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ABSTRACT

The scientific literature on distillation as a measure of separating a feed mixture
into its constituents, probably dates back at least several hundred years. However,
in spite of an exceedingly vast literature on this topic, there are still numerous tasks
that at present remain unresolved. Among the features that perhaps have triggered
most of the previous research, is the large energy requirements which in fact ranks
distillation as one of the most energy consuming process operations on a world wide
basis. The conventional approach towards increasing the efficiency has been towards
heat integration between columns or between the column and other parts of the
plant. However, due to the scrutiny from company policies and constraints passed on
by environmental regulations, more recent research aims at designs that offer savings
in both operational (energy) and capital costs.

This work puts emphasis on a certain class of integrated distillation arrangements.
In particular we consider means for direct coupling of distillation columns, so as to
use the underlying physics to facilitate more energy efficient separations. One such
arrangement, the dividing wall column was proposed in a patent almost 50 years ago,
and then analyzed on a thermodynamical basis by Petlyuk and coworkers in the 60’s.
Its use in industrial practice is however still very limited. It is therefore the intention
of this work to increase the the understanding of such columns, in terms of (optimal)
operation and design.

In order to analyze such columns one may resort to numerical simulations of con-
ceptual models, which typically display highly nonlinear behavior. The conceptual
models are commonly also very ill-conditioned, and in sum these features pose great
challenges for any numerical method to be used in the analysis. The numerical meth-
ods discussed in this work are thus well suited to solve models of distillation columns.
We propose a tear and grid method that to some extent exploits the sparsity, since
the number of tear variables required for solving a distillation model usually is rather
small. The parameter continuation method we discuss i1s furthermore well suited
for ill-conditioned problems, since one always stays close to the feasible solutions.
However we stress that the focus is put on simplicity and robustness, rather than
complexity and ability to handle any pathological problem.

To extend the analysis of integrated columns beyond the scope of numerical sim-
ulations, we also put emphasis on analytical results which apply in certain limiting
cases. In particular the limiting case of an infinitely long column is important, as it
yields the overall minimum energy usage. Moreover, we consider the concept of the
preferred separation which is of great importance for prefractionator arrangements.
From this analysis we also obtain information of great importance for practical oper-
ation of such columns.

Finally we use the proposed numerical methods to optimize Petlyuk arrangements
for separating ternary and quaternary mixtures. Results from this and other works
indicate that such arrangements offer large potential savings in energy usage as well
as capital costs, which should increase the interest in these arrangements both in
academia and from industrial practitioners.
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Chapter 1

Introduction

1.1 Motivation

During the last decades there has been an ever growing concern in the chemical
engineering environment, dedicated to the task of developing more cost and energy
efficient process equipment. This need stems partly from the scrutiny of tighter
operational constraints, but is on a higher level driven by the concern for developing an
environmentally (ecologically) sound industry. During the last couple of decades it has
for instance become evident that many of the threats to the global environment, such
as the accumulation of green house gases and acid rains, are energy related issues. The
global trend in industry and research is thus a twofold focus on energy, constituted by
a stronger emphasis on energy efficiency and a move towards incorporating renewable
energy technologies. A comprehensive discussion of aspects related to the energy
issues, 1s given in a recent report from the United Nations Development Programme
(Energy and Programme 1997). The following paragraph gives a short summary of
the attitudes they put forward

During the last decade, technological developments and operating experi-
ences have made many technologies (particularly those utilizing renewable
energy) more mature and competitive, creating many new opportunities.
What is needed now is to identify existing and potential opportunities and
to design policies and other measures to capture their benefits. To take
advantage of these new opportunities the following activities are needed:
conducting and promoting demonstration projects to illustrate the tech-
nologies’ potential and cost-effectiveness, utilizing existing markets, and
building up new markets... In addition, continued research and develop-
ment is needed to improve some technologies still further.

In this work we put emphasis on measures for improving the end-use energy efficiency
of separation systems. In terms of energy intensity we may mention that the amount
of energy required for separations, ranks distillation as one of the largest energy
consumers on a world wide basis, using about 3% of the total energy in the U.S. alone
(Ognisty 1995). The objective of this work is thus partly to trigger future research
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so as to facilitate implementations of more cost efficient (i.e. capital and energy)
separation systems.

1.2 Energy Efficient Distillation Arrangements

In the present work we focus at large on energy efficient complex distillation arrange-
ments for the separation of multicomponent mixtures. By complex we here understand
arrangements that differs on a structural level from conventional ones with sequences
of columns arranged in series. One distinguishing feature of such complex columns is
that they utilize direct coupling between different column sections. This differs struc-
turally from the common approach to integrating distillation columns, where indirect
coupling is often used by heat integrating regular columns. An important issue to
bear in mind is that we in this work we have chosen to compare the efficiency of com-
plex distillation arrangements only with sequences of regular columns. We have thus
omitted comparison with heat integrated schemes, for which the reason is twofold.
Firstly, it is crucial to establish a common ground for comparing the efficiency of new
arrangements for both the present and future works. Conventional arrangements of
regular columns thus provide a natural basis, since these are the most common in in-
dustry and the (minimum) energy usage is easily obtained for such schemes. Secondly,
since this work at large represents a conceptual study, we want to avoid complicating
“second order” effects that usually should be taken into account in the analysis of heat
integrated schemes. In the latter case it usually so that columns should be operated
under different pressures, so that one should also consider detailed thermodynamics
to address the influence of pressures on the vapor-liquid equilibria.

One class of such complex distillation arrangements is the “Petlyuk arrangements”,
for which we in this work propose a general definition to form a common basis for
the present and future work. The analysis of such columns draws from previous
works by Petlyuk and coworkers, e.g. Petlyuk and Platonov (1964), Petlyuk et al.
(1965) and Petlyuk et al. (1966). The basis for these works was a thermodynamic
analysis that aimed for a reversible distillation process. Since reversible distillation
requires infinite columns and distribution of utility along the column, such columns
are obviously not desirable neither from a practical nor economical point of view.
However, one of the important results emerging from these works, is the emphasis on
a certain optimal/easiest/preferred split sequence for the multicomponent separation.
In this work we elaborate on the issue of finding the optimal split sequence, for
which we obtain very useful analytical results. These results not only give explicit
equations for the minimum energy usage for sharp and non-sharp separations, but
in fact also enhances the understanding of how such columns may be operated. In
particular we obtain two important parameters that define regions within which the
minimum energy usage stays relatively constant, and within which optimal operation
is relatively insensitive to changes in the operating parameters.

Although the potential for large energy and capital savings are well documented,
the industries have so far been reluctant to use and carry out extensive research on
such novel designs as the Petlyuk column. To account for this resistance, arguments
have touched upon issues such as lack of knowledge and understanding, along with
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(immanent) scepticism towards practical issues such as to how such columns may be
controlled. However, more recent industrial practice and research indicates that some
of these issues are soon to be resolved. For this reason our work aims to eztend the
scope of previously known complex columns. We will introduce complex Petlyuk
arrangements for the separation of ternary and quaternary mixtures, that allows
for implementations in single shells using dividing walls or vertical partitions. Such
schemes inherently offer large savings in both capital and operational (energy) costs.
We provide results showing that the energy savings typically are in the order of 40%,
although even larger savings are possible.

1.3 Numerical Methods for System Analysis

It is well established in the literature that distillation models in general display highly
nonlinear behavior and they are often ill-conditioned. The strongly non-linear be-
havior is well documented in recent works on dynamics and control by for example
Skogestad (1987) and Jacobsen (1991). For complex distillation arrangements such as
the Petlyuk column, we also face a strongly pronounced coupling between the system
equations in the distillation model. This further complicates the system behavior
and may give rise to nonlinear phenomena such as multiple steady states and even
the occurrence of holes within certain operating regions (Wolff and Skogestad (1995)
and Morud (1995)). Such inherent characteristics pose problems not only for issues
of control and operation, but also for any numerical method used for simulation. A
very important aspect in order to carry out detailed analysis is thus that of deriving
reliable and efficient numerical methods for various purposes.

We have in this work focused primarily on numerical methods for steady state
analysis, for which the general purpose is to find one or all solutions to a system of
nonlinear algebraic equations (NAE’s). Even though this is an area in which extensive
research has been carried out the last decades, and for which a wide range of methods
are available through various software packages, there are still problems for which
special purpose algorithms may work better. All simulations presented in the present
work has been carried out using Matlab, which is a “ high performance language for
technical computing” (The Mathworks 1995). However, Matlab is in its present state
in general not very well suited for simulations of large systems. For this reason we
have invested heavily in exploiting inherent model/system characteristics to obtain
efficient algorithms. For instance we make extensive use of continuation methods for
both simulation and optimization purposes. The advantage of using such methods
is that information from previously obtained solutions is used in a systematic and
expedient manner. Continuation methods are for instance helpful in the way that
one may easily utilize search directions in which the model are relatively insensitive
towards changes in the system parameters, so that convergence problems are avoided.
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1.4 Thesis Overview

This thesis address various aspects related to optimal design and operation of (com-
plex) energy efficient distillation arrangements. Each chapter is written in the form
of a paper, and may thus be read independently, including the literature references
which are given at the end of each paper. In order to give a comprehensive and lucid
presentation, the thesis divides into three main parts. In Part I we consider methods
for obtaining numerical (“exact”) solutions to a system of equations representing for
instance a complex distillation model. Part II consider approximate solutions to such
process models using certain assumptions and some issues of importance for practical
operation. In Part I1] we then propose several new structures for a particular class of
integrated distillations columns, which we then solve using some of the the numerical
methods discussed in Part I.

Part I : Numerical methods for steady state analysis

This part which comprises chapters 2 and 3, addresses general purpose numerical
methods to be used for solving systems of nonlinear algebraic equations (NAE’s).
Some of these methods, such as the homotopy continuation methods and the tear
and grid method, are in their present states only applicable to relatively small sys-
tems. The main parts are however dedicated to the issue of continuation methods,
which are used also for simulations of larger systems such as the complex distillation
arrangements discussed in the last part of the thesis. We discuss two different al-
gorithms, based on a conventional predictor-corrector method and one in which we
use a secant predictor to enable simultaneous solution of an augmented system of
equations. We demonstrate how these methods may be used for parametric continu-
ation in any hyper-space, meaning that one may consider the impact of variations in
several parameters simultaneously. We also present a scheme for embedding steady
state optimization in a continuation scheme, which proves useful in the optimization
of highly nonlinear and coupled process models.

Part II : Shortcut methods to obtain V,,;, and the “preferred separation”

In chapters 4 and 5, we discuss aspects related to finding the minimum energy inputs
(Vinin) for multicomponent separations. Chapter 4 addresses a simplified shortcut
method for calculating V,,;,, which allows one to derive ezxplicit equations to be used
for qualitative purposes. Although it is inherently an approximate method, due to
an underlying assumption in the way we account for the distributing components, we
demonstrate that explicit analytical equations may be derived. These expressions are
shown to be exact in certain limiting cases, e.g. for large amounts of intermediate and
for the so called “preferred” separation. We ask the reader to take this consideration
into account, when we argue that the main purpose for using shortcut methods is
to obtain insights that are otherwise difficult to derive from numerical simulations.
Such information is not available through the use of other shortcut methods such
as the well known Underwood method, which in general requires iterative solutions.
Through numerical examples we display the regions in composition space in which
our method provides good or poor estimates of the true V,,;,. In general we find that
our method gives reasonably accurate results within the regions where the particular
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distillation sequences (i.e. direct or indirect) are optimal.

In chapter 5 we examine in more detail the preferred separation for ternary mix-
tures and the separation corresponding to a “balanced” main column. Although the
preferred separation in general refers to a certain distribution of the intermediate
component, for which the absolute minimum energy input is required in an infinite
column, 1t is of interest to examine its use also for other splits and column sequences.
Based on observations from simulations of an “infinite” prefractionator column (large
number of stages), we derive new analytical expressions that allows one to obtain the
minimum energy usage for the prefractionator column for any distribution of the in-
termediate component assuming sharp splits between the light and heavy component.
We then use this result to analyze whether the preferred separation is optimal also
when the energy usage of downstream columns are taken into account. For sharp
separations we find that the preferred separation is always optimal. We also briefly
discuss the issue of the preferred separation for non-sharp separations between the key
components. Finding the optimal split sequences is furthermore crucial when consid-
ering other complex distillation arrangements such as the Petlyuk arrangements to
be discussed in the last part of the thesis.

Part ITI : Complex Distillation Arrangements

In part III consisting of chapters 6 and 7 we consider a particular class of complex
distillation arrangements, namely the Petlyuk arrangements. In chapter 6 we give
a conceptual analysis of such arrangements, for which we propose a general defini-
tion. We briefly discuss the aspect of sharp split arrangements, and issues related to
reversibility of distillation processes. We then extend the Petlyuk ideas to consider
partitioned distillation columns for the separation of quaternary mixtures. Based on
superstructures proposed in the literature, we propose arrangements that allows for
implementations in a single shell using only a single reboiler and a single condenser.
We give a brief discussion of the large number of degrees of freedom that are available
for such columns.

In chapter 7 we discuss the issues of optimal design and to some extent operation
of the Petlyuk arrangements proposed in chapter 6. Based on simple yet detailed stage
to stage models assuming constant molar flows and constant relative volatilities, we
use the previously proposed optimization scheme to compute the minimum energy
usage for these columns. The energy efficiency is then compared to conventional
arrangements of regular columns in sequence. We find that the Petlyuk arrangements
with a sufficiently large number of stages offer energy savings in the order of 40%.
We also discuss some practical issues related to obtaining good initial guesses for
the optimizations. Finally we illustrate how one may derive sensitivity functions for
the objective function based on Taylor series expansions. These functions are then
used to characterize the optimal solutions in terms of high and low gain directions for
changes in the parameters, from which we conclude that feedback control is required
to maintain optimal operation.

Finally, in chapter 8 we present a work on parametric sensitivity in batch distil-
lation. This work in particular was motivated by previous findings for continuous
columns, where steady state multiplicities and instabilities was reported (Jacobsen
and Skogestad 1991). Based on a mathematical analysis of a general model, we show
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that the same phenomena that caused such multiplicity carry over to batch columns
where they cause the columns to exhibit parametric sensitivity (PS). We give a com-
prehensive analysis of PS for general dynamical systems, in which we also critically
review criteria used in the literature on batch reactors. Using a linear analysis we then
determine conditions that favor PS. Even though the mathematical analysis considers
a simple model, in which we for instance neglect tray holdups, we show by numerical
simulations that severe sensitivity may arise also for columns where these restrictive
assumptions is not made. In order to address the impacts for practical operation we
also consider the influence of different control configurations and operating strategies
on PS.
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Abstract

This paper considers numerical methods for finding initial solutions to systems
of non-linear algebraic equations (NAFE’s). We briefly discuss the difference
between methods belonging to the classes of local and global methods. Among
the global methods, we consider homotopy—continuation methods and discuss
inherent difficulties in using such methods. In particular we address inherent
characteristics such as potential unboundedness of the homotopy path. To
assure bounded paths we provide some insight into how appropriate branch—
jumping techniques may be applied. We also present a novel tear and grid
method based on conventional techniques of partitioning and precedence or-
dering. Finally we give a comparative analysis of the methods in terms of a
few example problems.
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2 Numerical Methods for Steady State Analysis. Part I.

2.1 Introduction

During the last decades an extensive range of computer—aided methods for both steady
state and dynamic simulation has evolved. Driven by an increase in both computer
availability as well as computing power and efficiency, computer aided tools are now
standard features in most aspects of chemical process engineering. A recent review
of available numerical methods for process design, optimization and control with
emphasis on non-linear analysis, is given by Seider et al. (1991). In this chapter we
however limit ourselves to the study of numerical methods for steady state analysis
of process models. Thus we consider procedures for finding one or all solutions to a
system of non-linear algebraic equations (NAE’s) which we here denote by

f(xa)‘):() (21)
fFR™xRF SR™, x€ER™, AERF '

where x is a m-dimensional vector of state variables and A a k-dimensional vector of
parameters. Sargent (1981) gives an excellent review of methods for solving NAE’s
that were available at the time the review was written, and claims that “there s
no method which clearly stands out from all the rest in terms of both reliability and
efficiency”. Even though the engineers now face a bewildering range of methods and
proposals for new methods appear quite frequently in the literature, Sargent’s analysis
still seems to hold in the general sense. In the following discussion we ask the reader
to bear in mind the important difference between methods (numerical techniques)
and codes (algorithms). The importance of this distinction lies in the simple fact that
numerical methods may be implemented according to different schemes according to
different codes and programminglanguages. In this work we put emphasis on methods
rather than codes, thus leaving out detailed analysis of for example computational
efficiency or algorithmic aspects.

In the future it is to be expected that the engineer will require specific solution
methods designed to deal with the particular problem at hand. Being able to choose
the optimal solution method from a library of different algorithms, according to some
predefined objective, is thus a great advantage. We argue that the objectives for
choosing the appropriate numerical methods should be formulated based on the size,
complexity and difficulty of the problem at hand, rather than rigor or ability to handle
any pathological problem. A rule of thumb should be to avoid shooting sparrows with
canons. In the literature it is common to distinguish between local and global methods,
depending on the respective domains of attraction for convergence. We thus start by
giving a brief discussion on the use of local versus global methods for finding initial
solutions.

Local methods. Among the most common local methods used in solving chemical
engineering problem are the Newton, Secant, Broyden and Deflation methods. In
general such local methods display poor convergence properties, unless good starting
guesses are provided due to dependency on the function evaluations at the particular
point. Although methods exist for enlarging the domain of attraction, local methods
often fail to converge. Venkataraman and Lucia (1988) argues that failure is “always
due to some physical inconsistency in the model”. However, to avoid these incon-
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sistencies good starting points are required which may be difficult to obtain if little
knowledge exist about the system. In this respect we suggest to use the tear and grid
method to screen the solution space, in order to indicate in which regions solutions
are likely to occur. Other and more accurate methods should then be used to obtain
the “exact” solutions.

Another objection to using local methods is that they can at best find one solution
for each given starting guess. Since most chemical engineering models contain non—
linear equations, multiple solutions and other complex behavior arise quite frequently.
Knowledge about what kind of behavior one may expect is invaluable in both process
design and control, hence methods that are able to detect for example steady state
multiplicity should be available to the engineer.

Global methods. Although there exist methods for finding all solutions of typical
systems of equations arising in chemical engineering, e.g. branch and bound meth-
ods (Horst and Pardalos 1995), these methods require a computational effort that
increases exponentially with the problem size. However, this applies asymptotically,
and for many problems arising in conceptual design of distillation systems, it is pos-
sible to exploit sparsity to reduce them to medium size- or even small problems. In
such cases the computational times may be reasonable, or even small. In this work we
consider a homotopy—-continuation scheme based on pseudo arc-length continuation.
Although these methods have been used for quite some time in other disciplines, it is
only during the last decade that successful applications to chemical engineering prob-
lems have been reported. We also introduce a much simpler tear and grid method,
in which we utilize insights from conventional partitioning and precedence ordering
techniques combined with gridding of variables. Both methods are used to find initial
solutions and to explore solutions in the parameter space.

Exploiting Algebraic Structure. An important issue which is often neglected in
the design of numerical methods is to exploit algebraic structure. For large sparse
problems Sargent (1981) claims that it is always worth partitioning, but we show in
this work that the pay-back may be considerable also for small problems. Partitioning
addresses the task of decomposing the whole problem into smaller subsets which are
then solved in turn. In a textbook by Westerberg et al. (1979) several approaches to
exploiting the algebraic structure is considered. We use these standard techniques to
derive a highly efficient solution strategy for finding one or all solutions to a system

of NAE’s.

Outline of paper. In section 2 we discuss a particular method to obtain constrained
solutions, in which some of the variables x are specified and the task is to compute the
required values for the corresponding parameters A. In section 3 we give a brief review
on classical approaches to formulation and numerical solution of various homotopy—
continuation schemes. We also discuss some inherent difficulties in using available
homotopies, and in particular we address the issue of potential unboundedness of the
homotopy paths. To restrict the path to some finite domain we apply branch—jumping
techniques which are based on variable transformations and symmetrical arguments.
Such techniques have the advantage that no changes in the model equations are re-
quired. We then, in section 4, present a novel algorithm called tear and grid method
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is introduced. The method is in principle based on conventional procedures for choos-
ing a suitable set of tear or decision variables and reformulating the model equations
by simple algebraic manipulations. The algebraic structure is exploited and in some
cases the algorithm may yield ezplicit solution schemes, thus eliminating the need for
costly iterations. Finally in section 7 we present a comparative analysis of the different
methods with emphasis on aspects such as simplicity, flexibility and computational
efficiency.

2.2 Constrained Solutions by Feedback Control

In order to find at least one solution to the system NAE’s given by (2.1), we stress that
one should distinguish between finding unconstrained and constrained solutions. Note
that we here use the term constrained with respect to the system (output) variables.
In the former case, all degrees of freedom (e.g the values of all parameters A) are fixed
and the task is to solve a square system of NAE’s given by

F(x)=0, A=) (2.2)

As previously discussed, one may in principle apply any local or global method to
find the desired solution(s). However, we also note that when we consider chemical
engineering problems, the system of NAE’s often resembles a steady state solution of
a general dynamic model, which typically is constituted by mass and energy balances
as well as thermodynamic and equilibrium relations. Provided there is a stable steady
state, the solution is quite easily obtained by solving the original dynamic model to
a steady state using some numerical integration scheme, e.g. Runge Kutta methods
or BDF—formulas.

This special feature is utilized as we now turn to the issue of finding constrained
solutions, in which case we want to be able to specify some of the (output) variables.
This is the typical situation in design, in which some of the outputs are specified and
the corresponding inputs needs to be obtained. These solutions may of course be ob-
tained in the same manner as for the unconstrained case, simply by adding additional
equations for the equality constraints and augmenting the vector of variables corre-
spondingly. This is the situation commonly encountered in flowsheeting simulation,
where for instance “recycle” (tear) variables (Westerberg et al. 1979) are used to solve
the flowsheet in a hierarchical manner. However, if we instead have a dynamic model
available, we will next illustrate an alternative approach for computing constrained
solutions using feedback control. As a minor comment one may also argue that solv-
ing the general dynamic model to a steady state using dynamic simulation, is a more
“consistent” and intuitive way of obtaining such a solution.

If we then denote the outputs by y, the state variables by # and the inputs by A,
the system of ordinary differential equations (ODE’s) is given by

x=g(z,y,A) (2.3)

Our task is now to find a steady state solution by integrating the system of ODE’s
(2.3), subject to some variables (outputs) being constrained. The desired solution is
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thus found by solving the following problem

g(z.y,A) =
subject to (2.4)
Y=1Ys

where y; are the constraints (set points). In order to find the corresponding (input)
parameters A, we simply consider the dynamic model as a feedback control system and
compute A using a simple feedback law

A=K(y—u) (2:5)

in which K is the controller given by a simple single-input-single-output (SISO) con-
troller or any kind of multivariable (MIMO) controller. The requirement is naturally
that the particular controller yields a stable closed loop system. Finally, one may con-
sider the problem constituted of (2.3)—(2.5) as that of solving a differential algebraic
system of equations (DAE) which we denote by

f(:EJI’y’)\):O

In figure 2.1 we give an example in which feedback control was applied to obtain
desired product purities ys; for a separation process of a quaternary mixture. The
objective is simply to achieve certain purities for the products of each of the compo-
nents A, B, C' and D. The column is a complex distillation arrangement previously
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Figure 2.1: Closed loop simulation of a complex distillation column using a steady state
decoupler to obtain constrained steady state solutions

presented by Christiansen et al. (1997), for which it was difficult to find constrained
solutions using steady state solvers. For the controller we used a simple stationary



6 Numerical Methods for Steady State Analysis. Part I.

decoupler, and as demonstrated in the figure the simulation converges to the desired
steady state solutions. The initial values corresponds to an unconstrained (open loop)
steady state solution in which case the values for the system parameters A were spec-
ified. From the Figure we observe that the new constrained solutions are located by
dynamic simulation until the steady state is reached. We should also note here that
a very important issue 1s that of deriving a stable controller. This is however not an
issue dealt with in this work. Next, we consider methods belonging to the class of
homotopy—continuation methods.

2.3 Homotopy—Continuation Methods

Due to the lack of global convergence properties for most conventional Newton or
quasi-Newton methods, homotopy-continuation methods were introduced in solving
chemical engineering problems during the late 70’s and early 80’s. The ideas of contin-
uation methods are however not new, and were according to Ortega and Rheinboldt
(1970) introduced in the literature in the 1930’s to solve a single non-linear equation.
The homotopy function may be solved by discretizing the homotopy path and apply-
ing a local method such as Newton’s method at each point of discretization. However
the computation effort may be reduced substantially by reformulating the homotopy
function to an initial value problem (IVP) as suggested by Davidenko (1953). The
IVP can be solved by any numerical integration routine, but most algorithms use
some predictor—corrector scheme, e.g. Euler predictor and Newton corrector step.
Homotopy—continuation schemes have proven to be very effective, though computa-
tionally inefficient, and have been used extensively the last decade. A comprehensive
survey of the use of homotopy continuation in computer aided design is given in
a recent article by Wayburn and Seader (1987). The continuation algorithm used
in this work deviates somewhat from the classical approach in that we use theory
from linear algebra in an explicit manner to find search directions. Using such in-
formation we avoid increasing the dimensionality of the problem by introducing an
additional parameter such as the arc-length. Our algorithm is based on the prin-
ciples described in a work by Morud (1995), where continuation methods are used
to explain complex behavior displayed by a integrated distillation column known
as the Petlyuk column, previously observed by Wolf (1994). Among other applica-
tions of homotopy—continuation methods within chemical engineering we mention a
few important works. Multiple solutions of interlinked distillation columns were also
computed from different starting guesses by Chavez et al. (1986) and from homotopy
continuation Lin et al. (1987). Kovach and Seider (1987) applied an algorithm with
particular emphasis on avoiding limit points for the simulation of an industrial het-
erogeneous azeotropic distillation tower. A similar approach was used by Chang and
Seader (1988) to show how certain design parameters affect a continuous reactive—
distillation system. Fidkowski et al. (1991) use continuation methods to demonstrate
how elementary bifurcation theory may be used in the design of nonideal multicompo-
nent distillation. For reviews on methods and other applications we refer to the works
of Seider et al. (1991), Wayburn and Seader (1987) or Allgower and Georg (1993).

The mathematical principles of the continuation algorithm is thoroughly described in



-~

2.3 Homotopy—Continuation Methods

several textbooks (see e.g. Seydel (1988) or Kubidek and Marek (1983)). There also
exist some semi—commercial applications, e.g. AUTO (Doedel n.d.) or HOMPACK
(Watson et al. 1987)). Among the more recent works we acknowledge the works of
Paloschi (1995) and Paloschi (1997), in which a new class of bounded homotopies are
introduced to restrict the homotopy paths to prescribed domains.

2.3.1 Formulating the Homotopy Functions

The underlying idea of homotopy continuation is to embed the function f(z) in a
blending function H (z,t) forming the linear homotopy function

H (2,0) = tf(z) + (1 = 1) g(2) = 0 (2.6)

where f(z) denotes the model equations, z the model variables, ¢ the homotopy
parameter and g(z) a system of equations for which a solution is known or easily
obtained. The latter is a key point in understanding the proficiency of using homotopy
functions, since we may ease the task of solving a difficult problem f(z) by using as
a starting point a solution to g(z) which is easily solved or in fact known a priori.
The homotopy path is defined by the locus of all solutions found by tracking equation
(2.6) starting from ¢ = 0 with a known or easily obtained initial solution # = zq, and
ending at ¢ = 1 for which f(z) = 0. From equation (2.6) wee see that

H(z,0)=g(z)=0 (2.7)

H(z,1) = f(z) = 0 (2.8)

thus the desired solution to f(z) = 0 is obtained if and only if the homotopy path is
tracked up to the point where ¢ = 1. Under certain assumptions H(z,t) is continuous
such that the path containing (z,0) also contains (z, 1) (see Ortega and Rheinboldt
(1970)). Under these conditions one may also find several solutions, by allowing the
path to extend beyond these limits. However this 1s often not the case, and obstacles
that may prevent successful tracking is discussed in the next section. Several choices
exist for g(z) each yielding a different homotopy with different behavior. Alternative
homotopies are :

Fixed point homotopy H(z,t)=tf(z)+ (1 =1)(z — z0) (2.9)
Newton homotopy H (z,t) = f(z)— (1 =1) f (20) (2.10)
Affine homotopy H(z,t)=tf(z)+ (1 —t) A(z — z0) (2.11)

where A denotes a proper weighting matrix to avoid scaling problems, typically cho-
sen as f'(zg). Yet another alternative is to choose g(z) as a problem which is easier to
solve than f(z), for example in solving a distillation problem with non-ideal thermo-
dynamics starting with a solution for the ideal case as shown by Vickery and Taylor
(1986). In this work we show how solutions to a model of a reactive distillation column
f(z) may be obtained by choosing g(z) as a model of an ordinary distillation column,
for which a solution is more easily obtained. These different homotopies are then said
to form a convex linear homotopy (Kovach and Seider 1987), so that the residuals
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fi decay linearly from the initial values given by zy. The advantage with the fixed
point homotopy is, besides its simplicity, that any additional multiplicities introduced
by adding further functions is avoided. Other homotopies may have more appealing
numerical properties, but in general there are no definite guidelines for choosing the
optimal one. Problem caused by undesired multiplicities and other difficulties which
may cause failure is treated in the next section.

Solving the Homotopy function

The classical solution method involves discretization of the homotopy path, in which
a local method (e.g. Newton’s method or Broyden) may be applied at each point
of discretization. However, as was suggested by Davidenko (1953), computational
efficiency may be greatly improved by reformulating the homotopy function 2.6 to
an initial value problem (IVP). By differentiating the homotopy function (2.6) with
respect to ¢t we derive

dH(z,t) _0Hde  OH _

o ora T 7
dx OHN\ ' oH o

Given an initial solution, zg, equation (2.12) constitutes an TVP which may be in-
tegrated by any numerical integration scheme, e.g. Runge Kutta or Gear’s method.
Most continuation methods use some predictor—corrector scheme, typically an Euler
predictor and Newton corrector. If the homotopy path is connected, it is obtained
by tracking (2.12) from ¢ = 0 with # = 2, and ending at ¢t = 1 for which f(z) = 0.
However, tracking the homotopy path may fail in some cases, if proper precautions
are not taken in the path following procedure.

Unboundedness and non—uniqueness of homotopy paths

A detailed analysis of situations under which homotopy—continuation methods may
fail is presented in a work of Wayburn and Seader (1987). We will here give a brief
discussion of the most common causes of failure, of which one is that

i) The Jacobian 0H /px becomes singular at turning points

To avoid problems in tracking the solution curve across turning points, most algo-
rithms proposed in the literature introduce the arc—length to define the search direc-
tions along the path. We have use a slightly modified approach in which orthogonal
search directions are found from linear algebra as described in a work by Morud
(1995). In addition to difficulties in crossing turning points, problems also arise when

ii) The homotopy path becomes unbounded

Since the homotopy path needs to be finite in order to be trackable, some kind of
branch jumping technique or variable transformation must be introduced if unbound-
edness is displayed. Seader et al. (1990) suggested to use mapped continuation meth-
ods, called toroidal and boomerang mapping, in which variables that extend to £oo
are kept bounded through a proper transformation. The authors conjecture that all
solutions may be traced from any starting point using a fixed point homotopy and
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allowing all variables to take complex values. Sufficient proof of such global conver-
gence properties does however not exist, and whether or not all solutions may be
found from one starting point is still an open question. Taylor et al. (1996) also ex-
ploit the potential for carrying out distillation calculations in the complex domain.
They argue that allowing for complex solutions in the iteration procedure enhances
convergence in cases where methods operating only in the real domain failed. One ob-
jection to the latter approach is that using complex arithmetics considerably increases
the computational efforts, as is also noted by Taylor et al. (1996). In a recent work
Paloschi (1995) introduced new bounded homotopies that on one hand avoids track-
ing complex paths, and at the same time guarantees solution paths to remain inside
a prescribed region. Since these bounded homotopies produce dense Jacobians, even
when the original problem is sparse, Paloschi (1997) later proposed homotopies which
retain the sparsity patterns of the original problem. The author, however, recognized
the need for more work on theoretical aspects of these proposed homotopies.

iii) Multiple solutions may exist for g(z) =0

If the added function g(z) has multiple solutions, the homotopy path may return to a
second solution of this simpler problem without passing through the desired solutions
to f(z) = 0. Wayburn and Seader (1987) use the concept of topological degree to
indicate when multiple solutions of g(z) may cause failure in using for example the
Newton homotopy. This problem is however easily avoided by using the fixed point
homotopy since the residuals z — z( is simply a vector of scalars. In order to avoid
undesired scaling problems with the fixed point method one may resort to the Affine
homotopy which is scale invariant.

iv) Variables may exceed the domain on which they are defined

on negative values at some point along the path. Since thermodynamic functions often
involve logarithms or square roots they become undefined when substituting negative
values. Wayburn and Seader (1987) suggests to use the absolute value functions to

resolve such problems. However, this problem is conveniently handled using a new
class of bounded homotopies (Paloschi 1995, Paloschi 1997).

v) Occurrence of isolated solutions along the homotopy path

There is at present date no method which rigorously deals with problems of isolas as
noted also by Seader et al. (1990), and we pose this problem as a great challenge for
future work.

As an alternative to the approaches suggested by Seader et al. (1990) and Paloschi
(1995), we will in the next section focus on some simple branch—jumping techniques
in order to overcome the problems of unbounded paths. By using the simple inverse
mapping function, we show how arguments of symmetry may be used to predict where
solution branches connect across asymptotes. In cases of single and linear asymptotes
we found that the inverse mapping works satisfactorily. However, in situations where
for example several asymptotes lie arbitrarily close in the variable space (as for the
CSTR example to be discussed later), or in cases of non—linear asymptotes, the situa-
tion is not that simple and the algorithm displayed poor convergence characteristics.
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Further work needs to be done on both theoretical and numerical aspects of this issue.
Before going into detail on the mathematical issues of continuation and branch jump-
ing, we illustrate the usefulness of applying branch jumping techniques by considering
a simple scalar example function previously studied by Lin et al. (1987) and Seader

et al. (1990).

Introductory Example : Scalar Function. Toillustrate the usefulness of applying
branch jumping techniques we consider the simple scalar example function previously
studied by Lin et al. (1987) and Seader et al. (1990). The function is given by

flz)=2> =32 +2 (2.13)

for which the analytical solutions & = {1,2} are easily obtained. We applied the
fixed point homotopy H(z,t) = t(2? =32z +2) + (1—t) (2 — zo) and figure 2.2
shows the homotopy paths and the two solutions to f(z) = 0 denoted I and I7
at t = 1. The path consists of three branches and is traversed in the direction in-
dicated by arrows. Starting at the arbitrary initial point 2o = 1.5 on branch 1,
we find both solutions by allowing the homotopy path to extend beyond the inter-
val 0 < ¢t < 1. We see that the path goes to infinity at the connection points
(t,z) = {(0,+00), (00, 1.2929), (+00,2.7071)}. In spite of its unboundedness the
homotopy curve is successfully tracked numerically by applying a simple tnverse map-
ping function which imposes a jump of finite length in the mapped variable space.
We now give an outline of how the branch—jumping illustrated by this example is

v (tX) = (0,2 c0)

Branch 2

(tx) = (tco, 2.7071) |

Solution | | Enm————— S S asi
2F 1 2k ]

- M - L= 1209
/ 7 - - ]

Solution Il v

of Starting point of ———— Jumpl
Xo=15 Jump 2
i Branch 3 1 e Jump 3

. . . 3 . . . . i
2 3 4 5 -5 -4 -3 -2 -1 0 1
Homotopy parameter, t

hotop Baramrh
(a) (b)
Figure 2.2: Homotopy paths for H(z) = 22 -3z +2+ (1= &) (z — =0).

obtained.

2.3.2 Branch—jumping Techinques

Since the homotopy path needs to be of finite length we need some method to jump
across the asymptotes, and in order to enable such branch—jumping, a direction for the
jump in the solution space needs to be defined. We demonstrate how such directions
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may be found based on theory from linear algebra and simple arguments of symmetry.
In the preceeding discussion the term branch is used to denote a curve or surface
reflecting the solutions in a branching diagram, i.e. a diagram depicting for example
x versus t where (z,t) solves the homotopy functions (2.6). We now outline the
general principles of the methods, but the detailed mathematical issues are described
in Appendix A.

Method 1: Aligned Asymptotes This first method is particularly simple in that
we utilize arguments of symmetry in a way which requires that the asymptotes are
aligned with the coordinate axis of the original variable space. The underlying idea of
the method is to impose a finite step in the transformed variable y which is mapped
according to the inverse mapping function

Yy = - (2.14)
where z; denotes the variable for which asymptotes arise, i.e. the homotopy path
connects at oo for some value of z;. The reader should note that we do not dis-
tinguish between variables  or the homotopy parameter ¢, since both variables may
go to infinity along the path. The issue of finding a point on the connecting solution
branch also involves a predictor—corrector scheme. In the predictor step we try to find
the required direction of the jump in a similar fashion as described for the general
Euler predictor. A step in the direction of the null-space of the Jacobian matrix of the
original variable space #;, and the corresponding step in the mapped variable 1/z; is
illustrated in figure 2.3. The Jacobian matrix J is given by

_ 0fi

Jij B aéL‘j

(2.15)

where f as before denotes the system of equations constituted by the variables z.
As illustrated in figure 2.3 we thus wish to find a step such that

L +A<l) (2.16)

Tnew Lold z

Using these symmetric arguments requires that inverse has a continuous first deriva-
tive through origo. If not the mapped curve has a break point and symmetric ar-
guments does not apply. The method may also fail in cases where several variables
become large simultaneously, or the asymptotes are not aligned with the orthogonal
coordinate axes of the original variable space. In such cases we wish to define a sub-
space in which only one of the variables is large. Finding such a subspace requires
some way of rotating the coordinate axes, an issue that is dealt with in the next
section.

