussian and Fair function are all numerically robust
and the Combined Gaussian gives the overall best performance.

The method selected will also depend on the problem to be solved. If data reconcil-
iation is used to fit a model to some plant data, it may be solved only a few times
and the numerical robustness and required computational time is not that impor-
tant. If data reconciliation is part of an on-line application, the same problem may
be solved thousands of times. The results may be used with no human interaction
and the requirements for numerical robustness and computational load will be higher.
In an on-line application measurement maintenance will also be an important part of
the handling of gross errors. If a gross error is detected, the first actions should be
verification and maintenance of the instrument in question.

Based on the above the Combined Gaussian method is used in the data reconciliation
problems in this thesis. The Combined Gaussian is not a clear ”winner” but has stable
performance and good numerical properties.
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Abstract

The naphtha reforming process converts low-octane gasoline blending components to
high-octane components for use in high-performance gasoline fuels. The reformer also
has an important function as the producer of hydrogen to the refinery hydrotreaters.
There are large seasonal variations in the reformer product price and two operational
cases are studied. In case 1, the product price is high and throughput is maximized
with respect to process and product quality constraints. In case 2, the product price is
low and the throughput is minimized with respect to a low constraint on the hydrogen
production. A process model based on a unit model structure, is used for estimation
of the process condition using data reconciliation. Measurements are classified as re-
dundant or nonredundant and the model variables are classified as observable, barely
observable or unobservable. The computed uncertainty of the measured and unmeasured
variables shows that even if a variable is observable it may have a very large uncertainty
and may thereby be practically unobservable. The process condition at 21 data points,
sampled from two years of operation, is estimated and operation is optimized. Based
on the characteristics of the optimal operation a ”self optimizing” control structure is
suggested for each of the two operational cases.
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4.1 Introduction

The naphtha reforming process converts low-octane gasoline blending components to
high-octane components for use in high-performance gasoline fuels. ”Octane” or, more
precisely the octane number, is the measure or rating of the gasoline fuels antiknock
properties. ”Knocking” occurs in an engine when the fuel self detonates due to high
pressure and temperature before it is ignited by the engine spark. Permanent damage
of the engine cylinder and piston parts is a likely result of persistent ”knocking”. The
most common measure of the octane number is the RON (Research Octane Number).
By definition iso-octane (2,2,4 trimethyl pentane) is given an octane number (RON)
of 100 and n-heptane an octane number of 0. A fuel with 95 RON has, by use of
this measure, equal anti knock properties to a mixture of 95% of iso-octane and 5%
n-heptane.

A simplified process model of a semiregenerative catalytic naphtha reformer, involving
five pseudo components, was presented by Smith (1959) and validated against plant
data. The same model was used in Bommannan et al. (1989), where reaction para-
meters were estimated from two sets of plant data, and in Lee et al. (1997) where a
process with continuous catalyst regeneration was modeled. In all three cases above,
good agreement with plant data was reported. These models are used for simulation
and design purposes except in Taskar and Riggs (1997) where optimal operation dur-
ing a catalyst cycle, is considered. Taskar and Riggs (1997) developed a more detailed
model of a semiregenerative catalytic naphtha reformer, involving 35 pseudo compo-
nents. They claimed that the simplified model is an oversimplification of the process
but no details of the practical consequences of the discrepancies where presented.

In this paper the simplified model of Smith (1959) is used for modeling a catalytic naph-
tha reformer with continuous catalyst regeneration. The model uses the unit model
structure of Lid and Skogestad (2007). Scaling is applied to the process model variables
and equations to improve its numerical properties. The process model is compared to
21 data sets from the naphtha reformer at the Statoil Mongstad refinery. These data
where collected in a two year period and include feed and product analysis and process
measurements. The current state of the process is estimated using data reconciliation
(Tjoa and Biegler, 1991), where redundancy of measurements, observability of vari-
ables and uncertainty of the estimate are examined. The same model is also used for
computation of optimal operation and economical analysis of operational cases. Based
on this analysis, a model predictive control (MPC) structure for ”optimal” operation
of the process is suggested.

4.2 Data reconciliation

Data reconciliation is used to estimate the actual condition of the process and is ob-
tained as the solution of
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min
z J(ym, z)

s.t. f(z) = 0

Arz = br

zr min ≤ z ≤ zr max

(4.1)

where J(ym, z) is the objective function for data reconciliation. The ny measured values
are collected in the measurement vector ym.

If the measurement error is normally distributed N(µ, σ) and a zero mean measurement
error (µ = 0) is assumed the maximum likelihood estimate is achieved using a quadratic
objective function JG = (ym − Uz)TQ(ym − Uz). The weighting matrix Q is set equal
to the inverse of the measurement error covariance matrix Σm where Σm(i, i) = σ(i)2

(Crowe et al., 1983).

The matrix U gives a mapping of the variables z into the measurements where y = Uz
represents the estimated values of the measurements ym. The matrix U has ny rows
and in each row one nonzero value, equal to one, in element U(i, j) where variable j
corresponds to measurement i in the measurement vector ym.

If the measurement error is normally distributed N(µ, σ) with mean µ and variance σ2

the quadratic objective function will result in a biased estimate. In data reconciliation,
a mean measurement error µ 6= 0, is called a gross error.

The bivariate distribution from Tjoa and Biegler (1991) describes both gross and ran-
dom errors using two parameters, p and b. The frequency function of measurement i
is written as
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√
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i b

2

)]
(4.2)

where U(i) is row number i of the measurement matrix U . The parameter p describes
the probability of a gross error in a measurement p < 0.5 and the parameter b the ratio
of the standard deviation of a gross error to that of the random error b > 1.

In figure 4.1 we can see that the probability of a measurement error in the range of
2 − 8 × σ has increased. This makes the objective less sensitive to large errors. We
define ψ as the log reciprocal of the error likelihood (ϕi) for each measurement and for
a set of ny measurements the objective function

JCG = −
ny∑
i=1

ln

[
(1− p) exp

(
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σ2
i
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+
p

b
exp

(
−1

2

(ym(i)− U(i)z)2
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)]
(4.3)
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Figure 4.1: Gassian and combined Gaussian frequency function. The standard devi-
ation σ = 1, probability for an outlier p = 0.4 and ratio of the standard deviations
b = 3.

is minimized subject to process constraints.

A measurement is defined to have to have a gross error if the probability of the measure-
ment error in the gross error distribution is larger than the probability of the random
error distribution (Tjoa and Biegler, 1991). According to this definition a measurement
has a gross error if

|ym(i)− U(i)z| > σi

√
2b2

b2 − 1
ln

[
b(1− p)

p

]
(4.4)

4.2.1 Observability and redundancy

Observability for unmeasured variables can be verified using the first order local ob-
servability sufficient condition from Stanley and Mah (1981). If

rank

[
Hr(z

∗)
U

]
= nz (4.5)

then the system is locally observable close to z∗ where z∗ is a solution of the data
reconciliation problem in equation 4.1. The linearized model equations Hr(z

∗)r are
defined as

Hr(z
∗) =

[
∂f
∂z

∣∣
z=z∗

Ar

]
(4.6)

and U is the measurement matrix, y = Uz. A requirement is that the process model
constraints should be continuously differentiable close to z∗
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Redundancy for a measured value can be verified by removal of the row, corresponding
actual measurement in U , making a new measurement mapping matrix Uny−1.

rank

[
Hr(z

∗)
Uny−1

]
= nz (4.7)

If the removed measurement is redundant then the rank of the matrix in equation 4.7
still has rank equal the total number of variables nz.

4.2.2 Uncertainty of estimates

The uncertainty of a measured value is assumed to be normally distributed with zero
mean and standard deviation σ. In order to give an indication of what is ideally gained
using data reconciliation, the uncertainty of the reconciled variable is calculated.

The calculation of the error in the estimate is outlined as follows. The data recon-
ciliation problem is linearized around the solution zo with the measured values ym.
Then, variables in z are separated into measured variables y, unmeasured variables
x and known or specified variables v. The specified and unmeasured variables are
then removed from the problem. The data reconciliation problem is rewritten as a QP
(quadratic programming) problem containing only the measured variables y and linear
equality constraints. The QP problem has a known solution which can be written as
y = Gym. The covariance of the measured values Σm is assumed to be known and the
uncertainty of the estimate is computed, using the propagation of error rule, which in
the linear case gives Σy = GΣmG

T.

The linearized data reconciliation problem from equation 4.1 is written as

min
z (ym − Uz̃ − Uz0)

TQ(ym − Uz̃ − Uz0)

s.t.
∂f(z)

∂z

∣∣∣∣
z=z0

z̃ + f(z0) = 0

Ar1z̃ = br1 − Ar1z0

Ar2z̃ = br2 − Ar2z0

(4.8)

where z̃ = z−z0. The linear constraints are separated into two sets of linear constraints
where Ar1 and br1 are the rows in Ar corresponding to the reactor equal efficiency
constraints (according to equation 4.39). Ar2 and br2 are the constraints added to
specify the values of known or specified values.

Using that f(z0) = 0 and Ar1z0 = br1 and Ar2z0 = br2 the linearized data reconciliation
problem is rewritten as

min
z (ym − Uz̃ − Uz0)

TQ(ym − Uz̃ − Uz0)

s.t. Hz̃ = 0

Ar2z̃ = 0

(4.9)
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where

H =

[
∂f(z)

∂z

∣∣∣
z=z0

Ar1

]
(4.10)

The variables in z̃ are separated into measured variables ỹ, unmeasured variables x̃ and
specified variables ṽ. Using that y = Uz the data reconciliation problem is written

min
z (ym − ỹ − ỹ0)

TQ(ym − ỹ − ỹ0)

s.t. H1ỹ +H2x̃+H3ṽ = 0

Ãr2ṽ = 0

(4.11)

where H1 are the columns of H corresponding to the measured values, H2 are the
columns of H corresponding to the unmeasured values and H3 are the columns of H
corresponding to the specified values. Ãr2 is the columns of Ar2 corresponding to the
specified values

The matrix Ãr2 has full rank and the specifications Ãr2ṽ = 0 give the solution ṽ = 0.

Using that ṽ = 0 and pre multiplying the linearized model equations H1ỹ+H2x̃+H3ṽ
with a matrix P T, defined such that HT

2 P = 0, the unmeasured and specified variables
are removed from the linear equality constraints. The resulting QP problem with linear
equality constraints is written as

min
z (ym − ỹ − ỹ0)

TQ(ym − ỹ − ỹ0)

s.t. P TH1ỹ = 0

(4.12)

Expanding the objective function, removing terms with fixed value, and multiplying
by 1

2
gives

J =
1

2
ỹTQỹ + (y0 − ym)Qỹ (4.13)

using the known solution of a QP problem with linear equality constraints the solution
of equation 4.12 is written as

ỹ = −Q−1
[
I − AT(AQ−1AT)−1AQ−1

]
Q(yo − ym) (4.14)

where A = P TH1. Applying the propagation of error rule and substituting Q = Σ−1
m

the covariance matrix if the estimation error Σy is computed as

Σy = Σm − ΣmA
T(AΣAT)−1AΣm (4.15)
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When the measured values are known, values of the unmeasured variables are

x̃ = (AT

2A2)
−1AT

2A1ỹ (4.16)

and similarly the covariance matrix of the estimation error

Σx = (AT

2A2)
−1AT

2A1ΣyA
T

1A2(A
T

2A2)
−1 (4.17)

In summary observability of variables is verified using equation 4.5, the measurements
are grouped into redundant and non-redundant measurements using equation 4.7. Fi-
nally the uncertainty of the measured and unmeasured variables are computed using
equation 4.15 and 4.17.

4.3 Scaling of the variables and model

The process model f(z) = 0 is scaled according to the scaling procedure proposed in
Lid and Skogestad (2007).

First, every equation is paired with one variable. The equation-variable pairing may
be regarded as ”equation i is used for computation of the value of variable j”. It is
written in a matrix P, where P (i, j) = 1 if variable j is paired with equation number i.
All other values equal zero. This is done both for the linear specifications As and the
nonlinear process model f(z).

Second, all variables z are scaled z = Sv ∗ z̄ such that the scaled variable z̄ has a value
close to one. Sv is a nz × nz fixed diagonal variable scaling matrix.

Finally, the equation scaling matrices of the process model and the linear constraints,
Sf and Sl, are computed as

Sf =

∣∣∣∣∣
[
I ×

(
∂fi(z)

∂z
SvP

T

nl

)]−1
∣∣∣∣∣ (4.18)

Sl =
∣∣∣[I × (AsSvP

T

l )]−1
∣∣∣ (4.19)

where × denotes element by element multiplication so that Sf and Sl are diagonal
matrices. The scaled model is written as

f̃(z̃) = 0 (4.20)

Ãsz̃ = b̃ (4.21)

(4.22)
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where z̃ = S−1
v z, f̃(z̃) = Sff(Svz̃), Ãs = SlAsSv, and b̃ = Slb. If the model equations

are properly scaled, the condition number of

H =

[
F̃(z̃)

Ãr

]
(4.23)

should be reasonable low (< 1× 106).

