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Abstract

Controllability is the ability of a process to achieve acceptable performance,
and in this thesis we use controllability analysis in the design of buffer tanks,
feedforward controllers, and multivariable controllers such as model predictive
control (MPC).

There is still an increasing pressure on the process industry, both from com-
petitors (prize and quality) and the society (safety and pollution), and one im-
portant contribution is a smooth and stable production. Thus, it is important to
dampen the effect of uncontrolled variations (disturbances) that the process may
experience.

The process itself often dampens high-frequency disturbances, and feedback
controllers are installed to handle the low-frequency part of the disturbances, in-
cluding at steady state if integral action is applied. However, there may be an in-
termediate frequency range where neither of these two dampens the disturbances
sufficiently. In the first part of this thesis we present methods for the design of
buffer tanks based on this idea. Both mixing tanks for quality disturbances and
surge tanks with “slow” level control for flow-rate variations are addressed.

Neutralization is usually performed in one or several mixing tanks, and we
give recommendations for tank sizes and the number of tanks. With local PI or
PID control, we recommend equal tanks, and give a simple formula for the to-
tal volume. We also give recommendations for design of buffer tanks for other
types of processes. We propose first to determine the required transfer function to
achieve the required performance, and thereafter to find a physical realization of
this transfer function.

Alternatively, if measurements of the disturbances are available, one may ap-
ply feedforward control to handle the intermediate frequency range. Feedforward
control is based mainly on a model, and we study the effect of model errors on
the performance. We define feedforward sensitivities. For some model classes we
provide rules for when the feedforward controller is effective, and we also design
robust controllers such as � -optimal feedforward controllers.

Multivariable controllers, such as model predictive control (MPC), may use
both feedforward and feedback control, and the differences between these two
also manifest themselves in a multivariable controller. We use the class of se-
rial processes to gain insight into how a multivariable controller works. For one
specific MPC we develop a state space formulation of the controller and its state
estimator under the assumption that no constraints are active. Thus, for example
the gains of each channel of the MPC (from measurements to the control inputs)
can be found, which gives further insight into to the controller. Both a neutraliza-
tion process example and an experiment are used to illustrate the ideas.
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Chapter 1

Introduction

We start with some words on the title of the thesis, or more precisely with a defi-
nition of what we mean by controllability and controllability analysis (Skogestad
and Postlethwaite, 1996, Chapter 5):

Definition 1.1 (Input-output) controllability is the ability to achieve acceptable
control performance; that is, to keep the outputs ( � ) within specified bounds or
displacements from their references ( � ), in spite of unknown but bounded varia-
tions, such as disturbances ( � ) and plant changes, using available inputs ( � ) and
available measurements ( ��� or ��� ).

A plant is controllable if there exists a controller (connecting plant measurements
and plant inputs) that yields acceptable performance for all expected plant varia-
tions. From this, controllability is independent of the controller, and a property of
the process alone. Further, controllability analysis is applied to a plant to find out
what control performance can be expected.

The definition above is in accordance with the definition given by Ziegler and
Nichols (1943) “the ability of the process to achieve and maintain the desired
equilibrium value”, but must not be confused with the more narrow state control-
lability definition of Kalman from the 60’s.

In particular, in this thesis we will apply controllability analysis in the design
of processes, namely such processes that are designed for dynamic and control
purposes, and in the design and understanding of feedforward and multivariable
controllers.

1.1 Motivation

High degree of competition in all branches of the process industry put pressure
on each single site and plant to stay competitive. Even within a company there is
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an internal competition of being the most productive and effective, and delivering
the best quality products. The second best risks that investment plans are rejected
by the central management, or even that the plant is closed.

There are many important requirements that must be met by a plant organisa-
tion

(1) On-site and off-site safety

(2) Discharge shall be below certain limits, both on a long term basis, e.g., total
over a year, or on a shorter the period of time, such as on an hourly basis.

(3) Requirements for certain quality parameters to stay within given limits (to
obtain maximal prizes)

(4) Minimal production costs, such as energy consummation

(5) Maximal production

Running smoothly without abrupt changes of any kind, will be an important
contribution to meet all the above-mentioned requirements. The risk of accidents
and undesired discharge is reduced, and a natural consequence is also a more con-
stant product quality. Finally, production cost can be reduced and the production
rate increased, because the risk of unplanned stops is reduced and because it is
possible to move the operating point closer to the constraints.

On the other hand, within a process, there are many sources that introduce
variations of all kinds, namely disturbances. This can be such as variations in
the quality of the raw materials or the incomming flow rates, inaccurate charging
equipment, sticky vales, or badly tuned control loops. Some of these things are, at
least in principle, easy to handle, others are more difficult or costly to avoid, and
must therefore be treated by other process parts.

It is our experience that the Norwegian process and oil industry has increased
the focus on smooth production in recent years, and therefore puts pressure on
process control. This is because of the increased competition in the process in-
dustry in general (the competitors focus on this), and also because of changes in
the oil production in the North Sea, which lead to more disturbances and “new”
bottle-necks (primal reasons are increased water and gas production and longer
pipes between the wells and the processing units).

In this thesis two basic ideas are elaborated. The first is that high-frequency
disturbances are dampened by the process itself (e.g., by inventories like reactor
volumes, and liquid hold-ups in distillation columns) whereas low-frequency dis-
turbances can be dampened out with effective single-loop feedback controllers.
To handle intermediate frequencies, we look into the design of buffer tanks and
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more sophisticated controllers (like traditional feedforward control and multivari-
able control).

As far as we have found in the literature, even though buffer tanks are intro-
duced for control purposes, control theory has not been applied. Further, feed-
forward control theory is treated by most textbooks on control, but often very
briefly, and even a simple analysis of the effect of model errors is often missing
(exceptions are Balchen (1968), and the work of Scali and co workers (Lewin and
Scali, 1988; Scali et al., 1989)).

Based on our experience from industrial processes, we assume that sinusoidal
disturbances of varying frequency are the most important. The disturbances may
be caused by oscillations in other parts of the process, for example, from aggres-
sive control, valve stiction etc. However, in the simulations we also consider step
disturbances.

The second idea is that within multivariable feedback controllers there may be
controller blocks or elements that are similar to feedforward control. Like tradi-
tional feedforward controllers, such elements may nominally improve the perfor-
mance to a large extent. Unfortunately, feedforward controllers rely heavily on a
model of the process, and this drawback also applies to the feedforward elements
within the multivariable controller.

1.2 Thesis overview

The thesis is composed of six chapters written as independent articles, each with
a separate bibliography, and most of them also have their own appendices. In
the end of the thesis there is a concluding chapter (Chapter 8) and in addition
there are two appendices, A and B, referred to by “Thesis’ Appendix A (or B)” to
distinguish from the appendices within each chapter.

Chapters 2 and 3 give rules regarding the design of buffer tanks, especially
regarding tank sizes (the first specializes on pH-neutralization). Also Chapter 4
can be useful for readers with interest in this, since it looks into different control
strategies for serial processes, and one or more buffer tanks are usually placed in
series with other process units. In particular, pH neutralization is included as a
case study.

Chapters 4 - 7 focus on control design. One may say that Chapters 5 and 6 are
theoretical foundations for Chapters 4 and 7.

If the interest is how to handle disturbances, our basic idea is that when neither
the process itself, or a simple feedback control system can handle them, either
buffer tanks (Chapters 2 and 3) or feedforward controllers (Chapter 6) may be
used to handle the resting frequencies.
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In Chapter 2 we provide a simple rule for the size of mixing tanks for pH neu-
tralization processes ensuring that incoming disturbances are dampened such that
the outlet pH is kept within given limits. We assume traditional single-loop feed-
back control, and that the efficiency of the feedback loops are limited by delays
and other high order dynamics. Neutralization processes often have large process
gains, and it is therefore often convenient to use several stages.

In Chapter 3 we extend the mixing tank design from Chaper 2 to the design of
a broader class of buffer tanks. The aim of the buffer tank is disturbance dampen-
ing in the frequency range where neither the process itself nor any feedback loop
dampen the disturbances sufficiently. We consider disturbances in both quality
and flow rates, for which mixing tanks and surge tanks with slow level control are
used, respectively.

Chapter 4 discusses control design for serial processes. As a case study we
consider neutralization in several stages, which we also discuss in Chapter 2. We
use the structure of serial processes to identify different classes of control blocks
of a multivariable controller, and comment, in particular, on feedforward effects
and how to obtain integral action.

The multivariable controller we use in Chapter 4 is a model predictive con-
troller (MPC). In Chapter 5 we assume that no constraints are active, in which
case the MPC can be considered as a linear quadratic controller (LQ), and derive
a state-space formulation of the resulting controller, including the state estimator.
Chapter 5 is mainly a tool for Chapters 4 and 7, but also include a result on how
to choose input biases to gain integral action.

One of the control block classes discussed Chapter 4 is feedforward control,
and in Chapter 6 we discuss feedforward control under model uncertainty. In
accordance with the sensitivity function defined for feedback control, we intro-
duce feedforward sensitivities, and discuss how this can be used to determine the
usefulness of a feedforward controller (or of a feedforward control block).

Chapter 7 verifies some of the results from Chapters 4 and 5 through an ex-
periment. We show that even if simulations indicate that a specific controller gives
integral action, when applied to the actual process, steady-state offset is obtained.

Chapter 8 sums up the conclusions from the thesis, and tries to propose some
directions for further work.

The thesis’ Appendixes A and B are “older” published versions of Chapters 4
(only a part) and 3, respectively. They are included since they contain material that
has been removed from the chapters now included (Chapters 4 and 3). Appendix
A contains an example where

���
control has been applied (in Chapter 4 model

predictive control (MPC) is used). Appendix B is more focused on the short-cut
method for buffer tank design than Chapter 3, and contains some more details
regarding this.

Preliminary versions or parts of the following chapters have been or will be
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Abstract

The paper addresses control related design issues for neutralization plants. Mainly for control

reasons, the neutralization is usually performed in several steps (mixing tanks) with gradual change

in the concentration. The aim is to give recommendations for issues like tank sizes and number of

tanks. Assuming strong acids and bases, we derive linearized relationships from the disturbance

variables (e.g. inlet concentration and flow rate) to the output (outlet concentration), including

the scaled disturbance gain, ��� . With local PI or PID control in each tank, we recommend to use

identical tanks with total volume ������� , where we give �	�
��� as a function of ��� , the time delay in

each tank � , the flow rate  , and the number of tanks � . For ������� , which is common in pH-

neutralization, this gives ������������������
�����
� .

Keywords: pH control, Process control, Processs design, PID control
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2.1 Introduction

The pH-neutralization of acids or bases has significant industrial importance. The
aim of the process is to change the pH in the inlet flow, the influent (disturbance,
� ), by addition of a reagent (manipulated variable, � ) so that the outflow or effluent
has a certain pH. This is illustrated in Figure 2.1 as a simple mixing, but normally
it takes place in one or more tanks or basins, see Figure 2.3. Examples of ar-
eas where pH control processes are in extensive use are water treatment plants,
many chemical processes, metal-finishing operations, production of pharmaceuti-
cals and biological processes. In spite of this, there is little theoretical basis for
designing such systems, and heuristic guidelines are used in most cases.

Textbooks on pH control include (Shinskey, 1973) and (McMillan, 1984).
General process control textbooks, such as (Shinskey, 1996; Balchen and Mummé,
1988), have sections on pH control. A critical review on design and control of neu-
tralization processes that emphasizes chemical waste water treatment is given by
Walsh (1993).

Our starting point is that the tanks are installed primarily for dynamic and
control purposes. In our paper process design methods using control theory are
proposed. We focus on the neutralization of strong acids or bases, which usually
is performed in several steps. The objective is to find methods to obtain the total
required volume for a given number of tanks, and discuss whether they should be
identical or not. Design of surge (buffer) tanks is generalized to other processes in
Chapter 3. Clearly, the required tank size depends on the effectiveness of the con-
trol system, and especially with more than one tank, there are many possibilities
with respect to instrumentation and control structure design. This is discussed in
Chapter 4.

Section 2.2 motivates the problem. Since time delays are important design
limitations, Section 2.3 contains a discussion on delays. From the models pre-
sented in Section 2.4, in Section 2.5 we follow Skogestad (1996) and derive a
simple formula for the required tank volume, denoted ��� . In Section 2.6 the va-
lidity of the simple formula for ��� is checked numerically, and improved rules for
sizing are proposed. Whether equal tanks is best or not is discussed in Section 2.7.
Discussions on measurement noise, feedforward control and the pH set-point to
each tank are found in Section 2.8. The main conclusions are summarized in
Section 2.9.

2.2 Motivating example

We use a simple neutralization process to illustrate the ideas.
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Example 2.1 We want to neutralize ������� of a strong acid (disturbance) of � � ��
	 ( 	����� ����� � 	������ ����� ) using a strong base (input) with � � � 	 � to obtain a
product of � � ����� 	 ( 	�� �"!#��� �����%$ 	 �� $ 	��"�"&'�(� ����� ).

We derive a model for the process in Section 2.4, and we find that it is con-
venient to work with the excess

� �
-concentration, 	 � 	��) � 	�*#��+ ( �(� ����� ). In

terms of this variable, the product specification is 	 � �,��� ����� , and the vari-
ation requirement � 	.-'/ corresponds to a concentration deviation 0 	21.354 �
� 	�� �"& ��� �2��� . We assume that the maximum expected disturbance is 0 	��� � 1.354 �
�
� ��� ����� , corresponding to a pH variation from �6��7 � � to �
	879	�: .

We first try to simply mix the acid and base, as illustrated in Figure 2.1 (no
tank). The outlet concentration is measured (or calculated from a pH measure-
ment), and the base addition is adjusted by a feedback PI- controller assuming a
time delay of 	�� � in the feedback loop. A step disturbance in the inlet concentra-
tion of � ��� �2��� , results in an immediate increase in the product of ; 7 � ��� ����� (to
pH �6��7=< ), since the total flow is half the acid flow. After a while the PI controller
brings the pH back to � , but for a period of about � �>� � the product is far outside
its limits. This can be seen from the simulation in Figure 2.2 (solid line).

This is clearly not acceptable, so, next, we install one mixing tank to dampen
the disturbances. For a tank with residence time ? , the response is (for the case
with no control):

	 �A@ � �B; 7 �DC 	��FE �HGJI5KML (2.1)

Now the pH of the product does not respond immediately, and provided ? is suf-
ficiently large, the controller can counteract the disturbance before the pH has
crossed its limit of N . Solving for 	 �O@ � � 	�� �"& , we get

@�P <RQ8	�� � S ? (2.2)

For example, ? � 	��8�>� � gives @ � <TQU	�� �HV � , that is, for a tank with a residence
time of 	��8�>� � the pH goes outside its limits after ��7=<W� � . However, no control
system can respond this fast. With a time delay of 	�� � (typical value), the feedback
controller needs at least @ � 	�� � to counteract the disturbance, which gives a
minimum required residence time of ? � 	�� � <XQM	�� � S � �B; 7 � QY	�� S � . In practice, a
larger tank is required, and in Figure 2.2 we also show the closed-loop response
for the case with ? � :ZQ%	�� S � (dashed line). With a flow rate of 	�� ����� this
corresponds to a tank size of :>�>�F�>�8�,�\[ . This is of course unrealistic, but in
Section 2.5 we will see that the total tank size can be reduced considerably by
adding several tanks in series as illustrated in Figure 2.3.
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Figure 2.1: Neutralization of strong acid with strong base (no tank)
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Figure 2.2: Mixing capacity is required to dampen the disturbance. Closed-loop responses
in outlet pH to a step change in inlet acid concentration from ���������
	�� to ��������
	�� with
time delay of ����� in the PI-control loop. (Controller: PI with Ziegler-Nichols tuning.)
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Figure 2.3: Neutralization in three stages.
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2.3 Time delays

Time delays provide fundamental limitations on the achievable response time,
and thereby directly influence the required volumes. The delays may result from
transport delays or from approximations of higher order responses for mixing or
reaction processes and from the instrumentation. For pH control processes, the
delays arise from

(1) Transport of species into and through the tank, in which the mixing delay is
included ( ��� )

(2) Transport of the solution to the measurement and approximation of mea-
surement dynamics ( � � )

(3) Approximation of actuator and valve dynamics ( ��� )

(4) Transport of the solution to the next tank ( � G )
In this paper, we mainly consider local feedback control, and the total effective

delay is the sum of the contributions from the process and instrumentation � �
������� �����	� . If the influent (disturbance) and the reagent addition (manipulated
variable) are placed close, they will have about the same delay �
� , but for feedback
control only the delay for manipulated variables matters.

Both the volume and the mixing speed determine the mixing delay, which
is the most important contribution to ��� . If the volume is increased, one would
also usually increase the mixing speed, and these two effects are opposing. Walsh
(1993) carried out calculations for one mixer type and found ���� � ��� � S . Since the
exponent of ��7 � � is close to zero he concludes that ��� is constant (typically about
��� ), independent of the tank size. On the other hand, Shinskey (1973, 1996)
assumes that the overall delay � is proportional to the tank volume (this is not
stated explicitly, but he assumes that the ultimate or natural period of oscillation,
which here is < � , varies proportionally with the volume). In this paper, we follow
Walsh and assume that the overall effective delay is � � 	�� � in each tank.

2.4 Model

The model is derived in Appendix A. pH-control involving strong acids and bases
is usually considered as a strongly “nonlinear” process. However, if we look
at the underlying model written in terms of the excess

� �
concentration 	 �

	 �� � 	 *#�,+ :
� � 	 ���
�>@ �
	 ��� � � ��� � � 	���� 3�� ����� 3�� � 	 � (2.3)
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Figure 2.4: Neutralization tank with pH control.

then we find that it is linear in composition 	 (the overall model is bilinear due to
the product of flow rate ( � ) and concentration ( 	 )). The fact that the excess concen-
tration will vary over many orders of magnitude (e.g. we want � 	��#$ 	�� �"& ��� �����
to have N $ � � $ : , whereas 	 � 	 ��� �2��� for a strong acid with � � � � ), shows
the strong sensitivity of the process to disturbances (with � ��� 	 ; see below), but
has nothing to do with non-linearity in a mathematical sense.

In Appendix A we have derived a Laplace transformed, linearized, and scaled
model for the process illustrated in Figure 2.4:

� � ��� � � ����� � ����� � � � � � � � ����� (2.4)

where � � 0 	2� 	 1.354 is a scaled value of the effluent excess concentration, � �
0��
��� 3�� � � � ����� 3�� � ��� 1.354 is a scaled value of the reagent flow rate, and � � � 0 	 ����� �
	 ������� 1.354�� 0 � ����� � � ������� 1.354�� 0 	���� 3���� 	���� 3�� � 1.354�� 0���� � 3�� � � � �
��� 3�� � � � 1.354��	� is a disturbance vec-
tor. The subscripts ��
�� denote the maximum tolerated ( � ), possible ( � ) or ex-
pected ( � ) variation; see also Table 2.1. Note that we have included a reagent flow
rate, ��� � 3�� � � , as a disturbance, since it may also have uncontrolled variations due
to e.g. inaccuracies in the valve or upstream pressure variations. � is the transfer
function from the control input, and ��� a vector of transfer functions from the
disturbances. Normally it is convenient to consider the effect of one disturbance
at a time, so from now on we consider � as a scalar and ��� as a (scalar) transfer
function. The reason for the scaling is to make it easier to state criteria for suffi-
cient dampening, and we scale the model so that the output, control input and the
expected disturbances all shall lie between -1 and 1.

For a single tank the transfer functions � � ��� and ��� ����� are represented as

� � � � � �
? � � 	 E ������ � � � � � � � �

? � � 	 E ���� (2.5)

where ? is the nominal residence time in the tank ( ? � ��� � ��� where ��� is the
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nominal volume and � � the total flow rate), and � is effective time delay, due to
mixing, measurement and valve dynamics (see Section 2.3).

In Appendix A.2 we derive a linear model for a series of � tanks. Neglecting
reagent disturbances (except in the first tank) and changes in outlet flow-rates of
each tank, we obtain for any disturbance entering in the first tank,

� � ����� � � �
� K�� � � 	 �  E �

 �� (2.6)

where ?�� is the total residence time ���	�
� � � . �����
� is the total volume and � is the
flow rate through the tanks, and we here assume �� � 727�7 � ���� � .

With the above-mentioned scalings, the gain from the control input is (Ap-
pendix A.1)

� � 	 ���� 3�� � 	 �
	 1.354

�
��� 3�� � �M� 1.354
� � (2.7)

while � � for various disturbances is given in Table 2.1. We will assume that � � �	 (typically � � is 	��8[ or larger for pH systems).

Table 2.1: Steady-state gain for different disturbances. Superscript � denotes nominal
values, and subscript ����� denotes maximum tolerated ( � 1.354 ) or expected (the other vari-
ables) variation. �
��� 3�� � � � 1.354 is maximal expected uncontrolled variation in reagent flow.

Concentration disturbance Flow disturbance
Influent � � � ��� ��� � � ��� ����� ��� �

� ��� �
!#"� �$�! " � � � �����2� ! � � "� ��� � � "

� ��� �
! � ���%� ��� �! "

Reagent � � � ��� 3�� � � � ��&(' �*)
� ��� �
� ��� �

!+"&(' �*)! " � � � ��� 3�� � ! � � "&(' �*) � � "
� ��� �

! &(' �*)#� ,+� ��� �! "

Example 2.1 (continued from page 9): We consider the influent disturbances.
Nominally, � ������ � � � � ��7 � (acid flow rate is half the total flow rate), 	�1.354 � 	�� �"& ,
	 � � ����� ����� , and 	 ������� � � 1.354 � � ��� �2��� (maximum inlet concentration variation).
This gives � � � ������� � � -

 � +/. QM� 7 � �B; 7 �10 	�� & (as found earlier).
Furthermore, � ������� � � 1.3542� � � � ��7 � Q2� 7 � (maximum variation in acid flow rate is

�
� ��2 ) so � � � �����2� ! �  � � +/. ��7 � QM� 7 � �B; 7 � Q 	�� & .

2.5 A simple formula for the volume and number of
tanks

The motivating example in Section 2.2 showed that the control system is able to
reject disturbances at low frequencies (including at steady state), but we need de-
sign modifications to take care of high-frequency variations. Based on (Skogestad,
1996) a method for tank design using this basic understanding is presented.
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The basic control structure is local control in each tank, as illustrated in Fig-
ure 2.3 (flow sheet) and Figure 2.5 (block diagram). We assume no reference
changes ( �  � � � � 7�7�7 � � ), and the closed-loop response of each tank then
becomes

� � ����� �
	

	 � � � � ��� � � ����� � ��� ����� � � �����
� � � � � � � ��� ����� � � ����� (2.8)

where �  � � , and for ��� 	 , � � � � � �  . � � ����� is the sensitivity function for tank� . Combining this into one transfer function from the external disturbance � to the
final output � leads to

� � ��� �
� 	
��
 

� � � ��� � ��� ������ � �����

�
� 	
��
 

� � � ���� � 	
��
 
� ��� � ���� � ����� (2.9)

� ����� � � � � � � � � � � � � � � (2.10)

where � � � � ��� ��
  � � ����� . The factorization of � is possible since the tanks are
SISO systems.

Gd1

G1K1 Gd2

G2K2 Gd3

G3K3

d
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y3
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-

-

r1

r2

r3

Figure 2.5: Block diagram corresponding to Figure 2.3 with local control in each tank.

We assume that the variables ( � and � ) have been scaled such that for distur-
bance rejection the performance requirement is to have � � ��� 	 for all � � ��� 	 at
all frequencies, or equivalently

� � ����� � � � ����� � ��� 	 ��� � (2.11)
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Combining (2.11) and the scaled model of ��� in (2.6) yields an expression for the
required total volume with � equal tanks:

� �	�
��� � �� �
� � � � � � ��� � � � � I  � 	 � � � (2.12)

Assuming � � � � � � ��� � � � � I  � 	 (since � � � 	 and the design is most critical at
frequencies where � � � is close to 1) this may be simplified to

� �	�
��� � � �  I � � � ����� � �  I � � � � (2.13)

We see that � � ��� � � � enters into the expression in the power of 	 � � . This is because
� � is of the same order as � . This gives the important insight that a “resonance”
peak in � � � � due to several tanks in series, will not be an important issue. Specifi-
cally if the tanks are identical and the controllers are tuned equally, the expression
is

�����
��� � � �  I � � � � ����� � �� � � � (2.14)

where � � is the sensitivity function for each locally controlled tank. This condition
must be satisfied at any frequency � and in particular at the bandwidth frequency��� , here defined as the lowest frequency for which � � ������� � � � 	 . This gives the
minimum requirement (Skogestad, 1996)

� �	�
��� � ���� � �
� I � � 	 (2.15)

Since � � � ����� � � decreases as � increases, this volume guarantees that

� � � � ��� � � � 	 �� ��� ��� (2.16)

In words, the tank must dampen the disturbances at high frequencies where con-
trol is not effective. With only feedback control, the bandwidth ��� (up to which
feedback control is effective), is limited by the delay, � , and from (Skogestad and
Postlethwaite, 1996, p.174) we have ��� � 	 � � (the exact value depends on the
controller tuning), which gives

� �	�
� � � � (2.17)

where (Skogestad, 1996)

� � � � ��� �
	� � � �
�
�
� I � � 	 (2.18)

is a “reference value” we will compare with throughout the paper. For � � � 	 ,
we have

� � P
� � ���  I � (2.19)
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(2.19) gives the important insight that the required volume in each tank, � � � � ,
is proportional to the total flow rate, � , the time delay in each tank, � , and the
disturbance gain � � raised to the power 	 � � . Table 2.2 gives ��� as a function of �
for Example 2.1. With one tank the size of a supertanker ( ;>� �>�8�>��� [ ) is required
(as we got in the motivating example). The minimum total volume is obtained
with 18 tanks (Skogestad, 1996), but the reduction in size levels off at about 3-4
tanks, and taking cost into account one would probably choose 3 or 4 tanks. For
example, Walsh (1993) found the following formula for the capital cost in � of a
stirred tank reactor �

�B; �>�8�>� � ; �8�>� � ��� S (2.20)

From this we obtain the following total cost for � � 	 � 7�7�7 � � in � 	��8�>� : 	 ; �8�>� ,	�:>� , �>� , 	���	 , 	 ; � , i.e. lowest cost is for three tanks.

Table 2.2: Total tank volume, � � from (2.18). Data: ��� ��� � � � [ 	�� , � �	��
�� �� ��� & and� � ����� .
Number of tanks, � Total volume ��� [ � [ ]

1 ;>� �8�>�>�
2 � 	 N
3 < ��7 �
4 	 � 7 �
5 � 7 � 	

Remark 1 Conditions (2.15) and (2.17) are derived for a particular frequency��� and other frequencies may be worse. However, we will see that � � � ��� is “flat”
around the frequency ��� if the controller tuning is not too aggressive, and ��� is
close to the worst frequency in many cases.

Remark 2 In (2.6) we neglected the variation in the outlet flow rate from each
tank. The outlet flow rate is determined by the level controller (see (2.59) and
(2.60)). With more than one tank and a different pH in each tank, a feed flow
rate variation (disturbance) into the first tank will give a parallel effect in the
downstream concentration variations since both the inlet flow rate and inlet con-
centration will vary. Also, variations in the reactant flow rate will influence the
level and thereby outlet flow rate. Perfect level control is worst since then outlet
flow rate equals inlet flow rate. With averaging level control (surge tank), the out-
let flow variations are dampened, but extra volume is required also for this, which
is not taken into account in the analysis presented in this paper.
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2.6 Validation of the simple formula: Improved siz-
ing

In (2.18) we followed Skogestad (1996) and derived the approximate value � � for
the total volume. This is a lower bound on � �	�
� due to the following two errors:

(E1) The assumed bandwidth � � � 	 � � is too high if we use standard controllers
(e.g. PI or PID).

(E2) The maximum of � � � ��� � � � ��� � � � occurs at another frequency than � � .

In this section we compute numerically the necessary volume � ���
� when these
two errors are removed. We assume first sinusoidal disturbances, and later step
changes. Each tank (labeled � ) is assumed to be controlled with a PI or PID con-
troller with gain

� � � , integral time ?�� � and for PID derivative time ?���� :
	 � � ����� � � � � �O?	� � � � 	 � �O?�� � � � 	 �

?�� � � � ��7J	 ?�� � � � 	 � (2.21)

(cascade form of the PID controller). We consider four different controller tuning-
rules for PI and PID controllers: Ziegler-Nichols, IMC, SIMC and optimal tuning.

For the case with Ziegler-Nichols, IMC or SIMC tunings the controller param-
eters are fully determined by the process parameters � , ? and � , and an optimiza-
tion problem for finding the minimum required tank volumes may be formulated
as:

�����
� � ��
�� � ������� � � � � ���
�
��
 

� � (2.22)

subject to

� � � ����� � � � � ����� � ��� 	 � � ������� (2.23)

� is stable (2.24)

To get a finite number of constraints, we define a vector � containing a number of
frequencies ��� covering the relevant frequency range (from 	�� � [ to 	��8[�� 
�� ��� ).
It is assumed that if the constraints are fulfilled for the frequencies in � , they
are fulfilled for all frequencies. The stability requirement is that the real part of
the poles of � ����� are negative. The poles are calculated using a 3rd order Padé
approximation for the time delays in � � � � , but this is not critical since the stability
constraint is never active at the optimum.

Ziegler and Nichols (1942) tunings are based on the ultimate gain
� � and

ultimate period � � . For our process the resulting PI controller has gain
� � �
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� 7 < � � � P � 7 � 	 ?#� � � � � and integral time ?�� � � � � 	>7 ;DP � 7 � � . The corresponding
“ideal” PID tunings are:

� �
� � ��7 N � � P ��7 � < ?'� � � � � , ? �� � � � �>;�� ; � and ? �� �

� � � : � ��7 � � , which correspond to
� � � � �� �>;�P ��7 < �Y?#� � � � � and ?�� � ?�� � �

for our cascade controller.
The IMC-tunings derived by Rivera et al. (1986) have a single tuning param-

eter � , which we select according to the recommendations for a first order process
with delay as � � 	>7 � � for PI control and � � ��7 : � for PID control. We get a PI
controller with gain

� � � ��7 �>� : ?'� � � � � and integral time ? � � ? . For the cascade
form IMC-PID controller, we get

� � � � 7 �>�M?#� � � � � , ?�� � ? and ?�� � ��7 � � .
However, the IMC tuning is for set-point tracking, and for “slow processes”

with ? � � this gives a very slow settling for disturbances. Skogestad (2003)
therefore suggests to use ?�� � ���� �A? � : � � , which for our process gives ? � �: � . The controller gain is

� � � ��7 �Y?#� � � � � . We denote this tuning SIMC PI.
For a SIMC-PID controller (on cascade form), the gain and integral time are left
unchanged, and we have chosen to set the derivative time ? � to ��7 � � .

For optimal tunings, the controller parameters are optimized simultaneously
with the volumes:

� �	�
� � ��
�� � � � ���� � � � � � � � ��� � � � � � ��� � � K�� � � � � � � K�� �
�
��
 

� � (2.25)

subject to

� � � ����� � � � ��������� ��� 	 � � ��� � � (2.26)

� � � ��� ����� ��� �
	 � � ��� ��� � � � 	 � 7�7�7 � � (2.27)

� is stable (2.28)

To assure a robust tuning, a limit,
��	 � � 1.354 � ; , is put on the peak of the gain of

the individual sensitivity functions � � � � . (For PID control we also let ?�� � � 7�727 ��?�� �
vary in the optimization.)

In the following we apply this numerical approach to the process in Exam-
ple 2.1. For � multiple tanks in series, � � is distributed equally between the tanks,
so that for tank � we get � � � � � � � � �  I  . The results for the four different con-
trollers (ZN, IMC, SIMC and optimal) are given in Table 2.3 for PI control and in
Table 2.4 for PID control.

The optimal controller PI-tunings (last column in Table 2.3) give a large in-
tegral time, so that we in effect have obtained P-control with

� � � �>�Y? equal to� 7 N�� (one tank), � 7 � 	 and ��7 �8N (two tanks), ��7 � : and twice � 7 � 	 (three tanks) and� 7 � 	 and three times ��7 � 	 (four tanks). The optimal PID-tuning (last column in
Table 2.4) also gave a large integral time (PD control) with

� � � ��7 : ?'� � � � � and
derivate time ? � � � 7 < � for all tanks.
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From Tables 2.3 and 2.4 we find that the “correction factor”, � on ���

� �	�
� ��� � � (2.29)

is in the range � � 	>7 ; to � 7 ; . The correction factor is independent of the number
of tanks in most cases, which is plausible since the combination of (2.14) and
(2.19) gives

���	�
� � � � � ����� � �
� � � � (2.30)

where � � � � � � � is close to independent of the number of tanks involved. To see
this, insert the tuning rules into the controller transfer function and calculate
� � � ��� � � � . For the IMC tuning � � � � ��� � � depends only on � � , so that when it is
scaled with � � it will independent of the process parameters. � � � � for ZN and
SIMC depends on ? , but only for low frequencies (when ? � is small compared
to 	 ). For up to three tanks, � � � � only depends on � � at the relevant frequencies.
Recall, however, that this analysis is not exact since (2.30) is an approximation.

Frequency-plots for 3 tanks with PI control are given in Figure 2.6. In all
four cases the bandwidth � � is lower that 	 � � (error E1). � � is the worst fre-
quency, with exception of the Ziegler-Nichols tunings (which due to the high peak
in � � ��� � � � give error E2). The optimal controller makes � � ����� � ��� ����� � � constant
for a wide frequency range.

Table 2.3: PI controllers: Volume requirements � ���
� obtained from (2.22) (for Ziegler-
Nichols, IMC, SIMC) and from (2.25) (optimal tuning). (Data: � � � 
�� �  ��� & , � � ����� � )

n ZN IMC SIMC Optimized
1 � 79	 N � ��� 	 � 	>7 : 	 �  � 	 � ; 7=< : � ��� 	 � 	87 � : � ��� 	 �
2 � 79	 N � ��� ; � 	>7 : 	 � � �5; � ; 7=< : � ���5; � 	87 �>� � ��� ; �
3 � 79	�< � ��� � � 	>7 : 	 � � � � � ; 7=< N � ��� � � 	87 ��� � ��� � �
4 � 7 � � � ��� < � 	>7 : 	 � � � < � ; 7=< ; � ��� < � 	87 N : � ��� < �

Table 2.4: PID controllers: Volume requirements � ���
� obtained from (2.22) (for Ziegler-
Nichols, IMC, SIMC) and from (2.25) (optimal tuning). (Data: � � � 
�� �  ��� & , � � ����� � )

n ZN IMC SIMC Optimized
1 ; 7 � 	 � � � 	 � 	>7 � � � ��� 	 � ; 7J	 � � ��� 	 � 	>7 ;8; � � � 	 �
2 ; 7 � 	 � � �5; � 	>7 � � � ���5; � ; 7J	 � � ��� ; � 	>7 ;8; � � �5; �
3 ; 7 ; � � � � � � 	>7 ;�� � ��� � � ; 7J	�< � ��� � � 	>7 ; 	 � � � � �
4 ; 7 ;8� � � � < � 	>7 ; : � ��� < � ; 7J	�� � ��� < � 	>79	 � � � � < �
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Figure 2.6: Frequency-magnitude-plots corresponding to results for PI-control of 3 tanks
in Table 2.3



22 Chapter 2. pH-Neutralization: Integrated Process and Control Design

Next consider in Figure 2.7(a) the response to a step disturbance in inlet con-
centration ( � ) for the different controller tunings and tank volumes for the case
with three tanks in series. As stated before, the optimal PI controller is actually a
P controller, and the controller with IMC tuning also has a “slow” integral action
and this is observed by the slow settling. We see that for the other two tunings,
and especially for the Ziegler-Nichols tuning, the frequency domain result is con-
servative when considering the step response. This is because the peak in � � � � �
is sharp so that � � � ��� � � � � ��� � � exceeds 1 only for a relatively narrow frequency
range, and this peak has only a moderate effect on the step response. This means
that we can reduce the required tank volume if step disturbances are the main con-
cern. For the step response, we find that a total tank size of 	>7 � ��� keeps the output
within � 	 for PI controllers tuned both with Ziegler-Nichols and SIMC. For PID
control we find that 	>7 � ��� and 	>7 N � � are necessary for these two tuning rules (1-4
tanks).

In conclusion, for PI control we recommend to select tanks with size � �	�
� P
; � � , whereas with PID control ���	�
�)P 	>7 N � � is sufficient. These recommendations
are confirmed in Figure 2.7(b) where we use � �	�
� � ; � � , and we see that after a
unit disturbance step the output is within � 	 .
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Figure 2.7: Response to step disturbance in � ����� for 3 tanks using PI-control.