Method 2 : Skew Asymptotes One way of finding the desired subspace in case of
skew asymptotes is to align one of the coordinate axes in the rotated space with the
direction of the asymptote of one variable. In order to use arguments of symmetry
as described in the last section we aim to find a subset of coordinate axes which are
orthogonal to the direction of the asymptote. A basis for such a rotated variable space
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Figure 2.3: Schematic demonstrating branch—jumping across asymptotes using simple vari-
able transformation and symmetry

is formed by a matrix, say 7', whose column space is spanned by the bases for the
left null-space N'(JT) and the column space R(J) of the Jacobian matrix J defined
by equation (2.15). From linear algebra we know that for a n—-dimensional vector
x € R™, this matrix T spans the whole of R™. If we denote the new variables by the
vector (, we have that

x=TC (2.17)

thus z is in the column space of T' (linear combination of the columns). We then
wish to find the direction of the jump in the rotated variable space, A(, which we
previously defined to be in the direction of null-space, A'({). Hence we have

JAz = JTAC =0 (2.18)

where the matrix product J7T' defines the Jacobian of the rotated function space,
F(C(N),¢). We wish to make a small step in 1/¢ in the direction of the null space
and thus follow the same steps as demonstrated for Method 1 to eventually obtain
Az = TA(. We have applied this method to some simple example problems, and
it occurs that there still are some difficulties that arise in situations where several
variables display asymptotic behavior simultaneously. In order to make a jump one
needs to make certain assumptions with respect to where the branches connect. For
the simplest case of linear asymptotes we may use arguments based on symmetry
in the prediction of new values for the variables. However when the asymptotes are
non-linear, symmetrical considerations are not at all that obvious. Finding robust
solution methods that deal with such situations represents a challenge that should
be dealt with in future works. In the next section we outline the features of the
alternative tear and grid approach.
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2.4 Methods Exploiting Algebraic Structure

The approach proposed here is a method which uses information of algebraic structure
to decompose the system of NAE’s into smaller subproblems, called partitions. The
irreducible partitions obtained in the first sequence may be decomposed even further
by guessing some of the variables occurring in the subset, a method known as tearing.
In this work the tear variables are found by inspection, but in the general case the
directed graph is not very helpful and an algorithm is required to obtain the optimal
set of tear variables. When finding initial solutions to f(z) = 0 each subset includes
an equal number of equations and variables, hence tearing leaves one residual for each
tear variable. If possible one should choose the number of tear variables so that the
system of NAE’s may be reduced to a sequence of single—variable equations by simple
algebraic manipulations. If such an explicit solution scheme is obtained, costly itera-
tions are avoided. However, conventional tearing methods still involve some iterative
scheme since the residuals must be adjusted until the desired solution is found. The
procedure proposed here suggests instead to use a grid of the tear variables and cal-
culate the residuals for each point in the grid. Solutions may then be obtained either
by visual inspection of the solution surfaces or by numerical interpolation between
the points in the grid, depending on the accuracy required. The method is also well
suited for exploring solutions in the parameter space. Bifurcation diagrams are easily
obtained by using the bifurcation parameters as the grid variables. In the next section
we illustrate in terms of a simple example how the method may be used.

2.4.1 Conventional Design of Decomposition Methods

Decomposition methods aim at finding smaller subsets, or partitions, of the system
of NAFE’s that are easy to solve. Partitioning involves the assignment of which output
variables to be solved by each of the equations. This choice is not arbitrary since a
partition of a system is unique (see e.g. Sargent (1981)). Precedence ordering on the
other hand involves finding the order in which the equations are to be solved. These
ideas can be illustrated by the following simple example. We display the occurrence
(incidence) matrix where each row corresponds to an equation f; and each column to
a variable z;. Entries denoted by 1’s in row 7 and column j thus indicate that variable
x; appears explicitly in equation f;.

A1 11
fo 11 1 1 _

fz L1 (2.19)
fi 11 1

fs 111

As suggested by Westerberg et al. (1979) the best way to obtain the partitioning and
precedence ordering is probably to use a directed graph where an arrow pointing from
node f; to f; if and only if the assigned output variable for f; appears in f;. By
assigning each variable z; to the corresponding equation f;, we obtain the directed
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Figure 2.4: Directed graph for example (2.19)

graph shown in figure 2.4. By making an appropriate choice of tear variables we may
then find a completely decomposed partition. By inspection of the directed graph
in figure 2.4 one finds that if 21 and z, are assigned as tear—variables, leaving f;
and fs for calculation of the residuals, z3, z4 and x5 may be calculated sequentially
from equations f3—f5;. Depending on the form of equations f3—f5 one may in some
cases compute z3, 4 and z5 explicitly, but in the general case iterative schemes must
be used. Figure 2.5 shows the directed graph that results after choosing the tear
variables, i.e. deleting objects 1 and 2 and the corresponding arrows in figure 2.4. A

Z

Figure 2.5: Reduced graph obtained by tearing

conventional solution procedure based on this proposed scheme typically involves the
following steps

(1) Guess values for z; and x4 (tearing)

(2) Calculate z3 and z4 directly from f3 and f4

(3) Calculate z5 from f5 using z3 and 24 from step (2)

(4) Calculate the residuals from equations f; and fs
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(5) Tterate until sufficient accuracy is obtained for the residuals

As conventional tearing commonly yields an iterative scheme, we show in the next
section that by choosing a proper set of tear variables and making a grid of these,
iterations may be avoided. Note however that the solution scheme depends strongly
on the form of the equations, and that explicit schemes arise only in particular cases.

2.4.2 Tear and Grid Method

We may now outline the features of the tear and grid method. The first steps follows
th standard methods outlined in the previous section, i.e. partitioning, precedence
ordering and tearing. One should note that finding all solutions requires that the
non—teared functions yield unique solutions. For this purpose it is sufficient to find a
linear subset of equations. The principles of the method are conveniently described
by considering the system (2.19) discussed in the last section, since solutions may be
visualized in 3 dimensional plots.

Finding initial solutions. After assigning the tear variables we find the appropriate
partitioning and precedence ordering which yield a completely decomposed subset.
We then make a grid of the chosen tear variables, in this case z; and x5 which yields
two residuals Res; and Ress. We then calculate z3—x5 from equations fs—f5. A
very important issue is then that of making sure that unique solutions are found
for the variables. In the general case one should test the equations for uniqueness
since uniqueness is not a general feature of nonlinear equations. Then we obtain
the residuals for the two teared functions f; and fs for each point in the grid. We
thus obtain a solution surface for Res; and Res2 respectively, when displayed as
functions of the tear variables. Since we require that both residuals must be zero,
the solutions are then found in a plane denoted the 0 contour, where Resy(z1, 22)
and Ress(z1,z2) are zero. Finally we locate the solutions at the intersections of the
residual surfaces and the 0 contour. We illustrate by some example problems given
in the next section that solution surfaces are quite conveniently visualized. We also
apply the homotopy—continuation method, and eventually we give an evaluation of the
two methods according to measures such as computational efficiency, implementation
effort and graphical visualization.

Coarseness of grid. In order to find either an initial solution or solutions in pa-
rameter space one needs to specify the number of points in the grid. Depending on
the accuracy required for the solutions, the coarseness of the grid may be chosen for
convenience. One may for instance apply the grid method to obtain an initial screen-
ing of the solution surface in order to find in which regions solutions may be found.
By reducing the domain of the grid variables step by step and thereby narrowing in
the solutions, one may reduce the computation time considerably compared to mak-
ing a fine grid of the whole solution space. This is of special importance when little
information exist about the process, i.e. in the design of new processes.

Interpolation methods An important issue when displaying the solution surfaces
obtained from the grid method, is the accuracy provided by the numerical interpo-
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lation routines. The solutions found by inspection are usually approximate, and if
higher accuracy is required one should either resort to interpolation between neigh-
boring points or use the grid points as initial guesses for some Newton—based method.
Most available algorithms for interpolation use some polynomial approximation, i.e.
Lagrange polynomial or inverse interpolation. The interpolation polynomial aims to
connect the computed data points by selecting a polynomial of appropriate order
depending on the number of grid points. Potential problems with this approach are
that one may fail to find some solutions if the grid is too coarse, or one may also
introduce additional solutions due to over-fitting. For some of the examples we found
that transformation of some variables may be required prior to computing the solution
surfaces.

2.5 Numerical Results

We present in this section numerical results obtained with the proposed methods
for three example problems representing simplified models of physical processes, i.e.
(1) two CTSR’s in series; (2) a coupled cell reaction and (3) a reactive distillation
process. The example problems are chosen partly because they conveniently demon-
strate problems related to complex behavior of the homotopy path. For the CSTR’s
we show that convergence problems arise if several variables become unbounded si-
multaneously, since it is difficult to obtain a suitable direction for the branch jump.
For the coupled cell example we illustrate that isolas may occur along the homotopy
path, thus preventing successful tracking. The final reactive distillation example is
motivated also by the desire to find out whether multiple solutions exist for simple one
stage columns. For all examples we show that multiple solutions are easily obtained
without difficulties by applying the tear and grid method.

Example 1 : Two CSTR’s in series

We here consider a model of two CSTR’s in series (see e.g. Kubicek and Marek
(1983) or Seydel (1988) for details regarding the model). The steady state model is
comprised by a system of four coupled non—linear equations

01

(I=A)zzs+ Day (1 — z1) exp <m

) =0 (2.20)
01

1—-A)8, -0 Da1B (1 —: : _
( )02 — 01+ Dai B ( Iﬂwm<1+5M7

) =B (0 —0a) =0 (221)
&)

1 — 29+ Dag (1 — z2) exp (m
2

) =0 (2.22)

6
61 —92+D(I2B (1—I2) ETP < 2 7) —[7)2 (92 —652) =0 (223)

T+0:/7

Homotopy—continuation. We applied both fixed point and Newton homotopies
in order to find a solution with the parameter values fixed as given in figure 2.6
(a) and (b). As demonstrated in figure 2.6 the homotopy function displays rather
complex behavior, and great problems was experienced in the correction step due to
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difficulties in finding a proper direction of the branch jump. Numerical instability, in
the sense of unstable oscillations in the correction step, was encountered due to the
Jacobian matrix becoming close to singular in the vicinity of the asymptotic points.
This example illustrates one of the problems often encountered when using branch-
Jumping techniques based on arguments of symmetry, namely that a suitable upper
limit on the size (norm) of z needs to be chosen a priori for when the jump is to be
taken. If the specified upper bound is chosen such that the direction of the null-space
vector for the mapped variable, evaluated at 1/, does not pass through or rather
closely to —1/z;, convergence problems in the corrector step are to be expected.
Convergence properties thus relies heavily on the inverse being sufficiently close to
zero. If not, it becomes difficult to predict at which point the branches connect beyond
the asymptote. For the example considered here 1t may be preferable to apply either
bounded homotopies as suggested by Paloschi (1995) or allowing continuation in the
complex domain (Seader et al. 1990). However, there are no proofs that guarantee
convergence for either of these methods. Using complex arithmetics also increases the
size of the problem, hence computational issues are in general unfavorable for such
methods.

Other forms of complex behavior may also occur that may prevent successful
tracking. Situations where the homotopy path extends towards large values for some
value of z or ¢ and returns without displaying asymptotic behavior, or situations
where the asymptotes are non—linear are examples of such behavior for which no
rigorous methods appear to exist. For the specific problem at hand, the homotopy
path was eventually tracked by applying continuation up to a point in the vicinity
of the second (vertical) asymptote. The remaining solution branches was then found
by discretizing the homotopy function in ¢ and solving the system of equations by a
Newton—method.

Tear and grid approach. Although the homotopy—continuation algorithm exhib-
ited poor convergence properties, initial solutions were quite easily obtained by the
grid approach. We consider the example corresponding to the parameter values given
in Figure 2.6 (a). In Figure 2.7 (a) and (b) we give the residual-surfaces Res; and
Resy respectively displayed as functions of the tear variables. The initial solution
for #; and 65 are finally located by the intersection of the residuals in the 0—contour
as shown in Figure (d). We see that the solutions correspond to what was found
using the homotopy—continuation method, but in this case solutions were obtained
with considerably less effort. In the next example we illustrate that the homotopy
functions may display isolas along the homotopy path, thus introducing additional
difficulties with respect to branch jumping.

Example 2 : Coupled Cell Reaction

Consider the following system describing a model of a trimolecular reaction (see Seydel
(1988) for details concerning the model)

2—71‘1—}-33%1‘2—1—)\(333—1‘1 =
6x1 — I‘%l‘g + 10A (24 — 22
2 —Trs+ xirs + Az + x5 — 223

6zx3 — ‘JI%(L‘4 + 10X (22 + z6 — 224

(2.24)

)
)
)
)
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Figure 2.6: Fixed point homotopy paths for example of two CSTR’s in series
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2 - 7:135 + ;13?336 + )\(.’E3 — ;‘135) =
6x5 — v2xes + 10A (24 — 26)

0
0
where the coupling coefficient A is chosen as the branching parameter.
Homotopy—continuation. We applied a fixed point homotopy function to the
model and found (incidentally) that isolated solution branches appear along the ho-
motopy path. Isolas were obtained for a wide selection of starting guesses, and in
each case prevented successful tracking of the homotopy path. In order to escape
from the closed solution manifold (isola), we would have to keep track of previous so-
lutions and then use some criteria to enable a jump in the parameter space. However,
there are at present date no rigorous way of predicting where the branches connect
beyond the isolas. For some homotopies it is however possible to guarantee that iso-
lated solutions will not arise (Paloschi 1995), but this is not an issue dealt with in
this work. We should note that the isolated solution branches were obtained after a
branch jump was imposed, due to some variable(s) displaying asymptotic behavior.
In this case we assigned an upper limit of z;(¢) = 20 for the variables, so that when
this bound 1s exceeded a branch jump is to take place. Note also that the problem is
multidimensional (z € RY), and the curves in Figure 2.8 are thus projected onto the
2-dimensional (¢, z;) space.

Tear and Grid approach. From the occurrence matrix displayed in (2.25) we
find that an explicit solution scheme is obtained by choosing for example z; and
x5 as tear variables. We note that other sets of tear variables also yield explicit
schemes. Deleting the rows for 1 and zs yields the assignment of output variables
as indicated by encircled occurrences in (2.26), which leaves f5 and fs for calculation
of the residuals.

X1 rg X3 X4 Iy g
i1 1 1
£ 11 1
fs 1 111 (2.25)
4 11 1 1
s 1 11
s 11 1

i O©
F @ (2.26)

51 1 @

fa 1 1 D
o1 11
fo 111

Unique solutions are guaranteed since the assigned variables appear as linear terms
in the unteared functions. The residual surfaces and solutions are displayed in figure
2.9, and as shown in d) there are in fact 6 solutions denoted (I)—(VI) for z; and x5
within the prescribed grid for A = 1.3. Our results are in excellent agreement with
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Figure 2.8: Occurrence of isolas along the homotopy path for coupled cell reaction example.

Figure (b) illustrates branch jumps due to asymptotic behavior for variables z5 and .
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results given by Seydel (1988), who applied continuation to explore solutions for a

range of A-values.
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Figure 2.9: Visualization of solutions to f(z) = 0 for coupled cell reaction example

Example 3 : One Stage Reactive Distillation Column
Consider the following model for a one tray reactive distillation column of a ternary
mixture, where the following reversible second order reaction occurs.

2 <&« A+ B

The following common assumptions are made for the model

e Ideal trays
o Constant molar flows
o Total condenser

e Negligible heat of reaction

2.2

32
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Figure 2.10: Schematic of one stage reactive distillation column

A schematic of the column is given in figure 2.10

Steady State Model. Using the notation given in figure 2.10 we obtain the following
steady state model

FZA—(V—L)yA—(F+L—V);‘EA+I/A7“A = 0 (227)

Fzp — (V—L)yB —(F+L—V)JZB+VBT’B = 0 (228)
Q1T A

— = 0 2.29

ya (a1 —Dza+ (@a—1)zp+1 ( )
QX p

— =0 2.30

yB (a1 —1za+ (@2—1)zp+1 ( )

L((MA —Mc)yA+(MB —Mc)yB +MC) — Ly, = 0 (2.31)

The reaction rate for a second order reaction is typically given as

’PA:T’B:—T—C:k‘fH(:L‘%—

TALTB o5 ¢
; ) (2.32)

K

where k; is the reaction rate constant, / is the tray holdup and K is the equilibrium
constant respectively. One should note that the model represented by equations (1)—
(5) has been somewhat simplified by substituting for the total material balance F' =
D+ B, the distillate split V' = D+ L and the sum of mole fractions 3, z; = > . y; = 1.
We further stress that we have not made the common assumption of molar inputs,
and thus consider a column where the reflux L,, is given on a mass rate basis, i.e.
[kg/min]. When specifying the feed conditions and the mass reflux (L) the reduced
system of equations thus exist of 5 variables (x4, 2p,ya,yp and L) and 5 (non-linear)
functions, f(z) = 0. Process data for the reactive distillation example is given in table
1. We introduce the dimensionless Damkohler number, Da = kyH/F, by dividing
equations (29) and (30) with the feed ratio F' A point of interest, besides using the
example to validate the numerical methods, 1s to examine whether multiple steady
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Table 2.1: Process data for nominal case of reactive distillation column

Relative volatility : a; =10

Relative volatility: as=1/3
Damkohler number: Da=5

Molar boilup : V = 5.5 [kmol/min]
Mass reflux : Ly = 440 [kg/min)]
Feed flow : F = 1.0 [kmol/min]
Equilibrium Constant : K =205

Column holdup : H = 1.0 [kmol]
Molar weight of light component : M4 =78 [kg/kmol]
Molar weight of intermediate component :  Mp = 116 [kg/kmol]
Molar weight of heavy component : Mc = 97 [kg/kmol)
Feed composition : za=1/3

Feed composition : zp = 1/3

states exist for the simple example model. The example is motivated by a work on
multiplicities in ideal binary ordinary distillation columns by Jacobsen and Skogestad

(1991).

Homotopy—continuation method. In figure 2.11 (a) we show the homotopy path
obtained from one run of the homotopy—continuation algorithm for the nominal case
given in Table 2.1. The Figure demonstrates that multiple steady state solutions are
displayed by the model of the reactive distillation column. The steady state solutions
denoted (I)-(IV) are found as solutions for a value of the homotopy parameter ¢ = 1.
We used a Newton-like homotopy H (z,t) =tf(z) 4+ (1 — ) g(z), where we chose for
g(z) a model of the corresponding non-reactive distillation column. The solution to
g(z) = 0 is quite easily obtained by a simple Newton Raphson method. Figure 2.11
(a) also demonstrates that the solution branches becomes unbounded for some values
of ¢t. The branch—jumping is obtained by applying the inverse mapping function
described as method 1. When an initial solution is obtained from the homotopy
continuation scheme, we may apply continuation in some other parameter to explore
the solution space as for example the mass reflux is varied. The bifurcation diagram
of L vs. Ly is shown in figure 2.11 (b), and demonstrates that multiple solutions
exist for some interval of L,,. The cause of multiplicity is due to a singularity in the
input transformation between molar (L) and mass reflux (L), which has previously
been shown for ordinary distillation columns by Jacobsen and Skogestad (1991). Note
that solution (7V) obtained from the homotopy continuation corresponds to a non—
physical solution, since the mole fractions become larger than one. We were however
not able to obtain this solution from continuation in L., which suggests that the
branching diagrams for the variables as a function of L, is not continuous through

the solutions (I)-(IV).

Grid—approach. Note in the following that we have plotted the surfaces for Res; +
Resy, and Res; — Ress, since the surfaces for Res; and Ress were hard to distinguish
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Figure 2.11: Homotopy path illustrating multiple solutions for L (a), and bifurcation diagram
displaying L versus L., (b) for reactive distillation example
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by visual inspection. In figure 2.12 we illustrate the shape of the residual-surfaces
and show that the model display multiple solutions for the given value of L, .
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Figure 2.12: Visualization of steady state solutions for reactive distillation example

2.6 Discussion and Conclusions

In this paper we have addressed two alternative numerical methods for solving systems
of nonlinear algebraic equations (NAE’s). We first considered a homotopy continua-
tion scheme, which usually requires substantial effort in terms of both implementation
(code) and computing time. However, for a small class of example problems, all so-
lutions were successfully obtained using a globally convergent fixed point or Newton
homotopy. The only exception was an example of a coupled cell reaction, where iso-
lated solution branches occurred along the homotopy path. We also discussed other
situations under which the homotopy-continuation method may fail, due to potential
unboundedness of the homotopy path. To resolve problems arising when variables ex-
tend to infinity, we applied two simple branch jumping techniques. By using a simple
mnverse mapping functions we show how search directions for a predictor—corrector
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scheme may be found by utilizing theory from linear algebra and arguments of sym-
metry. However, in all cases, also when the homotopy continuation method failed, we
showed that a novel tear and grid method found all solutions.

The tear and grid method possesses some appealing properties compared to other
methods proposed in the literature. Among these features we first emphasize that
such methods are straightforward to implement in a high level language such as Mat-
lab The Mathworks (1995). However, the perhaps most appealing feature is the
convenient visualization of solution surfaces, which applies to finding initial solutions
as well as exploring solution in the parameter space. Among the drawbacks we rec-
ognize that the method may become infeasible for large problems, due to increasing
computational complexity. For large systems, where a large number of tear variables
is required, the computational effort may thus become excessive. Typically one finds
that the computation time increases exponentially with the size of the problems to
be solved. This is the same situation as for global optimization problems, where so
called N P-hard problems are often encountered.

Thus, one may argue that the method in general is suitable only for relatively
small problems. However, it is also important to recognize that problems such as the
conceptual design of distillation processes, commonly yields sparse systems of equa-
tions. Since the number of tear variables for such problems may not be very large, we
argue that the method is still useful for a large number of practical problems. Fur-
thermore, in process analysis one is frequently set to analyze simplified models of the
more complex chemical engineering plant, in order to obtain important information
regarding process behavior. The proof of multiple steady states in ideal binary distil-
lation (Jacobsen and Skogestad 1991), explanation of holes in some operating regions
for integrated distillation columns (Morud 1995) or exhaustive analysis of dynamic
behavior displayed by CSTR’s (e.g. van Heerden (1953) and Uppal et al. (1974))
are all examples of important discoveries obtained from analysis of simplified prob-
lems. For somewhat large problems one may also consider using partial tearing. Even
though iterations are required in this case in the solution of smaller subproblems,
considerable savings may result since simultaneous solution of the whole problem is
avoided. Furthermore there are algorithms for choosing a convenient set of tear vari-
ables. Finally we stress that depending on the size, complexity and difficulty of the
problem at hand, one should in any case consider the grid approach as a worthy can-
didate for solving systems of NAE’s frequently occurring within chemical engineering,
along with the spectra of solution methods that already exist.

Nomenclature

Note that we give here only the nomenclature used in the main body of the paper.
For the examples we have defined the variables and parameters explicitly.

A — Weighting factor for Affine homotopy

J — Jacobian matrix

fi — Equation number 7

H — Homotopy function
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K — Controller in feedback law
T' — Basis matrix for rotated variable space
t — Homotopy parameter
x — Vector of (state) variables
xz; — Variable number i
y — Vector of output variables
z — Augmented vector of variables and parameters
z; — Mole fraction of component ¢ in feed
Greek letters
A — Deviation variable
A — Vector of parameters
0 — Derivatives
¢ — Vector of variables in rotated variable space
Subscripts
s — Set-point
new — Solution after branch-jump
old — Solution from which branch-jump is taken
Calligraphic
N — Basis for nullspace
R™ — Vector space of dimension m
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Appendix A Search directions for inverse mapping
function

We here show how one may find the step of a desired length in the null-space of
the mapped variable space which we may denote

= (z1,..., Y-, Tn), ER™ (2.33)

where y denotes the simple inverse mapping y = 1/z of the variable(s) for which the
homotopy path becomes unbounded. The elements in the Jacobian matrix for the
mapped variable space may be written

of iy
J/:ax/:(ffll"'|fy|"'|fl‘n) (2.34)
By partial differentiation of the inverse mapping function we obtain
of Ox 5
== . — =—xf 2.
fy oz 3y x; f i ( 35)

To avoid introducing the mapped variables explicitly in the system of equations,
we simply multiply the column of the original Jacobian by minus the square of z;,
evaluated at the point from which the jump is to be taken. The direction of the jump
in the mapped variable space is then

n=(ni,...,ny,...,n,), €N(T (2.36)

In cases of vertical or linear asymptotes, we may use arguments of symmetry in order
to predict new values of the variables beyond the asymptote. For the inverse mapping
function we wish to make a finite jump from 1/zy4 to 1/Zpew. Due to symmetry
around origo in the mapped variable space we assume that 1/2ne = —1/2414. The
desired step A(1/z) must satisfy the condition

L +A<1) (2.37)

Tnew Lold x

Substituting (1/2new) by —(1/2o4) in (2.37) yields the desired step

A (1) -2 (2.38)

x Lold

In order to obtain a jump of desired length we normalize the vector spanning the

null-space by the scaling
2
n=— n (2.39)




A Search directions for inverse mapping function 31

Finally we substitute the n, element in the null-space vector (2.36) by —2z;, thus
mapping the variable space back to the original 2 € R™. Since the curve for the
inverse only rarely i1s absolutely symmetrical around origo for the point from which
the jump is taken, we need to apply a Newton corrector in order to find a converged
solution. Total symmetry is only found for jumps in the vicinity of origo (see figure
2.3, thus we have to make sure that z is sufficiently large before imposing the step.
This method therefore works satisfactorily only in cases where the homotopy path is
symmetric around the asymptote.
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Abstract

This paper considers numerical methods for steady state analysis of under-
determined (non-square) systems of non-linear algebraic equations (NAE’s).
The focus is thus on methods for exploring solutions in parameter space, i.e.
obtaining solutions to the system of NAFE’s for a range of parameter values.
We first address the use of one— and multidimensional continuation methods,
after which we demonstrate some features of a novel tear and grid method, pre-
viously proposed by the authors. The latter method draws its characteristics
from conventional techniques of partitioning and precedence ordering, with the
addition of using a grid of the desired subset of variables. Both methods may
be used to obtain initial solutions as well as finding solutions in the parameter
space. Finally we consider a slightly modified gradient projection method em-
bedded in a continuation scheme for optimization purposes. The applicability
of the methods is illustrated in terms of a few example problems.
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3.1 Introduction

In the previous chapter we considered numerical methods for finding one or all initial
solutions to a system of non-linear algebraic equations, which we denote by

f(x,A) =0 (3.1)
F:R™xRFSR™, xeR™, AeRF '

where x is a m-dimensional vector of state variables and A a k-dimensional vector of
parameters. By initial we mean solutions of the variables x for specified values of the
parameters A, In this chapter we extend the analysis to also obtain solutions in the
parameter space, i.e. we aim to find solutions for the system variables x for a range
of parameter values A. Tracing solutions in parameter space is of special importance
in order to obtain information of non—linear phenomena. Examining the impact of
nonlinearities is essential in process design, where the engineers commonly apply only
local methods. An excellent review of methods for nonlinear analysis is given by Seider
et al. (1991). In a concluding remark the authors argue that the development of new
tools for analyzing complex nonlinear behavior “ are enabling engineers to prepare
more economical designs that operate closer to or within these regimes”. Among the
different tools that have proven useful are mathematical concepts such as bifurcation
analysis (catastrophe theory) and singularity theory. The applications in chemical
engineering are widespread, and in particular for analysis of chemical reactor systems
where there is an exhaustive literature due to the early theoretical works of van
Heerden (1953) and Bilous and Amundson (1955). Although bifurcation analysis also
involves the study of complex dynamic phenomena such as limit cycles and even chaos,
we in this work limit ourselves to steady state behavior.

The results from bifurcation analysis are typically displayed in bifurcation or
branching diagrams, in which the number (multiplicity) of solutions within the differ-
ent branches are depicted. In order to compute these diagrams one commonly uses
continuation methods, in which the solutions are traced along the path spanned by
the bifurcation parameter(s). Excellent books within this area are Golubitsky and
Schaeffer (1985) and Seydel (1988), in which the latter is somewhat less rigorous in
the use of mathematical proofs and formalism. For computational and numerical
issues we also advise the reader to confer the textbook by Kubi¢ek and Marek (1983).

One might pose critical questions as to why there should be a need for additional
methods, as there indisputably exist a wide range of methods in the literature. How-
ever, the methods discussed in this paper have some apparent advantages. Firstly
the methods are easy to implement in a high level programming language such as
Matlab (The Mathworks 1995), which is used for all simulations in this work. An-
other advantage is that the methods ensure that one always stay close to the feasible
solutions, so that they are well suited for ill-conditioned problems such as distillation
columns, which are studied extensively later in the thesis. The methods furthermore
require relatively little “book—keeping”, in the sense that we do not distinguish be-
tween parameters and (state) variables. We simply use an augmented vector which
includes both variables and parameters. This again make the methods easy to imple-
ment. Finally, the methods are not intended to solve any pathological problem, but
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are rather based on a “cut and try” philosophy. It is easy to check a posteriori if a
feasible solution in fact has been obtained. To sum up, we emphasize that the general
approach taken in this work is to put emphasis on simplicity rather than rigor; the
methods are easily implemented but they are still robust.

As a simple alternative to using continuation methods, we also consider a scheme
in which we make a grid of the parameters within the prescribed range. Hence we
have at each point a square system, for which any local numerical method may be
applied. Such schemes become infeasible if the number of grid variables is large
and one needs to solve a large number of equations. However, instead of solving
the whole square system, one may reduce the computational effort considerably by
exploiting the underlying structure of the equations. Initiated by the decomposition
strategies in early works of Sargent and Westerberg (1964) and later by Westerberg et
al. (1979), efficient solution procedures have been proposed which utilizes the sparsity
of many chemical engineering models. Such methods are now standard features in
most available modeling and simulation software, such as SPEEDUP and gPROMS
from Imperial College, ASCEND from Carnegie Mellon and ASPEN developed at
MIT. A core element within such systems are strategies for exploiting sparsity. In this
work we consider a particular algorithm in which tearing and algebraic manipulations
are combined with gridding of a subset of the variables. We show that in some cases
this approach allows for ezplicit solution schemes, for which the computation time is
reduced by orders of magnitude due to elimination of costly iterative schemes.

Outline of paper. In section 2.2 we introduce the reader to the use of continuation
methods, for which the solution space is traced by path following. We consider two
approaches for identifying the search directions in a predictor—corrector scheme, in
which both are based on augmenting the vector of variables according to the number
of bifurcation parameters. In the first case we use an Euler predictor in the null space
of an augmented Jacobian and corrector steps in the row space, whereas we in the
second use a secant predictor and simultaneous solution of the augmented system
using Broyden’s method. We also demonstrate in section 2.3 how a certain class of
steady state optimization methods may be embedded into a continuation scheme. In
section 2.4 we show how one may use the previously proposed tear and grid method
to explore solutions in the parameter space. Finally, in section 2.5 we demonstrate
the applicability of the proposed methods in terms of a few numerical examples.

3.2 Continuation Methods

In order to keep the following outline simple, we here consider a system with a single
parameter A\. Extending this to include several parameters is however straightforward.
Given an initial solution to the system of NAE’s in (3.1), say (2o, Ag), the purpose of
continuation is to obtain a family of successive solutions, e.g.

(21, M), (22,22), -+, (ZnsAn) (3.2)

until one reaches a desired target point, say (zn, A,). The classical solution method
involves discretization of the continuation path, in which a local method (e.g. New-
ton’s method or Broyden) may be applied at each point of discretization. However,
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as was suggested by Davidenko (1953), computational efficiency may be greatly im-
proved by reformulating the algebraic system (3.1) to an initial value problem (IVP).
By differentiating the function with respect to the continuation parameter A we derive

df(z,A) _ dfdx  Of _ Y
D —ardr a0 (3.3)

and by rearranging we obtain

de  (0f\"'of .

Given an initial solution, (zg, Ag), equation (3.4) constitutes an IVP for dz/dA which
may be integrated by any numerical integration scheme. Most continuation methods
use some predictor—corrector scheme, typically an Euler predictor and Newton cor-
rector. The solution path is thus obtained by tracking the TVP (3.4) from A = Ay
with £ = zg until the desired A, .

An important issue in process analysis is to examine nonlinear phenomenon such
as steady state multiplicity, for which bifurcation theory provides the mathematical
foundation. A bifurcation point (z*, A*) is said to occur if the number of solutions to
(3.1) changes as the path traverses through (z*, A*). The well known turning points
and pitchfork bifurcations belong to this class. However, from a computational point
of view, bifurcation points impose difficulties for path following since the Jacobian
Of/0xz* becomes singular, i.e. the tangent is not defined. To avoid problems in
tracking the solution curve at turning points, most methods proposed in the literature
introduce the arc-length to define search directions along the path.

Search directions in predictor—corrector schemes. To compute the successive
solutions, most continuation algorithms apply some predictor—corrector scheme, typ-
ically an Euler predictor and Newton corrector. In this work we consider two slightly
modified approaches, in which we avoid introducing the arc-length parameter explic-
itly in the solution scheme. The first method uses simple linear algebra to obtain
orthogonal search directions in a predictor—corrector scheme. Choosing orthogonal
search directions is a means for speeding up the convergence as advocated by Hasel-
grove (1961). However, for large systems, this approach is computationally expensive
due to the generation of large matrices at each continuation point. Using sparse
matrix techniques to avoid operations on the full matrices may of course reduce the
computational effort. Instead, in order to avoid recomputing matrices at each step,
we also consider an alternative method. Here we use a secant predictor as proposed
by Seydel (1988), and solve the predictor and corrector steps simultaneously as an
an augmented system of equations at each continuation point. The augmented sys-
tem constitutes the original system of NAE’s and additional equation resembling the
requirement of orthogonal corrector steps. If we then use Broyden’s (Broyden 1965)
method for this augmented system, we may in fact use only rank one updates of the
Jacobian matrix along the continuation path, and recompute only when the estimates
are poor so that convergence problems are encountered. For the examples we have
considered, the advantage of using an updating scheme for the Jacobian matrix offers
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Figure 3.1: Continuation using predictor corrector scheme for solving IVP

reductions in computation time by almost two orders of magnitude compared to the
previous scheme.

3.2.1 Solving IVP Using Tangent Predictor

An important element in our algorithm, which distinguishes it somewhat from most
other methods found in the literature, is that we directly augment the vector of state
variables so that we now operate on the vector # = [z | A ]7. We are thus to solve
an under-determined system of equations given by

f(z)=0, #ecRmtk (3.5)

Using the augmented Z allows us to find the search directions for the predictor and
corrector step in a simple and straightforward manner. For reasons of simplicity we
will in the rest of the presentation treat z also as the augmented vector (slight abuse
of notation). A simple solution procedure is to use an Euler predictor and a Newton
corrector to trace the family of solutions (3.2) as described in the next sections.

Euler predictor. In figure 3.1 we illustrate how the stepwise procedure is used to
find a family of solutions, corresponding to different values of the parameter A. In
the predictor step we start at a known point in the solution space, zg, and make a
finite step in a hyperplane tangential to the curve. For convenience we illustrate this
only for the 2-dimensional case. By linearizing the augmented function f(z) around
a solution point zy, for which f(zr) = 0 we get

F(knn) ® F(@k) + iy (zi = 22) = fa) + Jo (3.6)
k

We recognize here the matrix of partial derivatives J = 9f/0z” as the augmented
Jacobian matrix, where the last column is the derivative of f with respect to the con-
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tinuation parameter A. The Jacobian is typically generated numerically using central
differences, although analytical derivatives may of course also be used if available.
Since the objective is to find the solution for which f(zx4+1) = 0, so that equation
(3.6) reduces to Jéz = 0, we find that the Euler predictor step dz along the path will
be in the null space of the augmented Jacobian, A'(J). The Euler step thus becomes

Try1 = T + hdx (3.7)
where h is the step-length in the direction of the nullspace-vector §z € N (J).

Newton Corrector. In the corrector step we apply a Newton Raphson like scheme
in order to iterate towards a converged solution for f(zg4+1) = 0. By choice we require
that the corrector steps should be taken in a direction orthogonal to the predictor step.
From linear algebra we know that the subspace orthogonal to the null-space is the
row space R(JT). Since we also have that the pseudo-inverse J! always provides
solutions in the row space, we thus iterate in the row space in which J1 is evaluated
at the previous solution point z;. Using mathematical formulation the corrector steps
are thus given by

IZI%ZCL‘Z_l_l—JTf(:L‘Z_}_l), n=0,1,...,00 (3.8)

in which n denotes iteration count. The corrector step is repeated until the error
norm is reduced beyond a given tolerance ¢*°', say until ||f(mz_ﬁ)|| < etol

If convergence problems are encountered, which often is the case, there are several
measures to be taken in order to increase the accuracy during iteration. A common
remedy 1s to update the Jacobian matrix, using for example a rank one update at each
new iteration step (see e.g. Westerberg et al. (1979)) or if necessary recompute the
Jacobian. Another crucial aspect is to use efficient algorithms for step—length control,
for which several suggestions have occurred in the literature. In this work we have
however used a very simple approach in which we assign a certain upper limit on the
number of iterations. If this limit is exceeded we reduce the step—length successively
until convergence.

When using the proposed method we have to compute both the Jacobian, the null-
space and the pseudo inverse at each step, which becomes computationally expensive
for large systems. A more efficient scheme is to apply a secant predictor, and solve an
augmented system of equations which includes an additional equation for the corrector
step, as illustrated in the next section.

3.2.2 Simultaneous Solution Using Secant Predictor

Instead of taking the predictor step in a tangential hyperplane, for which we have to
compute the Null space, we may use a secant predictor for which two initial solutions
are required. As illustrated in figure 3.2 (a), the direction for the predictor step is
simply found by linear extrapolation from two previous solutions, say zg_1 and xj.
The predictor step is thus given by

T — X1 -

Tpred = Tk + (39)

lzk — zr-1]]2
——_—

1l
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where for computational reasons we apply a normalized secant step of a chosen length
d. If we denote the converged solution by zx4+1 and require that the corrector step
should be taken in a hyperplane orthogonal to the predictor step as illustrated in
figure 3.2 (b) the following equation applies

77T (mpred - Ik-}-l) =0 (310)

If we return to the original model description, constituted by variables z and the

n = Xk - Xk
¥ X ],
X
X
Xo X1 __.- Corrector
Xpred
Xpred
Secant predictor = x; +
p 1 n Secant predictor = X, + 1
Continuation Parameter, \ Continuation Parameter, A

(a) (b)

Figure 3.2: Continuation using secant predictor (a) and orthogonal corrector (b)

continuation parameter A, we note that if we augment the system of equations (3.5)
with the equation giving the direction for the corrector step (3.10), we in fact have
a square system to be solved by any of the previously mentioned methods. However,
the perhaps most important feature is that by using a scheme such as Broyden’s
method, we may use a rank one update of the Jacobian instead of recomputing it
for each consecutive continuation point. Furthermore, since the proposed method
avoids computations of the null and row spaces, the computational effort is reduced
considerably. The continuation method thus reduces to that of applying Broyden’s
method successively to the following system

f(2) :{ nT(jfpfj_i) }:o, &=z,

in which the initial direction is defined according to either increasing or decreasing
values of A.

However, due to potential convergence problems, one needs to provide criteria
for when the Jacobian matrix (J = 3f/3:&) should be updated. In appendix A we
discuss briefly a procedure for updating J based on a Broyden updates and a sim-
ple back-tracking algorithm, for which J is recomputed if the norm of f(z) is not
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reduced after a certain number of back trackings. We also demonstrate that using
Broyden updates may actually degrade numerical performance, compared to omit-
ting the Broyden updates and simply use a constant Jacobian during continuation.
However, our experience is that there are few general guidelines regarding the optimal
approach on how to update the Jacobian during path following.

So far we have only considered continuation in one dimension, but we may in fact
do continuation in any subset of the parameter space, 1.e. hyperspace.

3.2.3 Parametric Continuation in Hyperspace

The method to be described here, is an extension of a method previously described in
a work by Morud (1995). We first illustrate the method by considering the simplest
case of a system with two degrees of freedom, say Ay and A;. Our objective is thus
to compute all solutions to the system within a prescribed region of A; and Ay. The
solution manifold will thus in this case consist of a two dimensional family of solutions,
l.e. a two-dimensional solution surface. One way of computing this surface is to
consider one primary continuation parameter, say A1, and one secondary parameter.