It should be noted that the variable scaling has some pitfalls. A simple input-output
mass balance of a two component (j = 1, 2) process stream is used as an example.
The resulting model has six variables and three equations. To solve the model three
variable values have to be specified . The model equations are the component mass
balance and sum of outlet molar fractions. The equations are written as

f(z) =

[
xiFi − xoFo∑

j xo(j)− 1

]
= 0 (4.24)

The variable vector z = [xT
i Fi xT

o Fo]
T. Three specifications are added in Arz = br .

They are feed composition and feed flow (xi = [0.5 0.5]T and Fi = 1) which gives

Ar =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 and br =

 0.5
0.5
1

 (4.25)

In this case the first order derivatives of the process model f(z) and the specification
matrix As are written as

H =

[
F(z)
As

]
=


Fi 0 xi(1) Fo 0 xo(1)
0 Fi xi(2) 0 Fo xo(2)
0 0 0 1 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (4.26)

The condition number of H(z∗) ≈ 5.3, where z∗ is a solution of the process model,
i.e. f(z∗) = 0 and Asz

∗ = bs. If the feed composition specifications are changed to
xi = [0.01 0.99]T the condition number of H(z∗) ≈ 6.7. This shows that, in this case,
small values of the variables xi(1) and xo(1) are not a problem. However, if variable
scaling is added, such that the scaled variables have a value equal to one the condition
number of H̃ ≈ 7.4 × 103. I.e. we have by improper variable scaling created an ”ill
conditioned” model.

On the other hand, if the molar flow Fi is increased from 1 to 100 the condition number
of H ≈ 2.8 × 104. If the flow variables are scaled such that the scaled variable has
a value equal to one, and the equations are scaled according to the procedure above,



4.4. CASE STUDY: NAPHTHA REFORMER 59

the condition number of the scaled model is reduced to H̃(z∗) ≈ 8.2. The ”rule of
thumb”, which was applied to this model, is: be careful by assigning large variable
scaling factors to variables with values close to zero. Typically, all molar fractions are
by definition close to one ([0 1]) and are scaled by a factor equal to one.

The reformer model is scaled according to the procedure above and the condition
number of H is reduced from 2.3× 1012 to 3.6× 104. The maximum absolute value of
the elements in H is reduced from 4.8× 105 to 7.6 and the values of H̃ corresponding
to the equation-variable pairing has a value equal to one.

4.4 Case study: Naphtha reformer

4.4.1 Process description

The feed to the naphtha reformer is a crude oil fraction from the refinery crude unit
with a boiling range of ≈ 100− 180◦C and a density of ≈ 763kg/m3. The products are
a high-octane naphtha, also called ”reformate”, ”Gas” (C2 − C4) and hydrogen.

The overall reaction is endothermic and there is a significant temperature drop from
the inlet to the outlet of the reactors. In order to compensate for this temperature
drop, the reactor is separated into four sections with intermediate reheating, see figure
4.2. The fresh feed is mixed with hydrogen rich recycle gas and is preheated in the
reactor effluent heat exchanger (E1). The feed is further heated in heater number one
(H1) before it enters reactor number one (R1), and so on. The hot reactor product
enters the feed pre-heater (E1) and is further cooled with cooling water before it enters
the separator. Hydrogen rich gas is compressed, except for a small purge stream, and
recycled. The liquid product from the separator (D1), a mixture of reformate and gas,
is separated in a downstream distillation column.

The amount of catalyst in the four reactors is approximately in the ratio of 1:1:2:3.
The reactor inlet temperatures are in the range of 770-800K. The increase in octane
number is due to a conversion of paraffins and naphthenes in the feed into aromatics.

The components in the process are lumped into five pseudo components. These are
hydrogen (H), ”Gas” C2 − C4 (G), paraffines (P), naphthenes (N) and aromatics (A).
The thermodynamic properties of these pseudo components are described in appendix
4.A.

The justification for this simplification is that the carbon number of the molecules
does not change in the two reactions (4.27) and (4.28). For example, a C7 naphthene
is converted to a C7 aromatic and a C7 paraffin is converted to a C7 naphthene.

This conversion is described by four main reactions (Smith, 1959):

1. Dehydrogenation of naphthenes to aromatics

2. Dehydrocyclization of paraffins to naphthenes
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Figure 4.2: Naphtha reformer

3. Hydrocracking of naphthenes to light ends

4. Hydrocracking of paraffins to light ends

The simplified naphtha reforming kinetics, as described in Smith (1959), are written
as

N
r1


 A + 3H2 (4.27)

N + H2

r2


 P (4.28)

N + 2H2
r3→ 2G (4.29)

P + H2
r4→ 2G (4.30)

with the stoichiometric matrix N

N =


3 0 0 −1 1

−1 0 1 −1 0
−2 2 0 −1 0
−1 2 −1 0 0

 (4.31)

where the columns refer to the components H, G, P, N and A. The reaction rates are,

r1 = kf1pN − kr1pAp
3
H2

(4.32)

r2 = kf2pNpH2 − kr2pP (4.33)

r3 = kf3pN/p (4.34)

r4 = kf4pP/p (4.35)
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where px is the partial pressure of component x and p is the overall reactor pressure.

For the forward and reverse rate constants, kf and kr, an Arrhenius type of rate
expression is assumed

kf = k0fe

�−Ef
RT

�
kr = k0re

(−Er
RT ) (4.36)

where the activation energy E is dependent on the catalyst and k0f is dependent of the
molarity of the reaction (Bommannan et al., 1989). R is the universal gas constant.
Reaction 1 is endothermic and reaction 2-4 are exothermic. Reaction 1 dominates such
that the overall reaction is endothermic.

The model equations are organized in unit models. Appendix A gives a detailed descrip-
tion of all unit models used in this paper. A description of the modeling framework,
with case studies, can be found in Lid and Skogestad (2007).
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Figure 4.3: Model details of the naphtha reformer

The details of the reformer model are shown in figure 4.3. The liquid feed S1 is mixed
with recycle gas S55. The resulting vapor S2 and a liquid S3 outlet stream enters the
reactor effluent heat exchanger E1. The E1 outlet streams S4 then enters the first
heater and reactor section. The heaters are modeled as a direct heat input and each
of the four reactors is modeled using ten CSTRs in series with even distribution of
catalyst. Heat exchanger E2 and separator D1 is modeled using the same flash unit
model . The reason is that the flash calculation is needed in the heat exchanger to
compute the enthalpy of the outlet streams.

In addition variables and equations for Reformate octane number (RON), feed hydrogen
to hydrocarbon ratio, and some mass flows are added as internal variables in a ”dummy”
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unit model. The mass flows are the feed mass flow, Reformate, gas and hydrogen
product mass flow and the recycle gas mass flow

4.4.2 Process model

The mass balance of a reactor element is written as

Fixi − Foxo + NAT

c r(To, Po)mc = 0 (4.37)

where Fi,xi and Fo,xo is the inlet and outlet stream molar flow and molar component
fractions, mc is the mass of catalyst, and Ac is the catalyst activity parameter, which
is expected to be close to one.

The resulting model and specifications are written

f(z) = 0

Asz = bs
(4.38)

There are nz = 501 variables z and nf = 442 equations in the reformer process model
f(z) = 0. These are listed in table 4.1 and the equations 4.2.

The remaining nz − nf = 59 variables need to be specified and are added as ns = 59
rows in As with the corresponding specification values in bs.

The catalyst efficiency factors for all CSTRs within one reactor were constrained to
have equal values. This is incorporated as 36 linear constraints in As.

Aci
− Aci+1

= 0 for i = 1...9, 10...19, 20...29, 30...39 (4.39)

Values for feed condition, reactor temperatures, recycle rate, heat transfer coefficients
and compressor efficiency are also specified by addition of rows in As and corresponding
values in bs. The specified variables with corresponding values for the 23 remaining
degrees of freedom are shown in table 4.3.

The selection of specification variables is not unique and other valid variable combina-
tions exist. In order to have a unique solution, the matrix of first order derivatives of
the nonlinear constraints and the linear constraint matrix must have full rank.

In order to reduce the computational load in solving the model, the first order deriva-
tives are calculated analytically.

F(z) =
∂f(z)

∂z
(4.40)
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Process streams
x Molar fraction NC
F kmol/s Molar flow 1
T K Temperature 1
P bar Pressure 1

Total: (NC + 3)× 55 440
Heaters
Q kW Duty 1

Total: 1× 4 4
Reactors
Ac Catalyst efficiency factor (one for each CSTR) 10

Total: 4× 10 40
Heat exchanger E1
Q kW Duty 1
U1 kW/m2/K Heat transfer coefficient 1

Heat exchanger E2 and condenser
Q kW Duty 1
U2 kW/m2/K Heat transfer coefficient 1
FCW kmol/s Cooling water molar flow 1
TCWi K Cooling water inlet temperature 1
TCWo

K Cooling water outlet temperature 1

Compressor
W kW Work 1
ψ Efficiency 1
Ts K Reversible compression outlet temperature 1

Additional constraints
RON Reformate octane number 1
H2/HC Hydrogen to hydrocarbon ratio 1
F̃1 t/h Feed mass flow 1
F̃55 t/h Recycle mass flow 1
F̃53 t/h Vapor product mass flow 1
F̃52 t/h Reformat product mass flow 1
F̃53(H2) t/h Hydrogen product mass flow 1

Total: nz = 501

Table 4.1: Reformer model variables

Unit model nfi Total
Heater NC + 3 (NC + 3)× 4
CSTR NC + 3 (NC + 3)× 40
Heat exchanger E1 3NC + 10 3NC + 10
Heat exchanger E2 and condenser 2NC + 8 2NC + 8
Compressor NC + 4 NC + 4
Vapor/liquid feed mixer 2NC + 6 2NC + 6
Stream split 2NC + 5 2NC + 5
Additional constraints 7 7
Total 54NC + 172 = nf = 442

Table 4.2: Reformer model equations
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Description Variable Value
Catalyst efficiency factor reactor 1 Ac1 1
Catalyst efficiency factor reactor 2 Ac11 1
Catalyst efficiency factor reactor 3 Ac21 1
Catalyst efficiency factor reactor 4 Ac31 1
E1 heat transfer coefficient U1 560
E2 heat transfer coefficient U2 200
E2 cooling water flow FCW 5
E2 cooling water inlet temperature TCWi

288
Compressor efficiency ψ 0.75
Feed component molar fraction x1(H) 0
Feed component molar fraction x1(G) 0
Feed component molar fraction x1(P ) 0.32
Feed component molar fraction x1(N) 0.56
Feed component molar fraction x1(A) 0.12
Feed mass flow F̃1 85
Feed temperature T1 358
Reactor 1 inlet temperature T5 790
Reactor 2 inlet temperature T16 790
Reactor 3 inlet temperature T27 790
Reactor 4 inlet temperature T38 790
Compressor recycle mass flow F̃55 8.0
Vapor product pressure P53 7.9
Liquid product pressure P52 8.0

Table 4.3: Simulation variable specifications
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Figure 4.4: Nominal flows and temperature in reactors
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4.4.3 Nominal operation

Figure 4.4 shows the molar flows of each component trough the four reactors as a
function of normalized catalyst mass. The figure shows a net production of hydrogen
and gas. The largest amount of hydrogen is produced in reactor one and the largest
amount of gas is produced in reactor four. The dominating reaction in reactor number
one is conversion of naphthenes to aromatics. The dominating reaction in reactor
number four is conversion of paraffines to naphthenes. The large temperature drop
in reactor one is due to the large heat of reaction for the conversion of naphthenes to
aromatics.

Other key variables like heater duties and product yields are listed in table 4.4. The ref-

Variable Value Unit
Heater 1 duty QH1 8818 kW
Heater 2 duty QH2 11865 kW
Heater 3 duty QH3 10350 kW
Heater 4 duty QH4 9196 kW
Compressor duty WC 682 kW
Heat exchanger E1 duty QE1 37596 kW
Heat exchanger E2 duty QE2 6865 kW
Feed H2/HC ratio H2/HC 3.48
Reformate octane number RON 102.4
Reformate product flow F̃52 80.4 t/h
Vapor product flow F̃53 4.6 t/h

Table 4.4: Simulation results

ormate and vapor yields are 94.57% and 5.43% respectively. If the vapor stream is split
into hydrogen and gas the hydrogen and gas yield are 4.13% and 1.30% respectively.