Remark 1 We have specified that in each tank � � � ;�� � � � , where � � � � is the (open
loop) disturbance gain in each tank, but the results are independent of this choice,
since the controller gains are adjusted relative to the inverse of � � .
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Remark 2 The sensitivity functions, � � � ��� � , are independent of the pH set-points
in each tank (see Remark 1). � � ��� � � is determined by its time constants and
delays, which are independent of the pH-values, and its steady state overall gain,
� � . � � is defined by the inlet and outlet pH. The fundamental requirement (2.11),
and thereby the results of this and the previous section, are therefore independent
of the pH set-points in intermediate tanks.

2.7 Equal or different tanks?

In all the above optimizations (Tables 2.3 and 2.4) we allowed for different tank
sizes, but in all cases we found that equal tanks were optimal. This is partly
because we assumed a constant delay of 10 seconds in each tank, independent of
tank size.

This confirms the findings of Walsh (1993) who carried out calculations show-
ing that equal tanks is cost optimal with fixed delay. We present here a derivation
that confirms this. We assume that the cost of a tank of volume � is proportional to
��� where � is a scaling factor. To minimize the total cost we then must minimize

� � ���� � � � � � � � � � � � � �� � Q�Q�Q � � � � (2.31)

which provided the flow rate through all tanks are equal (which is true for example
if most of the reagent is added into the first tank) is equivalent to

����K � � � � � � K � �O? � � ? �� � Q�Q�Q � ? � � (2.32)

This cost optimization is constrained by the demand for disturbance rejection
(2.11). The expression for � � � � � for arbitrary sized tanks is:

� � � ��� � � � E � �  � ������� �  ��� �
�O?  � � 	 � Q�Q�Q �A?� � � 	 � (2.33)

Combining (2.33) with the inequality (2.11) yields

C �O?  � � � � 	 L Q�Q�Q C �A?� � � � � 	 L � � � � � ��� � ��� � � � � � (2.34)

which constraints the optimization in (2.32). We assume again that the peak in
� � � � � occurs at the frequency � � where � � � � 	 . (2.34) then simplifies to

C �O?  ��� � � � 	 L Q�Q�Q C �O?  ��� � � � 	 L � � �� � � (2.35)

and it can easily be proved (e.g. using Lagrange multipliers, see Appendix C) that
equal tanks minimizes cost.
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This result contradicts Shinskey (1973, 1996) who assumed that the delay
varies proportionally with the volume, and found that the first tank should be about
one fourth of the second. McMillan (1984) also claims that the tanks should have
different volume. Let us check this numerically. We assume a minimum fixed
delay of ��� and let � � ��� � ��� � � � � � . To get consistency with our previous
results with constant delay of 	�� � , we let � � 	�� � for � � � �	�
� � � , where �����
� is
the total volume required with constant delay (see the final column of Table 2.3).
The results of the optimization with PI control are presented in Table 2.5. We see
that in this case it is indeed optimal with different sizes, with a ratio of about 1.5
between largest and smallest tank. However, if we with the same expression for
� , require equal tanks and equal controller tunings in each tank, the incremental
volume is only 14% or less for up to 4 tanks (see the last column in Table 2.5).

Table 2.5: Optimal PI design with volume dependent delay:
� � ��� ��� ���
	 .

n Volume each tank ���	�
� Volume ratio � ���
� increase with equal tanks
2 217, 326 544 1.50 +4%
3 18.4, 18.4, 30.7 67.6 1.67 +9%
4 5.36, 5.36, 5.36, 9.14 25.2 1.71 +14%

With a smaller fixed part in � � ��� , the differences in size are larger. For exam-
ple with a fixed delay of only 	 � we get a optimal ratio of up to � 7 � (for 3 tanks).
However, if we allow for PID-controllers the ratio is only 	>7 � .

These numerical results seem to indicate that our proof in (2.35), which allows
for different delays in each tank, is wrong. In the proof we assumed that � � � � 	
at the frequency where � � � � � has its peak. This will hold for a complex controller,
where due to the constraint (2.26) we expect � � ��� � to remain flat over a large fre-
quency region, but not necessarily for a simple controller, like PI. The frequency
plots for the resulting PI-controllers in Table 2.5 confirm this.

In conclusion, it is optimal, in terms of minimizing cost, to have identical
tanks with identical controllers, provided there are no restrictions on the controller.
With PI-control, there may be a small benefit in having different volumes, but
this benefit is most likely too small to offset the practical advantages of having
identical units. This agrees with the observations of Proudfoot (1983) from 6
neutralization plants with two or three tank in series. In all cases equal tanks had
been chosen.
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2.8 Discussion

2.8.1 Measurement noise and errors

In this paper, we have focused on the effect of disturbances. Another source of
control errors is errors and noise in the measurements. Normally the accuracy of
pH instruments is considerable better than the requirement for the pH variation,
which we as an example has given as � 	 pH units in the present paper. However,
due to impurities, the measured value may drift during operation. In one of Norsk
Hydro’s fertilizer plants, the probes are cleaned and recalibrated once a week, and
during this period, the pH measurement may drift up to 1 pH unit. This drifting is,
however, very slow compared to the process, and will not influence the dynamic
results from this paper, except that the controller cannot make the pH more correct
than its measurement.

The worst error type is steady-state offset in the measurement of the product.
This can lead to a product outside its specifications, and can only be avoided by
regular calibration (possibly helped by data reconciliation).

Measurement errors in upstream tanks may lead to disturbances at later stages,
since the controller using this measurement will compensate for what it believe to
be a change in the concentration. Such errors can be handled at later stages.

To study the effects of measurement errors in the setting of this paper, one
must convert the expected errors in the pH measurement to a corresponding error
in the scaled concentration variable, � . Tools for such conversion is provided in
Appendix B. Often the error in � becomes larger than the pH error (as seen in the
example of Appendix B).

The conclusion is that small and slowly appearing measurement errors do not
cause problems, provided frequent maintenance is performed, whereas higher fre-
quency variation with amplitude close to allowed pH variation must be converted
into variation in � and treated as disturbances.

2.8.2 Feedforward elements

In this section, we discuss the implications for the tank size of introducing feed-
forward control. Feedforward from an influent pH measurement is difficult since
an accurate transition from pH to concentration is needed. An indication of this
is that Shinskey removed the section “Feedforward control of pH” in his fourth
edition (compare (Shinskey, 1988) with (Shinskey, 1996)). Feedforward from the
influent flow rate is easier, and McMillan (1984) states that one tank may be saved
with effective feedforward from influent flow rate and pH.

Skogestad (1996) show for an example with three tanks that use of a feedfor-
ward controller that reduced the disturbance by 80%, reduced the required total
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volume from <>��7 � to ;�� 7 :�� [ .
Previous work has considered feedforward from external disturbances. We

will in the following analyze the situation with � tanks in series and “feedfor-
ward” to downstream tanks from upstream measurements. In this way, no extra
measurements are required. As is discussed in Chapter 4, a multivariable con-
troller may give this kind of feedforward action. We assume no feedforward to
the first tank, and assume that the feedforward controllers reduce the disturbance
to each of the next � � 	 tanks by a factor of ��� , � � 	 � 7�727 � � � 	 (where hopefully
����$ 	 ). The effective gain from an inlet disturbance to the concentration in the
last tank then becomes

� ���� � � �
 � 	
� 
 

��� (2.36)

To calculate the required volumes for this case, we insert (2.36) into (2.18), and
get

�
���
� � � � �

����
�
� �
 � 	
� 
 

��� � � I  � 	 (2.37)

If �  � Q�Q�Q � �� �  � � , (2.19) and (2.37) yield:

�
���
� P � � �

� + ��
(2.38)

For example, if each feedforward effect reduces the disturbance by :>��2 ( � ���7 ; � ), we get �
���
� � � � � 	 ( 	 tank), � � 7 < � ( ; tanks), etc.; see Table 2.6 for more

details.

Table 2.6: The volume requirement with feedforward from each tank to next assuming that
the feedforward reduces the disturbance by 	 ��
 ( ��� ��� 
 ) and with perfect feedforward
control ( ��� � ). � � is given by (2.17).

No. of tanks :>��2 reduction Perfect feedforward control	 � � � 	 � � ��� 	 �
; ��7=< � � ��� ; � �
� ��7 � < � ��� � � �
< ��7 � � � ��� < � �
� ��7 ;>� � ��� � � � � 7 ; � � ���  � �

To have perfect feedforward from one tank to another one need, in addition to
a perfect model, an invertible process. With a delay in the measurement or a larger
delay for the control input than for the disturbance this is not possible. Feedfor-
ward and multivariable controllers may actually benefit from transportation delay
as will be illustrated in the following example.
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Example 2.2 We have three tanks with (at least) measurement of pH in tank 1
and reagent addition in at least tank 3. The transport delay is ��� in each tank,
and the measurement delay is also ��� (or less). If an upset occurs in tank 1 at
time � � , the upset reaches tank 2 at time ��� and tank 3 at 	�� � . It is “discovered”
in the measurement in tank 1 at time 	�� � or before (the sum of the transport delay
and the measurement delay). With a multivariable controller or a feedforward
controller from tank 1 to 3, action can be taken in tank 3 at the same time the
upset reaches the tank. For control of tank 2, however, the measurement in tank 1
will show the upset ��� too late. The example is illustrated in Figure 2.8.

Inlet tank 1

Outlet tank 1

Measured tank 1

Inlet tank 2

Outlet tank 2/
Inlet tank 3

0s 5s 10s

Figure 2.8: With three tanks in series, an upset entering tank 1 reaches tank 3 at the same
time the upset is seen in the measurement of tank 1. We assume the measurement and
transport delays are equal.

From the feedback analysis in the previous sections, the smaller the total time
delay the better. Example 2.2 shows, however, that if feedforward or multivariable
control is used, one may benefit from a transport delay in intermediate tanks that
is not shorter than the measurement delays. One should always seek to minimize
the measurement delay.

2.8.3 pH set-points in each tank

We have already noted that the analysis in the previous sections is independent
of the pH set-point in each tank (Remark 2, Section 2.6). Here we discuss some
issues concerning the set-points or equivalently the distribution of reagent addition
between the tanks.

For some processes e.g. in fertilizer plants, the pH in intermediate tanks is im-
portant to prevent undesired reactions. Such requirements given by the chemistry
of the process stream shall be considered first.

Next, instead of adjusting the set-points directly, one may use the set-points
in upstream tanks to slowly adjust the valves in downstream tanks to ideal resting
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positions. But also in this case, one must have an idea of the pH levels in the tanks
when designing the valves.

Whenever possible, we prefer to add only one kind of reagent, for example
only base, to save equipment (see Figure 2.3). To be able to adjust the pH in both
directions as we have assumed, one then needs a certain nominal flow of reagent
in each tank. This implies that the pH nominally needs to be different in each
tank.

On the other hand, equal set-points in each tank minimizes the effect of flow
rate variations. In addition, more reagent is added early in the process, so that
reagent disturbances enter early.

One common solution is to distribute the pH set-points so that the disturbance
gain is equal in each tank. In this way one may keep the pH within ��� where � is
the same in each tank.

In conclusion, it is preferable to choose the set points as close as possible, but
such that we never get negative reagent flow.

2.9 Conclusions

Buffer and surge tanks are primarily installed to smoothen disturbances that can-
not be handled by the control system. With this as basis, control theory has been
used to find the required number of tanks and tank volumes. We recommend iden-
tical tank sizes with a total volume of ; ��� where � � is given in (2.18) as a function
of the overall disturbance gain, � � , time delay � in each tank, the flow rate � and
number of tanks � . The disturbance gain � � can be computed from Table 2.1.
Typically, the mixing and measurement delay � is about 	�� � or larger.
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Appendix A Modelling

A.1 Single tank

We first consider one single tank with volume � , see Figure 2.4. Let 	 �  ( ��� ����� )
denote the concentration of

� �
-ions, 	�*#�,+ ( ��� ����� ) denote the � � � concentra-

tion, and � denote flow rate. Let further subscript ����� denote influent, subscript
��� 
�� denote reagent and no subscript denote the outlet stream. Material balances
for
���

and � � � yield:

�
� @ � ��	��� � �
	 �)�� ����� � ����� � 	 �)�� � � 3�� �
��� 3�� � 	 �) � � � � (2.39)

�
�>@ � ��	 *#�,+ � �
	 * ��+ � ��� � � ����� � 	 * ��+ � � � 3�� ����� 3�� � 	 *#��+ � � � � (2.40)

where � ( ��� ��� ���.� � ) is the rate of the reaction
� � � � � � ��� � � . For strong,

i.e. completely dissociated, acids and bases this is the only reaction in which
� �

and � � � participate, since the ionization reaction already has taken place (for
weak acids and bases, also the ionization reaction must be included in the model).
� can be eliminated from the equations by taking the difference. In this way we
get a model for the excess of acid, i.e. the difference between the concentration of� �

and � � � ions (Skogestad, 1996):

	 �
	 �) � 	 * ��+ (2.41)

The component balance is then given by

�
�>@ � 	 ��� � 	 ����� � ����� � 	���� 3�� ��� � 3�� � 	 � (2.42)

Making use of the total material balance ( � � � �>@ � � ����� � �
��� 3�� � � ) the component
balance simplifies to

�
�>@ 	 �

	
�
� � 	 ����� � 	�� � ��� � �
� 	���� 3�� � 	�� �
��� 3��
	 (2.43)

Linearization of (2.43) around a steady-state nominal point (denoted with an as-
terisk) and Laplace transformation yields:

	 ����� � � "� " � � 
 !+"� ���! " 	 ����� ����� � � "� �$� � � "! " � ����� � � � �

! "&(' �*)! " 	�� � 3�� ����� � � "& ' �*) � � "
! " ��� � 3�� ������� (2.44)

where � � � � ������ � � �� � 3�� (steady-state mass balance) and the Laplace variables 	 ,
	 ����� , � ����� , 	�� � 3�� , and ����� 3�� now denotes deviations from their nominal point. Note
that the dynamics of � have no effect on the linearized quality response.
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The nominal excess acid concentration are found from the nominal � � values:

	 � � C 	�� � � � � 	�� �  V � � � L ��� ����� (2.45)

The composition balance is used to obtain the nominal reagent flow rate.
The reagent flow rate, �	��� 3�� , may be divided into �	��� 3�� � � which is determined by

the controller, and a disturbance term, � � � 3�� � � , which is due to leakages and other
uncertainties in the dosing equipment. Thus � ��� 3�� ����� � ��� � 3�� � � ����� � ����� 3�� � � ����� .

We introduce scaled variables, where subscript � 
�� denotes maximum al-
lowed or expected variation:

��� 	
	 1.354 (2.46)

� ������� � ����� � 	 ����� �����
	 ������� 1.354 � � �����2� ! � ��� � � ����� � � �

� �����2� 1.354 (2.47)

� � � 3�� � � ����� � 	���� 3�� �����
	���� 3�� � 1.354 � � � � 3�� � � � ! � ��� � �
��� 3�� � � � ���

��� � 3�� � � � 1.354 (2.48)

� � ��� � �
��� 3�� � � � � �
�
��� 3�� � �M� 1.354 (2.49)

Thus � , � �����2� � , � ������� ! , � � � 3�� � � , � � � 3�� � � � ! and � all shall stay within � 	 . We obtain

� ����� �
	� "! " � � 	�� 	 ������� 1.354	 1.354

� ������
� � � �����2� � � ��� �

	 ������ � 	 �
	 1.354

� ������� 1.354
� � � ������� ! � ���

� 	���� 3�� � 1.354
	 1.354

� �� � 3��
� � � � � 3�� � � ����� � 	 �� � 3�� � 	 �

	 1.354
����� 3�� � � � 1.354

� � � � � 3�� � � � ! � ��� (2.50)

�
	 �� � 3�� � 	 �
	 1.354

��� � 3�� � ��� 1.354
� � � � �����

The scaling factor 	 1.354 is found from the given allowed variation in pH ( ��� � � ):

	 �1.354 � C 	�� � � � � ��� � � � � 	�� �  V � � � ��� � � L � 	 � (2.51)

	 �1.354 �
	 � � C 	�� � � � � � � � � � � 	�� �  V � � � � � � � L (2.52)

	 1.354 � � � � C 	 �1.354 � 	 �1.354 L (2.53)

If we consider one disturbance at a time, the model is on the form

� ����� � � � � � ��� � � � � � ����� � � ��� (2.54)

� ����� � �
? � � 	 � � � � � � � � �

? � � 	 (2.55)

where �
� � "&(' �*) � � "
� ��� �

! &(' �*)+� � � ��� �! " and � � for different disturbances are given by Ta-
ble 2.1.
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A.2 Linear model for multiple tank in series

We will now extend the model to include � tank in series, and label the tanks� � 	 � 7�7�7 � � . For the first tank we get the same expression as for the single tank
(2.50) (except for the labeling):

�  � ��� �
	� "�

! "� � � 	 � 	 ������� 1.354	  � 1.354
� ���� �
� � � �����2� � ����� �

	 ������ � 	 � 
	/ � 1.354

� ��� ��� 1.354
� � � ������� ! � � �

� 	���� 3�� �  � 1.354
	/ � 1.354

� ���� 3�� � 
� � � ��� 3�� �  � � ����� � 	 ���� 3�� �  � 	 � 

	/ � 1.354
�
��� 3�� � � �  � 1.354

� � � � � 3�� � � �  � ! � � �
(2.56)

�
	 ���� 3�� �  � 	 � 
	/ � 1.354

����� 3�� � ���  � 1.354
� � �  � ��� �

For the following tanks, the inflow is equal to the outflow from previous tank, so
that

� � ����� �
	� "�!+"� � � 	 � 	 � �  � 1.354

	 � � 1.354
� �� � 
� �� � � �  � ��� � 	 �� �  � 	 ��

	 � � 1.354
	
� �� ��� �  � ���

� 	���� 3�� � � � 1.354
	 � � 1.354

� ���� 3�� � �
� �� � ��� 3�� � � � � ����� � 	 ���� 3�� � � � 	 ��

	 � � 1.354
����� 3�� � � � � � 1.354

� �� � ��� 3�� � � � � � ! ����� (2.57)

�
	 �� � 3�� � � � 	 ��
	 � � 1.354

�
��� 3�� � ��� � � 1.354
� �� � � �������

��� �  ����� is the deviation from nominal value for the flow rate from previous tank
and is determined by the level controller in previous tank, ��� � � �  � � � . For tank � ,
the outlet flow rate becomes

� � � ��� � � � ��� � � � ����� � � � � � � ��� � (2.58)

where � � � � � � � is the variation in the volume set-point. We assume that � � � � � ��� � � ,
and express ��� as a function of the total inlet flow:

��� � � � � ��� � � �����
� � ��� � � ����� � ��� �  � � � � ��� � 3�� � � � � � ! � � � � ��� � 3�� � ��� � � (2.59)

If a P controller is used, we get ��� � � ����� � � � where
� � is the controller gain, and

��� � � � � �
� � ��� � � � ��� �

	
	 � 

��� �
(2.60)
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Alternatively a PI-controller can be used, � � � � � ��� � � � � 	 �F?	� � ��� �A?�� ��� , where� � is controller gain, and ? � is the integration time, but if ?�� � 	 � � � , we may
ignore the integral effect in the model.

Often we may assume that the level controller is very slow, which leads to
� � �  �����WP � (recall that ��� �  denotes the deviation from the nominal value). With
the additional simplification that the disturbances from the reagent can be ne-
glected, we get the following model for � tanks:

�  � � � � �1 ����� �  ����� � � � �  ����� � � ���
� � � � � � � � ����� � � ����� � � � � � ����� �  � ���
...
�  ����� � �  � ��� �  � ��� � � � �  ����� �  �  �����

(2.61)

where

� � � � � � � �
?�� � � 	 � � � � � ����� � � � � �

? � � � 	 � � � 	 � 7�727 � � (2.62)

From (2.61) and (2.62) we get for the scaled output of the last tank

�  � ��� �
�
��
 

�

� � � ��� � � ����� � � � � ��� � � � � (2.63)

�

� � � ��� � � �
?�� � � 	

	
� 
 � �  � � � �

?���� � 	 � � � ����� �
	
��
 

� � � �
?�� � � 	 (2.64)

In the present paper we use (2.63) and (2.64) to represent the � tanks.

A.3 Non-linear model for multiple tank in series

We label the tanks with � and get by using (2.43):

�
�>@ 	  �

	
� 
� � 	 ����� � 	/ � � ����� � � 	���� 3�� �  � 	  � �
��� 3�� �  	

�
�>@ 	 � � 	

� � � � 	/ � 	 � � �  � � 	���� 3�� � � � 	 � � �
��� 3�� � � 	
...
�
�>@ 	 ��

	
� 

� � 	  �  � 	  � � � �  �
� 	���� 3�� �  � 	  � ����� 3�� �  	
(2.65)
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The dynamic behaviour of the volumes are given by the mass balances:

� � 
� @ � � ��� � � ��� � 3�� �  � � 
� � �
� @ � �  � ����� 3�� � � � � �

...
� � 
�>@ � �� �  � �
��� 3�� �  � ��

(2.66)

The flow rates from each tank, ��� , are given by the flow controllers (2.59). As in
the linear case, �	� � 3�� � � may be divided into a manipulable part and a disturbance.

A.4 Representation of delays

In section 2.3 we discuss the delays the are present in this process. In the linearized
transfer function model the total delay, � , may be represented by the term

E ���� (2.67)

For models of multiple tanks in series, the different type of delay must be con-
sidered differently. Figure 2.9 illustrates this. The total delay in the control loop

Delay θp Delay θn

Delay θmDelay θv

d

u

Figure 2.9: The delays in a neutralization process

is
� � �%��
 � ��� � � � � �	� (2.68)

whereas the total delay related to the transportation and mixing through a tank and
to the next is

� � 3 ��� � ��� � � G (2.69)



2.10 Appendix B The effect of pH measurement errors on the scaled... 35

Appendix B The effect of pH measurement errors
on the scaled excess

� �
concentration, �

In a real plant we measure the pH, and not the scaled excess
� �

concentration
variable, � , that we have used in this paper. The pH measurement must be trans-
formed into � if the controller shall use � and not the pH value. In this appendix
we study the effect of errors and noise in the pH measurement on the scaled excess
variable � .

The scaling in this paper is chosen in such a way that as long as � � � � 	 we are
sure that the variation in actual pH value, � � , around a nominal pH value, � � � ,
is less than 1 pH units:

� � � � 	�� � � � � � � � ��� 	 (2.70)

However, the implication does in general not go in the opposite direction.
The excess

���
concentration is 	 � 	 �  � 	 *#� + , or expressed by the corre-

sponding pH value:
	 � � � � � 	�� � � � � 	�� �  V � � � (2.71)

We denote the actual pH for � � , and the measurement error for 0 � � � . Then,
what we measure is � � � � � � �F0 � � � . The corresponding error in the excess
acid concentration is

0 	 �
	 � � � � 0 � � � � � 	 � � � � (2.72)

From (2.70) we obtain for the scaled variable, � :

��� 	 � � � � � 	 � � � � �
	 1.354 (2.73)

where � � � corresponds to � � � . Provided the acceptable pH variation is ��� � � ,
the maximum accepted value for the excess concentration is

	 1.354 � ���� � � 	 � � � � � � � � � � 	 � � � � � ����� 	 � � � � � � 	 � � � � � � � � � � �
� � � � 	 � � � � � � � � � � 	 � � � � � � � � � � � �� � 	 � � � � � � 	 � � � � � � � � � � � � � � � � (2.74)

(2.73) and (2.74) yield for the error in the scaled variable, 0 � :

0 � �
� � � � � � ��� � �	� � � � � � � �

� � � � " � � � � � � � � � � " � � � � � � �
� � � � � ��� � �
� � � � � � � �

� � � � " � � � � � � " ��� � � � � � � � � � (2.75)
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(2.75) can be used to find 0 � corresponding to a pH measurement error or noise
of 0 � � � .

We will now consider some special cases. As in the paper, we specify � � � �	 , and let the actual value equal the nominal value. We consider first � � �F� � � $
� . Then

0 � � � 	 � � � � � 0 � � � � � 	 � � � � �
	 � � � � � 	 � � 	 � � � � �

� � C 	�� � � � � � � 	 L 	�� � � � " � C 	�� � � � � � 	 L 	�� �  V � � � "
�6��7 � Q 	�� � � � " � � Q>	�� �  V � � � " (2.76)

For � � � � � � � � we obtain

0 ��� � 	 � � � � � 0 � � � � � 	 � � � � �
	 � � � � � � 	 � � � � � 	 �

� � C 	��"� � � � � � 	 L 	��H� � � " � C 	�� � � � � � 	 L 	��"�  V � � � "
� � Q 	�� � � � " � ��7 � Q 	�� �  V � � � "

For � � �X$ N we get 0 � P C 	�� � � � �
� � 	 L � ��7 � (since then 	�� � � � " � 	�� �  V � � � "
)

and for � � � � : we get 0 � P � C 	�� � � � � � 	 L � ��7 � (since then 	�� �  V � � � " �	�� � � � "
). This yields the following simple formula (when � � � � 	 ):

� 0 � � � 	���� � � �	� �Y� 	
��7 � � � � � � � � $ N�� �F� � � � � � � : (2.77)

Example 2.3 We have made a model of a neutralization process (as described in
Appendix A) and have chosen � � � � � and � � � � 	 . The pH measurement
may have a measurement noise of � ��7 � � pH units, and we want to determine
the corresponding noise in the scaled concentration variable � . We consider an
actual pH value equal to the nominal, and since � � � � � � $ N , we can use
(2.77): � 0 � � 1.354 � � 	�� ��� � - � 	 � � ��7 � � ��7J	�< .
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Appendix C On the optimization problem (2.32) sub-
ject to (2.35)

Here we prove that the solution to

����K � � � � � � K � �O? � � ? �� � Q�Q�Q � ? � �
subject to (2.78)

C �O?  ��� � � � 	 L Q�Q�Q C �O?  ��� � � � 	 L � � ��
is to have ?  � ? � � Q�Q�Q � ?  . The solution will not be at an interior point so we
take the limiting of the constraint. We introduce � � � ? � ��� , and get the following
optimization problem with the same solution as the original:

����� � � � � � � � � � �  � � �� � Q�Q�Q � � �
subject to (2.79)

	
� 
 

C � �� � 	 L � � �� � �

The Lagrange function,
�

, for this problem is, denoting the Lagrange multi-
plier � :

� � � �  � � �� � Q�Q�Q � � � ���
� 	
��
 

C � �� � 	 L � � �� � � � � 	 � 727�7 � � (2.80)

and in the constrained optimum we have

� �� � � � � � � � � � ; � ���
��� �� � 	 �

	
� 
 

C � �� � 	 L � � (2.81)

This implies, using the constraint, that

� � � � � � ; � ���
� � �� � 	 � �

�
� � � � � � 	 � 7�727 � � (2.82)

In equation (2.82), � , � � and � are independent of the index � , and the value
of � � is therefore the same for all � ’s. So �  � Q�Q�Q � �  , which implies that
?  � ? � � Q�Q�Q � ?� .
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3.1 Introduction

Buffer tanks are common in industry, under many different names, such as in-
termediate storage vessels, holdup tanks, surge drums, accumulators, inventories,
mixing tanks, continuous stirred tank reactors (CSTRs), and neutralization ves-
sels. We start with a definition:

A buffer tank is a unit where the holdup (volume) is exploited to pro-
vide smoother operation.

We here focus on buffer tanks for liquids, although most of the results may
be easily extended to gas- or solid-phase systems. Buffer tanks may be divided
into two categories, namely, for (A) disturbance attenuation and (B) independent
operation:

A. Buffer tanks are installed between units to avoid propagation of disturbances
for continuous processes.

B. Buffer tanks are installed between units to allow independent operation, for
example during a temporary shutdown and between continuous and batch
process units.

In this category there is a continuous delivery or outdraw on one side and a
discontinuous delivery or outdraw on the other side. The design of the tank
size for these types of buffer tanks is often fairly straightforward (typically
equal to the batch volume) and is not covered further in this paper.

Quality

(I) Averaging by mixing (mixing tank)

LC

Flow rate

(II) Averaging level control (surge tank)

Figure 3.1: Two types of buffer tanks

In this paper we focus on category A. There are two fundamentally different
disturbances, namely, in quality and flow rate, and two approaches to dampen
them (see Figure 3.1):
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(I) Quality disturbances, e.g., in concentration or temperature, where we damp-
en by mixing. Such buffer tanks are often called mixing tanks or neutraliza-
tion vessels for pH processes.

(II) Flow-rate disturbances, e.g., in the feed rate, where we dampen by tem-
porarily changing the volume (level variation). Such buffer tanks are often
called surge tanks, intermediate storage vessels, holdup tanks, surge drums,
accumulators, or inventories.

In both cases the tank volume is exploited, and a larger volume gives better
dampening: In the first case, mixing of a larger volume means that the in-flow
entering during a longer period is mixed together, and in the second case, larger
level variations are allowed.

Often, in the design of buffer tanks, the residence or hold-up time is used as a
measure instead of the volume. The residence time is defined as ? � � � � , where
� is the volume � � [�� and � the nominal flow rate � � [ ��� � .

Even if the buffer tanks are designed and implemented for control purposes,
control theory is rarely used when sizing and designing the tanks. Instead, rules
of thumb are used. For example, textbooks on chemical process design seem to
agree that a half-full residence time of 5-10 minutes is appropriate for distillation
reflux drums and that this also applies for many other buffer (surge) tanks. For
tanks between distillation columns, a half-full residence time of 10-20 minutes
is recommended (Lieberman, 1983; Sandler and Luckiewicz, 1987; Ulrich, 1984;
Walas, 1987; Wells, 1986).

Sigales (1975) sets the total residence time as the sum of the surge time and
a possible settling time. The following surge times are recommended: distillation
reflux, 5 minutes; product to storage, 2 minutes; product to heat exchanger or
other process streams, 5 minutes; product to heater, 10 minutes. The settling time
applies when there is an extra liquid phase. For water in hydrocarbons, a settling
time of 5 minutes is proposed.

None of the above references provide any justifications for their rules.
The most complete design procedure for reflux drum volumes is presented by

Watkins (1967), who proposes a half-full volume given by

� � � �� � � � � ��� � � [�� � � V (3.1)

Here �� (typical range 0.5-2) and � � (typical range 1-2) are instrumentation and
labor factors, respectively, related to buffer tanks of category B mentioned above.
For example, the value of � � may be based on how much time it takes for the op-
erator to replace a disabled pump. � and � are reflux and product rates, and the
factor � [ (typical range 1.25-4) is dependent on how well external units are oper-
ated (e.g., 1.25 for product to storage). � V (typical range 1-2) is a level indicator
factor. The method gives half-full hold-up times from 	>7 � to � ; � � � .
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In addition to the volumes proposed above, one normally adds about 	���2 of
the volume to prevent overfilling (Wells, 1986). For reflux drums, 25-50% extra
volume for the vapor is recommended (Sandler and Luckiewicz, 1987).

A basic guide to the design of mixing tanks is given by (Ludwig, 1977).
The process control literature refers to the level control of buffer tanks for

flow-rate dampening (surge tanks) as averaging level control. Harriott (1964),
Hiester et al. (1987), and Marlin (1995) propose controller and tank size designs
that are based on specifying the maximum allowed change in the flow rate out of
the buffer (surge) tank because this flow acts as a disturbance for the downstream
process. However, no guidelines are given for the critical step of specifying the
outlet flow-rate change. Otherwise, these methods have similarities with the one
proposed in the present paper.

To reduce the effect of the material balance control on the quality control loop,
Buckley (1964) recommends designing the buffer tank such that the material bal-
ance control can be made 10 times slower than the quality loop. In practice, this
means that the effect of the disturbance on the quality at the worst-case frequency
is reduced by a factor of 10. This applies to both surge and mixing tanks.

There have also been proposals for optimal averaging level control, e.g.,
(McDonald et al., 1986), where the objective is to find the controller that essen-
tially gives the best disturbance dampening for a given surge tank. To reduce
the required surge tank volume, provided one is willing to accept rare and short
large changes in the outlet flow, one may use a nonlinear controller that works as
an averaging controller when the flow changes are small but where the nonlinear
part prevents the tank from being completely empty or full, e.g., (McDonald et
al., 1986; Shunta and Fehervari, 1976; Shinskey, 1996).

Another related class of process equipment is neutralization tanks. Neutral-
ization is a mixing process of two or more liquids of different pH. Normally this
takes place in one or more buffer (mixing) tanks in order to dampen variations in
the final product. The process design for neutralization is discussed by Shinskey
(1973) and McMillan (1984). Another design method and a critical review on the
design and control of neutralization processes with emphasis on chemical wastew-
ater treatment is found in Walsh (1993). In Chapter 2 tank size selection for neu-
tralization processes is discussed.

Zheng and Mahajanam (1999) propose the use of the necessary buffer tank
volume as a controllability measure.

The objective of this paper is to answer the following questions: When should
a buffer tank be installed to avoid propagation of disturbances, and how large
should the tank be? The preferred way of dealing with disturbances is feedback
control. Typically, with integral feedback control, perfect compensation may be
achieved at steady state. However, because of inherent limitations such as time
delays, the control system is generally not effective at higher frequencies, and the
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process itself (including any possible buffer tanks) must dampen high-frequency
disturbances. We have the following:

The buffer tank (with transfer function ��� ��� ) should modify the dis-
turbance, � , such that the modified disturbance

� � ����� � ��� ��� � � ��� (3.2)

can be handled by the control system. The buffer tank design problem
can be solved in two steps:

Step 1. Find the required transfer function ������� . (Typically ������� �	 � �A? � � 	 �  , and the task is to find the order � and the time
constant ? .)

Step 2. Find a physical realization of ��� ��� (tank volume � and possibly
level control tuning).

In this paper we present design methods for buffer tanks based on this funda-
mental insight.

3.2 Introductory example

The following example illustrates how we may use (1) the control system and
(2) a buffer (mixing) tank to keep the output within its specified limits despite
disturbances.

Example 3.1 Consider the mixing of two process streams, � and � , with different
components (also denoted � and � ), as illustrated in Figure 3.2.

The objective is to mix equal amounts of � and � such that the excess con-
centration of the outlet flow 	 � � 	�� � 	 � is close to zero. More specifically,
we require 	 � to stay within � � 	
��� �2� � [ . The combined component and total
material balance gives the following model:

� 	 �
�>@ �

	
� � � 	�� � 	 � 	 � � ��� �
� 	 � � 	 � 	 � � � � � (3.3)

For the case with no control and no buffer tank, the time response in the outlet
concentration, � � 	 � , to a step disturbance in the feed concentration, � � 	�� � 	 ,
is shown by the solid line (“Original”) in Figure 3.3. The value of � � 	 � ap-
proaches 	��\��� ��� � [ , which is 10 times larger than the accepted value.
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Figure 3.2: Mixing process. The concentration is controlled by manipulating the flow rate
of stream � . Variations are further dampened by an extra buffer tank.

(1) We first design a feedback control system, based on measuring � � 	 � ,
and manipulating � � � � to counteract the disturbance. We choose a
proportional-integral (PI) composition controller,

��� � � � ��� ���7 ��	 � � � 	 � � � . Note that the speed of the control system is limited by an ef-
fective delay � � 	.���� , mainly due to the concentration measurement. The
resulting response with control is shown by the dashed line. Because the
controller has integral action, the outlet concentration returns to its desired
value of ����� ��� �\[ . However, because of the delay, the initial deviation is
still unacceptable.

(2) To deal with this, we install, in addition, a buffer tank with volume 	 � � [
(residence time 	 � ���� ) (drawn with dashed lines in Figure 3.2). We are
now able to keep the outlet concentration 	 within its limit of � 	.��� ��� � [
at all times as shown by the dash-dotted line in Figure 3.3.

Instead of the buffer tank, we could have installed a feedforward controller,
but this requires a fast (and accurate) measurement of the disturbance, � � 	�� � � ,
and a good process model. In practice, it would be very difficult to make this work
for this example.

Comment on notation: Throughout the paper, the main feedback controller for
the process is denoted

� ����� , whereas the buffer tank level controller is denoted
� ����� .