Since we now consider an under-determined system with two degrees of freedom,
we need two additional equations in order to obtain a nonsingular solution. From the
previous section we recall that requiring orthogonal search directions for the predictor
and corrector step yields one additional specification (equation). The choice of this
additional specification is almost arbitrary, but we may for instance choose a certain
ratio between the two continuation variables, e.g.

A2 =A%+ 6 (A —AY) (3.11)

where A9 and AJ are initial solutions, and ¢ is the ratio between A; and A;. We then
repeat the continuation for a set of ¢, each time starting at the initial solution zy. We
then trace a set of “rays” in the parameter space, and the two-dimensional surface
f(z, A1, Ag) is finally spanned by interpolation between the rays for the desired range
of ¢.

Wee see that this procedure may easily be generalized to continuation in any
hyperspace, simply by adding equations for the relation between the primary and the
set of secondary continuation parameters. For the simultaneous solution procedure
presented in the last section, the task is thus to trace the solution path for the following
problem by continuation within a prescribed region of the parameters A;

f(z)
77T0(i‘pred - fO) o
f(&) = A2=A2+</f1(A1—A1) =0, =[x\ | A] (3.12)

An =A%+ bno1 (An1 — A_4)

The ratios ¢; may be set arbitrarily, or one may for simplicity use the same value for
all additional specifications. At each continuation step we may then use for example
Broyden’s method to solve the square system of equations in (3.12), which allows
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us to use Broyden updates of the Jacobian for successive continuation points. The
procedure is then repeated for a set of angles ¢, giving a solution manifold in the
n — dimensional parameter space. Having addressed the use of continuation methods
for exploring solutions in parameter space, we demonstrate in the next section how
such methods may be embedded in (steady state) optimization schemes.

3.3 Using Continuation Methods for Optimization

The motivation for using continuation methods in steady state optimization, is that
one often faces steady state models that are highly non-linear and wl-conditioned.
In such cases the task of finding even an initial, and possibly sub—optimal solution,
may be very difficult. Thus it may be useful to approach the optimum in a step-
wise procedure, starting from an initial solution and at each successive point utilize
information from the previous solution to define the search directions. The method
we discuss here is due to an unpublished work of Morud (1996), and may be consid-
ered a special case of the more general class of gradient projection methods (see e.g.
Luenberger (1984)). Before discussing the method in detail we comment on two im-
portant aspects. Firstly we stress that the method proposed here in general requires
a feasible starting point to avoid convergence problems, i.e. a steady state solution
of the system of NAE’s. Secondly we note that all (intermediate) solutions on the
path towards the optimum are feasible, so that the algorithm falls within the class
of primal methods (e.g Luenberger (1984)). We thus avoid problems of for instance
negative mole fractions, which is a common source of numerical failure when using
thermodynamics that uses logarithmic functions.

For the steady state optimization problem we thus consider a model at steady
state given by a system of NAE’s

g(z,y,u) =0 (3.13)

where x are the states, y the outputs and u a set of variables which we are free to
specify, i.e. control variables (inputs) and system parameters. Our task is now to
minimize some objective function ® with respect to the input variables u. Using
mathematical formulation, we thus pose the optimization problem as

min®;(z,y, u) (3.14)

subject to the constraints given by the process model (3.13) and set points for the
outputs. Since a subset of the manipulated variables are used to control the outputs
y, we may reformulate the problem as

1’n)\in<1>2(;13,y5,)\) (3.15)

where y; are the set points and A the set of parameters left for optimization purposes.

The rationale behind the proposed method is to project the gradient onto the
working surface in order to define the search direction towards the optimum. By
recalling the discussion from section 2.2, in which we used search directions in the
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Figure 3.3: Path following in optimization by continuation

null and row space, we see that there is ample scope for using gradient projection
methods in a continuation scheme. For ill-conditioned problems, where convergence
problems are often encountered, it is profitable to look for search directions, so that
movements in this direction impose relatively small changes in g(z,y, u). One such
direction is the nullspace of the Jacobian, and we thus seek a projection of the gradient
V® onto this subspace. If A denotes a basis for the nullspace of the Jacobian, we
know from linear algebra (Strang 1988) that a least squares approximation to this
problem is given by orthogonal projection, which yields

V&pr0; =N (NTN) T NV (3.16)

An illustration of the proposed scheme is given in figure 3.3. If we furthermore choose
an orthonormal basis for A/, so that N7 N = I the identity matrix, the predictor step
is thus given by

V®p,o; = e NNTVD (3.17)

where € is the step-length. In the corrector step we may simply apply Newton Raphson
like iterations in the row space as given previously by (3.8) to obtain a feasible point.

3.3.1 Active Set Approach for Inequality Constraints

We have now presented a procedure which embeds optimization in a continuation
scheme, in order to optimize an objective function subject to a steady state model
and a set of equality constraints. If we also include inequality constraints, some mod-
ifications must be made in the continuation procedure. The underlying principles of
the method used here are similar to the class active set methods (see e.g. Luenberger
(1984)).

Since we consider only small steps, we may allow ourselves to neglect the inequal-
ity constraints in the predictor step. Hence the predictor is taken in the nullspace
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Figure 3.4: Adding constraint by active set approach

of the Jacobian corresponding only to the steady state model f(z, ) (equality con-
straints). In the corrector steps we then for each iteration check against the active
set of constraints, so that we may discard any inactive constraints and include only
the constraints that are active during the iterations. We note that the active set of
course always includes the steady state model constituted of mass and heat balances,
thermodynamics etc. In figure 3.4 we illustrate the details of the method by display-
ing a continuation path towards an optimum. For the first few steps we see that the
inequalities are inactive, thus we need only consider the constraints represented by
the steady state model g(z, ys, A) when computing the search directions. However, as
the first predictor step takes the solution outside the feasible region, the inequality
constraint(s) h(z,ys, A) becomes active and the feasible solution is recovered in the
corrector step. The path to the optimum is then traversed along the intersection of
the constrained surfaces.

In the next section we return to the issue of exploring solutions in parameter space
using a tear and grid approach.

3.4 Exploit Structure Using Tear and Grid Method

In the previous chapter we outlined the general features of the tear and grid method,
which was used to obtain initial solutions for a system of NAE’s. We now extend
the scope for using this method, and demonstrate that it may also prove useful for
exploring solutions in parameter space. Thus, if the system of equations is non square,
one needs to specify either a parameter or a variable for each degree of freedom (DOF)
in order to provide nonsingular initial solutions. However, using the grid approach one
may instead make a grid in the parameters or a convenient subset of the variables, and
solve the square set of equations at each grid point. Hence by assigning “tear” (grid)
variables corresponding to the number of DOF’s, one may solve an under-determined
set of equations to obtain (all) solutions in the parameter space.
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By making a proper choice of grid variables and appropriate algebraic manipula-
tions of the model equations, one may in some cases derive ezplicit solution schemes.
This in case eliminates the need for time consuming iterative calculations, which typ-
ically involves Newton-Raphson like schemes. However, one central issue regarding
explicit solution schemes needs some elaboration. If we want to obtain all solutions
for the chosen set of grid variables, it is sufficient that the remaining system of equa-
tions yield unique solutions for the non-teared variables. One situation for which
this condition is satisfied, is the special case where the non-teared functions yield
a linear subset. However, non—uniqueness often occurs if we consider for example
strongly coupled or highly nonlinear systems, where complex behavior such as steady
state multiplicity or isolas is often encountered. We emphasize that the tear and
grid method may be used for any number of tear variables, although it is difficult to
visualize the solutions when more than two tear variables are needed. It is however
still possible to locate the solutions (numerically) by interpolation.

The rationale behind the method was described in the previous chapter. The
basic features are thus standard methods such as partitioning, precedence ordering
and tearing. The details of the method are conveniently described by considering
the example of a reactive distillation column, introduced in the previous chapter.
The motivation for choosing this example is twofold. Firstly we find that the system
may be completely decomposed, which allows for ezplicit solutions of the remaining
equations. Secondly, we have that solution surfaces may be conveniently visualized
in 3 dimensional plots since there are only two DOF’s.

The detailed model is given in the section for numerical results, and consists of 7
variables in 5 equations, which we for simplicity denote by z1-z7 and fi1—f5. We may
display the occurrence (incidence) matrix to expose the underlying structure of the
equations, . Each row in the matrix corresponds to an equation f; and each column
to a variable z;. Entries appearing as 1’s in row ¢ and column j thus indicate that
variable z; appears explicitly in equation f;.

I rg X3 X4 X5 Xg X7
o111 11
f2 11 11 1
fs 1 1 1 (3.18)
fa1 1 1
s 11 1 1

When using the tear and grid method we aim at decomposing the system of NAE’s
into a subset which may allow for an ezplicit solution scheme. This is guaranteed
if a decomposition leads to a linear subset. By inspection of (3.18) we find that a
convenient set of tear variables is 1 (z4) and 22 (zp). The reduced occurrence
matrix now becomes
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r3 X4 Ty Tg I7 s Te T7
fa 1 1 1 3.19) fo 1 1
fr @ (3.1¢ fs 1o
Ja )
fs 1 1 1 1

As indicated by (3.19) the chosen assignment allows in this case for sequential
solutions of z3 from f3 and z4 from f4. By a thorough analysis of the model equations
we also find that the solutions may be obtained explicitly. The remaining reduced
system in (3.20), consisting of variables x5, zs, #7 and equations fi, fa, f5, apparently
needs to be solved iteratively. However, by inspection find that all variables appear
linearly in the remaining equations, assuring unique relations between the variables.
Simple algebraic manipulations thus yields a complete decomposition, hence costly
iterative schemes are avoided. The task of obtaining vital information about the form
of the equations, in order to determine the solution strategy (e.g. iterative or explicit),
is not an issue which is easily dealt with. Some steps towards this have been taken
by Ramirez (1989), although this problem by far is solved.

3.5 Numerical Results

We present in this section numerical results obtained with the proposed methods.
The reactive distillation example is motivated also by the desire to find out whether
multiple solutions exist for simple one stage columns. We show that multiplicity does
arise, and the solutions are easily obtained using the tear and grid method.

Example 1 : Complex Distillation Arrangements.

The example column () considered here was introduced by (Christiansen et al. 1997)
and will be discussed in a later chapter, hence detailed information regarding the
model is not given here. However, we mention that the task is to separate a four
component mixture into product streams enriched in the respective constituents. The
model consists of 213 variables and 6 parameters (DOFs) A, out of which 4 DOF’s are
used to fix (control) the purities of the product streams. Since we then have two 2
DOFs left, we may compute the solution manifold by continuation in two dimensions
as described previously. In figure 3.5 we give results from numerical simulations in
which we display solutions for a range of the parameter values in (A1, A2) space.
Figure 3.5 (a) illustrates the rays corresponding to different angles ¢; as defined in
equation (3.11). In figure 3.5 (b) we show the same rays in 3 dimensional space for
some variable X. As previously mentioned, the solution manifold is in this case a
two dimensional surface. Such a surface is then computed using some interpolation
method, typically based on minimizing the mean square error between the vectors.
Figure 3.6 displays the surface corresponding to figure 3.5 (b).

Example 2 : Reactive Distillation Column.
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Figure 3.5: Two parameter continuation where Figure (a) illustrates “rays” corresponding
to different ratios between the continuation parameters A, and A;. Figure (b) shows the
corresponding solutions for the model parameter X
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Figure 3.6: Solution surface computed by interpolation displaying X as a function of A; and

A2

The model for the column was given in the last chapter, but for simplicity we rewrite
the model equations here where we have used that ¢ = 1 — 24 — xp and introduced
the Damkohler number Da = k¢ H/F. The resulting model is given by

TATB

FZA—(V—L)yA—(F+L—V)mA+FDa<1_IA_xB_ Kea

) =0 (3.21)

Fap— (V= Ly = (F+ L—V)ap ++FDa (1 -2, —ap - xz—‘”f) —0 (3.22)
Q1T A

- =0 (3.23

ya (an = Dza+ (as—1)zp+1 ( )

v — L =0 (3.24)

(a1 —Dza+ (a2 —1zp+1
L ((MA — MC)yA + (MB — MC)yB + Mc) — Ly =0 (325)

When specifying the feed conditions, D and V' we are left with two degrees of freedom
since we are free to vary the mass reflux L,, and the Damkohler number Da. In order
to explore solutions in parameter space we are allowed to specify any two variables
or parameters and solve the remaining square system of equations. In order to find
all solutions it is required that the remaining equations are unique in the assigned
variables. The under-determined system of NAE’s thus consist of 7 variables and
parameters and 5 non-linear functions. The variables are z4,2p,ya,yp, L, Da, Ly,
which we denote z1—z7. Process data for the reactive distillation example was given
in table 2.1 in chapter 1. A point of interest, besides using the example to validate
the numerical methods, is to examine whether multiple steady states exist for the
simple example model. The example is motivated by a work on multiplicities in ideal
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binary ordinary distillation columns by Jacobsen and Skogestad (1991).

As discussed previously, by making an appropriate grid of 1 and x5, we are thus
able to compute the whole solution space for all combinations of z; and z3. Solutions
computed at some points in the grid may off course be infeasible, for example negative
flows or mole fractions, but this is easily checked by back calculations. In figure 3.7 a)
we show a 3 dimensional solution surface in (y2, L, Ly,) space and in b) we illustrate
shapes of typical contours for constant L,,. We note that the branching diagrams in
fact display multiple solutions for given L,,.

Example 3 : Constrained optimization.

We here illustrate the features of the proposed optimization procedure in terms of
a simple mathematical example. The example is chosen for convenience so as to
illustrate that the procedure adequately deals with equality and inequality constraints.
The optimization problem we consider is given by

Minimize  f(z,y) =a2?+3y°
Subject to  h(z,y) =025—2zy=0
gi(z)  =lz[>1
g2(y) =yl >1

(3.26)

The results from the optimization is shown in figure 3.8, where the stapled lines il-
lustrate different contours for the objective function, and the solid line the equality
constraint. The circles show the continuation path towards the optimum, starting
from two feasible initial points of (z,y) = {(—.25,—1),(0.25,1)} from which the op-
timum is located in a finite number of steps. The optimum is found to be ¢ = 0.5
corresponding to z = y = £0.5, which is easily confirmed analytically (e.g. substitute
y from h(z,y) and solve for the first order conditions). We also note that by starting
from a feasible initial point, none of the converged solutions lie outside the feasible
region.

3.6 Discussion and Conclusions

In this paper we have considered two methods for exploring solutions in the pa-
rameter space of a system of nonlinear algebraic equations (NAE’s), i.e. parameter
continuation schemes and a tear and grid method. We proposed two implementa-
tions of a parameter continuation algorithm, where one is based on a conventional
predictor-corrector scheme. The other implementation, which is found to be much
more efficient, is based on solving an augmented system of equations using Broyden’s
method for each continuation step. The increased efficiency owes to using rank one
updates (Broyden) of the Jacobian, so that expensive re—evaluations of this matrix is
avoided. We also demonstrated how one may embed steady state optimization within
such a continuation scheme. We also extended the scope of a previously proposed
tear and grid method, so as to solve also under-determined (non-square) NAE’s.

A common feature of the methods presented here is that we at large put emphasis
on simplicity, so as to make it easy to implement them in a high level programming
language. Among the main advantages with the continuation schemes, we firstly
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Figure 3.8: Constrained optimization by continuation

recognize that one always stays close to a feasible solution. This is particularly favor-
able for ill-conditioned processes, where convergence problems are often encountered.
Secondly, the methods are favored by small extent of book keeping. Since we use an
augmented vector, which includes both (state) variables and parameters, we do not
distinguish between those in the solution procedure. This again facilitates ease of
implementation.

Finally we should comment some on the important aspect of computational com-
plexity. As explained in the introduction of chapter 2, methods for finding all solutions
to a set of nonlinear equations tend to increase exponentially with the problem size,
and this is the case for the tear and grid method as well as simultaneous continuation
in many variables. However, many problems arising in practice are not that large,
and we have nevertheless found these methods to be very useful for many practical
problems in conceptual design of distillation systems. In this chapter we successfully
applied the methods to a few example problems of different complexity.

Nomenclature

Note that we give here only the nomenclature used in the main body of the paper.
For the examples we have defined the variables and parameters explicitly.
J — Jacobian matrix
f; — Equation number i
Da — Damkohler number
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F — Feed flowrate [kmol/min]
K®? — Equilibrium constant
L — Reflux flowrate [kmol/min]
M; — Molar weight of component ¢ [kg/kmol]
u — Vector of inputs or control variables
V - Vapor flow rate [kmol/min]
x — Vector of (state) variables
Z — Augmented vector of variables and parameters
xz; — Variable number 2
x4 B,c — Liquid mole fraction of components A, B and C
y — Vector of output variables
y4,Bc — Vapor mole fraction of components A, B and C
z; — Mole fraction of component ¢ in feed
Greek letters
a; — Relative volatility of components i
d — Step in variable space
€ — Step size
€*" — Tolerance for norm
n — Normalized secant step
A — Vector of parameters
A; — Parameter number 1
V — Gradient of objective function
0 — Derivatives
® — Objective function to be minimized
¢; — Ratio between continuation parameters
¢ — Vector of variables in rotated variable space
Subscripts
A, B,C' — Chemical species A, B and C
pred — Predictor step
Proj — Orthogonal projection
s — Set-point
w — Mass flow in (kg/min)
Calligraphic
N — Basis for nullspace
R™ — Vector space of dimension m
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Appendix A Practical Issues on Implementation

We here discuss some practical issues related to efficient implementation of the
numerical methods presented in this chapter. For a comprehensive review on compu-
tational issues we refer to any standard book on numerical methods, e.g. Press et al.
(1992). We first address the use of back-tracking for iterative schemes, after which
we discuss some aspects related to updates of the Jacobian matrix.
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A.1 Back tracking

Conventional Newton Raphson schemes commonly display poor convergence proper-
ties if appropriate measures are not taken during the course of iteration. A simple,
yet reliable and efficient remedy for avoiding convergence problems, is to apply back
tracking (Press et al. 1992). Back tracking is used to ensure that the norm of the
residuals decrease at each step during the iterations. We thus consider a scheme of
successive iterations given by

Ar=—cJ ' f (3.27)

where € is the step-size, f the vector of residuals and J the Jacobian matrix. If we
consider small steps ¢, we may use a linear approximation for the reduction in the
squared norm of f, which yields

Allflla=A T f) ~2f" foAw =2f" T Az (3.28)
By substituting for Az from (3.27) we finally obtain
Al|flls m =2¢fT f = =2¢€|f|l2 < 0 (3.29)

This demonstrates that ||f||2 decreases provided we choose a sufficiently small itera-
tion step. Hence if the norm increases during the course of iteration, we simply use
backtracking to reduce € until the norm decreases. Reducing € is a simple strategy,
and a common approach is instead to make a line search to actually minimize || f]|2
in the chosen search direction. In our method we simply half ¢ until the norm is
reduced, again to facilitate simple implementation. We may note that Press et al.
(1992) suggests to always try a full Newton step first.

A.2 Updating the Jacobian matrix

Evaluating the Jacobian matrix is commonly one of the most expensive opera-
tions during numerical simulations. Since analytical solutions are difficult to de-
rive, estimates are normally computed using finite differences. In order to improve
the approximations of the Jacobian, various schemes are proposed in the literature.
Here we consider a particular case, namely rank one updates using Broyden’s method
(Broyden 1965). We will not go into details regarding implementation issues, for
which we refer to any standard textbook on numerical methods.

When using Broyden’s method to obtain a single root of a system of NAE’s, there
is an underlying assumption of orthogonality between the prediction error and the
current step. However, in the continuation scheme described in section 3.2.2 we use
Broyden updates when traversing from one solution to the next on the continuation
path. Hence, the orthogonality assumption may or may not apply. It is perforce
difficult to judge how this will affect the approximate Jacobian, and thus the impact
on numerical efficiency. In figure 3.9 we illustrate the required CPU-time along
the continuation path for the complex distillation example discussed in the previous
section. The solid line corresponds to the CPU-time when we use Broyden updates of
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Figure 3.9: CPU time for continuation using Broyden’s method

J, whereas the dashed line corresponds to using a constant J. The peaks arise due to
recomputing the Jacobian, which we require if the norm is not reduced after 4 attempts
of back—tracking. The figure quite surprisingly illustrates that using the Broyden
update may make the prediction worse than keeping J constant, in the sense that
re-computation of .J is required more frequently. The total CPU time increases from
160 to 270 CPU’s when using the Broyden update. However, we strongly emphasize
that this result by no means must be taken as a general confirmation. We also found
cases where the situation was reversed. We pose the question of analyzing under what
circumstances Broyden updates may or may not be used for continuation methods,
as an interesting problem for future works on numerical methods.
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Abstract

In this paper we propose an explicit shortcut method to calculate the minimum
energy requirements for sequences of regular distillation columns. The theoret-
ical base for the procedure draws on previous results from the literature, but
distinguishes itself from these methods by using physical insight for additional
simplifying assumptions. The major contribution from the proposed method
is besides its simplicity, the usefulness for screening purposes. The method
may be used for analytical purposes to determine for what mixtures complex
columns such as prefractionator arrangements should offer the largest savings
compared to conventional arrangements. Furthermore we discuss optimality
conditions for different conventional arrangements in terms of feed composi-
tions and relative volatilities. In particular we discuss the importance of using
partial condensers for upstream columns, since total condensers and thus lig-
uid feeds to downstream columns seems to be taken for granted in many works
in the literature.
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4.1 Introduction

Due to the importance of energy optimizations, an exhaustive amount of works has
evolved in the literature during the last decades on simple methods to calculate the
minimum reflux and/or boilup for sequences of regular distillation columns. Some
works have also extended the analysis to complex columns such as sidestream columns,
prefractionator arrangements and the Petlyuk column. In order to avoid extensive
literature reviews, we simply refer to the comprehensive review article on minimum
energy calculations by Kohler et al. (1995).

Most of the works in the literature are to some extent based on Underwood’s
method, which is an exact and reliable method for solving the stage-by-stage mate-
rial balance equations that results upon assuming constant relative volatilities and
constant molar flows. Another important advantage with this method is that one
can easily obtain solutions for the limiting cases with an infinite number of stages
(i.e. minimum reflux) and with infinite refluxes (i.e. minimum number of stages).
However, when using this class of methods one must in the general case still resort to
numerical computations since the solutions can only be found iteratively.

There are two important shortcomings with Underwood’s method. Firstly it does
not apply to many industrial (real) mixtures with complex thermodynamics, but for
this case we may of course find the exact solutions numerically. Secondly, and more
importantly for our purposes, Underwood’s method is not suited to obtain qualitative
information in the form of analytical ezplicit equations. Such information is crucial
for obtaining insight into the “optimal” distillation arrangement for the separation
of a particular mixture (feed compositions, relative volatility). Although there are a
few works that address this issue, the results are generally restricted to a certain class
of separation schemes (e.g. direct or indirect splits). In this work we will thus not
elaborate further on the use of Underwood’s method, but instead put emphasis on
simple methods that offers insight in terms of simple analytical and ezplicit equations.
The principal motivation for this work is thus to obtain explicit equations that allows
for a quick paper and pencil analysis to obtain qualitative insight. To validate the
behavior of the real process model one should thereafter turn to rigorous numerical
simulations for which reliable and efficient software is now available. Using the method
proposed 1n this work we in fact find that it provides accurate results in the regions of
the composition space for within which the different conventional arrangements are
optimal, e.g. use direct split for large amounts of light component or indirect split
for large amounts of heavy.

When comparing for instance the performance of Petlyuk or other complex columns
to conventional schemes, the most common choices are the direct and indirect split
schemes. In the literature (e.g. Glinos and Malone (1988) and Douglas (1988)) it
is reported that the direct split requires the lowest energy input for the majority
of separations, i.e. feed compositions and relative volatilities. However, as we will
demonstrate, this is correct only if one considers column sequences where all feeds to
downstream columns are taken as saturated liquid, i.e. total condensers are used for
the overhead (distillate). In the case of indirect split schemes this is clearly undesir-
able if the objective is to minimize the total boilup. Also, since there seems to be a
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general agreement in the literature to use the total vapor requirement as a measure
of the total cost of distillation columns, we here consider the more favorable case
of partial condensation of the distillate flow in the upstream columns. The method
proposed here is a simple analogy to a minimum reflux formula previously proposed
by King (1971). The outline and results of this paper is to some extent analogous
to a previous work by Glinos and Malone (1988). However, the results of Glinos
and Malone (1988) are based on certain approximations using Underwood’s equation.
Although the approach used here draws form the same theoretical foundations, there
is a notable difference in the underlying simplicity, which in our case allows one to
derive explicit equations without having to resort to calculus. For the particular case
when the preferred separation is carried out as the first split, we find that our method
provides useful (and accurate) explicit equations for limiting cases (e.g. mole fraction
of intermediate B — 1). These are cases in which the maximum savings occur for
a (directly coupled) prefractionator relative to the direct and indirect split. Before
proceeding with our analysis, we stress that all expressions derived in this paper are
based on the assumptions of constant molar flows and constant relative volatilities
(i.e. ideal mixtures).

4.2 Analytical Equations for Minimum Boilup

In addition to the class of Underwood methods, there are also other group methods
available in the literature. For binary mixtures King (1971) proposed the following
formula to compute the minimum reflux for a saturated liquid feed

(7),, = e (@)

F aLH—l

where L is the reflux, F' the feed, appg the relative volatility between light () and
heavy (H) component. ¢ denotes the recoveries of each component where superscript
D refers to the distillate and the subscripts to the light (L) and heavy keys (H)
respectively. By a simple mass balance (steady state) around the condenser we thus
obtain the equation for the minimum boilup (Vinn)

D D
v, — SLK ZOLHOHK [ | (4.9)
aLH—l

For the special case of sharp separations, in which the recoveries are close to one,
equation (4.1) becomes

I 1 ,
<F)mzn B QLH — 1 (43)

and equation (4.2) becomes
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The corresponding minimum for the sharp separation of a saturated vapor feed is

V 1
- - 4.5
<F)mm OzLH—l ( O)

These formulas may under certain assumptions apply also to multicomponent mix-
tures, for which King (1971) provides a comprehensive discussion. However for the
multicomponent case, we will show later that (4.2) gives the actual Vj,;, only in the
particular case of what is called the “preferred separation” (Stichlmair 1988).

In a later work Stichlmair (1988) presents a very useful graphical visualization
of Underwood’s method. For the special case of ternary mixtures he shows how
one may derive exact analytical formulas for the conventional direct and indirect
sequence. However, for our purpose, the formulas by Stichlmair (1988) are not as
useful for the direct and indirect splits, since numerical computations are required
in these cases. Recall that our objective i1s to derive ezplicit methods to be used for
screening purposes, and more importantly to indicate for which mixtures the different
sequences are favorable. Still, the significant contribution of Stichlmair (1988) which
has been exploited in the present work, is the analysis of the particular case where
the preferred separation is carried out.

More recently Porter and Momoh (1991) proposed a simple and approximate
method for minimum vapor calculations for sharp separations of a saturated lig-
uid feed. If Rp denotes the ratio between the actual and minimum reflux ratio, the
following equation was proposed to compute V,;, for a mixture of NC' components

LK NC R
= S 4 (z F) _Rr (46)
i=1 =1

aLH—l

distillate term feed term

For sharp separations and binary mixtures, (4.6) is identical to (4.4) if we set Rp = 1.
As shown in the paper, the minimum vapor for a sequence of columns i1s obtained
by summation of equation (4.6) for all columns. However, there are two important
aspects that the authors do not recognize. Firstly, as also stated by King (1971) (which
is not acknowledged by the authors), it is easily shown that the proposed formula (4.6)
always provide an upper bound for V,,;,. Thus, it is in general conservative to include
all components in the “feed term”. Secondly, the authors do not appreciate that for
the indirect sequence, the feed to subsequent columns may be taken as vapor, for which
the “distillate term” in equation (4.6) evaporates. For this reason, this method always
assign an undue penalty to the indirect scheme. Taking these arguments into account,
formula (4.6) will usually provide a rather conservative estimate for the minimum
boilup, which is also confirmed in the textbook by Smith (1995). We therefore propose
an alternative approach based on the approach of King and additional “physical”
insight. We show that this “new” formula in some cases gives a lower bound for the
minimum heat for direct split sequence.
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4.2.1 Approximate Solution - Explicit Equation for V,,;,

What we propose here is a simple extension of the method proposed by King (1971)
to the case of multicomponent separations. In order to do so, we first make the sim-
plifying assumption that for each pseudo-binary mixture we only take into account
the distributing components when computing the minimum boilup. To put this more
clearly, we base our results on the general assumption that any non-distributing com-
ponents in general will not strongly influence the pseudo-binary separation, and may
thus be discarded from the “feed term” in equation (4.6). For any pseudo-binary sep-
aration we thus substitute the feed F' in equation (4.1) with the feed of distributing
components. We here denote the low boiling component by A, and the remaining se-
quence of NC' components are ranked in terms of their volatility. Thus, substituting
the feed term in equation (4.2) by the feed of distributing components, we obtain the
following equation for a single column with a saturated liquid feed

HEK
V. _ ¢€K - OZLH(]S?[K F D 4.7
min = T a1 Z i+ (4.7)
LH i=LK
and similarly for a saturated vapor feed
B p HK
Vi = DK OO N7 (43)
LH i=LK

where superscript B denotes the bottom product and F; refers to the molar feed of
distributing components. Note that for a sharp separation we have for the distillate
flow

LK
D=)"D; (4.9)
i=1
Hence we propose the following explicit formula to calculate V,;,;,, for multicomponent

separations, carried out as a sequence of pseudo-binary splits in NC' — 1 regular
columns

NC-1 HK
Z Pk — OLHOHK E
Vimin = —a 1 Fj + (1 — Qi) D; (410)
i=1 Lo J=LK N
distillate term
feed term

where ¢; 1s introduced to account for the feed quality for each column, i.e. ¢; = 1
for saturated vapor and ¢; = 0 for a saturated liquid. For partly saturated feeds ¢;
is simply given as the vapor fraction. We thus stress that the distillate term is only
to be considered for saturated or partly saturated liquid feeds. For the limiting case
of pure products (¢7, = 1,60, = 0) and a saturated liquid feed, equation (4.10)
becomes

NC-1 HK

Vmin= >_ | > L—}-(l—qi)Di (4.11)

o -1
i=1 \j=rkK “LH
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Hence we have a simple and explicit equation for the boilup which takes as arguments
only the relative volatilities and the feed compositions. As previously mentioned,
the purpose for using this analogy is that it offers a simple means for comparing
the minimum energy inputs for the direct and indirect split schemes with that of a
prefractionator. The latter is of great import since the prefractionator is the first
stage towards utilizing direct coupling of columns, which is the essential feature for
the Petlyuk arrangements.

4.3 Analytical Treatment for Ternary Mixtures

In this section we present a comparative analysis for the direct and indirect schemes
and the prefractionator arrangement based on our proposed method. We emphasize
that the expressions are approximate, and therefore to be used primarily for quali-
tative and screening purposes. To quantify the errors embedded within the method
we provide numerical results in the next section for the errors compared to exact
methods (e.g. Underwood’s method). The objective of this part is thus to compare
these arrangements in terms of total boilup requirements, and also to indicate under
which conditions the different arrangements are favorable.

All the results in this section apply to a saturated liquid feed of components A, B
and C' with relative volatilities given by aa¢, aap and apc. For notational simplicity
we will use A, B and C' to represent the feed rates of the components, i.e. A = Fzy,
B =Fz, and C = Fz¢c where z; is the feed composition.

4.3.1 “Pseudo-binary” method for ternary separations

As shown in Figure 4.1 there are three alternative separations for sharp splits of a
ternary mixture in a single column. Case (i) corresponds to a sharp A/B split, case

A AB AB
ABC ABC ABC
BC BC c
()A/BC (i) AB/BC (iAB/C

Figure 4.1: First column in sharp split sequences for ternary mixtures

(i1) to a sharp A/C split and case (iii) to a sharp B/C split. For saturated liquid feeds
we use the proposed equation (4.11), and obtain the following explicit expressions for
the minimum reboil for the single column

yAIB A+ B

A 4.12
PP (4.12)
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T S YT (4.13)
xaACc —
B

yerie — BrC L 4ip (4.14)
axpc — 1

where ¢2 denotes the fraction of intermediate B in the distillate, i.e. (1—¢5)B in the
bottoms. Note here that for the A/C split, the minimum boilup occurs for a particular
value of ¢5 which is uniquely determined by the so called preferred separation, i.e.

¢D _ ch—l

B (4.15)

xXAC — 1
The preferred separation refers to the energetically favorable split which may be shown
to yield the absolute minimum boilup for a ternary separation in an infinite regular
column. We will elaborate on this issue later. For saturated vapor feeds the distillate
terms are omitted, and we thus obtain

a/B _ A+B

. 4.1
F
vAe = — (4.17)
aAC —
B+C
yBle _ 2HC (4.18)
ch—l

In Figure 4.2 we show the mass balance lines which indicates the compositions of the
top and bottoms products for the three cases. Here small letters b and d refer to the

18 Apirect
AR g Equilibrium line
0.8 \\\ Preferred
07 \‘\ dlndirect
0.6 \
ZA 05 -
A | / Preferred
04 F Separation
0.3
02 |\ Direct split
Indire|<_:t i/
split bDirect

b0 o2 0.4 06 0.8 1
Indirect ™ Preferred

Zg ’
Figure 4.2: Mass balance lines for sharp splits of a ternary mixture in a single column

bottoms and distillate products respectively. We ask the reader to note that for the
preferred separation, the distillation lines and the equilibrium lines are colinear in the
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feed point. This is used by Stichlmair (1988) to derive explicit equations for the mini-
mum boilup. When separating a ternary mixture into its constituents, the three cases
above corresponds to the first stage in the separation sequences commonly referred
to as the direct split (A/BC'), the indirect split (AB/C) and the preferred separation
(AB/BC). We now demonstrate how to derive the approximate expressions for Vi,in
for these three separations.

4.3.2 Direct split sequence

If we denote the consecutive columns in the direct split sequence by C'1 and C?2 as
shown in figure 4.3 and assume sharp separations in each column, we obtain for a
saturated liquid feed (F = 1)

Vel A+B Bl + A (4.19)
XAB —
B
yez — BFC g (4.20)
min ape — 1

Hence the total boilup requirement becomes

A+ B B
Vb = +r +C +A+B (4.21)
asp—1 apc—1

where superscript D denotes the direct split. If we compare this result with the

ABC

Figure 4.3: Direct split sequence for ternary separations

method proposed by Porter and Momoh (1991), we find that there is a difference equal
to C/(aap — 1). This additional term arise since the authors take into account all
components in the feed term, whereas we only consider the distributing components.

Among other approximate formulas proposed in the literature, we may compare
our formula to the one given by Glinos and Malone (1984) which gives

A+ B

c
vE, = + A+B, f=1+
Flaan—1 " Flasc—1) /

4.22
F-100 ( )



4.3 Analytical Treatment for Ternary Mixtures 63

According to the authors this expression is generally less than 4% in error. Taking
the difference between equations (4.21) and (4.22) we obtain

p _ (U=f)(A+B) ¢
AVmin = faap —1) flaac—1)

Since f is close to one (fmaz = 1 for B = 1), we find that the difference is small
when C is small and/or apgc is large. Conversely, if C' is large the difference becomes
large. However we also emphasize that if C' is large one should not use the direct split
scheme, and we may therefore use our formula at least for qualitative purposes due
to 1ts simplicity.

An important finding is that the minimum boilup given by (4.21) in fact yields a
lower bound for the actual V2. . Hence, it generally yields an optimistic prediction
of Vinin for any feed mixture. The fact that it yields a lower bound is explained by
considering the underlying assumptions of our simplified method. Our assumption
is that the presence of any high boiling component should not be considered for the
separation in the first column, in which pure A is withdrawn. For small amounts of
the high boiler C' and a large aap relative to ape, this is essentially correct, since
the small amounts of C' in the vapor will not affect the separation of A/B. However,
as the amount of C' increases and asp decreases relative to ape, the presence of

(4.23)

heavy component C' in both vapor and liquid phase will become more pronounced,
and will make the A/B separation more difficult. To achieve the desired sharp splits
this means that both reflux and boilup needs to be increased, hence (4.21) yields a
lower bound. We elaborate on this issue later, where we also provide a “graphical
interpretation” to account for this lower bound.

4.3.3 Indirect split sequence

For the indirect split scheme one should distinguish between two cases depending on
the feed quality for the second column shown in figure 4.4. We first consider the case

ABC

Figure 4.4: Indirect split sequence for ternary separations

of a total condenser, in which case the feed to column C2 is saturated liquid. The
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minimum boilup for the first column is

B
yer - BrC L ip (4.24)

This approximate expression applies to both a partial and a total condenser.

(i) Total condenser.

If we use a total condenser which gives a saturated liquid feed to C'2, we must include
the distillate term also for column C2, so that we find

Ve _ A+ B

min

A 4.25
17 (4.25)
Adding the boilups in (4.24) and (4.25) for the two columns we obtain for the indirect
sequence

A+ B B+C

Vi = + +24+ B (4.26)
asp—1 apc—1

Compared to the direct scheme, our simplified analysis thus suggest that the indirect
scheme with a total condenser “always” requires a larger boilup. This is obviously
not correct, and the “error” is due to the assumptions of distributing components.
For the indirect split we acknowledge that equation (4.26) should be modified so as
to take into account the influence of non—distributing components. Before going into
detailed discussions on this matter, we first consider the more preferable case in which
we use a partial condenser for the distillate from C'1, 1.e. use a vapor feed to C2.

(ii) Partial condenser. If we on the other hand use a partial condenser, we may

eliminate the distillate term for C'2 and thus obtain a lower value for anfn
A+ B
yer — AF5 (4.27)
xXAB — 1

The total boilup requirement thus becomes

A+ B B+C
vi.o = T2 PEC A4 (4.28)
asp—1 apc—1

which in fact is the same equation as for the direct sequence given by (4.21). Com-
pared to the method of Porter and Momoh (1991), there is a difference equal to the
terms A/(apc — 1) + A. This deviation is again due to the authors including all
components in the “feed term” (A/(apc — 1)) and not considering vapor feed (A).
The approximate expression proposed by Glinos and Malone (1984) for the indirect
split with a partial condenser is

~ A B+C
in = asc—1 apc—1) 1+ z42¢

VI +A+B (4.29)
By inspection of equations (4.28) and (4.29) we find that the difference is small if z¢
and the ratio aap/apc are large, which as we will show are cases where the indirect

split is favorable.
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By comparing equations (4.28) and (4.21) one may conclude from our simplistic
analysis that the direct and indirect scheme with partial condenser should require
the same boilup. However, as stated in the previous section, there is a crucial aspect
which explains why the indirect scheme in many cases will require a lower boilup
than that given by equation (4.28). We present the argument in a stepwise manner,
in order to clarify the impact caused by the presence of non—key components.

(T) Heavy non—key in liquid feed

If we increase the fraction of heavy non-key in the feed, this will in general
have no substantial isolated effect on the separation, except that the temper-
ature levels must increase. The latter assumes that a for the key components
remains constant (independent of temperature). This corresponds to increasing
the amount of C' in the feed for the direct split scheme.