4.5 Data reconciliation results

The naphtha reformer process has in total ny = 26 measured values. These are feed,
product and recycle gas analyzers, feed product and recycle gas mass flow measure-
ments and various temperature measurements. All the measurements are listed in table
4.6

The limitation of equal catalyst efficiency factor within each reactor added as rows in
Ar. The feed hydrogen and gas content is known to be practically equal to zero and
specifications for x1(1) = 0 and x1(2) = 0 are added in Ar. The remaining degrees of
freedom then equal 21.

For the reformer model we have that

rank

[
Hr(z

∗)
U

]
= 498 (4.41)
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using equation 4.6. This indicates three unobservable variables.

The condenser liquid outlet pressure is not specified and the liquid stream is not con-
nected to any downstream unit. This variable is not present in any of the model
equations and is clearly unobservable.

There are no measurements of the cooling water inlet or outlet flow or temperature.

In order to make all variables observable the values of P52, FCW and TCWi
are specified

by adding three linear constraints in Ar and the corresponding values in br. The matrix
in equation 4.41, with the addition of three new rows in Ar, has rank equal to nz and
all variables are now, by definition in the equation 4.5, observable. The degrees of
freedom are now reduced from 21 to 18.

It is verified, using equation 4.7, that all measurements in the reformer process are
redundant.

The standard deviation if the estimated values σyi
=
√

Σy(i, i) is shown in table 4.6.

There is almost no reduction of uncertainty in the estimate of the reactor inlet or outlet
temperatures, compared with the uncertainty of the measured values. The feed and
product mass flow uncertainty is reduced by approximately 30%. The compressor inlet
temperature, separator outlet temperature and recycle gas hydrogen content has a large
reduction of uncertainty. This is probably due to oversimplification in the modeling of
the separator and recycle gas system (i.e. model error).

The values and uncertainties of the heat exchangers heat transfer coefficient, reactor
and compressor efficiency are shown in table 4.5. On average the uncertainty in these

Description Variable Estimate σ
Catalyst efficiency factor reactor one Ac1 1.30 0.16
Catalyst efficiency factor reactor one Ac2 0.59 0.17
Catalyst efficiency factor reactor one Ac3 1.36 0.21
Catalyst efficiency factor reactor one Ac4 0.93 0.20
E1 heat transfer coefficient [W/m2/K] U1 515 165
E2 heat transfer coefficient [W/m2/K] U2 200 1362100
Compressor efficiency ψ 0.76 0.10

Table 4.5: Estimates of unmeasured variables for data set no. 12

variables are 10-35% of the actual value except for the estimate of U2. The estimated
uncertainty in U2 shows that this variable is not practically observable and indeed the
estimate of U2 = 200W/m2/K is equal to its initial value.

The reconciliation problem was solved for 21 different data sets, sampled during a
period of two years of operation. The reconciled solution shown in table 4.6 is from
data set number 12. Gross errors are detected for the measured values marked with ∗.
The outlet temperatures of reactor four and of heat exchanger E1 have a gross error
detected in all 21 data sets. The outlet temperatures of reactors one and two have
gross errors detected in data sets 13 and 14 , respectively. The compressor mass flow
has a gross error detected in three data sets and the feed temperature has a gross error
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Measurement Variable Meas. Std. Estimate Std. Unit
ym σm y = Uzr σy

Feed P molar fraction x1(3) 0.32 0.01 0.32 0.01
Feed N molar fraction x1(4) 0.56 0.01 0.56 0.01
Feed A molar fraction x1(5) 0.12 0.01 0.12 0.01
Feed temperature T1 358.5 3.0 360.8 2.72 K
E1 cold side inlet temperature T2 344.5 3.0 338.2 1.49 K
E1 cold side outlet temperature T4 706.6 3.0 706.6 2.71 K
Heater 1 outlet temperature T5 794.0 3.0 794.3 2.96 K
Reactor 1 outlet temperature T15

∗649.1 3.0 670.0 2.97 K
Heater 2 outlet temperature T16 788.6 3.0 788.9 2.96 K
Reactor 2 outlet temperature T26 704.0 3.0 703.8 2.96 K
Heater 3 outlet temperature T27 798.4 3.0 798.8 2.96 K
Reactor 3 outlet temperature T37 698.6 3.0 698.4 2.96 K
Heater 4 outlet temperature T38 797.8 3.0 798.2 2.96 K
Reactor 4 outlet temperature T48

∗763.6 3.0 722.8 2.71 K
E1 hot side outlet temperature T50

∗385.4 3.0 353.5 1.98 K
Separator D1 pressure P51 7.93 0.2 7.89 0.16 bar
Separator D1 outlet temperature T52 292.2 3.0 294.1 0.51 K
Recirculation gas H molar frac. x54(1) 0.90 0.1 0.99 0.0002
Compressor inlet temperature T54 294.2 3.0 294.1 0.51 K
Compressor outlet temperature T55 323.0 3.0 324.4 2.92 K
Compressor outlet pressure P55 10.3 0.2 10.3 0.14 bar
Reformate product octane number RON 103.9 1.0 103.7 0.72
Feed mass flow F̃1 88.0 3.0 87.1 2.13 t/h
Compressor outlet mass flow F̃55 10.1 1.0 9.78 0.67 t/h
Vapor product mass flow F̃53 6.54 1.0 4.96 0.17 t/h
Reformate product mass flow F̃52 80.3 3.0 82.1 2.02 t/h

Table 4.6: Estimates of measured variables for data set no. 12
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detected in one data set.
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Figure 4.5: Reconciled reactor inlet temperatures for the 21 data sets

Figure 4.5 shows the measured and reconciled reactor inlet temperatures. The ad-
justments of the catalyst efficiency factors contributes to an almost perfect fit to the
measured data. We have the highest reaction rate, and influence on the other mea-
sured values, at the inlet of the reactor and this may be the reason why the error in
temperature drop over each reactor is assigned to the reactor outlet temperatures.

There are large measurement errors in the reactor outlet temperatures, as shown in
figure 4.6. The outlet temperature of reactor one and two have gross errors in most data
sets but some data points have almost zero measurement error. The outlet temperature
of reactor number four has an almost fixed bias in all data sets. As a curiosity, the
outlet temperature of reactor three, which has an almost zero measurement error in all
data points is ”accepted” as an untrustworthy measurement at the refinery.

The estimated catalyst efficiencies for all data sets are shown in figure 4.7.

Ideally, the catalyst efficiency factors Ac should be close to one in all data sets but due
to variation in the catalyst circulation some changes in Ac are expected. In periods,
where the catalyst regenerator is shut down, the unit may run for several days with no
catalyst circulation . In these periods the catalyst efficiency will decrease due to coke
build up on the catalyst.

The values of Ac have large variations in data points 5, 10, 17 and 19. There is no
clear reason for this and the data at these points does not differ significantly from the



4.5. DATA RECONCILIATION RESULTS 69

5 10 15 20

650

700

750

Reactor 1 outlet temperature

K

Measured
Reconciled

5 10 15 20

650

700

750

Reactor 2 outlet temperature

K

5 10 15 20

650

700

750

Reactor 3 outlet temperature

K

5 10 15 20

650

700

750

Reactor 4 outlet temperature

K

Figure 4.6: Reconciled reactor outlet temperatures for the 21 data sets
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Figure 4.7: Reactor efficiencies Ac for the 21 data sets
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others. An observation is that the measurement error of reactor one outlet temperature
is almost zero at these points but this is also true for data point 1, 2, 3 and 14.
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Figure 4.8: Reconciled mass flows and product quality

The average deviation of measured and reconciled feed, reformate and gas mass flows,
as shown in figure 4.8, are 0.7t/h, -1.93t/h and 1.59t/h respectively. The octane
reconciled and measured value deviation is -0.25. The reconciled gas mass flow is
persistently lower than the measured value and even if no gross errors where detected
in the measured value the presence of a systematic error is clear.

4.6 Optimal operation

Optimal operation is defined as the operation which maximizes the profit, given the
current process condition and operating constraints. The current process condition
is estimated using data reconciliation, zr and the optimal operation is calculated by
minimization of a cost or negated profit function subject to the process model, fixed
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variables and operating constrains. The optimization problem is written as

min
z J(z)

s.t. f(z) = 0

Aoptz = bopt

zopt min ≤ z ≤ zopt max

(4.42)

where J(z) = −p(z)Tz. In most cases p is a vector of fixed prices of feed, products and
energy.

Values for variables describing feed conditions like composition and temperature, heat
exchanger heat transfer coefficients and compressor efficiency are fixed and set equal to
their reconciled values. These values are specified using the linear equality constraints
Aoptz = bopt in (4.42).

Operating constraints like maximum feed flow, maximum pressure, maximum tem-
perature and minimum product octane are added as upper and lower bounds on the
variables in zopt min and zopt max.

The number of degrees of freedom nz − nf − nopt = 7 where the number of variables
nz = 501, nf = 442 and the number of rows in Aopt, nopt = 52. The specified or fixed
values added in Aopt are 40 catalyst efficiency factors, 2 heat exchanger heat transfer
coefficients, compressor efficiency, feed temperature and feed composition (NC=5),
reformate outlet pressure, cooling water flow and cooling water inlet temperature.

4.6.1 Cost function

The feed, product and energy prices in problem 4.42 are shown in table 4.7. The

Description Value Unit Variable
Feed cost -60 $/t F̃1

Reformate cost 100 $/t F̃52

Gas cost 50 $/t F̃53

Energy cost -0.0015 $/kW QH1, QH2, QH3, QH4,W

Table 4.7: Economic data

elements of p, corresponding with the variables in table 4.7, are updated with their
respective price. All other elements of p equals zero. The most important operational
constraints are shown in table 4.7 as maximum and minimum variable values.

4.6.2 Active constraints

Two operational cases, which both are common operational regimes for a naphtha
reformer unit in a refinery, are analyzed.
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• Case 1. The product price is high and reformer throughput is maximized.

• Case 2. The product price is low and reformer throughput is minimized subject
to meeting production demand on hydrogen.

The naphtha reformer is the main producer of hydrogen at the refinery and may not
be shut down even if the product price is low and the unit profit is negative. Thus,
to secure the availability of hydrogen a lower bound is added on the reformer unit
hydrogen production.

Description Variable Unit Min. Max. Rec. Case 1 Case 2 Price
Feed flow F̃1 t/h 89.2 95.6 84.1 -60.0
Reformate flow F̃52 t/h 84.2 90.6 79.7 ∗∗100.0
Gas flow (LPG) F̃53(G) t/h 1.2 1.0 0.9 50.0
H2 mass flow F̃53(H) t/h 3.5 3.8 4.0 ∗3.5
Reformat octane RON 103.0 103.9 ∗103.0 ∗103.0
Reactor 1 temp. T5 K 810.0 794.0 790.7 794.1
Reactor 2 temp. T16 K 810.0 788.6 782.7 788.8
Reactor 3 temp. T27 K 810.0 801.2 799.9 798.8
Reactor 4 temp. T38 K 810.0 799.6 791.6 780.4
Heater 1 duty Q1 MW 9.5 9.3 ∗9.5 8.6 -0.015
Heater 2 duty Q2 MW 13.0 12.7 ∗13.0 12.2 -0.015
Heater 3 duty Q3 MW 13.0 12.1 ∗13.0 11.3 -0.015
Heater 4 duty Q4 MW 10.0 10.0 ∗10.0 7.6 -0.015
Compressor duty W MW 0.88 0.48 0.39 -0.015
Feed H2/HC ratio H2/HC 3.0 5.0 ∗3.0 ∗3.0
Separator pres. P53 bar 8.0 10.0 8.0 ∗10.0 ∗10.0
Profit $/h 2638 2883 -249

Table 4.8: Optimal operation with conditions from data set 12 (∗ = active constraint,
∗∗= in case 2 the price of reformate is 65$/t)

The most important variables of the optimal operation for case 1 and 2 are shown in
table 4.8.

In case 1, the operation is constrained on reformate RON, heater duty, feed hydrogen to
hydrocarbon ratio and pressure. The improvement in profit, compared to the reconciled
solution, is in this case 245$/h (2.1×106 $/year). As a result of increased feed flow and
a reformate yield improvement (0.43%) 259$/h is gained. A total increase in energy
consumption results in a loss of 14.1 $/h. The yield improvement is mainly due to
reduced temperatures in the reactors and reduced reformate RON.

In case 2, the operation is constrained on reformate RON, hydrogen product mass flow,
feed hydrogen to hydrocarbon ratio and pressure.