In the following sections we will show how to design buffer tanks for quality
disturbances, like in the above example, as well as for flow-rate disturbances.
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Figure 3.3: Response in the excess outlet concentration to a step in inlet quality (from
��� � ������� 	�� [ to � 
 � ������� 	�� [ at ��������� ) for the system in Figure 3.2. A composi-
tion controller handles the long term (“slow”) disturbance, but a buffer tank is required
to handle the short term deviations. Nominal data: �� �
	����� � � ����� , �� ��	�� �� � � ����� ,� � � ��	�	������ � � � � , � � � ��	�	����!�#" � � � , � � �$	��%�!�&�(')" � � � . Residence time mixer:
�*����� . Delay in control loop � � �*����� . The levels in the mixer and the buffer tank are controlled
by adjusting the outflow with PI controllers, �#+-,�. �/+0�	!,21 �3. � +0�	!,3. .

3.3 Step 2: Physical realization of 4 576�8 with a buffer
tank

Consider the effect of a disturbance, � , on the controlled variable � . Without any
buffer tank, the linearized model in terms of deviation variables may be written as

� ����� � � �:9 � ��� � � � � (3.4)

where � �:9 is the original disturbance transfer function (without a buffer tank). To
illustrate the effect of the buffer tank, we let ������� denote the transfer function for
the buffer tank. The disturbance passes through the buffer tank. With a buffer
tank, the model becomes (see Figure 3.4)

� ����� � � �:9 ����� ��� ���; <>= ?@ , � � �
� � � � (3.5)

where � � ����� is the resulting modified disturbance transfer function. A typical
buffer tank transfer function is

������� �
	

�A? � � 	 �  (3.6)
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Figure 3.4: Use of buffer tank to dampen the disturbance

Note that ��� � � � 	 so that the buffer tank has no steady-state effect.
We will now consider separately how transfer functions ��� � � of the form (3.6)

arise for (I) quality and (II) flow-rate disturbances. In both cases, we consider a
buffer tank with liquid volume � � �([ � , inlet flow rate ���� � ��[ ��� � , and outlet flow
rate � � �\[ ��� � .

I Mixing tank for quality disturbance ( ��� ����� )

Let 	 �� denote the inlet quality and 	 the outlet quality (for example, concentration
or temperature). For quality disturbances, the objective of the buffer tank is to
smoothen the quality response

	 � ��� �
��� ��� 	 �� ����� (3.7)

so that the variations in 	 are smaller than those in 	��� . A component or simplified
energy balance for a single perfectly mixed tank yields � � ��	���� �>@ � � �� 	 �� � � 	 .
By combining this with the total material balance � � � �>@ � � �� � � (assuming
constant density), we obtain ��� 	2� � @ � ���� � 	 �� � 	�� , which upon linearization
and taking the Laplace transform yields

	 � ��� �
	� "! " � � 	

�
	 �� � ��� � 	 ��� � 	 �

� � � �� � � � � 	 ��� � 	 �
� � � � � �
	 (3.8)

where an asterisk denotes the nominal (steady-state) values and the Laplace vari-
ables 	 � ��� , 	 �� ����� , � �� ����� , and � � ��� now denote deviations from the nominal
values. We note that flow-rate disturbances (in � �� ) may result in quality distur-
bances if we mix streams of different compositions (so that 	 ������ 	 � ). From (3.8),
we find that the transfer function for the tank is

��� ��� �
	

? � � 	 (3.9)
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where ? � ��� � ��� � � � is the nominal residence time. We note that the buffer
(mixing) tank works as a first-order filter. Similarly, for � tanks in series, we have

������� �
	� ��
  �A?�� � � 	 � (3.10)

where ?�� � residence time in tank � . We find the required volume of each tank
from � � � ? � � �� , where � �� is the nominal flow rate through tank � .
II Surge tank for flow-rate disturbance ( � � � �
� )

For flow-rate disturbances, the objective is to use the buffer volume to smoothen
the flow-rate response

� ����� �
������� � �� ����� (3.11)

The total mass balance assuming constant density yields

� �
� @ � ���� � � (3.12)

We want to use an “averaging level control” with a “slow” level controller, because
tight level control yields � � � � @
P � and � P ���� . Let � � � � denote the transfer
function for the level controller including measurement and actuator dynamics
and also the possible dynamics of an inner flow control loop. Then

� � � � � � � ��� � � � � � � � � � ��� � (3.13)

where � � is the set-point for the volume. Combining this with (3.12) and taking
Laplace transforms yields

� ����� �
	

� � � ����� � ���� ����� � � ����� � � � � � � (3.14)

or from (3.13):

� ����� � � � ���
� � � ����� � ���� ����� � � � � ����� � (3.15)

The buffer (surge) tank transfer function is thus given by

��� � � � � �����
� � � � � � �

	
�� � � � � 	 (3.16)

With a proportional controller, � � ��� � � � , we get that ��� ��� is a first-order filter
with ? � 	 ��� � . Alternatively, for a given ������� , the resulting controller is

� � ��� � ����� ���	�� ��� � � (3.17)
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Table 3.1: Averaging level control: Design procedure II for flow-rate disturbances for
alternative choices of �

� 	 � .
Step 1st order 2nd order nth order
2.1. Desired ��� ��� (from Step 1) K � �  � K�� �  ��� � K�� �  � �
2.2. Level controller, � ����� from (3.17) 	 �Y? � K � � � �  �� K�� �  � � � 
2.3. � � � � � ���� � � � from (3.18) ? ;Y? � ? 1

2.4. � G��5G ? 0���1.354 ;Y? 0���1.354 � ?'0���1.354

Compared to the quality disturbance case, we have more freedom in selecting
��� � � , because we can quite freely select the controller � � � � . However, the liquid
level will vary, so the size of the tank must be chosen so that the level remains be-
tween its limits. The volume variation is given by (3.14), which upon combination
with (3.17) yields

� � ��� �
	�� ��� � �

� ���� ����� (3.18)

Note that � � � � represents the deviation from the nominal volume. The maximum
value of this transfer function occurs for all of our cases at low frequencies ( ���� ).

In Table 3.1 we have found the level controller � ����� and computed the required
total volume for ������� � 	 � � ? � � 	 �  . For example, for a first-order filter, ������� �	 � �A? � � 	 � , the required controller is a P controller with gain 	 �Y? and the required
volume of the tank is � G�� G � ? 0���1.354 .

Note that the resulting level controllers, � ����� , do not have integral action. A
level controller without integral action was also recommended and further dis-
cussed by Buckley (1964, page 167) and Shinskey (1996, page 25).

For flow-rate disturbances, a high-order ��� ��� can alternatively be realized us-
ing multiple tanks with a P level controller, � � � � , in each tank. However, the
required total volume is the same as that found above with a single tank and a
more complex � � ��� , so the latter is most likely preferable from an economic point
of view.

3.4 Step 1: Desired buffer transfer function 4 576�8
What is a desirable transfer function, ������� ? We here present a frequency-domain
approach for answering this question. Figure 3.5 shows the frequency plot of
��� � � � 	 � � �O? �Y� � � � � 	 �  for � � 	 to < , where ?�� in most cases is the total
residence time in the tanks. With a given value of ? � , we see that � � 	 is

1See Appendix C.
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“best” if we want to reduce the effect of the disturbance at a given frequency by
a factor � � � ( � 	 � ��7 ��� ) or less; � � ; is “best” if the factor is between 3 and
about � ( � 	 � ��7J	�<>< ), and � � � is “best” if the factor is between about 7 and 	 �
( � 	 � ��7 � N < ). Thus, we find that a larger order � is desired when we want a large
disturbance reduction. We now derive more exactly the desired ������� .
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Figure 3.5: Frequency responses for �
� 	 � � � 	�� K$� 	 � ���  .

Let us start with an uncontrolled plant without a buffer tank. The effect of the
disturbance � on the output � is then

� � ��� � � ����� � � ��� � � �:9 ����� � ����� (3.19)

To counteract the effect of the disturbances, we apply feedback control ( � �� � � ) (see Figure 3.6). The resulting closed-loop response becomes

� ����� � � ����� � � 9 ����� � � ��� � � �
	

	 � � � (3.20)

With integral action in the controller, the sensitivity function � approaches
zero at low frequencies. However, at higher frequencies, the disturbance response,
� � ����� � � �:9 ��� � � � , may still be too large, and this is the reason for installing a
buffer tank. The closed-loop response with a buffer tank is

� � ��� �
� � � � � � 9 ����� �������; <>= ?@ , � � �
� � ��� (3.21)
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Figure 3.6: Feedback control system

which is acceptable if � � � � 9 � � is sufficiently small at all frequencies. We need to
quantify the term “sufficiently small”, and we define it as “smaller than 1”. More
precisely, we assume that the variables and thus the model ( � � 9 ) has been scaled
such that

� The expected disturbance is less than 1 ( � � ��� 	 , � � )

� The allowed output variation is less than 1 ( � � ��� 	 � � � )

From (3.21) we see that to keep � � � � 	 when � � � � 	 (worst-case disturbance),
we must require

� � ����� � � � � ��� � � ����� � � ��� 	 � � � (3.22)

from which we can obtain the required ��� � � . We illustrate the idea with an exam-
ple.

Example 3.1 (continued) (Mixing process). Let � � 	 � , � � 	�� � 	 , and � � � � .
Linearizing and scaling the model (3.3) then yields

� �:9 ����� � 	��
� � 	 � � ����� �

	
	 � ��� -

� E � �
� ������� �

	
	 � � � 	 (3.23)

We here used for the scaling the following: expected variations in 	�� ,
�
; ����� �2� �\[ ; range for � � , � ��7 � �\[ � ���� ; allowed range for 	 : � 	 ��� �2� �([ .

In Figure 3.7 we plot the disturbance effects � ����� � , � � � �:9 � , and � � � �:9 � � as
functions of frequency. Originally (without any buffer tank or control), we have
� � �:9�� � 	�� at lower frequencies. The introduction of feedback makes � � � �:9�� $ 	
at low frequencies, whereas adding the buffer tank brings � � � � 9 � �,$ 	 also at
intermediate frequencies.
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Figure 3.7: Original disturbance effect (
� �:9 ), with feedback control ( � � �:9 ) and with

feedback control and a buffer tank ( � � �:9 � ). A buffer tank with a residence time of
������� � is required to bring ��� ���	� � � �:9 ���
� � �

���	� ���� � for all
� �

In the following we will present methods for finding ������� based on the con-
trollability requirement (3.22). There are two main cases:

S. Existing plant with an existing controller: The “counteracting” controller,� � � � , is already designed, so � ����� is known. The “ideal” ������� is then
simply the inverse of � � � 9 .

N. New plant: The “counteracting” controller,
� � � � , is not known so � ����� is

not known. This is the typical situation during the design stage when most
buffer tanks are designed.

In most cases we will choose � ����� to be of the form � ����� � 	 � � ? � � 	 �  .

3.4.1 � given (existing plant)

We consider an existing plant where controller
� � ��� is known. The task is to find

������� such that � ������� �H$ 	 � � � � � 9 � � � � . Several approaches may be suggested.

S1. Graphical approach with ������� � 	 � � ? � � 	 �  : This is done by selecting
������� � 	 � � ? � � 	 �  and adjusting ? until � ��� ��� � touches 	 � � � � ��9 � at one
frequency. As a starting point we choose the following:

(a) � is the slope of � � � � 9 � in a log-log plot in the frequency area where
� � � � 9 ��� 	 .
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(b) ? is the inverse of the frequency where � � ��� 9 � crosses one from below.

S2 Numerical approach with ��� � � � 	 � � ? � � 	 �  : With a given � we find ?
such that � � � just touches 	 � � � � ��9 � by solving the following problem:

? � � 
��
�

?���� ! � � � (3.24)

where

?���� ! � � � � �

�

�
� � ��� � � � � 9 � ��� � � � I  � 	 � � � � ��� � � � 9 ��� � � ��� 	

� � otherwise
(3.25)

Because it is not practical to calculate ?���� ! � � � for all frequencies, we replace��
 � � with � 
�� � � , where � � � � , which is a finite set of frequencies from
the range of interest. The calculation is explicit and fast, so a large number
of frequencies can be used. (This approach was used to obtain ������� �	 � � 	 � � � 	 � in Figure 3.7.)

As illustrated in Example 3.2 (below), for � � 	 one may save some volume
with the following approach, which is more involved since it includes nonconvex
optimization.

S3. Numerical approach with “free” ��� ��� : We formulate a constrained op-
timization problem that minimizes the (total) volume of the buffer tank(s)
subject to (3.22). As in the previous method, we formulate the optimization
for a finite set of frequencies, � , from the frequency range of interest.

(I) Quality disturbances: For � mixing tanks

��� � � �
	

�O?  � � 	 � Q�Q�Q �A?� � � 	 � (3.26)

when the tanks are not necessarily equal. Because the flow rate is in-
dependent of the volumes ( ? � � � � ), we may minimize the total resi-
dence time (instead of minimizing the total volume) subject to (3.22):

� � �K � � � � � � K � ?  � Q�Q�Q � ?�
subject to (3.27)

� �O?  ��� � � 	 � Q�Q�Q �A?� ��� � � 	 � � � � � � ��� � � � � 9 ����� � � � � � � ���

where � is a set of frequencies. This is a single-input, single-output
variant of a method proposed by Zheng and Mahajanam (1999).
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(II) Flow-rate disturbances:

��� ��� � � ��� �5� �
� � � ��� �5� � (3.28)

where we have parametrized the level controller with the parameter
vector � . We minimize subject to (3.22) the required tank volume
(3.14):

����� � � ����� � 
��
� ����� ����

	��� � � � � ��� �	� � � ����
subject to (3.29)���� � ��� � � � � � 9 � ��� � � � � ��� � � � �� � � � � ����� � �5� � ���� � 	 � � � ���

Many controller formulations are possible, for example, the familiar
PI(D) (D=derivative) controller or a state-space formulation. We here
express the controller by a steady-state gain, � � , ��� real zeros, and ���
real poles:

� ��� �5� � � � �
�	�  � � 	 � �
� � � � 	 � Q�Q�Q �	� �� � � 	 �
�O?  � � 	 � �O? � � � 	 � Q�Q�Q �A?�� � � 	 � (3.30)

and thus � � � � � ��� �� 7�7�7 ��� �� � ?  � 727�7 ��? � � .
With ��� � � and ��� � 	 in (3.30) we get

��� ��� �
	

? � � � � ;Y?�� � � 	 (3.31)

� $ 	 does not give real time constants as the previous approaches.
For a first-order filter (with � � ��� � � � and ��� � � � 	 � � ? � � 	 � ), there
is no extra degree of freedom in the optimization, and we get the same
result as that with (3.24).

Example 3.2 (Temperature control with flow-rate disturbance).

� �:9 ����� � 	��8� � � ����� � ; �>�	��>� � � 	 E � � (3.32)��� ��� ����� � ��7 ;>� : � � 	
: � (3.33)

This may represent the process in Figure 3.8, where two streams � and � are
mixed, and we want to control the temperature ( � ) after the mixing point. Stream
� is heated in a heat exchanger, and the manipulated input, � , is the secondary
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Figure 3.8: Temperature control with flow-rate disturbance

flow rate in this exchanger. The disturbance, � , is variation from the nominal flow
rate of � . � , � , and � are scaled as outlined above.

First consider the case without the buffer tank. Because � �:9 � 	��>� , the distur-
bance has a large impact on the output, and a temperature controller is certainly
required. However, this is not sufficient because, as seen in Figure 3.9, � � � ��9 �
exceeds 1 at higher frequencies and it approaches 100 at high frequencies.

We thus need to install a buffer tank with averaging level control to dampen
the flow-rate disturbance at higher frequencies. The slope of � � � �:9�� is 2 after it
has crossed 1, so one would expect that a second order � � � � is the best.
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Figure 3.9: A buffer tank is needed for the temperature control problem: � � � �:9 ��� � for
frequencies above ��� � 
����%��� 	�� . Comparison of ��� � �� � � � � �:9 � � for designs 1, 2 and 3
in Table 3.2.

For the graphical approach S1, we use ��� ��� � 	 � � ? � � 	 � � . � � � � � � crosses 1
at about frequency 0.024 rad/s, corresponding to ? P 	 � ��7 � ; < � < ; , and because
this is a flow-rate disturbance (II), we have from Table 3.1 that � G��5G �B;Y? 0�� �	� � P:8< 0�� �	� � . The required level controller is � ����� � � 7 ��	 ;>� �5; 	 � � 	 � .

For the more exact numerical approaches (S2 and S3), we consider three de-
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Table 3.2: Buffer (surge) tank design procedure II (flow-rate disturbance) applied to the
temperature control example

Step Design 1 Design 2 Design 3
1. Numerical approach to S2: � ����� S2: � ����� S3(II): � �����
obtain � ����� 1st order 2nd order 2nd order
2.1. Desired ��� ��� (from Step 1) � V � � �  � [ & �  � �  - V !�� � � - [ � [ � � 
2.2. Level controller, � � ��� � 7 �>� < 	 ��� �� V !�� �  ��� ����� � � � 
2.3. � � � � � ���� � � � ; < ; ; Q �>N �B�>; � N
2.4. � G��5G ; < ; 0 � 1.354 �>;80���1.354 � N>0���1.354

signs, and the results are given in Table 3.2. Design 1 (with ��� � � � 	 � �A? � � 	 � )
only requires a P level controller, but as expected, the required volume is large
because � ����� is first-order. Design 2 (with ��� � � � 	 � � ? � � 	 � � ) gives a consid-
erably smaller required volume. From design 3 (with ��� ��� in (3.31)), the required
volume is even smaller than with design 2, as expected. Little is gained by in-
creasing the order of ������� above 2.

In Figure 3.9 we plot the resulting � � � � � for the three designs, which confirms
that they stay below 1 in magnitude at all frequencies. These results are further
confirmed by the time responses to a unit step disturbance shown in Figure 3.10.

Buckley’s method (Buckley, 1964) gives a residence time of 	���� � � , which is
much less than the minimum required residence time of about � N ���� (see Ta-
ble 3.2). The reason is that the disturbance needs to be reduced by a factor of	��>� , and not 	�� as Buckley implicitly assumes.

3.4.2 � not given

The requirement is that (3.22) must be fulfilled; that is, the buffer tank with trans-
fer function ��� ��� must be designed such that � � ���:9 � � � 	 at all frequencies.
However, at the design stage the controller and thus � is not known. Three ap-
proaches are suggested:

N1. Shortcut approach: The requirement (3.22) must, in particular, be sat-
isfied at the bandwidth frequency � � where � � � � 	 , and this gives the
(minimum) requirement

� � �:9 ������� � �; <>= ?
�

� ��������� � ��� 	�� � � ��������� � ��� 	 � � (3.34)

In Skogestad and Postlethwaite (1996, p. 173-4) it is suggested that ��� �
 '�� , where �	��� is the effective delay around the feedback loop. However, to
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Figure 3.10: Temperature control with flow-rate disturbance: Response in the scaled out-
put to a unit step in the disturbance (flow rate) with different tank sizes and level con-
trollers (Table 3.2).
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get acceptable robustness, we here suggest to use a somewhat lower value

��� P 	
; �	� � (3.35)

Skogestad (2003) proposes the following simple rule for estimating � ��� :

�	��� � ��� ? � � ? �
; �

�
��� � ? � �

���B; for PI-control��� � for PID-control
(3.36)

where � is the delay, ? � � 	 ��� is the inverse of a right half-plane zero � , and
?�� is the time lag (time constant) number � ordered by size so that ?  is the
largest time constant.

We now assume ��� ��� � 	 � �A? � � 	 �  , use ��� � 	 � �5; �	� � � , and solve (3.34)
to get

? � ; �	��� � � � I  � 	 (3.37)

where � � � 	�
��� � �:9�� � �  ' �
	 ��� . Alternatively, Figure 3.5 may be used for a

given � to read off the normalized frequency ��� �,? � where � ��� ��� � � � 	 � � ,
and the required ? for each tank is then ? �� � � � ��� � .

N2. Numerical approach based on preliminary controller design: The above
shortcut method only considers the frequency ��� . To get a more exact de-
sign, we must consider all frequencies, and a preliminary controller design
is needed. This approach consists of two steps:

N2a. Find a preliminary controller for the process, and from this, obtain
� � � � .

N2b. Use one of the approaches S1, S2, or S3 from section 3.4.1.

For step N2a, we have used the method of Schei (1994), where we maxi-
mize the low-frequency controller gain

� � � � � �Y?�� , subject to a robustness
restriction (maximum value on the peak of � ):

� � � ?	�2��� �
subject to (3.38)

� � � ��� � � �"$ �
	 � � � ��� and � stable

where for a PI controller
� ����� � � � � ?	��� � 	 ��� � ?	����� . Compared to the

optimization problem that Schei uses, we have added the constraint that �
is stable. This is implemented by requiring the eigenvalues of

�

� to be in
the left half-plane, where

�

� is obtained from � by replacing the delay with
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a Padé approximation. To obtain a robust design,
� 	

should be chosen
low, typically 	>7 N � ; . With this controller design, we then use one of the
methods S1-S3 to design the buffer tank.

N3. Numerical approach with a simultaneous controller and buffer tank
design. A more exact approach is to combine the controller tuning and
the buffer tank design optimization into one problem. For (I) quality dis-
turbances, the optimization problem may be formulated as an extension of
(3.27):

����K � � � � � � K � � ��� ?  � Q�Q�Q � ?�
subject to

� � ?  ��� � � 	 � Q�Q�Q �A?� � � � � 	 � � � � � ��� � � �5� � � � �:9 � ��� � � � � � � ��� (3.39)

� � � ��� �	�5� � � �H$ � 	 � � � � �
� � � � � stable

where � � is the controller parameter vector for
� � ��� . Likewise for (II)

flow-rate disturbances, we get from (3.29):

� � �� � ��� � � � � �� � ��� � 
��
� �
��� ����

	��� � � � � ��� �	�5� � ����
subject to���� � � ��� � �5� � � � �:9 � ��� � � � � ��� �	�5� ���� � � � � ��� �	� � � ���� � 	 � � � ��� (3.40)

� � � ��� �	�5� � � �H$ � 	 � � � � �
� � � � � stable

where � is the controller parameter vector for the level controller � ����� ,
which enters in ������� , and � � is the controller parameter vector for the feed-
back controller

� ����� , which enters in � ����� . To ensure effective integral
action in

�
, these optimization problems must be extended by a constraint;

for example, if
� ����� is a PI controller, a maximum value must be put on

the integral time.

Example 3.2 (continued) (Temperature control with flow-rate disturbance (II))

� �:9 ����� � 	��>� � � � ��� � ; �>�	��8� � � 	 E � � (3.41)

The available information of the process is given by (3.41), and we assume that
the controller is not known. The delay is ��� 	 � . We get the following results:
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N1. The shortcut approach yields ( ��� � ��7 � � 
 � ��� and � � � � � 9 � � 	��>� for
all � ) from (3.37) (or Figure 3.5) the following:

� First-order filter ( � � 	 ): � G��5G �B; �>� 0 � 1.354 .
� Second-order filter ( � �B; ): � G��5G � < � 0 � 1.354 .

N2. The Schei tuning in (3.38) followed by the optimal design (3.29) yields for
a second order � ����� ( � � � � and ��� � 	 ) the following:

�
�
	 � 	87 N : � G��5G �B�>; 0 � 1.354 .

�
�
	 �B; : � G�� G � ���>0���1.354 .

N3. Simultaneous controller tuning and optimal design (3.40) yields with second-
order � � ��� ( ��� � � and ��� � 	 ) the following:

�
�
	 � 	87 N : � G��5G �B�>; 0 � 1.354 (as for method N2)

�
�
	 �B; : � G�� G � ���>0���1.354 (as for method N2)

Note that
�
	 � 	>7 N gives more robust (and “slow”) controller tunings

than
��	 � ; and therefore requires a larger tank volume. The smallest

achievable tank volume with a second-order filter is � G��5G ��;>�80�� 1.354 (found
with method N3 with

�
	
free). Methods N2 and N3 yield almost identical

results for this example. The shortcut method N1 also gives a tank volume
very similar to that found with

��	 �B; .

3.5 Before or after?

If the buffer tank is placed upstream of the process, the disturbance itself is damp-
ened before entering the process. If it is placed downstream of the process, the re-
sulting variations in the product are dampened. The control properties are mainly
determined by the effect of input � on output � (as given by the transfer function
� ). An upstream buffer tank has no effect on � , and also a downstream buffer
tank has no effect on � provided we keep the original measurement. On the other
hand, placement “inside” the process normally affects � . In the following we list
some points that may be considered when choosing the placement. We assume
that we prefer to have as few and small buffer tanks as possible (sometimes other
issues come into consideration, like differences in cost due to different pressure
or risk of corrosion, but this is not covered).
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(1) In a “splitting process”, the feed flow is split into two or more flows (Fig-
ure 3.11(a)). One common example is a distillation column. To reduce the
number of tanks, it will then be best to place the buffer tank at the feed (up-
stream placement). An exception is if only one of the product streams needs
to be dampened, in which case a smaller product tank can be used because
each of the product streams are smaller than the feed stream.

(2) In a “mixing” process, two or more streams are mixed into one stream (Fig-
ure 3.11(b)). To reduce the number of tanks, it is here best with a down-
stream placement. An exception is if we only have disturbances in one
of the feed streams because the feed streams are smaller than the product
stream, leading to a smaller required size.

(a) A splitting process (b) A mixing process

Figure 3.11: Two types of processes

(3) An advantage of a downstream placement is that a downstream buffer tank
dampens all disturbances, including disturbances in the control inputs. This
is not the case with upstream tanks, which only dampen disturbances enter-
ing upstream of the tank.

(4) An advantage of an upstream placement is that the process stays closer to
its nominal operation point and thus simplifies controller tuning and makes
the response more linear and predictable (see Example 3.3).

(5) An advantage of the “inside” placement is that it may be possible to avoid
installation of a new tank by making use of an already planned or existing
unit, for example, by increasing the size of a chemical reactor.

(6) A disadvantage with placing the buffer tank inside or downstream of the
process is that the buffer tank then may be within the control loop, and
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the control performance will generally be poorer. Also, its size will ef-
fect the tuning, and the simultaneous approach (N3) is recommended. For
the downstream placement, these problems may be avoided if we keep the
measurement before the buffer tank, but then we may need an extra mea-
surement in the buffer tank to get a more representative value for the final
product.

Example 3.3 (Distillation column). We apply the methods from section 3.4.1 to
a distillation column and compare the use of a single feed tank with the use of two
product tanks (Figure 3.12). We consider a distillation column with 40 stages (the
linearized model has 82 states; see column A from (Skogestad and Postlethwaite,
1996, p.425)). The disturbances to the column are feed flow rate and composition
( �� � �

and � � � � � ), and the outputs are the mole fractions of the component in
top and bottom products, respectively ( �� and � � ). The manipulated variables are
the reflux and the boilup ( �  � � and � � � � ). The variables have been scaled
so that a variation of � � ��2 in the feed flow rate corresponds to �  � � 	 and a
variation of � 	���2 in the feed composition corresponds to � � � � 	 . A change in
the top and bottom product composition of � ��7 � 	 mole fraction units corresponds
to a change � 	 in �  and � � . Decentralized PI controllers are used to control
the compositions. In the top,

�  ����� � N 7 :8< � ; � � � 	 ��� � ; � ��� , and in the bottom,� � � � 7 < N � ; � � � 	 ��� � ; � ��� . There is a delay of 	������� in each loop, which we
represent with fifth-order Padé approximations in the linear model. Nominally,
the feed flow rate is 	.�\[ � ���� , and the top and bottom concentrations are 0.99
and 0.01, respectively.

The holdup in the reflux and the boiler are controlled with � controllers (with
gain 	�� ) by the top and bottom product streams, respectively.

We consider the effect of the flow-rate disturbance, �  . The closed-loop gains
from �  to �  and � � without any buffer tank, � � � � � 9�� and � � � � � 9 � are shown with
solid lines in Figure 3.13. The gains are both above 	 at intermediate frequencies,
so our purity requirements will not be fulfilled, unless we install a buffer tank.

Upstream placement (feed surge tank). � is known, and with � � 	 , (3.24) in
method S2 yields ? � 	>	�<,���� . The resulting � � � � � � and � � � � � � are shown with
dashed lines, and we see that � � � � � � just hits 	 (as expected). 	 � � � � is also plotted
(dash-dotted) to indicate the limiting frequency, which is not at the maximum of
� � � � � 9�� , but at a lower frequency “shoulder”. Following design procedure II, we
now get the following:

2.1 ��� ��� � 	 � � 	>	�< � � 	 �
2.2 The required level controller for the buffer tank is � � ��� � 	 � 	>	2< � ��7 �>�>:>:
2.3 � � � � � ���� � � � � ? � 	>	2<
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d1=F
d2=zF

u2=V

y2=xB

u1=L
y1=xD

LIC

V=68

V=49

V=94

Figure 3.12: Distillation column with either one feed surge tank or two product mixing
tanks to dampen disturbances.

2.4 � G�� G � ? 0���1.354 � 	8	�<,� � � Q ; QM� 7 � �\[ � ���� ��N :�� [ .
Comment: Since the slope of � � � � � 9 � is less that 1 around the limiting fre-

quency, higher order filters will increase the volume demand. For example, with� � ; , (3.24) gives ? �B�8N 7 N � � � , and � G�� G �B;Y? 0���1.354 � � 	>7 � �\[ .
Downstream placement (product mixing tank). Because both � � ��� � 9 � � 	

and � � � � � 9 � � 	 at some frequencies, we must apply one mixing tank for each of
the two products. When we designed the feed tank, we had to consider the worst
of � � � � � 9 � and � � � � � 9 � , but now we may consider � � � � � 9�� for the top product and
� � � � � 9 � for the bottom product. With � � 	 , (3.24) yields ; � ���� for the top buffer
tank and as before 	>	�<,���� for the bottom tank. The corresponding volumes are
;�� Q � 7 � � 	>	>7 � � [ (top) and 	>	2< Q ��7 � � �>� �\[ (bottom), which gives a total
volume of N�� ��[ , which is the same as that for the feed tank. However, the feed
tank placement is preferred because we then need only one tank.

Nonlinear simulations. The above design is based on a linearized model, and
(as expected) the feed tank placement is further justified if we consider a nonlinear
model because the column is then less perturbed from its nominal state. This is
illustrated by the simulations in Figures 3.14, 3.15 and 3.16. If the buffer tanks
are placed downstream, the nonlinear response deviates considerably from the
linear response, and the tanks designed by linear analysis are too small. By trial
and error with disturbance step simulations on the nonlinear model, we find that
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Figure 3.13: Feed flow disturbance for the distillation column: � � � � � 9 � and ��� � � � 9 � (for
top and bottom) are both above 1 (solid line). A feed tank with averaging level con-
trol, �

� 	 �	� � 	 � � � � 	 � � � , brings the disturbance gain to both top and bottom below 1
(dashed). Note that � 	 � � 	 � is just touching ��� � � � 9 � .

? G � � :,���� and ?�� � 	�:>:����� are needed for the top and bottom product tanks.
This gives a total volume of 	2< � ��[ , considerably larger than the required feed
tank of N :�� [ .

In conclusion, an upstream feed tank with a P controller (averaging level con-
trol) proves best for this example. The example also illustrates that for nonlinear
processes the buffer tank design methods that we have proposed are most reli-
able for the design of upstream buffer tanks. For (highly) nonlinear processes, the
results should, if possible, be checked with simulations on a nonlinear model.

3.6 Further discussion

In this paper we have assumed that the surge tank outlet flow rate is controlled,
which for example is the case when an inner flow-control loop is installed. When
such a flow loop is missing, the flow rate is level dependent (this was what Harriott
(1964) assumed). In Appendix A, we find that essentially the same results are
obtained in this case.

When comparing one large with several smaller (mixing) tanks, the actual
investment cost related to the tanks must be considered. A short discussion on
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(a) Output � � . Nonlinear simulation
(solid) and linear simulation (dashed).
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(b) Output � � . Nonlinear simulation
(solid) and linear simulation (dashed).

Figure 3.14: Distillation example with no buffer tanks installed. The control system is not
able to handle the disturbance. There is a large deviation between nonlinear and linear
simulation.
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(a) Output � � . Nonlinear simulation
(solid) and linear simulation (dashed).
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(b) Output � � . Nonlinear simulation
(solid) and linear simulation (dashed).

Figure 3.15: Distillation example with a feed tank of � 	�� [ . Both outputs stay within � � ,
and the nonlinear simulation is close to the linear one.
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(a) Output � � . Nonlinear simulation
(solid) and linear simulation (dashed).
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(b) Output � � . Nonlinear simulation
(solid) and linear simulation (dashed).

Figure 3.16: Distillation example with product tanks at the top ( � � � ��� [ ) and at the bottom
( ����� [ ). The outputs deviate from ��� in the nonlinear simulations.
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this is given in Appendix B. A small number is favoured, even if this means a
larger total volume.

The use multiple of buffer tanks in series is of interest for processes with large
disturbances, e.g., for neutralization processes. With multiple tanks one may ask
whether it is best with equal or unequal sized buffer tanks. Equal tanks are easiest
to handle, but for neutralization it has been argued (Shinskey, 1973) that unequal
tanks reduce resonance peaks. The conclusion from Chapter 2 is that there may be
a reduction in total volume with tanks of different size, but this most likely does
not compensate for the added cost of different units.

The shortcut formula (3.37) in method N1 is easy to use and convenient at
an early stage of the process design. It is especially convenient for mixing pro-
cesses like neutralization Chapter 2. However, it is a necessary but not sufficient
requirement for (3.22). Two possible errors may occur:

E1. The estimate for ��� may be wrong.

E2. ��� is not the “worst” frequency. We only consider � ����9 � at ��� . Even if it is
fulfilled here, � � � �:9 � �"$ 	 may be violated at

(a) lower frequencies than ��� .

(b) higher frequencies than ��� due to peaks in � � � .

Errors E1 and E2(b) are not really a problem with the choice for ��� used in
this paper, which allows for a robust controller tuning where � � � � � is “flat” over
a frequency range and with a low peak for � � � . Error E2(a) may be an important
issue if � � is of high order, and how to overcome it is discussed in the Thesis’
Appendix B (B3.1 and 4).

3.7 Conclusions

The controlled variables ( � ) must be kept within certain limits despite disturbances
( � ) entering the process. High-frequency components of disturbances are damp-
ened by the process itself, while low-frequency components, e.g., the long-term
effect of a step, are handled by the control system. There are, however, always
limitations in how quickly a control system can react, for example, as a result of
delays. Thus, for some processes there is a frequency range where the original
process and the controller do not dampen the disturbance sufficiently. In this pa-
per we introduce methods for designing buffer tanks based on this insight. The
methods consist of two steps:
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Step 1. Find the required transfer function ����� � � such that (with scaled variables)
� � � ��� � � � 9 � ��� � ������� � � $ 	 �� � . The methods for this have been divided
into two groups depending on whether the control system for the process
is already designed (methods S1-S3) or not (methods N1-N3). The short-
cut methods (S1/S2 or N1), supplemented with nonlinear simulations, are
recommended for most practical designs.

Step 2. Design a buffer tank that realizes this transfer function � � � � . For a first-order
transfer function, ��� � � � 	 � �O? � � 	 � , we have the following:

I. Quality disturbances Install a mixing tank with volume � � �M? , where
� is the nominal flow rate.

II. Flow-rate disturbances Install a tank with averaging level control with
gain � � � ��� 	 �Y? and volume � � ?'0���1.354 where 0���1.354 is the ex-
pected range (from minimum to maximum) in the flow-rate variation.

Sometimes a higher-order ��� � � is preferable, in which case we need (I)
for quality disturbances more than one mixing tanks and (II) for flow-rate
disturbances a more complicated level controller � � � � (with lags) (see Ta-
ble 3.1).
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Appendix A Surge tank with level dependent flow

In section 3.3, II we assume that we control the outlet flow rate from the buffer
(surge) tank. If we instead let the controller determine the valve position, which
is the case if the cascade flow loop is omitted to save cost, the actual flow rate
depends on both the valve position and the given tank level (or volume) as well
as external pressure variations. The flow rate through a control valve is a function
of the valve position, � , and the differential pressure across the valve, 0 � . We
assume that the differential pressure is given by the hydrostatic pressure at the
outlet (neglecting the other pressure variations), and that the tank area of the tank
is not varying with the level. We then find a linearized model (Harriott, 1964):

0��DP
� � ��

��� 0 � �
� � �� � � 0 � (3.42)

or by Laplace transform

� ����� �
� � ��

� � � ����� � � � �� � � � � � � (3.43)

where � � � � , � ����� and � � � � now represent deviations from nominal values. A
controller acting on the valve position � , is given by the following equation:

� � � � ����� � � ����� � � � ����� � (3.44)

We insert (3.43) and (3.44) into the the buffer tank mass balance, and Laplace
transform yields:

� ����� �
	

� � ��� ����� � � �� � � � � � ��� � ��� � � ��
� � � � ����� � (3.45)

� ����� �
	

� � ��� ����� � ��� ����� ���� ����� � �
�
��� ����� � � ��

��� � � � ��� � (3.46)

where ��� � ��� ��� !� � ��� !� � � � � � � .We compare this with (3.14) and (3.15), and see that the effect of inlet flow
rate changes on � and � is unchanged provided �	� � � � � � ����� , that is

� � ����� �
�
� ����� �

� ��
� � �

� �� � (3.47)

Here
� �>� � � is the scaling from flow rate to valve position, while

� �8� � � repre-
sents the effect that the outlet flow rate is increasing with increasing level (“self-
regulation”). The time contant, ? , is then

? � 	
� �

	� !� � � � !� � � � (3.48)
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From (3.48) we can see that for first order ������� the largest possible ? is now	 � � �>� � � , so for high
� �8� � � (i.e., for low pressure drop over the control valve) a

flow cascade loop is recommended. This is in agreement with normal practice.