(I) Light non—key in vapor feed

If we instead consider an increase in the fraction of light non-key in a vapor feed,
we also find that the effect is small on the separation of the key components.
This simply corresponds to decreasing the pressure in the top section of the
column, the same as increasing the fraction of A in the vapor feed for the
indirect split.

However, there is one situation in which the presence of non—keys have a large impact;
(IIT) Light non—key in liguid feed

The effect of increasing the fraction of light non—key relative to the key compo-
nents, will in this case have two main effects

(a) A larger fraction of the light non—key traverses to the top section of the
column. This in itself has no effect on the separation, but to keep the
vapor flow of the key components in the top section unchanged we would
need to increase the boilup relative to the binary separation.

(b) However, this increase of boilup would benefit the separation in the bottom
section, so that the overall effect is not easy to predict.

As aremark we note that a similar large effect as in case (III) above would be expected
for a heavy non-key in a wvapor feed, but this case does not occur for the separations
studied in this paper since we consider saturated liquid feeds to the first column. To
compensate in the approximate expressions, we may propose the following formula
for the indirect sequence;

B+C

VEh = ———4+B+pA, pelo,1] (4.30)
apc —1

and
A+ B B+C

vi o = + + B+ pA, pe[0,1] (4.31)
asp—1 apc—1
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It is not straightforward to determine under what conditions one should use the lower
bound corresponding to 8 = 0, or the upper bound of 7 = 1. However, if we use § = 0,
equation (4.31) will always give a lower bound for V1. for the indirect split. This
is however an optimistic prediction, and will provide relatively large deviations for
instance when A is large. For consistency we will however use § = 1 in the following

analysis.

4.3.4 Error analysis for direct and indirect sequence

Since the proposed method is based on certain simplifying assumptions regarding the
effect of non-distributing components, it is of great import to provide measures of
the degree of accuracy. For the ternary case it is in fact relatively straightforward to
give a graphical visualization of the relative errors compared to the exact solutions
(Underwood). One way of doing this is to consider the distillation lines for the
separation of the light key (direct split) in the first “ternary” column. The argument
is of course similar for the indirect split. We also emphasize that it is only the
ternary separation that is of interest, since the proposed method is exact in the
binary case. The issue of distillation paths is conveniently described in the literature
(e.g. Stichlmair (1988)), so we give here only a brief overview. In Figure 4.5 we give a
typical representation of the separation paths for the direct split. In order to use the

d
1

—O— Liquid stage compositions

Pinch point

0 0.2 0.4 0.6 0.8 1

Figure 4.5: Separation of light component from a ternary mixture at minimum reflux

exact methods for computing the minimum reboil, based on Underwood’s method
or the approach used by King (1971) or Stichlmair (1988), one needs to compute
the mapping of the pinch point composition zp on the AB apex. Note that the
pinch point actually occurs at the feed point as illustrated in Figure 4.5, whereas
zp denotes the “mapped” pinch composition onto the binary AB. Finding zp for
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ternary mixtures requires the solution of a quadratic equation, which does not serve
our purpose since we aim for an ezplicit analytic equation. Hence, in order to obtain
such explicit answers to be used for qualitative and analytical purposes (we again
stress this issue which is the focal point of our work), there are in fact two ways to
obtain an approximation of this pinch composition. The alternative proposed in this
work 1s to take the pseudo-binary composition along the secant from C' = 1 through
the feed point zp. This corresponds to approximating zp by

ZA

o4 4.32
zZA t+ 2B ( )

h =
where z; denotes the feed compositions. Alternatively we may take the composition
along the line of constant z4, for which zg = 1 — z4. These cases are illustrated in
Figure 4.6. The real pinch point zp lies between the two approximate compositions.
Using this analogy we may show that our method always give a lower bound for the
minimum reboil for the direct split.

From the literature (Stichlmair 1988) we know that the minimum reflux ratio
R = L/D may be taken as the ratio of the relative lengths of the vectors given by

Tpi — YFi
Yri — 2

Rmin = (4.33)
where xp; denotes the distillate composition, whereas z; and yp; are feed compositions
(related by the equilibrium) of component i. Note that the ratio in equation (4.33) is
the same for ternary and binary mixtures, and applies to each component :. However,
equation (4.33) only applies to the particular case where the distillation and the
equilibrium lines are colinear at the feed (pinch) point, i.e. for binary separations and
the preferred separation. Thus when separating either the low boiler (direct split)
or the high boiler (indirect), the pinch point will move away from the feed point. In
these cases one cannot use equation (4.33), and instead one must compute the real
pinch composition zp. For the direct split, the minimum reflux R2. can then be
determined from

1
D .

Rmin - (aAB — 1) zp (434)
Since we aim for explicit equations we thus use the approximation for the pinch
composition z% instead of the real zp. As demonstrated in Figure 4.6 2% is in fact
always closer to the distillate composition (higher) than the real zp. Our method
will thus always yield a lower bound for the minimum reboil for the direct split,
since using z% involves dividing by a larger number in equation (4.34). Conversely,
an “upper bound” is obtained if we instead take the pinch composition along the
constant % = A. We note that the relative error will increase as we approach the
vertex C' = 1, and in fact will become negligible as we approach the vertex B = 1.
The error also depends on the relative volatilities since they determine the direction of
the distillation and equilibrium vectors, i.e. the “angle” between the lines extending
from the feed point towards the real pinch xzp and the pseudo binary composition
x% respectively. In general, we thus find that the error also increases with decreasing

XAB.
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0.0} —— Distillation path

Figure 4.6: Illustration of minimum reflux computations for direct split

4.3.5 3—column Prefractionator Arrangement

The idea of using a prefractionator is to reduce the exergy losses caused by process
irreversibilities, in the sense that it allows for potentially reversible splits (e.g. Petlyuk
et al. (1965), King (1971)). We first consider the simplest case, in which we need three
regular columns for the ternary separation as demonstrated in figure 4.7. In order
to use our method we also need to specify the split fraction ¢2 of the intermediate
component B which is taken over the top (distillate). Note here that the light (A) and
heavy (C') keys are not adjacent in volatilities, so that we must include the non-key
(B) in the “feed term”. Assuming sharp separations we obtain from (4.2)

F
vel = T L A44DB (4.35)
aAc—l
A+ ¢2B
yez _ A+9pB (4.36)
CYAB—l
1-éP)YB+C
Viin = (1-¢5)B+C +(1-93)B (4.37)
ch—l

where (4.36) and (4.37) are exact, whereas (4.35) is exact only for the “preferred”
value given by Stichlmair (1988) ¢?™¢f = (apc — 1)/ (aac —1). In the following
analytical treatment we will only consider this preferred separation for the 3—column
arrangement. (Note that a comprehensive discussion of this “preferred” separation
will also be given in chapter 5 of this thesis.) Also note that the expression assumes
a vapor feed to column C2. For liquid feed (total condenser), one must add an extra
term A for the distillate term (D in equation (4.11)). Adding the terms in (4.37) we
thus obtain the minimum overall boilup for the 3—column prefractionator arrangement
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ABC

Figure 4.7: 3—column prefractionator arrangement for ternary separations

(V.P3) with a vapor feed to column C2.

min

F A Dbp 1-¢D)B+C
Viin = L AtoRB (=03 B+C g (4.38)
asec—1  asp—1 apc —1

We have here used the simple fact that A4+ B+ C = F. We here denote the prefrac-
tionator arrangement with three columns by P3, in order to distinguish it from the
directly coupled Prefractionator to be introduced in the next section which has only
two columns (i.e. P2).

The preferred separation. As previously mentioned, Stichlmair (1988) derived a
simple explicit equation for the minimum boilup for the preferred separation. For the
prefractionator C'1 Stichlmair (1988) gives

F -1
Vil = ——+ 4+ 22¢—p (4.39)
asc —1 asc —1
If we then compare equation (4.39) with equation (4.37) derived from our method, we
see that the equations are equal if the fraction of intermediate (¢2) taken overhead
is given by
pref _ @Bc — 1 4.40
gt = 280 (4.40)
This is commonly used in the literature to denote the fractional recovery of B in the
distillate requiring the minimum boilup (see e.g. Fidkowski and Krolikowski (1986)),
without referring to this particular case as the preferred separation.

Fractional savings for 3—column prefractionator arrangement. In order to
investigate the potential savings for the prefractionator arrangement relative to the
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direct split, we may simply examine the difference between equation (4.38) and equa-
tion (4.21). Note that using equation (4.21) also for the indirect split sequence cor-
responds to choosing 8 = 1 in equation (4.31). Equating the difference between the
direct sequence and the 3—column prefractionator arrangement, we obtain

(1-6B)B o8B __F

AViin = V2 VIS = -
aAB—l ch—l OzAc—l

where superscript D denotes the direct split. Using equation (4.41) we may thus
derive the following approximate expression for under what conditions the 3—column

prefractionator arrangement requires a lower boilup

¢hB +(1—¢§)B> F

aAB—l ch—l OzAc—l

AVnin > 0 iff (4.42)
Hence, we find that the potential decrease in boilup does not depend on the amounts
of A or C, but is a strict function of the relative volatilities and the amount of B.
Before analyzing particular cases in terms of compositions and relative volatilities,
we may give the “general” equation for the fractional savings for the prefractionator
scheme relative to the direct scheme (and for the indirect split scheme with g = 1)

(1-¢5)B | BB F
A‘/min _  aap-—1 + ocBi—l T aac-—-1 (4 43)
Vi T A S At |
aAB— apc—

To obtain the fractional savings, we first obtain the difference between the “pre-

fractionator” and the conventional direct (and indirect) split. By substituting for

8 = ¢P"*/ from (4.40) in equation (4.41), we find after some algebra the following

explicit condition for AV, = Vn?in — an%

B(aac +aap —apc —1)— F(aap—1)
(@ap — 1) (@ac — 1)

AViin = (4.44)

Hence we find a simple explicit equation in terms of the feed composition of interme-
diate B and the volatilities for when AV,,;, > 0

-1
AVpin >0 iff B> oAb F (4.45)
agc+agp —ape —1

In order to obtain even simpler expressions we may first consider the situation in
which the relative volatilities between the adjacent components are equal, 1.e. asp =
apc = a. From equation (4.45) we thus obtain the following condition under which
the prefractionator offer savings relative to the direct scheme
a—1 a—1
B F = F
I R P Ly P )
1

B —F 4.46
PEN > ] (4.46)
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where we have used the simple fact that aqc = aspapc = o?. For this particular
case we thus find that the prefractionator arrangement allows savings only if the feed
contains more than a certain lower amount of intermediate. For the fractional savings
we obtain from equation (4.43) after some simple algebra

VD~ T (a+ D)[F+aB+A(a—1)] (4.47)

Hence we find that the fractional savings increase with the amount of intermediate B
in the feed, and for the limiting case in which B — F' we find that

Aszn _ &
Ve (a+1)?

(4.48)

Hence, the maximum savings of 25 % occur for close boiling mixtures where we have
that o~ 1.

4.3.6 Directly Coupled Prefractionator

For the prefractionator arrangement considered in the last section, one needs 2(NC'—
1) condensers and reboilers. If we instead merge columns C2 and C3 via direct
coupling as illustrated in Figure 4.8, we eliminate one condenser and one reboiler.
Eliminating utilities thus in itself allows for additional reductions in the total energy
requirement. Note in the following that we consider a partial condenser for the pre-
fractionator column C'l, and thus a vapor feed to C2 since this always is favorable
in terms of the energy usage (e.g. Fidkowski and Krolikowski (1990)). One should
also note that the energy “cost” may not decrease for practical (industrial) operation,
since the heat requirement for the main column is added at the highest temperature
and the cooling takes place at the lowest temperature. Thus, if the upper feed controls
(VE2 > V3) all the heat to the main column is supplied at the highest temperature
whereas for the 3-column arrangement only a portion of the heat (V¢3) is added
here. This again refers the important distinction between exergy (levels) and energy
(loads), since the reduction in energy loads comes at the expense of increasing the
temperature levels at which the energy is supplied. However, we strongly emphasize
that if the lower feed controls, there is no additional cost involved with the direct
coupling, and that the directly coupled of course always have the smallest energy
load. Before we proceed, there is an aspect that should be made clear since it is of
great import for the analysis. For the directly coupled prefractionator arrangement
there are two fortunate “coincidents”. The first is that the simplified expression for
the energy usage of the prefractionator is in fact exact when the preferred separation
is carried out, and secondly that the preferred separation yields the overall minimum
energy usage for the arrangement (Stichlmair 1988).

For the prefractionator arrangement in Figure 4.7, we have that the required boilup
for column C2 is equal to the maximum for columns C2 and C'3 (e.g. Stichlmair (1988)
and Fidkowski and Krolikowski (1990)), which gives for the overall boilup V.72

min

VP = vl 4 max{VE: V3 (4.49)

min mn min’ mn
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=,

ABC i
c1 main

VCl

Vmain

Figure 4.8: Prefractionator with direct coupling for ternary separations

where VE1 V2 and V3 are given by equations (4.35)—(4.37). We here use su-

min’ ¥ min min
perscript P2 to denote that we use only two (coupled) columns as opposed to the

previous 3—column arrangement (P3). Note that taking the maximum of either V,$2

or V€3 in general applies only to the case of sharp separations, for which the main
column undertakes the two binary separations A/B and B/C'. To use the analytical
equations for the prefractionator we thus need to determine under what conditions

V2 or VO3 will be the larger. In the literature this analysis is referred to as deter-
mining whether the upper feed (VY) or lower feed controls (V). For this purpose
one may thus simply equate the difference between V.$2 and V.$3 in equation (4.37).
The condition for when the main column is balanced (i.e. V.2 = V.3 | may thus be
written in terms of the fractional recovery of B

(F—A)(aap— 1)+ B(aap—1)(apc —1)— A(apc — 1)

¢ = B((ch—l)—I—(aAB—1)—|—(aAB—1)(ch—1))

(4.50)

where superscript bal denotes a balanced main column.

In order to find the minimum boilup for the directly coupled Prefractionator, we
thus need to consider two distinct cases, for which either the upper or lower feed
controls. As will be shown in chapter 5, the preferred separation is always optimal
for the prefractionator column, so that the lower feed controls at the optimum if
#*% > ¢Pref and the upper feed controls at the optimum if ¢** < ¢P7ef. The
equations for the minimum boilup are thus derived using equations (4.35)-(4.37)

(i) Upper feed controls, i.e. ¢?3 < gpref

VP _ F A+ ¢prefB

min

+ A+ P B (4.51)

aAc—l ozAB—l
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(ii) Lower feed controls, i.e. ¢®at > gpref

VP _ F +C+(1—¢pref)B

min

A+ B 4.52
asc —1 agc —1 tA (4.52)

Fractional savings for directly coupled Prefractionator. Assume that ¢ =
P! the expressions for the prefractionator arrangement are exact. Using the ex-
pression for direct split as a datum (3 = 1 for the indirect split), we derive from
equations (4.21) and (4.52) the following expression for the potential savings when
the lower feed controls

A+ B B-F

AVL — VD _ VP2L
aap—1 oasc—1

min min min

(4.53)

Since A+ B < F we see from equation (4.53) that the largest savings arise for close
boiling mixtures mixtures (i.e. small relative volatilities) with a large fraction of the
intermediate component. Similarly, we find for the case when the upper feed controls

Bajc — F B+C
AC +

AVU — VD _ VPQU
asc —1 apc — 1

min min min

(4.54)

By inspection we again find that the savings are largest for B = F' and small o;;.

We thus consider in some more detail the limiting case with B — F. Glinos
and Malone (1988) report that the maximum savings in this case are 50%. We will
here support these findings in terms of analytical equations derived from our method.
As shown in Appendix Al, we find for the preferred separation that the lower feed
controls in this case if and only if'

asc+1

; (4.55)

apc <
As also shown in the Appendix, we derive the following explicit equations for the
fractional savings of the directly coupled Prefractionator relative to the conventional
sequences

AVY Qac — Qe
i (4.56)
Avngm apc — 1
e = 2 (4.57)

The maximum fractional savings were in both cases shown to be 50%, which occurs
for

asc+1

. (4.58)

apc

INote that the simplified expressions for the direct and indirect splits are exact when B — F'
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Furthermore, if we consider the case for which a4p = apc = a, we find from (4.55)
that the lower feed controls always since the following condition always applies

241
a<a;L sa>1 (4.59)
In this case the fractional savings are
AVE. a—1 1
min — — 4.
Vb a?—1 a+1 (4.60)

The maximum fractional savings are thus 50%, which in this case occur for close
boiling mixtures, i.e. a@ — 1. The expressions derived here are also important for
the Petlyuk column, since its analogy to the prefractionator arrangement is close.
We may therefore expect that the results derived here carry over also to the Petlyuk
column, and when «;; — 1 Fidkowski and Krolikowski (1986) in fact report that the
savings approach 50% as for the prefractionator.

4.4 Optimal Column Arrangements for Ternary Sep-
arations

In this section we present numerical results which illustrate the optimality regions in
composition space for the different distillation arrangements considered in the pre-
vious sections. We stress that all results are obtained from exact solutions using
Underwood’s method or the analytical equations proposed by Stichlmair (1988). For
the prefractionator arrangement we use the results derived in the previous section,
since they are exact for the preferred separation. In section 4.5 we then give results
that quantify the errors when using the approximate method used in the previous
analytical treatment.

4.4.1 Optimality Regions for Direct and Indirect Splits

The task of determining the optimal sequence for ternary splits is a very well known
problem, and there is an exhaustive literature within this area. However, there still
seems to be some ambiguity with respect to on what “basis” one should obtain the
optimality regions for the different sequences. In the works by Glinos and Malone
(1988) and Fidkowski and Krolikowski (1986) for instance, it seems to be taken for
granted that the feeds to the downstream columns are in liquid phase. For the indirect
split scheme this is as previously discussed suboptimal, since one may instead use a
partial condenser and thus a vapor feed to the downstream column. The optimality
regions presented in Glinos and Malone (1988) thus indicate that there is only a
very small region within the composition space for which the indirect sequence is
optimal. This applies to all three cases of “qualitatively” different separation, i.e. (1)
separations for which the A/B split is as difficult as the B/C split (aap = apc), (2)
separations where the A/B split is easier (aap > apc) and (3) separations where
the A/B split is more difficult (aap < apc). However, we will demonstrate that this
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situation is practically reversed if we consider indirect splits with partial condensers
and thus vapor feed to subsequent columns.

aasp = ape. We first consider the case for which the difficulty of separation is the
same for the A/B and B/C splits. As shown in figure 4.9 we find that if we use a
partial condenser and vapor feed, there is a considerably larger region of optimality
for which the indirect split is the superior. The contours in Figure 4.9 (b) illustrates

1
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0.7 ‘\\ 1/D { | if vapor feed
06 | D ifliquid feed
\
)5 \
B~ Y
0.4 '
1
\
03
[
02 i
\
AY
0.1
0 .
0 0.2 04 0.6 0.8 lL
ZA" ZA —_—
(a) Optimalit . (b) Difference in Vi, between di-
a) Yptimanty regions rect and indirect sequence (partial con-
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Figure 4.9: Optimality regions (a) and contour plots of difference in Vi,in (b) for indirect
and direct split sequence for o« =4 :2 : 1. I and D denotes the regions where the indirect

and direct sequences are optimal. A vapor (liquid) feed corresponds to using a partial (total)
condenser in the first column for the indirect split.

the difference in molar boilups between the two schemes (i.e. V2 — VI 3 from
which we note that there is a certain symmetry along lines of constant C'. Compared
to the results of Glinos and Malone (1988) we thus find that considering only total
condensers for the indirect split (i.e. liquid feeds) does not give a reasonable picture
of the optimality regions. It is always favorable to use vapor feeds, irrespective of
direct or indirect splits, as also stressed by King (1971) and Stichlmair (1988). In
order to examine how the optimality regions are affected by the difficulty of the binary
separations, we also investigate two complementary cases for which the A/B split is
easier than the B/C split (aap > apc) and more difficult (aap < apce).

aap > ape. In Figure 4.10 we illustrate that the region in which the indirect split
is favorable is enlarged if the A/ B split becomes easier relative to the B/C split. From
the contour plots we also find that the difference becomes large for almost equimolar
mixtures of A and B with small amounts of B. These findings thus contradicts the
common heuristic “do the easiest split first” (e.g.Douglas (1988)), in which the direct
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Figure 4.10: Optimality regions (a) and contour plots for difference in Vi,in (b) for indirect
and direct split sequence for o =4:4/3: 1

split in this case should be preferred since asp > ape. Our results support the
previous findings by Glinos and Malone (1988).

aap < apc. In Figure 4.11 we give the optimality regions in the case where the
B/C split is easier than the A/B split. By comparing Figures 4.11 and 4.9 we find
that the region of optimality for the indirect split decreases as aap decreases relative
to aa¢, again opposing the heuristic of performing the easiest split first.

4.4.2 3—column prefractionator arrangement

As indicated in the previous analytical treatment, there may be cases where the 3—
column prefractionator arrangement requires lower energy usage than the indirect or
direct split schemes. We may note that the 3—column arrangement in most cases
is not likely to be used in practice. Its significance lies however in that is useful in
understanding the stepwise procedure towards the directly coupled prefractionator.
In figures 4.12 4.13 and 4.14 we illustrate the optimality regions for the 3—column
arrangement versus the conventional schemes, and contour plots for the relative sav-
ings in energy usage. In the contour plots we have compared the energy usage of
the 3—column arrangement to the best (V,,:) of the direct and indirect split schemes
respectively, 1.e.

AVinin Max{VDP VI

min’ "m

Vopt a Max{VP. VI

min) min}

1 _yP3
in} R 100% (4.61)

where VF3 given by equation (4.38) and Vi, for the direct and indirect schemes

min
are computed iteratively from the ezact analytical equations presented by Stichlmair
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Figure 4.11: Optimality regions (a) and contour plots for difference in Vp,in (b) for indirect
and direct split sequence for o =4 :3:1

(1988). From the previous analytical treatment, we found in the special case when

aap = apc, that the maximum savings should occur when B — F. From equation
(4.48) the maximum savings are

min 2 (4.62)

Substituting @ = 2 yields maximum savings of 22.2% which indeed is verified in Figure
4.12 (b). Computations also show that the savings approach 25% as «;; — 1 (not
shown here).

For the other two mixtures illustrated in Figures 4.13 and 4.14, we also find as
expected that the optimality regions depend strongly on the relative volatilities. It
is interesting to note that the region where the 3—column arrangement is optimal,
is largest when the A/B split is the most difficult. This is due to using a partial
condenser for the prefractionator column, which as previously shown reduces the
energy consumption of column C2 with a term equal proportional feed rate of A.

Recall that when the A/B split is most difficult, column C2 will usually dominate
the energy usage.

4.4.3 Directly Coupled Prefractionator

Finally we consider the directly coupled Prefractionator, which should display the
highest energy efficiency compared to the previous schemes. From our analytical re-

sults we showed that the largest savings amount to 50%, which occurs in the limiting
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(a) Optimality regions

(b) Contour plots of AV,,;p, /Vopt

Figure 4.12: Optimality regions for ternary separations (a) and contour plots (b) of relative
savings for 3—column prefractionator arrangement with o =4:2:1
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(a) Optimality regions

(b) Contour plots of AViyir /Vopt

Figure 4.13: Optimality regions for ternary separations (a) and contour plots (b) of relative
savings for 3—column prefractionator arrangement with o =4:4/3:1
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Figure 4.14: Optimality regions for ternary separations (a) and contour plots (b) of relative
savings for 3—column prefractionator arrangement with « =4:3:1

case when B — F and in cases where a;; — 1 and when the relative volatilities satis-
fies apc = (aac + 1) /2. In order to compare the numerical results with the findings
from the analytical treatment, we consider here three different cases. Note again that
the relative savings are obtained using VP2 from equation (4.49) in equation (4.61)
and ezact solutions for the indirect and direct schemes.

(1) @aaB = apc =«

In Figure 4.15 we give results for the optimality regions and the relative savings
for an example where & = 2. The numerical computations show that the largest
fractional savings amounts to 33% when B — 1. For this case we have that the lower
feed controls, and the numerical results thus confirm the analytical results given by
equation (4.57), i.e.

AVL» apc — 1
min — =. 4.6:
B e 33% (4.63)
(11) axpc — aAg+1

Numerical results for such a case, where we chose asp = 1.6 and agpec = 2.5, are
shown in Figure 4.16. From Figure 4.16 (a) we find that there are only very small
regions 1n the composition space where the indirect or direct split schemes require
a smaller energy usage. The only cases where the prefractionator arrangement is
suboptimal, is as expected when the feed mixture contains mostly light or heavy
component. From the analytical results we found as given in equation (4.58), that



80 Explicit Shortcut Method for Minimum Energy Calculations

0.9
0.8
0.7

0.6

0.4
0.3
0.2

0.1

(a) Optimality regions (b) Contour plots of AV,,p /Vopt

Figure 4.15: Optimality regions for ternary separations (a) and contour plots (b) of relative
savings for directly coupled Prefractionator with o =4:2:1
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Figure 4.16: Optimality regions for ternary separations (a) and contour plots (b) of relative
savings for directly coupled Prefractionator with o =4 :2.5:1
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this particular set of relative volatilities, for which the main column 1s “balanced”,
should give the largest fractional savings when B — F, i.e.

AVimin _ apc —1
= = 4.64
VD oac 1 50% (4.64)
The results for the relative savings in Figure 4.16 (b) thus confirms the analytical
results.

Finally we consider the limiting case of close boiling mixtures, where a;; — 1. As
indicated by equation (4.60), the maximum savings should also in this case approach
50% when B — 1. In Figure 4.17 (a) we give the optimality regions in a case where
aap = apc = 1.1. In fact, we find that the optimality region decreases somewhat
compare to the previous two cases. As shown in Figure 4.17 (b), the relative savings
approach 50% when B — F.

1 1
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0.7 0.7
06 06 40
ZB o5 Zg o5
0.4 0.4
30
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20
02 02
10
| 0
0.1 D 0.1 10
0 0
0 02 0.4 0.6 08 1 0 02 0.4 06 08
Zp - ZaN -
(a) Optimality regions (b) Contour plots of AViyir /Vopt

Figure 4.17: Optimality regions for ternary separations (a) and contour plots (b) of relative
savings for directly coupled Prefractionator with @« =1.21:1.1:1

4.5 Error Analysis for Proposed Shortcut Method

In this section we give numerical results to quantify the errors associated with the
proposed shortcut method. We previously argued that the most important asset of
the method, was to obtain qualitative information that is otherwise not available from
exact methods such as Underwood’s method. Nevertheless, in order to analyze the
goodness of the analytical results it is still of importance to quantify the errors relative
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to the exact methods. We furthermore showed that the most important application of
the method, is to indicate the relative savings for the directly coupled prefractionator.
The reason for the latter is as previously mentioned twofold: (i) the expressions are
exact for the preferred separation and (i7) the preferred separation is always optimal
for this arrangement. Hence, the errors are expected to be small in this case.

Since the equations are exact for the prefractionator, the errors in the relative
savings are only due to the expressions for the indirect and direct sequences. In
Figure 4.18 we compare the approximate results with exact solutions for the relative
savings of the prefractionator arrangement. As seen in the Figure we find that the
approximate equations give reasonably accurate predictions within the whole region
where the directly coupled prefractionator is optimal, and not only in certain limiting
cases such as B — F'.

50
osk | — Exact
ol Nl N T Approximate
T 0.6f
ZBo.s

Figure 4.18: Comparison of exact and approximate solutions for directly coupled prefrac-
tionator arrangement. The contour plots are obtained for o =4 :2.5: 1.

However, even though the errors usually are small when we use the method to
predict the savings for the prefractionator arrangement, the errors may become large
in certain regions of the composition space when we use the method only for the
conventional arrangements. As previously discussed the shortcut method provides
a lower bound for the direct split. For the indirect split, the situation is somewhat
more complex and it is difficult to predict the “sign” of the errors. As was illustrated
graphically in a previous section, the error is due assuming that the mapped pinch
composition of the binary mixture leaving the first column is equal to the relative feed
composition. The error will thus depend on the locus of the ternary feed mixture in
composition space. Furthermore, the magnitude depends on whether one considers
the error for the sequence of two columns, or only for the first column. The latter case
is the “formally” correct, since the analytical results for the binary columns are exact,
i.e. the error is solely due to the simplified equation for V.2, in the first column (C1).

in
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— Exact
,,,,,,,,,,, Approximate

Figure 4.19: Comparison of exact and approximate solutions for directly coupled prefrac-
tionator arrangement. The contour plots are obtained for @« =1.21:1.1: 1.

However, we again stress that our objective i1s to give a simple analytical method
for the minimum reboil, to enable a quick and analytical comparison of different
column arrangements. Hence, for the sake of argument we may claim that the relative
errors for single regular columns are of less importance than the overall error for the
arrangement. Numerical results for the error analysis of the conventional schemes are
given in Appendix B.

4.6 Conclusions

In this paper we have proposed an ezplicit shortcut method to compute the minimum
energy usage for multicomponent separations. The method is only approximate, al-
though in certain limiting cases it yields exact results. The most important feature
of this method, 1s that i1t may easily be used to provide qualitative information which
is difficult to obtain from exact methods such as Underwood’s method. In this paper
we use the shortcut method to illustrate the optimality regions of different distilla-
tion arrangements. For ternary separations we provided a comprehensive analysis,
in which we obtained analytical expressions for the relative differences between the
different arrangements. For instance, we derived simple expressions that indicate
for which mixtures the largest relative savings are obtained for a prefractionator ar-
rangement, relative to conventional schemes. These findings are then verified by exact
numerical solutions of the set of Underwood equations, or from analytical solutions
of these found in the literature. We also demonstrate the importance of using partial
condensers for downstream columns, since the use of only total condensers is often as-
sumed in the literature. For the direct and indirect schemes, we show that taking this
into account increases the optimality regions for the indirect scheme considerably. We
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however emphasize that caution must be used when applying the proposed method.
In terms of an error analysis we demonstrate that in certain cases the relative errors
may become large.

Nomenclature

A, B, C — Feed rate of chemical species [kmol/min]
D — Distillate flow rate [kmol/min]
D; — Distillate flow rate of component i [kmol/min]
f — Parameter in minimum reflux expression, i.e. f =14 B/(F -100)
F — Feed flow rate [kmol/min]
F; — Feed flow rate of component i [kmol/min]
HK — Heavy key
L — Reflux flow rate [kmol/min]
LK - Light key
NC' — Number of components
q — Feed enthalpy
R — External reflux ratio, i.e. L/D
— Ratio between minimum and actual reflux
— Separation factor

<

— Boilup from reboiler [kmol/min]
x; — Liquid mole fraction of component i
xp; — Liquid mole fraction of component 7 in distillate
xp — Mapped liquid mole fraction at pinch point
y; — Vapor mole fraction of component ¢
yr; — Liquid mole fraction of component 7 in feed
z; — Liquid mole fraction of component 7 in feed

Greek letters

a;j; — Relative volatility between components ¢ and j
A — Deviation variable
@P"ef — Fractional recovery of component B for the preferred separation
@®? — Fractional recovery of component B for a balanced main column
¢P — Fractional recovery of component i in bottom flow
#P — Fractional recovery of component i in distillate flow
Sub- and superscripts
bal — Balanced main (sidestream) column
D — Direct split
I — Indirect split
min — Minimum flow conditions for infinite number of stages
pref — Preferred separation
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Appendix A Analytical Results for “Preferred
Separation”

As previously mentioned there are two distinguished operating regions for the
Prefractionator, for which either the upper (V¢2 > V3) or lower feed (V3 > V¢2)
controls. In this section we are thus concerned with the fractional savings between
the direct sequence (and indirect with @ = 1) and the Prefractionator for these two
cases. From the previous analysis we find the following equations for when the upper

feed controls (VU = V&l 4 VC2)

F A+¢PB
yUo = L ATOBB 40 g (4.65)
asec—1  asp—1
and when the lower feed controls (VL = V1 4 V¢3)
F 1—¢p)B+C
Viin = LB BHC Ly (4.66)

aAc—l ch—l
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In order to obtain the maximum fractional savings we consider the limiting case
in which B — F'. We thus need to determine under what conditions the upper and
the lower feed controls respectively. From equations (4.65) and (4.66) we thus obtain

_ 4D

Och—l aAB—l

After expanding the right hand side, we find that the lower feed controls if the fol-
lowing condition is satisfied

(1= 63) (e = 1) (0an = 1) + (1 = 65) (ean = 1) = 65 (apc — 1) > 0 (4.68)
After some algebra this expression simplifies to

AC — QBC

Vikin > Vibhn 1T 68 < = (4.69)

YAC — 1
Substituting for ¢2 from expression (4.40) for the preferred separation, we thus find

) asc+1 -
Viiin > Vi it ape < 7’“2 (4.70)
We should comment that this is of course exactly the same as examining the difference
between columns V¢? and V3 for the 3—column prefractionator arrangement. It is
also reasonable that the lower feed controls when the B/C split is difficult relative to
the A/B split, i.e. when apc is small relative to aap.

aac+1

A.1 Upper feed controls : apc > =44

For the limiting case when B — F we obtain from equation (4.21) for the direct
sequence

VD 1 1
— =1 4.71
(F) = V=t e arh

Again expanding the fractions we may rewrite this to
<£) _ (aap— 1) (apc — 1)+ (@ap — 1)+ (apc — 1) (4.72)
F / min (vap —1) (ape - 1) '
xXAC — 1
= 4.73
(@ap — 1) (apc — 1) (4.73)
1

= =T (4.74)

For the Prefractionator we find from equation (4.65)

yU 1 ¢pref
—_— = pref 4.r-'
()., = it ma 479
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We may simplify this expression by substituting for ¢?"¢/ from equation (4.40) which
gives

V_U o (aAB_1)+(C¥BC—1)+(OzAB—1) (Och—l)
< F >mzn - (aac —1)(aap—1) (4.76)
xXAC — 1
- e (4.77)
- r;_ 1 (4.78)

Equating the difference between the Prefractionator and the direct split in equations
(4.74) and (4.78) we derive

AVU _ 1— ¢pref
( F >mzn - ¢pref (aAB _ 1) (479)

Using equations (4.74) and (4.79) we find the relative difference between the direct
split and Prefractionator, which is simply given by

Avn{{zn re
xpc — ape

= == 4.81

PP (4.81)

Hence, to obtain the largest savings we want ¢?"¢/ to be as small as possible. From
equation (4.81) we thus find that the largest savings correspond to choosing agc = 1.
However, as previously shown, there are lower bounds on ¢?"*f and thus ap¢, as given
by conditions (4.69) and (4.70). The maximum fractional savings savings are thus
obtained when apc = (aac + 1) /2. Substituting this in equation (4.81) we thus
obtain

AVY. ) ayc — 2ag=l
n = —=2  —50% 4.82
< VD Maz asc—1 ¢ ( )

min

aac+1

A.2 Lower feed controls : agc < :

Again for the limiting case when B — F', we use the following formula for the direct

split
VP 1 1
— = 1 4.8:
(F)mm O‘AC_1+O‘BC_1+ (4.83)

For the prefractionator equation (4.66) gives

vi 1 1—¢b
— = 1 4.84
(F)mm O‘AC_1+QBC_1+ (8)
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Taking the difference between equations (4.83) and (4.84) and substituting for ¢2
gives

AVE 1 ¢B 1 )
= — 4.85
< F )mm OZAB_1+QBC_1 CMAc—l ( 80)
1
= — 4.8
pP— (4.86)

And finally, using equations (4.86) and (4.74) we find the following simple equation
for the fractional savings

B = 7 (4.87)
ch—l

= = - 4.88

2o 1 (4.88)

Thus in this case we want ¢2 to be as large as possible to obtain the largest savings.
However, there is in this case an upper bound on QSIB) as given by (4.69). Hence the
largest savings arise when both (bIB) and thus also apc are equal to their respective
upper bounds. Substitution then gives

AVL» aac+l 1 i
(T2),,,. = oo =t (4.89)
min Mazx

Appendix B Error Analysis for Conventional
Arrangements

In this section we provide numerical results for the relative errors when using the
proposed shortcut method to estimate V,,;, for the conventional direct and indirect
sequences.

B.1 Relative Error for Direct Sequence

We first consider the relative errors for the direct sequence, for which we will confirm
that the proposed method always gives a lower bound for V.2, . The relative error is
for all cases computed by

eract __ Y/approx
Error = v v * 100 (4.90)

Ve:cact

(i) aap = apc

If we only consider the relative error for column C'1, we find from the simulations
that the relative error approaches 100%. This apparently “large” difference follows
since the approximate V.S approaches zero as the mole fraction of heavy component

zc — 1. However, if we on the other hand consider the upper bound for V,,,;,, proposed
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(a) Sequence, i.e. C1 + C2 (b) Column C1

Figure 4.20: Contour plots of relative error in V,,;, for direct split sequence witha =4:2:1

by King (1971) and Porter and Momoh (1991), the error is in fact as large as 300%.
Furthermore, we make the interesting observation that the error is in fact very small
within the region where the direct split is optimal. If we consider the contour plots
of the relative error shown in Figure 4.20 (a), the maximum error within the region
of optimality for the direct split is only 2.5%. We also note that the error is much
smaller for the sequence compared to the binary column. This owes solely to the fact
that our proposed method is exact for binary splits. Also note that the relative error
is always grater than zero, which confirms that our method gives a lower bound on
VD

(11) xXAB 75 apc

In Figure 4.21 we give the relative errors for the cases of aap < apc (a) and aap >
apc (b). Interestingly we find in the latter case that the errors for the sequence are
small within the whole of the composition space, and the maximum error within the
region where the direct split is optimal is only 1.5%.

B.2 Relative Error for Indirect Sequence

For the direct split, we found that the proposed method for obtaining the minimum
reboil in fact yields a lower bound for V2, . However, for the indirect split the picture
is not that simple. In this case one also needs to determine the fraction of the low
boiler to be added in the “distillate term” (& in equation (4.31)). If we use 3 = 0 the
proposed method will always give a lower bound. However, the prediction will then
in most cases be very optimistic. Given the ambiguity with respect to 3, it might be
of interest to give an interpretation of 8 = f(A, B, ), to indicate the appropriate

value to be used within the different regions of the composition space. However, for
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(b)a=4:4/3:1

Figure 4.21: Contour plots of relative error in V,,;, for direct split sequence

the sake of consistency and simplicity, we have chosen to use f = 1 for the numerical
results. In contrast to the situation for the direct split, it is difficult to predict the
sign (lower or upper bound) of the relative error compared to the exact results due
to the impact of 3.

aap = apce In Figure 4.22 we find that the relative error is zero along the BC' apex
(binary split) and along a given line within the ternary region. The relative error then
increases to a maximum of —20% along the binary edge of AC. As expected we find
that using @ = 1 gives neither a lower or upper bound.

aap 7# apc Relative errors for the two other qualitatively different separations
are displayed in Figure 4.23. From the results we find that the magnitude of the
(maximum) errors decrease as the region of optimality for the indirect split decreases.
The maximum errors are still within 20%.