The marginal values of the active constraints are computed by adding a small change
to the constraint value and observe the corresponding change in the profit function at
the new optimal conditions.
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Description Variable Case 1 Case 2
Reformat octane RON -124 -13
Feed H2/HC ratio H2/HC -24 -5.0
Separator pres. P53 -0.44 -1.9
H2 mass flow F̃53(H) - -79
Heater 1 duty Q1 -60 -
Heater 2 duty Q2 -60 -
Heater 3 duty Q3 -60 -
Heater 4 duty Q4 -60 -

Table 4.9: Active constraints marginal values with conditions from data set 12 ($/unit)

In order to operate the process the seven degrees of freedom have to be specified or
fixed. These specifications are implemented as controlled variables. The degrees of
freedom are related to the heat input to the four heaters and the mass flow of feed,
recycle and H2 rich gas. The basic control layer includes heater duty control, feed flow
control and pressure control.

In case 1, the seven active constraints are selected as controlled variables.

In case 2, the four active constraints are selected as controlled variables. These are
reformate RON, hydrogen product mass flow, feed hydrogen to hydrocarbon ratio and
pressure. The remaining three control variables have to be selected so that the economic
loss is small. The temperature difference of the inlet of the four reactors are three such
control variables. If three control loops are implemented such that all reactor have equal
inlet temperatures, the economic loss, compared to having optimal inlet temperatures,
is small (0.005$/h). This is also consistent with the equal marginal values of the heater
duties in case 1 shown in table 4.9. That is ”self optimizing control” is achieved by
adding the reactor difference temperatures as control variables with a zero set point.

The constraint marginal values also show that in case 1 the reformate RON is the most
important variable to keep close to its minimum value. Similar, the hydrogen mass
flow is the most important variable in case 2.

Manipulated Controlled variables Controlled variables
variables Case 1 Case 2
Feed flow Reformate RON H2 product flow
Heater 1 duty Maximum∗ Reformate RON
Heater 2 duty Maximum∗ TR1i

-TR2i
(=0)

Heater 3 duty Maximum∗ TR2i-TR3i(=0)
Heater 4 duty Maximum∗ TR3i-TR4i(=0)
Pressure Maximum∗ Maximum∗

Compressor work H2/HC ratio H2/HC ratio

Table 4.10: Proposed control structure with given set points. (∗Manipulated variable
fixed at maximum value)
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Table 4.10 shows the control structure which yields close to optimal operation for the
two operational cases.

4.7 Discussion

The measured recycle gas hydrogen mole fraction is 0.90 and the reconciled value is
0.99. This error is mainly due to model error and the simplification of the hydrocarbon
light end components. In the model, G does not evaporate at the process conditions in
the separator. In the real process a molar fraction of 0.04 C1 and C2 hydrocarbons are
present in the recycle gas. Also a molar fraction of 0.03 C3+ is present. This indicates
a non ideal behavior in the separator with some entrainment of heavier hydrocarbons.
The pseudo component G may give a sufficiently accurate description of the reactions
but seams to be to simple to give a good description of the separator and recycle
system. The uncertainty of the recycle gas analyzer is set at a high value (0.1) since
the ”measurement error” in this case is mainly due to a modeling error.

The uncertainty of the heat transfer coefficient of heat exchanger two (U2) is large and
practically not observable despite that the observability test in equation 4.5 shows that
it is observable. A singular value decomposition of the matrix may give more practical
information of the variable observability.

USV T =

[
H̃r(z

∗)

Ũ

]
(4.43)

The singular values si, along the diagonal of S, have values 1.02 × 10−3 < si < 23.2
except for one value which equals 6.0 × 10−7. The corresponding right hand side
singular vector has all elements close to zero except for the element corresponding to
the variable U2, which is close to one (1− s(U2) < 4× 10−9). If r = USV Tz̃ a change
in the variable U2 has a small effect on the residual r, compared to the other variables.
Changes in U2 will also have a small effect on the the data reconciliation objective.
This may be the reason that the reconciled value of U2 is not changed and is always
close to its initial value in all of 21 data sets.

4.8 Conclusions

A refinery naphtha reformer is successfully modeled using a simple unit model struc-
ture. Necessary scaling of variables and equations improves the numerical properties of
the model. The condition number of the model equations are reduced from 2.3× 1012

to 3.6× 104. The model equations are solved using seven iterations using ”best guess”
initial values.

The model is fitted to 21 different data points using data reconciliation. The results
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show significant variation in catalyst efficiency parameters and deviation in reactor
outlet temperatures. A good fit in one data set is not sufficient to claim that the
model is a good description of the process.

The data reconciliation problem is analyzed and unobservable variables are identified.
This example also shows that if a variable is defined as observable, by the observability
test, it still may be practically unobservable. This is consistent with the computed
uncertainty of the estimate, where the ”barely observable variable” has an uncertainty
of 6800 times its value.

The computed uncertainty of the measured values shows that the uncertainty in the
estimate of reactor inlet and outlet temperatures, compared with the measurement, is
typically reduced by 2%. The uncertainty in mass flows is typically reduced by 30%.

Optimal operation is computed for two common operational cases, case 1 and case 2
respectively, defined by a low and a high product price. The optimum operation has in
case 1 seven active constraints and in case 2 four active constraints. In both cases active
constraints are selected as controlled variables. In case 2, three degrees of freedom are
unconstrained. The remaining three degrees of freedom are specified by adding three
reactor inlet temperature differences as ”self optimizing control variables”.

An MPC (Model Predictive Control), with prioritizing of set points and constraints,
has the required flexibility for implementation of the proposed control structure. This
simple analysis also shows that the benefits of a real time optimizer (RTO), for com-
putation of the set points for the unconstrained variables, are small.
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Appendix

4.A Thermodynamics

A set of simplified properties calculations for the five pseudo components, Hydrogen
(H), Gas (G), Paraffines (P), Naphthenes (N) and Aromatics (A), are used in the
reformer process model. The number of components in the model (NC) equals the
number of pseudo components, i.e. NC = 5.

The properties of H is set equal to the properties of hydrogen (H2). The properties
of G is equal to the properties of a mixture with equal amount of Ethane, Propane
and Butane (C2H6,C3H8,C4H10). P has the same properties as Heptane (C7H16), N
the same properties as Cycloheptane (C7H14) and A the same properties as Toluene
(C7H8).

The naphtha reformer feed has an average PNA composition of 35%, 52% and 13%
respectively. The average liquid density is 763kg/m3 and the average 50% boiling point
is 387K.

The properties of a mixture of the above defined pseudo components, with the same
PNA ratio has density equal to 777kg/m3 and boiling point equal to 384.5K. This
shows that the selected properties for the pseudo components gives a reasonable fit to
the properties of the real process stream.

4.A.1 Enthalpy

The specific enthalpy of liquid and vapor is calculated using the specific heat capacity.
The specific enthalpy of liquid is calculated as

hl(x, T ) = xTCpl
(T − Tr) (4.44)

where x is the molar fractions of each component in the mixture and Cpl
is a NC × 1

vector holding the value of specific heats of each component. For the liquid phase the
specific heat is a constant value. T and Tr is the actual and reference temperature
respectively. The reference temperature Tr = 273.15K

The specific enthalpy of a vapor is calculated as

hv(x, T ) = xThvl + xT

∫ T

Tr

Cpv(T )dT (4.45)

where the heat of vaporization hvl is a NC × 1 containing the heat of vaporization, at
the reference temperature, of each component. The specific heat of each component is
described by a fifth order polynomial function.

Cpv = a0 + a1T
1 + a2T

2 + a3T
3 + a4T

4 + a5T
5 (4.46)
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where the coefficients a0...a5 are estimated from properties data tables obtained from
NIST (2005).

The specific enthalpy of vapor is calculated as

hv(x, T ) = xThvl + xTâ0(T − Tr) +
1

2
xTâ1(T − Tr)

2

+
1

3
xTâ2(T − Tr)

3 +
1

4
xTâ3(T − Tr)

4

+
1

5
xTâ4(T − Tr)

5 +
1

6
xTâ5(T − Tr)

6

(4.47)

where â0...â5 are NC × 1 vectors of polynomial coefficients.
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Figure 4.9: Liquid enthalpy plot
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Figure 4.10: Vapor enthalpy plot

Figure 4.9 and 4.10 shows the enthalpy of the five pseudo components in the temper-
ature range of 200-800K.

4.A.2 Entropy

The entropy is a function of composition, temperature and pressure. It is used in the
compressor unit model and is calculated for the vapor phase only. The entropy of a
gas with ideal gas behavior is written as

sv(x, T, P ) = xT

∫ T

Tr

Cpv(T )

T
dT −R log(P/Pr) (4.48)



78
CHAPTER 4. DATA RECONCILIATION AND OPTIMAL
OPERATION OF A CATALYTIC NAPHTHA REFORMER

and the entropy function is calculated as

sv(x, T, P ) = xTâ0 log(
T

Tr

) + xTâ1(T − Tr)

+
1

2
xTâ2(T − Tr)

2 +
1

3
xTâ3(T − Tr)

3

+
1

4
xTâ4(T − Tr)

4 +
1

5
xTâ5(T − Tr)

5

−R log(P/Pr)

(4.49)

Figure 4.11 shows the entropy of the five pseudo components, at fixed pressure, in
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Figure 4.11: Vapor entropy plot at con-
stant pressure, P = Pr.
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Figure 4.12: Vapor entropy plot at con-
stant temperature, T = Tr

the temperature range of 200-800K. Figure 4.12 shows the same entropy, at fixed
temperature, in the pressure range of 1-10 bar.

4.A.3 Vapor-liquid equilibrium

The equilibrium matrix K relates the compositions of saturated vapor to the compo-
sition of saturated liquid at a given temperature T and pressure P . This relation is
written as

y = K(T, P )x (4.50)

The relations of vapor and liquid composition is simplified by assuming no component
interactions. I.e. the composition of A in the liquid phase does not influence on the
composition of P in the vapor phase. This simplification makes K a diagonal matrix.
The diagonal elements of K are calculated from the partial pressure of each component
and total pressure of the mixture

kii = pi/P (4.51)
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where pi refers to the partial pressure of component i and P is the total pressure.
The partial pressure of the components in the mixture is calculated using the Antoine
equation

pi = 10

�
Ai−

Bi
T+Ci

�
(4.52)

where T is the temperature of the mixture. The Antoine equation parameters are
specific for each component and its values are obtained from NIST (2005).

G is not a pure component and the partial pressure of G is set equal to the average
partial pressure of the components in G ((pC2H6 + pC3H8 + pC4H10)/3).
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Abstract

This section describes modeling and on-line optimization of a crude unit heat exchanger
network at the Statoil Mongstad refinery. The objective is to minimize the energy input
in the gas fired heater by optimally distributing the cold crude oil in the heat exchanger
network. The steady state mass and energy balances of the 20 heat exchangers in the
network yield the process model. This model is fitted to the measured values using data
reconciliation. Unmeasured values like heat exchanger duty and heat transfer coeffi-
cients are computed. The fitted model is used to compute the optimal split fractions
of crude in the network. This system has been implemented at the refinery and has
resulted in a 2% reduction in energy consumption. In operational modes where the
unit is constrained on energy input this gives an increased throughput and a significant
contribution to the overall refinery profit.

5.1 Introduction

This paper describes the development of a real time optimization system including
model development, data reconciliation and on-line optimization. The case studied is
a heat exchanger network for pre-heat of feed in a crude oil distillation unit at the
Statoil Mongstad Refinery. The system is implemented and is now running in closed
loop at the refinery.
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The optimal operation is computed using a steady state model which before each run
is fitted to the current operation point.

Process measurements contain uncertainties as random errors and possibly gross errors.
This may be a result of miscalibration or failure in the measuring devices. This uncer-
tainty is reduced when the current operation point is estimated using a larger number
of measurements, than the number of unknowns in the process model, to compute a
set of reconciled data.

Model parameters are estimated simultaneously or computed from the reconciled data.

The optimal operation is computed as the maximum of the objective subject to the
process model, current process operation and model parameters. The optimal operation
is finally implemented as setpoints in the process control system.

A large number of methods for data reconciliation have been suggested. These include
robust objective functions (Chen et al., 1998), statistical tests, analysis of measurement
redundancy and variable observability (Crowe et al., 1983). However, most examples
and case studies presented in the literature are based on simulated processes, and most
papers consider the data reconciliation decoupled from the optimization. One notewor-
thy exception is (Chen et al., 1998) who present an application of data reconciliation
to a Monsanto sulfuric acid plant, but the paper is somewhat limited on details on the
specific approach they have taken.

The objective of this paper is therefore to present an actual industrial implementation,
where we provide details about the data reconciliation approach, model and optimiza-
tion.

5.2 Data reconciliation

Data reconciliation is used to determine the current operation point. If measurement
had no uncertainty the current operation point could be determined from n − m in-
dependent measurements, where n is the number of variables and m the number of
equations in the model.