Appendix B Capital investments

We will here consider the capital investment in connection with the installation of
one buffer tank. It consists of two terms, namely a constant independent of the
tank size, and a term which relates with the tank size (Peters and Timmerhaus,
1991): �

��� � � � �

The constant term, � , includes the cost of instruments (level measurements), valves
(whose size only depends on the flow rates), controllers (normally only program-
ming and testing cost), piping (increased tank size may both increase and decrease
the amount of piping), wiring for signals and electrical power, engineering and
start-up. The size dependent term,

� � � , includes the price of the purchased equip-
ment and its installation. A common approximation is that it is proportional to the
tank weight, which (assuming that wall thickness and materials are independent
of the size) yields the typical exponent, 	 P ��7 � . For � equal tanks with total
volume � G��5G , we then have �

 � � C�� � � � � G��5G � � � ��� S L (3.49)

Often the constant term � is large, which favors few (one) tanks. Since nor-
mally � � < (or even � � ; ), theory on the cost optimal � is not interesting since
it is easy to calculate the cost for different � and compare.

Example 3.4 Walsh (1993) found � � � ; � � �>�>� and
� � � ;�� �>�>� � ��[ for neu-

tralization tanks. The resulting cost for 	 to < tanks is shown in Figure 3.17.
Now we can combine Figures 3.5 and 3.17. We want to reduce the effect of a

quality disturbance by a factor � � 	��8� , and read from Figure 3.5 the value of�,? � that corresponds to magnitude 	�� � � . We find that the volume with one tank is
about � times larger than the total volume of two tanks, and about � times larger
than the total volume of three tanks, and about : times larger than the total volume
of four tanks. In Figure 3.17 we have marked the cost of one tank of � ��� [ , two
tanks of � � �>� � [ , three tanks of � � �>� �\[ and four tanks of � � � :��\[ . With � � 	��8�
the cost of one tank is the lowest, even though the total volume is much larger.
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Appendix C Surge tank: Required volume with n-th
order 4 5 6�8
In this appendix we derive the required tank volume for a desired buffer tank
transfer function ������� � 	 � � ? � � 	 �  .

For the � -th order filter, ��� ��� � 	 � � ? � � 	 �  , the resulting controller from
(3.17)

� ����� � �
�O? � � 	 �  � 	 �

	
?  �  �  � �  � � �  � � � Q�Q�Q � �  (3.50)

is of order � � 	 . Furthermore, from (3.18):

� � � � � �O? � � 	 �  � 	
� � ? � � 	 �  � �� � � � � ����� ��� � � ?

� � ��� ��� � � ? � � 	 ���� � ��� (3.51)

where � is a polynomial with terms 	 � � � � � � 7�7�7 � �  � � with positive coefficients.
The maximum � occurs at � � � and the volume requirement is � ? .
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4.1 Introduction

Before designing and implementing a multivariable controller, there are some
questions that are important to answer: What will the multivariable controller
really attempt to do? Will a multivariable controller significantly improve the re-
sponse as compared to a simpler scheme? What must the multivariable controller
take into account to succeed? How accurate a model is needed?

One key issue with multivariable control is uncertainty. There is a fundamen-
tal difference between feedforward and feedback controllers with respect to their
sensitivity to uncertainty. Feedforward control is sensitive to static uncertainty,
while feedback is not. On the other hand, aggressively tuned feedback controllers
are very sensitive to uncertainty in the crossover frequency region. Similar dif-
ferences with respect to uncertainty can be found for multivariable controllers.
Traditional single loop controllers are predominantly based on feedback, whereas
model based multivariable controllers often combine feedback and feedforward
control, and usually the component of feedforward action is significant (for exam-
ple the off-diagonal “decoupling” elements of the controllers).

In this paper we discuss these issues for the important class of serial processes.
A serial process consists of a series of one-way interacting units. The states in one
unit influence the states in the downstream unit, but not the other way round. This
is very common in the process industry, where the outlet flow of one process enters
into the next. One example, which will be studied in Section 4.4, is neutralization
performed in several tanks in series. Examples of processes that are not serial
are processes with some kind of recycle of material or energy. Even for such
processes, however, parts of the process may be modelled as a serial process,
if the outlet variations of the last unit is dampened through other process units
before it is recycled, so that no significant correlation can be found between the
outlet variations and the variations in the disturbances to the first unit.

A multivariable controller often yields significant nominal improvements com-
pared to local single-loop control. This is largely because of to the “feedforward”
action, and with model error, the feedforward effect may in fact lead to worse per-
formance. On the other hand, use of feedback from downstream measurements
is much less dependent on the model, as use of high feedback gains at low fre-
quencies removes the steady-state error. However, one must be careful about high
feedback gains at higher frequencies due to potential stability problems, and it is
at these higher frequencies one may have the largest benefit of the model-based
“feedforward” action of the multivariable controller.

Buckley (1964) discusses control structure design for serial processes and dis-
tinguishes between material balance control (control of inventory or pressure by
flow rate adjustments) and product quality control (control of quality parameters
such as concentration).
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Shinskey (1973) and McMillan (1982) present methods for design of pH neu-
tralization processes. Mixing tanks are used to dampen disturbances, and they find
that the total volume may be reduced by use of multiple stages with one control
loop for each tank. Another advantage with multiple stages is that one may use
successively smaller and smaller control valves, leading to a more precise manipu-
lated variable in the last stage. McMillan and Shinskey both recommend different
sized tanks to avoid equal resonance frequencies in the tanks, but this has later
been questioned (Walsh, 1993), Chapter 2.

A discussion on the open loop response of serial process is found in Marlin
(1995, p. 156f). Morud and Skogestad (1996) note that the poles and zeros of the
transfer function of a serial process are the poles and zeros of the transfer func-
tions of the individual units. Thus, the overall response may be predicted directly
from the individual units, in contrast to e.g. processes with recycle. Many series
connections of processing units are not really serial processes, as the response
of each unit also depends on the downstream unit (for example if the outlet flow
rate from a unit depends on the pressure in the subsequent unit) (Marlin, 1995),
(Morud, 1995, Chapter 4), (Morud and Skogestad, 1995). Morud et al. denote the
latter process structure cascades, whereas Marlin uses the terms noninteracting
and interacting series, respectively, for the two structures.

The characteristics of serial processes can be utilized when analyzing multi-
variable controllers for such processes. The multivariable controller can be di-
vided into three types of controller blocks: Local feedback, feedback from down-
stream units and “feedforward” from upstream units. Thus, depending on the
location, the control input will be a sum of these three terms.

This division of the controller blocks has two purposes. First, it gives insight
into the behaviour of the control system. Second, it allows simple implementation.
In some cases the multivariable controller can be implemented as combinations of
conventional single loop controllers.

In Section 4.2 we develop the model structure for serial processes and discuss
some of its properties. In Section 4.3 control of serial processes is discussed. One
popular multivariable controller is MPC, and to be able to use theory for linear
systems, we summarize in Appendix A how to express an unconstrained MPC
combined with a state estimator on state space and transfer function form. This
was not available for the controller we have used, so that a detailed description is
given in Chapter 5. The ideas of the paper are illustrated through an example with
pH neutralization in three stages (section 4.4). The paper is concluded by a short
discussion (section 4.5) and the conclusions in section 4.6.
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Figure 4.1: Serial process with exogenous variables � � (manipulated) and
� � (distur-

bances) into unit � . The vector � � represents the outflow of unit � , which continues into
unit number � � � .

4.2 Model structure of serial processes

In this section we look closer at serial processes and develop a general transfer
function model. An example of a serial process is a process where mass and/or
energy flows from one process unit to another, and there is no recycling of mass
or energy. We define a serial process by the following (also see Figure 4.1):

A serial process can be divided into a series of sub-processes or units, where
the states in each unit depend on the states in the unit itself ( � � ), the states in the
upstream unit ( � � �  ), and the exogenous variables ( � � , � � ) to the unit.

The model for unit no. � can then be expressed as

�
�>@
� � � ��� � � �	� � � �  � � � � � � � (4.1)

where � � and � � �  are the state vectors for unit � and unit � � 	 respectively, and the
external input is divided into a vector of manipulated inputs, � � , and disturbances,
� � . We further define the outputs from a unit as a function of the states and the
external inputs for this unit

� � ��� � � � � � (4.2)

It is easy to also inlude direct througput terms, i.e., define � � ��� � � � �	� � � �  � � � � � � � ,
but is makes the expressions below slightly more complex.

We linearize (4.1) and (4.2) around a working point, introduce � � � � � � � � � � � � �� � � � � � 	 , � � � � ���O� � � � ,
�
� � �

� �O� � � � , and � � � � ���O� � � � and let the variables
be the deviation from their working point. Applying Laplace transformation, and
recursively inserting for variables from previous tank, we obtain:

� ����� � � ����� � � � � � � � ����� � ����� (4.3)

We have defined the total output vector, � ����� , as all the outputs, � ����� as all the
manipulated inputs, � � ��� as all the disturbances. Defining

� � � ���	� � � � � � � � 
(4.4)
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we get

� ����� �������
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(4.5)
and
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(4.6)
where � is the number of units. � and � � are identical except in � � � � is replaced
by � � (the disturbances to each unit are assumed independent).

We see that � � � � and � � ����� are both lower block triangular. From (4.5) and
(4.6), we can deduce the following properties:

� The state vector of a process unit is not influenced by control inputs and
disturbances to downstream units.

� The influence from a control input or a disturbance which enters an up-
stream unit, � , is dampened by the transfer function�
� ���	� � � � � � � �  � � !�

��
 �� � � � � �  � � � � � �	� � � � � � � � � � � � 
	
before it reaches the output of unit � .
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� The open loop stability of the total process is given by the stability of each
unit since the elements in � and � � consists of products of

� � ’s.

� � � ��� and � � ����� are block diagonal at infinite frequency ( ���  ).

Note that the nominal model of unit � can be expressed as

� � � � � � � � � � �

� � � � � � �  � � � � � � � � � (4.7)

where
�

� � � � is the transfer function from “disturbances” due to variations in the
upstream unit, � � 	 to output � � :

�

� � � � � � � � �
	� � � � � �  � � � � � � � �  (4.8)

This is illustrated in Figure 4.2.

Figure 4.2: Model structure for serial processes

4.3 Control structures for serial processes

In the previous section we introduced the concept of serial processes and Equa-
tions (4.3)-(4.6) summarize the linearized model. If a full, multivariable controller
is used to control this process, the characteristics of each blocks of this controller
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can be identified. If we for simplicity assume that the set-points are zero, and we
want to control all the outputs, the control inputs are given by:

� ����� � � � � � � � ��� (4.9)

where
� � � � is the controller.

We divide the controller
� ����� into � 0 � blocks of the same size as the blocks

in � ����� :

� � � � �

����
�
� # �  � 7�7�7 �  � �  � � � 7�7�7 � � 

...
...

. . .
...�   �  � 7�7�7 � �

� ���
� (4.10)

These controller blocks can be divided into three groups:

Blocks on the diagonal (
� � � � ) These blocks use local control, where inputs to the

unit are used to control outputs of the same unit.

Blocks above the diagonal (
� � � � , �,$ � ) These blocks represents feedback from

the outputs of downstream units. Intuitively, when the effective delay through
the units is large, these blocks seem ineffective since the local feedback al-
ways will be quicker. There are, however, several cases when it may prove
useful:

(1) We have no relevant control inputs downstream so local control is im-
possible.

(2) The downstream actuators are slow, so that it actually is more efficient
to manipulate the upstream control inputs.

(3) There are not enough degrees of freedom in the downstream units.

(4) The control inputs downstream are constrained, and insufficient to
compensate for the disturbances.

(5) The downstream actuators are expensive to use.

In the latter two cases the upstream manipulated variable can be used to
(slowly) drive the downstream ones to zero or to some other ideal resting
value. This is called input resetting and is normally used for systems where
we have more control variables than outputs (e.g., (Skogestad and Postleth-
waite, 1996, page 418)).

Blocks below the diagonal (
� � � � , � � � ) Through these blocks an output from an

upstream unit directly affects the input in a downstream unit. Since up-
stream units act as disturbances to downstream units (see (4.7)), these con-
troller blocks may be viewed as “feedforward” elements.
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In analyzing the controller it is useful to plot the gain of the controller elements
as a function of frequency, see Figures 4.6, 4.8(a), 4.10(a), and 4.12(b) presented
below. A key point is to find out whether there is integral action in the feedback
part of the controller or not. Integral action requires high gain at low frequencies,
but it is not always straight-forward to interpret the gain plot of the controller
elements. For example, in Figure 4.8(a) all the elements have large gains at low
frequencies. In such cases the steady-state effect is better illustrated by plotting
the individual gains of the sensitivity function, � ����� ��� � � � � ����� � � � 

where
� � ��� � � � � ��� � � � ��� � is the loop transfer function. The usefulness of � is seen
from the following expression

E � � � � � � � � � � (4.11)

where E is the control error ( � � � � ), � � is the reference, � is the disturbance
and � � is the (open loop) transfer function matrix from the disturbance to the
output. To have no steady-state offset in an output we need that all elements in
the corresponding row of � to be small at low frequencies. Also note that system
stability is determined by the poles of � � � � .

4.3.1 Local control (diagonal control)

Local control is by far the most common control element,

Local control: � � � � � � � ����� � � (4.12)

With only local control and three units ( � � � ), the loop transfer function becomes

� �
�� �1# � �
� �  � � � �
� [  � [ � � [ [

�� �� � # � �
� � � � �
� � � [ [

��
�

�� �1# � # � �
� � � � � � � �
� � � [ [ � [ [

�� (4.13)

From this it follows that the stability of the closed-loop system is determined
only by the blocks on the diagonal. That is, we have closed-loop stability if and
only if each of the individual loops � ��� � � � � � � � � � � 

are stable.

4.3.2 Pure feedforward from upstream units

The use of measurements in upstream units in the control of a unit is denoted
feedforward control:

Feedforward ( � � � ) � � � � ������ � � ����� � � (4.14)
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With “pure” feedforward control (only feedforward elements), the controller does
not influence stability.

From (4.7) and (4.8) we find that perfect nominal control is obtained by se-
lecting ��� �� � � �  � � � � � � � �

� � � � (4.15)� � �� � � � � � Q�Q�Q � � ���� �  � � (4.16)

The reason for the zero in (4.16) is that the disturbance is already eliminated
by (4.15). If (4.15) cannot be realised, for example if it is not casusal, (4.15) must
be modified: � ���� � � �  � � � � � � � � �

�

� � � � (4.17)

where subcript minus indicates that negative delays and other non-causal elements
of the (total) controller has been removed (this is a simplification of the

� � optimal
feedforward controller given by Lewin and Scali (1988) and Scali et al. (1989)).
As an example, let

� � � � � � E ����
? � � 	 �

�

� � � � � � � E �� , �
? � � 	 (4.18)

Then � ���� � � �  � � � � � ��� � � E � �  , �� � � � � � � �� � � ��� � � � � � � � (4.19)

Remark 1 It is not necessary to make � � � � � causal itself. For example if � � � �
has a delay of 	�� � and

�

� � � � a delay of N�� the delay of the “ideal” feedforward
controller would have been � < � , which is not implementable. (4.17) states that
the controller delay shall be truncated to 0, which means that the effect of the
controller of the controller occurs < � too late. But, requiring � � � � � to be causal

would have given a N�� delay in the controller (zero in delay in ��� � � plus N�� in
�

� � � � ),
and the effect of the feedforward controller would have occurred < � N � 	�� � too
late.

When (4.15) cannot be realised, feedforward from units � � ;�� � � � � 7�727 can be
useful. For example, if it is causal, the following feedforward controller from unit� � ; eliminates the control error that “rests” after

� ���� � � �  :� ���� � � � � � � � � � � � � � C � � � � � � � � � � � � � L
�

� � � � C � � � � �  � � �  � � � �  � � �  � � L
�

� � � � �  (4.20)

See Appendix B for a derivation of (4.20).
Feedforward control is generally sensitive to uncertainty, and we will now

consider its effect. The nominal model is given by (4.7), and the actual model
(with uncertainty) is

�
�
� � �

�
� � � � � � �

�
�
� � � � �� �  � �

�
� � � � � � � (4.21)
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A pure feedforward controller from upstream units then yields the following actual
control error:

E �� � � 	� � �� � � � � � �

�
�
� � � � �� �  �

� � �
� 
 
�
�
� � � � ���� � � � � � �� � � � � � � � � � � � � � � � � (4.22)

With “ideal” feedforward control based on the nominal model, as given by
(4.15) and (4.16), the actual control error becomes

E �� � � �

�
�
� � � � � �� � � � � � � � �

� � � � 	 � �� �  � �
�
� � � � � � � � � � �

� �	� � � �� � � � � � � � �

� � � � �

�
� �
� � � 	; <>= ?

� ,%� �
�

�
�
� � � � �� �  � �

�
� � � � � � � � � � � (4.23)

where
�

denotes generalized inverse (Zhou et al., 1996, page 67), and � � � � is a
relative model error in � � � � �

�
�
� � � . In particular, for scalar blocks

� � � � � 	�� �
�� � � � �

�
�
� � �

� � � �O� �

� � � � (4.24)

Thus model errors at any frequency, directly influences the actual control error.
Upon comparing the response with control in (4.23) with the response without
control ( � � � � in (4.21)) we see that “feedforward” (decoupling) control has a
positive (dampening) effect on disturbances from upstream units at frequencies �
where �

� � � � � � � �
$ 	 (4.25)

or in words, as long as the relative error in � � � � �

�
�
� � � is less than 1 in magnitude.

Here, an appropriate norm dependent on the definition of performance is used.
External disturbances entering directly into the process at unit � , � � , are (of

course) not dampened by feedforward control from upstream units, but if � � is
measured, then separate feedforward controllers may be designed for � � . Feed-
forward control from the reference, � � � , is also necessary to avoid control error if
� � � �� � and no feedback is applied.

4.3.3 Lower block triangular controller

A lower (block) triangular controller will result if we combine local feedback and
feedforward from upstream units,

Local control ( � � � ) � � � � � � � � ����� � �
Feedforward ( � � � ) � � � � � � �� � � � ��� � �
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The loop transfer function now becomes ( � � � ):

� �
�� � # � �
� �  � � � �
� [  � [ � � [ [

�� �� � # � �� ����  � � � �� ���[  � ���[ � � [ [

��
�

�� �1# � # � �
� �  � # � � � � � ����  � � � � � � �

� [  � # � � [ � � � ��  � � [ [ � ���[  � [ � � � � � � [ [ � ���[ � � [ [ � [ [

�� (4.26)

The diagonal elements are feedback elements, where most of the control ben-
efits are achieved simply by using sufficiently high gains, and an accurate process
model is not needed. The main problem is that too high gain may give closed-loop
instability.

As for the local feedback (diagonal) control structure the stability of the closed-
loop system is determined only by the blocks on the diagonal, that is we have
closed-loop stability if and only if each of the local loops � � � ��� � � � � � � � � 

are
stable.

Note that we also obtain this control structure if an inverse-based (decoupling)
design method (

� � � � � � � ��� � �  � � � ) is used. An example of an inverse based
controller is IMC decoupling (Morari and Zafiriou, 1989),

� ��� � � �  � �  � �
where

�  and
� � are (block) diagonal matrices (with blocks corresponding to

the blocks in � ). For this controller we obtain the following diagonal and sub-
diagonal blocks: � ��� ��� � � � � �  � � � � � � � � � � � � � (4.27)� � ���� ��� � � � �  � � �  � � � � � � � � � � � � �  � � � �  � � � 

� � � + � � � + � (4.28)

where
� � � � � denotes block � � � � � of weight matrix

� � (this is the integrator). (4.27)
and (4.28) can be verified by calculating that � � �  � � . Since the stability is
determined by the diagonal blocks, and these are the scaled inverse of the blocks
of � , the weights can be selected independently for each unit, e.g. using (Rivera
et al., 1986) (for scalar blocks). If � is not invertible, e.g., due to right half plane
zeros and delays, the not invertible part of � is essentially factored out before the
inversion (for details, see (Morari and Zafiriou, 1989)).

Using (4.8), we note that the sub-diagonal part of the IMC controller, (4.28), is
identical to the ideal feedforward controller (4.15), except for the weights. Integral
action in the feedback part of the controller (

� ��� � � � � � ) requires an integrator in
either

�  � � � or
� � � � � . For example, we may choose

� � � � � � K���� � � where ? �
	 is the
desired closed loop time constant, (Rivera et al., 1986). Thus we see from (4.28)
that also the “feedforward” gain will be amplified at low frequencies.

Let us now consider the effect of model uncertainty. The nominal model is
given by (4.7) and the actual model by (4.21). A lower triangular controller yields
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the following actual control error:

E �� � � 	� � �� � � � � � � ��
�

�

�
�
� � � � �� �  �

� � �
� 
 
�
�
� � � � � � � � � � �� � � � � � � � � � � � � � � � � � (4.29)

where (Skogestad and Postlethwaite, 1996)

� �� � C 	 � � �� � � � � � � L �  � � � � 	 � � ��� � � � 
(4.30)

where � � and � � are nominal sensitivity and complementary sensitivity functions,
respectively, and � � relative error in � (note that we in Section 4.2 let � � denote
something else).

Upon comparing the closed-loop response in (4.29) with the open loop re-
sponse in (4.21) we see the following:

(1) Effective local feedback control (
�
� � ��� � � ��� 	 ) dampens disturbances

from the preceding tank ( � � �  ), external disturbances entering the process at
unit � , and also the effect of the model error ( � � ) and errors in the feedfor-
ward control.

(2) For frequencies where the feedback control is not effective, i.e.,
�
� � � ��� � �

�	 , the results from Section 4.3.2, (4.15)-(4.25) can be applied except that
(4.20) must be modified due to the feedback control in unit � � 	 :� ���� � � � � � � � � � � � C � � � � � � � � � � � � � L

�

� � � � � � � � � �  � � �  � � �  � � �  � � 

C � � � � �  � � �  � � � �  � � �  � � L
�

� � � � �  (4.31)

As for the pure feedforward case, external disturbances entering the process at
unit � , � � , are not dampened by the feedforward control from upstream units, but
are handled by the feedback control.

For serial processes with a lower block triangular controller it is particularly
simple to identify feedforward and feedback controller elements, but similar dif-
ferences between the elements occur for most multivariable controllers. Such in-
sights are important, e.g. when evaluating how the controller is affected by model
error.

A more general analysis of feedforward control under the presence of uncer-
tainty is given in Chapter 6.
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4.3.4 Full controller

With a full controller, as in (4.10), and three units ( � � � ), the loop transfer
function becomes

� � � � � � � ����� ��� �1# � # � # �  �
� �  � # � � � � � �  � �  �  � � � � � � � �

� [  � # � � [ � � �  � � [ [ � [  � [  �  � � � [ � � � � � � [ [ � [ � Q�Q�Q

Q�Q�Q � # �  [
� �  �  [ � � � � � � [

� [  �  [ � � [ � � � [ � � [ [ � [ [

��
(4.32)

In this case the stability of the closed-loop system is affected by all elements in
the controller

�
(and in � ).

As illustrated in the case study in Section 4.4, even in this case the controller
block below the diagonal may be similar to feedforward control.

4.3.5 Final control only in last unit (input resetting)

In many serial processes, the output from the last unit is by far the most important
for the overall plant economics, and the outputs in upstream units are mainly
controlled to improve control performance in the final unit. The extra degrees
of freedom are used for local disturbance rejection, but are otherwise typically
reset to some ideal resting value by adjusting set-points in upstream units.
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Figure 4.3: Serial units controlled with a combination of local control, feedforward con-
trol and input resetting
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We may then use the following control elements:

Local control ( � � � ) � � � � � � � ����� � � � � � � � �
Feedforward ( � � � ) � � � � ���� � � ����� � �
Input resetting (��� � � 	 ) � � � � � ���� � � � ��� � � ��� � � � 	

as illustrated in Figure 4.3. Note that we here have restricted input resetting to
operate between neighbouring units, but this is not strictly required. With local
control in the three units, feedforward from unit 1 to unit 2 and 3 and from unit
2 to unit 3, and input resetting from unit 3 to unit 2 and from unit 2 to unit 1, the
resulting full multivariable controller is:� � ��� ��� � � #�C 	 � � ��� � � ����  � � ��� � � � � � ���� [ � ���[  L � # � ��� � � � � C 	 � � ���� [ � ���[ � L� ����  � � � � � ���� [ � � �[  � � � � C 	 � � ���� [ � ���[ � L� ���[  � � �[ � Q�Q�Q

Q�Q�Q
� � # � ��� � � � � � ���� [ � [ [� � � � ���� [ � [ [� � [ [

��
(4.33)�

� ����� �
�� � # � ��� � � � # � ��� � � � � � ���� [ � # � ��� � � � � � ���� [ � [ [� � � � � ���� [ � � � � � ���� [ � [ [� � � [ [

�� (4.34)

with � � ��� � � � � � � � ��� � �
��� ��� � � � � � � ��� � � ��� � � , where � ��� is the set point for the

controlled output in unit 3, whereas � � � and � ��� are the ideal resting values for the
inputs in tank 2 and 3.

The final controller in (4.33) and (4.34) may seem very complicated, but it can
usually be tuned in a rather simple cascaded manner. The feedforward elements
are normally the fastest acting and should normally be designed first. The local
feedback controllers can be tuned almost independently. Finally, the slow input
resetting is added, which will not affect closed-loop stability if it is sufficiently
slow.

4.4 Case study: pH neutralization

4.4.1 Introduction

Neutralization of strong acids or bases is often performed in several steps (tanks).
The reason for this is mainly that with a single tank the pH control is not quick
enough to compensate for disturbances (Skogestad, 1996). In (McMillan, 1984),
an analogy from golf is used: the difficulty of controlling the pH in one tank is
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compared to getting a hole in one. Using several tanks, and smaller valves for
addition of reagent for each tank, is similar to reaching the hole with a series of
shorter and shorter strokes. This is further discussed in Chapter 2.

In the present example we want to compare different control structures for
neutralization of a strong acid in three tanks (see Figure 4.4). This is clearly a
serial process. The aim of the control is to keep the outlet pH from the last tank
constant despite changes in inlet pH and inlet flow rate. For each tank the pH
can be measured, and the reagent (here base) can be added. Figure 4.4 shows the
process with only local control in each tank (

�
diagonal).

pHC

pHI

Base

pHC

pHI

Base

pHC

pHI

Base

Acid

pH 7 ±1

pH - 1

V1

V2

V3

q=0.005m3/s
∆cin,max=
±5mol/l

kd ~ 106

∆cout,max=±10-6mol/l

Figure 4.4: Neutralization of an acid in three tanks in series with local control in each
tank. Data: Outlet requirement: ��� ����� � , set-points tank 2 and 3: ��� � ��� �! and ��� � � � 	 .
Inlet acid flow ��� � ' � ( � � 	��%�!� � � ) and flow rate 	�� 	�	>�� � ��
 . Reactant (base): ��� � ��
( � � 	������ � � ), nominal flow: 	�� 	�	>�� � ��
 . � � � � � � � � � � � � � � � � .

4.4.2 Model

To study this process we use the models derived in Chapter 2. In each tank we
consider the excess

� �
concentration, defined as 	 � 	 �) � 	 *#��+ . This gives

a bilinear model which is linearized around a steady-state working point, so that
the methods from linear control theory can be used. We get two states in each
process unit (tank), namely the concentration, 	 , and the level. The disturbances
(feed changes mainly) enter in tank 1. We here assume that there is a delay of ���
for the effect of a change in inlet acid or base flow rate or inlet acid concentration
to reach the outflow of the tank, e.g. due to incomplete mixing, and a further delay
of ��� until the change can be measured. In the discrete linear state space model
these transportation delays are represented as extra states (poles in the origin). We
assume no further delay in the pipes between the tanks. The levels are assumed to
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be controlled by the outflows using a P controller such that the time constant for
the level is about 1/10 of the residence time ( � � � 7 ��	 � � � � � � , where � � is the
volume set-point).

The volumes of the tanks are chosen to 	 � 7 N �([ , which are the smallest possi-
ble volumes according to the discussion in Skogestad (1996). The concentrations
are scaled so that a variation of � 	 � � corresponds to a scaled value of � 	 . The
control inputs and the disturbances are also scaled appropriately. The linear model
is used for multivariable controller design, while the simulations are performed on
the nonlinear model.

4.4.3 Model uncertainty

The model presented in the previous section was the nominal model, which will
be used in the controller design. If the model gives an exact representation of the
actual process, we say it is perfect. Due to simplifications in the modelling or
process variations, there is often a discrepancy between the model and the actual
process. Often the model is idealized, i.e., simplified, to ease the modelling work,
the identification of parameters, and the controller design.

In this example we use linearized models in the MPC design. In the design
of (SISO) feedforward controllers a further simplification is that outlet flow vari-
ations are neglected. This gives a steady-state model error, but dynamically the
error is small due to slow level control. What we here consider as the “actual
plant”, is the full nonlinear model, possibly with the following errors:

� Offset of 0.2 (in scaled value) in control input � [ (last tank).

� � � measurement error of �R	 in second tank.

4.4.4 Local PID-control (diagonal control)

The conventional way of controlling this process is to use local PID-control of the
pH in each tank. Starting from the tunings obtained with the method of Ziegler
and Nichols (1942), and employing some manual fine tuning (by trial and error),
we obtained � # � �6��7 � 	 � 	 � ; � �

; � �
	 � < 7 : �	 � ��7=< : � (4.35)� � � � �6��7 ; < ; 	 � ; � �

; � �
	 � 	 ; �	 � 	>7 ; � (4.36)� [ [ � �6��7 ; �>: 	 � ; � �

; � �
	 � 	�< �	 � 	>7=< � (4.37)
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Figure 4.5(a) shows the pH-response in each tank when the acid concentration
in the inflow is decreased from 	������ �2��� to � ��� �2��� . As expected (Skogestad,
1996), this control system is barely able to give acceptable control, � � � � � 	
in last tank. However, the nominal response can be significantly improved with
feedforward or multivariable control as shown in the following.

4.4.5 Feedforward control (control elements below the diago-
nal)

We now want to study the use of feedforward control from upstream units. As
before, we let the pH in the first tank be controlled with local PID control (the
same tuning as before), since we do not measure inlet disturbances to tank 1, and
feedback is therefore the only possibility. We let the pH in the second and third
tanks be controlled with feedforward control only, namely with feedforward from
�  to � � and from � � to � [ . With “ideal” feedforward control based on the nominal
model we then get ������  � � � � � � � � �

� � � � (4.38)� ���[ � � � � � [ [ � �
�

� � � [ (4.39)

where
�

� � � � and
�

� � � [ are given by (4.8) and subscript minus indicates that the
net delay is increased to obtain a causal controller with zero or positive delay in
the controller. The two feedforward controllers will react ��� too late due to the
measurement delays in �  and � � , and thereby introduce a transient output error.
To avoid this, the last feedforward controller,

� ���[  , from �  to � [ , can be used to
eliminate this error by choosing

� [ �  from (4.31):� ���[  � � � � [ [ � � C 	�� � [ [ � � [ [ � � L C 	�� � � � � � � � � � L �

� � � � �

� � � [ (4.40)

Figure 4.5(b) shows a simulation on the same model as used for the feedfor-
ward controller design, and we can see that perfect control is acheived in tank 3
(solid line). However, when applied to a more realistic nonlinear model (incorpo-
rating flow rate changes), the feedforward controller fails (dotted lines).

4.4.6 Combined local PID and feedforward control (lower block
triangular control)

We now combine local PID-control in all the tanks, (4.35)-(4.37) with feedforward
control of tanks 2 and 3 (controllers

� ����  ,
� ���[  and

� ���[ � ). In
� ���[  it is now

necessary to take into account the feedback loop of tank 2 and use Equation (4.31):� ���[  � � 	
	�� � � � � � � � � [ [ � � C 	X� � [ [ � � [ [ � � L C 	�� � � � � � � � � � L �

� � � � �

� � � [ (4.41)
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(a) Local feedback control in all three
tanks: The PID controllers must be ag-
gressively tuned to keep the pH in the
last tank within ��� � .
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(b) Feedback control in tank 1 only, and
feedforward control of tanks 2 and 3:
With a perfect model (i.e. simulation on
idealistic model) the disturbance is can-
celled (solid line). With model error
(i.e.,simulation on a “realistic” nonlin-
ear model), the response is very poor
and drifts away (dotted line). � is only
given for the nominal case.
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(c) Local feedback control in all three
tanks combined with feedforward con-
trol of tanks 2 and 3: Even with model
error, the response in the outlet pH is
good (solid line).

Figure 4.5: Simple control structures applied to the neutralization process in Figure 4.4
(tank � (dash-dotted), tank 
 (dashed) and tank

�
(solid)). Disturbance in inlet concentra-

tion occurs at � � ����� .
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where
� � � is the PID controller of tank 2.

Again, with perfect model (i.e. simulated on the simplified model with con-
stant flow rates) the effect of the disturbance is eliminated (same result as in Fig-
ure 4.5(b)). Simulation on the more realistic model reveals an improvement com-
pared to the pure feedback and pure feedforward structures, as expected. The
feedforward controllers reduce the transient errors, whereas the PID controllers
remove the steady-state errors, as illustrated in Figure 4.5(c).

In Figure 4.6 the controller gains are plotted (lower left corner). The integral
actions are recognized from the high gains at low frequencies in the diagonal
elements. The sub-diagonal control elements are constant, whereas

� ���[  only has
an effect at high frequencies. This is where

� ���[ � � is no longer effective (error in
delay, 0 � � ��� gives feedforward control error control for frequencies above	 �80 ��� ��7 ; � 
 � ��� , see Chapter 6).

Note that with a larger model error, the positive effect of the feedforward con-
troller may be reduced, and the feedforward action may even amplify the distur-
bances.
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Figure 4.6: The controller gains of the lower block-diagonal control structure resulting
from combination of feedback (PID) and feedforward control (Section 4.4.6)

4.4.7 Multivariable control

Original MPC control (full multivariable controller) Figure 4.7(a) shows the
response with a � 0 � MPC controller ((Muske and Rawlings, 1993); see also Ap-
pendix A). To obtain the current state at each time step for the controller, a state
estimator is used. The estimated states in this “original” MPC-controller also
includes the two (unmeasured) disturbances: Inlet flow rate and inlet excess con-
centration, modelled as integrated white noise (we will discuss this choice later).
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The controller design is based on a discretized model, whereas in the simulation
only the controller is discrete. Even if this is a feedback controller, we see that
the disturbance response is similar to that of combined local feedback and feed-
forward control, and the main reason for the large improvement compared to the
local feedback case (Figure 4.5(a)) is in fact the “feedforward” effect. From the
lower plots in Figure 4.5 and Figure 4.7(a) we can see that the control input in
tanks 2 and 3 acts both earlier and with a steeper slope for MPC control than for
local control. Note that with MPC the control inputs for tanks 2 and 3 react before
the disturbance can be measured in the two tanks. The MPC also has a higher
order controller, which may explain why it reacts even faster than the combined
feedback/feedforward controller (Figure 4.5(c)).

“Feedforward” part of MPC-controller To study the “feedforward” effect sep-
arately, we design a MPC-controller that uses the pH measurement in the first tank
only, but adjust the reactant flow rates to all three tanks as shown in Figure 4.7(b).
The response for the nominal case is similar to the simulation with the full MPC-
controller shown in Figure 4.7(a). If, however, a model error is introduced, e.g. by
simulation on the nonlinear model instead, a steady-state error occurs for outlet
pH. The reason for this is the lack of feedback control in the last two tanks.