B.3 Relative Error Compared to Optimal sequence

When comparing the relative errors in the approximate equations for the direct and
indirect splits, we found that the errors may be quite large outside the regions in
composition space where the particular sequence (direct/indirect) is optimal. Tt is
therefore of interest to compute the relative errors for the proposed method compared
to the optimal sequence within each region. The results for ayp = apc are displayed
in Figure 4.24. As seen in the Figure we find that within the region where the direct
split sequence is optimal, the relative error is very small, i.e. approximately. 1-2 %
depending on the relative volatilities. However, for the indirect split sequence we still
face the problem of determining the fraction 8 as previously discussed. Results for
other relative volatilities are displayed in Figures 4.25.
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Figure 4.22: Contour plot of relative error in Vi, for indirect split sequence witha =4:2:1

(b)a=4:4/3:1

Figure 4.23: Contour plots of relative error for indirect split sequence
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Figure 4.24: Relative error for approximate Vi,in compared to optimal sequence with o =
4:2:1

0 02 04 0.6 0.8 1

Zp—"

(a)a=4:3:1

Figure 4.25: Relative errors for approximate Vi,;n compared to optimal sequence.
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Abstract

Prefractionator arrangements are often preferred from an energy point of view
when separating ternary mixtures. The prefractionator performs a separation
between the heaviest and lightest component, whereas the intermediate com-
ponent distributes to both products. The energy usage in the prefractionator
itself has a very sharp minimum for a particular distribution, which is the
“preferred separation” of Stichlmair (1988). On the other hand, the energy
usage in the downstream main column has a minimum when the two parts of
the column, above and below the side stream, are “balanced”. In the paper we
derive simple analytic expression for the total energy usage of the two-column
sequence as a function of the separation in the prefractionator. We find that
although the preferred separation is optimal, at least for sharp splits in infinite
columns, the energy usage is almost the same for any separation between the
“preferred” and the “balanced”. The same results are shown numerically to
hold for columns with finite number of stages and non-sharp separation, as
well as when the prefractionator and main column are directly coupled, as in
the Petlyuk arrangement. Finally, some implications for the operation and
control of such columns are discussed.

*Author to whom correspondence should be addressed : Fax : +47 7359-4080, E-mail:
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5.1 Introduction

The task of finding the minimum energy input for multicomponent separations has re-
ceived considerable interest in the literature. No doubt the most well known methods
are those due to Underwood (e.g. Underwood (1948)), for which minimum flows are
obtained through an exact (iterative) solution of the material balance equations cor-
responding to infinite columns. In order to enhance the understanding of minimum
energy conditions beyond that of numerical computations, Petlyuk and coworkers
dedicated a series of papers (e.g. Petlyuk and Platonov (1964), Petlyuk et al. (1965)
and Petlyuk et al. (1966)) to the task of selecting the thermodynamically optimal
distillation scheme. Based on the concept of reversible distillation, the authors argue
that one of the optimality conditions, is that in each bisectional column only the
components with extreme volatilities should be separated. For the ternary case this
implies that to ensure reversible mixing of streams, the first split is taken between
the light and heavy component, so that the intermediate component distributes be-
tween the bottoms and top products. Any other split between adjacent components
will inherently introduce additional exergy loss and thus increase the energy usage.
However, we strongly emphasize that the concept of reversibility also requires uniform
distribution of utility (condensing and boilup) along the column, which is not realized
in columns with one reboiler and one condenser. Thus, although arguments based on
reversibility may provide expedient guidelines, one needs a more detailed analysis to
provide conclusions for real columns.

The issue of minimum energy usage under the presence of distributing components
was also examined by King (1971). The author introduced a shortcut (group) method
to compute the minimum energy, but until present it remains somewhat unclear as
to under which conditions the results of King (1971) apply. Stichlmair (1988) coined
the phrase preferred separation, to denote the separation in the prefractionator that
requires the minimum energy input. This particular split occurs when all components
have a pinch at the feed location, and the author demonstrates that the optimality
of this particular split is due to colinearity between the distillation and equilibrium
lines at the feed point. However, the author does not elaborate on whether carrying
out the preferred separation as the first split should give the overall minimum energy
input for a sequence of columns, although is is stated that it “usually” is so.

In this paper we consider separating ternary mixtures in the prefractionator ar-
rangements shown in Figure 5.1. This includes a “conventional” prefractionator (a)
as well as the Petlyuk column (b), where the prefractionator and main columns are
directly coupled so that the prefractionator has no heater or cooler. Both of these
arrangements are interesting alternatives for industrial implementations. The task
for the prefractionator is to split the heavy and light components, whereas the inter-
mediate component distributes to both products. The downstream main column is a
side-stream column where the three components may be recovered as pure products.

Several authors have considered methods to obtain the minimum energy usage
for the Petlyuk column (see e.g. Cerda and Wersterberg (1981), Fidkowski and
Krolikowski (1986), Nikolaides and Malone (1988), Glinos and Malone (1988) and
Carlberg and Westerberg (1989)). Without going into detailed discussions of these
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Figure 5.1: Prefractionator arrangements for separation of ternary mixtures

previous works, we put emphasis on the important finding by Fidkowski and Kro-
likowski (1986). Using a comprehensive analysis of the Underwood equations, the
authors showed that that there is a region for the recovery of the intermediate com-
ponent in which the minimum energy usage in fact is constant. According to Glinos
and Malone (1988) the formulas presented by Fidkowski and Krolikowski (1986) was
previously derived in a thesis of Stupin (1970). In this work we give results from nu-
merical simulations which demonstrate that the results of Fidkowski and Krolikowski
(1986) carry over also to columns with a finite number of stages. The results are
obtained from numerical simulations of columns with a sufficiently large number of
stages, assuming constant molar flows and constant relative volatilities. In this pa-
per we provide results also for the prefractionator arrangement in Figure 5.1 (a). In
particular, whereas the previous works consider exact solutions using Underwood’s
method, we in this work propose approximate explicit expressions that proves useful in
the analysis of the prefractionator arrangement. By first considering the prefraction-
ator arrangement, we also obtain physical insight related to the regions of constant
energy usage (Fidkowski and Krolikowski 1986) for the Petlyuk column.

For the prefractionator arrangement, we demonstrate that there is a similar “flat”
region where the energy usage remains relatively constant. We show analytically
and numerically that this region is characterized by recoveries of the intermediate
component corresponding to the preferredseparation and a balanced main column. We
then elaborate on an important issue that has not been given appropriate attention
by the previous authors. This refers to the importance that this “flat” or constant
region has for practical operation. In terms of practical operation, we find for both
column arrangements that one may control the composition only at one end in the
prefractionator and “overpurify” the other column end (“one—point control”) without
significant increases in the energy usage. Which end to control depends on whether
the preferred or a balanced separation requires the largest recovery of intermediate
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component in the prefractionator.

We also consider briefly the issue of non-sharp separations, for which we present
results from numerical simulations where the product purity of the intermediate com-
ponent is decreased relative to a pure product. The results show that the minimum
energy usage moves away from the preferred separation for sharp splits, which in itself
is hardly surprising. We give an account for the results by considering the distribution
of the light and heavy components in the prefractionator for non-sharp separations.

Finally we stress that for ideal mixtures it is always optimal in terms of boilup
to use a vapor feed when possible. This was also addressed in the previous chapter,
where we found that taking this into account has a strong impact on previous results
in the literature (e.g. the optimality regions for the direct and indirect split schemes
presented by Glinos and Malone (1988)). Hence we consider prefractionator arrange-
ments in which partial condensers are used for upstream columns, providing vapor
feeds to downstream columns. In order to analyze such prefractionator arrangements
we “decompose” the task, so that we first consider the prefractionator column and
then the main column. Knowledge from these findings are then combined to un-
derstand the behavior when we consider the column sequence. In total we hope to
provide a lucid and comprehensive overview of the literature, that may clear up some
apparent misunderstandings.

5.2 Degrees of Freedom Analysis

One of the important aspects to be addressed in this paper, is how one should utilize
the degrees of freedom (DOFs) for the prefractionator arrangements in Figure 5.1
in a “optimal” manner. For both arrangements we have after stabilization of levels
and pressure five DOFs available for operation. Three of these are then consumed if
we specify one purity in each product. The objective of this paper is then partly to
indicate how one should treat the remaining two DOFs. In a sense, they are both
related to the prefractionator column, even though the DOFs in a strict sense apply
to the column arrangement.

For the Petlyuk column in Figure 5.1 (b), one might imagine that one of the
remaining DOFs could be used to control one of the impurities in the sidestream
product. The last DOF is then used to minimize the energy usage. However, due to
the coupling between the upper and lower parts of the main column, it is in practice
not possible to control two purities in the sidestream. Wolff and Skogestad (1995)
showed that “holes” may appear in certain operating regions in this case. A detailed
explanation for this behavior was later given by Morud (1995). The conclusion is that
one should control only one composition in each product for the Petlyuk column. In
this work we show that for “optimal” operation one in practice needs to use one
DOF to stay within a certain operating region where the energy usage in fact remains
relatively constant.
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5.3 The Prefractionator Column

In this section we present expressions for the minimum energy usage Vp;y, for ternary
separations in a prefractionator column, using a group method previously introduced
by King (1971). The feed is assumed to be saturated liquid (in Appendix A we also
give the formulas that apply for saturated vapor feeds). Note that we in the following
use subscript min to denote a column with an infinite number of stages, and that we
use lowercase letters to denote the distillate (d) and bottom (b) flow rates to avoid
confusion with the components (B) and the superscripts for the direct split scheme

(e.g. VD).

5.3.1 V,,;» and the preferred separation

Our starting point is the “binary equation” for the minimum reflux in a column with
an infinite number of stages and a saturated liquid feed (King 1971)

(7). = Tt 6.1

F aLH—l

Here L denotes the reflux, F' the feed, ¢¢ the fractional recoveries of light and heavy
components in the distillate d and ar g the relative volatility between the two com-
ponents. More precisely, the fractional recoveries are given by

dz?
d 7 b
d . 5.2
%= T (5.2)

where z; denotes the feed composition of component 7. Actually, equation (5.1) applies
to any two components in a multicomponent mixture if we assume that all compo-
nents pinch at the feed stage, and King (1971) states that (5.1) applies if all non-key
components distribute. In practice this means that the non-key components must be
intermediate relative to the two (key) components.

If we then consider the separation of a ternary mixture ABC', for which we want to
obtain a top product depleted in the high boiler (C') and a bottoms product depleted in
the low boiler (A), equation (5.1) is valid if B has a pinch at the feed location. This
is the “preferred” separation of Stichlmair (1988), and the corresponding preferred
recovery of B is denoted ¢P"¢f. For the separation between components A and C
equation (5.1) gives

£ pref _ (ZSZ\ — OzAcgzst (5 3)
F min @AC — 1 .

where we use the superscript pref to make clear that 1t only applies to the case of
the preferred separation where all components have a pinch at the feed stage. The
corresponding minimum boilup is

174 pref \Prref d\rref
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In this case equation (5.1) applies also to the (non-sharp) separation between com-
ponents A and B, i.e.

F OzAB—l

<£> = fimanth (5.5)

By equating (5.3) and (5.5) for given values of ¢% and ¢%, and solving with respect
to (]5%, we obtain the “preferred” recovery of B in the distillate

re d -1 d -1
el = (¢2)" 1 _ 9alape — 1)+ apcdi (van — 1) (5.6)
XAC — 1
The distillate flow is then
deref
—= %24+ " 2p + ¢z (5.7)
and we derive the desired expression for Vi,
14 pref d _ 4 d
14 = Pazoache | a4 grrel 4 ogd s (5.5)
F min @AC — 1
For the special case of a sharp split between A and C (¢4 =1, ¢& = 0) we get
_ ref _1
pref _ aBC 1 dr — apc 5.9
(/) OzAc—l’ F 2A+01Ac—123 ()
and for the boilup
V pref 1 + + ape — 1 (5 10)
— =—+z —_— 2 .
F min aAc—l A aAc—l B

This is the same expression as was previously presented by Stichlmair (1988) for the
preferred separation.

However, the question remains as to how V,,;, changes if ¢% differs from the
particular value ¢P"¢f and what is the additional cost? This is the central question
to be addressed in the next section.

5.3.2 V,,in for splits other than the preferred separation

In the following we want to derive an expression for V,,;, for sharp splits between
A and C' that applies to any recovery of the intermediate component, i.e. for all

% €[0,1].

Introductory example.

In order to address this issue, we first consider an introductory example for the sep-
aration of an equimolar saturated liquid feed with data given in Table 5.1. For the
simulations we specify that the composition of light component A in the bottom, and
the composition of heavy C' in the top, should be equal to or less than a given upper
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Table 5.1: Data for ternary separation in an “infinite” column

Number of stages | N = 100 (Np = 50)
Feed compositions | zp = [1/3,1/3,1/3]
Molar feed F =1 [kmol/min]
Relative volatility | a=4:2:1
Impurity spec.’s b <e

yé < e

bound, i.e. #% < ¢ and y& < e. Note that for a sharp split ¢ — 0, but in the numerical
calculations we mostly use ¢ = 10~ (we should also mention that we used a finite
number of stages N = 100, but exact calculation with the Underwood equations for
infinite columns give almost identical results for Vi, ). The purpose of this numerical
example is to compute Vi, as a function of the distillate flow d with ¢% € [0, 1].
By specifying d we fix one degree of freedom, and since we have only two degrees of
freedom for a single column at steady state, we will find that only one of the impurity
specifications (i.e. z% < eor y& < ¢) will be active as an equality. Numerically we thus
obtained two solution curves where we selected z% = ¢ = 107* and y& = ¢ = 107%.
The curves were computed using the continuation scheme presented in chapter 3,
and are shown in Figure 5.2. As seen from the Figure we find that there is a sharp

1.4 T T T T T T T

1.3

1.2F

V, [kmole/min]
=
HN

i
T

0.9F

0.8 —~—— Preferred separation i

0.3 0.35 0.4 0.45 0.55 0.6 0.65 0.7

0.5
d, [kmole/min]

Figure 5.2: Vinin as a function of distillate flow d for sharp A/C split, i.e. € = 1074,

minimum located at the intersection, which is the point corresponding to the preferred
separation. Along the curves extending from this point we have that both purity
specifications are satisfied, one as an equality the other as an inequality (see Figure
5.4). The only point where both appear as equalities (2% = y& = ¢) is at the

intersection, which as mentioned is at the preferred separation.
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Figure 5.3 which gives V;,i, for other values of ¢, illustrates that selecting ¢ = 10~*
indeed gives the limiting value of V,,;,, corresponding to a sharp separation. For ex-
ample, the curves for purities of ¢ = 1072 and ¢ = 10~* are as shown in Figure 5.3
practically indistinguishable. One may also note that there is a well defined minimum

1.4 T T T T T

1.3

1.2F

e=10"10"

V, [kmole/min]
o -
© = =

o
©
T

0.2 0.3 0.4 0.6 0.7 0.8

0.5
d, [kmole/min]

Figure 5.3: Vnin as a function of distillate flow d for non-sharp separations with ¢ €
[107*, 107

also for non-sharp separations, an issue to be discussed later. In Figure 5.4 we have
plotted on a semi-log scale the corresponding impurities at the column ends which is
purer than required. We see that the impurities are satisfied as inequalities for all
values of d, except for the preferred separation where they are both satisfied as equal-
ities. Similar observations were also made by Carlberg and Westerberg (1989), in a
detailed analysis of the Underwood equations for a simple non-sharp column. The au-
thors showed that minimum reflux behavior (infinite column) divides into four distinct
regions depending on the recovery of intermediate. Each region is then characterized
by the recoveries of light and heavy in the distillate being either at their lower bound,
upper bound or intermediate. Note that we have instead assigned bounds on the mole
fractions of heavy key in the top and light key in the bottom, whereas Carlberg and
Westerberg (1989) consider the recoveries of light and and heavy in the top. Using
either mole fractions or recoveries is however somewhat complementary from a math-
ematical point of view, since the recoveries depend linearly on the mole fractions. In
practice, the mole fractions will however have more of a physical significance. We
will later demonstrate that these observations are of great importance for practical
operation of prefractionator arrangements and the Petlyuk column.

To further verify the numerical results, we compute from equation (5.10) the
minimum vapor flow for a sharp split ( with data from Table 5.1)

verel —0.778 (5.11)

min
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Figure 5.4: Impurities at column end which is purer than required for e =

0.1,0.05,1072,1072,10™*. The left branches give yd < € when 3% = ¢ is kept constant,
and the right branches give z% < € for constant y& = e.

and the corresponding distillate flow using equation (5.7) is
drrel = 0.444 (5.12)

which agrees with our numerical simulations.

5.3.3 Analytical Results

In this section we will derive approximate analytical expressions for V,,,;, as a function
of the distillate flow d for the prefractionator arrangement. The reader may note that
we here choose to use d as the independent variable, since it represents a variable of
grater physical significance than for instance the recovery ¢%. From King (1971) we
have the following exact expression for the minimum boilup

14 oy n A% n e
in @ac—0;  apc—0;  1—6;

F

where 6; 1s the appropriate solution of the following 2nd order Underwood equation

aAcza QaBCZB ze
asc—0 apc—0; 1-06;

F(l—q)=0 (5.14)

Here ¢ is the feed enthalpy and ¢ = 1 for saturated liquid feeds. For a sharp split
between A and C (¢4 = 1, ¢& = 0) we get

vV aac aapd}
- — 1
(F), - e 319
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This proves that the relationship between V and ¢%, and thus between V and d =
Fzy + F¢Prefzp, is given by straight lines. This was already observed from the
numerical results in Figures 5.2 and 5.3. The break in the straight lines at the
preferred separation corresponds to a switch of Underwood root #;. As illustrated
in Figure 5.2, the straight lines extend from the preferred separation to the two end
points. The left end point is where all intermediate B leaves in the bottom, i.e. the
direct A/BC split. Here d = dP and Vm = V,.fm. The right end point is where all
B is taken over the top, i.e. the indirect AB/C' split. Here d = d’ and Vi = V,.,Iu-n.
This is further illustrated graphically in Figure 5.5.

1.4} V!

V [kmole / min]

i
T

0.9r

0.8f

dl

[OY4 - . . . . . . .
03 035 04 0.%5[kmopé§mm]o.55 06 065 0.7

(a)a=4:2:1

Figure 5.5: Boilup V for sharp A/C split as a function of the distillate flow d. The results
are shown for an equimolar feed mixture with oap = apc = 2

Since the relation between Vi, and d yields a straight line for sharp splits and
infinite columns, we thus find from Figure 5.5 the desired relationships

VD, - vered

Ve = v g min D (@l —d) d<dm (5.16)
VI> _ Vpref
Vnglln = vy 7321”_ drref (d - dpref) ; d> drred (5.17)

(We write V&1 with superscript C'1 to make clear that these relationships apply only

min

to the prefractionator column C'1.) For sharp splits we have

dD dpref apBc -1 dI
—_— = _— = _ —_— = 18
Ja ZA, Ja zZa + aac — 123, 7 z4 + 2B (5.18)

Furthermore, Glinos and Malone (1984) derived reasonably accurate analytical ex-
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pressions for V2. and VI. for sharp splits

I
<V?>mzn - <Z’;;’_ZC1+QAZA_1> 1+,1AZC+ZA+ZB (5.19)
and
yD za + 2B P
<?>mm - f(aap—1) + Flaac — 1) +2a (5.20)

where f = 1+ zp/100. The authors claim that these equations yield average errors
in the order of 4% compared to exact methods (i.e. Underwood) and thus serve our
purpose well. From (5.8) and (5.18)—(5.20) we derive the following expressions for the
slopes in Figure 5.5

D' _ 1/pref -1 -1
Vin V7L _laac—D(atin) | 1 (5.21)
drref — d fZB (aAB—l) (ch—l) fZB (ch—l)
VTrILm_V]?ref _ ZA—(1+ZAZC')
dl — drref o ZB (aAc—ch) (1+ZAZC)

(zB + z¢) (@ac — 1)
zp (@ac —ape) (14 zaze) (ape — 1)

+1  (5.22)

As one will expect we find that the slopes of the curves extending from the minimum
(preferred separation) towards the direct and indirect splits, depend on the difficulty
of the separation, i.e. on the ratio aag/apc. In the next section we use expressions
(5.17)—(5.21) to determine (analytically) whether it is always optimal to produce the
preferred separation as the first split for the Prefractionator arrangement in Figure
5.1 (a).

5.4 The Main Sidestream Column

We here consider the energy usage (Vinin) in the main column with sharp separations
between components A, B and C'. To derive the desired expression we first consider
the 3—column arrangement in Figure 5.6 (b), where the prefractionator is denoted
C'1 whereas the downstream columns are C'2 and C'3. Note that a partial condenser
is used for the prefractionator column C'l, since using a total condenser increases
the energy usage in C'2 by a term proportional to the feed of light key (Fz4). For
minimum reflux calculations we can represent the main column of the Prefractionator
in Figure 5.6 (a) as a special case of Figure 5.6 (b), and we then refer to columns C?2
and C3 in order to distinguish between cases when the upper or lower feed controls
for the main column. The required energy usage in the main column is thus

ymain mam(VC2 VCB) (5.23)

min miny Y min

depending on whether the lower feed (V¢3) or upper feed V2 controls, i.e. is the
larger. To compute V.¢2 and V.3 we make use of the following exact expressions for
a sharp separation of a binary mixture:
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(a) Prefractionator (b) 3—column arrangement

Figure 5.6: Prefractionator arrangements for separation of ternary mixtures

The feed to column C3 is saturated liquid, and for a sharp split between A and B
we have from (5.1)

FCB
Vi = ———+d°® (5.24)
apc — 1
where d¢3 = F (1 — d)%) zp is the distillate flow and F€3 = F (1 — (ﬂg) zp+ Fzc 1s
the feed to column C3. F' is as before the overall feed to the prefractionator C'1, and
#% is the fractional recovery of the intermediate component B in the distillate of the
prefractionator. We then get for column C'3

<K)CS (1—6%) 2B + 2c

_ _d .
F)= p—" + (1-¢%) 25 (5.25)

The feed to column C2 is a saturated vapor, and a similar derivation for a sharp split
between B and C' yields

c2 o d
14 F za+ ¢piB d
— = = 1— 5.26
<F)min asp—1 apc —1 + ( ¢B) B ( )

To compute V,7:%" need to determine when the lower and upper feed controls respec-
tively, for different mixtures and different values of ¢%. The “switch—over” value for
#% occur when the main column is “balanced (i.e. V,§3 = V.¢2), and by equating

(5.25) and (5.26) we find

(1 —ZA) (OZAB — 1) + zB (OZAB — 1) (QBC — 1) — ZA (aBC — 1)
zp (apc — 1)+ zp (eap — 1) + zp (aap — 1) (apc — 1)

¢ = (5.27)

We thus have the following three operating regimes for the main sidestream column
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(i)  ¢% < ¢*@  Lower feed controls, i.e. Vmain — yC3

min min
(i) ¢4 = ¢** Balanced column, ie. Ymain — yC2 — yC3
(iii) qﬁ% > ¢®  Upper feed controls, i.e. V7ain = yC2

Since V.63 decreases as we increase ¢%, and since V.62 increases as we increase ¢4
min B> B>

min
we find for the main (sidestream) column that
min V75" (5.28)
B
is obtained for ¢4 = ¢*®. Thus when we consider only the energy consumption in
the main column, then the best choice i1s to operate the prefractionator such that
¢% = ¢ This is illustrated in Figure 5.7. Before proceeding we mention that if
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Figure 5.7: Minimum energy usage V. for the main sidestream column as a function of the
fractional recovery of intermediate ¢% for « =4 :2:1 and zp = [1/3,1/3,1/3]. The Figure
illustrates that the overall Vinip corresponds to a balanced column and occurs for ¢% = ¥,

we instead use a total condenser for the prefractionator so that the feed to C2 is a

saturated liquid, then V.2 will increase and the value for ¢®? decreases.

5.5 Is the Preferred Separation Optimal for the Col-
umn Sequence?

In the previous sections we found that the minimum energy usage in a prefractionator
column usually displays a very sharp minimum at the fractional recovery of interme-
diate component corresponding to the preferred separation (¢?"¢/), whereas the main
column displays a similar sharp minimum for a balanced column (¢%#). The question
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should then be posed: Which of these values, if any, is best when considering the
overall energy consumption in the two columns.

Using the expressions derived in section 5.2 and 5.3 we will in this section derive
approximate analytical equations for the optimality conditions for the prefractionator
arrangement in Figure 5.1 (a) with an infinite number of stages and sharp splits. Based
on these expressions we show that the preferred separation is indeed optimal for all
cases, but the overall optimum is quite “flat” for values of ¢% in the range between
qSPTEf and quGI.

The overall energy consumption

Vinin = Vn?zln + VnTszm (5-29)

can be easily computed as a function of ¢% using the analytical expressions for V.1
in (5.17) and (5.16), and for V,7.2" in (5.23). Note that we can alternatively use the
distillate flow leaving the prefractionator as our independent variable, since there is
a unique (linear) mapping from ¢% to d:

d=TF> ¢izpi = F (%24 + 625 + ¢&2c) (5.30)

i=1
Note in particular that for sharp splits the differentials are related by
dd = zp - 0¢% (5.31)

since the amount of A and C' are constant in the distillate, i.e. ¢4 =1 and ¢& = 0.

5.5.1 Introductory example

In order to give further motivation for analyzing the optimality conditions of the
preferred separation, we first consider an introductory example. The objective of this
example is to compute V,,;, as a function of the fractional recovery qS%, and compare
the results with the prefractionator V.¢1 and the main column V%" We here
consider a mixture with a large amount of intermediate B. Figure 5.8 shows V,,,;, as
a function of the recovery ¢% for the example with relative volatilities of « =4 :2: 1
and feed compositions zp = [0.1,0.8,0.1]. We find for this example that V,;, for
the sequence of two columns indeed corresponds to using the preferred separation as
the initial split. However, as mentioned we find that there is a relatively large region
in which the energy usage is almost constant, independent of the recovery, i.e. the
decrease in V™" = VV¢3 is approximately equal to the increase in V!, This region
covers all intermediate recoveries between ¢P"¢f and ¢*¥. Note that ¢P"¢f < ¢?? in
this case, but for other cases we may have ¢?"¢/ > ¢*% as shown in Figure 5.9. In
this case the region with approximately constant Vj,;, is between ¢?? and ¢Pref.

5.5.2 Analytical results

We here use the previously derived analytical expressions to show that for sharp splits
it 1s always optimal to use (;S% = ¢P"%/ in the prefractionator, i.e. d = d?"*f. We do
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Figure 5.8: Minimum boilup V as a function of the fractional recovery of intermediate ¢%
fora =4:2:1and zr = [0.1,0.8,0.1]. The Figure illustrates that there is a large region
enveloped by ¢*"¢f and ¢**, in which V remains close to the overall minimum.
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Figure 5.9: Minimum boilup V as a function of the fractional recovery of intermediate ¢%
fora =4:3:1and zr = [0.1,0.8,0.1]. The Figure illustrates that there is a large region
enveloped by ¢/ and ¢**, in which V remains close to the overall minimum.
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this by comparing the slopes (i.e. derivatives) for the prefractionator and the main
column with respect to the distillate flow, i.e. V¢! /dd and V™" /3d.

First consider the prefractionator C'l. Using equations (5.17) and (5.22) we thus
obtain for d > dP"¢/ (i.e. 6% > grred

oy Cl VI _ yerel
ad dl — deref
ZA — (1 =+ ZAZC)
zp (vac — ape) (14 zazc)
(zB + z¢) (€ac — 1)
zp (eac —ape) (14 zaze) (ape — 1)

+1, (d>dref) (5.32)

Conversely we obtain using equations (5.16) and (5.21) for d < dP™¢f (i.e. ¢% < ¢P"e/)

avCl VD _ Vpref
ad ~  drel —qp
(OZAC'—I)(ZA—I—ZB) zo — 1

— ref
Fen(aan—1) (ane - 1) Fenlane -1 0 <TI0

Next consider the main column, for which we obtain from (5.25) and (5.26)

avmain avCB ape bal
34 = 9d " ape_1 (d < d™™) (5.34)
and
6vmain 6vC2 1 bal e
Gd = 0d —aap—1 >4 (5.35)

Note that these derivatives are eract for sharp splits and binary mixtures, since the
minimum energy usage for the main column is equal to the binary separation requiring
the largest energy. Our objective is now to determine whether the preferred separation
is always optimal for the directly coupled Prefractionator. A simple analysis shows
that we must consider the slope in the “flat” region for the two cases of

(1) dpref > dbal
and

(2) dpref <dbal

Case 1: d’"®/ > d*¥ (Figure 5.10)

In this case the upper feed controls in the “flat” region and the preferred separation
is not optimal if for d* < d < dP"®f we have OV/dd positive, i.e. the overall energy
usage (V) is smaller for some value of d than for dP"¢/. From (5.32) and (5.35) this
is the case if and only if

1 (ozAc—l)(zA—f—zB) zo — 1

asp—1" fzp(aap—1)(apc—1)  fzp(apc—1) 1 (5.36)
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After substituting for aac = aapapc and z¢ = 1 — (24 + zg) and some algebra, we
find that the condition is equivalent to

(24 + 2B) (dac — 1 —aap+ 1) — fzp (ape — 1) (aap — 1 + 1)
JzB (aap — 1) (apc — 1)

0 (5.37)

aap (za +2B) (apc — 1) — aapfzp (apc — 1)
fzp (aap — 1) (apc — 1)

aap (za + (1= f) zg)
fzp (cap — 1)

AN = AN <= A
o
=
w0
=

Since the nominator is always larger than zero, we consider only the denominator.
After substituting for f = 1 + B/100 we derive

ov . z
— >0 iff 2A<(f—1)zB—Z—B

ad =100 (5.40)

which is satisfied only when z4 is very small. From this result we see that the preferred
separation 1s optimal in almost all cases, but we are lead to believe that there may
exist some limiting cases with z4 small where the preferred separation is not optimal
for the column sequence. However, it should be noted that (5.40) is based on the
analytical expressions of Glinos and Malone (1988) which are are not quite exact. In
order provide the ezxact optimality conditions for the preferred separation, one will
have to use exact methods such as Underwood’s method as shown by Fidkowski and
Krolikowski (1986).

To verify the optimality condition (5.40) we give in Figure 5.10 numerical results
for an example where we also applied Underwood’s method to compute V? and V71
used in equations (5.17) and (5.16). According to condition (5.40) we have that for this
case (z4 < z%/lOO), the true V,;, should not correspond to the preferred separation.
However, using Underwood’s method instead of the approximate expressions by Glinos
and Malone (1984), we find that the preferred separation indeed gives the true V.
Thus it 1s for all separations, at least for sharp splits, optimal to use the preferred
separation in the prefractionator. More importantly, the Figure also illustrates that
there is a large region of recoveries enveloped by ¢?"¢f and ¢*®, in which V remains
close to the overall minimum. This is not stressed in any of the previous works, and
is of great import for practical operation to be discussed later.

Case 2 : ¢"% > ¢P™¢/ (Figure 5.11 )
In this case the lower feed controls in the “flat” region between ¢?"¢f and ¢*% and
From (5.33) and (5.34) the preferred split is not optimal if and only if

ape S za— (14 zaze)
age —1 zp (@ac — ape) (14 zazc)
(zB + z¢) (€ac — 1)

zp (@ac — ape) (1 4+ zaze) (ape — 1)

+

+1 (5.41)
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Figure 5.10: Analytical results for boilup V' as a function of the fractional recovery of
intermediate ¢4 for a =4 :3:1 and zp = [0.005,0.99,0.005]. The Figure shows that the
overall V,,; corresponds to using the preferred separation (qbpre f) as the initial split. The
dashed line is obtained using the approximate equations by Glinos and Malone (1984), and
the solid line gives the exact solution obtained from Underwood’s method.

In this case it becomes somewhat difficult to extract simple algebraic conditions as
was the case for upper feed control, i.e. equation (5.40). However, after considering
numerically a large range of mixtures, we have in fact not found any case for which
condition (5.41) is satisfied. Nevertheless, we find as shown in Figure 5.11 that for
low values of apc for which ¢** is large, there may be very large regions in which
Vinin 18 relatively constant. Note that we in this case did not find any significant
differences between the approximate equations and Underwood’s method. One may
note, although hardly surprising, that as agc — 1 we have that ¢°* — 1 and
Oprer — 0, hence the lower feed controls for all recoveries.

Case 3 : d/"*f = d*% (Figure 5.12 )
A special limiting case is when ¢P"¢f = ¢  Such cases are obtained by equating
expressions (5.9) and (5.27). Tt becomes somewhat complicated to derive simple
conditions for when this may occur in the general case. However, for cases where the
A/ B split and B/C split are equally difficult so that aap = apc we derive after some
algebra that ¢P"¢f = ¢ if and only if

1+ 2p(a—2
24 = L) (5.42)
2
Note that equation (5.42) may not apply for all compositions zp, since we must require
z4 < 1. For the particular case where a = 2 the equality ¢P"¢f = ¢*¥ occurs always
for z4 = 0.5. Figure 5.12 illustrates one such case with a sharp minimum where

oPref = ¢l Finally we also recognize that the “flat” regions become smaller if a
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Figure 5.12: Analytical results for boilup V as a function of the fractional recovery of
intermediate ¢% fora =4:2:1 and zp = [0.5,0.1,0.4]. The Figure shows that there is a
sharp minimum V,,;, where qbpref = qbbal.
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total condenser is used in the prefractionator (C'1), since ¢** moves closer to ¢?"¢/.
This 1s because the region in which the upper feed controls becomes larger so that
@ is decreased, i.e. V¢? increases with a term proportional to Fzy.

5.6 Implications for Operation

We have so far shown in terms of analytical and numerical results that for sharp
splits it 1s optimal to use the preferred separation as the initial split. This preferred
separation corresponds to a certain fractional recovery of the intermediate in the
distillate from the prefractionator. However, we have also shown that there usually
is a range of recoveries between ¢P"¢/ and ¢®¥ for which the energy usage (boilup)
remains close to the minimum. For practical operation we want to maintain operation
in this “flat” region. Again we have three cases

¢Pmel < ¢P3 In this case we want to maintain ¢4 > ¢Pm¢f (d > dPT¢f). With reference to
Figure 5.2 we see that to achieve this in the prefractionator, we want to keep
the top product (yé) at a given composition, and overpurify in the bottoms,
i.e. a bottoms product almost completely depleted in the low boiler A. This
means that it may be sufficient to use only one point control in the top of the
prefractionator (i.e. use reflux for control) and set the the boilup in the bottoms
at a value which is equal to or higher than the optimum value corresponding to

d = drref.

¢P"e/ > ¢P3 This is the reversed case, for which we want to maintain ¢4 < ¢P™/ (d <
dP™¢7). This may be achieved by controlling the bottom composition (z%) and
overpurify in the top of the prefractionator, i.e. a distillate product almost
completely depleted in the high boiler C'. In this case one may use one point
control in the bottoms of the prefractionator, e.g. use reflux for control and set
the boilup in the bottoms at a value which is equal to or higher than its optimal
value corresponding to d = dP™®f .

oPref = @bl In this case Vjni, has a sharp minimum, so there is no “flat” region in which
we can operate the column. This case may pose great difficulties for practical
operation if one wants to achieve the minimum energy usage. Tight control is
most likely needed in both ends of the prefractionator, i.e. use both reflux and
boilup for control purposes.

Similar results are expected to hold also for the Petlyuk column, but there the vapor
split (Ry) takes the role of the boilup to the prefractionator. These results show the
importance of knowing whether ¢?"¢f is smaller or larger than ¢®.

5.7 Optimal Splits for the Petlyuk Column

As shown in Figure 5.1 (b) the Petlyuk columns shows a strong resemblance with
the prefractionator arrangement studied above. Thus, one may expect that there i1s a
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region of recoveries of the intermediate component, approximately between ¢ and
#P"ef | for which Vj,;, remains almost constant. Indeed, this is the case, and for sharp
separations we have in fact a region in which Vj,,;, is exactly constant. This is shown
in the insightful analysis of Fidkowski and Krolikowski (1986).

To complete the foregoing analysis of the prefractionator column we here present
the main results from this work. Through a careful analysis of the Underwood equa-
tions, Fidkowski and Krolikowski (1986) show that the minimum reflux for a sharp
split between components A, B and C' is given by

L zabh 2402 ABCZB
e = mazx , + 5.43
<F)mm {QAC_Ql asc — by ch—Qz} (5.43)

and corresponding for the minimum boilup

<V) — map{ YACEA _@AcZa aBCZB } (5.44)

F aac =01 aac—02  apc— b
where #; and 6, are the solutions of the Underwood equation (5.14). These roots
may be computed for the absolute minimum solution for the prefractionator, which
as previously discussed corresponds to the preferred separation. They then carry over
to the solutions for the upper and lower part of the main sidestream column. The
authors further show that V,;, is constant between the fractional recoveries ¢P"¢f
given in equation (5.9) and the recovery ¢ given by

o = Limin (dac — apc) — Fzaape (5.45)

Lmincac — (Lmin + Fza + Fzc)
As noted by Carlberg and Westerberg (1989) this constant minimum reflux region is
constituted by 4 different sets of specifications for the recoveries and Underwood roots.
We thus have that for Petlyuk columns with a sufficiently large number of stages, one
may operate that column at any value between ¢P7¢f and ¢ without any increase
in the energy usage. For completeness, we also note that Carlberg and Westerberg
(1989) extended the analysis for the Petlyuk column also to multicomponent mixtures
with an arbitrary number of components.

We may further comment that ¢ for the Petlyuk column has the same significance
as ¢%® for the prefractionator arrangement. However we stress that for the latter we
found that the minimum energy usage is always smaller for ¢?"¢f (although only
slightly in many cases). We may compare the extent of the “flat” regions in the
prefractionator arrangement and the “constant” region of the Petlyuk column. The
difference between these depend only on the recoveries of $*? and ¢, since the other
limiting value is that of ¢?"®/ which is the same for both columns. In Table 5.2
we give values of ¢** and ¢! obtained from equations (5.27) and (5.45) for a feed
composition of zp = [0.1,0.8,0.1] and different volatilities. We also give V,,;p, for the
two column arrangements.
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Table 5.2: Comparison of prefractionator arrangement and Petlyuk column for sharp sepa-
rations of a ternary mixture with zp = [0.1,0.8,0.1]

Volatilities | ¢F gbat | grrel | ypellyuk [ yprefrac
a=4:2:1 | 0.6535 ] 0.6667 | 0.3333 | 1.828 1.867
a=4:3:1 |0.2691 | 0.2639 | 0.6667 | 2.830 | 2.867
a=4:13:1|09038 | 0.9740 | 0.1000 | 3.924 | 3.967

5.8 Preferred Separation in Real Columns Using a
Finite Number of Stages

The analytical results presented in the previous sections apply to the special case of
sharp splits and infinite columns. To verify the analytical results, and to examine
the impact of “finite” columns, we now consider numerical simulations for simple,
but detailed stage by stage models of distillation columns. Our objective is thus to
establish whether using the preferred separation yields the minimum energy inputs
for complex columns with a finite number of trays and finite purities. Results are
presented both for the prefractionator arrangement and the Petlyuk column in Figure

5.1.