Since the measurements are uncertain and there are a surplus of measurements, com-
pared to the number of unknown variables in the model, data reconciliation is used to
reduce this uncertainty.

The reconciled values minimizes some function of all measurement errors subject to
the model equations. This is written as

min
x

nm∑
i=1

ψ(εi/σi)

s.t. Ax = 0

g(x) = 0

(5.1)

All variables are collected in the vector x of dimension n× 1. The measurement errors
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εi = xi−yi where yi is a measurement of the variable contained in xi. All measurement
errors are scaled by their respective standard deviation σi.

The process model is separated into a set of linear equations, Ax = 0, and nonlinear
equations, g(x) = 0, since most NLP solvers take linear and nonlinear equations as
separate arguments.

If the uncertainty in the measurements are normally distributed with zero mean the
summed squared measurement error is used as objective function, ψ, in equation 5.1.
However, in the case of nonzero measurement error mean, also named gross errors, this
method gives a biased estimate of the process variables. There are several methods for
reducing the effect of gross errors.

In Crowe et al. (1983) and Crowe (1986) collective and individual statistical tests of
the measurement errors are used to exclude measurements with gross errors.

In Chen et al. (1998),Tjoa and Biegler (1991) and Johnston and Kramer (1995) objec-
tive functions less sensitive to gross errors are used.

In this work the Combined Gaussian objective function is selected due to its numerical
robustness and promising ”small example” results.

In all robust objective functions the measurement error is scaled by its standard de-
viation. Normally this distribution is not known and the standard deviation has to
be estimated from measured data or determined by a reasonable guess based on the
actual measurement equipment installed and its measurement range.

The Combined Gaussian function is based on a weighted sum of two Gaussian distribu-
tions, one distribution of the random errors and one of the gross errors. The combined
Gaussian probability density function is written as

fi =
1

σi

√
2π

[
(1− p) exp

(
−1

2

ε2i
σ2

i

)
+
p

b
exp

(
−1

2

ε2i
σ2

i b
2

)]
(5.2)

with the probability of a gross error in the measurements p and the ratio of the standard
deviations of the gross errors to that of the random errors b.

The objective function to be minimized is the negative logarithm of the probability
density function,

∑nm

i=1− log(1/fi).

The Combined Gaussian objective function is graphed in figure 5.1 with the least
squares function for comparison. Compared to the least squares method the combined
function gives less penalty for measurement errors larger than 3σ. For the reconciled
data this typically gives large measurement errors in few variables and small error in
the other variables. At least intuitively this is what one would expect from the process
measurements though it is difficult to verify.

In equation 5.1 there is no limitation on the number of measurements and on which
variable to measure.

Before the reconciled variables are accepted some analysis has to be made to check if
the unmeasured variables are observable. The measurements can also be classified as
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Figure 5.1: Combined Gaussian objective function. The standard deviation σ = 1,
p = 0.3 and b = 6.

redundant or nonredundant measurements which can be used to evaluate the reconciled
variables and decide if data reconciliation can be done when a specific measurement is
out of service.

Let x∗r be a solution to the reconciliation problem in equation 5.1. The nonlinear
constraints are linearized at the optimal solution x∗r such that g(x) ≈ g(x∗r)+G(x−x∗r),
where G = ∂g(x)/∂x|x=x∗r .

The linear and linearized constraints can now be written as

Âx− b̂ = 0 (5.3)

where

Â =

[
A
G

]
b̂ =

[
0

g(x∗r)−Gx∗r

]
The variables in x are separated into measured variables, y, and unmeasured variables,
z.

The matrix Â is partitioned into Â1 and Â2 where Â1 holds the columns of Â cor-
responding to the measured variables and Â2 the columns of Â corresponding to the
unmeasured variables. Equation 5.3 can now be written as

Â1y + Â2z = b̂ (5.4)

To be able to compute the unmeasured variables, from the measured variables, the
matrix Â2 must have full column rank. If the number of measurements ny < n −m,

where n is the number of variables and m the number of equations, the size of Â2 is
m × nz where nz > m and the matrix Â2 has rank less than nz. This implies that
equation 5.4 has no unique solution for z when y is known. A requirement is that the
number of measurements ny ≥ n −m, which is obvious, and that Â2 has full column
rank.

The measurements can also be separated into redundant and nonredundant measure-
ments. If a measurement of a variable is redundant it still is possible to compute its



5.3. OPTIMIZATION 85

value if its measurement is removed. This is not the case for a nonredundant measure-
ment and removing this measurement causes Â2 to become rank deficient.

A simple test for redundancy is to check if P T Â1 has columns with only zero elements,
where P is defined as a matrix that spans the null space of ÂT

2 . Any zero columns
in corresponds to nonredundant measurements. Also note that for a nonredundant
measurement i we always have that yi − ymi = 0 and that this measurement does not
contribute directly in the calculations of the reconciled values.

5.3 Optimization

The typical process optimization problem has a linear objective function like product
price times product flow which is to be maximized. For system simplicity the same
process model and variable vector are used in both data reconciliation and process
optimization.

In the optimization problem some of the variable values are already known. These are
typically disturbance variables and connects the data reconciliation with the optimiza-
tion. The variable values are specified in the optimization problem as a set of linear
constraints (Rx = r) where r = Rx∗r.

The matrix R has one nonzero element in each row, equal to one, corresponding to the
element in x, which is set equal to its reconciled value. The optimization problem can
now be written as

min
x
−pTx

s.t. Ax = 0

g(x) = 0

Rx = r

xmin ≥ x ≥ xmax

(5.5)

Inequality constraints in process optimization are typically bounds on singe variables.
Inequality constraints on combinations of variables may be added in this formulation
by introducing slack variables.

5.4 A case study

In the crude unit the crude feed is separated into suitable components for production
of propane, butane, gasoline, jet fuel, diesel and fuel oil. The crude is preheated in a
heat exchanger network where heat is recovered from the hot products and circulating
refluxes.

As shown in figure 5.2 the cold crude (DCR) is separated into seven parallel streams (A-
G) and heated by the hot products (abbreviations are listed in table 5.1). The flow in
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each pass and BSR heat exchanger bypasses provides the degrees of freedom necessary
for optimization. The optimization objective is to save energy and to recover as much
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Figure 5.2: Simplified crude unit overview

heat as possible. The heater is the main energy input in the process and heater outlet
temperature is held constant. The minimum energy is then achieved by maximizing of
the heater inlet temperature.

Both distillation columns have feed conditions independent on the heat exchanger
network operation. The inlet temperatures of both columns are assumed to have perfect
temperature control. The feed flow and composition are then independent of operation
of the heat exchanger network.

With this simplification a model of the distillation columns is not needed and a mass
and energy balance of the heat exchanger network is a sufficiently detailed model for op-
timization. The optimal solution must be within several process operating constraints.
The total crude flow or throughput is to be unchanged. At each crude pass outlet there
is a maximum temperature constraint to avoid flashing.

The main column LGO and HGO products, exiting the heat exchangers, have a maxi-
mum temperature limit as the products are fed to the LGO and HGO driers (the driers
are not drawn in figure 5.2).

The preflash column inlet temperature is to be unchanged. Some of the heat exchangers
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Abbreviation Description
DCR Desalted crude
HNAP Heavy naphtha
KER Kerosine
LGO Light gas oil
HGO Heavy gas oil
BC Buffercut
RES Residue
TSR Top circulating reflux
MSR Middle circulating reflux
BSR Bottom circulating reflux
PC Pre-flash column bottoms product
FG Fuel gas
TC Temperature control
Tmax Temperature constraint

Table 5.1: Abbreviations used in figure 5.2

are also included in the bottom circulating reflux (BSR) and the total duty in the BSR
is to be unchanged.

5.5 The process model

The heat exchanger network can be viewed as a set of nodes or unit operations con-
nected by arcs or in this case pipes. A set of balance equations, mass and energy
balance, describes the internals of each node. Variables for the arcs or pipes are fluid
temperature and mass flow. The nodes in this network are stream mix nodes, stream
split nodes and heat exchanger nodes.

This selection of variables makes all nodes independent of all variables exept those
included in the input and output arcs. Heat exchanger nodes also have some internal
variables like heat transfer coefficient and duty. This variable selection makes the model
structure simple and surveyable. It makes it practical possible to compute analytical
derivatives of the nonlinear model equations. This reduces the numerical computational
load in solving the model. The following describes the simplified balance equations for
each type of node.

5.5.1 Mixing of streams

In a node where n streams are mixed into one outlet stream the mass and energy
balance equations can be written as

Fout −
∑n

i=1 Fini
= 0 (5.6)

Fouth(Tout)−
∑n

i=1 Fini
h(Tini

) = 0 (5.7)
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where h(T ) is the specific enthalpy of the fluid. The mass balance results in one linear
equation and the energy balance in one nonlinear equation.

5.5.2 Splitting of streams

In a node where one inlet stream is separated into n outlet streams the mass and energy
balance equations can be written as

Fin −
∑n

i=1 Fouti = 0 (5.8)

Tin − Touti = 0 ∀ i = 1...n (5.9)

The mass balance results in one linear equation and the energy balance results in n
linear equations.

5.5.3 Heat exchanger

For a heat exchanger node hot and cold side mass and energy balance and heat transfer
is written as

Fcin − Fcout = 0 (5.10)

Fhin
− Fhout = 0 (5.11)

Q+ Fcin(h(Tcin)− h(Tcout)) = 0 (5.12)

Q− Fhin
(h(Thin

)− h(Thout)) = 0 (5.13)

Q− εCmin(Thin
− Tcin) = 0 (5.14)

where the mass balance results in two linear equations (5.10 ,5.11) and the energy
balance results in two nonlinear equations (5.12, 5.13). The heat transfer is described
by equation 5.14. The heat exchangers in this unit is of multiple tube and multiple
shell pass type and the ε-Ntu method (Mills, 1995) is used for calculation of the heat
transfer. In equation 5.14 ε is the efficiency and Cmin is the minimum capacity. Cmin

is calculated as

Cmin = min(Cc, Ch) (5.15)

Cc = FcinCpc ≈ Fcin

h(Tcout)−h(Tcin)
Tcout−Tcin

(5.16)

Ch = Fhin
Cph

≈ Fhin

h(Thout)−h(Thin)
Thout

−Thin

(5.17)

The efficiency, ε, is a function of the number of transfer units, Ntu, and the capacity
ratio, RC . RC and Ntu is calculated as

RC =
Cmin

Cmax

Ntu =
UA

Cmin

(5.18)
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where Cmax = max(Cc, Ch). The efficiency ε equals ε1 for heat exchangers with single
shell pass (n = 1) and a even number of tube passes. ε equals ε2 for heat exchangers
with even number of tube passes and n shell passes. ε1 and ε2 is calculated as

ε1 = 2 {1 +RC

+
√

1 +R2
C

1 + exp
(
−Ntu

n

(√
1 +R2

C

))
1− exp

(
−Ntu

n

(√
1 +R2

C

))


−1

(5.19)

ε2 =

[(
1− ε1RC

1− ε1

)n

− 1

] [(
1− ε1RC

1− ε1

)n

−RC

]−1

(5.20)

When the equations for Cmin and ε is substituted into equation 5.14 each heat exchanger
is described by two linear and three nonlinear equations.

5.5.4 Model summary

There are totally 85 streams and 20 heat exchangers in the heat exchanger network.
There are 9 stream mixes and 7 stream splits. The variables are 85 flows and 85
temperatures from the streams, 20 heat exchanger duties, 20 heat transfer coefficients
and adds up to totally 210 variables.

From the heat exchangers we have 40 linear and 60 nonlinear equations. From the
stream mixing nodes we have 9 linear and 9 nonlinear equations and from the split
nodes we have 29 linear equations.

Coefficients for linear equations are collected in the matrix A where each equation
occupy one row. The equation coefficients are placed in the column corresponding to
its variable position in x. The nonlinear equation residues are collected in the residual
vector g(x).

The model is now in the preferred form

Ax = 0 (5.21)

g(x) = 0 (5.22)

where A is a 78× 210 matrix with the linear equation coefficients and g(x) is a 1× 69
vector of nonlinear equation residues.

5.6 On-line data reconciliation

Data is sampled from the process as one hour averages and reconciled using the Com-
bined Gaussian objective function. Standard deviations for measurements are selected
to be 1◦C for temperature measurements and 2% of the maximum measuring range for
flow measurements.
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The Combined Gaussian parameters p and b are set to 0.3 and 6.

To avoid numerical difficulties in the model equations, like reversed flows, appropriate
variable bounds are added to the data reconciliation problem in equation 5.1.