The individual gains of the � 0 � MPC-controller are shown as a function of
frequency in Figure 4.8(a) (solid lines). The diagonal control elements are the
local controllers in each tank, whereas the elements below the diagonal represent
the “feedforward” elements. From these plots we get an idea of how the multi-
variable controller works. For example, we see that the control input to tank 1
(row 1) is primarily determined by local feedback, while in tanks 2 and 3 (rows 2
and 3) it seems that “feedforward” from previous tank is more important for the
control input. In tanks 2 and 3 the control actions are smaller, which is also con-
firmed in the simulation (Figure 4.7(a)). The local feedback control elements on
the diagonal compare well with the PID controllers (dashed lines), except that the
gain is reduced for tanks 2 and 3, but this depends on the tuning of the MPC. At
high frequencies the “feedforward” elements are similar to the manually designed
feedforward controllers.

As discussed in Section 4.3, it is not straight-forward to interpret the steady
state behaviour from the gain plots of the controller elements when all the ele-
ments have large gains at low frequencies as in Figure 4.8(a). In Figure 4.8(b) we
therefore show the individual gains of the sensitivity function, � � � ��� � � � � 

.
To have no steady-state offset in an output we need that all elements in the cor-
responding row of � to be small at low frequencies. From Figure 4.8(b) we then
see that we do have integral action for output 1, but not for outputs 2 and 3. We
should therefore expect steady-state offset in tank 3. However, the simulations
in Figure 4.7(a) show no offset. The reason is that the integral effect in the first
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Figure 4.8: The original multivariable MPC controller: Frequency domain analysis.

tank removes the concentration effect, and the “feedforward” control gives the
correct compensation for the flow rate disturbance. However, if some unmodelled
disturbance or model error is introduced (e.g. a constant offset in � [ or a measure-
ment error in tank 2), then we do indeed get steady-state offset. This is shown in
Figure 4.9. The local PID controllers give no such steady-state offset.

Modified MPC-controller with integral action In the “original” estimator used
above we only estimated the inlet disturbances. We now redesign the controller
by estimating one disturbance in each tank: The concentration disturbance to the
first tank and disturbances in the manipulated variables in tanks 2 and 3 ( � � and
� [ ). The resulting controller gains are shown in Figure 4.10(a). With this design
the gain in � � ����� � � is low at low frequencies for all tanks (Figure 4.10(b)), and
the simulations in this case give no steady-state offset (Figure 4.11). This agrees
with the result from Chapter 5 that the number of disturbance estimates in the
controller must equal the number of measurements.

This illustrates one of the problems of the “feedforward” control block, namely
its sensitivity to static uncertainty. Simulations using the perfect model may lead
the designer to believe that there is integral effect in the controller even if it is not.
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4.4.8 MPC with input resetting

In the simulations above we gave set points for the pH in each tank. Actually
we are only interested in the pH in the last tank, so that giving set points for
the other two is not necessary. Since we have three control inputs, this leaves
two extra degrees of freedom as described in section 4.3.5, which may be used
for input resetting. The MPC controller is easily modified to accommodate this.
Figure 4.12 illustrates how this works after a unit step in the disturbance: At
steady-state all the required change in base addition is done in the first tank. Since
we do not measure the actual base addition, offsets in the control input are not
compensated for.
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Figure 4.12: MPC with input resetting.

4.4.9 Conclusion case study

The case study shows a large improvement that is obtained by the introduction
of a multivariable controller instead of single loop control (Figure 4.5(a)). The
improvement is caused by “feedforward” effects (Figure 4.5(c)), and with model
errors, the “feedforward” may in fact lead to worse performance.

Integral action or strong gain in the local controllers at low frequencies is
required, even if the “feedforward” effect itself nominally give no steady-state.
Feedback to upstream tanks may be used to bring the inputs to their ideal resting
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positions. The example indicates that it is possible to get a good performance
with careful use of a multivariable controller or a combination of local control,
“feedforward” from tank 1 and 2 and possibly input resetting.

4.5 Discussion

There are several ways to avoid steady-state offsets with MPC controllers. The
most common method is to estimate the bias in the outputs, i.e. the difference
between the predicted and the measured outputs, and compensate for this bias.
However, performance is often improved by estimating input biases, or distur-
bances (Muske and Rawlings, 1993; Lee et al., 1994; Lundström et al., 1995).
In this paper we have followed this approach. We ended up with estimating the
concentration disturbance into first tank and input biases for tanks 2 and 3 (three
input biases gives similar results). Our controller handles well both input dis-
turbances (see Figure 4.7(a)) and output disturbances or measurement errors (see
Figure 4.11(b)).

We have also tried to estimate output biases, but this gave a very slow settling
in response to inlet disturbances. The reason is the long time constants in our pro-
cess, which give the output bias estimates a ramp form (Lundström et al., 1995).
The controller then faces a problem similar to following a ramp trajectory.

In Chapter 2 we found that the minimum volume in each tank is limited by the
delays in each tank. In the present paper we found that with a multivariable con-
troller for simultaneous control of all three tanks, these limitations are no longer
valid provided a sufficiently accurate process model is used. The reason for this
is that the multivariable controller does not have to wait for the measurement in
last tank before it takes action (due to the “feedforward” effect). To be able to
achieve a nominally perfect “feedforward” control effect, the delay from at least
one control input to the output must be shorter or equal to the delay from a mea-
surement in the disturbance to the output. The effect of model uncertainty on the
feedforward control improvements must be evaluated for the process. If there is
an improvement, one may design smaller tanks compared to the sizes given in
Chapter 2, or reduce the instrumentation.

4.6 Conclusions

An example of neutralization of a strong acid with base in a series of three tanks is
used to illustrate some of the ideas in the paper. This is obviously a serial process.
The example illustrates that a multivariable controller yields significant nominal
improvements compared to single loop PID control (compare Figure 4.7(a) with
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Figure 4.5(a)). This is mainly due to “feedforward” elements (see Figure 4.5(c)).
Due to imperfections in the process model, including unmodelled disturbances,
an efficient feedback effect must also be included. To obtain this one must:

� include measurements late in the process.

� include integral action if offset free steady-state is important. For MPC con-
trol, the use of input error estimates is one efficient method, which requires
that the disturbance vector is chosen with some care.

Testing of the controller on a too idealistic process model may give the impression
that the feedback is better than it actually is. Simulations with the multivariable
controller active must include all possible disturbances, model offsets (for exam-
ple one may apply the controller on a more realistic (nonlinear) process model)
and also offsets in the measurement signals.

Assuming no active constraints, a linear analysis may be used to analyze the
controller. The frequency dependent gain in each channel may give insight into
how the controller utilize each measurement and the magnitude of the control
actions for each input. The steady-state behaviour can be seen from the low fre-
quency gains. But often more than one channel in a row have high gain at low
frequencies, for example when inversed based methods like IMC is used, and
then it is difficult to interpret the result. It is then better to consider the elements
of the sensitivity function matrix. An offset-free steady-state control for a specific
output requires that all the elements in the corresponding row have low gain at
low frequencies.

When designing the controller one must also consider which of the outputs
that is really important. If the number of inputs exceed the number of (important)
outputs, one may either give set-points to other (less important) outputs, or one
may let the controller bring some of the inputs back to ideal resting positions.

In this study we used multivariable MPC, but very similar results have also
been found for a multivariable

� �
-controller (Faanes and Skogestad (1999), i.e.,

Thesis’ Appendix A).
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Appendix A State space MPC used in case study

Here we briefly describe the MPC controller of Muske and Rawlings (1993) under
the assumption that the constraints are not active. For details we refer to Chapter 5.

The MPC controller uses an estimate of the current states of the process and a
state space model to predict future responses to control input movements. By let-
ting the control input change each time step over a certain horizon, and thereafter
held constant, the optimal sequence of control inputs is calculated. The criterion
for the optimization is

� � �� ��

�
�
� 
 � C � �� � � � � � � � � � � � � ��� � � � � � 0 � � � � � �,0 � � � � L (4.42)

where �
�� is the vector of � future control inputs, the first at sample number � , � �

is the output vector at time � , � � is the control input at time � , 0 � � is the change
in � � since last time step and

�
, � and � are weight matrices. Note that in the

crierion we assume that the set-point for the output, � � � � . Non-zero set-points
are handled by a steady-state solver. Only the first control input is applied, since at
next time step the whole sequence is recalculated, starting from the states actually
obtained at that moment.

Without constraints the MPC can be represented as state feedback control, i.e.
the control input � � at time step no. � can be expressed by

� � � � � � � � � � � �  (4.43)

where � � is the state vector at time � and
�

and
� � are constant matrices, inde-

pendent of time provided the model is assumed time invariant. The dependence
of the control input at the previous step, � � �  , comes from the weight on change
in � in the optimization criterion.

Since all the states are not measured, we estimate them for example with a
Kalman filter. For the MPC algorithm we use a discretized model with time step
1 second and use a zero order hold method for the discretization since the inputs
are held constant between the time steps. In the discretized model time delays are
represented exactly, as long as they are multiples of the time step.

In Chapter 5 we derive a state space formulation for the controller and the
estimator:

� �� �  � � � �� � � � �� � � � � (4.44)

� � �
�
� � � � � �� � �

� � (4.45)

where � � is the control input at sample number � , � �� is the controller/estimator
state vector, � �� is the measurement vector and � � the reference, which may be seen
as a disturbance to the controller. � , � ,

�
, � , � and

�
are constant matrices.
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For frequency analysis of the controller we may convert this discrete controller
into a continuous one using d2c in Matlab (Tustin method), and Laplace transform
yields:

� � ��� � � ����� � � � ��� � �
� � ��� � � � ��� (4.46)

We have chosen weights in the MPC optimization criterion as
� �
� � � � � 	��>� �	 � 	 � , � � � and � � � in the MPC optimization criterion (4.42). For the estima-

tor the co-variance matrices are
��� � � (process noise) and � � � � (measure-

ment noise).
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Appendix B Derivation of equations (4.20) and (4.31)

With pure feedforward control we get the following control error

E � � �

� � � � � � �  � � � � � � ���� � � �  � � �  � � � � � � ���� � � � � � � � �
� C � � � � � � � � � � � � � L

�

� � � � � � �  � � � � � ������ � � � � � � � � (4.47)

where we have inserted feedforward from unit � � 	 from (4.17). With a combi-
nation of feedback and feedforward control we get (with (4.17))

E � � � 	�� � � �  � � �  � � �  � � �  � �  C � � � � � � � � � � � � � L
�

� � � � � � �  � � � � � � � �� � � � � � � � � (4.48)

In both cases “ideal” feedforward requires E � � � for all � � �  and � � � � :
C � � � � � � � � � � � � � L

�

� � � � � � �  � � � � � � ���� � � � � � � � � � � (4.49)

We consider first pure feedforward,
� � � � � � � �  � � �  � � , and find the transfer

function from � � � � to � � �  :

� � �  � � �

� � � � �  � � � �  � � �  � ���� �  � � � � 	 � � � � (4.50)� � �� �  � � � � � � � � � �  � � �  � �
�

� � � � �  yields

� � �  � C � � � � �  � � �  � � � �  � � �  � � L
�

� � � � �  � � � � (4.51)

and upon inserting (4.51) into (4.49) we obtain

� � � � � ���� � � � � � C � � � � � � � � � � � � � L
�

� � � � C � � � � �  � � �  � � � �  � � �  � � L
�

� � � � �  � �
leading to (4.20).

Second, we find the transfer function from � � � � to � � �  for a combination of
local feedback and feedforward,

� � �  � � � �  � � �  � � �  � � �  � � �  � � �

� � � � �  � � � �  � � �  � ���� �  � � � � 	 � � � � (4.52)

where
� ���� �  � � � � � � � � � �  � � �  � �

�

� � � � �  . Then

� � �  � � 	�� � � �  � � �  � � �  � � �  � �  C � � � � �  � � �  � � � �  � � �  � � L
�

� � � � �  � � � � (4.53)

and by inserting this into (4.49) it follows

� � � � � ���� � � � � � C � � � � � � � � � � � � � L
�

� � � � � 	X� � � �  � � �  � � �  � � �  � � 

C � � � � �  � � �  � � � �  � � �  � � L
�

� � � � �  � � (4.54)

which gives (4.31).
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Abstract

In order to be able to use traditional tools when analysing a multivariable controller as MPC,
we develop a state space formulation of the resulting controller for MPC without constraints or
assuming that the constraints are not active. Such a derivation was not found in the literature. The
state space formulation is used in Chapters 4 and 7. The formulation includes the state estimator.

The MPC algorithm used is a receding horizon controller with infinite horizon based on a state
space process model. When no constraints are active, we obtain a state feedback controller, which
is modified to achieve either output tracking, or a combination of input and output tracking.

When the states are not available, they need to be estimated from the measurements. It is often
recommended to achieve integral action in a MPC by estimating input disturbances and include
their effect in the model. We show that to obtain offset free steady state the number of estimated
disturbances must equal the number of measurements. The estimator is included in the controller
equation to obtain the overall controller with the set-points and measurements as inputs, and which
give the manipulated variables.

One use of the state space formulation is to combine it with the process model to obtain a
closed loop model. This can for example be used to check the steady-state solution and see if
integral action is obtained.
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5.1 Introduction

In this paper, we develop a state-space formulation for a MPC without constraints
or assuming that the constraints are not active. This state-space formulation of
the controller enables the use of traditional tools to get insight into how the con-
troller behaves (see Chapters 4 and 7). Maciejowski (2002) (independently) use
a linear formulation for a MPC controller to analyze its controller tuning for a
paper machine headbox. He combines the linear controller formulation with the
process model, and calculates the singular values of the sensitivity function and
the complementary sensitivity function.

The main idea behind MPC is that a model of the process is used to predict
the response of future moves of the control inputs (the inputs that the controller
can manipulate to control the process). This prediction is used to find an optimal
sequence of the control inputs. Optimal means that a certain criterion containing
an output vector and the vector of the control inputs is minimized.

In most MPC implementations the control inputs are assumed to be held con-
stant within a given number of time intervals. At a given time, the first value in the
sequence of control inputs is implemented in the process. The prediction depends
on the current state of the process, and this will also the optimal sequence do. At
the next time step, the state being reached is therefore used in the calculation of a
new optimal control input sequence. This sequence will not necessarily be what
was computed at the previous time step, due to the effects of model errors and
unmodelled disturbances. So, at each time step we only implement the first step
in the control input sequence, and discard the rest.

Normally we include constraints in the optimization problem. These are con-
straints that naturally occur in a process, like the range of control valves and pump
speeds (on control inputs), and safety-related constraints on the outputs. One may
also restrict the rate of change of the control inputs.

For a review of industrial MPCs we refer to (Qin and Badgwell, 1996; Badg-
well and Qin, 2002).

In this chapter, we consider the MPC formulation proposed by Muske and
Rawlings (1993). This MPC is based on a state-space model. Our assumption is
that no constraints are active, and this also covers the case when the same con-
straints are active all the time and the degree of freedom is reduced. Bemporad
et al. (2002) (first appeared in (Bemporad et al., 1999)) have shown that the con-
troller also for the case with dynamic constraints is piecewise linear.

Since the models are not perfect, and there always are unmodelled distur-
bances, the MPC needs some correction from measurements. The most common
approach is to estimate some output bias in the measurements, and correct for
this bias. However, for integrating processes or processes with long time con-
stants, this method has proved unsatisfactory (Muske and Rawlings, 1993; Lee
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et al., 1994; Lundström et al., 1995). We therefore estimate input disturbances,
which is straight forward using a state-space representation of MPC.

As known, MPC without constraints is a special case of optimal control, and
in Sections 5.2, 5.3 and 5.4 we will demonstrate how the control input can be
expressed by the current state and the previous control input. The first of these
sections, Section 5.2, covers the simple case when the reference for the output
vector is zero, while Section 5.3 handles non-zero references. When the number
of control inputs exceeds the number of outputs, the extra degree of freedom may
also be used to give references to the control inputs (Section 5.4). Since the full
state vector normally is not measured, we include a state estimator, which also
estimates input disturbances, in Section 5.5. The total controller formulation, i.e.,
the control inputs, given by the measurements, is given in Section 5.6. In Sec-
tion 5.7 we find the number of estimated disturbances needed to obtain effective
integral action. We develop the closed loop model of the system in Section 5.8.

5.2 Derivation of equivalent controller from reced-
ing horizon controller without active constraints

Muske and Rawlings (1993) present a model predictive control algorithm based
on the following state-space model:

� � �  � � � � � � � � � � ��� � � � � � 	 � ; � 7�7�7 (5.1)

� � �
�
� � (5.2)

Here � � is the state vector, � � the control input vector, � � the vector of (unmea-
sured) disturbances and � � the output vector, all at time � . The model is assumed
to be time invariant so � , ���

�
and � � are constant matrices. The optimal control

input minimizes the following infinite horizon criterion:

� � �� ��

�
�
� 
 � C � �� � � � � � � � � � � � � � � � � � � � 0 � � � � � �,0 � � � � L (5.3)

Here �
�� � � � � � � �  7�7�7 � � � � �  	 � is a vector of � future moves of the

control input, of which only the first is actually implemented. The control input,
� � � � , is assumed zero for all � � � . In the criterion it is assumed that the refer-
ence for � is zero. We assume that the process is stable, and Muske and Rawlings
(1993) show how this formulation can be transformed into the following finite
optimization problem:

� � �� ��
� � � C � �� L � � �

�� � ;RC � �� L � � � � � � �
� � �  � (5.4)
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where
�

, � and
�

are time independent matrices expressed by the model ma-
trices, � , � and

�
, and the weight matrices,

�
, � and � . Since � � is unknown

in the future, the term � � � � from (5.1) is omitted in the derivation of (5.4). For
normal use of this MPC algorithm, the control input is found by optimizing (5.4)
subject to given constraints on the outputs, the control inputs and changes in the
control inputs. Assuming no active constraints, however, the optimum of (5.4) can
be found by setting the gradient equal to zero (Halvorsen, 1998):

� � � C � �� L ��; � �
�� � ; � � � � � �

� � �  � � � (5.5)

which implies
�
�� � � � �  � � � � � �  �

� � �  (5.6)

Only the first vector � � from �
�� is applied:

� � � � � � � � � � � �  (5.7)

where
�

and
� � consist of the first � rows in � � �  � and

� �  �
, respectively,

and � is the number of control inputs.
Since

�
, � and

�
are constant, also

�
and

� � are constant matrices. The
first term can therefore be recognized as state feedback. The second term comes
from the weight on the change in control input from the original criterion. The
matrix

�
only contains � and zeros, so when no weight is put on the change in

the control input, � is zero, and
� � � � .

5.3 The steady-state solution

Here, we consider tracking of outputs. If the output reference vector, � � , is
nonzero, (5.7) must be shifted to the steady-state values for the states and the
control inputs:

� � � � � � � � � � � �
� � � � � �  � � � � � � � (5.8)

or

� � � � � � � � � � � �  � � � � � � � 	 � � �
� � 	 (5.9)

� � and � � can be found from the steady-state solver:

� � ��
��� � � ���

� � � � � � � � � � � � � � � � � � � (5.10)

subject to �
� � � � ��

� 	 � � �
� � 	 �

�
� ��� �
� �

	 (5.11)
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�'1 ��� � � � �'1.354 (5.12)

where � � and � � are the references for the output and the control input, respec-
tively. Again, we assume that the limitations are never active, and that we have no
extra freedom for the control inputs (number of control inputs equals number of
outputs), in which case the problem reduces to solving the equation set (5.11).

Assuming square systems (i.e., equal number of control inputs and references),
no poles in the origin (which makes � � � � � invertible) and that

�
� � � � � �  � is

invertible (it is at least quadratic from the first assumption), we get the following
solution: � � �

� � 	 ����� � � ��� � � � (5.13)

where

��� � �
� � � � � �  � C

�
� � � � � �  � L � 

C
�
� � � � � �  � L �  � (5.14)

� � � �
� � � � � �  �	� � � C

�
� � � � � �  � L �  � � � � � � �  	 � �

� C
�
� � � � � �  � L �  � � � � � � �  � �

� (5.15)

Since we have no knowledge of future disturbances, we assume that it will keep
its current value, that is � � �
� � . We note that � � �

�
� � � � � as desired, and that

if we assume that the disturbance enters via the control inputs, i.e., � � � � , the
expression for � � simplifies to

� � � � � �
� � 	

i.e., � � � � � � and � � � � .
Now (5.9) can be expressed with � � and � � :

� � � � � � � � � � � �  � � � � � � � ��� � (5.16)

where
�

and
� � are defined in Section 5.2 and� � � � � � � � � � � ��� (5.17)� � � � � � � � � � � � � (5.18)

5.4 Generalization with tracking of inputs

In this section, we generalize the steady-state solution to include tracking of both
inputs and outputs. The total number of references that it is possible to track is
limited by the number of (independent) control inputs.
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We collect the inputs that we want to give a reference into the vector �  , and
likewise the outputs we want to give a reference into �� . The rest of the inputs
and outputs are assembled into � � and � � , respectively. The model may now be
formulated as

� � �  � � � � � �  � � � � � � � � � � � � � �
��� � �

�
 � � (5.19)

��� � �
� � � �

where we have distributed the columns of � into the two matrices �1 and � �
corresponding to the division of � � , and the rows of

�
is divided into

�
 and

� �
corresponding to the division of � � . At steady state � � � � � � � and � � � � � � � . Now
� � and � � can be expressed by � � � , � � � , and � � ( � � � ):� � �

� � 	 �
�� � �
� � �
� � �

�� � ��� � � � � ��� � � � � � � � � � � (5.20)

where

��� � �

��
� � � � � � �  � � C �  � � � � � �  � � L � 

�
C
�

 � � � � � �  � � L � 

���
� (5.21)

� � � �

��
� � � � � � �  � � � � � C �  � � � � � �  � � L �  �

 � � � � � �  	 � 
�

� C
�

 � � � � � �  � � L �  �
 � � � � � �  � 

� �
� (5.22)

� � � ��
� � � � � � �  � � � � � C �  � � � � � �  � � L �  �

 � � � � � �  	 � ��
� C

�
 � � � � � �  � � L �  �

 � � � � � �  � �

���
� (5.23)

provided that � � � � � and

�
 � � � � � �  � � are invertible. For � � we obtain

� � � � � � � � � � � �  � � � � � � � � � � � � � � � � � � � (5.24)

where � � � � � � � � � � � � � � � (5.25)� � � � � � � � � � � 	 � � � (5.26)� � � � � � � � � � � � � (5.27)

Introduction of � � � ���� � � � � � 	 � and
�

� � � � � �

� � �

	
yields

� � � � � � � � � � � �  � �
� � � � � � � (5.28)
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5.5 State and disturbance estimator

To calculate � � from (5.16) or (5.28) one must know the state, � � , and if it is not
measured, it must be estimated from the measurements. The same applies also to
the disturbance vector � � . If we assume that neither the states nor the disturbances
are measured, we extend the state variable with the disturbance vector

�� � �
� � �
� � 	 (5.29)

As basis for a state estimator the following model based on (5.1) and (5.2) is
introduced:

�� � �  �
�

� �� � �
�

� � � � � � (5.30)

�
�� �

�

�
�� � � � � (5.31)

where � � and � � are zero-mean, uncorrelated, normally distributed white stochas-
tic noise with covariance matrices of

���
and � � respectively, and

�

� �
�
� � �� � 	 � �

� �
�
� � 	 � �

�
� � � � � 	

� �� is the measured output vector, not necessarily the same as the output vector
that shall track a reference, and

�
� is the corresponding matrix in the estimator

model, mapping from the states to the measured output vector. We have modelled
the disturbance as constant except for the noise.

The augmented state estimator is then formulated as
�� � �  �

�

�
�

�� � �
�

� � � (5.32)
�

�� � � �� � � � � � �� � �

�
�� � 	 (5.33)

where � is the estimator gain matrix, for example the Kalman filter gain.
�� � � 

is called the a priori estimate (since it is prior to the measurement), and
�

�� � the a
posteriori estimate (after the measurement is available). For a Kalman filter, � is
given by the solution of a Ricatti equation:

� �
�

�
�
� � �

�

�
� � �

�
�

�

�
� � � � 	 � 

�

�
� 	 �

� � � � �
(5.34)

� � �
�

�
� � �

�
�

�

�
� � � � 	 � 

(5.35)

We want to express the estimator in a single expression, and this can be done in
two ways, depending on which of the two estimates one prefers to use. Alternative
1: A posteriori estimate,

�
�� � :

�
�� � �  � � � � �

�

�
	 �

�
�

�� � � � � � �
�

�
	 �

� � � � � � �� �  (5.36)
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Alternative 2: A priori estimate,
�� � �  :

�� � �  �
�

� � � � �
�

�
	 �� � �

�

� � � �
�

� � � �� (5.37)

Remark 1 Muske and Rawlings (1993) refer to Åström (1970) who used a priori
estimate (Alternative 2), (noting that their � corresponds to our

�

� � ). However,
according to (Rawlings, 1999) they actually used Alternative 1 (a posteriori) in
their work. Normally the control input is implemented directly after a new mea-
surement has been sampled, in which case the a posteriori estimate is preferred
since it utilizes this new measurement. Thus, in this paper we will use Alternative
1, the a posteriori estimate.

5.6 State-space representation of the overall control-
ler

In this section, we will form the overall controller, containing the state feedback,
the steady-state solution and the estimator on state-space form.

With the extended state vector
�� � from (5.29) and
�� � � � � � � � (5.38)

the controller equations (5.16) and (5.28) can both be expressed by

� � �
�� �� � � � � � � �  � �

� � (5.39)

For (5.16) (without input resetting) � � � � and
�

� � � � . Since
�� � generally

is not available, we use the estimate
�

�� � . Combination of the controller equation
(5.39) with the estimator difference equation (5.36) yields

�
�� � �  � �

�
�

�� � � �	� � �
�

�
	 �

� � � � � �  � � � � �
�

�
	 �

� � � � � � � �� �  (5.40)

� � �
�� �

�� � � � � � � �  � �
� � (5.41)

where
�

� � � � � �
�

�
	 � �

� �
�

�
�� 	 . This is not an ordinary discrete state-space

formulation. First, � � �  and
�

�� � do not have the same index on the right side of
(5.40). To overcome this we introduce the artificial state variable ��� � �

�� � � � � �� :

� � �  � �

� � � � �

� � � �� � � � � �
�

�
	 �

� � � � � �  � � � � �
�

�
	 �

� � � � (5.42)

� � �
�� � � � �� � � �� � � � � � �  � �

� � (5.43)
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Next, the term � � �  is a problem. We first assume that in the optimization
criterion (5.3) � � � . Then

� � � � , and we get an ordinary discrete state-space
system with ��� as the states, � �� as the input and � � as the output. The reference,
� , can be seen as a ”disturbance” to the controller. We may express the controller
as � � �  � � � � � � � � � �� � � � �

� � �
�
� � � � � � � �� � �

� �
(5.44)

where � � � �

� , � � � �

� � ,

�
� �

��
, � � �

�� � , � � � � � � �
�

�
	 �

� � � and
�
� � �

� .
For � �� � we have not yet obtained the controller on ordinary state-space

form. We first express the controller as

� � �  � � � � � � � � � �� � � � ��� � � � � � 
� � �

�
� � � � � � � �� � �

� ��� � � � � �  (5.45)

where in addition to the definitions above � � � � � � �
�

�
	 �

� � � and
�
� � � � .

We repeat � � shifted one time step,

� � �  � � � � � � � � � �� � � � � � � � � � � 
� � �  �

�
� � � �  � � � � �� �  �

�
� � � � � � �

� � �
�
� � � � � � � �� � �

� ��� � � � � � 
(5.46)

insert for ��� �  in the expression for � � �  and re-arrange:

� � �  � �
� � � �

�
� � � � � �  �

�
� � � � �

�
�
� � � � �� � � � � �� �  �

�
� � � ��� �

� �
� � � �

� � � �  �
�
� � � � � � � �� � �

� �� � �  � � � � � �  � � � � � � � � � �� � � � �
(5.47)

We now introduce the state vector

�� � �
�� � �
� � � � �

�� (5.48)

and obtain

�� � �  �
�� � �

�
� � �

�
� � �� �

�

�
�� � � � �

�� �� � �
��
�
� � �
� �
� �

�� � ��
�

�� � ��
�

�� � �� �  � ��
�
� � � � �

�
�
�
� �

�� �

(5.49)
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Again, we have � �� �  in the expression for
���� �  , and introduce

�� � � �� � �
�� � ��

�

�� � �� (5.50)

which yields

�� � �  �
�� � �

�
� � �

�
� � �� �

�
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�
� � �
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� �
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�

��
�
� � � � �

�
�
�
� �

�� �

(5.51)

For � � we obtain

� � � � � � � 	 �� � � � � � � 	 �� � � � � � �� (5.52)

which yields the following expression for the total controller:

�� � �  �
�

� � �� � � �

� � � �� �
�

� � �
� � �

�

�
�

�� � � �

� � � ��
(5.53)

where

�

� � �
�� � �

�
� � �

�
� � �� �

�

�
�� � � � �

�� � �

� � �
�� � � � � �

�
� � �

� �
� �

��
�

�
� � � � � � 	 � �

� � � � � �
�
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�
� � � � �

�
�
�
� �

��
In summary, we have shown that with no active constraints, the MPC con-

troller with augmented state estimator can be expressed on discrete state-space
form.

If we instead use the a priori estimate (Alternative 2), we get a different con-
troller with other poles.

5.7 On the number of estimated disturbances

In this section, we will discuss the number of estimated disturbances (the dimen-
sion of

�

� � ) necessary to avoid steady-state offset. According to Muske and Rawl-
ings (1993), the number of elements in

�

� � can not exceed the number of measure-
ments if observability of the estimator shall be achieved. But what is the smallest
number required?
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We first have to specify clearer what ”no steady-state offset” means. If the
process is perturbed by measurement noise and disturbances that change their
value from time step to time step, the control will never be offset free, and no
steady state will be obtained. Thus, we will consider the response when the noise,
the model error and the disturbances are constant. (Alternatively, one may model
noise, model error and disturbances as stochastic processes and consider a large
number of experiments.)

Using as before the a posteriori estimate, the estimate of the measurement is

�

�
�� �

�
� �� � (5.54)

In order to obtain a offset free steady state, the estimator must provide a correct
state estimate for the MPC despite model errors, constant measurement errors
or noise and a constant input disturbance at steady state. More precisely, the
prediction of the measured output must equal the actual one:

�

�
�
� � � �� (5.55)

We let index � to denote steady state.
We want to see what this condition means for our MPC and estimator, and first

we extract the expression for � � �  from the estimator equation (5.36):

�� � �  � � � � � �
�
� � � �� � �
� � � � �

�
� � � � � � � � � � �

�
� � � �

�

� � � � � �
�� � 

(5.56)
where � � is the upper part of � , corresponding to the dimension of

�� � . At steady
state

�� � �  � �� � � �� � (5.57)

which yields

� � � � � � � �
�
� � � � �� � � � � � � �

�
� � � � � � � � � � �

�
� � � �

�

� � � � � �
�
� (5.58)

To find � � we cannot use (5.13) or (5.20) since these include the actual state and
disturbance vectors and not their estimates. Instead we apply (5.39) which yields
for the steady-state control input

� � � � ��� � � � �  � �� � � � � � � � � �  � � �

� � �
� ��� � � � �  �
� � (5.59)

We insert this into (5.58) and obtain

C � � � � � � �
�
� � C � � ��� � � � � � �  � L�L �� � �

� � � � �
�
� ��C ��� ��� � � � �  � � � � � L �

� � (5.60)

� � � � � �
�
� � ��� � � � � � �  �

� � � � � �
�
�
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To simplify the notation we introduce the matrices
�  � � � � � � � � � � [ � � � � 

(5.61)
� � � � � � � �

�
� � (5.62)

� [ � ��� ��� � � � � 
(5.63)

and obtain for the a posteriori state estimate
�� � �

�  � � � [ � � � � �  � � � � [ � � � � ��� �

� � �
�  � � �

�
� (5.64)

Thus (5.54) and (5.55) yields

�
�
� �

�
� �� � �

�
� �  � � � [ � � � �

�
� �  � � � � [ � � � � � � �

� � �
�
� �  � � �

�
�

(5.65)
which leads to the following matrix equation�

� �  � � � [ � � ���
�
� �  � � � � [ � � � � ��� �

� � � �
�
� �  � � � � � � �� � �

(5.66)
In (5.66) the number of scalar equations equals the number of measurements

(the number of rows in

�
� ). The only free variables are the elements of

�

� � . To
obtain an offset free steady-state solution of the control problem there must exist
a solution of (5.66), which implies that the number of elements in

�

� � must be
equal or greater than the number of measurements (independent of the size of the
reference, � , and the number of control inputs, � ). Thus, since the number of
estimated disturbances cannot exceed the number of measurements (see above),
we may conclude that:

If offset free steady state shall be obtained, the number of estimated
disturbances must be equal to the number of measurements.

This was, independently, also found by Muske and Badwell (2002), except that
they do not distinguish between outputs to be controlled by the MPC and the
measurements. Such a distinction proves to be useful in Chapter 7, where an
experimental illustration is given.

Remark 2 In the general case (5.66) cannot be used to determine
�

� � given � and
� �� . It will often be many

�

� � that fulfills (5.66), and the value of
�

� � will depend on
the disturbance, measurement or model error that is present.

Example 5.1 For the neutralization example in Chapter 4 we use three measure-
ments, and thus estimation of three disturbances is required. For the ”original”
MPC we only estimate two input disturbances, and the result is insufficient inte-
gral action, as expected. The modified MPC with three disturbance estimates gets
full integral action.
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5.8 Closed loop model

The combination of the process model with the controller yields the closed loop
model of the system. The process is expressed by the discrete model (5.1) and
(5.2) which we repeat for the actual process, marked with a prime:

� � �  � �
� � � � �

�
� � � � �� � � � � � � 	 � ; � 7�7�7 (5.67)

� � �
�
� � � (5.68)

The vector of measurements, � � , is expressed by

�
� �

�
� � � � � � � (5.69)

where

�
� � is the matrix mapping from the states to the measured output vector

and � � is the measurement error. The controller is expressed by (5.44) or (5.39).
� � and � � are then eliminated from the equations by combining the controller with
(5.67), (5.68) and (5.69). We then get the following closed loop model (where we
have omitted the tilde in the controller matrices from (5.39)):

� � �  � � � � � �
�
� �

�
� � � � � �

�
�
� � � � �

�
� � � � � �

� �
� ��� �

�
� � � (5.70)� � �  � � �

�
� � � � � � � � � � � � � � � � � � (5.71)

� � �
�
� � � (5.72)

We combine the process states, � � , and the controller states, � � into� � � � � � � ���� 	 � and obtain the following model

� � �  � � � � � 0 ����� � � ��� � � (5.73)

� � � � � � (5.74)

where
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�
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�
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�
� � � � 	 (5.75)

0 �
�
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� �
�

� � 	 (5.76)

� �
�
�
�
�� 	 (5.77)

� � �
�
�
� �

� � 	 (5.78)

� � � � � � 	
(5.79)
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One possible use of the closed loop model is to study the steady state of input
steps. Introducing the time-shift operator ��� E � � where � is the time step, gives

� � � � � � � � � � � � �  0 � � � � � � � � � � � � �  � � � � � � � � � � � � � �  � � � � �
(5.80)

The z-transform of a unit step is � � � � � 	 � . We apply a unit step on one of the
inputs at a time. This may be formulated as

� � � � ��� �� � 	 � � � � � � � �� � 	 � � �� � 	 (5.81)

where � , � and � are vectors with zeros except one element equal 	 . From see e.g.,
(Phillips and Harbor, 1991, p. 452), we have

� � ���� � � � � � � �� �  � � � 	 � � � � � (5.82)

and thus

� � ���� � � � � � �9�� �  � � � � � � � � � �  0���� � � � � � � � �  � � � � � � � � � � �  � � 	
� � � � � � � �  0���� � � � � � � �  � � � � � � � � � �  � � (5.83)

Thus the matrices
� � � � � � �  0 ,

� � � � � � �  � and
� � � � � � �  � reveal the

steady-state effect of a unit step in each of the inputs on each of the outputs. For
example, element �5; � � � in matrix

� � � � � � �  � gives the steady-state effect of a
unit step in disturbance no. � on output no. ; (when the controller is applied).