5.8.1 Optimal split-sequence for sharp splits

In this section we present numerical results from nonlinear simulations of staged
columns assuming constant molar flows and constant relative volatilities. The pro-
cess data for the simulations are given in Table 5.3. Here N; = 30 denotes the number

Table 5.3: Data for ternary separations in real (“finite”) column

Number of stages | Ni =30
Feed compositions | zp = [0.1,0.8,0.1]
Molar feed F =1 [kmol/min]
Relative volatility | a =4:2:1
Purity spec.’s ' =99.8%

zh <1073

yt <107°

of stages in each of the six column sections, giving a total of 180 stages for all arrange-
ments. The product purities are given by ' = 99.8% whereas Iix and ydc denote the
purities of A and C'in the bottoms and distillate flows from the prefractionator (C'1),
for which we for sharp splits chose the value of ¢ = 1073, Note that we for all cases
plot the boilup versus the distillate flow. This has however no practical implications
since there is a unique (linear) mapping from the recoveries to the distillate given by
equation (5.30).

For the arrangements in Figure 5.1 we have 5 DOFs at steady state. Since three
of these are consumed in order to keep the product purities at the respective set
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points, there is only one DOF left if we are to vary d freely. This last DOF is here
used to keep either the purity of A in the bottoms (z%) or C in the distillate (yZ)
at their set-points of ¢ = 1073. The procedure for obtaining the desired numerical
results can then be outlined as follows. We first compute the minimum boilup using
the gradient projection method discussed in chapter 3 for which we optimize with
respect to the two remaining DOFs. Using this optimum as an initial point we then
obtained the uniquely defined solution corresponding to z% = y4 = 1073, for which
all the DOFs are consumed. To determine whether the optimum corresponds to the
preferred separation also for (real) columns with a finite number of stages, we then
obtained solutions for different values of d by continuation along lines of constant z%
and yg. We thus use the value of d corresponding to mi‘ = yé = 1073 in order to
switch between the solutions branches. Note also that as for the initial example in
Figure 5.4, the impurity specifications are satisfied as inequalities for all other values

of d.

5.8.2 Prefractionator arrangement

In Figure 5.13 we give numerical results for the prefractionator arrangement in Figure
5.1, using the data in Table 5.3. Figure 5.13 (a) illustrates an important feature with
respect to practical operation. We find that the energy usage stays relatively constant
in a region where we keep the composition in the top constant, i.e. yé =1073. As
shown in Figure 5.13 (b), this region corresponds roughly to the region between the
preferred separation (dP"¢/) and the balanced main column (d%?). Figure 5.13 (b) also
illustrates the comparison between the numerical results and the analytical results
shown in Figure 5.8. The difference owes mainly to the fact that the simulations
correspond to a column with a finite number of stages. An important issue to bear in
mind, is that by introducing direct coupling between columns C2 and C'3, we have that
only a certain fraction of the impurities that enter from the distillate (C') or bottoms
(A) of the prefractionator C'1 will appear as impurities in the sidestream product B.
This situation is different from a prefractionator arrangement with three columns, in
which case any impurity either in the top or bottoms from the prefractionator leaves
in the intermediate product streams. The impact of this direct coupling becomes even
more pronounced as we decrease the product purity of the intermediate, and hence
allow a larger fraction of impurities to enter from the top and/or bottoms of C'1. This
is treated later when considering non-sharp splits. We now proceed to give results for
the Petlyuk column.

5.8.3 The Petlyuk column

As previously discussed one may use the Underwood equations to obtain exact an-
alytical solutions for the minimum reflux conditions in Petlyuk columns (Fidkowski
and Krolikowski 1986). However, we have not derived any ezplicit analytical results
in this paper for the Petlyuk column, although its analogy to the prefractionator is
close. We thus expect that the main results for the prefractionator carry over to
the Petlyuk column. Note that for the Petlyuk column the net distillate flow and
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Figure 5.13: Boilup for prefractionator arrangement in Figure 5.1 as a function of the in-
termediate distillate flow d with & = 4 : 2 : 1 and zr = [0.1,0.8,0.1]. The solid line in
Figure (a) corresponds to z% = 107° and the dashed line to y& = 107°. Figure (b) gives
comparison between numerical and analytical results.
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fractional recovery are given by

d=RyV — RLL (5.46)
and
. RvVyk — RiLz% -
¢p = (5.47)
FZB

Here Ry and Rp denote the vapor and liquid split ratio from the main column to the
prefractionator, y% the vapor composition of B leaving the prefractionator and .'13%’
the liquid composition entering in the top of the prefractionator. We should comment
that ¢% in this case may extend outside the range [0, 1] and that the (net) distillate
flow may become negative. In Figure 5.14 (a) we show the energy usage V' versus d
for the Petlyuk column, when using the remaining DOF to fix either the impurity of
light in the bottoms (solid line) or heavy in the top (dashed line).

We recognize that instead of consuming the last DOF for purity control, we may of
course also use it for optimization purposes. To obtain the “true” optimal solutions
for each value of d, we may optimize using for instance the values along constant
z% and yd as initial guesses. The optimized curve is given in Figure 5.14 (b). The
results indicate that the overall minimum boilup is constant within a large region of
distillate flows, and for this example close to the curve given by y& = 1073, According
to the discussion in section 5.6 this is as expected, since ¢® > ¢P"¢f so that the
lower feed controls. These results thus confirm that the findings of Fidkowski and
Krolikowski (1986) carry over also to columns with a finite number of stages. We
furthermore expect that the opposite situation applies to mixtures for which the
upper feed controls. Hence if the upper feed controls, the boilup V should be relatively
insensitive to changes in d along the line of constant z5,.

Comparison with results from the literature
We may now compare the results to the analytical results by Fidkowski and Kro-
likowski (1986). According to the authors V' is constant (at least for infinite number
of stages) in the region between ¢?7¢f and ¢f. Computing ¢?"¢f and ¢ from equa-
tions (5.9) and (5.45) we find for a sharp A/C split that they correspond to distillate
flows of dP"¢f = 0.3934 and d = 0.6228. Comparing these to the optimized curve in
Figure 5.14, we find good agreement which confirms the applicability of the analytical
results also to columns with a finite number of stages. Note also that from equation
(5.44) we obtain Vi, = 1.83 and from the simulations we computed Vi = 1.86.
Furthermore we recognize that the regions plotted for constant z% and yZ corre-
spond to the qualitatively different regions characterized by Carlberg and Westerberg
(1989). For instance we have that the left part in Figure 5.14, where the light compo-
nent is kept constant at the upper bound z% = 1073, and the distillate is practically
depleted in the heavy component (i.e. yé < 1073), corresponds to what Carlberg
and Westerberg (1989) denote as region I. Note that keeping l‘i‘ at the upper bound,
implies that the recovery of A in the top is at its lower bound. The other regions
correspond to where yd increases and finally reaches its upper bound of yd = 1073,
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Implications for operation

The implications for operation of the Petlyuk column are in general the same as for
the prefractionator arrangements in section 5.5. Furthermore, since there is a region
in which Vj,;, is constant, one may in fact choose any of the operating points within
this region without increasing the energy usage compared to the overall minimum.
The Petlyuk column thus proves to be a rather flexible arrangement, in that optimal
operation is rather insensitive to changes and disturbances (at least for sharp splits).
Although it may appear obvious, we should emphasize that the minimum energy usage
is not independent of both DOFs in the prefractionator. Hence it is still required to
use (at least) one point control in the prefractionator to maintain operation in the
vicinity of the optimum. Furthermore, we acknowledge some important differences
between the prefractionator and the Petlyuk column, owing to the direct coupling
between the prefractionator and the main (sidestream) column. From a practical
point of view it is most likely difficult to use on—line control of the vapor split Ry, so
that one may in practice choose to design the column so that Ry during operation is
within the optimal region.

Since some means for control in the prefractionator is needed, one may use the
liquid split Ry, for control. The probably easiest situation in terms of on-line oper-
ation, is thus when the lower feed controls, for which one can use Ry to control the
impurity of the light component in the top (and overpurify in the bottoms by having
Ry sufficiently large). If the upper feed controls, it is somewhat more difficult to
control the prefractionator, since one must use the liquid split in the top to control
the bottoms composition.

5.8.4 Optimal split-sequence for non-sharp splits

To investigate the impact of non-sharp separations on the optimal split-sequence, we
present in this section numerical results for cases when we decrease the product purity
of the intermediate component B. Thus, we examine the impact of the separation in
the downstream (main) column on the optimal split for the prefractionator. This is
in general a problem that does not have a unique solution, since we have two DOFs
for the prefractionator and may specify any two of the six recoveries (i.e. top and
bottom for all three components).

For the numerical examples we use the column data given in Table 5.3, but now
we decrease the product purity of intermediate to mg = 98%. In Figure 5.15 we show
that reducing x5 moves the optimum away from the preferred separation. In fact,
the overall minimum energy usage does not correspond to using a sharp A/C split
in the prefractionator. This is hardly surprising, since reducing the product purity
of B allows for a certain amount of impurity to enter over the top and bottom of
the prefractionator. It is thus possible to carry out a non-sharp separation in the
prefractionator which reduces the required energy input. Importantly, we see that for
the Petlyuk column that there is a “constant” region also for non-sharp separations,
which is about as large as for the sharp split case. For this example, where the lower
feed controls, one may in practice fix the vapor split at the optimal value and use
one-point control in the top where the liquid split controls the top composition.
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In figure 5.16 we compare the operating lines for constant yd with the optimized
curve, i.e. using the last DOF to minimize V for each value of d.

2.3

2.2F

21f d
Constant Y

V, [kmole/min]
=
© N

Ly
©
T

1.6

1.5F 1

1.4 L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"d, [kmole/min]

Figure 5.16: Boilup for Petlyuk column as a function of the intermediate distillate flow d
for non-sharp A/C split. The solid line corresponds to controlling the composition in the
top(i.e. yd =1.4. 1072) whereas the circles illustrate the optimized V for each value of d .

In Table 5.4 we give results from numerical optimizations using the data in Table
5.3, where minimum energy inputs are given for different column arrangements and
intermediate purities z5. In the table we have in terms of rigor also included data
for a heat integrated implementation of a three—column prefractionator arrangement.

It is interesting to observe that the savings for the Petlyuk column relative to the

Table 5.4: Minimum energy usage for prefractionator arrangements and Petlyuk column for
different intermediate product purities

P =998% | 25 =98% B =95%
Heat integrated | Vipin = 1.92 | Vipsn = 1.64 | Vipin = 1.25
Prefractionator | Vin = 1.91 | Vipin = 1.59 | Vinin = 1.20
Petlyuk column | Vi = 1.86 | Vipin = 1.53 | Vingn = 1.08

prefractionator arrangements increase as the intermediate purity £ is decreased.
For 5 = 95% the additional savings are as large as 10%. One may also note that
conventional arrangements such as the direct or indirect schemes require, a minimum
energy usage of Vi, = 2.73 for sharp separations of the given mixture in an infinite
column. This value is easily obtained from Underwood’s method.

A useful feature of the optimization procedure is that we may obtain the sensi-
tivities for the energy usage with respect to the product purities, by computing the
Lagrangian multipliers at the optimal solutions. This is an issue to be dealt with in
chapter 7, so that the details of the calculation procedure is not given here. In table
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5.5 we give Lagrangian multipliers for two product purities for the Petlyuk column.
Using the information contained in these multipliers proves very useful, although we

Table 5.5: Lagrangian multipliers for the intermediate product purity
:EZI-J =99.8% | Vinin = 1.86 | A =43
Jfg = 98% Vinin = 1.3 | A =15

should emphasize that the results in general apply only locally since it is based on
approximating the optimal surface as a quadrature. For instance we find that for
zh = 0.98 X\ = 15. Hence if £ is reduced to 5 = 0.95, we have that the predicted
reduction in the energy usage is AV = 15-(0.98 — 0.95) = 0.45. Compared to the
results in table 5.4 we thus find excellent agreement since AV = 1.53 — 1.08 = 0.45!
For the sharp split case, the results are however not that accurate. This is is however
as expected since there is a large relative decrease from x5 = 0.998 z£ = 0.98. Thus

it is only correct for smaller reductions in :L‘g.

5.9 Prefractionator or Petlyuk Column?

We have in this paper discussed some important features of the prefractionator ar-
rangements and the Petlyuk column, which proves useful for both operation and
design. We may summarize these findings by comparing certain advantages and draw-
backs for the two designs.

(1) The Petlyuk column always give a lower V,;,, as shown by Fidkowski and Kro-
likowski (1990), although the difference is usually small. The lower energy usage
owes to supplying all heat (boilup) in the bottoms of the Petlyuk column, and
all cooling (reflux) in the top, so that one in fact increases the internal flows
in all sections. For the prefractionator arrangement a given part of the energy
input is “only” used in the prefractionator column.

(2) The Petlyuk column has a region between certain recoveries for the intermediate
component, given by ¢% € [¢P7¢f 7], where V,s;y, is constant. The prefraction-
ator on the other hand displays a “flat” region where V,,;, may increase only
little for changes in the recoveries in the region d)% € [¢P7¢f ¢%4] where Vinin.
This has important implications for operation, since one may use control in only
one end of the prefractionator column and “overpurify” in the other end. The
Petlyuk column thus have a slight advantages in terms of flexibility, since one
may allow for operation within a certain range of recoveries, without paying a
penalty of increased energy input.

(3) For operation and control it is also important to recognize that it is probably
easier to control external flows (i.e. reflux and boilup) rather than manipulating
the internal splits (vapor Ry and liquid Ry). For the prefractionator arrange-
ment it thus proves useful to have an external condenser and reboiler compared
to the directly coupled flows in the Petlyuk column. The latter may also act
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in favor of the prefractionator arrangement, since “two-point” control (i.e. in
both column ends) is easier to implement.

(4) The Petlyuk column is in general more favorable with respect to energy loads
(“first law effects”) than energy levels (“second law effects”). Since the Petlyuk
column consumes all heat at the highest temperature (reboiler) and all cooling at
the lowest temperature (bottoms), the utilities may be more expensive than for
the prefractionator arrangement where some of the boilup and reflux is supplied
at less “extreme” levels.

(5) For retrofit and revamping studies, where columns and heat exchangers often are
available on cite, the prefractionator arrangement may have some advantages.
This owes also to the possibility for using heat integration of the intermediate
utility (prefractionator column), which is not possible for the fully integrated
Petlyuk column. Hence if utility from some other process stream is available at
the level required for the prefractionator column, the “overall” energy consump-
tion may in fact be smaller than the Petlyuk column. One may also operate the
two columns in the prefractionator arrangement under different pressure, so as
to take advantage of different utility levels on a large scale.

(6) An issue that favors the Petlyuk column is that it may be implemented in a
single shell using a dividing wall as suggested by Wright (1949). Thus one may
also considerably reduce the capital costs and the literature indicates savings
in the order of 30% (Smith 1995). However, for such dividing wall columns
the aspects of operation and control may become even more crucial. Recent
industrial practice however indicates that these are 1ssue which may be resolved.

(7) Finally we give a comment on the claim by some authors (e.g. Carlberg and
Westerberg (1989)) that the Petlyuk column is only favored when the temper-
ature difference between the heat sources and sinks are large. Although this
argument based on “second law effects” (levels) certainly applies, one should
at the same time recognize that the “first law” savings (loads) for the Petlyuk
column is the largest when the relative volatilities are small, i.e. the temper-
ature differences are small. Hence it 1s important to always keep in mind this
important trade off. However, for close boiling mixtures we also acknowledge
that a very large number of stages is required for the Petlyuk column, so that
the pressure drop should also be taken into account.

5.10 Discussion and Conclusions

In this paper we have proposed analytic expressions to obtain the minimum energy
usage (Vinin) for prefractionator arrangements. These expressions allows one to obtain
Vimin explicitly for any split of the intermediate component in the prefractionator.
Furthermore we have addressed the issue of using the preferred separation as the initial
split for multicomponent separations. We have shown that for sharp splits of ideal
mixtures, the preferred separation yields the true overall V,;,,. An equally important
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observation in terms of implications for practical operation, is that there may exist a
(large) region of splits in the prefractionator for which V;,,;, stays relatively constant.
Interestingly we find that using the idea of the preferred separation (Stichlmair 1988)
suggest operating the column at one end in this “constant” region, whereas the idea
of balancing the main column (Triantafyllou and Smith 1992), suggest operation in
the other end. In practical operation it is however usually best to use an intermediate
value, because column operation is then relative insensitive to changes.

To verify the significance of the analytical results, we also studied the importance
of using the preferred separation for columns with a finite number of stages and
for non-sharp separations. For sharp splits we found good agreement between the
analytical and numerical results. Results from numerical simulations also indicate
that using direct coupling between column sections introduces a degree of flexibility
in the column, which proves favorable in terms of operation. For the prefractionator
arrangement we find that there is a region of recoveries for which the minimum energy
usage stays relatively constant, i.e. there is a “flat region”. For the Petlyuk column
there is similarly a region where the minimum energy in fact stays constant. This
constant region has been showed in the literature to hold for infinite columns and sharp
splits, and in this paper we present numerical simulations that shows that it holds
also for Petlyuk columns with a finite number of stages and non-sharp separations.
Numerical results are also presented which indicate that the fractional savings of
the Petlyuk column in fact increases as the purity of the intermediate product is
decreased.

Based on the results presented in this paper, we find that in order to maintain
operation in the vicinity of the optimum, it may for some cases suffice to use only
“one-point control” in the prefractionator. This means that one may overpurify in
one end of the prefractionator, and control the composition in the other end to keep
this at its optimum value. For the Petlyuk column we may for instance fix the vapor
split Ry and use the liquid split Ry, to control either the heavy impurity in the top
of the prefractionator or the light impurity in the bottom depending on whether the
upper or lower feed controls. This finding is supported by simulations where we find
that the energy surface is “flat” in certain regions, within which optimal operation
should take place.

In order to project our results onto possible directions for future research, we
believe that the results presented in this paper may be quite easily extended to multi-
component mixtures of more than three components. In particular we believe that the
concepts of the preferred separation and balancing sidestream columns should prove
to be very useful in the analysis of other complex distillation arrangements. We expect
that using the concept of the preferred separation, which gives the optimal distribu-
tion of intermediate components for a pseudo-binary split (for the Petlyuk column
it gives one of the optimal solutions), may be used to decompose a multicomponent

separation to that of a sequence of pseudo-binary splits.

Nomenclature

A, B, C — Component indices
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D — Notation for direct split
d — Distillate flow rate [kmol/min]
f — Parameter in minimum reflux expression, i.e. f =1+ z5/100
F — Feed flow rate [kmol/min]
I — Notation for indirect split
L — Reflux flow rate [kmol/min]
N — Number of theoretical stages
q — Feed enthalpy
Ry, — Vapor split fraction in Petlyuk column
Ry — Liquid split fraction in Petlyuk column
S — Separation factor
t — Time [min)]
V' — Boilup from reboiler [kmol/min]
x; — Liquid mole fraction of component ¢
zF — Product composition of component i
y; — Vapor mole fraction of component 7
z; — Mole fraction of component 7 in feed

Greek letters
a;; — Relative volatility between components ¢ and j
A — Deviation variable
€ — Upper bound on impurity mole fractions
A — Lagrangian multiplier
0 — Derivatives
#¢ — Fractional recovery of component i in distillate
éPref — Fractional recovery of component B for the preferred separation
¢ — Fractional recovery of component B for balanced main column
6; — 1th root of Underwood equation
Sub- and superscripts
bal — Balanced column
main — Main sidestream column in prefractionator arrangements
F — Feed stage
min — Minimum flow conditions for infinite number of stages
pref — Preferred separation
P — Product

References

Carlberg, N. A. and A. W. Westerberg (1989). Temperature-Heat Diagrams for Complex
Columns. 3. Underwood’s Method for the Petlyuk Configuration. Ind. Chem. Eng. Res.
28(9), 1386-1397.

Cerda, J. and A. Wersterberg (1981). Shortcut Methods for Complex Distillation Columns.
1. Minimum Reflux. Ind. Chem. Eng. Process Des. Dev. 20(3), 546-557.



126 Chapter 5. The Preferred Separation for Prefractionator Arrangements

Fidkowski, Z. and L. Krolikowski (1986). Thermally Coupled system of Distillation Columns:
Optimization Procedure. AIChE Journal 32(4), 537-546.

Fidkowski, Z. and L. Krolikowski (1990). Energy Requirements of Nonconventional Distilla-
tion Systems. AIChE Journal 36(8), 1275-1278.

Glinos, K. and M.F. Malone (1984). Minimum Reflux, Product Distribution, and Lumping
Rules for Multicomponent Distillation. Ind. Eng. Chem. Process Des. Dev. pp. 764-768.

Glinos, K. and M.F. Malone (1988). Optimality Regions for Complex Column Alternatives
in Distillation Systems. Chem. Eng. Res. Des. 66(3), 229-240.

King, C. J. (1971). Separation Processes. McGraw-Hill Chemical Engineering Series.
McGraw-Hill Book Company.

Morud, J. (1995). Studies on the Dynamics and Operation of Integrated Processes. PhD
thesis. University of Trondheim. The Norwegian Institute of Technology. Norway.

Nikolaides, I. P. and M. F. Malone (1988). Approximate Design and Optimization of a
Thermodynamically Coupled Distillation with Prefractionaton. Ind. Chem. Eng. Res.
27(5), 811-818.

Petlyuk, F. B. and V. M. Platonov (1964). Thermodynamically Reversible Multicomponent
Distillation. Khim. Prom. (10), 723.

Petlyuk, F. B., V. M. Platonov and D. M. Slavinskij (1965). Thermodynamically Optimal
Method for Separating Multicomponent Mixtures. Int. Chem. Eng. 5(3), 555-561.

Petlyuk, F. B., V. M. Platonov and V. S. Avetlyan (1966). Optimum Arrangements in the
Fractionating Distillation of Multicomponent Mixtures. Khim. Prom. 42(11), 865.

Smith, R. (1995). Chemical Process Design. Wiley.

Stichlmair, J. (1988). Distillation and Rectification. Ullmann’s Encyclopedia of Industrial
Chemistry B3, 4-1 — 4-94.

Stupin, W. J. (1970). The Separation of Multicomponent Mixtures in Thermally Coupled
Distillation Systems. PhD thesis. University of Southern California, USA.

Triantafyllou, C. and R. Smith (1992). The Design and Optimization of Fully Thermally
Coupled Distillation Columns. Trans. Inst. Chem. Eng. 7T0(Part A), 118-132.

Underwood, A. J. V. (1948). Fractional Distillation of Multicomponent Mixtures. Chem.
Eng. Prog. 44(8), 603-614.

Wolfl, E. A. and S. Skogestad (1995). Operation of Integrated Three—Product (Petlyuk)
Distillation Columns. Ind. Chem. Eng. Res. 34(6), 2094-2103.

Wright, R. O. (1949). U.S. Patent 2,471,134.

Appendix A Fractional Recoveries for the
“Preferred” Separation

The underlying assumption in the expressions for minimum reflux presented by
King (1971) and Stichlmair (1988), is the occurrence of a pinch at the feed point
for all components in a multicomponent mixture. In the main body of the paper we
showed how one may find expressions for cases where the feed is saturated liquid. We
here show how to derive similar expressions for saturated vapor feeds.
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A.1 Preferred separation for saturated liquid and vapor feeds

Assuming that all components pinch at the feed point under limiting flow conditions
(i.e. minimum reflux), we find using the component balances around each stage that
the minimum reflux ratio is given by

L Tpi — YFi

fl — 2 g 5.48
This can easily be illustrated from McCabe—Thiele diagrams for each component. For
a saturated vapor feed we have from (King 1971)

<K> _ orndf — ¢ (5.49)

F aLH—l

If we then equate expression (5.49) twice for the sharp split between components A
and C' ((;Si =1and quC = 0), and the corresponding split between A and B, we obtain

e ¥:Yel — QUAB — ¢% (5 50)
asc —1 asp—1 '
which gives
pref  _  XAC T QAB 5.51
¢uapor Qac — 1 ( . )

If we assume that all components pinch at the feed point also for non-sharp sepa-
rations, we may use the formulas given above also for this case. For saturated liquid
feeds and non-sharp separations we thus have (King 1971)

<£) _ 9% —aapdgp _ 94 —aacod

= 5.52
F OzAB—l OzAc—l ( )

Given the recoveries of A and C', we may thus obtain the fractional recovery of B
ezact for the preferred separation also when the purities are not high, i.e.

el = 3% (apc — 1) + apcod (aap — 1) (5.53)
liquid — QAc — 1 O
For vapor feeds use equation (5.49) and obtain
gl — ¢4 (aac — aap) + 6% (vap — 1) (5.54)
vapor — aac — 1 .

These equations then reduce to (5.9) and (5.51) in the special case of sharp splits.
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Abstract

The task of separating a multicomponent mixture into streams enriched in
the respective components is commonly carried out in conventional distilla-
tion columns arranged in series. However, due to the scrutiny of tighter re-
quirements for energy and cost efficiency, current research aims at alternative
column arrangements that offer savings in both operational (energy) and capi-
tal costs. Among these we have the Petlyuk or dividing wall column, in which
three components are separated in a single shell using only one reboiler and
one condenser. In this paper we extend the Petlyuk ideas to separations of four
components, although extensions to more components is straightforward. We
provide a general definition of Petlyuk arrangements and discuss alternative
structures from the literature. Following this overview we consider particular
arrangements that allows for implementation in a single shell using dividing
walls or vertical partitions.
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6.1 Introduction

Industrial distillation processes are commonly known to be highly energy-demanding
operations. Recent surveys indicate that energy inputs to distillation columns account
for roughly 3% of the total energy consumption in the U.S. (Ognisty 1995). For this
reason there is ample scope for developing more energy efficient separation schemes.
In order to reduce energy consumption at least two alternative approaches have been
proposed both in the literature and by industrial practitioner. These approaches
subscribe to either integrating conventional distillation arrangements, or to the design
of new configurations. The former approach typically involves distillation columns
arranged in series with energy integration between columns or other parts of the
plant. Among the “new” configurations that offer both energy and capital savings we
find the dividing wall column first proposed by Wright (1949). Beloved children are
known by many names, and this arrangements is also known as the Petlyuk column,
due to a theoretical study of Petlyuk et al. (1965), or as a fully thermally coupled
column (Triantafyllou and Smith 1992). In order to provide a common framework for
future work, we use the following definition:

A Petlyuk arrangement is a column arrangement separating three or more
components using a single reboiler and a single condenser, in which any
degree of separation (purity) can be obtained by increasing the number
of stages (provided the reflur is above a certain minimum value and the
separation is thermodynamically feasible).

Use of this definition eliminates for example a conventional sidestream column from
being considered as a Petlyuk arrangement, since these require infinite reflux to obtain
a pure sidestream product (even with an infinite number of stages).

A schematic of the well known Petlyuk Column for separations of ternary mixtures
(n = 3), is illustrated in Figure 6.1. We emphasize that the two representations are
identical from a computational and thermodynamical point of view if we neglect
heat transfer across the dividing wall. Although the Petlyuk arrangement shown in
Figure 6.1 have been known for almost 50 years (Wright 1949), it has only quite
recently gained interest also in industry. The Petlyuk column has nevertheless been
the subject of several theoretical studies (see e.g. Petlyuk et al. (1965), Petlyuk
et al. (1966), Fidkowski and Krolikowski (1986), Carlberg and Westerberg (1989),
Kaibel (1987), Triantafyllou and Smith (1992) and Wolff and Skogestad (1995)). In
the literature it is reported that for ternary mixtures (n = 3), the Petlyuk column
requires typically 30% less energy input compared to conventional arrangements using
simple columns in sequence. Due to the possibility of implementing the column in
a single shell (dividing wall column), and savings of one reboiler and one condenser,
the capital savings are also typically in the order of 30% (Smith 1995). The literature
on Petlyuk arrangements for separating mixtures with more than three components
is relatively scarce. Among the few contributions are some ideas presented by Kaibel
(1987). However, neither detailed analysis nor computational results are presented.

The main contributions from this chapter lie in providing a systematic framework
for analysis and design of Petlyuk arrangements for separations of mixtures with four
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Figure 6.1: Petlyuk column for ternary separations. Left : Left : Dividing wall implementa-
tion. Right : Equivalent prefractionator arrangement.

or more components. Let n here denote the number of components in a mixture to
be separated into its pure constituents. For a conventional scheme consisting of a
sequence of regular columns, 1t is well known that for sharp separations a minimum
of 2(n — 1) sections with (n — 1) reboilers and (n — 1) condensers is required. Here a
section denotes a part of the column from which no streams enter or leave.

In order to derive the “optimal” scheme from all possible sequences, various meth-
ods have been presented in the literature. The mathematical problem may be for-
mulated as a MINLP—-problem to be solved by some optimization—algorithm. How-
ever, for a large number of components, one in practice often fails to locate the
global optimum due to non—convexities and computational issues. To overcome these
limitations, heuristics and evolutionary strategies have been proposed to guide the
engineer in choosing from the set of possible arrangements (e.g. Tedder and Rudd
(1978) and Nishida et al. (1981)). Among the most important tasks when seeking
to find the optimal column arrangement, is that of deriving a general superstructure
which incorporates all other configurations as substructures. In this work we consider
three different “superstructures” for Petlyuk arrangements proposed in the literature.
These are based on the works of Sargent and Gaminibandara (1976), Agrawal (1996)
and Kaibel (1987).

Before going into detailed analysis of different Petlyuk arrangements, we will elab-
orate on certain issues of fundamental importance. Firstly we address the issue of
sharp splits, which is crucial in order to understand the achievable separations for
binary and multicomponent distillation. We then briefly discuss some aspects related
to the question of energy versus exergy.

6.2 Sharp Split Arrangements

It is common practice within theoretical studies on batch, continuous and complex
distillation columns to infer the separation of a given mixture in terms of sharp splits.
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For instance, Cerda and Wersterberg (1981) use the word sharp for the case where the
recoveries of light and heavy key are “close to one”. However, the sharpness of the
splits obviously depends on a number of factors such as the structure of the column,
the number of stages, the reflux and the thermodynamic properties (e.g. relative
volatility). In this paper we are mainly interested in the structure (arrangement) of
the columns and we propose the following definition:

A sharp split arrangement is an arrangement of columns in which any
degree of separation (purity) can be obtained by increasing the number of
stages (provided the internal refluxes are above certain minimum values
and provided the separation is thermodynamically feasible).

A Petlyuk column is then a sharp split arrangement with a single condenser and a
single reboiler. To clarify the above definition, we note that a special property of
distillation columns is that any degree of separation (purity) can be achieved by in-
creasing the number of stages. In order to illustrate this point, consider first the
McCabe—Thiele diagrams in Figure 6.2. In the case of limiting flow conditions (min-

Operating lines = f (R)

Minimum reflux, Rmin Finite reflux, R > Rmin
Figure 6.2: McCabe-Thiele diagrams for binary separations

imum reflux Rin), a pinch zone occurs in the vicinity of the feed point, requiring a
large number of stages in this section. However, by increasing the number of stages,
and allowing for a finite increase in R, we may in fact achieve any purity. This relation
is also revealed if we consider the approximate expression for the separation factor as
derived by Skogestad and Morari (1987) for a binary mixture with constant relative
volatility a:

dgef 27/(1 —27) oN (L/V)7"
" 2p/(l—zp) (L/V)ﬁB -1
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where T and B denote the top and bottom respectively. We see clearly that S — oo
when N — oo, whilst S — o when L — 1 (total reflux). The latter is the well
known Fenske equation which yields the minimum number of stages N,,;, for a given
separation. Before going into detailed analysis of particular Petlyuk arrangements
and the issue of deriving superstructure, we briefly discuss the issue of reversibility
and its impact on the energy consumption of distillation processes.

6.3 Reversible Distillation and Energy versus Ex-
ergy

In a thermodynamic sense distillation may be considered as the task of removing the
entropy of mixing in the feed by providing exergy. Exergy is supplied by means of
adding heat to the reboiler at a temperature Tr and removing (cooling) heat in the
condenser at a temperature T, As stated by Westerberg (1985), one may thus crudely
characterize a column as “a device that degrades.... heat from Tgr to T and thereby
produces separation work”. Another important issue is that the exergy required for
a conventional distillation process is in general much larger than the amount needed
for the limiting case of a reversible separation. There i1s thus “inherently” a certain
amount of lost work due to by process irreversibilities in various forms that cause
exergy losses, i.e. entropy production. A number of previous studies have been de-
voted to the task of exploring and analyzing such irreversibilities, based on concepts
of availability (exergy) and thermodynamic lost work (see e.g. Gomez-Munoz and
Seader (1985), Kaibel et al. (1990) and Ognisty (1995)). Among the most important
irreversibilities are (large) temperature differences for heat transfer at separate stages,
and irreversible mixing effects during mass transfer due to differences in chemical po-
tential. Both sources, owing to lack of equilibrium, contributes to the total exergy loss
which also includes lost work due to pressure drops and finite temperature differences
in heat exchangers.

By reducing exergy losses caused by irreversibilities one may approach the theo-
retical limit of reversible separation. However, since reversibility requires an infinite
number of trays and intermediate heaters and coolers at each stage, the capital costs
obviously become infeasible from a practical point of view. However, the additional
capital cost associated with a large number of trays and intermediate utilities is some-
what counteracted by two factors (see e.g. King (1971)). These are lesser degradation
of heat supply (adding heat at lower temperatures and cooling at higher temperatures)
and reduced tower diameter (less fluid flow towards column ends). Close boiling mix-
tures may be thought of as a “practical” example of potentially reversible splits, for
which the composition changes from tray to tray are small. For such separations,
the degradation of heat input is also lesser since the temperature difference between
reboiler and condenser becomes small. However, since the number of stages required
is very large, the pressure drop in such columns may become considerable. Next, we
consider in more detail exergy losses caused by irreversible mass and heat transfer,
thereby taking a partial account of why Petlyuk columns may prove to be superior
to conventional processes.
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6.3.1 Reversible Mixing

Even though reversible distillation is infeasible in practice, important insights are
still gained by examining the impact of different sources of exergy losses. Although
reversibility requires infinite columns and infinitely distributed heating and cooling,
one of the requirements for reversibility as stressed by Petlyuk et al. (1965), concerns
the actual split sequence for the multicomponent separation. This relates to one
source of irreversibility which is discussed here.

For conventional arrangements where all of the intermediate components enter
the downstream column from the top (indirect split scheme) or in the bottoms (di-
rect split) of the upstream column, back-mixing of intermediate component always
occur (Triantafyllou and Smith 1992). This phenomenon is explained if we consider
for instance the direct sequence for a ternary separation. The composition of the
intermediate component (B) will in this case increase below the feed location since
the composition of the light component (A) decrease. However, further down the col-
umn the composition of the heavy component C' increases, again causing a decrease
in the composition of B. The argument is similar for the indirect sequence. For
infinite columns there will thus be a pinch zone either at the lower or upper end of
the column, where the composition of B passes through a maximum. However, for
the Petlyuk column we have the special feature that the intermediate component dis-
tributes itself between the distillate and bottoms of the prefractionator column, and
the only pinch zone will be at the feed location. Analyzing these conditions in some
detail leads to the so called easiest split (Petlyuk et al. 1965) or the preferred separa-
tion (Stichlmair 1988), which gives the overall minimum energy usage for a ternary
separation as discussed in chapter 5. For the Petlyuk column, back-mixing is in this
case avolded, i.e. the composition of intermediate component increases towards the
top and bottom without passing through a maximum. Taking the discussion of re-
versibility one step further, we discuss in the next section how Petlyuk arrangements
may allow for distribution of utility in a simple and straightforward manner.

6.3.2 Distribution of Utility

An important source of thermodynamic inefficiency in Petlyuk arrangements, owes to
the fact that reboiler duty must be supplied at the highest possible temperature, i.e.
boiling point of the heavy component. Similarly, the condenser duty is added at the
lowest column temperature. One may therefore find that energy integrated schemes
with simple columns in some cases yield lower overall energy costs due to cheaper
utilities at less extreme temperature levels (see e.g. Westerberg (1985), Smith (1995)
or Annakou and Mizsey (1996)). For such indirectly coupled (heat integrated) schemes
one may operate the columns under different pressures and thus vary the reboiler
temperatures of the different columns independently. However, we emphasize that
Petlyuk arrangements still require smaller heat loads. As noted by several authors
there is thus a trade off between energy loads (“Ist law heat”) and levels (“2nd law
heat”). This illustrates that the optimality conditions for the Petlyuk column versus
heat integrated arrangements in general are case specific rather than general, in that
it depends on the particular mixture to be separated, available energy inputs etc. As
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a comment on this issue, we however stress that if energy is available at the level
required for the reboiler, it is in general more efficient to supply all heat input to the
reboiler rather than redistributing it. There are however some mixtures where this
does not hold.

As for conventional distillation columns, it is possible to increase the thermo-
dynamic efficiency in the Petlyuk column by distributing the energy input along the
column. We already mentioned that Petlyuk arrangements offer the potential for large
cost—savings when built in a single shell with vertical partitions. However, instead of
using simply simple metal sheets for these partitions, as suggested by Wright (1949),
Kaibel (1987) and Triantafyllou and Smith (1992), one may consider implementing
these vertical partitions as say plate heat exchangers. One may thus distribute the
heat input along the column, i.e. cooling at stages above and heating below the feed
location. Such plate exchangers may be implemented in a straightforward fashion
by allowing cooling duty (reflux) to flow from the condenser down to the feed plate,
and boilup from the reboiler to the feed plate. Similar designs are in fact well known
under the name of dephlagmators. We recognize that intermediate heat exchange
increase the required number of stages, since the operating lines are moved closer to
the equilibrium line. Tt thus represents a tradeoff between energy and capital costs.
However, lowering the heat loads in the condenser and reboiler also reduce the fluid
traffic towards the columns which results in in narrower columns (King 1971). Fur-
thermore, for practical implementation the distributed heat exchange may take place
only at certain designated locations along the column, chosen on the basis of the re-
gions (stages) in which the largest exergy losses occur. We now return to the task of
finding a suitable superstructure in order to find the “optimal” Petlyuk arrangement
for a quaternary separation.

6.4 Superstructures for Petlyuk Arrangements

A simple way to compare the different column arrangements for the separation of a
quaternary mixture ABC' D into its constituents, is provided by the network in Figure
6.3 (e.g. Agrawal (1996)). Using such networks yield convenient visualizations of the
pseudo-binary splits that are carried out in the various sections. In this network, the
feed represents a node, whereas each line connecting neighboring nodes represents
a column section, 1.e. a stripping or rectifying section. The intermediate nodes
represent streams that are passed from one two—sectional unit to another. The column
configuration corresponding to the network in Figure 6.3 consists of n(n — 1) sections
(= 12 sections for n = 4). Tt is possible to eliminate some of the intermediate
nodes in the network, thus decreasing the number of sections. However, we note that
any structure with less than n(n — 1) sections, cannot produce only the “preferred
separation”. This is explained by recalling the discussion for the preferred separation
in chapter 5, where we stressed that only the components with the highest and the
lowest boiling points should be separated in each section. For an n — component
mixture this requires the “maximum number” of n(n — 1) sections.