There are 88 measurements in the process, which is a surplus of 25 compared to the
number of unknowns in the process model. The described analysis shows that all
unmeasured variables are observable and that all measurements are redundant. As an
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Figure 5.3: Measured (thin lines) and reconciled values (thick lines) for one of the heat
exchangers

example figure 5.3 shows measured and reconciled values for 300 successive samples of
one hour averages.

The imbalance in the data is most likely caused by a gross error in the flow measurement
of the hot stream Fh. The average error is 3.1 T/h and is fairly constant in all samples.

5.7 On-line optimization

In the optimization problem the number of equality constraints are increased to 205
which leaves 5 degrees of freedom. These degrees of freedom correspond to the flow
trough each of the seven passes in the hot train minus two since the total flow and
BSR duty is set equal to the reconciled value.

As an example measured data is reconciled and optimum operation computed. Com-
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pared to current operation the pass flow (A-G) is changed by [0.0,-9.2,-0.1,+9.0,+0.1,+1.0,-
0.8]%.

In addition bypass flows of heat exchangers in the BSR is changed such that more heat
is added in each pass while keeping the total duty constant. This increases the heater
pre-heat duty by 2.3MW. Compared to the heater duty of ≈ 100MW this gives a 2%
reduction of energy requirement. Constraints on pass G outlet temperature and LGO
drier inlet temperature is active at optimal operation.

Optimal operation is implemented as flow ratio setpoints in the MPC controller.

Both the data reconciliation and optimization problems are solved using a software
package for constrained optimization problems (NPSOL from Stanford University).
This system runs on a DEC-Alpha computer and the average solution time is 3 minutes.

5.8 Conclusion

A process model describing the mass and energy balance is developed and used for
data reconciliation and optimization. The model is fitted to the measured values and
optimal feed split fractions are computed and implemented in the control system once
an hour.

The reconciled values provides valuable information about the current condition of the
measurement equipment and of the condition of the heat exchangers. Comparison of
reconciled values and measured values revealed several flow measurements with poor
performance and also a temperature measurement installed in the wrong pipe. The
evolution of heat transfer coefficients during operation is also used to detect fouling
and to schedule cleaning of the heat exchangers.

The model is sufficiently detailed for optimization purposes and the predicted optimal
heater inlet temperature is achieved in the process.
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Abstract

This section provides a case study on the selection of controlled variables for the im-
plementation of real time optimization in a crude unit heat exchanger network. Two
different control strategies with 22 different control structures are evaluated. The idea is
to select the controlled variables that give the best plant economic performance (small-
est loss) when there are disturbances (self-optimizing control). The disturbances are
correlated and a simple principal component analysis is used to generate a more realis-
tic set of disturbance variations for evaluation of the different control structures. This
analysis shows a large variation of loss for different control structures and proves that
a control structure evaluation is necessary to collect the benefits from a RTO system.

6.1 Introduction

A real time optimization system (RTO) can be described as a sequence of three separate
functions, (White, 1997).

1. Data reconciliation and parameter estimation to establish the current operation
point.
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2. Optimization to find optimal operation.

3. Implementation of the optimal result (which variables to control).

Estimated parameters and reconciled process variables are the basis for operations
optimization. The optimal operation is computed by maximization of some objective
subject to the process model and operating constraints.

The objective can be a direct measure of the profit or some function of the variables
that when maximized drives the process towards the optimal operation. Finally the
computed optimal operation is implemented in the process as setpoints of the control
system.

The selection of these variables is the main focus of this paper. In the RTO ”loop”
there is a loss related to uncertainty in the process measurements, inaccuracy of the
estimated parameters and model errors (Forbes and Marlin, 1996; Zhang and Forbes,
2000). Optimal values for operation are computed at regular intervals and implemented
as setpoints of the control system.

In the period from one optimization run to the next the disturbances will change and
the operation is no longer optimal.

In addition uncertainties in the controlled variable measurements cause an operation
that deviates from the true optimal operation. The disturbance error and control error
are sources of a disturbance and control loss, (Skogestad et al., 1998). These losses
depend highly on the control variables selected for implementation of the optimiza-
tion result and the control variables are selected such that this loss is minimized. If
some process constraint is active for all expected variations in the disturbances, this
variable should be selected as a controlled variable. This is active constraint control,
(Maarleveld and Rijnsdorp, 1970). The variable is then held at its optimal value for
all disturbance variations.

If the controlled system has infeasible solutions (constraint violations), with the selected
control structure, for some disturbance a back-off from constraints must be computed.
The back-off is computed such that the controlled system has feasible solutions for all
expected disturbances (Perkins, 1998).

To simplify the analysis, several assumptions have been made. The controlled variables
selection is solely based on steady state considerations and no evaluation of possible
dynamic control problems are made. A prefect model is assumed. Estimated para-
meters and process variables (reconciled values) are assumed to have no uncertainty.
By these assumptions the computed optimal values, based on reconciled measurements
and model parameters, describe the true process optimum.
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6.2 The optimization problem

A typical process optimization problem has a linear economic objective function, non-
linear process model and some operational constraints. The optimization problem can
be formulated as

max
x

J = pTx

st. g(x, d0, β) = 0

xmin ≤ x ≤ xmax

(6.1)

where the process variables are included in x. The objective, J , is typically product
price times product flow minus feed price times feed flow and energy price times energy
flow. The process model is included as an equality constraint, g(x, d0, β) = 0, where d0

are the nominal disturbance values β are the model parameters. Inequality constraints
are typically bounds on single process variables e.g. high temperature limits or a low
flow limit. In this problem there are n variables (in x), m process equations (g(x, β))
andmd disturbances. The solution, x∗(d0), to 6.1 is referred to as the nominal optimum.

6.3 Implementation of optimal values

The solution to the optimization problem in 6.1, x∗, is implemented as setpoints to nf

variables using a controller C. The controller may be included in the system as a set
of linear constraints Cx = r0 where each row in C has one nonzero element, equal to
one, corresponding to the selected controlled variable.

g(x, d, β) = 0

Cx = r0
(6.2)

The controller setpoints equal the nominal optimum, r0 = Cx∗. The controlled system
has the solution xc(d, r0) and objective Jc(d, r0) = pTxc(d, r0). A requirement on the
controller is that the controlled variables are independent such that the controlled
system has rank equal to the number of variables, i.e.

rank

[
∂g(x,d,β)

∂x
|x∗

C

]
= n (6.3)

6.4 The loss function

The disturbance loss function, (Skogestad et al., 1998), is defined as the difference of
the optimal objective of some disturbance d, J∗(d) and the objective achieved by using
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a control structure C, with nominal optimal values as setpoints. The loss function can
be written as

L(d) = J∗(d)− Jc(d, r0) (6.4)

where J∗(d) is the objective of the optimal operation with a known disturbance d
(solution of problem 6.1) and Jc(d, r0) the objective of the controlled system using the
controller C with the nominal optimum as setpoints (solution to problem 6.2).

The disturbance loss function describes the loss of keeping the old setpoints (not re-
optimizing) when the disturbance d has changed to a value different from d0.

In addition to the loss of a disturbance change there is a loss due to implementation
errors or control errors. The variables selected as control variables varies around the
optimal setpoint due to dynamic disturbances, measurement inaccuracy and noise. The
control error loss function can be written as

L(4re) = J∗(d0)− Jc(d0, r0 +4re) (6.5)

where 4re is the control error. The disturbance loss and control error loss is greater
than zero for all values of d and 4re. In the nominal point where 4re = 0 and d = d0

the loss is zero. This definition of loss gives one loss function for each disturbance. In
the case of two or more disturbances a single resulting loss function or a scalar measure
of the loss would be preferable. A resulting loss function may be approximated as the
sum of the individual loss functions where the individual disturbances are scaled by
their variation range. A scalar measure can be calculated as the area below the loss
function or the integral of L(δd) from δd = −1 to δd = 1. A similar scalar loss value
can be calculated for the control error loss. The total loss for a control structure is
calculated as the sum of the disturbance loss and control loss. With this simplification
the loss is calculated along each of the disturbance axis. Other measures, as the sum of
all corner points or the resulting loss of a Monte Carlo simulation could also be used.

6.5 Disturbance analysis

In the above analysis the aim is to find a controller which minimizes the loss in presence
of disturbances. A key issue is to find and use a good representation of the disturbance
variation. The normal variation of the disturbance variables should preferably be
computed from process measurements. If measured data is unavailable, disturbance
variations may be estimated based on experience from similar processes and design
information. It is reasonable to expect that fast varying disturbances are mainly mea-
surement noise and do not give a real contribution to the disturbance loss. Slow varying
disturbances (slow compared to the RTO execution frequency) is detected by the data
reconciliation and parameter estimation functions, and accounted for in the optimiza-
tion results, and also gives a small contribution to the disturbance and control error
loss. The intermediate rate of variation in the disturbances are the difficult ones as
they gives a contribution to the loss in the period between RTO execution intervals.
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When an RTO updates the optimal setpoints at regular intervals, an average of the
disturbance standard deviation for each interval gives a measure of the expected dis-
turbance change from one optimization run to the next. High frequency measurement
noise must be removed prior to this computation. With this disturbance description
the controller performance is evaluated with a disturbance change in one disturbance
at a time. The total loss function is computed as the sum of the loss functions for each
individual disturbance.

In a real process we often have the situation that the disturbances are correlated. The
above analysis, evaluating the loss of one disturbance at a time, will fail to evaluate
the loss with the most likely combinations of disturbances. By assuming a linear
relation and using simple principal component analysis, (Jackson, 1991), the measured
disturbances may be transformed into a reduced set of uncorrelated disturbances or
principal components. The measured disturbance data in Ψ = [d1, d2...dp] is zero
centered such that each variable has zero mean, Ψs(ij)

= (dij − d̄j). The disturbance
covariance matrix X is computed as

X =
1

(K − 1)
ΨT

s Ψs (6.6)

where K is the number of disturbance data samples in Ψs. The principal components,
Z, or uncorrelated disturbance values are computed as Z = ΨsP

T , where P are the
eigenvectors of X. The columns of Z are the nd new uncorrelated variables, zj. Based
on this linear transformation a new set of disturbances for evaluation of the selected
controller may now be computed as d = d0 + pj4zj where σzi ≤ 4zi ≤ σzi. The
variance of each principal component is computed for RTO execution intervals as de-
scribed above. The fraction of variation in the disturbance data, described by each
principal component zj is computed as λj/

∑
j λj where λj are the eigenvalues of X.

The number of principal components used is selected such that the principal compo-
nents describes the majority (i.e. 90% or 95%) of the variance in the measured data.
This representation of the disturbance data provides a more realistic basis for selection
of the minimum loss control structure.

6.6 Case study

In the crude unit the crude (CRU) is preheated in a heat exchanger network where
heat is recovered from the hot products and circulating refluxes. As shown in figure
6.1 the cold crude is separated into seven parallel streams (A-G). The flow in each
pass provides the degrees of freedom necessary for optimization. Changes in product
yields and bottom circulating reflux (BSR) duty are the main disturbances to the heat
exchanger network. The yield changes may be caused by feed composition changes
or operational changes. The optimization objective is to save energy by recovering
as much heat as possible. The heater is the main energy input in the process and
heater outlet temperature is held constant. The minimum energy is then achieved by
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Figure 6.1: Simplified crude unit overview
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maximizing the heater inlet temperature. A detailed description of the process, steady
state model, data reconciliation and optimization is presented in Lid and Skogestad
(2001).

6.6.1 Disturbances

There are 23 disturbance variables. These are the flows and temperatures of streams
flowing into the heat exchanger network. The data used in this analysis are 35 days
of 12 minutes averages sampled from normal process operation . The RTO execution
interval is one hour. The disturbance measurements where reduced to four princi-
pal components using PCA as described in section 6.5. The average variance of the
principal components within each optimization interval was computed and used as
disturbance variation.

6.6.2 Control structure evaluation

There are a large number of possible controllers for implementation of the optimization
result. The only requirement is that all 5 degrees of freedom in the process must be
specified or that the controlled system rank requirement is satisfied. In this case study
two control strategies are evaluated.

Strategy 1: the optimal result is implemented as setpoints to the flow controllers in
each pass (open loop implementation).

Strategy 2: the optimal result is implemented as setpoints to pass outlet temperature
controllers (closed loop implementation) where the temperature controllers manipulate
the corresponding pass flow. The rank requirement, in equation 6.3, for the controller
with the open or closed loop implementation strategy may be stated by two simple rules.
First, the flow or temperature in pass D and G can not be specified simultaneously
since then it would not be possible to control the total BSR duty. Second, only five
flows or temperatures in the seven passes can be specified simultaneously since the sum
of all seven pass flows is specified and constant. This makes effectively one of the flows
as a dependent variable.