Example 5.2 For the neutralization example in Chapter 4 we get for the ”origi-
nal” MPC with estimation of disturbances into first tank only (resulting in insuffi-
cient integral action):

� � � � � � �  0 �����
�� � Q 	�� �"! ; Q 	�� �"& �6: Q 	�� � �
<DQ 	��"�"! 	 Q 	��"�"& � � Q 	��"� �
N Q 	�� �"! ; Q 	�� �"& �6: Q 	�� � �

�� (5.84)

� � � � � � �  � �
�� : Q 	�� � S
	�Q 	�� �"&
	�Q 	�� �HV

�� (5.85)

� � � � � � �  � � � � �
�� � ; Q 	�� � � ; Q 	�� � � �R	�Q 	�� �HV

�6��7 � ��7 � � ; Q 	�� � [	 �R	 : Q 	�� � [

�� (5.86)

We see that we get significant deviations from set point when measurement errors
are present. For example, a measurement error of 1 in measurement no.1 gives a
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deviation from set-point of 1 in output 3 (element � � � 	 � in the matrix in (5.86)).
With disturbances in all outputs (and full integral action), we obtain

� � � � � � �  0 �����
�� �R	�Q 	�� �"& � � Q 	�� �"& � Q 	�� � -
� � Q 	�� � S �6<DQ 	�� �"& 	�Q 	�� � -
� � Q 	�� �"! � : Q 	�� � S � Q 	�� �"&

�� (5.87)

� � � � � � �  � P
�� � Q 	�� �"&: Q 	�� � S
� ; Q 	��"�HV

�� (5.88)

� � � � � � �  � P � � �
�� <RQ 	�� �"! : Q 	�� �  � � N Q>	�� �  �
� ; Q 	��"� S : Q 	��"�"! � N Q>	��"�  �
� � Q 	�� � - 	�Q 	�� � - �6:DQ 	�� �"!

�� (5.89)

and there are no significant steady-state errors.

5.9 Conclusions

In this paper, we have developed a state-space formulation for a MPC (for stable
processes) without constraints or assuming that the constraints are not active. This
state-space formulation of the controller makes it possible to use traditional tools
to get insight into how the controller behave (see Chapters 4 and 7). The controller
can be extended with tracking of inputs, and also include the state estimator nec-
essary if not all the states are measured. To obtain offset-free tracking, estimates
of the input disturbances are included in the estimator and in the calculation of
steady state. We show that the length of this estimated disturbance vector must
equal the number of measurements available to the estimator.

Finally, a closed loop state-space formulation is derived, assuming a state-
space formulation of the process model.
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6.1 Introduction

There is a fundamental difference between feedforward and feedback controllers
with respect to their sensitivity to uncertainty. Feedforward control is sensitive
to uncertainty in general (including steady state), whereas feedback control is
insensitive to uncertainty at frequencies within the system bandwidth. With no
model error a feedforward controller may remove the effect of disturbances, but
due to its dependence of the process model, it may actually amplify the effect of
a disturbance if the model is faulty.

Textbooks on control and process control focus mainly on feedback controllers.
This reflects the difference in importance and popularity of the two controllers,
but also that feedback theory is more complicated. Most of the articles on feed-
forward control refer to industrial applications. However, some control text-
books, e.g., Buckley (1964), Stephanopoulos (1984), Doebelin (1985), Seborg et
al. (1989), Middleton and Goodwin (1990), Coughanowr (1991), Marlin (1995),
Ogata (1996), Shinskey (1996), describe feedforward controllers and their de-
sign, and the advantages and disadvantages compared to feedback is discussed.
It is concluded that a feedforward controller may improve the performance, and
is valuable when feedback control is not sufficient, but that in practice it must be
combined with a feedback controller. It is agreed that the feedforward controller
is most efficient if good disturbance measurements and accurate models are avail-
able, but no quantitative analysis is given (with some exceptions as given in the
following). Harriott (1964) claims that in a “typical system” the disturbance effect
is reduced to ; ��2 . Middleton and Goodwin (1990) demonstrate that the variation
in the gain from the inputs to the outputs (the process uncertainty) is amplified
with feedforward control. Shinskey (1996) states that the integrated error of the
output signal can be reduced by a factor of 10 even if the feedforward calculation
has 	���2 error, and that mass- and energy balance based feedforward controllers
typically has less than ; 2 error, leading to a reduction in integrated output error
with a factor of 50. Shinskey also provides an interesting figure showing nine
different responses to disturbance steps for a process with a pure gain (static)
feedforward controller. The nine cases are the combinations of neglected time
constants and delays in the transfer functions from the disturbance and the manip-
ulated variable to the output (Shinskey, 1996, Figure 7.12). The figure may also
be used for dynamic feedforward controllers as a qualitative illustration of the ef-
fect of errors in delays or time constants on disturbance step responses. (Note
that Shinskey assumes that the disturbance has a negative effect on the output, in
contrast to what we assume in the present paper.)

In the context of IMC (Internal Model Control), Morari and Zafiriou (1989)
recommend a structure for the combined feedback-feedforward scheme that de-
couples the two functions such that the feedforward controller handles disturbance
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dampening and the feedback controller handles reference tracking. This is ex-
ploited in the controller tuning (assuming perfect models) since the two controllers
can be tuned independently. The traditional controllers can then be derived from
these controllers and the process models. It is shown that assuming perfect mod-
els optimal feedforward can only be better than optimal feedback if there are non
minimum phase components (such as delays and inverse responses) in the process.

Scali and co-workers (Lewin and Scali, 1988; Scali et al., 1989), also work in
the IMC context and compare the control error of

� � optimal feedback controllers
with an

� � optimal combination of feedback and feedforward controllers under
the presence of uncertainty. The motive is to make a fair comparison, and to give
methods for identifying when feedforward is worth the effort, and to quantify the
benefits from accurate models. Uncertainty representations, similar to the ones we
will discuss, are used. Numerical results for parametric uncertainty in first-order
processes with delay are presented for different nominal values and uncertainties.
Even for this simple case the picture gets rather complicated, as there are many
parameters that must be varied to cover all cases, both nominal parameters as
well as the parameters representing the uncertainty, so it is difficult to present
the results and give general quantitative answers. The overall conclusion is that
feedforward may make the performance poorer if the response to the manipulated
input is considerably faster than the disturbance response and the uncertainty is
large for the model of the disturbance effect.

Marlin (1995) studies the effect of model errors (one at a time) by comparing
combined feedforward and feedback control with the response when pure feed-
back is applied. The response to a disturbance step for a first order process with
delay is the criterion for the comparison. From his example the feedforward re-
duces the control error with more than � ��2 for parametric errors up to �
� ��2 .

A general quantitative frequency domain analysis of feedforward control un-
der model uncertainty is proposed by Balchen (1968) (and referred in (Balchen
and Mummé, 1988)).

The aim of this article is to study feedforward control under the presence of
uncertainty and answer the following basic questions:

(1) How much does the feedforward controller reduce the control error?

(2) When is the feedforward controller amplifying the effect of disturbances on
the outputs?

(3) If combined with feedback control, when is feedforward control necessary
(and useful)?

(4) How can uncertainty be taken into account when the feedforward controller
is designed?
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The outline of the paper is as follows. We first recapitulate the characteris-
tics of feedforward control (Section 6.2), and then define feedforward sensitivities
(Section 6.3). We then discuss the effect of model errors under feedback and
feedforward control, i.e., answer questions 1 and 2 (Section 6.4) and study some
classes of model uncertainty in Section 6.5. We illustrate some of the ideas with
an example (Section 6.6). Question 3 is discussed in Section 6.7. Proposals to
answers of Question 4 are given in Section 6.8. The article is concluded by Sec-
tion 6.9.

6.2 The characteristics of feedforward control

A block diagram where feedforward from a disturbance and the reference is com-
bined with feedback, is shown in Figure 6.1. To analyze the effect of a given
feedforward controller, we denote the feedback controller

�
and the feedforward

action from the disturbance
�

� and the reference
�

� � � . With perfect measure-
ments we then have (see Figure 6.1)

� � � � � � � � �; <>= ?
Feedback

� �
� � � � � � �

� �; <>= ?
Feedforward

(6.1)

Some important characteristics of the “traditional” feedforward controller are:
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Figure 6.1: Block scheme for feedforward control combined with a feedback controller.
We assume ideal measurements:

� � � � � and
�
� � � .

(1) The basic task of a feedforward controller (
�

� and
�

� � � ) is to use the pro-
cess input, � , to reduce the effect of measured disturbances and improve
set-point tracking.
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(2) Feedforward control is “open loop” since the disturbance measurement, � � ,
and the reference � � (which are used by the feedforward controller) are in-
dependent of � .

(3) For linear systems, the feedforward controller does not influence the stabil-
ity of the system.

(4) The feedforward controller uses a model of the process ( � and � � ). If the
model is faulty, then the controller based on this faulty model will not yield
the desired performance, and the controller may even amplify the effect of
the disturbance.

(5) Normally the effect of the disturbance is observed earlier in the disturbance
measurement than in the other process measurements.

(6) Referring to Figure 6.1, the closed loop response for the combination of
feedforward and feedback control is

E � � � � � ����� � � � �����
� � ����� � � � ����� � � � ��� � � ����� � � �����

� � ����� � � � � � � � � � � � ����� � � � � � � (6.2)

where � ����� � � ��� � � ��� � ����� � � 
is the feedback sensitivity function.

Ideal feedforward control

An “ideal” feedforward controller, which is based on inverting the nominal model
(e.g., (Balchen, 1968; Balchen and Mummé, 1988) and (Morari and Zafiriou,
1989)), removes completely the effect of the disturbance and reference changes
such that E ������� � . We denote the “ideal” controller with an asterisk, and get from
(6.2) � �� � � �  � � � � �� � � � � � 

(6.3)

Designs of robustly optimized ( � -optimal) feedforward controllers presented later
in this paper, confirm that this is a good controller as to use in some practical
cases. However, there are three reasons why ideal feedforward control ( E � � )
may not be achieved in many cases:

(a) The ideal feedforward controller in (6.3) may not be realizable. First, if
� is non-minimum phase, it cannot be inverted. Second, if � has more
poles than zeros, e.g., � � 	 � � ? � � 	 � , the inverse is improper and re-
quires differentiation. Because of measurement noise higher-order deriva-
tives are normally avoided (Harriott, 1964). Thus we divide � into a (prac-
tically) invertible part, � � , and a not invertible allpass part, � � , such that
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� � � � � � (Holt and Morari, 1985a; Holt and Morari, 1985b). Morari and
Zafiriou (1989) derive the

� � -optimal feedforward controller (in the context
of IMC). A simpler alternative that we will use here is� �

� � � � � � � � �
� � � � � � � (6.4)

(6.4) has a optimal
� � -norm (

� � -optimal for impulse disturbances on the
output, � � � � , and impulses in the reference).

(b) The ideal feedforward controller in (6.3) is also not realizable if the num-
ber of outputs exceeds the number of manipulated inputs (the length of �
exceeds the length of � ). One must then control the (most) important out-
puts (reducing the length of � till it equals the length of � ), or find some
compromise between the outputs, for example use the pseudo-inverse of � .

(c) The model used in the design of the feedforward controller differs from the
actual plant. This is the main topic of this paper.

6.3 Feedforward sensitivity functions

The closed loop response for combined feedforward and feedback control in (6.2)
may be rewritten as follows

E � � ��� � � � � � � � � � � � � (6.5)

where we define the feedforward sensitivities as

� � � �	� � � � � �
�
� 	 (6.6)

� � � � � � � � � � � � (6.7)

These express the effect of feedforward action on the control error. �
�
� denotes

the generalized inverse of � � (Zhou et al., 1996, page 67). Feedback control is
effective and improves performance as long as the gain of the sensitivity function�
�

�
$ 	 . Similarly feedforward control improves the performance if

�
� �

�
$ 	 and

�
� � � �

�
$ 	 (6.8)

Here, an appropriate norm dependent on the definition of performance is used.
With no feedforward control � � � � , and with “ideal” feedforward control � � �� .

In the literature � and � � are also denoted control ratio and feedforward con-
trol ratio, respectively (Balchen and Mummé, 1988). More precisely, in (Balchen
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and Mummé, 1988), the feedforward control ratio is defined for single-input/single-
output (SISO) controllers as

� � � 	�� �
�� �� (6.9)

where
�

� is the actual feedforward controller and
� �� is the “ideal” controller

for the actual process. For SISO controllers this is identical to the definition in
Equation (6.6).

Balchen uses a Nichols chart to determine requirements on the gain and phase
error in

�
� relative to

� �� for a given disturbance dampening (e.g. 0.1) in � � . The
Nichols chart used to be convenient for the study of ������� � � 	 given a transfer
function ��� ��� � . With tools like Matlab, it is now easy to study any transfer func-
tion by defining a finite number of frequencies and calculate the gain or phase
shift over this set of frequencies. We follow this direct approach.

6.4 The effect of model error with feedforward con-
trol

In this section we restrict ourselves to single-input/single-output (SISO) processes,
i.e., with one control input, � , one disturbance, � , and one output � . With a nom-
inal process model, � � � � � � � � , and an actual plant model �

� � � � � � � � � � ,
the actual control error is:

E � � � � � � � � � � C � �� � � � � � � �� � � � � L (6.10)

where

� � � � 	�
	

	 � � � � (6.11)

� �� � � 	� 	 � �
� �

�

�
�
�

(6.12)

� �� � � � � 	� 	 � � � � � � � (6.13)

� expresses the ratio between the output when a feedback controller is applied
and when it is not (open loop). Similarly, � �� and � �� � � express the ratio of the
output when feedforward is applied and the output when it is not. This follows by
comparing the output error using control in (6.10) with the output error when no
control is applied ( � � � ):

E � � � � � � � � � � � � � � � (6.14)

Note that for the case with no control (
� � � ,

�
� � � ,

�
� � � � � ), we have

� � � 	 , � �� � 	 , � �� � � � 	 .
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The actual sensitivity can be expressed in terms of the nominal sensitivity and
the relative error as following

� � �
�
	

	 � � � (6.15)

Here, � � 	 � � 	 � � � � and � � 	 � � are the nominal sensitivity and com-
plementary sensitivity functions, respectively, and � the relative error in � , i.e.,
� � � � � � � 	 (see also (Skogestad and Postlethwaite, 1996, Section 5.13)).

The “ideal” feedforward controller (6.3) gives with no model error

� � �� � � � � � �� � � � � (6.16)

With model error we get the result

� � �� � 	�� �
� � � � �
� � � � � � � � (6.17)

� � �� � � � 	�� �
�

� � � � (6.18)

Here, � � is the relative error in � � � � and � the relative error in � . Thus for
“ideal” controllers, � � �� and � � �� � � are equal to (except for the sign) the relative
model errors in �
� � � and � , respectively, and we have that the “ideal” feedfor-
ward action reduces the control error for a frequency � , as long as the relative
modelling errors are less than one, i.e.,

� � � �� ��� � � �
� � � � � ��� � � � ���� 	�� �
� � ��� � � � � � ����� �
� ����� � � � � � ��� � ���� $ 	 (6.19)

�� � � �� � � ����� � �� � � � � ��� � � � ���� 	�� �
� � ��� �
� ����� � ���� $ 	 (6.20)

In Section 6.8 we discuss how to modify the ideal feedforward controller such
that � � �� ����� � �'$ 	 ��� � . However, the nominal performance becomes worse. If �
is not invertible, we obtain for the feedforward controller,

� �
� in (6.4)

� �� � 	 � �
� � � � �

� � � � � (6.21)

� �� � � � 	 � �
�

� � (6.22)

For a given process and the knowledge of its uncertainty we can use (6.19)
and (6.20) to see whether an “ideal” feedforward controller will be effective. This
can be used to consider whether the extra controller shall be implemented, and if
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other control configurations or even process modifications are necessary to obtain
the desired response (e.g., introduction of buffer tanks, see Chapter 3).

If the model error (uncertainty) is sufficiently large, such that the relative er-
ror in � � � � is larger than 	 , then we see from (6.17) that � � � �� � is larger than 	
and feedforward control makes control worse. This may quite easily happen in
practice. For example, if the gain in � is increased by 33% and the gain in � � is
reduced by 33%, then � � �� � 	 � @�� I @@ �, I @ , � 	 �  � [ [��� & S � 	 � ;�� �R	 . In words, the
feedforward controller overcompensates for the disturbances, such that its nega-
tive counteractive effect is twice that of the original effect.

Another important insight from (6.10) and (6.17) is the following: To achieve
� E � �#$ 	 for � � � � 	 with feedforward control only ( � � � 	 ) we must require that
the relative model error in �
� � � is less than 	 � � � � � � . This requirement is unlikely
to be satisfied at frequencies where � � � � � is much larger than 	 (see the following
example) and motivates the need for feedback control in such cases.

Example 6.1 Consider a plant with

� � � �>�	�� � � 	 � � � �
	��>�

	�� � � 	 (6.23)

The objective is to keep � � �'$ 	 for � � 	 , but note that the disturbance gain
at steady state is 	��8� . Nominally, the feedforward controller

�
� � � �  � � gives

perfect control, � � � . Now we apply this controller to the actual process where
the gains have changed by 	���2

�
� � ��� �	�� � � 	 � �

�
� � � �	�� � � 	 (6.24)

From (6.10) the disturbance response in this case is

�
� �

�
	�� �

� � � � �
�
� � � � � � � ��� �6��7 ;>; � � � ��� � ; �	�� � � 	 � (6.25)

Thus, for a step disturbance � of magnitude 	 , the output will approach � ; � (much
larger than 	 ). This means that we need to use feedback control, which is hardly
affected by the above model error. There is some benefit in using feedforward
control, though. The feedback control is required to be effective at all frequencies
where the gain from the disturbance to the output is larger than 1. Without feedfor-
ward control the feedback loop must be effective up to � � P � � � � �Y? � 	��>� � 	�� �	�� . The feedforward controller brings this limit down to about ; � � 	�� � ; . In
other words, the feedforward controller reduces the bandwidth requirement for
the feedback controller from 	�� to ; .
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6.5 Some classes of model uncertainty

In the following we will consider some examples of model uncertainties for ideal
feedforward controllers, and use (6.19) and (6.20) to analyse when feedforward
control should be used. To simplify notation we write: � � � � � �� and � � � � � � � �� � � .
Static gain uncertainty. Let �

� � � � and �
�
� � � � � � where � and � � are con-

stants. (Nominally, � � 	 and � � � 	 and a � 	��8��2 gain error corresponds
to � � ; and � � � ; .) In this case we have from (6.19) that ideal feedfor-
ward control reduces the error from the disturbance, � , as long as

� � � � �
���� 	�� �

� �
���� $ 	�� � $ ��� � � $ ; (6.26)

and from (6.20) for the reference � � as long as

� � � � � � � � 	 � � �H$ 	�� � $ � $ ; (6.27)

See Figure 6.2(a). In other words, if the effect of the input changes sign
(which is not very common), or is increased by more than 100% (which
may easily happen), feedforward actually makes the response worse. This
will also happen, as we saw above, if the gain in � is increased by more
than ��� 2 and the gain in � � at the same time is reduced with more than
33%, since ��� � � � 	87 ���>� ��7 N � �B; 7 � .

In the following we will only consider feedforward from the disturbance, � .

Delay uncertainty. We let � , � � , � � and � �� denote the delays for � , �
�
, � � , and

�
�
� , respectively. We assume � � � � so that ideal feedforward control is

feasible, and perfect models except for the delay. Now the feedforward
sensitivity becomes

� � � � ��� � � � � � ����� � �
���� 	��

E �� � � � E �� �, �E ���� � E �� , �
���� �

��J	��FE �  � � �� (6.28)

where 0 � � � 	� � � �� � � � � � � � � � � � is the error in the difference between the
delays in � � and � . The ideal feedforward control reduces the error at a
frequency � as long as

� � � � ��� � � � � � � � ��� � � � �� 	��FE �  � � �� � � ; � ;�� � � � 0 � � � $ 	 (6.29)

We note that since � � � � 0 � � � ��� � � � � 0 � � � , the relative delay uncertainty
is independent of the sign of 0 � .
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In Figure 6.2(b) we plot � � � � in (6.29) as a function of normalized frequency.
At low frequencies feedforward control is perfect, but for frequencies above�  � 	87 � �8� � 0 � � � 
 � ��� , feedforward has a negative effect, and in the worst-
case (at frequency �)1.354 ��� � � 0 � � ) the feedforward effect doubles the er-
ror. To avoid that the feedforward controller amplifies the control error, the
feedforward control signal may be low-pass filtered with a break frequency
at about 	 � � 0 � � or less.

We may find the frequency, �  , where � � � � � 	 analytically:

�  � �
� � �  � 	 �>; �
��0 � � �

	>7 � �
��0 � � P

	
� 0 � � (6.30)

To find the frequency ��1.354 for the first maximum value of 2 we differentiate
the expression for � � � ��� � � � with respect to the frequency

�
��� � � � � � �

� � � ; � ; � � � � 0 � � � � 0 ��� ��� �O0 � � �� ; � ; � � � � 0 � � � (6.31)

to obtain � 1.354 � �

��0 � � (6.32)

Uncertainty in time constants. In the general case this is more complicated to
analyze than the gain and delay errors. We consider the situation where the
error is in � � only and is restricted to one time constant: � � � � �:9 � �A? ��� � 	 �
and �

�
� � � � 9 � ��� � ? ��� � 	 � where � � is the relative error in the time con-

stant. We then obtain the following limit for effective feedforward

� � � ����� � � � � � � ��� � �
���� 	 � � � ? ��� � 	

? � � � 	
���� $ 	 (6.33)

If � � � � � ; , then � 	 � ��� � ? ��� � 	 ��� �A? ��� � 	 � � is always less than or
equal to one. For � � � ; the feedforward is effective as long as

�,? �6$ 	� � � ��� � � ; � (6.34)

The maximum value of � � � � is � � � 	 , see Figure 6.2(c). Again this can
be used to find the frequency for which the feedforward controller shall be
active.

The situation if there is an error in only � is similar to the case with error
in only � � .
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Combined uncertainty in both gain and time constant (“pole uncertainty”).
Some physical parameter changes affect both the gain � � and the time con-
stant ? � , such that their ratio � � �Y? � remains constant. As an example, con-
sider the following physical state-space model with a single state

� �
� @ � � � � � � (6.35)

� � � � � (6.36)

where � is the state, � is the control input (manipulated variable), � is the
output, and � and � are constants. Laplace transform yields

� � � ��� � �
� � � �

� � � �
C � 

� L � � 	 � � � � � � 	 (6.37)

An error in � will then influence both the gain ( � � � � � � � ) and the time
constant ( ? � � �R	 � � ), whereas � � �M? � � � remains unchanged.

The model in (6.37) can be written on the form ��� � � �:9 � �A? ��� � 	 � and
�
�
� � � � � �:9 � � � � ? � � � 	 � , where � � is the relative error in the gain and the

time constant (which is equal to the relative error in 	 � � ). � contains no
errors ( �

� � � ). We then obtain the following requirement for effective
feedforward

� � � ����� � � � � � � ��� � �
����
�
	�� 	

� � � 	
? ��� � 	

���� $ 	 (6.38)

The effect of model error is largest at low frequencies (below 	 �Y? � � � 
 � ��� � )
where � � �� ����� � � P � 	 � 	 � � � � . Feedforward has a positive effect at all
frequencies when � � � 	 �8; . For � � $ 	 �>; , feedforward is effective at high
frequencies �,? � � �,? ��� � 	 � � 
  �

	
� �

� 	 � ; � � (6.39)

as shown in Figure 6.2(d).

In other cases � ����� and � � � ��� share the same dynamics. For example,
consider the physical model

� �
� @ � � � � � � � � � � � � � (6.40)

and we get

� � � ��� � �
� � �

� � � ��� � �
� � � (6.41)

In this case � � � � � � � � and an error in � does not affect feedforward
control and gives � �� � � .
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Figure 6.2: Effect of uncertainty on � � for SISO feedforward control
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Frequency domain representation of uncertainties. In (Lewin and Scali, 1988;
Scali et al., 1989) combinations of the above uncertainties were examined.
The analytical method we have used above is not suitable for this case,
and another approach is proposed. We want to find � � � ��� � � � 1.354 , i.e., the
worst-case feedforward sensitivity for each frequency given the paramet-
ric uncertainty. Since it is impractical to find an analytical expression for
� � � � ��� � � 1.354 , we calculate its value for some � � � � where � is a set of
frequencies in the relevant range:

� � � � ��� � � � 1.354 � ��
��
� � � ,

���� 	�� ��� ����� �	� � � � � � � � ����� � � � � �� ��� � � �'� � � � ��� � � ���� � � � � � (6.42)

where � and � � are vectors of the parameters in � and � � , respectively. For
each parameter we have � � ��� � � ��� � ��� ��� � . The optimization is in general
non-convex, so that precautions must be taken to find the global optimum at
each frequency.

Example 6.2 We consider the following process (Skogestad and Postleth-
waite, 1996, Example 7.3):

�
� � ��� � �

? � � 	 E ���� � ; � � ��� ��? � � (6.43)

�
�
� � ��� � � �

? ��� � 	 E �� , � � ; � � � ��� ��� ? � � � (6.44)

i.e., nominally � and � � are equal, but their parameters may vary indepen-
dently between ; and � . Nominally

�
� ����� � � � � � ��� � ; 7 �

; 7 � � � 	 (6.45)

We find that the ideal feedforward controller from the disturbance measure-
ment is

�
� � 	 . Solving the optimization problem (6.42)1 gives � � � ����� � � 1.354

as shown in Figure 6.3. We can see that the ideal feedforward controller
dampens the disturbance for frequencies below ��7 � � 
 � ��� for all combina-
tions of the parameters.

1The optimization problem is non-convex so we first make a uniform grid in the space spanned
by the parameters and take the maximum value of

� � � + ��� �
��� �����3. � for all points. The result of

this is used as initial value for the routine fmincon in Matlab. A Monte-Carlo-simulation results in
lower values of

� � � + � � � . � up to a frequency higher than ����� � ��
 .
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Figure 6.3: � � � ���	� ��� 1.354 when frequency domain uncertainty is used to represent the
gain, delay and time constant uncertainties, see (6.43) and (6.44).

6.6 Example: Two tank process

Example 6.3 In this example we consider feedforward control of the process il-
lustrated in Figure 6.4(a). A hot flow with flow rate � �� and temperature � �� passes
through tank 1 and into tank 2 where it is cooled by mixing with a cold flow with
flow rate � � and temperature � � . � �� is measured before the first tank. The outlet
temperature, � � , shall be kept constant despite temperature variations in the hot
flow. To obtain this the measurement of � �� is used by a feedforward controller to
adjust � � to compensate for the variations.

In Appendix A we derive the model on transfer function form

� � � � � � � ��� ��� ��� � � � � ��� � � ��� (6.46)

� � � � � �
? � � � 	 � � � ����� � � �

�O?  � � 	 � �A? � � � 	 � E ���� (6.47)

where � � � �� is the disturbance, � � � � is the control input and � � � � is the
output that shall be kept constant. The parameters are defined by ?��� � � � � ��� ,? � � � �� � � � , � � �
� �� � � �� �'� � � and � � ��� � � � � .

Feedforward controller design

The ”ideal” feedforward controller is given by (6.3):

�
� � � �  � � � � �2���

?  � � 	 E ���� (6.48)
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(a) Illustration of the process.
Nominal data: � �� � � 	!	�� ,
� �� � ��	�� ,  �� � �  �� � � ��� � 
 ,
 �� � � � ��
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(b) Block diagram. Parameters derived from the
nominal data: � � � ' � , � �� ��	�� 	 , � �� � ��� �� ,� �� � � �� . In addition there is a delay, ��� �
��	 
 . �

Figure 6.4: The process in Example 6.3

In Figure 6.4(b) we have illustrated the process and the feedforward controller in
a block diagram. The variables of the actual plant are marked with a prime.

Sinusoidal disturbances

We will now see how a feedforward controller dampens the effect of sinusoidal
disturbances. The disturbance has amplitude 	 and three frequencies are consid-
ered: ��7J	 , 	 and ; � 
 � ��� . (These three frequencies have been chosen to illustrate
� � � ����� � ��$ 	 , � � � � ��� � �%P 	 , and � � � ��� � � � � 	 .) We will study six cases (the
results are summarized in Figure 6.5):

(a) No control. see Figure 6.5(a).

In the remaining cases we use the feedforward control in (6.48).

(b) Nominal case (perfect model) As seen in Figure 6.5(b), the disturbance is
perfectly cancelled by the feedforward controller.

(c) Gain error � �� � ��7 ��� � , and no error in � . Figure 6.5(c) illustrates that
the feedforward controller does not help, i.e., the feedforward controller
overcompensates such that the variation in � has the same amplitude as
without control, as expected from (6.26). This applies to all frequencies. If

2Actually in Example 6.3 we consider errors in the nominal model ( � � � � ), and thereby in the
controller �

�
, while the actual plant ( ��� � ��� � ) is kept constant. This has the advantage that the

response without control remains constant, so that it is easier to identify the effect on performance
of using an incorrect model in the controller.
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the gain error is reduced, the feedforward controller has a positive effect on
the dampening compared to no control, whereas if the gain error increases
further above ; , the feedforward controller has a negative effect.

(d) Delay error � �� � � � � 	 � � � � � � ��0 � � � 	 , which is 	���2 of the delay (see
Figure 6.5(d)). From (6.30) the feedforward controller has a dampening ef-
fect up to the frequency 	 � � 0 � � � 	 � 
 � ��� , as confirmed by the simulation
results. Even this relative small error gives a low frequency limit for where
the feedforward controller is effective.

(e) Error in time constant ? � � � ?  . This may be the result of operating tank
1 with a higher level than expected in the model. In Section 6.4 we found
that for all frequencies, the feedforward controller has a positive effect on
the dampening as long as ? � $ ;Y?  . When the error is larger than this than
this, as it is here, feedforward control is effective (by (6.34)) for frequencies� $ 	 � � � N 7 ;8�>��� � � � � � � ; � 	 � ��7 ;8�>� . As illustrated in Figure 6.5(e)

at � 79	 � 
�� ��� , the controller has some dampening effect, while above this
frequency the controller makes the situation worse.

(f) Error in gain and time constant � �� � ��7 � � � and ? � � ��7 �Y?  , see Figure 6.5(f).
At low frequencies the response is similar to a pure gain error, but this error
gives no problems for high frequency disturbances.

Step disturbances

Using the same controller, the output response ( � ) to a unit step in the disturbance
( � ) is shown in Figure 6.6.

(a) Gain errors give problems at low frequencies, and therefore we get an off-
set from set-point after a step disturbance (see Figure 6.6(a)). With pure
feedforward this is clearly the worst error for “step like” disturbances.

(b) Delay errors give problems only at high frequencies (Figure 6.6(b)), so that
the deviation from set-point has a limited duration. The performance is
improved compared to no control.

(c) Time constant errors give only transient deviations from the set-point (see
Figure 6.6(c)).

(d) Combined gain and time constant errors (Figure 6.6(d)) give the same steady-
state response as the gain error. But the error is smaller in the beginning,
which makes it easier for feedback control.
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(e) Error in time constant ( � �� �� � � ): Improved performance only
for the lowest frequency.
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(f) Error in gain and time constant
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Improved performance for the two
highest frequencies.

Figure 6.5: Feedforward control of two tank process: Response ( � ��� � ) to sinusoidal
disturbances (

� ��� �� � �:� � �
� with frequencies ��� � , � and 
 �%��� 	�� (upper, middle and

lower plot, respectively)
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Figure 6.6: Feedforward control of two tank process: Response ( � � � � ) to unit step
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6.7 When is feedforward control needed and when
is it useful?

We will now shortly discuss when a feedforward controller is needed and useful
in the combination with a feedback controller. We consider a scalar system and
assume that the variables are scaled, so that the disturbance � is within � 	 , and the
control error, E � � � � � � � , shall stay within � 	 . We consider two cases (similar
to the buffer tank design, Chapter 3:

Given feedback controller (known � ) Given the sensitivity function � ����� � and
a transfer function from the disturbance to the output of ��� ����� � . Then
feedforward is needed (with � � �� � ��� � �H$ 	 ) at all frequencies where

� � � ��� � � � ��� � � � � 	 (6.49)

Unknown � (shortcut method) (1) Let � � denote the frequency up to which
� � � � ��� � � � 	 , such that control is needed to achieve acceptable dis-
turbance rejection.

(2) Let ��� denote the frequency up to which feedback control is effective,
i.e., � � � ��� � �.$ 	 for all � $ ��� . Approximations of the achievable��� for a given process are discussed in (Skogestad and Postlethwaite,
1996, p. 173-4) and Chapter 3.

It then follows that feedforward control is needed (with � � �� ����� � �H$ 	 )
in the frequency range from ��� to � � .
A similar rule is given by Middleton and Goodwin (1990), although
they denote � � the desired bandwidth with no reference to how to
determine this.

Feedforward control may also be needed outside the range between��� and � � , namely when � � � � 	 � � � ��� . But at least we know that if��� $ � � , then feedforward control (or some process or instrumenta-
tion modification) is needed.

Knowing where feedforward control is needed, we may use � � � � ��� � � to iden-
tify where a given feedforward controller is useful. This is illustrated in Figure 6.7.
In Figure 6.7(a), the model error is so large that feedforward control has a negative
effect on the performance for frequencies between ��� and � � . In Figure 6.7(b)
feedforward control reduces the control error for some frequencies, while at oth-
ers it makes the performance worse ( � � �� � ��� � � � 	 ). In Figure 6.7(c) feedforward
control is effective in the whole range between ��� and � � .
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(c) Feedforward is useful for all fre-
quencies between ��� and � �

Figure 6.7: Examples of (a) large, (b) intermediate and (c) small relative model error,
� � �� � �

� � . � � is the bandwidth for feedback control, and
� � is the required disturbance

bandwidth. More generally, feedforward control is required at frequencies where ��� � � � �
� .
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Example 6.3 (continued from Section 6.6) Is the feedforward controller needed
and useful?

Figure 6.7 demonstrates that the feedforward controller must be effective for
the frequencies where the feedback loop fails to dampen disturbances. We will
here check if our feedforward controller is useful when there is a delay error in
the feedforward loop of 0 � � 	 � .

We apply feedback control using a measurement of � � . Because of the delay
and the higher-order dynamics in tank 2, the bandwidth of this control loop is
limited. We consider two different effective delays in the feedback loop: Case a)
� � � � 7 N ;�� and Case b) � � � 	�� � .

The process model is scaled assuming that the outlet temperature is allowed to
vary � ��7 � ��� � around the nominal value, and obtain a modified

�

� � � � � � ��7 � � �	 N 7 � . A PI controller with � � � ��7 �Y? � � � � � � and ?�� � ���� �O? � � : � ��� ? � (SIMC
tuning, see (Skogestad, 2003)) is used.

Now � � ��� � is known, and thereby � � � . For both cases a) and b) there is
a frequency range where � � � � � � 	 (see Figure 6.8). For both cases, � � � ��$	 �� � $ � � , so feedforward control is clearly useful.

For case a) the combination of feedforward and feedback gives acceptable
performance with � � � ����� � � ����� � � � � ��� � �"$ 	 � � � . However, for case b) this is
not the case, and we have an intermediate frequency range where � � � � � � � � 	 .

We note from Figure 6.8(a) that feedforward control is needed even though��� � � � . The reason is that � � has slope � ; whereas � has slope 	 in the
logarithmic scale.

In conclusion, we see that for a delay error of 0 � � 	 � in the feedforward
loop, the addition of feedforward control is useful both with the short ( � � � � 7 N ;�� )
and long delay ( � � � 	�� � ) in the feedback loop. For the longest delay ( 	�� � ),
additional improvements (design changes) are necessary in order to achieve the
performance requirements.

6.8 Design of feedforward controllers under uncer-
tainty

Knowledge of the model uncertainty may be utilized in the feedforward controller
design.

� � optimal combined feedforward/feedback control under the presence
of uncertainty is derived in (Lewin and Scali, 1988; Scali et al., 1989). Here, we
discuss two other methods:

� Two step procedure: 1) Choose a nominal model and design the ideal feed-
forward controller. 2) Modify this by introducing a low-pass filter or by
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(b) Delay of � 	 
 in tank 2: � ��� � �

Figure 6.8: Example 6.3: Combination of feedback and feedforward control illustrated in
the frequency domain. Delay error, � � � � � � � .

reducing the gain to achieve � � � � ��� � �H$ 	 �� �
� � -optimal feedforward controller

Modification of ideal feedforward controller

Errors in time constants or time delays lead to reduced performance at high fre-
quencies, and one may attempt to avoid this by adding a low-pass filter in series
with the feedforward controller. The break frequency can be chosen as the fre-
quency where � � � ����� � � crosses 	 . For delay error 0 � the break frequency is about	 �80 � , and for a relative error � � in the time constant in � � the break frequency is
about 	 � � � � ��� � � ; � (see Section 6.4 for details).