We first consider the superstructure proposed by Sargent and Gaminibandara
(1976) consisting of n(n—1) sections as shown in Figure 6.4. As indicated, the authors
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also incorporate the option of additional heating and cooling in each column section.
As the authors note, the number n(n — 1) actually represents the maximum number
of sections in sharp split arrangements for an n—component separation, as all nodes in
Figure 6.3 are included. According to the authors, this superstructure contained all

Figure 6.3: Network representation of possible separations involved in separating 4-
component mixtures.

functionally possible column arrangements as substructures. However, as illustrated
by Agrawal (1996), the proposed superstructure actually fails to do so (see e.g. Figure
6.6). This means that some potentially interesting column arrangements cannot be
obtained by removing either column sections or flows from the superstructure.

In a recent article, Agrawal (1996) proposes an alternative superstructure for a
certain subclass of Petlyuk arrangements. By considering arrangements with n — 2
satellite columns in communication with a central distillation column, he arrives at
the superstructure for quaternary separations shown in Figure 6.5. Agrawal claims
that by using this superstructure in combination with a network representation, one
may derive all previously proposed configurations giving “sharp splits”. Again, this is
however not quite true as we will illustrate by a much simpler structure proposed by
Cahn et al. (1962) and later by Kaibel (1987). For the sake of argument we still appre-
ciate that Agrawal’s superstructure is more general than Sargent’s arrangement, in the
sense that fluid transfer may take place between any of the interconnected columns,
and it includes Sargent’s superstructure and also Kaibel’s and Cahn’s arrangements
as substructures. We furthermore note that in Sargent’s sequential structure, there is
no direct fluid flow between the first and the last columns. This conceptual difference
between the “superstructures’ owes to the fact that Sargent considers n — 1 intercon-
nected distillation columns in sequence, whereas Agrawal’s superstructure consists of
n—2 satellite columns arranged around a central distillation column. Agrawal also ar-
gues that the minimum number of rectifying and stripping sections required for sharp
splits using such satellite arrangements, is equal to 4n — 6 (10 sections for n = 4).
These may be obtained by deleting the BC', ABC or BC'D node from the network in
Figure 6.3. By deleting for example the BC' node we obtain such a structure with 10
sections as shown in Figure 6.6. For n > 4 the “minimum” number of sections may
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Figure 6.6: Agrawal’s substructure with “minimum” number of sections, 4n—6 = 10 sections
forn =4

thus become much smaller than n(n — 1) as suggested by Sargent and Gaminibandara
(1976). However, we stress that 4n — 6 in fact does not give the minimum number
of sections for a Petlyuk or sharp split arrangement, as illustrated by considering the
Kaibel column in Figure 6.7. Before analyzing the latter arrangement, we ask the
reader to note that we later will demonstrate how the arrangements in Figures 6.4,
6.5 and 6.6 may be implemented in a single shell with two vertical partitions.

In the work of Kaibel (1987), columns consisting of vertical partitions are con-
sidered, based on the dividing wall column previously described by Wright (1949).
Although Kaibel analyzes in detail only the case of n = 3, he also indicates interest-
ing arrangements for n > 4. In Figure 6.7 we illustrate the simplest extension of the
Petlyuk column, in which one simply adds another sidestream for the intermediate.
The arrangement to the right is due to an early patent by Cahn et al. (1962) whereas
the dividing wall column to the left was later proposed by Kaibel (1987). However,
since only the latter considered the possibility of implementing columns in a single
shell, we in the following denote this arrangement the Kazbel column.

The column in Figure 6.7 consists of 7 sections, which is considerably less than
Agrawal’s “minimum” number of 10. The reason for this “inconsistency” is that the
Kaibel arrangement consists of only n — 2 = 2 columns, whereas Agrawal only con-
siders satellite arrangements with n — 1 columns. In order to understand how the
Kazibel column may result, and how pure products can be obtained in the sidestreams,
we draw attention to the schematic in Figure 6.8. Comparing the network repre-
sentations given in the bottom of Figure 6.8 with the network in Figure 6.3, we see
that Kaibel’s structure corresponds to eliminating the ABC, BC'D and BC nodes,
whereas one section is added between the B and C nodes. It is also easily derived
from both Agrawal’s and Sargent’s superstructures.
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taking boilup and reflux for C1 from C2 and C3.
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Having considered some “superstructures” for Petlyuk arrangements, we now focus
on how these may be implemented in single shells with dividing walls. In this work
we consider arrangements in which we also allow for communication points between
neighboring sections. In order to cope with some inadequacies of the conventional
dividing wall columns, we also introduce some novel geometrical wall structures such
as the F column and the triangular wall column.

6.5 Petlyuk Arrangements with One Dividing Wall

A benefit of a Petlyuk arrangement with a single reboiler and a single condenser is
that it may be realized in a single shell with dividing walls, which possibly yields
capital savings in addition. We first consider the simplest extension of the Petlyuk
column, given in Figure 6.8, for the separation of a quaternary mixture ABC'D into
its constituents.

Compared with the Petlyuk column in Figure 6.1 for ternary separations, we first
acknowledge that the requirement for an eastest split is violated. The easiest split
requires that only the components with the highest and the lowest boiling points
should be separated at each step (see e.g. Petlyuk et al. (1965) or King (1971)), in
this case requiring a first split between A and D in the prefractionator. However, for
the Kaibel column we recognize that to obtain pure products, a sharp split between
the intermediates B and C' is required in the prefractionator. If any B enters the
main column from the bottom of the prefractionator, some B necessarily leaves the
main column with the sidestream where C' is drawn off. Similarly, if any C' enters
in the vapor over the top, a certain fraction of C' is withdrawn in the B-sidestream.
Thus, one should bear in mind that any arrangement with less than n(n — 1) sections
cannot produce the the easiest split, which most likely increases the required energy
input.

Furthermore, we note that the section between the sidestreams in the Kaibel col-
umn, in fact has no designated separation task, as far as we require that only A and
B should enter the main column from the top, and only C' and D from the bottom.
This leaves only the two binary separations of A/B and C/D for the main column.
Ideally, this section should thus operate under total refluz with L = V| since we want
no net transport between the pure B in the upper sidestream and the pure C' in the
lower side stream. However, B and C' might undergo remixing, which in case repre-
sents a source of thermodynamic inefficiency. The impact of this remixing is however
counteracted if the intermediate section is operated under total reflux and with a
certain minimum number of stages (NES ), where NES may be obtained from the
well known Fenske equation which applies to any column or column section;
_log (Svm) _zpr/tHT

Nmin — 3 6.2
log (CYLH) iL‘L,B/CBH,B ( )

Here St i denotes the separation factor, oz iy the relative volatility and 7, 7 and
the purities of the light and heavy keys in the top (7') and bottoms (B) of the column
or column section. In practice it may however be very difficult to obtain L/V =1 in
the intermediate section, which may prevent high purities of the sidestreams.



6.5 Petlyuk Arrangements with One Dividing Wall 141

6.5.1 Introducing the - Column

In order to overcome these operational problems with the Kazbel column, we introduce
a novel arrangement with a horizontal partition between the sidestream outlets for B
and C as illustrated in Figure 6.9. We stress that the two representations in Figure 6.9
are identical from a computational point of view, if heat transfer across the partitions
is neglected. Providing a conceptual interpretation of the F column, we note that the
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‘ /Honzontal partition RL Vg B
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D

Figure 6.9: F column with vertical and horizontal partition for quaternary separations

prefractionator is linked via direct (thermal) coupling (Petlyuk idea), whereas there
are two indirectly coupled (heat integrated) “simple” columns in which waste heat
is utilized. Thus, according to our definition it is not a Petlyuk arrangement in a
strict sense, for which only a single reboiler and a single condenser should be used.
As illustrated in Figure 6.9, the heat exchange may occur either within the column
shell (left Figure) or in an external heat exchanger (right Figure). In the former case
the heat exchange may take place for example using a dephlagmator, inside which
condensation continuously takes place on the hot side and evaporation on the cold
side. The choice of heat exchange “unit”, either internal or external, is obviously a
matter of practicality as well as economy, depending for instance on the required heat
transfer area.

If the F column is to be operated without using additional utilities, the vapor
flows V4 and V5 in the two heat integrated “simple” columns are directly coupled.
For instance, in the case of constant molar flows it is required that V4, = V5. Such a
direct coupling may be desirable for a balanced separation, that is, in a column where
the separation difficulty in terms of required boilups Vi and V5 are similar for the
two columns. However, in general this strong coupling may be undesirable, and one
may want to introduce additional heating or even cooling to eliminate the coupling
between Vy and V5 (this disadvantage also applies to the Kaibel column). The single
shell F column is in any case a compact and thus cost efficient arrangement, which
should be considered whenever there is a sufficient difference in boiling points for the
intermediate components. In case of limiting driving forces one might also consider
using a heat pump to raise the temperature level of the available heat, or as mentioned
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use additional utility. The F column should also be relatively easy to operate, and
startup may for instance take place simply by running the column under total reflux
until there is sufficient buildup of liquid on the cold side.

We appreciate that designs which have many of the same features as the F column
have been considered by previous authors. In fact, there is an early patent by Seidel
(1935), in which a two—column implementation of the  column is proposed. The
author propose that the intermediate heat exchange, to provide condensation and
evaporation, takes place in an internal heat exchanger (dephlagmator). Others have
considered separation in the context of multi-effect distillation systems, e.g. King
(1971) and Andrecovich and Westerberg (1985). The idea is here to split the feed
mixture so as to enable heat exchange between two columns operated under different
pressures. This is well known for the separation of ternary mixtures. Carlberg and
Westerberg (1989b) also considered a column with a side stripper and side enricher
to separate a quaternary mixture. As for the F column, this design has the advan-
tage that it does not require heat exchange to take place between columns run at
different pressures. If we assume “pure” intermediate components (sharp splits), the
hot and cold flows are of different compositions, so that heat may be passed from the
condenser to the reboiler provided there is a sufficient temperature driving force be-
tween the streams. However, no authors have to our knowledge considered a column
implemented in a single shell with vertical and horizontal partitions. In an energy
perspective the simplicity of building columns in a single shell in itself offers energy
savings, since production of materials off course requires energy. Before extending
the analysis to arrangements with two dividing walls, we give a brief analysis of the
number of degrees of freedom (DOFs) available for operation.

6.5.2 Degrees of Freedom (DOFs) with One Dividing Wall

When analyzing the degrees of freedom for a given process, one should in the general
case distinguish between degrees of freedom (DOF) for design and the DOFs for con-
trol (operation). In this paper we consider only the latter, hence we restrict ourselves
to columns with fixed number of stages, feed location(s) and feed condition(s). These
variables off course must be taken into account for optimization purposes, i.e. optimal
design.

Assuming that the holdups and the pressure are controlled, conventional binary
columns yield two potentially manipulated variables, e.g. reflux (L) and boilup (V).
For columns with vertical partitions, we gain in general one DOF for each sidestream
and two for each dividing wall (the vapor and liquid split). Hence, the following
formula yields the number of operation DOFs for a column with ng sidestreams and
np dividing walls

DOF =24+ ns+ 2np (63)

For the Kaibel column we thus have 6 (ns = 2,np = 1) potentially manipu-
lated variables available for operation. However, for a sharp split we require that only
small amounts of C' should appear in the overhead from the prefractionator, and small
amounts of B in the bottoms from the prefractionator. Thus we have already implic-
itly fixed two DOFs (e.g. liquid (Ry) and vapor splits (Ry)). If we want to achieve a
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certain purity for all 4 products, it thus seems as though we have enough DOFs left.
However, for energy efficient operation of the Kaibel column, it is as previously noted
strongly desirable to balance the column such that total reflux (L/V = 1) is achieved
in the middle section between the sidestreams. Hence, we need to use one DOF to
meet this requirement during operation. We are therefore in fact short of DOFs if we
wish to control all purities and at the same time keep the column in the vicinity of the
energy minimum. This lack of DOFs is due to the above mentioned direct coupling
between V4 and V5. One way of compensating for this lack of DOFs is to allow for
over-purification, i.e. allow for higher purities of one side product. The lack of DOFs
also applies to the F column which has only 5 DOFs, of which 2 must be used to
achieve a sharp separation between B and C'in the prefractionator. However, in this
case we at least avoid the additional operational problem of achieving L/V = 1 in
the intermediate section. Furthermore, it may be easier to use additional heating or
cooling in the F column to compensate for the loss of DOFs. In the next section we
extend the analysis to Petlyuk arrangements with two dividing walls.

6.6 Petlyuk Arrangements with Two Dividing Walls

A column arrangement which allows for potentially reversible splits in a single shell,
is represented by the schematic in Figure 6.10. This arrangement is due to a super-
structure consisting of three interconnected regular columns proposed by Sargent and
Gaminibandara (1976). We emphasize that the two arrangements in Figure 6.4 are
identical from a computational point of view if we neglect heat transfer across the
dividing walls. The Petlyuk arrangement consists of n(n — 1) = 12 sections, which in
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Figure 6.10: Petlyuk arrangement for Sargent’s superstructure

fact is the mazrimum number for sharp splits of a four component mixture. This is
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seen more clearly if we consider the network representation given in Figure 6.3. We
recognize that since every possible node is present (see e.g. Agrawal (1996)), only
the lightest and heaviest components are separated from the mixture in each section.
Hence, due to potentially reversible splits we should expect this design to display bet-
ter performance in terms of thermodynamic efficiency, thus requiring a lower energy
input compared to the Kaibel and the F columns.

A dividing wall implementation of the satellite arrangement proposed by Agrawal
(1996) is illustrated in Figure 6.11. The schematics In Figure illustrate both the
satellite arrangement and the corresponding dividing wall implementation similar to
Agrawal’s superstructure. To compare with the sequential arrangement by Sargent,
we note that both superstructures consists of n — 1 interlinked columns and require
the mazimum number of sections for a sharp split, i.e. n(n — 1). However, as previ-
ously discussed we emphasize that Agrawal’s arrangement allows for communication
between any of the “columns” (i.e. main and satellite columns). If we examine the di-
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Figure 6.11: Petlyuk arrangements for for Agrawal’s superstructure

viding wall arrangement in Figure 6.11 in some more detail, we recognize that further
scrutiny is required in order to visualize the feed location and the transfer of the inter-
mediate BC' node. We first note that the feed may in general enter the column from
any of the three parts 7,77 and I1] indicated in Figure 6.11. This is perhaps more
clearly understood if we consider a view from above the column as demonstrated to
the left in Figure 6.12. However, if there is to be any transfer of the BC' node within
the dividing wall column, we must enable communication between any of the three
parts. This is indeed possible if we consider the triangular structure to the right in
Figure 6.12, which allows for interconnections between any two neighboring parts of
the column. Hence, we may in principle allow for communication between any two
stages in the column arrangement. In the schematic to the right in Figure 6.12 we
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have also indicated that one may implement a tube along the center section in or-
der to allow for fluid transport between various sections. In practice this is achieved
by withdrawing fluid from one stage and passing it to the appropriate stage in the
corresponding section.

Figure 6.12: Top view of dividing wall implementation for Agrawal’s superstructure

If we then compare these dividing wall implementations with the Satellite arrange-
ments proposed by Agrawal (1996), the author argues that there are 3 different satel-
lite arrangements corresponding to the “minimum” of 10 sections for a 4-component
separation. If we consider the dividing wall implementation to the left in Figure 6.12,
we find that it allows for only one possible arrangement with 10 sections, because no
communication is allowed between parts [ and /7/. However, by using the triangu-
lar structure one may realize any column arrangement corresponding to sequences of
(n — 1) regular columns.

6.6.1 Degrees of Freedom (DOFs) with Two Dividing Walls

If we thus allow for the possibility of having liquid and vapor transport (communi-
cation) between certain stages on both sides of a wall, there are in fact four streams
which may be redistributed (liquid and vapor on each side). Thus, we add yet an-
other four degrees of freedom for each communication point. In Figure 6.13 we give
an illustration of the additional liquid and vapor splits due to fluid transfer through
the communication point. To avoid confusion in the proceeding discussion of columns
with such communication points, we make the somewhat fictitious distinction between
dividing walls for the overall structure and wertical partitions. Hence, we may have
a column with two dividing walls and three partitions as illustrated by Figures 6.13.
The total number of DOFs for a structure with n¢ communication points is thus

DOF =24 ng 4+ 2np + 4nc (64)

For the Petlyuk arrangements in Figures 6.11 and 6.10 we thus have, according to
equation (6.4), a total of 2+ 24 2% 2+ 4 = 12 DOFs for operation. However, based
on physical insight we may conjecture that in the general case fluid should only be
transported in the direction towards the final products, i.e. with Ryp3 = Ryz =

in Figure 6.13. The liquid and vapor splits in the middle partition (Rrs and Ry3)
then constitutes an intermediate feed to the sidestream side. The “feed condition”
thus depends on the relative amounts of Rps and Rys. The optimal feed condition
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Figure 6.13: DOFs due to communication points

would in general be the subject of optimization, but for practical purposes it is much
easier to transport only liquid across the partition (i.e. Rys = 0). Taking the latter
observations into account, 9 potential DOFs remain. As a comparison, the structure
proposed by Kaibel yields only 6 DOFs.

6.7 Conclusions

In this paper we have extended the Petlyuk ideas to dividing wall columns that permit
multicomponent separations within a single shell. In order to provide a common basis
for this and future works, we proposed definitions of what is to be referred to as
Petlyuk arrangements and sharp split arrangements. The importance of using these
definitions is to eliminate for example sidestream columns from the class of Petlyuk
arrangements. We then addressed different superstructures proposed in the literature
for arrangements with n — 1 interconnected columns, and demonstrated how such
arrangements may be implemented in a single shell with vertical partitions.

We briefly discussed the issue of reversibility, in terms of factors that contribute
to exergy losses in conventional columns. From this we examined the extent to which
Petlyuk arrangements allow for potentially reversible splits, which strongly influences
the required energy input. A discussion on the large number of degrees of freedom for
such column arrangements is also given in some detail. In this respect we suggested
simple formulas for computing the number of DOFs for Petlyuk arrangements. For
design and optimization purposes, we find that the number of DOFs may become
excessive if all variables are set arbitrarily. An issue of great importance for future
work thus rests in providing guidelines which implicitly reduce the set of DOFs.

Nomenclature

A, B,C, D — Component indices
F — Feed flow rate [kmol/min]
L — Reflux flow rate [kmol/min]
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L; — Liquid flow rate in section 2
Np — Number of theoretical stages in top section
Np — Number of theoretical stages in bottom section
n — Number of components
ne — Number of communication points
np — Number of dividing walls
ns — Number of sidestreams
q — Feed enthalpy
R — External reflux ratio
Ry, — Liquid split fraction
Ry — Vapor split fraction
Stm — Separation factor between light L and heavy H component
V - Boilup from reboiler [kmol/min]
Vi — Vapor flow rate in section 7 [kmol/min]
zpg p — Liquid mole fraction of heavy component in the bottom
g 1 — Liquid mole fraction of heavy component in the top
zr, B — Liquid mole fraction of light component in the bottom
zr 7 — Liquid mole fraction of light component in the top

Greek letters

a;; — Relative volatility between components ¢ and j
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Abstract

In this paper we consider generalized Petlyuk arrangements, where a feed mix-
ture can be separated in four pure products in an integrated column with a
single reboiler and a single condenser. We compare the energy consumption in
optimized Petlyuk arrangements with that of optimized sequences of regular
columns. The results are based on simulations using a simple yet detailed
stage to stage model for the separation of ideal mixtures. To our knowledge
this is the first detailed simulation study of such columns for quaternary mix-
tures. For the optimization we use a gradient projection method, in which
optimization is embedded in a continuation scheme. The results indicate that
the Petlyuk arrangements offer considerable energy savings, typically in the
order of 40%, compared to conventional sequences of regular columns. The re-
sults also indicate that Petlyuk arrangements require a relatively large number
of stages in order to exploit the full potential of energy savings. In order to
characterize the optimal solutions, we also demonstrate in terms of a sensitiv-
ity analysis that feedback control of the internal splits is required for optimal
operation.
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7.1 Introduction
A schematic of the well known Petlyuk (Petlyuk et al. 1965) column, or dividing

wall column (Wright 1949), for the separation of ternary mixtures is illustrated in
Figure 7.1. This complex column arrangement has received considerable attention in

R/V

"Prefractionator” : | A AB L A
P | "Main column”
1 L
4,\: s, — Y -
ABC | 1! B ABC B

BC \

Figure 7.1: Petlyuk column for the separation of a ternary mixture. Left : Column with
vertical partition. Right : Prefractionator arrangement

the literature, even though experimental work and studies on practical operation are
practically non-existing. Some findings with important implications for operation and
control were however discussed in chapter 5. Results from previous works indicate
that savings in capital and energy costs are typically in the order of 30% compared
to conventional arrangements with regular columns in sequence (e.g. Smith (1995)),
although previous works by Fidkowski and Krolikowski (1986) and Glinos and Malone
(1988) report that the maximum energy savings are as large as 50%. In this paper
we extend the Petlyuk ideas to consider also Petlyuk arrangements for quaternary
separations, for which we compare the energy consumption in optimized Petlyuk
arrangements with that of optimized sequences of regular columns. There has been
some discussion in the literature on the use of Petlyuk arrangements to separate four
or more components, but no studies on the potential energy savings are available.
The latter is the focal point in the proceeding discussion.

In the previous chapter we presented a framework for conceptual analysis and de-
sign of Petlyuk arrangements, for separating mixtures of four components, although
extensions to more components is straightforward. We proposed a general defini-
tion of a Petlyuk arrangement (Christiansen et al. 1997), which is repeated here for
convenience:

A Petlyuk arrangement is a column arrangement, separating three or more
components using a single reboiler and a single condenser, in which any
degree of separation (purity) can be obtained by increasing the number
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of stages (provided the reflur is above a certain minimum value and the
separation is thermodynamically feasible).

The importance of using this definition is to eliminate for example conventional
sidestream columns from the class of Petlyuk arrangements, since these require infinite
reflux to obtain pure products (even with an infinite number of stages).

Based on this definition we considered two “superstructures” previously proposed
in the literature and illustrated how these may be implemented in single shells using
vertical partitions. In particular we considered the sequential arrangement proposed
by Sargent and Gaminibandara (1976) and the satellite arrangement by Agrawal
(1996), both corresponding to structures with n — 1 interconnected columns. We also
considered a simple structure proposed by Cahn et al. (1962) and later by Kaibel
(1987). We also proposed a single wall implementation of an old patent by Seidel
(1935), called the F column. The distinguishing feature of this design is that it
also uses a horizontal partition to facilitate energy integration, so that remixing of
already separated components 1s avoided. It is thus somewhat of a hybrid column
arrangement, in that the prefractionator is directly coupled with the main column
(Petlyuk idea) whereas the intermediate sections in the main column are indirectly
coupled via heat integration (conventional approach). In the present paper we make
further investigations of complex distillation arrangements, in which we compare the
energy consumption of optimized petlyuk arrangements with that of sequences of
regular columns.

An important issue when comparing different column arrangements i1s the use
of an objective or cost function. In the literature it is generally agreed that the
total vapor consumption (boilup) is the dominant variable when estimating the total
cost (operation and capital) of distillation columns (e.g. Tedder and Rudd (1978),
Fidkowski and Krolikowski (1986) and Glinos and Malone (1988)). In this paper we
thus present numerical results for Petlyuk arrangements optimized with respect to the
boilup consumption. The reader may note that we compare the energy consumption
for these arrangements to optimized schemes of regular columns in sequence. Hence,
we do not consider heat integrated columns, which would have extended the scope
of this study. In order to consider heat integrated columns, one would in general
also have to consider other characteristics such as different pressure levels, which
influences the vapor liquid equilibrium, and the availability of utilities at different
temperatures. We also note that a heat integrated scheme that are operated under
different pressures, degrade heat over a larger temperature range than a sequence of
regular columns, so that the temperature of the utilities must be increased (similar
to the Petlyuk column). One should furthermore appreciate that the capital costs of
heat integrated schemes are higher compared to conventional schemes, due to more
complex instrumentation and piping. The underlying motivation for this work, is thus
to provide typical measures of the potential energy savings with Petlyuk arrangements
for simple models of ideal mixtures. A natural basis of comparison i1s hence to use
a conventional structure with regular columns in sequence. However, we stress that
in order to obtain the optimal arrangement for a specific separation, one should of
course consider all possible structures, which also includes heat integrated schemes.

Numerical results presented in this work for quaternary mixtures indicate that
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Petlyuk arrangements offer savings in the order of 40%. The optimization problems
were solved using a gradient projection method embedded in a continuation scheme,
which we found to be very efficient. This algorithm was described in chapter 3, and
draws from the partly unpublished work by Morud (1995) and a previous work by the
authors (Christiansen et al. 1996). Note that in the optimizations we do not include
design parameters such as the distribution of the number of stages, which require
using also integer variables. For the “global” optimization problem, such parameters
should also be considered.

Before going into detailed analysis of Petlyuk arrangements for quaternary sep-
arations, we briefly revisit the Petlyuk column for ternary separations. The reason
for this is the need to shed some light on some ambiguities related to under what
conditions the “ordinary” Petlyuk columns offer the largest savings.

7.2 The Petlyuk Column Revisited

We first consider the separation of a ternary mixture in a “conventional” Petlyuk col-
umn. In order to account for the lower energy consumption of Petlyuk arrangements
over conventional designs, there are two crucial aspects that one needs to recognize.
Firstly we have the simple fact that separating agents (reflux and boilup) are gener-
ated at only two designated locations and thus reused throughout the system, whereas
conventional arrangements require 2(n — 1) condensers and reboilers. In a Petlyuk
column the boilup and reflux for the prefractionator is thus supplied by direct ther-
mal coupling with the main column as illustrated in Figure 7.1. Eliminating reboilers
and condensers may thus in itself reduce the required energy input, but as noted
by several authors (e.g. Westerberg (1985), Carlberg and Westerberg (1989), Smith
(1995) and Agrawal et al. (1996)), one should also recognize the trade off between
the energy levels and loads. This argument refers to the first and second law of ther-
modynamics, which emphasizes the trading between total energy consumption (first
law) and energy levels (second law). Thus, even though Petlyuk arrangements may
require smaller heat loads, this comes at the expense of adding all heat at the highest
temperature (reboiler), and cooling at the lowest temperature (condenser). For this
reason we may find that Petlyuk arrangements in some cases require a higher energy
cost(“first and second law heat”), even though the energy consumption is lower (“first
law heat”). In a sense this makes the optimality conditions of Petlyuk arrangements
case specific, in that it depends on the actual prizing of the available utilities (i.e. low
pressure and high pressure steam).

The second important aspect is that Petlyuk arrangements offer means for de-
creasing the exergy losses caused by process irreversibilities such as irreversible mixing
effects. Since the Petlyuk column allows for separations between components that are
non-adjacent in terms volatilities, thus allowing for the the intermediate components
to distribute over the top and the bottom in a bisectional column, back-mizing of the
intermediate components is reduced (Triantafyllou and Smith 1992). Furthermore, by
using direct (mass) coupling between column sections, exergy losses at column ends
may also be eliminated.

In the literature it has been shown that the maximum energy saving for the Petlyuk
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column is 50 % compared to the conventional direct and indirect sequences (Glinos
and Malone 1988). The authors found that maximum savings occur when the feed
composition of the intermediate component approaches zero, but that savings may be
large also for large amounts of intermediate. However, it is also stated that Petlyuk
columns yields the largest savings for large amounts of intermediate (e.g. Tedder and
Rudd (1978), Fidkowski and Krolikowski (1986) and Annakou and Mizsey (1996)).
In fact, the maximum savings of 50% are also obtained in the limiting case where the
relative volatilities are small and the amount of intermediate is large.

An important issue when comparing the Petlyuk column to conventional arrange-
ments, such as the direct and indirect split sequences, is whether to choose a total or
a partial condenser. If the objective is to minimize the vapor requirement, it is clearly
optimal to use a partial condenser for the indirect sequence, so that the feed to the
second column is taken as vapor. This was a topic of discussion in chapter 3. In the
literature it is for some reason often assumed that only total condensers are used, see
e.g. the analysis of Glinos and Malone (1988), who found that the indirect sequence
in general was favorable only for relatively small amounts of low boiler. However, if
one instead use a partial condenser and thus a vapor feed to the downstream column,
we showed in chapter 3 that the optimality region for the indirect sequence increases
considerably. We now want to consider in some more detail how the potential savings
depend on the amount of intermediate component.

The numerical results presented here are obtained from optimizations of relatively
simple models assuming constant molar flows and constant relative volatility. We
consider four different feed compositions where we have equal amounts of A and C'
in the feed, and we thus only need to give the feed composition of B, 1.e. zg. The
relative volatility between the three components are 4:2:1 in all cases. We find that
the indirect sequence 1is favorable for all cases when we use a partial condenser. The
direct and indirect sequence are however equal in the limiting case where zp — 1,
which 1s easily verified using Underwood’s method or the analytical equations given
by Stichlmair (1988). For the case studies we thus compare the energy efficiency to
the indirect scheme. Since the number of stages also is important for the comparisons,
we consider two columns with a total number of 60 and 90 stages (Nt) respectively.
We assume an equal distribution of stages between the sections for the conventional
scheme, whereas for the Petlyuk column we use a ratio of 1:2 for the number of stages
in the prefractionator relative to the “main column, i.e. 20:40 for Ny = 60. The feed
flow rate is F = 1 [kmol/min] and is fed to the middle stage in the prefractionator.
Further details of the mathematical models are presented in the next section, when
we extend the analysis to generalized Petlyuk arrangements for quaternary mixtures.
In all cases the purity specifications for the products are 99% in the top (A) and the
bottom (C') and 95% for the side product (B).

To provide some details from the optimizations, we give the optimized parameters
and flows for different feed compositions and Ny = 90 in Table 7.1. Note here that
R; = 0 for zg = 0.80. This means that there is in fact no reflux, and thus no
separation effect in the top section of the prefractionator. Composition profiles for
two of these cases are shown in Figure 7.2. As seen in the Figures, the prefractionator
essentially carries out a split between A and (', so that the composition of B increases
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Liquid composition

Number of stages, main column

(a) 24 = zp = z¢ = 0.33
1 T T T T T

Liquid composition

Number of stages, main column

(b) z4 = 0.475,25 = 0.05,2c = 0.475

Figure 7.2: Composition profiles for optimized Petlyuk column. Solid line - main column,
dashed line - prefractionator column.
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Table 7.1: Optimized parameters and flows for Petlyuk column with Ny = 90 and o = 4 :
2:1

Feed composition % L S Ry Ry

zg = 0.05 0.992 | 0.514 | 0.0426 | 0.700 | 0.853
zp = 0.20 1.185 | 0.782 | 0.202 | 0.426 | 0.686
zp = 0.33 1.311 | 0.975 | 0.344 | 0.359 | 0.641
zg = 0.80 1.154 | 1.057 | 0.840 0 0.482

towards both ends of the prefractionator. A comparison of the Petlyuk column with
the indirect split scheme for different number of stages is then given in Table 7.2. (We
may note that the savings relative to the direct split scheme is even larger.) For a

Table 7.2: Energy savings with Petlyuk column relative to the indirect scheme for non-sharp
splits with o« = 4: 2 : 1.

Feed composition Np =60 Ny =90 Np = 180

zp = 0.05 AV =239% | AV =298% | AV=305%
zp = 0.20 AV =262% | AV =326% | AV =334%
zp = 0.33 AV =269% | AV =328% | AV=338%
zp = 0.80 AV =313% | AV=413% | AV=447%

finite number of stages we thus find that the relative savings for the Petlyuk column
increase as zp increases, for the given a and equal amounts of A and C'. We also see
that the energy savings increase as we increase the number of stages. The reason is
that Petlyuk columns require a large number of stages to achieve the overall minimum
energy usage.

To compare also the overall minimum energy usage Vinip for infinite columns (N =
00), we use the analytical expressions for the Petlyuk column derived by Fidkowski
and Krolikowski (1986) and Underwood’s method for the conventional arrangements.
We here consider sharp splits (product purities of 100%). In this case, where we also
include results for the direct split, we find as shown in Table 7.3 that the savings
are in fact largest when zp is small and do not vary significantly with zp for the
given relative volatilities. This is in line with the conclusions given by Glinos and
Malone (1988). By comparing the results in Tables 7.3 and 7.2, we find that if we

Table 7.3: Energy savings for sharp splits with & =4 : 2 : 1 in an infinite Petlyuk column,
relative to direct and indirect schemes, respectively.

reduce the purity of B the energy saving is largest when the amount of B is large, 1.e.

Feed composition Indirect Direct

zp = 0.05 AViin =354 % | AViin = 40.5 %
zp = 0.20 AVimin =333 % | AViin = 35.7%
zp = 0.33 AViin =328 % | AViin =341 %
zp = 0.80 AVimin =33.0% | AViin = 33.0%
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zp = 0.80. However, for sharp splits the savings are largest for small amounts of B.
This in itself demonstrates that it is difficult to state clearly under what conditions
Petlyuk columns give the largest savings. In general there are also a number of other
parameters that will influence the optimality conditions. Note for consistency that
we here compare the energy usage for sharp splits in infinite columns N = co with
non-sharp splits in a column with Ny = 180 which should be sufficiently large.

It may however not come as a surprise that prefractionator arrangements are par-
ticularly cost-efficient for non-sharp splits. As shown by Westerberg (1985) for a
simple example, the energy usage of a conventional distillation process, where prod-
ucts are split into intermediate pure products and then remixed, may be several times
higher than for a simple non-sharp column.

For sharp splits Glinos and Malone (1988) found that the maximum saving relative
to the conventional sequences is 50 % for the case where zg — 0 and za4 = (aap —
1)/(aac — 1). However, as discussed above, the authors did not consider the option
of using vapor feeds for the indirect splits. If one instead consider vapor feeds, the
maximum savings of 50 % apply only to the direct split. The saving for the indirect
splits with a partial condenser is in in this case only 33%. We now proceed to discuss
Petlyuk Arrangements for quaternary separations.

7.3 Petlyuk Arrangements for Quaternary Separa-
tions

We first consider the simplest extension of the Petlyuk column, given in Figure 7.3, for
the separation of a quaternary mixture ABC'D into its constituents. The arrangement

"Prefractionator" |! ! AB L
I "Main column"

)’:/4>B ——= B

ABCD K\ ABCD
i B

I RyV

w,,,,,,,_‘<—‘ ] CD Vv ]
T Ty e

Figure 7.3: Petlyuk arrangement with one dividing wall for quaternary separations.

to the right is due to an early patent by Cahn et al. (1962) whereas the dividing wall
column to the left was later proposed by Kaibel (1987). In the following we denote
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these arrangements the Kaibel column. We emphasize that the two arrangements in
figure 7.3 are identical from a computational and thermodynamical point of view if
we neglect heat transfer across the dividing walls.

In the previous chapter we discussed on some of the benefits and drawbacks with
such an arrangement. Among the important conclusions from this analysis was; (1)
violation of the split sequence corresponding to the “preferred separation” scheme
described in chapter 5; (2) total reflux operation of the intermediate section between
the sidestreams is required for sharp splits and (3) lack of degrees of freedom (DOFs)
for optimal operation. However, we also argued that the arrangement still should
offer considerable savings in capital and energy costs for a wide range of separation
tasks.

To overcome some of the operational problems with the Kaibel column, we then
proposed an arrangement, called the F column, in which we suggested to use a hor-
1zontal partition in the main sidestream column to avoid remixing of the already
separated intermediates. A schematic of the F column is illustrated in Figure 7.4.
Even though the inherent problem of remixing in the Kaibel column is avoided, we

A %
Prefractionator %’ A

AB L
Horizontal partition v
. 4
ReL B
—_— Q:D
ABCD ABCD VA C
RjV
CD
V

D
Main column
D

Figure 7.4: F column with vertical and horizontal partition for quaternary separations

showed that this arrangement also suffers from a lack of DOFs during operation. This
may however be counteracted by using external utility for the required (intermediate)
boilup and reflux.

In chapter 5 we discussed the issue of using the preferred separation for ternary
mixtures, which refers a certain easiest split that requires the overall minimum usage
in an infinite column. This preferred separation requires the “maximum number of
sections” for sharp splits, which is equal to n (n — 1) = 6 for ternary mixtures. If this
particular sequence of easiest splits is optimal for any multicomponent separation,
then the maximum number of n (n — 1) sections are required. In the last chapter we
then proposed two dividing wall implementations that allows for this energetically
“optimal” separation path. The two Petlyuk arrangements that we in this chapter
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will use for optmization purposes are given in Figures 7.5 and 7.6. A distinguisihing
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Figure 7.5: Petlyuk arrangement for Sargent’s superstructure

feature of these arrangements is that only the lightest and heaviest components may
be separated from the mixture in each section. For the ternary case we showed
in chapter 5 that the minimum energy usage always correspond to this preferred
separation. Since the arrangements proposed here allows for “preferred separations”
also for quaternary mixtures, we expect these designs to require a lower energy input
compared to the Kaibel and the F columns. In order to visualize how Agrawal’s
arrangement may be implemented within a single shell, we gave in the last chapter a
geometric view of a triangular wall structure.

Before discussing aspects related to the optimizations, we briefly comment on
the large number of DOFs available for the Petlyuk arrangements. For consistency
we restate the formula presented in the previous chapter, giving the total number
of DOFs for a Petlyuk arrangement with n¢ communication points, ng number of
sidestreams and np dividing walls:

DOFs =2+ ng + 2np + 4nc (7.1)

According to equation (7.1) we thus have 6 DOFs for the Kaibel column and 12 DOFs
for Sargent’s and Agrawal’s arrangements. Note that the - column, for which equation
(7.1) does not apply, has only 5 DOFs. This owes to the fact that the F column is
not to be considered as a Petlyuk arrangement according to our definition (no direct
coupling and thus more than one reboiler and one condenser). In many cases, with
this large number of DOF's, we face a rather difficult optimization task. We therefore
discuss in the next section some simple strategies in which we use physical insight to
provide good initial guesses.



7.4 Guidelines for Optimization of Petlyuk Arrangements 159

9, I
Satelite Column

AB Main Column
P
Satelite Column
B<—
o m B /
BC S I
BCD

Figure 7.6: Petlyuk arrangement for Agrawal’s superstructure

7.4 Guidelines for Optimization of Petlyuk Arrange-
ments

In this work we minimize the energy consumption of Petlyuk Arrangements by equi-
librium stage calculations. Such numerical simulations are in general rather time
consuming since the problem size in general tend to be large, and simulations are
indeed infeasible if it is desirable to compute the overall minimum energy usage Viin,
which is obtained in inifite columns. For this reason there are a number of works in
the literature on extending the set of Underwood equations (e.g. Underwood (1948))
to more complex columns. Fidkowski and Krolikowski (1986) showed by careful anal-
ysis how the Underwood equations apply to the Petlyuk column for ternary mixtures,
and we showed in chapter 5 that their findings carry over also to finite columns. The
Underwood equations were then used by Glinos and Malone (1988) to obtain opti-
mality regions for the Petlyuk column. Carlberg and Westerberg (1989) extended the
analysis of Fidkowski and Krolikowski (1986) to also include any number of middle
components. However, for the Petlyuk arrangements considered in this work, where
we consider separating a quaternary mixture into four pure products in a directly cou-
pled column, there are to our knowledge no methods available at present to estimate
Vinin. We still recognize that it may be possible to extend the Underwood methods
proposed by the previous authors to also include such columns.