11 different control structures exists in the open loop implementation strategy which
satisfies the rank requirement. In Table 6.1 all possible flow control combinations
are numbered 1-11 and in Table 6.2 all possible temperature control combinations are
numbered 12-22. For each control structure the disturbance loss, control loss and total
loss are computed. The control variable selections in table 6.1 and 6.2, are sorted by
total loss. The results show that the best open loop implementation strategy is to
select the flow controllers of pass A,B,C,D and E as controlled variables. The setpoints
of these controllers is set equal to the current nominal optimum. Pass G is used for
total BSR duty control and pass F is used for total flow control. In table 6.2 the loss
functions for different temperature control combinations are listed. The total loss for
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the best controller is reduced by 57% when the outlet temperatures of pass A,B,C,D
and E are used as controlled variables.

No. CV Ld L4re
L

1 ABCDE 0.013 0.009 0.021
4 ACDEF 0.015 0.018 0.034
7 ABCEG 0.040 0.010 0.050
2 ABCDF 0.021 0.031 0.052
6 ABCEF 0.021 0.032 0.053
3 ABDEF 0.023 0.031 0.054
10 ACEFG 0.053 0.020 0.073
5 BCDEF 0.038 0.047 0.084
8 ABCFG 0.068 0.034 0.102
9 ABEFG 0.080 0.034 0.114
11 BCEFG 0.123 0.050 0.173

Table 6.1: Flow control

No. CV Ld L4re L
12 ABCDE 0.002 0.007 0.009
15 ACDEF 0.002 0.015 0.017
13 ABCDF 0.005 0.024 0.029
14 ABDEF 0.004 0.025 0.029
17 ABCEF 0.007 0.023 0.030
16 BCDEF 0.006 0.038 0.043
18 ABCEG 0.101 0.054 0.156
21 ACEFG 0.123 0.072 0.195
19 ABCFG 0.183 0.101 0.284
20 ABEFG 0.183 0.105 0.288
22 BCEFG 0.245 0.145 0.390

Table 6.2: Temperature control

Independent of disturbance representation the selection of pass A,B,C,D and E as
controlled variables gives the minimum loss both for the open and closed loop imple-
mentation strategy. From table 6.1 to 6.2 it is clear that controllers including flow or
temperature in pass G and F as controlled variables generally give a large loss.

The difference in loss for the flow control structures may be explained by the fraction
of crude flow trough each pass. At the nominal optimum the fractions in pass A-G is
[6 15 12 16 10 33 8]% respectively. Pass F has the largest flow and should be used to
control the total flow since this will give the smallest relative error in presence of feed
flow disturbances. A similar argument applies to the selection of pass E or G to control
BSR total duty. The heat transferred from BSR is 4.2MW to pass G and 2.2MW to
pass E. The pass receiving the largest duty should be selected to control the total duty
in the BSR since this will give the smallest relative change in presence of disturbances.

The loss computed using principal components is in general smaller than the loss
computed using the disturbances independently. This is explained with the fact that
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the mass and energy balance in the process is always ”zero”. If the cold feed flow
increases, the hot product flows will also increase. If there is a change in the product
yield the flow of a hot product may decrease. The product temperature increases due to
the same yield change, leaving the heat content almost unchanged. These dependencies
in the disturbances cancel some of the effects on the total loss.

6.7 Conclusion

A method for selection of controlled variables for implementation of real-time opti-
mization results based on the loss function is described (Skogestad et al., 1998). The
analysis is solely based on steady state considerations and no evaluation of the result-
ing control problem is made. An open equation model formulation, typically for data
reconciliation and optimization problems, is used in the analysis with no reformulation
of model equations. The selection is based on how the controlled process will act in
presence of disturbances compared to optimal operation. Some control structures are
proposed and evaluated in presence of single disturbance variation and a description
of disturbances using principal components. The minimum loss control structure is
achieved by selecting the outlet temperature of pass A,B,C,D and E as controlled vari-
ables. The worst case loss, using temperature control, is 0.39◦C which is more than 10%
of the RTO system heater inlet temperature gain. This shows that proper selection of
controlled variables is vital for achievement of maximum RTO benefits.





Chapter 7

Conclusions and further work

7.1 Conclusions

Data reconciliation and optimization have been applied to example processes and to
real refinery processes. A first principle process model is used for data reconciliation
and optimization. The process model has both measured and unmeasured variables.
Typical model parameters, like heat transfer coefficients and efficiency, are included
in the model as unmeasured variables. This selection of variables integrates data val-
idation, model update and data reconciliation. The reconciled values are the basis of
the optimization of the actual operation where the variable values of model parameters
and variables like feed composition, feed temperature are fixed, leaving a few degrees
of freedom for optimization. The optimal operation is implemented as set points in the
control system for the controlled variables. The controlled variables are selected such
that the presence of disturbances only causes a small deviation of the objective from
is optimal value.

A generic process modeling framework for building steady state models has been devel-
oped. The procedure is based on unit models that interact through a shared variable
vector. The unit models and specifications form an ”open equation” set, well suited as
nonlinear constrains in an optimization problem. In the suggested structure each unit
model can be developed, tested and scaled individually before it is added to the overall
process model. This simplifies the modeling work and saves a lot of troubleshooting.
A new scaling procedure, which is applied at unit model level, results in a significant
improvement in the overall numerical properties of the model.

The numerical examples of the flash process optimization shows that proper scaling
reduces the number of iterations used for solving each case. More important though,
it makes the results more reliable.

Data reconciliation is used to estimate the current state of the process based on avail-
able measurement and a first principle process model. The measurements are classified
as redundant or non-redundant, and the unmeasured variables as observable, barely ob-
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servable and unobservable. If gross errors are present (systematic errors) these can be
detected and the corresponding measurements removed or a robust objective function
can be selected.

The reconciliation problem analysis also levels the expectations of what can be achieved
by the use of data reconciliation methods. If only random measurement errors are
present the least squares objective function, based on a Gaussian error distribution,
results in a maximum likelihood estimate of the process state.

When systematic or gross errors are present, the data reconciliation problem is more
challenging. The simple evaluation in section 3.4 does not give a clear indication of
which method or objective function to select. The preferred method is dependent of
its numerical properties and the error characteristics.

The gross error detection method with measurement removal is a sequential method
where one measurement is removed as long as a gross error is detected. In each iteration,
a data reconciliation problem has to be solved.

The robust objective functions evaluated are the Gauss, Combined Gaussian, Cauchy
and Fair function. The Cauchy function has good performance but has poor numer-
ical properties. The influence function approaches zero for large values of e and the
probability of converging at a local minima is high, compared to the other methods.
The Gauss, Combined Gaussian and Fair functions are all numerically robust. The
Combined Gaussian had the overall best performance in the example and was selected
as the preferred method to be used in later chapters.

In Chapter 4 a refinery naphtha reformer is modeled using the described modeling
framework. The proposed scaling of variables and equations improves the numerical
properties of the model. The condition number of the model equations is reduced from
2.3 × 1012 to 3.6 × 104. The model equations are solved using seven iterations using
”best guess” initial values.

The model is fitted to 21 different data points using data reconciliation. The results
show significant variations in catalyst efficiency parameters and deviation in reactor
outlet temperatures. A good fit in one data set is not sufficient to claim that the model
is a good description of the process.

The data reconciliation problem is analyzed and unobservable variables are identified.
This example also shows that if a variable is defined as observable by the observability
test it still may be practically unobservable. This is consistent with the computed
uncertainly of the estimate, where the ”barely observable variable” has a uncertainty
6800 times its value.

The computed uncertainty of the measured values shows that the uncertainty in the
estimate of reactor inlet and outlet temperatures, compared with the measurement, is
typically reduced by 2%.

Optimal operation is computed for two common operational cases defined by a low or
high product price. The optimum operation has in case 1 seven active constraints and
in case 2 four active constraints. In both cases active constraints are selected as con-
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trolled variables. In case 2, three degrees of freedom are unconstrained. The remaining
three degrees of freedom are specified by adding three reactor inlet temperature differ-
ences as ”self optimizing control variables”. A MPC (Model Predictive Control), with
prioritizing of set points and constraints, has the required flexibility for implementation
of the proposed control structure. This simple analysis also shows that the benefits of
a real time optimizer (RTO), or computation of the set points for the unconstrained
variables, are small.

Chapter 5 describes the data reconciliation and optimization crude unit heat exchanger
network where the objective is to maximize heat recovery. A process model describing
the mass and energy balance is used for data reconciliation and optimization. The
model is fitted to the measured values by data reconciliation and optimal feed split
fractions are computed and implemented in the control system once an hour. The
reconciled values provide valuable information about the current condition of the mea-
surement equipment and of the condition of the heat exchangers. Comparison of rec-
onciled values and measured values has detected several flow measurements with pour
performance and also a temperature measurement that was found to be installed in the
wrong pipe. The evolution of heat transfer coefficients during operation is also used to
detect fouling and schedule cleaning of the heat exchangers. The model is sufficiently
detailed for optimization purposes and the predicted optimal heater inlet temperature
is achieved in the process.

Chapter 6 describes a method for selection of controlled variables for implementation
of real-time optimization results based on the loss function, (Skogestad et al., 1998).
The analysis is based on steady state considerations and no evaluation of the result-
ing control problem is made. The selection of control variables is based on how the
controlled process will act in presence of disturbances compared to optimal operation.

Some control structures are proposed and evaluated in presence of single disturbance
variation. The individual disturbances are strongly correlated and a description of the
dominating disturbance variation is created using principal components.

The minimum loss control structure is achieved by selecting the outlet temperature of
pass A,B,C,D and E as controlled variables. The worst case loss, using temperature
control, is 0.39◦C which is more than 10% of the RTO system heater inlet temperature
gain. This shows that proper selection of controlled variables is vital for achievement
of maximum RTO benefits.

7.2 Further work

Future work The thesis has only considered steady-state models for data reconciliation
and optimization.

The reason is that that this is sufficient for the majority of applications in the refining
industry. However, extensions to include dynamics are important in some cases and
should be included for future work.
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The modeling framework described in Chapter 2 can be extended from the current
steady state unit models to dynamic unit models. The scaling procedure and compu-
tation of first order derivatives are also applicable using a solver for differential algebraic
equations (DAE).

By use of dynamic models, one may be able to adjust more quickly to changes and
disturbances, as one does not need to wait for a new steady-state before performing
data reconciliation (estimation) and optimization.

In this work the unit models are programmed as Matlab m files. This code could have
been more efficient and better structured if it was converted to a true object oriented
programming language like C++ or Java. If the Matlab environment is preferred as
solver and analysis tool the model can be called trough a proper interface.
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Derya B. Özyurt and Ralph W. Pike. Theory and practice of simulaneous data rec-
onciliation and gross error detection for chemical processes. Computers & Chemical
Engineering, (28):381–402, 2004.

Constantinos C. Pantelides. The consistent initialisation of differential-algebraic sys-
tems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, March
1988.

J. D. Perkins. Plant-wide optimization: Opportunities and challenges. FOCAPO III,
Snowbird, Utah, pages 15–26, July 1998.

M. A. Rodriguez-Toral, W. Morton, and D. R. Mitchell. The use of new SQP methods
for the optimization of utility systems. Computers & Chemical Engineering, 25:
287–300, 2001.

Massimo Roma. Dynamic scaling based preconditioning for truncated newton mathods
in large scale unconstrained optimization. Optimization Methods and Software, 20
(6):693–713, December 2005.

J. A. Romagnoli and G. Stephanopoulos. Rectification of process measurement data in
the presense of gross errors. Chemical Engineering Science, 36(11):1849–1863, 1981.

S. Skogestad, I. J. Halvorsen, and J. C. Morud. Self-optimizing control: The basic idea
and taylor series analysis. Presented at AIChE Annual Meeting, Miami Beach,16-20
Nov;paper 229c, 1998.

R. B. Smith. Kinetic analysis of naphtha reforming with platinum catalyst. Chemical
Engineering Progress, 55(6):76–80, 1959.

G. M. Stanley and R. S. H. Mah. Observability and redundancy in process data
estimation. Chemical Engineering Science, 36:259–272, 1981.

Unmesh Taskar and James B. Riggs. Modeling and optimization of a semiregeneratiove
catalytic naphtha reformer. AIChE Journal, 43(3):740–753, 1997.

I. B. Tjoa and L. T. Biegler. Simultaneous strategies for data reconciliation and gross
error detection of nonlinear systems. Computers & Chemical Engineering, 15(10):
679–690, 1991.

A. W. Westerberg, H. P. Hutcison, R. L. Motard, and P. Winter. Process flowsheeting.
Cambridge university press, London, 1979.



110 BIBLIOGRAPHY

Douglas. C. White. Online optimization:what, where and estimating ROI. Hydrocarbon
Processing, pages 43–51, June 1997.