Low-pass filters are also often used to remove noise from the measurement to
avoid excessive wear in the actuators (e.g., (Buckley, 1964)).

Gain errors reduce the performance at all frequencies, so a low-pass filter does
not help. The only way to avoid the feedforward controller from making the situa-
tion worse, is to reduce the gain of the feedforward controller so that � � � � ��� � �"$ 	
for the whole range of the process gains. This will, however, reduce the effect of
the feedforward controller in the nominal case. If we choose

�
� ��� � �� (where� �� is the ideal controller obtained with the nominal model), we obtain

� � � 	�� � �
� � (6.50)

where � and � � are the gain errors in � and � � , respectively. To assure � � � �.$	 , we take the smallest possible � � , and the largest possible � and choose the
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following reduction factor, � :

� ��; � � � ��� �����
�� ��� � (6.51)

We have here assumed ��� � � � � . � will always be less than 1 since we only
make use of it as long as � 
�� ��� � � � � � ��� � � � ; .

� -optimal feedforward design

Normally, � -design is used for feedback controllers (Doyle, 1982; Doyle, 1983;
Skogestad and Postlethwaite, 1996), but may also be applied to feedforward con-
trollers. In this case, the whole design is taken in one step (and not by modi-
fications on a nominal design). Figure 6.9 illustrates how the problem may be
formulated for the feedforward case. The � -design algorithm finds the controller
(between the disturbance, � , and � ) that minimizes the weighted output, i.e., the
output of

� � . The uncertainty block 0 may be structured so that the uncertainty
in � and � � may be independent.

WI ∆

Gd

G WP

+

+ +
+

+

+

d

u

Figure 6.9: Problem formulation for the design of a � -optimal feedforward controller

With the presently available software we cannot handle delays in the � -design.
If one knows that nominally the feedforward controller should include a delay, this
may be included manually after the � -design. The nominal delays in � and � �
are then omitted in the models used for the � -design.

We will now apply the two methods to the example in Section 6.6.

Example 6.3 (continued from Section 6.6)
Low-pass filter. We consider � �� � � � � 	 � , and add to the ideal feedforward
controller a first-order low-pass filter with break frequency 	 � � 0 � � � 	 � 
�� ��� .

From Figure 6.10(a), we see that the filtered feedforward controller makes the
nominal performance worse, especially at high frequencies where it approaches
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no control (compare with Figure 6.5(b)). On the other hand, with delay error (Fig-
ure 6.10(b)) the performance is slightly improved (compare with Figure 6.5(d)) at
the highest (worst) frequency, but at lower frequencies the performance remains
poorer with the filter. These results are confirmed in Figure 6.11, which shows the
magnitude at all frequencies.

The filter introduces a phase shift, and therefore a delay error of 	 � no longer
gives the same effect as �R	 � , and in the opposite direction the effect of the filter
is better.
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(a) Nominal case: The feedforward ef-
fect is reduced or removed by the filter.

−1

0

1

−0.1

0

0.1

0 10 20 30 40 50 60 70 80 90 100

−0.02

0

0.02

 Time [s]

(b) Delay error ( ���� � � ��' � 
 ): With the
filter the feedforward controller do not
make the performance worse for any of
these three frequencies.

Figure 6.10: Feedforward controller with low-pass filter (response of sinusoidal distur-
bances with amplitude � and frequencies ��� � , � and 
 � ��� 	�� on the process of Exam-
ple 6.3).

� -design. We consider combined gain and delay error in � , and design a � -
optimal feedforward controller using the setup in Figure 6.9. We let the uncer-
tainty weight,

� � , be diagonal with elements

� � � � 	�� �HV (6.52)

� � � �
	879	 � � ��7 ;��7 � � � 	 Q C � � [ & [ L � � � � ; QM��7 : � : Q � � [ & [ � � 	

C � � [ & [ L � � � � ; QM��7 N : � Q � � [ & [ � � 	 (6.53)

Here
� � � represents the uncertainty in � � (approximately zero) and

� � � repre-
sents the uncertainty in � corresponding to ; ��2 gain uncertainty and � 	 � delay
uncertainty (Skogestad and Postlethwaite, 1996, eq. (7.27)). The performance
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Figure 6.11: ��� � � �
� � � with and without low-pass filter (Example 6.3)

weight,
� � , is chosen as a constant independent of frequency, and several values

for
� � is considered (from 	�� �HV to 	��>�>� ). A large value of

� � corresponds to
requiring tight control. The � -controller is designed with D-K iterations using the

� -toolbox in Matlab (with scaling matrices of order ; ). The delay difference be-
tween � and � � is removed from the models used for the design, and the nominal
delay of 	�� � is included manually in the feedforward controller.

The resulting � � � � is seen in Figure 6.12. From the peak value in Figure 6.12(b)
we see that with

� � large the � -optimal feedforward control is close to the
“ideal” controller in (6.48). “Detuning” (

� � $  ) gives little improvement
when there is a delay error, except when a large detuning (

� � � 	 ) is used.
However, nominal performance is then poor. This is confirmed by Figure 6.13,
which shows the response with gain and delay errors (only errors in the direction
that gives benefit are shown).

In summary, with a low weight on performance (small
� � ), the � -optimal

feedforward controller approaches no control ( � � � � � 	 �� � ). Interestingly, with
a large weight on performance (large

� � ) we obtain a feedforward controller
close to the ideal.

6.9 Conclusions

In this paper we have discussed and illuminated some important characteristics of
feedforward controllers. We have defined the feedforward “sensitivity functions”,
� �� and � �� � � for the disturbance and the reference, respectively. For ideal feedfor-
ward controllers,

� �� � � �  � � and
� �� � � � � �  we find that � � �� is equal to the

relative error in � � � � , and � � �� � � is equal to the relative error in � (except for the
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(a) Nominal case (no uncertainty)
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Figure 6.12: Effect of detuned feedforward control: � � � � for � -optimal feedforward con-
trollers with performance weight, � � � ��� � ������ ��� ���� �� � �HV . ( � � � � for the ideal con-
troller (6.48) is dashed.)

signs). A simple frequency domain analysis of � � � � and � � � � ��� shows for which
frequencies feedforward control has a positive (dampening) effect when certain
uncertainties are present (in gain, delay, dominant time constant and a common
combination of gain and time constant). The results are summarized in Figure 6.2.
We also discuss how to analyze the effect of more complex uncertainties.

Feedforward is needed when the bandwidth, ��� , of the feedback controller is
below the frequency � � for which � � � � becomes less than one (with appropriate
scaling). We must then require � � �� � ��� � �W$ 	 in the frequency region between��� and � � , or if it is known, for all frequencies where the closed loop frequency
response, � � � ��� � � � ����� � � , is above 	 . See Figure 6.7 for a summary.

The ideas are illustrated with a process example.

6.10 Acknowledgements

Financial support from the Research Council of Norway (NFR) and the first au-
thor’s previous employer Norsk Hydro ASA is gratefully acknowledged. The
authors also wish to thank Ass. Prof. Torsten Wik, Chalmers University of Techol-
ogy, Sweden, for useful comments.

References

Balchen, J. G. (1968). Reguleringsteknikk Bind 1 (In Norweigan) 1. Ed.. Tapir. Trondheim,
Norway.



150 Chapter 6. Feedforward Control under the Presence of Uncertainty

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 WP = 1000,100,5,1,10−4

No control
 (overlapping with WP = 10−4)

 WP = 1

 WP = 5

Ideal FF
 (and WP=1000, 100)

 Time [s]

(a) No delay error

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 WP = 1000,100,5,1,10−4

 WP = 5
 WP = 1

No control
 (overlapping with WP = 10−4)

Ideal FF
 (and WP=1000, 100)

 Time [s]

(b) � 	�� gain error

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 WP = 1000,100,5,1,10−4
 WP = 5

No control
 (overlapping with WP = 10−4)

 WP = 1

Ideal FF
 (and WP=1000, 100)

 Time [s]

(c) Delay error: ���� � � � 1 � 
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Appendix A Modelling of the two tank process

We here develop a model of the two tank process of Example 6.3. Energy balances
for tanks 1 and 2 can be expressed by

� � 	 � �  �  �
�>@ � 	 � � �� � �� � 	 � �  �  (6.54)

� � 	 � � � � � �
�>@ � 	 � �  �  � 	 � � � � � � 	 � � � � � (6.55)

where �  and � � are the temperatures in the two tanks, 	 is the heat capacity, � the
density,( 	 and � are both assumed constant and temperature independent), �  and
� � are the volumes of tank 1 and 2, respectively, and �  and � � are the outlet flow
rates from the two tanks. By use of the mass balance for both tanks, the energy
balance simplifies to

� � 
�>@ � � ��

�  �	� �� � �  � (6.56)

� � �
�>@ � � 

� � �	�  � � � � � � �
� � �	� � � � � � (6.57)

Linearization around a steady-state nominal point (marked with � ) under the as-
sumption that ���� , �  and � � are constant, yields

�H0 � 
�>@ � � ���

� �
0 � �� � � ���

� �
0 �  (6.58)

�H0 � �
�>@ � � �

� �� 0 �  � � �
� �� 0 � � � � �� � � ��

� �� 0�� � (6.59)

where � � � � � � � �� . The terms with 0 �  and 0 � � are cancelled since � ��� � � �
and in tank 2 steady-state energy balance yields � � � � � � �� � �� � � � � � � �� � � �� .
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Laplace transform yields for the outlet temperature

� � � � � � � � � � �
� � � � � ��� � � 	 � � � �� � � � � � 	 � � �� � � � �

�	� �� � � �� �'� � �
� �� � � � � � 	 � � ����� (6.60)

In (6.60), some delay and higher order dynamics in tank 1, i.e., between the
measurement of � �� and the inlet of tank 2, is ignored. This is represented by a
delay, � . Delay and higher order dynamics in tank 2 can be ignored since they can
be assumed equal for the disturbance and the control input. We obtain the model
(6.46) and (6.47).
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Abstract

In this paper, a laboratorial experiment has been used to investigate some aspects related to
integral action in MPC. We have used MPC for temperature control of a process with two tanks
in series. Since this often improves performance, we used the temperature measurements of both
tanks in the controller, even if we only are interested in the outlet temperature, and we have only
one control input. To avoid outlet temperature steady-state offset, estimates of input disturbances
have been used in the calculation of the steady-state control input. This method has been reported
in the literature as the generally most efficient.

Simulations may indicate that integral action is present and that disturbances are handled well,
but in practice unmodelled phenomena may give a poor result in the actual plant, also at steady-
state. If should be verified that integral action (feedback) is actually present and not an apparent
effect of perfect feedforward control.

The experiments verify that output feedback through input disturbance estimation is efficient,

provided that it is correctly done. To obtain integral action, care must be taken when choosing

which input disturbance estimates to include. It is not sufficient to estimate a disturbance or

bias in the control input(s), even if the control input(s) are sufficient to control the process. The

present work verifies the result that the number of independent disturbance estimates must equal

the number of measurements. In our experiment the use of estimates of input disturbances to both

tanks gave satisfactory performance with no steady-state error.

Keywords: MPC, Uncertainty, Integral action, Feedforward control, Experiment
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7.1 Experimental set-up

7.1.1 Equipment

The experimental set-up is illustrated in Figure 7.1. The aim of the process is to
keep the temperature in the circulation loop (as measured by TI2) constant by ad-
justing the cold-water flow-rate (marked with � in the Figure) despite disturbances
(marked �  and � � ). A more detailed description of the equipment follows.

TI
2

FI
1

TI
H

TI
1

Main tank

Mixing
tank

Cold water
reservoir

Hot water
reservoir

Circulation

ud1

d2

Heat loss

Cold water

y

Figure 7.1: The experimental set-up

Hot and cold water from two reservoirs are mixed together into a mixing
tank. The water flow rates are controlled with peristaltic pumps (Watson Mar-
low 505Du/RL). At a certain level in the mixing tank there is a spout acting as an
overflow drain, and the mixed water flows through this spout and through a flexi-
ble tube to the main tank, which is situated at a lower altitude. The outlet provides
a constant level in the mixing tank.

The main tank has a circulation loop with a pump (Johnson Pump F4B-8)
and a flow-rate measurement (tecfluid SC-250). The main tank temperature mea-
surement is placed in the circulation loop, which gives an adjustable delay in the
measurement. In addition, the circulation serves for mixing.

In the circulation loop, below the main tank, there is a drainage. The drainage
flow is controlled with an on-off valve (Asco SCE030A017). The drainage keeps
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the level in the main tank approximately constant despite the inflow from the
mixing tank.

The reservoirs and the tanks are all modified beakers. The pipes of the circu-
lation loop are made of glass.

The experiments are taking place in room temperature (about ; � � � ). Since
the hot-water temperature deviates considerable from this ( < : � � 	 � � ), the hot-
water reservoir is placed on a hot-plate with thermostat to keep the hot-water
temperature approximately constant. Since the two reservoirs do not contain a
sufficient amount for the whole experiment, refill is necessary. The cold-water is
about 	 � � 	 � � � , which is considered fairly close to room temperature.

Magnetic stirrers are placed in the hot-water reservoir and in the mixing tank.

7.1.2 Instrumentation and logging

Pt-100 elements (class B, 3 wire, single, diameter 3mm, length 150mm) are placed
in the hot-water reservoir, the mixing tank and in the circulation loop of the main
tank. The main tank level is measured with a capacitance probe (Endress+Hauser
Multicap DC11 TEN). The instruments are connected to National Instruments
Fieldpoint modules, which are further connected to a PC via the serial port. In
the PC, Bridgeview (National Instruments) is used for data display and basic con-
trol. Bridgeview also provides an OPC server interface, such that an OPC client
may read off measured data, and give values to the actuators. The temperature
controller is implemented in Matlab. The temperature measurements are read into
Matlab, and the flow rate for the peristaltic pumps are determined in Matlab, and
provided to Bridgeview via the OPC interface. Matlab is also used to plot the
results.

7.1.3 Basic control

The following basic control is implemented in Bridgeview on the connected PC:

(1) The level in the main tank is controlled by opening the drainage valve when
the main tank level reaches above ; 7 � � , and closing it when it is below 	>7 ��� .
A manually adjustable valve is installed on the drainage tube to reduce the
drainage flow (otherwise the main tank empties too quickly compared to the
response time of the level control loop).

(2) The rotational speed of the circulation pump is set to a constant value, which
in this set-up gives a constant circulation flow-rate.

(3) The speed of the peristaltic pumps is determined from the desired flow rate
by a linear relation. A two-point calibration is used.
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7.2 Process model

We assume perfect mixing in both tanks, and model the main tank with circulation
loop as one mixing tank. Combination of mass and energy balance for the mixing
tank (numbered 	 ) and the main tank (numbered ; ) yields

� � 
�>@ �

	
�  � � � �  �
� � �  � �  � � � � �	� � � �  � � (7.1)

� � �
�>@ �

	
� � � � � � �  � � � � �	�  � � � � � � � � � �	� � � � � � � � � (7.2)

where the variables are explained in Table 7.1. Here we have assumed that the
outlet flow from the mixing tank is identical to the inflow (i.e. constant level in
the tank). In addition there is a delay in tank 1 of �� and a delay in tank 2 of � � .
These represent transportation delays and neglected dynamics.

Table 7.1: The model variables of nonlinear model given by (7.1) and (7.2)
Name Explanation Unit
�  Temperature mixing tank �

�

� � Temperature main tank �
�

�  Volume mixing tank � �
� � Volume main tank � �
� � �  Temperature cold-water into mixing tank �

�

� � Temperature hot-water into mixing tank �
�

� � � � Temperature cold-water into main tank �
�

� � �  Flow rate cold-water into mixing tank � �����
� � Flow rate hot-water into mixing tank � �����
� � � � Flow rate cold-water into main tank � �����

Linearization around a nominal point, denoted with an asterisk, yields:

�
�>@

� � 
� � 	 �

� � ! "� "� �
! "� "� � !+" � !#"� � �� "�

� � � 
� � 	

�
� � "� � � � � "�� "� � "� � � "�� "� �

� � � "� � � � � "�� "�
� �� �

��
� �

�� (7.3)

�
� �O@ � �

� �  �A@ � �  �
� � �A@ � �  � � � � 	 (7.4)

� �O@ � � � � �A@ � �  � � � � (7.5)
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where the model variables are given in Table 7.2 and the model parameters are
given in Table 7.3. Here we have incorporated the delays. The linear model
is discretized with the Matlab Control Toolbox routine c2d. 	 � sample time is
chosen. The delays are implemented as extra poles in the origin in the model (by
delay2z in Matlab Control Toolbox). The linear discrete model has 27 states. Note
that in this way the delays are implemented exactly. The linear discrete model may
be formulated as

� � �  � � � � � � � � � � � � � (7.6)

� � �
�
� � (7.7)

where the subscript � � � � 7�727 denotes the time step number.

Table 7.2: The model variables of the linear model given by (7.3) - (7.5)
Name Explanation Unit
�  Variation in temperature mixing tank ( �  � � � ) �

�

� � Variation in temperature main tank ( � � � � �� ) �
�

� � � � �  � � 	 � Measurement vector �
�

� ( � � � ) The output that we want to control �
�

� Variation in cold-water flow rate into mixing � �����
tank ( � � �  � � �� �  )

�  Variation in hot-water flow rate into mixing � �����
tank ( � � � ���� )

� � Variation in cold-water flow rate into main � �����
tank ( � � � � � � �� � � )

In this work we have used the linear model (7.6) and (7.7) for the controller,
whereas the nonlinear model (7.1) and (7.2) is used instead of the process in the
simulations referred in section 7.6.

7.3 Identification of process parameters

Most of the process parameters can be determined directly by inspection or mea-
surements. The delays �  and � � and the nominal volume of the main tank, � �� ,
are more difficult to quantify in this way, since they represent more than one phe-
nomena. The main tank volume includes the recirculation loop, and the delays
represent both transportation of water and other neglected dynamics.

Therefore, three open loop experiments have been performed to determine
these three parameters. The MPC with a preliminary tuning was used to drive the
process towards a steady state, after which the controller was turned off. Three
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Table 7.3: The model parameters
Name Explanation Value Unit
� � Nominal temperature mixing tank � 	>7 �>� , � 	87 �>: 1 �

�

� �� Nominal temperature main tank (=set-point) � 	>7 �>� , � 	>7 �>: 1 �
�

� � Nominal liquid volume of mixing tank 	��>�>� � �
(tank no.1)

� �� Nominal liquid volume of main tank,
including circulation loop (tank no. 2) � �>�8� � �

� � � , � � � Cold-water temperatures (assumed constant) 	 � 7 � �
�

� � Hot-water temperature < : � � 	 �
�

� � Nominal total flow from mixing tank 	��>�>� � �����
( � � �� � � �� )

� �� Nominal flow rate from hot reservoir � �>� � �����
� �� �  Nominal flow rate from cold reservoir � �>� � �����

into mixing tank
� �� � � Nominal flow rate from cold reservoir � � �����

into main tank
�  Transportation and measurement delay in �  � �
� � Transportation and measurement delay in � � 	 � �

1 For experiment 1 and 2, repectively.
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steps tests were performed, and in each test the process was run to the new steady
state. The results are shown in Figure 7.2.

The linear model (7.3) - (7.5) was simulated with the actual � and �  as inputs.
The nominal volumes � �� and the delays �  and � � were determined by trial and
error. Simulation results with the final model are compared with the experiments
in Figure 7.2. The resulting parameter values are given in Table 7.3.

7.4 Controller

The MPC used for temperature control is based on the controller proposed by
Muske and Rawlings (1993). A discrete linear model, as expressed by

� � � � � � � � � � (7.8)

��� �
�
� � (7.9)

is used. This model is the same as (7.6) and (7.7), except that the disturbance term
is omitted. The control input, � � , is found from an infinite horizon criterion:

� � �� ��

�
�
� 
 � C � �� � � � � � � � � � � � � � � � � � � L (7.10)

where � � � � is the deviation in the main tank temperature at sample number � � � ,

and �
�� � � � � � � �  727�7 � � � � �  	 � is a vector of � future moves of the

control input, of which only the first is actually implemented. The control input,
� � � � , is assumed zero for all � � � . Weight may also be put on change in the
control input, but this is omitted here.

Muske and Rawlings (1993) demonstrated how to formulate (7.10) as a fi-
nite optimisation problem. By assuming that the constraints never are active, at
optimum the control law can be formulated as state feedback:

� � � � � � (7.11)

� � is assumed constant from � to � � 	 .
If we have a nonzero reference � � for � or external disturbances, however, the

control law (7.11) has no integral action, and will give steady-state offset. There
are many ways to obtain integral action, and one is to modify the control law

� � � � � � � � � � � � � � (7.12)

where � � is the state corresponding to desired value of � � ( � � �
�
� � ) and � � is the

control input that is necessary to obtain the state � � . � � and � � are both functions
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Figure 7.2: The resulting linear model: Open loop simulations compared with the open
loop experiments
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of the reference � � and disturbances. � � is known, and is held constant during the
experiments. Disturbances, however, are here assumed unknown, and must there-
fore be estimated from the temperature measurements. For processes with large
time constants better performance is obtained if we estimate input disturbances
(Lee et al., 1994; Lundström et al., 1995). The states, � � , must also be estimated,
so we define an extended state vector including a disturbance estimate vector, � � ,
of length � � :

�� � �
� � �
� � 	 (7.13)

In the experiments we will investigate the use of two different vectors � � . First we
let � � be the input disturbance to the mixing tank ( � � � 	 ). Second we let � � be
the input disturbance to both the mixing and the main tank ( � � � ; ). We assume
that the disturbances are integrated white noise, and introduce the extended model

�� � �  �
�
� � �� � 	; <>= ?

��

�� � �
�
� � 	; <>= ?

��
� � � � � (7.14)

� � � � � � 	; <>= ?
�

�
� � � ��� (7.15)

where

� � �

����
�
�� ,�
...�

�����
� (7.16)

and � � and � � are zero-mean, not correlated, normally distributed white stochastic
noise with covariance matrices of

� �
and � � , respectively. We design a Kalman

filter:

�� � �  �
�

�
�

�� � �
�

� � � (7.17)
�

�� � � �� � � � � � �� � �

�
�� � 	 (7.18)

where
�� � and

�
�� � are a priori and a posteriori estimates of

�� � , respectively, and �
is the estimator gain matrix given by the solution of a Ricatti equation:

� �
�

�
�
� � �

�

�
� � �

�
�

�

�
� � � � 	 � 

�

�
� 	 �

� � � � �
(7.19)

� � �
�

�
� � �

�
�

�

�
� � � � 	 � 

(7.20)
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The steady-state solutions � � and � � can be expressed by the disturbance estimate
and the reference. This yields for the control law:

� � �
�� �

�� � � �
� � (7.21)

Values for the weight and covariance matrices:
� � 	 � � � � 	 �8N � Q 	�� � -

(7.22)
� � �

�
�  �
� ��7 � � �� , 	 � � � � 	��>�>� � � (7.23)

� is number of states and � � is number of estimated disturbances.
The large difference in magnitude between

�
and � is a result of not having

scaled the model. For a variation in � between � � 7 � and ��7 � and � between � � �>�
and � �>� , the two terms are in the same order of magnitude for the limiting values:

� � � � � ��7 � � Q>	 � ��7 � � (7.24)

� � � � � � �8� � Q � 	 �8N � Q 	�� � - � ��7=< ; (7.25)

7.5 Experimental procedure

In each experiment, the process was run to a steady-state working point. The
following sequence of disturbances was then introduced:

To introduce disturbance �� :

(1) Reduce hot flow rate from � �>� to < �>��� ��� ����

(2) Increase hot flow rate back from < �>� to � �>��� ��� ����

To introduce disturbance � � :
3. Start addition of cold-water to main tank

4. Stop addition of cold-water to main tank

Two such sequences (1.- 4.) was performed with the MPC for the temperature
control active.

Prior to the experiments, we performed a simulation with the nonlinear model
of the process (7.1) and (7.2), which was implemented in Simulink (a Matlab
toolbox). In the simulation we only introduced disturbance �  (steps 1. and 2.).

In the experiments we wanted to investigate the effect of different disturbance
vectors, � � , to be estimated and used in the calculation of steady-state control and
state vector:
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The simulation and experiment no.1 Estimate of the disturbance into the mix-
ing tank only.

Experiment no.2 Estimate of the disturbances into the mixing tank and the main
tank.

The change in hot flow was done by adjusting the speed of the peristaltic pump
via the Matlab user interface.

The addition of cold-water to the main tank was done by pouring from a jug.
During 7 minutes < � ��� � (experiment 1) and < � ��� � (experiment 2) cold-water
was added. This gives a mean flow rate of N 	>7=<,� �2� � � � and N <�7 � � ��� ���� , re-
spectively for the two experiments.

During the two experiments the hot-water temperature varied between <>: and
� 	 �

�
, whereas during the simulations the temperature was held constant.

7.6 Results

First the disturbance �  was applied (as described in section 7.5) to the nonlinear
model of the process (7.1) and (7.2), implemented in Simulink. In Figure 7.3 we
see the response when no temperature control is applied.
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Figure 7.3: Open loop simulation with the same disturbances as the experiment

In Figure 7.4 the closed loop simulation is shown. Note that � � (solid line)
is the important output (temperature) which we want to return to its set-point as
quickly as possible. Disturbance �� is estimated and used in the calculation of
steady state. We see that the disturbance is well handled by the controller.

In Figures 7.5 and 7.6 we see the results of the experiments. In contrast to
the simulation, the controller with estimation of only one disturbance failed to
achieve the desired steady state, both before and after the disturbances was added
(experiment 1, Figure 7.5). We also see that �  is above � � . The reason for this
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Figure 7.4: Simulation: MPC with estimate of
� 

is mainly heat loss, and there was also a small difference in the calibration of the
temperature elements. The model does not cover these effects.

In the experiments we also introduced disturbance � � . In experiment 1 where
this disturbance was not modelled, the controller failed to bring � � back to steady
state.

In Figure 7.6 we can see that in experiment 2 we reached the desired steady
state for the temperature in the main tank, � � . To compensate for the heat loss,
the controller increased the temperature in tank 1 ( �  ). Both disturbances were
handled well.

7.7 Discussion

In the experiments the estimator exploited two measurements: The measurement
�  in addition to � � which is the output of real interest. With estimation of two
input disturbances an offset free steady state was obtained, whereas with only one
input estimate insufficient integral action was obtained. This is in accordance with
the theoretical results in Chapter 5. We there found that the number of estimated
input disturbances must equal the number of measurements if steady-state offset
shall be avoided.

We have also simulated the case when �� is omitted, i.e. only � � is used by the
MPC. Then it is sufficient to only estimate one disturbance in the second tank ( � � ).
Normally this controller will give a poorer performance, since the early informa-
tion of disturbances to the first tank from �  is not exploited, but for the controller
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Figure 7.5: Experiment 1: MPC with estimate of
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tunings we have chosen, the performance was actually slightly improved for the
controller without � � .

We will compare our MPC controllers (with estimation of �� and with estima-
tion of �� and � � ) in the frequency domain. This is possible since the constraints
in the control input, � , is never active. In Chapter 5 we derive a state-space for-
mulation for the combination of the controller and the estimator for this case. The
controller may further be expressed by an approximated continuous state-space
formulation (by d2c in Control Toolbox in Matlab), which is easily converted to a
transfer function formulation:

������� � � � � ��� � � � ��� � (7.26)

We will study the magnitude of
�

, but first it is convenient to introduce scaled
variables. The maximum possible variation in � in each direction is � 1.354 �
� �>��� �2� � � � , and � 1.354 � ��7 � � � is the maximum desired variation in � . We there-
fore introduce the scaled variables �

� � � � �'1.354 and �
� � � � � 1.354 such that both

�
�

and �
�

stay within � 	 . The corresponding controller equation for the scaled
system is

�
� � ��� � � � � ����� � � � � ��� � (7.27)

where
� � � ��� � � � � ��� � �Y1.3542� �'1.354 .

In Figure 7.7 we have illustrated the magnitude of
� � ��� � � for the two types

of controllers. We see that the controller with only one disturbance estimation has
low gain at low frequencies and higher gain from �  than from � � (Figure 7.7(a)),
whereas for the controller with two disturbances the low frequency gain from � �
is high (Figure 7.7(b)). (Figure 7.7(b) also reveals that the gain from �  is low for
all frequencies, which explains why the use of �  in the control did not improve
performance as expected.)
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In this work, we have assumed that the constraints never are active in the
design and analysis of the controller. In this set-up, this will at least be the case
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close to steady state. This means that the result will be the same if we use an
ordinary MPC for the same example.

7.8 Conclusions

In a laboratorial experiment, we have used MPC combined with an estimator for
temperature control of a process with two tanks in series. Since this often im-
proves performance, we used the temperature measurements of both tanks in the
controller, even if we only are interested in the last temperature, and we have
only one control input. To avoid steady-state offset, we have estimated input dis-
turbances, and used these estimates in the calculation of the steady-state control
input.

Simulations may indicate that integral action is present and that disturbances
are handled well, but in practice unmodelled phenomena may give a poor result
in the actual plant, also at steady state. It should be verified that integral action
(feedback) is actually present and not an apparent effect of perfect “feedforward
control”.

Estimates of input disturbances have been described in the literature as ef-
ficient for a quick response back to the desired steady state. The present work
confirms this provided that it is correctly done.

To obtain integral action, care must be taken when choosing which input dis-
turbance estimates to include. It is not enough to estimate a disturbance or bias
in the control input(s), even if the control input(s) are sufficient to control the
process. The number of disturbance estimates must equal the number of measure-
ments. In our experiment, the use of estimates of input disturbances to both tanks
gave satisfactory performance with no steady-state error.
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Chapter 8

Conclusions and directions for
future work

8.1 Conclusions

8.1.1 Buffer tank design

The first part of this thesis treats the design of buffer tanks for control purposes.
The basic idea is that the buffer tank shall handle disturbances in the frequency
range where neither the (original) process nor the basic feedback control system
dampens them sufficiently. Chapter 2 addresses control-related design for neu-
tralization plants. One or several mixing tanks are usually installed to smoothen
disturbances that cannot be handled by the control system. Control theory has
been applied to determine the required number of mixing tanks and their volumes,
assuming strong acids and bases. Skogestad (1996) derived a minimum required

total volume, ��� � � � �
�
�
� I � � 	 , where � is the flow rate, � is the number of

tanks, � is the delay in each tank and � � is the scaled disturbance gain. With PI
or PID control in each tank, we compute numerically the required volume for dif-
ferent tunings, and based on this we recommend a total volume of � G�� G � ; � � .
We recommend identical tank sizes (in contrast to Shinskey (1973) and McMillan
(1984)).

Chapter 3 extends the ideas from Chapter 2 to buffer tanks for all kind of
processes. We first find the required buffer tank transfer function such that (with
scaled variables) the gain from the disturbance to the output (including the pro-
cess, the feedback loop, and the buffer tank) is less than 	 . We realize this transfer
function with either one or several mixing tanks (for quality disturbances) or a
surge tank with “slow” level control (for flow-rate disturbances).

The work is based on (Skogestad, 1994). In the present work more “accurate”
numerical and graphical methods have been included, and we have distinguished
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between the case when the feedback loop of the original plant is given (such that
the sensitivity function, � , is known), and the case when it is not. Aspects re-
garding the buffer tank placement (before or after the process) are discussed. A
literature survey and several process examples are included.

8.1.2 Feedforward control under the presence of uncertainty

In Chapter 6 feedforward control under the presence of model uncertainty is dis-
cussed, and we define the feedforward sensitivity functions, � � and � � � � for the
disturbance and the reference, respectively. For “ideal” feedforward controllers,
we find that � � is equal to the relative error in � � � � , and � � � � is equal to the
relative error in � (except for the signs). A simple frequency domain analysis of
� � � � and � � � � ��� shows for which frequencies feedforward control has a dampening
effect when some common model errors are present ( in gain, delay, dominant
time constant, or a common combination of gain and time constant). The effect of
more complex uncertainties is also discussed.

Feedforward is needed when the bandwidth, ��� , of the feedback controller is
below the frequency � � for which � � ��� becomes less than one (with appropriate
scaling). We must require � � � � ��� � ��$ 	 in the frequency region between � � and� � , or if it is known, for all frequencies where the magnitude of the closed loop
disturbance response, � � � ��� � � � � ��� � � , is above 	 .

To make the feedforward controller more robust, two methods have been pro-
posed: 1) Adding a low-pass filter to the nominal design and 2) � -optimal feed-
forward controller design.

8.1.3 Multivariable control under the presence of uncertainty

Serial processes are very common in the process industry, and in Chapter 4 we
use this class of processes to illustrate that a multivariable controller may actually
use the two basic principles of “feedforward” action (based mainly on the model),
and feedback correction (based mainly on measurements) simultaneously. The
feedforward action may improve the performance significantly, but is sensitive
to uncertainty, in particular at low frequencies. Therefore it is important to in-
clude efficient feedback control by using measurements late in the process, and to
include integral action if offset-free steady-state is important.

In Chapter 4 we see that testing the process on a too idealistic process model
may give the impression that the control is better than it actually is. This is con-
firmed by the experiments reported in Chapter 7 (Model predictive control, MPC,
is used for temperature control of a process with two tanks in series). Simula-
tions may indicate that integral action is present and that disturbances are handled
well, but unmodelled phenomena may give a poor result in the actual plant, also at
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steady state. It should be verified that integral action (feedback) is actually present
and not an apparent effect of “ideal feedforward control”.

Estimates of input disturbances have been described in the literature as ef-
ficient for a quick response back to the desired steady state. The experiments
confirm this provided that it is correctly done. Care must be taken when choosing
which input disturbance estimates to include. It is not enough to estimate a distur-
bance or bias in the control input(s), even if the control input(s) are sufficient to
control the process. The number of disturbance estimates must equal the number
of measurements (as found theoretically in Chapter 5).

When designing the controller, one must also consider which of the outputs
that are really important. If the number of inputs exceed the number of (important)
outputs, one may either give set-points to other (less important) outputs, or one
may let the controller bring some of the inputs back to ideal resting positions
(Chapter 4).

As a tool to understand the model predictive controller (MPC), in Chapter 5
we derive a (linear, discrete) state-space realization of a MPC controller (Muske
and Rawlings, 1993) under the assumption that it is operated with no active con-
straints. A generalization to tracking of both inputs and outputs is derived. The
final controller expression also includes a state estimator that is extended with in-
put disturbance states. We have not found such a derivation of a MPC controller
on state-space form elsewhere.

A direct result is that to obtain integral action with input bias estimation, it
is required to include the same number of input biases as measurements. Com-
bined with the process model (also on state-space form), the closed loop model is
determined, and this can, for example, be used to check the steady-state solution.

The state-space MPC formulation has been applied (in Chapters 4 and 7) to
obtain the frequency dependent gain for each controller channel and the magni-
tude of each of the elements in the sensitivity function matrix. The frequency
dependent gain in each channel may give insight into how the controller utilizes
each measurement and the magnitude of the control actions for each input. The
steady-state behaviour can be seen from the low-frequency gains. But, often more
than one channel in a row have high gain at low frequencies, and then it is difficult
to interpret the result. It is then better to consider the elements of the sensitivity
function matrix. An offset-free, steady-state control for a specific output requires
that all the elements in the corresponding row have low gain at low frequencies.
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8.2 Directions for further work

8.2.1 Serial processes: Selection of manipulated inputs and mea-
surements

A general question related to control structure design is the choice of manipulated
inputs and measurements. In Section 4.4 we study a serial process with three
units, and with one candidate measurement (pH) and one candidate manipulated
input (addition of a reactant) in each unit. To save installation and operational
costs, one may omit one or more of the instruments or actuators. From Table 8.1
we see there are 49 possible combinations. Often one would like to monitor the
final output, in which case the number of possible combinations is 28.

Table 8.1: Possible combinations of inputs and measurements for the example in Section
4.4. The last column is for the case with a measurement in the last unit.

Inputs Measurements No of combinations No of combinations
pH in last tank used

3 3 1 1
3 2 3 2
3 1 3 1
2 3 3 3
2 2 9 6
2 1 9 3
1 3 3 3
1 2 9 6
1 1 9 3

Total 49 28

In general, if one may choose from 	 to
�

inputs and from 	 to � possible
measurements, the number of combinations is given by (Nett, 1989):

��
� 
 

��
� 
 

� � � � � � � � (8.1)

In the example
� � � � � .