Yale Zhang and J. Fraser Forbes. Extended design cost: a performance criterion for
real-time optimization systems. Computers & Chemical Engineering, 24:1829–1841,
2000.

Detong Zhu. An affine scaling projective reduced hessian algorithm for minimum op-
timization with nonlinear equality and linear inequality constraints. Applied mathe-
matics and Computaion, 166(1):131–163, 2005.



Appendix A

Unit models

A unit model describes a small part of the process like a heater, flash drum or com-
pressor. The process model equations of a unit model are organized such that any
connections between unit models are established by process streams. In this model-
ing framework, a process stream is defined as a set of shared variables describing the
process stream properties. In this case the process stream variables are selected to be
molar component fractions x, molar flow F , stream temperature T and stream pressure
P .

A.1 Heater

The heater is modeled as a direct heat input to the process stream. The inlet and outlet
streams in the vapor phase and no phase changes occur. The heater has one inlet and
one outlet stream as shown in figure A.1. The heater unit model has nz = 2(NC+3)+1

S1 S2

Q

Figure A.1: Heater

variables where the 2(NC + 3) variables describe the properties of the inlet and outlet
streams and the additional variable is a internal variable, the heat input Q.
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The process model is based on the mass balance, energy balance, mole fraction sum-
mation and pressure flow relation. The pressure drop is proportional to the squared
outlet stream volume flow. The unit model has nf = NC+3 equations and the degrees
of freedom nz − nf = NC + 4. The equations of the heater unit model are written as

F1x1 − F2x2 = 0 (A.1)

F1hv(x1, T1)− F2hv(x2, T2) +Q = 0 (A.2)
NC∑
i=1

x2(i)− 1 = 0 (A.3)

P2 − P1 − kp

(
F2
RT2

P2

)2

= 0 (A.4)

(A.5)

where kp is a fixed pressure drop constant ([Pa/(m3/s)2]).

A.2 Reactor (CSTR)

The CSTR unit model is used as an element in the reactor model. This unit model as
shown in figure A.2 has one inlet and one outlet stream which both are in the vapor
phase. The unit model has 2(NC + 3) variables describing the properties of the inlet

S1

S2

Figure A.2: Plug flow reactor element

and outlet streams and one internal variable, Ac. Ac is a catalyst efficiency factor and
has a value close to 1. The unit model total number of variables nz = 2(NC + 3) + 1.
The CSTR is modeled by a mass and energy balance, sum of molar fractions and a
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pressure-flow equation.

F1x1 − F2x2 + AcmcN
Tr(T2, P2) = 0 (A.6)

F1hv(x1, T1, )− F2hv(x2, T2) + AcmcHrr(T2, P2) = 0 (A.7)
NC∑
i=1

x2(i)− 1 = 0 (A.8)

P2 − P1 − kp

(
F2
RT2

P2

)2

= 0 (A.9)

(A.10)

where mc is the mass of catalyst, N the stoichiometric matrix and r(T, P ) the reaction
rates. Hr is the heat of reaction. The reactor pressure drop is proportional with the
squared of the reactor outlet volume flow. The CSTR unit model has nf = NC + 3
equations and the degrees of freedom nz − nf = NC + 4.

A.3 Separator with water cooling

The cooling water heat exchanger and separator is modeled as one unit model, as shown
if figure A.3. Feed stream one are in the vapor phase and feed stream two are in the
liquid phase. Outlet stream three are in the vapor phase and outlet stream four are in
the liquid phase. The heat transfer is modeled as a pure countercurrent heat exchanger
where the hot side has liquid and vapor inlet and outlet streams. This unit model has

S2

CW

S1 S3

S4

Figure A.3: Flash drum

4(NC + 3) variables describing the properties of the inlet and outlet streams and five
internal variables. Three internal variables describe the cooling water flow, inlet and
outlet temperature and two internal variables are used for heat transfer coefficient U
and transferred heat, Q. The total number of model variables nz = 4(NC + 3) + 5

The heat transfer is modeled using the ε-Ntu method as described in Mills (1995).
There is no pressure drop assumed in the system and the inlet and outlet streams have
equal pressures.
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The equations of this unit model are the hot side mass balance, hot side energy balance,
sum of molar fractions of the hot side liquid and vapor outlet streams, hot side vapor
liquid equilibrium, hot side vapor and liquid pressure-flow relation (zero pressure drop),
equal temperature in vapor and liquid outlet streams, cold side energy balance (water)
and finally a equation describing the heat transfer.

F1x1 + F2x2 − F3x3 − F4x4 = 0 (A.11)

F1hv(x1, T1) + F2hl(x2, T2)− F3hv(x3, T3)− F4hl(x4, T3) +Q = 0 (A.12)
NC∑
i=1

x3(i)− 1 = 0 (A.13)

NC∑
i=1

x4(i)− 1 = 0 (A.14)

x3 −K(T4, P4)x4 = 0 (A.15)

P1 − P4 = 0 (A.16)

P2 − P4 = 0 (A.17)

T3 − T4 = 0 (A.18)

FCWCpCW (TCWo − TCWi)−Q = 0 (A.19)

ε · Cmin(T1 − TCWi)−Q = 0 (A.20)

The subscript CW refers to cooling water where FCW , TCWo, TCWi refers to cooling
water flow, outlet and inlet temperature respectively. Fixed specific heat capacity
CpCW is assumed for cooling water.

For a pure countercurrent heat exchanger the efficiency (ε) is defined as

ε =
1− e(−Ntu(1−RC))

1− RC e(−Ntu(1−RC))
(A.21)

where RC is the capacity ratio and Ntu the number of transfer units. RC and Ntu are
defined as

RC =
Cmin

Cmax

Ntu =
UA

Cmin

(A.22)

where U is the heat exchanger heat transfer coefficient and A the heat exchanger area
of heat transfer. The minimum and maximum capacity is defined as

Cmin = min (Ch,Cc) Cmax = max (Ch,Cc) (A.23)

where Ch Cc is the hot and cold side capacity respectively.

Ch = FhCph Cc = FcCpc (A.24)

where Fh is the hot side flow and Cph is the hot side specific heat capacity. Similar for
the cold side.
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The ε-Ntu method for calculation of heat transfer is based on hot and cold side fluids
with constant specific heat. In this case the hot side fluid is a mixture of vapor and
liquid and condensation of vapor occurs. In order to still be able to use this method
an approximation of the hot side specific heat is used. The average Cp = h/∆T . In
this case h̄ is the average enthalpy of the inlet and outlet of the heat exchanger. The
specific enthalpy at the inlet is the weighted average of the liquid and vapor specific
enthalpy. The average enthalpy at the inlet and outlet is calculated as

h̄i =
F1hv(x1, T1) + F2hl(x2, T2)

F1 + F2

h̄o =
F3hv(x3, T3) + F4hl(x4, T4)

F3 + F4

(A.25)

In the reformer model the inlet vapor and liquid stream are both saturated and are at
the same temperature and pressure. The same is also valid for the heat exchanger hot
side outlet stream. The average specific heat for the hot side stream is calculated as

Cph =
h̄o − h̄i

T4 − T2

(A.26)

The separator with cooling unit model has nf = 2NC+8 equations and has nz−nf =
2NC + 9 degrees of freedom.

A.4 Compressor

The compressor unit model, as shown in figure A.4, has one inlet and one outlet stream.
The unit model has 2(NC+3) variables describing the properties of the process streams
and three internal variables. The internal variables are shaft work W , compressor
efficiency ψ and isentropic outlet temperature (reversible compression) Ts. The number
of variables adds up to nz = 2(NC + 3) + 3. The compressor unit model equations

S2

S1

W

Figure A.4: Compressor

are the mass balance, energy balance for reversible and irreversible compression, sum
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of outlet stream mole fractions and reversible compression zero entropy production.

F1x1 − F2x2 = 0 (A.27)

F1hv(x1, T1)− F2hv(x2, Ts) + ψW = 0 (A.28)

F1hv(x1, T1)− F2hv(x2, T2) +W = 0 (A.29)
NC∑
i=1

x2(i)− 1 = 0 (A.30)

F1sv(x1, T1, P1)− F2sv(x2, Ts, P2) = 0 (A.31)

This compressor model has nf = NC + 4 equations and nz − nf = NC + 5 degrees of
freedom.

A.5 Reactor effluent heat exchanger

The reactor effluent heat exchanger unit model, shown in figure A.5, has phase changes
in both the hot and the cold side. The cold side inlet stream S1 is in the vapor phase
and S2 is in the liquid phase. The outlet of the cold side S3 is in vapor phase.

The hot side feed S4 is superheated vapor, which is partially condensed into the hot
side liquid and vapor outlet streams S5 and S6. This model has 6(NC + 3) variables

S4

S2

S3

S1

S5

S6

Figure A.5: Heat exchanger

describing the properties of the hot and cold side inlet and outlet streams. In addition
there are two internal variables,heat exchanger duty Q and the heat transfer coefficient
U. The total number of variables nz = 6(NC + 3) + 2.

The cold side model is the mass balance, energy balance, sum of outlet stream mo-
lar fractions and cold side pressure flow relation (zero pressure drop). The hot side
side model is the mass balance, energy balance, sum of outlet streams molar frac-
tions, vapor-liquid equilibrium and hot side pressure flow relation (zero pressure drop).
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Finally, the heat transfer is modeled using the ε-Ntu method.

F1x1 + F2x2 − F3x3 = 0 (A.32)

F1hv(x1, T1) + F2hl(x2, T2)− F3hv(x3, T3) +Q = 0 (A.33)
NC∑
i=1

x3(i)− 1 = 0 (A.34)

P1 − P3 = 0 (A.35)

P2 − P3 = 0 (A.36)

F4x3 − F5x5 − F6x6 = 0 (A.37)

F4hv(x4, T4)− F5hv(x5, T5)− F6hl(x6, T6)−Q = 0 (A.38)
NC∑
i=1

x5(i)− 1 = 0 (A.39)

NC∑
i=1

x6(i)− 1 = 0 (A.40)

x5 −K(T6, P6)x6 = 0 (A.41)

P4 − P5 = 0 (A.42)

T5 − T6 = 0 (A.43)

ε · Cmin(T4 − T1)−Q = 0 (A.44)

The calculation of the heat transfer term in equation A.44 is similar to the description
in section A.3 equation A.21.

This heat exchanger unit model has nf = 3NC+10 equations and nz−nf = 3NC+10
degrees of freedom.

A.6 Vapor-liquid stream mixer

This unit model, shown in figure A.6, is used to describe the mixing of the liquid feed
and recycle gas. There are four process streams in the model, one vapor and one liquid
inlet stream, and one vapor and one liquid outlet stream. The inlet stream S1 and

S1 S3

S2 S4

Figure A.6: Mixing of vapor and liquid streams

outlet stream S3 are in the vapor phase and inlet steam S2 and outlet stream S4 in
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the liquid phase. There are nz = 4(NC + 3) variables describing the properties of the
input and output streams.

The stream mixing model are the mass balance, energy balance, sum of outlet streams
molar fractions, vapor-liquid equilibrium and pressure-flow relations (zero pressure
drop).

F1x1 + F2x2 − F3x3 − F4x4 = 0 (A.45)

F1hv(x1, T1) + F2hl(x2, T2)− F3hv(x3, T3)− F4hl(x4, T4) = 0 (A.46)
NC∑
i=1

x3(i)− 1 = 0 (A.47)

NC∑
i=1

x4(i)− 1 = 0 (A.48)

x3 −K(T3, P3)x4 = 0 (A.49)

P1 − P3 = 0 (A.50)

P2 − P3 = 0 (A.51)

T3 − T4 = 0 (A.52)

The unit model has nf = 2NC + 6 equations and if the degrees of freedom in this
model equals nz − nf = 2NC + 6.

A.7 Stream split

The stream split unit model, shown in figure A.7 describes the split of one vapor
stream into two vapor streams. The model has nz = 3(NC + 3) variables, describing

S1

S3

S2

Figure A.7: Splitting of streams

the properties if the input and output streams.

The stream split model are the mass balance, energy balance, sum of molar fractions,
outlet stream equal composition, outlet stream equal temperature, and pressure-flow
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relations (zero pressure drop).

F1x1 − F2x2 − F3x3 = 0 (A.53)

F1hv(x1, T1)− F2hv(x2, T2)− F3hv(x3, T3) = 0 (A.54)
NC∑
i=1

x3(i)− 1 = 0 (A.55)

x2 − x3 = 0 (A.56)

T2 − T3 = 0 (A.57)

P1 − P2 = 0 (A.58)

P1 − P3 = 0 (A.59)

The stream split unit model has nf = 2NC + 5 equations and nz − nf = NC + 4
degrees of freedom.
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