To illustrate the problem, we will here compare two realistic combinations
from the example:

(1) pH measurement and reactant addition in tanks 	 and � .
(2) pH measurement and reactant addition in tanks ; and � .
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In both cases we keep the measurement and reactant addition in the last tank,
since normally we want to measure the product quality, and the late reactant addi-
tion minimizes the delay in the last control loop. When we omit reactant addition
to a tank, the steady-state pH will be the same as the inflow pH. From the simula-
tions in Figure 8.1 we see that the resulting pH-response in the last tank is similar
to the full instrumentation case (compare with Figure 4.7(a)). We see that the
small deviation in the pH of last tank has a shorter duration for case 1 (with no
instrumentation in tank 2). In case 2 (Figure 8.1(b)) the control inputs have not
reached their steady state after ;>� � � ( � � reaches � � 7 � < ).

The simulations indicate that with a multivariable controller one may omit the
instrumentation in one of the three tanks.
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(a) Instrumentation is removed from
tank 2. pH set-point in tanks 1 and 2
are both set to 2.4.
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is � �� in tank 2.

Figure 8.1: pH measurement in and reactant addition to two tanks only. � ��� (not
� � � ����� � ��� ���� �� � as with full instrumentation)

Even if the final results for the two cases are similar, one may point out some
important distinctions: In case 1, the total control loop includes all three tanks,
whereas in case 2, only the two last tanks are included. In case 1, therefore the
feedback loop from the last tank to the first is slower, but on the other hand, the
“feedforward” controller element can be made close to “ideal”, in contrast to case
2 (because of the delays).

A further analysis of the differences between different control configurations
would be useful, both as a basis for recommendations to process designers, but
also to get a deeper understanding of the process and the controller.
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8.2.2 MIMO feedforward controllers under the presence of un-
certainty

MPC vendors often offer feedforward control from measured disturbances (e.g.,
Honeywell (1999) and ABB (2003)), and therefore the study of multivariable
feedforward controllers (from multiple measurements to multiple control inputs)
has become more interesting. The theory of Chapter 6 covers multiple-input,
multiple-output (MIMO) feedforward controllers, but the application of the theory
to MIMO examples is still remaining.

8.2.3 Effect of model uncertainty on the performance of multi-
variable controllers

In this thesis we have studied some aspects of multivariable control under the
presence of uncertainty. The basic idea is that a multivariable controller consists
of both “feedforward” and feedback control elements, and these two types of ele-
ments respond differently to model error. We believe that a closer look into some
of the following thoughts might be useful

� Identify elements or blocks of a multivariable controller that may degrade
the performance, and redesign the controller to avoid this. In principle, it
should be possible to identify such elements from the process model. One
way to change (or remove) a controller element is to change the correspond-
ing part of the model, for example, by removing the relationship in the
model between the control input and the output.

One method to investigate, is to consider feedforward elements � � � � � (either
manually or automatically detected) and compute

�� � �� � � � � ��� � �� for expected
model errors to determine the frequency range for which the controller el-
ement is effective. If there are any feedback element (e.g., � � ��� � ) that also
controls output � , one may compute � � � � � ��� � � � to see if this control element
remove errors introduced by the feedforward branch. If the frequency range
for which the feedforward element is effective is not overlapping with the
range where it is needed, it is better to leave this controller element out. A
simple example using this method has been presented (Faanes and Skoges-
tad, 2003).

� Automatically detect feedforward control elements. Sometimes this is not
an easy thing to do manually. One possible automatic method is (from the
process model) to determine which outputs depend on which inputs when
all the loops are closed. A control element from measurement � � to manipu-
lated variable � � is feedforward control if 1) � � is (closed loop) independent
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of � � , 2) there is another output � � which depends on � � , and 3) there is
another input that both � � and � � depend on. An output is (closed loop) de-
pendent of an input if a change in the input leads to a change in the output
(when all the loops are closed).

Due to other feedback loops or weak dependencies in the process, a con-
trol element may fail to fulfil the criteria for a feedforward controller, even
though it has many similarities with feedforward control. This is seen in the
case study in Chapter 4. For such cases it may be better to find an appropri-
ate definition for the “degree of feedforward action” for a (total) controller
or its control elements. This may for example be a number between 0 and 1
where 1 corresponds to pure feedforward control and 0 corresponds to pure
feedback control.

8.2.4 MPC with integral action

There are many ways of obtaining integral action with mode predictive controllers
(MPC). Output bias estimation is the most popular. Another is input disturbance
or bias estimation (which we have used). Alternatively, integration may be intro-
duced in the process model itself (for example by integrating the control input)
with the disadvantage that the MPC optimization problem has grown, and also
that the “new process” includes poles at the imaginary axis. For example, this
means that the state-space formulation we derived in Chapter 5 must be modified
since it only applies to stable processes.

We believe that a comparison of the different methods would be useful. The
recent paper by Muske and Badwell (2002) is a good starting point. It is also
interesting to consider the methods proposed for integral action for linear qudratic
(LQ) controllers, since a criterion for obtaining offset-free steady state is that none
of the constraints are active (Muske and Badwell, 2002).
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Abstract

In this paper we aim at obtaining insight into how a multivariable feedback controller works,
with special attention to serial processes.

Keywords: Control structure, Serial process, Multivariable control, Feedforward, Feedback
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A.1 Example: pH neutralization

Neutralization of strong acids or bases is often performed in several steps. The
reason for this is mainly that the pH control in one tank cannot be quick enough to
compensate for disturbances (Skogestad, 1996). In (McMillan, 1984), an analogy
from golf is used: the difficulty of controlling the pH in one tank is compared
to getting a hole in one. Using several tanks, and smaller valves for addition of
reagent for each tank, is compared to the easier task of reaching the hole with a
series of shorter and shorter strokes.

In this example, control structures for neutralization of a strong acid by use
of three tanks in series are discussed. The aim of the control is to keep the outlet
pH from last tank constant despite changes in inlet pH or flow. This is obviously
a serial process, since the flow goes from one tank to another. For each tank, the
pH can be measured, and the reagent can also be added to each tank. Referring to
Figure 4.1, the three units (i-1, i and i+1) correspond to the three tanks (1, 2 and
3).

To study this process we model each tank as described in (Skogestad, 1996).
In each tank we model the excess

� �
concentrations, that is 	 � 	 �� � 	 *#�,+ .

This gives bilinear models, which are further linearized around a stationary work-
ing point so that methods from linear control theory can be used. We get two
states in each process unit (tank), namely the concentration, 	 , and the level. The
disturbances enter tank 1 only. We here assume that there is a delay of 5 seconds
for the effect of a change in inlet acid or base flow or inlet concentration to reach
the outflow of the tank, e.g. due to incomplete mixing, and a further delay of 5
seconds until the change can be measured. In the linear state space model these
transportation delays are modelled by Padé-approximations of 4th order. There is
assumed no further delay in the pipes between the tanks. We assume that the lev-
els are controlled by the outflows using a P controller such that the time constant
for the level is about 1/10 the time constants for the concentrations.

The volumes of the tanks were chosen to 	 � 7 N � [ , the smallest possible vol-
umes according to the discussion in (Skogestad, 1996). The acid inflow (distur-
bance) has � � � �R	 . The pH of the final product in tank 3 should be � � ��� � 	 ,
and we selected the set-points in tank 1 as 1.65 and in tank 2 as 3.8. The concentra-
tions are scaled so that a variation of � 	 � � around these set-points corresponds
to a scaled value of � 	 . The control inputs and the disturbances are also scaled ap-
propriately. The linear model was used for multivariable controller design, while
the simulations are performed on the nonlinear model.

A conventional way of controlling this process is to use local control of the
pH in each tank using PID-controllers. Figure A.1 shows the response of pH in
each tank when the acid concentration in the inflow is decreased from 10mol/l to
5mol/l. As expected from (Skogestad, 1996), this control system is barely able
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Figure A.1: With only local control, PID controllers must be agressively tuned to keep
the pH in the last tank within � � � . (Disturbance in inlet concentration occurs at � � ��� .)

to give acceptable control. However, the nominal response can be significantly
improved with multivariable control.
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Figure A.2: A large improvement in nominal performance is possible with multivariable
control. (Disturbance in inlet concentration occurs at � � ��� )

Figure A.2 shows the response with a � 0 � multivariable
� �

controller de-
signed with performance weights on the outputs and on the control inputs in all
tanks, and with composition into tank 1 as a disturbance. The main reason for the
large improvement is the feedforward effect discussed in section 4.3.

The gain of the elements in the multivariable controller as a function of fre-
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Figure A.3: Gain of the control elements of the original
�  ��� �

controller. (Local PID
controllers are dashed.)

quency are shown in Figure A.3. The diagonal control elements are the local
controllers in each tank, whereas the elements below the diagonal represent the
”feedforward” elements. From such plots we get an idea of how the multivariable
controller works. For example, we see that the control input to tank 1 (row 1)
is primarily determined by local feedback, while in tank 2 it seems that ”feedfor-
ward” from tank 1 is most decisive for the control input. In tank 3 the control
actions are smaller. This is also seen from the simulation in Figure A.2 (the solid
line in the plot of � ).

We observe that none of the control elements have any integrators, even though
the simulation in Figure A.2 show no steady-state offset. However, if some model
error is introduced ( ; ��2 reduced gain in tank 2 and 3), we do get a steady-state
offset. Figure A.4 shows the start of the response, it finally ends up slightly above
� � � : . Local PID controllers give no such steady-state offset.

We subsequently redesigned the controller to get three integrators in the con-
trol loop shape (Figure A.5). The simulation in this case gives no steady-state
offset. This illustrates one of the problems of the ”feedforward” control block,
namely the sensitivity to static uncertainty. Simulations on the perfect model may
lead the designer to believe that no integrator is necessary.

To study the feed forward effect separately, a
���

controller was designed
using the measurement in tank 1, and control inputs in all tanks. The result is
local control in tank 1 and feed forward from tank 1 to tanks 2 and 3. Simulation
on the linear model gives the same result as for the � 0 � controller (Figure A.2),
whereas nonlinear simulation gives steady-state offset due to static model error
and no feedback in tanks 2 and 3.
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Figure A.4: Model error gives steady-state offset with original
�  �

controller.
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The effect of feedback from downstream tanks, i.e. the blocks above the diag-
onal from the discussion in section 4.3, is illustrated through the following sim-
ulations. We introduce a static measurement noise in tank 2 of 1 � � unit. In
Figure A.6 we see the response for the process with local control with PID. We
can see that the pH in tank 3 relatively quickly returns to a pH of 7. The problem
is the control input in tank 3, which stabilizes at a level away from the point in the
middle of the range (0), which we consider as the ideal resting position. Since we
really are interested in the pH in only the last tank, we get two extra degrees of
freedom, which can be used for resetting the control inputs of the last two tanks.
Figure A.7 shows the simulation for the multivariable controller. Here we see that
both the pH and the control input in tank 3 go to their desired values. The actual
pH in tank 2 is increased to the correct value to obtain this. This illustrates that the
elements above the diagonal in the multivariable controller give input resetting.
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Figure A.6: Steady-state measurement noise in tank 2: Local control with PID do not
bring the control input for tank 3, � [ , back to the ideal resting position. (u-plot: solid
line.)

To summarize the example we can say that the multivariable controller gives
significant improvements compared to local control based on PID. This is espe-
cially due to the feedforward effect, and with large model errors, the feedforward
may lead to worse performance. Integral action is important in the controllers,
even if the feedforward effect may give no stationary deviation for the nominal
case. The inputs in the last two tanks are reset to their ideal resting position with
the multivariable controller, because of the feedback from downstream tanks.
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Figure A.7: Steady-state measurement noise in tank 2: The multivariable controller has
built in input resetting, and brings � [ back to the ideal resting position (u-plot: solid).
Note that the timescale differs from the other plots.

A.2 Conclusion

An example of neutralization of a strong acid with base in a series of three tanks is
used to illustrate some of the ideas in the paper. This process is obviously serial.
The example illustrates that the multivariable controller yields significant nominal
improvements compared to local control based on PID. But this is especially due
to feedforward, and with model errors, the feedforward may in fact lead to worse
performance. Integral action or strong gain in the local controllers at low frequen-
cies is important to obtain no steady-state offset, even if the feedforward effect
itself may nominally give no steady-state. Feedback to upstream tanks brings the
inputs to their ideal resting positions, also when a wrong pH measurement give
problems in an upstream tank. The example indicates that it is possible to get a
good performance with careful use of a multivariable controller or a combination
of local control, feed forward from tank 1 and input resetting.

In this study we used a
� �

-contoller, but similar results have also been found
for a MPC controller.
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Abstract

Buffer tanks are often designed and implemented for control purposes, yet control theory is rarely
used when sizing and designing buffer tanks and their control system. Instead, rules of thumb
such as “10 min residence time” are used. The objective of this paper is to provide a systematic
approach. We consider mainly the case where the objective of the buffer tank is to dampen (“aver-
age out”) the fast (i.e. high frequency) disturbances, e.g. in flow and concentration, which cannot
be handled by the feedback control system.

Keywords: Process control, process design, buffer tanks

1In the present version some corrections and clarifying modifications from the original text
have been made. The most important error was step 3 in Table B.1. Some missing values have
been provided for the examples, and equation (B.26) has been modified. A concluding section that
was omitted due to spatial limitations has been included.
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B.1 Introduction

The objective of this paper is to provide a systematic approach to the design of
buffer tanks based on control theory. The background for this approach is that
buffer tanks often are implemented for control purposes. Even so, control theory
is rarely used when sizing and designing the tanks. Instead, rules of thumb are
used.

Text books on chemical process design seem to agree that a half-full residence
time of 5-10 minutes is appropriate for reflux drums and that this also applies for
other buffer tanks. For tanks between distillation columns a half-full residence
time of 10-20 minutes is recommended. ((Lieberman, 1983), (Sandler and Luck-
iewicz, 1987), (Ulrich, 1984), (Walas, 1987) and (Wells, 1986)). Sigales (1975) is
more specific concerning what follows after the drum. None of these references
give any justifications for their choice. (Watkins, 1967) gives a reflux drum vol-
ume dependent on instrumentation and labor factors (both related to operational
use of the buffer tank), reflux and product rates, and a factor dependent on how
well external units are operated. The method gives half full hold-up times from
1.5 to 32 min.

Design of vessels to dampen flow variations is presented by Harriott (1964) us-
ing a specification of outlet flow rate change given a certain step in inlet flow. This
method has similarities with the one presented for flow variations in the present
paper.

Another related class of process equipment is neutralization tanks. The main
problems for this process are large and varying process gain and delays in the con-
trol loop. Design is described in (Shinskey, 1973) and (McMillan, 1984). Another
design method and a critical review is found in (Walsh, 1993).

Zheng and Mahajanam (1999) find the necessary buffer tank volume by opti-
mization and use it as a controllability measure.

A stated above, due to limitations in the control system, there is a limitation
in frequencies above which the control system is not effective. The process itself
must dampen the disturbances in this area. If it initially does not, addition of one
or more buffer tanks is necessary. In this paper we present design methods for
buffer tanks based on this fundamental understanding.

B.2 Transfer functions for buffer tanks

Consider the effect of a disturbance, � , on the controlled variable, � . The lin-
earized model in terms of deviation variables may be written as

� ����� � � � � � � � � ��� (B.1)
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To illustrate the effect of the buffer tank, we express the dynamic model of the
tank with the transfer function ������� . The disturbances passes through the buffer
tank (e.g. see Figure B.1), so that the process with a buffer tank may be expressed
by

� � ����� � � ��9 � ��� ��� � � (B.2)

where � ��9 � ��� is the disturbance transfer function of the original plant, and ��� � � �
is the modified disturbance transfer function. A typical buffer tank transfer func-
tion is

��� ��� � 	 � �A? � � 	 � (B.3)

Note that ��� � � � 	 so that the buffer tank has no steady state effect.

Buffer tank
h(s)

Gd(s)

Quality/ Flow
disturbance

Process
Gd0(s)

Figure B.1: Example of how a buffer tank dampens disturbances.

We consider a buffer tank with liquid volume � � � [ � , inlet flow-rate ���� � � [ � � � ,
outlet flow-rate � . Further we let 	 �� and 	 denote the inlet and outlet quality
(concentration or temperature), respectively. A component or simplified energy
balance for a perfectly mixed tank yields

� � ��	�� � �>@ � ���� 	 �� � � 	 (B.4)

In addition we have the total mass balance (assuming constant density):

� � � �>@ � � �� � � (B.5)

B.2.1 Quality disturbance

For quality disturbances the objective of the buffer tank is to smoothen the quality
response, 	 � ����� ������� 	 �� � ��� , so that the variations in 	 are smaller than in 	��� .
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Combining (B.4) and (B.5) yields � � �� G ������ � 	 �� � 	�� and for a single buffer tank
linearization yields

	 � � � �
	� "! � � �

	
�
	 �� � ��� � 	 ��� � 	 �

� � ���� ����� 	 (B.6)

where � denotes the nominal (steady state) values. Note that the dynamics of �
(level control) have no effect on the linearized response of 	 . Furthermore for the
case with a single feed stream 	 ��� � 	 � and the dynamics of ���� have no effect on
the response of 	 . In any case we find that the transfer function for quality is

��� � � � 	 � � ? � � � 	 � (B.7)

where ?���� � � � � � � � � is called the residence time (steady state). We can see that
the buffer tank works as a first order filter. Similarly for � buffer tanks in series
we have

��� � � � 	 � � ?��� � � 	 	  (B.8)

where ? � is the total residence time.

B.2.2 Flow rate disturbance

For flow rate disturbances the objective of the buffer tank is to smoothen the flow
response, � ����� � ������� ���� ����� . Note that we need to use a “slow” level controller,
as tight level control yields � P ���� . Let � ����� denote the transfer function for the
level controller including measurement and actuator dynamics and the possible
dynamics of an inner flow control loop. Then � ����� � � ����� � � ����� � � � � , where
� � is the set-point for the volume. Combining this with the total mass balance
(B.5) yields

� � � �����
� � � � � � ���� �����

� � � �����
� � � ����� � � (B.9)

The buffer tank transfer function is thus given by

��� ��� � � �����
� � � � ��� �

	
�� � � � � 	 (B.10)

In this case we have more freedom in selecting ��� ��� since we can select the
controller � ����� . With a proportional controller � ����� � �

, we get that ��� ��� is a
first order filter with ? � 	 � � . For a given ��� � � the controller is

� � ��� � ����� � �'� � 	�� ��� � � � (B.11)
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B.3 Controllability analysis

We here provide a review of some controllability results which are subsequently
used for buffer tank design. We consider SISO (single input-single output) sys-
tems. Consider a linear process in terms of deviation variables

� ����� � � � ��� ��� ��� � � � � � � � � � � (B.12)

Here � denotes the output, � the manipulated input and � the disturbance (includ-
ing disturbances entering at the input which are frequently referred to as “load
changes”). We assume throughout this paper that the model has been scaled such
that expected disturbances make the magnitude of the elements of � lie within � 	
for all frequencies and the requirement for the scaled output vector, � , is that the
magnitude of each element in � shall lie between �R	 and 	 for all frequencies, and
� is scaled so that the manipulated input range corresponds to a variation of � 	 in
� .

Feedback control yields ��� ��� � � ����� � � � ����� � � � ��� � , and from this we elim-
inate � to get

� � � � � � ����� � �����	 � � � � � � � � � � � ����� �
� � �����	 � � ����� � ����� � � ���

� � � � � � ����� � � ����� � � � ��� � � ��� (B.13)

� � is the set-point, and � ����� and � ����� are the sensitivity function and the com-
plementary sensitivity function, respectively. We ignore set-point changes and get
the following expression for the effect of disturbances

� � ��� � � � ��� � � ����� � ����� (B.14)

Two different requirements must be fulfilled to get acceptable control perfor-
mance. The first relates to the speed of response to reject disturbances. From
(B.14) we see that to keep � � � $ 	 when � � � � 	 , we must require

� � ����� � � � ����� � � � 	 � � � (B.15)

We define ��� as the frequency where � � � ��� � � � 	 . At higher frequencies we
cannot rely on feedback control for disturbance rejection, so that

� � � � ��� � � � 	 � ��� ��� (B.16)

For acceptable performance and robustness we have the following maximum
value of the bandwidth (Skogestad, 1999), (Skogestad and Postlethwaite, 1996):��� � 	 � �	��� (B.17)
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where � ��� is the effective delay. With PI or PID control we have (Skogestad,
1999):

�	��� � ��� ? � � ? �
; �

�
��� � ? � �

���B; for PI��� � for PID
(B.18)

where � is the delay, ? � � 	 ��� , where � is a right half plane zero, and ? � is lag
number � ordered by size so that ?  is the largest time constant. For more realistic
PI controllers, ��� must be reduced compared to (B.17). Ziegler-Nichols tuning
gives ��� � 	 � � 	87 � 	 �	� � � , while a more robust tuning (Skogestad, 1999) gives��� � 	 � � ; �	��� � (B.19)

Note that (B.16) is only a necessary requirement, as (B.15) needs to be satisfied
for � $ ��� . In particular, (B.15) may impose additional requirements if ��� is of
high order; this is discussed later.

In words (B.16) tells us that at sufficiently high frequencies the process must
be “self-regulating”. If (B.16) is not satisfied then we need to modify the process.
One commonly used approach is to add buffer tanks as illustrated in Figure B.1,
such that the “new” disturbance response becomes as in equation (B.2).

The second limitation relates to input constraints for disturbances, but will not
be covered by this article.

B.3.1 Additional requirements due to high order
���

As mentioned, (B.16) is only a necessary requirement as (B.15) needs to be satis-
fied also for �B$ ��� . To investigate this further we make the following approxi-
mation of the sensitivity function, � ����� � , with the loop transfer function, � ��� � �
( � � � ��� � � � ��� � ):

� ��� � � � 	 � � 	 � � � ��� � ��P 	 � � ����� � (B.20)

Inserting this approximation into (B.15), we obtain

� � � ����� � � � � � � ��� � � � � � (B.21)

Now it may be difficult to have sufficiently high roll-off (slope) in the loop transfer
function � � � � to get � � � ��� � � � � � � � ��� � � at frequencies below the bandwidth
(even though we satisfy it at the bandwidth). The problem is that a high roll-off
in � � ��� yields a large phase lag, and we get instability problems. For reasonable
robustness and performance we must have that the slope for � � � is about -1 near the
bandwidth ��� . In this case it is difficult to make general formulas for the buffer
tank design. Graphical or optimization based solutions are probably simplest. One
particular case is studied later.
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We can get a steeper slope around the bandwidth, however, with multiple con-
trol loops. E.g. with a series of � buffer tanks and control in each tank, the total
slope of � � � is � � (even though it is -1 for each individual tank).

B.4 Quality variations

When the main source of disturbances are variations in the inflow quality (temper-
ature or concentration) they may be smoothened by a mixing tank. With perfect
mixing and a residence time of ? � ( � denotes hold-up), the outflow quality is
roughly speaking the sliding mean of the input quality within a time window of
length ? � . The transfer function for one buffer tank is given by (B.7). We may
also consider using a series of buffer tanks. For � equal tanks in series with a total
residence time of ?�� , and total volume � , the transfer function is given by (B.8).
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Figure B.2: Quality disturbance: Frequency responses for n tanks in series with total
residence time � � , �

� 	 � � � 	 � K � 	 � ���  .

In Figure B.2 we show the amplitude plot of ��� ��� for � � 	 � ; � � � < equal tanks
in series with a given total residence time ?/� . Physically, on the x-axis is shown
the normalized frequency, �,? , of the sinusoidal varying input concentration,

	 �� �O@ � �
	 �� � � �O@ � � � � � �,@ �
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into the first tank, and on the y-axis is shown the normalized output concentration
from tank � , 	 � � 	 �� � � , where 	 �� � � and 	 � denote the magnitude of the sinusoidal
variations. Note that both axis are logarithmic.

At low frequencies, � � 	 �M? , we have 	 � � 	 �� � � P 	 , which means that slow si-
nusoidal variations are unaffected when they pass through the tanks. However, fast
variations (with high frequencies) are dampened by the tanks which tend to “av-
erage out” the variations. At sufficiently high frequencies, � � 	 �M? , we find that
	 � � 	 �� � � (log-scale) as a function of frequency (log-scale) approaches a straight
line. This follows because the high-frequency asymptote is � � ����� � � � ? �  Q � �  (in
words, “the slope is � � ” at high frequencies for � tanks in series). Thus, at high
frequencies the use of many tanks is “better”, in terms of providing more dampen-
ing for a given total volume. On the other hand, the frequency where the asymp-
tote crosses magnitude 1 (its “break” or “corner” frequency) is � � 	 �Y? � � �Y? � ,
which is at a lower frequency when � is smaller, so at lower frequencies fewer
tanks is better. This is also seen from the more exact plot in Figure B.2.

The plot may be used to obtain the total required volume of the buffer tanks
if we at a given frequency specify the factor � by which we want to reduce the
disturbance. The required “gain” of the buffer transfer function is then 	 � � and
we can read off �,?�� and with a given value of � obtain the total residence time
?�� . Typically, the given frequency is the achievable closed-loop bandwidth of the
feedback control system, � � 	 � � ��� , and � is the value of � � � at this frequency.

We see that one tank is “best” if we want to reduce the effect of the disturbance
at a given frequency by a factor � � � � 	 � � 7 ��� or less; two tanks is “best” if
the factor is between 3 and about � � 	 � ��7J	�<>< , and three tanks is “best” if the
factor is between about 7 and 	 � � 	 � ��7 � N < . The word “best” has been put in
quotes because we here only consider the total combined volume of the tanks. In
practice, there are several other factors that favor using as few tanks as possible;
this includes the scaling law for cost (typically, cost scales with � ��� S ), the cost of
additional equipment like pipes, pumps, sensors, control systems, etc. as well as
other controllability considerations (slope condition on � ). Therefore, one would
probably consider using only one tank also when we want to reduce the effect of
the disturbance by a factor � � 	��>� , even though in this case the volume of one
tank is about 5 times larger than the total volume of two tanks, and more than 7
times larger than the total volume of three tanks (this is seen from Figure B.2 by
reading off the value of �,?/� that corresponds to magnitude 	�� � � ).

To satisfy the necessary condition (B.16) we need to select ������� such that

� ��������� � � � � �:9 � ����� � ��� 	 (B.22)

We introduce the factor by which the effect of the disturbance must be reduced

� � � � � 9 ������� � � (B.23)
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We must at least require � ��� ��� � � � � 	 � � . As mentioned this may be solved
graphically using Figure B.2, but alternatively we can find the analytical solution
from (B.8) and (B.17):

?�� � �	��� � � � � I  � 	 (B.24)

For one tank and � � 	 we have the appropriate formula ? � � � �	��� . For � � ;
the use of (B.24) assumes that the total slope of � � � around ��� can be � � . This
can be achieved with local quality control in each tank, e.g. for a neutralization
plant, it must be possible to measure the concentration and automatically add a
reactant in each tank.

To find the optimal number of tanks one must then take into account equip-
ment, piping, control systems (each tanks may require a level controller), etc. as
mentioned above. Normally the optimal number of tanks will not be large, so that
the cost calculations has to be made for a limited number of cases.

Example B.1 Consider mixing of two process streams, � and � as illustrated in
Figure B.3. The concentration and flow rate of stream � are denoted 	 � and ��� ,
and for stream � they are called 	 � and � � ( 	�� and 	 � may also be temperatures).
The two streams with total flowrate � � 	 � [ � � , are mixed in a mixing tank of	 � [ , and the concentration of the outlet flow is denoted 	 � . The concentrations
represent the difference between component 1 and 2. 	�� � � since stream � never
has less of component 1, whereas 	 � is negative. The objective is to mix equal
amounts of the components such that 	 � � 	 � � � 	 � � is zero. This concentration 	 �
is controlled by manipulating the flow rate of � . First we check if this controller,
together with the mixing tank, is sufficient for suppressing disturbances in the
concentration of stream � . Combination of component balance and total material
balance gives the following model:

� 	 �
�>@ �

	
� � � 	�� � 	�� ��� �
� 	 � � 	�� � � � (B.25)

This model is linearized and scaled (as described in the controllability section).
We require a variation in 	 less than 	 � 	�� of the variation in 	�� . The scaled
deviation variables are marked with a prime and we get the following model after
Laplace transformation

	 � ����� �
	

	 � � � 	�� 	 � � ����� � ; � � �� ����� � (B.26)

where we have assumed constant 	 � . We study concentration disturbances, lead-
ing to � ��9 � � � � 	�� � � 	 � ��� and further � � � � � � � ; � � � 	 � ��� . Mainly due
to the measurement, the control loop has an effective delay of 	 � 7 With a robust
controller tuning, (B.19) gives a bandwidth of ��7 � � � �"� � .
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Figure B.3: Extra buffer tank for a mixing process. Concentration is controlled by
manipulating flow rate of stream B. Nominal data: � � � � � [ 	�� , � � � ��� [ 	�� ,
� � � ������� 	�� [ , � � � � 
������
	�� [ , � � � �������
	�� [ . Range, used for scaling: Ex-
pected variations in � � : � � � ��� 	�� [ . Range for � � : ��� � [ 	�� . Allowed range for � :
� ��� � ����� 	�� [ .
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� � � � ��� � � and � � � 9 ��� � � � are shown in Figure B.4 (dashed lines). We see that
� � � � � � � � 9 � for all frequencies, so that input constraints pose no problems in
this case. In the figure the bandwidth frequency, ��� , is also marked. We see that
� � �:9�� � 	 at frequencies above the bandwidth, so a standard (robust) control
system is not sufficient to fulfil the requirements on the outlet concentration. To
solve this problem, we may either improve the control system (e.g. feedforward
control), increase the volume of the mixing tank, or install an extra buffer tank.
In this case we assume that the latter alternative is the best, and introduce a new
tank after the mixing tank (dashed in Figure B.3). We see from Figure B.4 that the
gain must be reduced with 10 at the bandwidth ( � � 	�� ), and obtain from (B.24)
( � � 	 ) a required residence time of the buffer tank of ; � � , corresponding to a
volume of � � �Y?�� ; �,�\[ . The modified disturbance transfer function gain,
� � � � , is shown with a solid line in Figure B.4. The slope is -1 or smaller below the
bandwidth, so that we need not consider the problem discussed in section B.3.1.
� � ��� � � � is plotted (dash-dotted) to illustrate this ( � � ��� $ � � � ). � � � � � is below
1 for all frequencies (dashed). Figure B.5 shows the response of a unit step in
concentration of stream � with (solid) and without (dashed) the extra buffer tank.
We see that it is kept below ��7J	 with the extra buffer tank present.
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Figure B.4: With an extra buffer tank, � � � � is brought below 1 for all frequencies above
the bandwidth.

If the slope of � � ��� is steeper than the slope of � � � , ?/� is too optimistic. We will
however analyze one case. We assume � � � 9 � has slope �R	 so that � � � � has slope
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Figure B.5: With an extra buffer tank the outlet concentration is kept within 0.1 from
set-point despite a unit step in disturbance. This is not the case without the extra buffer
tank.

� ; above the frequency 	 �M?/� , where ?�� is the buffer tank residence time. Further
we assume that � � � has slope �
	 near the bandwidth and that it increases to � ;
due to an integrator in the controller below � � 	 �M?�� , where ?�� is the integral
time. A robust choice of ? � is : �	��� (Skogestad, 1999). Using geometry it is easy
to show that in this case ?�� � : � �	��� . Compared to (B.24) for one tank we see that
the residence time for this case is increased by a factor of : .

Example B.2 Consider the process from example B.1, modified so that the mea-
surement delay is ��7J	 � , the volume of the first tank is � � [ and the variation re-
quirements for the outlet concentration is 0.01. The concentration in the first tank
is controlled with a robust PI controller (Skogestad, 1999). In this case the slope
of � � � ����� � � is � ; around the bandwidth, and (B.24) leads to a residence time of��7 ��� � , which is insufficient. In Figure B.6 a residence time of ? ��� : � �	��� � � 7 ; �
is applied. The method uses asymptotes, and we see that � � � � ��� � � is just touch-
ing the asymptote of � � � ��� � � . � � � ��� � � itself is a distance above � ��� � so the result
here is slightly conservative. By optimization one find a minimum residence time
of ; 7 < � required to fulfil (B.21) for this controller tuning.

B.5 Flow variations

By exploiting the volume of the buffer tank, flow variations in the outflow may be
dampened using a slow level control. The outflow will then be dependent on the
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Figure B.6: With a residence time of � � � 	 � � ��� in the second tank, � �
� �
� ��� � � � � ���	� ���

for all frequencies, and disturbances are rejected.

chosen controller. Denote the tank volume � � � [ � and the inlet and outlet flow-
rates ���� and � respectively. The transfer function for the buffer tank is then given
by (B.10). Compared to the quality disturbance case, we have more freedom in
selecting � , since we can select the controller � ����� . But the level will vary, so
the size of the tank must be chosen so that the level remains between its limits.
The volume variation is given by � �����'� ���� � � � � 	 � ��� � � ����� � , and combination
with (B.11) yields:

� � ��� � ���� ����� � � 	 � ������� �'� � (B.27)

which is used to find the required tank volume. The tank size design consists of
the following steps:

(1) Select ��� ��� such that if has the desired shape, that is such that (B.16) is
satisfied.

(2) Find the corresponding controller from (B.11) (is it realizable?)

(3) Find the largest effect of ���� on � from (B.27) (usually at steady state, � �� ).

(4) Obtain the required total volume from the expected range of ���� (denoted
0 � �� ).

In table B.1 we have applied the method for first and second order filtering.
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Table B.1: Flowrate disturbance: Procedure for buffer tank design applied to first and
second order filtering

Step 1st order 2nd order
1. Desired ��� ��� 	 � �A?  � � 	 � 	 � �A? � � � 	 � �
2. � � � � from (B.11) 	 �Y?  � K � � �� � � 
3. � � � � � � �� � � � from (B.27) ?  ;Y? �
4. � G��5G ?  0 � � � � ;Y? � 0 � � � �

B.5.1 First-order filtering

With ��� ��� � K � � �  the required controller is a P-controller with gain
� � � 	 �Y?  .

From (B.27), � ����� � K �K � � �  ���� � ��� . The maximum value of this transfer function
occurs at low frequencies ( � � � ), and the required volume of the tank is � G��5G �?  0�� �	� � . Adding a slow integral action to the controller will not affect these
results considerably. Such an integral action will reset the volume to its nominal
value. This is not always desired, however. If e.g. � �� is at its maximum, we may
want the volume to stay at a large value to anticipate a possible large reduction in
���� .

B.5.2 Second-order filtering

With ��� � � � � K � � �  � � we get from (B.11) that the required controller is a lag

� � � � �
	
;Y? � 	

K �� � � 	 (B.28)

and from (B.27) the response of the volume deviation is

� ����� �B;Y? � �O? � �>; � � � 	
�A? � � � 	 � � ���� � ��� (B.29)

This has its largest value equal to ;Y? � at low frequencies ( � � � ), and the required
volume is ;Y? � 0�� �	� � .

B.6 Conclusions

The objective of the control system is to counteract disturbances. However, the
maximum achievable control bandwidth is approximately equal to the inverse of
the effective process delay, i.e. � �FP 	 � � � � � . For “fast” disturbances, above the
bandwidth frequency, one must rely on the process itself, including any buffer
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tanks, to dampen the disturbances. The requirement is that the effect of distur-
bances on the controlled variable (usually concentration), should be less than 1 (in
scaled units) at frequencies above the bandwidth. Specifically, if the magnitude
of the original disturbance transfer function � � � � ��� is larger than 1 at frequencies
above the bandwidth, then we must add one or more buffer tanks, with overall
transfer function � � � � , such that � � � � � � � is less than 1. In the paper we present
design methods for sizing buffer tanks based on this fundamental insight.

The two fundamentally different sources of disturbances are variations in flow-
rate and variations in quality (concentration, temperature). Quality variations are
dampened by mixing, and it may be adventageous to use several smaller rather
than a single large buffer tank. Figure B.2 shows how � ����� depends on the number
of tanks � and total residence time ?/� . If we define � as the value of � � � ��� at the
bandwidth frequency � � , then the design objective is that � � � should be less than
1/f at this frequency, and we derive in (B.24) the required value for ? � . The volume
in each buffer tank is then � � �Y?��Y� � where � is the total flowrate. If the resulting
slope of � � around the bandwidth is steeper than -1, then we need to increase the
volume or add local feedback loops. The design method is illustrated in Examples
B.1 and B.2.

Flowrate variations are dampened using a slow level controller � ����� in the
buffer tank, and there is no advantage of using several tanks as we may include
dynamics in � ����� . Table B.1 gives a design procedure for flowrate disturbances.

In conclusion, buffer tanks are designed and implemented for control pur-
poses, yet control theory is rarely used when sizing and designing buffer tanks
and their control system. In this paper we have presented a systematic approach
for design of buffer tanks to dampen disturbances in quality and flowrate.
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