For the optimizations we use a gradient projection algorithm embedded in a con-
tinuation scheme. This algorithm has proven to work very well for ill-conditioned
problems that otherwise are difficult to solve. The features of the method were thor-
oughly discussed in chapter 3, but a brief description is given in Appendix A. Before
considering the case studies, for which we have successfully applied the algorithm,
we elaborate on some special features that may be exploited in the optimization of
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Petlyuk arrangements. These are given in the form of general heuristics, but they also
serve the purpose as a basis for an a posteriori analysis of the optimized arrangements.

7.4.1 Fluid transfer between communicating sections

For the Petlyuk arrangements in Figures 7.6 and 7.5, we note that component B
is withdrawn above the communication point whereas component C' is withdrawn
below. In terms of the physics of the separation, we thus conjecture that the optimum
should be to “lift” B up towards the outlet and conversely “push” C' downwards
from the communication point. For Agrawal’s superstructure we thus argue that the
communication of fluid between the sidestream sections should take place so that
vapor is transferred primarily in the direction from the section where C' is drawn off
(column TIT), and to the section where B is withdrawn (column T). Conversely, one
would expect that liquid should be transferred primarily in the direction from column
I towards column III. However, we stress that the task of determining the optimal
distribution of liquid and vapor is still left for optimization. The same argument
applies in the also for Sargent’s superstructure in Figure 7.5. In the latter case this
guideline suggests that fluid should be transferred in the direction towards the product
withdrawals.

7.4.2 Net fluxes in sidestream sections

If we consider the sections from which the intermediates B and C' are withdrawn, we
argue that one should in general avoid operating regimes where there is a net flux
of intermediates across the stage where the sidestreams are withdrawn. The reason
is that such a net flux inevitably leads to an internal recycle within the column,
which most likely increases the energy requirements. Hence, above the sidestream
stages, there should be a larger fraction of intermediates in the liquid, and conversely
a larger fraction in the vapor below the outlet. If we denote the liquid and vapor flows
of intermediates above the side-outlet by L# V;* and below by L? V! we pose the
following heuristic guideline for the distribution of internal flows within the sidestream
sections

Li>Vve Lh< VP (7.2)

Condition (7.2) thus ensures that there is no net transport of intermediates across
the outlets. We however stress that the optimum distribution of internal flows is still
left for optimization.

7.4.3 Exploit symmetry for initial solutions

An important task in all aspects of steady state simulation, is that of providing good
initial values. A “reasonable” initial guess (design) not only prevents convergence
problems, but also strongly assists the task of locating the (global) optimal solution.
The latter is of special importance when the number of optimization variables (DOFs)
is large and when the process model is highly non—linear, for which most optimization
algorithms yield at best a local optima.
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When using mathematical models derived from first-principles, one is often able to
make qualified judgements based on physical insight, regarding the operating regimes
under which optimal solutions are likely to be found. For instance, if we consider
the Petlyuk arrangement in figure 7.5, we recognize that there is a strong element
of symmetry. By symmetry we here refer to a certain split sequence, for which the
multicomponent separation may be decomposed to a set of pseodu-binary separations.
This symmetry 1s nicely illustrated if we consider the distribution of components as
given by the network representation in Figure 7.7. Thus we may consider as an
initial candidate for the optimal design a column which preserves this element of
symmetry. This path corresponds to separating in each bisectional column only the
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Figure 7.7: Symmetry illustrated by network representation and distribution of components

lightest and heaviest components, similar to the “preferred separation” for the ternary
case discussed in chapter 5. The distillation process thus operates on pseodu-binary
mixtures with extreme volatilities, for which a minimum of energy most likely is
required.

As discussed above for the flow distribution within column sections, we proposed
as another important guideline to avoid operating regimes in which there is a net
flux of intermediate component B upwards above the upper sidestream outlet S, or
conversely a net flux of C' downwards below the outlet. Thus, if we use the notation
given in figure 7.8, we may according to equation (7.2) require as a mimimum that
Lg > Vy and Lig < Vig. The same argument also applies to component C', so we
require that L1 > Vi1 and L1 < Vi5. Furthermore, if we aim for a design that
also maintains the aspect of “symmetry”, we may initially distribute the liquid flows
immediately above the sidestream sections so that

S

Li=V; + > (73)
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and immediately below the side outlets so that

L=V, — & (7.4)
2

If only liquid is transferred through the communication point, the amount is thus
simply given by L' = 51 /2+455/2. As a general comment on this issue, we should note
that by specifying a certain set of flows, we consume the same number of DOFs, and
thereby reduce the set of optimization variables. To optimize Sargent’s arrangement
we use these arguments of symmetry to specify the flow rates in the initial solution.
We then use dynamic simulation to obtain a steady state for the full model, i.e. for
compositions on all stages. This solution then serves the purpose of an initial guess
for the optimization algorithm.

7.5 Optimized Petlyuk Arrangements for Quater-
nary mixtures

In order to make it easier for the reader to comprehend the results from the optimiza-
tions, and to provide suficient details so that the results may be reproduced, we first
present a “complete” example for illustrative purposes. The underlying motivation
for the example is also to elaborate on some of the issues discussed in section 7.4.
We use Sargent‘s and Agrawals superstructures for the example, and we present a
comprehensive outline of the conceptual models. Note that similar but much simpler
models apply to the Kaibel and F columns, so that detailed models are not given
for these and we instead refer to Figures 7.3 and 7.4 for notation. We however give
some details for the optimizations of these arrangements in a later section. The pur-
pose of this introductory example is also to discuss certain characteristics of Petlyuk
arrangements such as

e Vapor (Ry) and liquid (Ry) splits
e Column composition profiles
e Internal flow distribution

We provide values for the optimal parameters and discuss their siginifance. After
presenting the details for this introductory example, we proceed to discuss other
effects related to the trade off between the number of stages and the energy usage.

7.5.1 Mathematical models of Petlyuk arrangements

Schematics of Sargent’s and Agrawal’s superstructures are shown in Figures 7.8 and
7.9. Note that the vapor Ry; and liquid Rr; splits are defined so that they give
the fractions leaving each section. We however refer to the set of equations in (7.5)
and (7.8) for details. Note also that we illustrate here only the conceptual models,
which are indedependent of the actual implementation, i.e. in a single shell or with
n — 1 interconnected columns.  For convenience we refer to the arrangements in
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Figure 7.8: Schematic of Sargent’s superstructure for introductory example

Figure 7.9: Schematic of Agrawal’s’s superstructure for introductory example
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Figures 7.8 and 7.9 in terms of columns I, IT and II1. For Sargent’s arrangement, the
bisectional column I serves the purpose of a prefractionator, in which the task is to
carry out a split between the light component A and heavy component D. The task
for column 1T is then essentially to carry out the two ternary splits between A and C
in the top, i.e. sections 4 and 5, and between B and D in the bottom, i.e. sections
6 and 7. Finally, pure products may be recovered in column III where the pseudo
binary splits between the adjacent components occur. For Agrawal’s arrangement,
the prefractionation takes place in sections 6 and 7 immediately above and below the
feed.

The conceptual models used for these arrangements are kept reasonably simple,
since our objective is to discuss typical features such as the overall energy usage, and
compare this with other arrangements. The model assumption are as follows

e Constant molar flows

e Constant relative volatilities

e Total condenser

e Products withdrawn as saturated liquids

We use a simple staged model, constituted by component mass balances, vapor liquid
equilibria (VLE) and algebraic relations for the internal flows. The n(n — 1) = 12
sections are enumerated from 1 to 12 as shown in Figures 7.8 and 7.9. Recall that
a section denotes a part of the column from which no streams enter or leave. Using
the number of each section as subscript for the flows entering each section, we may
assign the distribution of flows within the column. For Sargent’s superstructure the
internal liquid L; and vapor flows V; are given by the set of equations in (7.5).

L1 = Rpaly Vi=Vo+ RpF

Ly=ILi+(1—-Rp)F Vo = RyvaWr

Lzy=1 Va=Vi+Ws

Ly=(1=Rr1)Ls Va=Ve 4+ W1

Ls = (1 — Rra) La Vs = (1 — Rya) Vs + RvaVig

Lé = (1 = Rra) Ls + Rpale Vo= (1— Rya) V7 (7.5)
Ly =1¢+ L Ve =(1—Ryv1) Vis '
Lg = RL1L3 VS = V9

Ly =Lg—5 Vo = (1 — Ry3) Vigp + RvaVs

Lio= (1= Rpa) Lo+ Rrsls Vig= V14

Ly = Lig— 53 Vi1 = Rv1Vis

Lig=1L7z+ Ly Vis=V

Note that the vapor and liquid splits are implicitly defined by this set of equations.
Here F is the molar feed flow rate and Ry the vapor fraction of the feed. Note that
the split ratios are restricted to the region[0, 1]. In order to make sure that the overall
mass balance is satisfied, we find by substitution

Vs = V+4RpF (7.6)
Ly = L+(1—Rp)F (7.7)
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which yields the correct assignment. For Agrawal’s satellite arrangement we similarly
obtain

Ll = RL1L4 Vl = V2

Ly=Li—5 Vo = (1 = Rvs) Vs + RvaVig

Ly = (1 - RL4) Lo+ Rpslo Vs = Ry1 Vs

L4 =1 V4 - Vl + V:’)

L5Z(1—RL1)L4 V5:V6+VZ9

L6 = RL2L5 VG = V? + RFF (7 8)
Lr=ILs+ (1—Rp)F Vi=(1—Rv1)Vs '
Lg = L3 + L7 VS = RV2V12

Lo =(1— Rpo) Ly Vo = RyvsVs + (1 — Rva) Vig
Lio=Rpals+ (1= Rr3) Ly Vig= Vi1

Lll = L10 — Sg V11 = (1 - RVZ) V12

Lis=Lg+ L1y Vis=V

The full models are then obtained by taking the component mass balances around
each equilibrium stage ¢ for all sections j, i.e.

Lizei-1 = ViYei = LjZei— Vileis (7.9)

where z.; and y.; are the liquid and vapor mole fractions of component ¢ on stage 1.
The stage count i starts at the top stage within each section. The vapor mole fraction
is given by the VLE

Qcle

Yei = (710)

Ec:A,B,C,D Qele,i

The mole fractions are constrained by the sum equations

Yo wei=1 Y wi=1 (7.11)

¢=A,B,C,D ¢=A,B,C,D

The models then consist of (NC — 1) Ny equations and we have 12 DOFs, see equation
(7.1). 4 of the 12 DOFs are consumed to obtain the required product purities. This
leaves us with 8 DOFs for the optimizations, i.e. all liquid and vapor splits. In the
next section we give numerical results for the introductory example.

7.5.2 Introductory example

Process data for the introductory example considered in this section are given in
Table 7.4. For the initial example we have chosen arrangements where the number of
stages in the “main column”, counting from the condenser to the reboiler is N¥ = 60.
For Sargent’s structure we use the same number of stages within each section j, i.e
N; = 10. For Agrawal’s arrangement we use a different distribution, in that the
satellite columns have sections of 5, 10 and 15 stages respectively, so that there is
an equal distribution above and below the sidestream outlets. The total number
of stages is thus Ny = 120 for both arrangements, which yields a system of 364
nonlinear algebraic equations (with the product specifications) and 8 DOFs. Using
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Table 7.4: Process data for introductory example

Feed flowrate F = 1.0 [kmol/min]
Feed compositions za=zp =z = zc = 0.25
Distillate purity x5 > 0.99

Upper sidestream purity z% > 0.95
Lower sidestream purity zf > 0.95
Bottom purity zp > 0.99
Relative volatilities 8§:4:2:1

the optimization procedure described in chapter 3 we obtained the optimized variables
given in Table 7.5.

Note from the equations in (7.5) and (7.8) that the split ratios are defined some-
what differently for the two arrangements, which to some extent account for the
differences. In order to analyze these results in some detail, we also comment on
the heuristics discussed in section 7.4, regarding the net fluxes of intermediate com-
ponents in the sidestream sections and the fluid transfer across the communication
points.

Table 7.5: Optimized variables for introductory example

Variable Sargent | Agrawal
V [kmol/min] | 1.32 1.31
L [kmol/min] | 1.07 1.06

Sy [kmol/min] | 0.259 0.259
Sy [kmol/min] | 0.253 0.254

R 0.600 0.545
Ris 0.327 0.292
Rrs 0.426 0

Rrs 0 0.606
Ry 0.292 0.383
Rya 0.586 0.676
Rys 0 0

Ry 0.256 0.184

Net fluxes in sidestream sections

We previously argued that one should avoid internal recycles of components, i.e. avoid
net fluxes across the side outlets. In order to analyze these in detail we also need in-
formation from the composition profiles. These are displayed for both superstructures
in Figures 7.10 and 7.11. For both columns we have given the profiles for all compo-
nents in the main column. For the satellite columns in Agrawal’s superstructure we
only illustrate the profiles for the intermediate components, 1.e. components B and
C'. For Sargent’s arrangement we similarly give the profiles only for the intermediates
in column II. Using the computed composition profiles, we may then compute the
net fluxes for the intermediate components in the liquid and vapor phases across the
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Figure 7.10: Composition profiles for main column in Sargent’s superstructure. Solid line
- component A, dashed line - component B, dotted line - component C and dashed-dotted

line - component 1.
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Figure 7.11: Composition profiles for main column in Agrawal’s superstructure. Solid line
- component A, dashed line - component B, dotted line - component C and dashed-dotted

line - component 1.
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sidestream outlets. For simplicity we show results only for Sargent’s arrangement,
but similar results were also obtained for Agrawal’s arrangement. The net fluxes for
component B above and below the sidestream outlet in sections 8 and 9 are given by

J% = Lsrp;—Veypi, i=1:Ng (7.12)
Jp = Veypi— Lexp,;, i=1:Ng (7.13)

where index ¢ indicates stage ¢ and Ng and Ny the number of stages in these sections.
In Figure 7.12 we illustrate that there is indeed a net flux of component B downwards
in section 8, and upwards in section 9. Hence there is no internal recycle of B in the
top sections. The same was found for component C' for the sections above and below
the sidestream S5, 1.e. there is a net flux of C' downwards in section 10 and a net flow
of C' upwards in section 11 (not shown here). Tt is also of some interest to examine

0.19

0.18

o
s
3

Net flux of component B

0.1’ I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Number of stages, section 8 and 9

Figure 7.12: Net flux Jp of intermediate component B for optimized Sargent’s superstruc-
ture. Solid line - net flux downwards in section 8 above sidestream Si, dashed line - net flux
upwards in section 9 below sidestream.

the internal reflux ratios L;/V; for the various sections. Figure 7.13 illustrates this
for the main column in Sargent’s arrangement. As expected we see from the Figure
that L/V is less than one above a “feed” location, and larger than one below a “feed”
location.

Fluid distribution between communicating sections

When analyzing the distribution of flows across the communication point, we pre-
viously argued for Agrawal’s arrangement that it is probably optimal to have vapor
primarily flowing from column III to column I, and liquid flowing in the reverse di-
rection. As given by equation (7.8), the flows across the communication points are
determined by the liquid and vapor splits Rp3, Rr4, Rvs and Ry4. From the data
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Figure 7.13: Internal reflux ratios for the sections in column III in Sargent’s superstructure

in Table 7.5 we have that for Agrawal’s superstructure, Rys = Ry3 = 0 at the op-
timum. With the definitions from the equations in (7.8), we find that that there
is no liquid transport from column III to column I, and no vapor transport in the
opposite direction. Our heuristics are thus confirmed for this case, which signifies
that using physical insight is crucial in order to analyze and understand the optimal
solutions for such complex columns. For Sargent’s superstructure, we similarly find
from the results in Table 7.5 that R4 = 0 and Rys = 0, so that there is no fluid
transport from column IIT to column II. This implies that all transport takes place
in the direction towards the product withdrawals. The only communication is thus
liquid flowing from section 5 to section 10 (Rrs = 0.426) and vapor from section 6 to
section 9 (Ry4 = 0.256).

From the composition profiles in Figure we also find that the maximum composi-
tion of the intermediate B occurs at the stage from which sidestream S is withdrawn,
i.e. zp = 0.95. This indicates that the optimal location has been found for S1. For
the intermediate C', the maximum composition occurs above the sidestream S3. This
may indicate that it is optimal to move the sidestream to some stage above the chosen
location. Re-optimizing the column with the same number of total stages, but using
Nig = 8 and Nq; = 12 (i.e. moving the sidestream two stages up the column), indeed
lowers energy usage, although the savings are insignificant. However, we stress that
the finding the optimal location requires a model in which we allow for withdrawals
from any stage within these sections. Results for the latter are not presented here.

In order to comment on the split—sequences in the column and compare to the
eastest split, we may consider the composition profiles in the prefractionator column
I for Sargent’s arrangement. The profile is given in Figure 7.14. From the profiles we
find that the first split is essentially between the light A and heavy component D,
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Figure 7.14: Composition profiles for column I in Sargent’s superstructure. Solid line -
component A, dashed line - component B, dotted line - component C' and dashed-dotted
line - component 1.

whereas the intermediates B and C distributes between the top and bottom products.
We may note that there is no sharp A/D split, which is not required since we do not
require “pure” products.

After this introductory example, we now proceed to compare the energy efficiency
to optimized sequences of regular columns. We also discuss some effects related to the
trade off between the number of stages (capital cost) and the energy requirements.
Results are also given for the Kaibel and - columns. Since we use the same conceptual
model for all columns as was described for the introductory example, we leave out
details for the models and give only the energy usage.

7.6 Comparing Optimized Petlyuk and Conventional
Arrangements

In order to compare the performance of Petlyuk arrangements with conventional
designs it might be disputed how one should select the number of stages. For the
optimizations given in this work we have chosen to compare the arrangements on
basis of the total number of stages, i.e. adding every stage in all sections. We denote
this total number of stages by Np, whereas we use the term Ng for the number of
stages in the main column counting from the reboiler (bottom) to the condenser (top),
i.e. the “column height”. If we consider Agrawal’s and Sargent’s superstructures with
12 sections and 10 stages in each section, we thus have Ny = 120 and Ny = 60. A
Petlyuk arrangement generally requires more stages (N7 ) than a series of conventional
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columns for a finite reflux ratio. However, as noted also by Wolff and Skogestad
(1995), using Ny may be conservative when comparing the Petlyuk arrangements
with conventional arrangements. To justify using Np instead of Np, one could also
argue that the number of stages in sections on either side of a partition comes for free
with respect to column height and diameter. This follows if we take into account that
the internal flows, which more or less determine the size of the column internals, are
distributed between the partitioned sections within the single shell. In any case, we
indicate both Ny and Np for the different arrangements for the numerical results.

For the case studies we use the same relative volatilities and purity specifications
given in Table 7.4. We also consider mixtures with different feed compositions which
we denote by mixtures a,b and ¢ are given in Table 7.6

Table 7.6: Feed mixtures for case studies
Feed mixturea 24 =z2p =04, 2 =2¢ =0.1
Feed mixture b 24 =2 = 2¢ =2p =0.25
Feed mixturee¢ 24 =2p =0.1, 2 =2¢ =0.4

7.6.1 Infinite energy input — Minimum N

If we consider a conventional sidestream column we may compute the minimum num-
ber of stages Np,;, for a quaternary separation using the well known Fenske equation,
le.

log (Srm)
log (arLm)

rrLr/THT

Npin =
e TL B/THB

, Sip = (7.14)

where subscripts 7' and B denote the top and bottom products whereas L and H
refer to the light and heavy keys, respectively. The sidestream column corresponds
to an arrangement in which the stages for each bisectional column is stacked on
top of each other (3 regular columns). We note that the results for Ny, are the
same as for the direct and indirect split schemes, since each section performs a given
pseudo-binary separation. Recall in the following that we require purities of 99% for
A and D and 95% for B and C. If we then assume that only adjacent components
appear as impurities, and also an equal distribution of impurities in the intermediate
products, we have for the impurities that :L‘é = éL‘g = 0.025, :L‘g = mg = 0.025 and
mg = :L‘g = 0.01. Here the subscripts refer to the products and the superscript
to impurities respectively. Using the Fenske equation (7.14) and relative volatilities
between adjacent components of a;; = 2, we thus obtain

N _ log(SaB) | log(Sec) | log(Scp)
0= Tlog@) T log2) Tt log(?)

However, with the dividing wall column in Figure 7.6 the given separation is achieved
in a column with only 6 stages in each section and 5 stages in the the top and
bottoms section. This gives Ny = 34, which is less than N,,;,. We note for the sake

=343 (7.15)
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of consistency that the total number of stages is N7 = 70 in this case. The latter also
illustrates that if we consider Np instead of Np, Petlyuk arrangements in general
requires a larger Np,;, than conventional arrangements. This is simply due to the
fact that a larger number of sections is required to produce sharp splits.

7.6.2 Minimum energy input — finite/N. One dividing wall

We first consider the - and Kaibel columns which are the simplest simplest extension
of the Petlyuk column. To enable comparisons between these columns, we need to
specify the number of stages in the middle section between the sidestream outlets
in the Kaibel column. As discussed above, this section should ideally act as a total
reflux column for which it requires a certain minimum number of stages N2S to avoid
remixing of intermediates B and C' (the F and Kaibel columns are almost identical
if total reflux L/V = 1 is achieved in the intermediate section). With the given
purity requirements, we may compute a “lower bound” for NES if we consider a
separation in which only intermediates are present in the sidestreams, i.e. no light or
heavy components. In this case equation (7.14) yields NBS = 8.5. A more reasonable
situation is to assume an even distribution of impurities as discussed in the last section,
hence equal amounts of A and C' in the B-sidestream and conversely equal amounts
of B and D in the C—sidestream. In the latter case we have a pseudo-binary mixture
of B and C for which z17 = zgp =0.95 and 21 p = zg,7 = 0.025. Using this we
obtain NBf = 10.5 from equation (7.14). Hence, if we use 11 stages in the middle
section, we should obtain a purity slightly higher than 95% for the side streams.

We should emphasize that when comparing the F and the Kaibel columns, the
difference (in cost) owes to either an additional (external) heat exchanger or an inter-
mediate section (dephlagmator) within the column shell. For the simulations we have
thus chosen to exclude the “extra” stages in the intermediate section for the Kaibel
column, corresponding to the required Np,;,. In order to compare the performance
with conventional designs we considered a 3—column arrangement which closely re-
sembles the I and the Kaibel arrangement as shown in Figure 7.15. The main reason
for choosing this particular design is that it yields the same values for both Np and
Np. Note as previously discussed that for the optimizations we have 6 DOFs for the
Kaibel column and 5 DOFs for the F column, out of which 4 are consumed for the
product purities. Note in light of the discussion above, that for this particular exam-
ple we used 15 stages in all sections of the Kaibel column, except for the intermediate
section between the sidestreams where we used 9 stages. For the F column we use 15
stages in all of the 6 sections, i.e. Ny = 60, Ny = 90. Results from the optimizations
for feed mixture a are shown in Table 7.7 and we refer to Figures 7.3 and 7.4 for
notation.

Table 7.7: Optimized variables for the Kaibel and F columns with feed mixture a and
Nr =90

V L Sl SQ RL RV
Kaibel | 1.167 0.764 0.096 0.098 0.39 0.68
F 1.167 0.766 0.096 0.097 0.40 0.69
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Figure 7.15: 3—column arrangement for quaternary separations

As expected the differences between the two columns are insignificant. As previously
discussed the columns are equal when we have total reflux L/V = 1 in the intermediate
section of the Kaibel column, whereas for the example we have L/V = 0.99 . Compo-
sition profiles for the main columns of the Kaibel and I columns are given in Figure
7.16. Note for the F column that the product composition in the lower sidestream
is equal to the wapor composition on the top stage. The vapor composition is in
fact lower than the liquid composition (shown in the Figure) due to the presence of
the lower boiling intermediate B. Recall that we require saturated liquid products,
for which the vapor leaving the top stage is condensed through heat exchange with
the sidestream from the bottom of the section above. The upper sidestream is also
withdrawn as liquid.

The relative energy savings AV compared to the 3—column arrangement in Figure
7.15 are given for feed mixtures @ and b in Table 7.8!.

Table 7.8: Minimum energy inputs for arrangements with one vertical partition
3—column arrangement | F and Kaibel? | Savings

Ny =60, Np =90 | V*=1.96 Ve =1.17 AV® = 40%
Vb =231 Vb =155 AVP =33%

From the results we find that the - and Kaibel columns offer considerable energy
savings in the order of 30—40% compared to the 3—column arrangement. However, we
should also emphasize that the arrangements are probably not well suited when zp #
z¢, for which case the main column is not balanced. We also note that among the other
conventional arrangements (5 possible sequences for 4 components), results showed

ISuperscripts refer to the feed mixture
2For the Kaibel column we must add Nn]ic; stages in the intermediate section
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Figure 7.16: Composition profiles in the main columns for the Kaibel (a) and F column
(b). Solid line - component A, dashed line - component B, dotted line - component C and
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that the performance of the indirect split sequence (with vapor feed to subsequent
columns) was similar to the 3—column arrangement whereas the direct split required

a larger V for mixtures a@ and b.

7.6.3 Minimum energy input — finite/N. Two dividing walls

We then proceed to compute energy savings for Petlyuk arrangements with the max-
imum number of n(n — 1) sections. To compare the energy efficiency of Sargent’s
and Agrawal’s superstructure with a conventional sequence of regular columns, we
have chosen the arrangement in Figure 7.17, denoted the “direct—indirect” scheme.
Recalling the previous discussion of how one should choose the number of stages,

e, he
| WBC i

Vi Vi

%D

Figure 7.17: Conventional “direct-indirect” 3—-column arrangement for quaternary separa-
tions

ABCD

we mention that the main reason for choosing this particular arrangement, is the
fact that it may yield the same values for both Ny and Ny as the Agrawal’s ar-
rangement. In Table 7.9 we give results in which we compare Agrawal’s (satellite)
and Sargent’s (sequential) arrangements with the “Direct-indirect” scheme in Figure
7.17. AV denotes the fractional savings of the Agrawal arrangement relative to the
“direct—indirect” scheme. Provided there is a sufficient number of stages we thus

Table 7.9: Minimum energy inputs for arrangements with two vertical partitions

“Direct—indirect” | Sargent Agrawal Maximum savings
Ng =40, Np =80 | V*=1.90 Ve=1.69 | V* =147 AV =23%
Vb =245 vb=227 | Vvt=211 AVP =14%
Ng =60, Np =120 | V* =1.75 Ve=1.07 | V*=1.06 AV® =39%
Vb =221 vb=132 | vt=131 AV = 42%
Ve =258 Ve=146 | V¢=1.40 AV =46%

find that relative savings are in the order of 40%. However, we clearly see that the
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number of stages have a large impact on the. For Ny = 80 we find that Agrawal’s
arrangement is the better, whereas for Sargent’s arrangement the savings are modest.
The fact that the savings increase with Np signifies that the conventional arrange-
ment requires fewer stages to achieve the overall minimum V,,;, than the Petlyuk
arrangements. We also mention that the two Petlyuk arrangements should give the
same Vi, when N — oo, since they use the same number of sections and thus allow
for the same easiest split sequence. In order to examine how far the values in Table
7.9 are from the actual V,,,;,,, we examine in the next section more closely the relation
between the number of stages and minimum energy input.

In order to compare the relative savings for Petlyuk arrangements with one and
two dividing walls given in Tables 7.9 and 7.8, we stress that the Petlyuk arrangements
are not strictly comparable in terms of Np. This is firstly due to the F column not
being a Petlyuk arrangement in a strict sense, since both direct and indirect thermal
coupling takes place. Secondly, we previously pointed out the ambiguity in selecting
the appropriate number of stages for comparisons. We have that the Kaibel column
requires Ny + N and that the - column uses either an extra heat exchanger or an
internal region to provide the required heat transfer area. Due to these reasons we have
chosen different conventional schemes in Figures 7.15 and 7.17 for comparisons, since
we aimed for conventional arrangements which may yield the same Ny and Ng as
the Petlyuk arrangements. If we use the same Ny for the conventional arrangements
, we find that the the “direct-indirect” scheme yields a larger N7 than the 3—column
arrangement. Finally, we add that among the other conventional schemes, the direct
split scheme required a considerably larger energy input than the “direct-indirect”
scheme, whereas the indirect split (vapor feed to subsequent columns) with the same
Nr was slightly better (i.e. in the order of 1 % lower V). However, we again stress
that the direct and indirect splits with the same Np requires a structure with larger
Np.

7.6.4 Minimum energy input - infinite NV

In this section we want to obtain the overall minimum energy usage for a quaternary
separation in a Petlyuk arrangement. We should mention that for Petlyuk columns
separating a mixture into three products, there are methods proposed in the literature
to obtain Viyin, e.g. Fidkowski and Krolikowski (1986), Glinos and Malone (1988) and
Carlberg and Westerberg (1989). The basis for these works are Underwood’s method,
which yields exact results for infinite columns. However, since no such method is
available for the complex Petlyuk arrangements discussed here, we resort to numerical
simulations. We pose the task of finding reliable shortcut methods for estimating the
minimum energy input as an interesting and important problem for future work.
Thus, we aim to find what is a “sufficiently” large number of stages so that only small
reductions in V' are possible by increasing this number. To do so we know that for
conventional distillation columns, the relation between the number of stages N and
the energy input V takes the shape of a hyperbolic function. This function reveal
two distinguished asymptotes, where one gives Ny, for the limiting case of infinite
internal flows (L,V = oo), whereas minimum boilup V,,;, is obtained for N = oo.
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Hence, by optimizing the Petlyuk arrangements with respect to V for an increasing
number of stages, we will obtain a curve that asymptotically converges to the true
Vmin~

The relation between Np and V for feed mixture a is given in figure 7.18. Note
here that each point of the curve represents the minimized V for the given Np. As
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Figure 7.18: Trade—off between N7 and V for Agrawal’s arrangement and feed mixture a

seen in the Figure, we find that with a relative volatility of a;; = 2, the hyperbolic
curve approaches V2. =~ 0.98 as Np > 160. We thus find that the value of 1.06 given
in Table 7.9 is reasonably close to V,2,,. We furthermore find that V.2, isin fact less
than one. The energy usage is thus very low, for instance compared to the results for
the ternary mixture given in Table 7.2. For the Petlyuk column with Ny = 60 and
Np = 90 (note that Ny is smaller but Ny the same) we found the lowest energy usage

of V'=10.99, which was obtained for the feed mixture of zp = [0.475,0.05,0.475].

7.7 Sensitivity Analysis

In this section we show that additional and useful information may be extracted from
the optimized solutions, by obtaining sensitivity functions derived from the augmented
Lagrangian function. This is a very important issue when analyzing the energy ef-
ficiency of Petlyuk arrangements, since we may characterize the process behavior in
the vicinity of optimum. Using information for the sensitivities provides crucial in-
formation for the steady state behavior, since we may quantify the deviations from
the optimum when the process is subject to changes in the process parameters. The
steady state properties of the Petlyuk column for ternary mixtures have previously
been discussed by several authors (e.g. Chavez et al. (1986), Wolff and Skogestad
(1995), Morud (1995) and Halvorsen and Skogestad (1997)). Tt is shown that Pet-

lyuk arrangements may display complex nonlinear behavior, such as multiple steady
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states (Chavez et al. 1986) and even holes within certain operating regions (Wolff and
Skogestad (1995) and Morud (1995)). In the latter case it was found that by speci-
fying one of the impurities impurity in the middle product, in addition to the three
product purities, there may in fact not exist any steady state solution for the set of
specifications. In practice this means that one should only control one composition
in each product.

In a recent paper Halvorsen and Skogestad (1997) addressed certain issues related
to optimizing control of Petlyuk columns using feedback mechanisms. The objective
was to find suitable measurements and manipulated variables for optimal operation
based on steady state arguments. The authors found that the energy surfaces are
characterized by certain “good” and “bad” directions in the parameter space. This
may not be surprising in light of the previous findings of Fidkowski and Krolikowski
(1986), where it was shown that the energy surface for infinite columns in fact is
constant within certain enclosed regions. The latter was also verified from simulations
of “finite” columns in chapter 5 in this thesis. However, extracting such information
is of great importance in order to understand under which operating regimes the
energy consumption is relatively insensitive to changes in the parameters. Halvorsen
and Skogestad (1997) obtained the “good” and “bad” directions by inspection of the
solution surface which was computed the continuation scheme discussed in chapter 3
of this work. However, since the number of DOFs are much larger for the Petlyuk
arrangements discussed here, it is not that straightforward to obtain information
directly from the solution surfaces. For Agrawal’s and Sargent’s superstructure, there
are 8 remaining DOFs giving a 8 dimensional energy surface.

What we seek here is thus some measure of the sensitivity for the objective func-
tion (boilup) with respect to changes in the manipulated variables. Since the first
order derivatives vanish in the optimum, one must resort to second order information
available from the Hessian matrix evaluated at the optimum. The approach used here
to compute the Hessian is due to a procedure described by Morud (1995). The core
element in this procedure is to approximate the solution surface in the vicinity of the
optimum by a quadratic surface, i.e. a Taylor series expansion in which terms of third
and higher order are eliminated.

7.7.1 Deriving sensitivity functions from Taylor series

Consider the optimization problem which may be posed as

min &(z)

u

s.t. f(z)=0

where z = [¢ u] is an augmented vector of dependent variables (z) and inputs (u). In
this context the constraints f(z) are constituted by the steady state process model.
The optimization problem is commonly solved by formulating the augmented La-
grangian objective function given by

L=0z)+ 2T f(2), 2=z u] (7.16)
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where A denotes the vector of Lagrange multipliers. The optimum ®* is then found
by solving the first order necessary conditions for an extremal point

£.=0, £,=0 (7.17)

and subsequently check whether it is a minimum (e.g. use the Kuhn-Tucker con-
ditions). However, since the process model is highly nonlinear and ill-conditioned,
which commonly causes convergence problems, we have as previously discussed in
this work chosen to approach the optimum in a stepwise manner by embedding the
optimization in a continuation scheme. To refine the obtained solution we may sub-
sequently apply a few Newton—Raphson iterations on the system

Fz ) = { ﬁ(z()z) } —0 (7.18)

The system given by (7.18) thus in general constitutes a non-singular system in z
and A, which may be solved using any standard numerical method. However, since
the optimum Z in our case 1s already known, we have an over-determined system of
equations from which we in fact may obtain the optimal Lagrangian multipliers \*.
We may thus compute the multipliers A* in a least squares sense using the first order
optimality condition. For this purpose we need to evaluate the pseudo—inverse of the
Jacobian fI so that

N o= —(f)1e] (7.19)

The (non-square) Jacobian f(z), may be derived numerically using finite difference
formulas. We may also mention that in our case ®, is simply a unit vector (i.e. linear
in z), since V is one of the system variables z. The computed A* may, as is well known
from optimization theory, be interpreted as shadow prices. Hence, by considering the
equations in f(z) which corresponds to specifications? constraints, one in fact has a
measure of the sensitivity in the objective function towards incremental changes in
these specifications. For instance, if f,, denotes a purity specification, then a change
of € in the purity yields a change in the objective function (V') by

5V = A (7.20)

Note that the specification f, should enter linearly with coefficient 1. After finding
the optimal multipliers, we may then proceed to compute the sensitivity function for
the objective function subject to changes in the inputs u at the nominal optimum.
To provide the sensitivity functions we have used an analogy to a previous work
of Morud (1995), in which a procedure based on Taylor series expansions was pro-
posed. The details of the Taylor series expansion is shown in Appendix B, but we
strongly encourage the interested reader to also elaborate on the work of Morud
(1995). According to the Taylor series expansion at the optimum, we find that small
perturbations in u impose changes in the minimum boilup V4 given by

V=V-Vy= %éuTﬁuuéu (7.21)

2We emphasize that multipliers (A) corresponding to equationsin f(z) that constitutes for instance
mass-balances or VLE, does not give meaningful interpretations as shadow prices
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where the Hessian of the objective function V' with respect to the inputs (u) is given

by
Low=M"L, .M (7.22)

Here M is a matrix representing a linear approximation of the process model f(z,u),
i.e.
dx

— _ _fz_lfu _ ae
6z = [(M] = [ it ]Ju_Méu (7.23)

where [ 1s an identity matrix with same dimensions as u. The reason for why we may
substitute simply a first order process model, is shown in Appendix B where A is used
to eliminate first order terms in the Taylor series expansion of the objective function.
The Hessian of the Lagrangian £, may be obtained numerically from finite (second
order) perturbations of the Lagrangian function (7.16) at the nominal optimum. The
second order information available in the Hessian may be utilized for several purposes.
In the next section we examine the directionality of £, ., in order to obtain knowledge
of the directions in which the objective function displays large/small sensitivities.

7.7.2 Sensitivity to changes in inputs

In this section we consider the effect of changes in the inputs on the energy usage.
Using the available information from the Hessian at the optimum £,,,, we may charac-
terize the optimal solution by computing for instance a singular value decomposition
(SVD) of L4y Using the SVD we have local information of the directions in parame-
ter space in which the objective function is the most (high gain) and least (low gain)
sensitive with respect to changes in u. We here denote the SVD by

Loy =USVH (7.24)

in which the diagonal matrix ¥ takes as non-zero elements the singular values o;
and the matrices U and V constitutes the output and input directions. Since the
Hessian matrix is symmetric, the output and input directions are identical, i.e. U =
VH_ For the analysis we may thus consider only the input directions. In order to
enable a numerical comparison between the different inputs u;, one should in general
introduce scaling © = Du, where D is an appropriate diagonal matrix. However, in
our particular case scaling is not necessary since u contains only vapor and liquid
splits, and are thus “inherently” scaled within the range [0, 1].

To ensure that we are reasonably close to the overall V,,,;,,, and to keep the problem
size small for numerical convenience we consider a numerical example of Agrawal’s
superstructure with Ny = 42 and Ny = 84 and a mixture with relative volatilities
a;; = 3 and feed composition zy = [0.4,0.1,0.1,0.4]. Increasing « has similar impact
on the separation as increasing the number of stages. We refer to Figure 7.9 for
notation. For this column, numerical simulations revealed that one of the vapor splits
Ry s exceeded the allowable region [0, 1] at the optimum, and is thus not considered
in the sensitivity analysis. From the remaining 11 DOFs, 4 inputs (L, Sy, S2, V) are
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consumed to achieve the purity constraints, which leaves us with 7 DOFs (internal
splits) after consuming 4 DOFs for purity control, i.e.

u=[Rr1, Rv1, Rpa, Rva, Ris, Ria, Rva]” (7.25)
Taking an SVD of the Hessian £,, we obtain the singular values:
¥ = diag[69.4, 6.2, 1.1, 0.32, 5.6e7%, 2.4¢73, 3.7¢7%] (7.26)

The condition number, which gives the ratio of the largest to the smallest singular
value, is in this case very large (y = 1.87€%), which illustrates that the system is very
ill-conditioned. The largest and smallest singular values correspond to the high u
and low gain u directions, given by the first and last columns of U. For the example
these were found to be

= [0.386, 6.87¢™3, —0.156, 0.832, —0.104, 0.352, —1.94e~%)" (7.27)
[0.342, 2.07e~2, 0.608, —4.53¢%, 0.618, 9.61e~ 2, 0.350]7  (7.28)

= =l

We thus find that the parameters which have the largest impact, as given by the high
gain direction, are the vapor split in the bottom Ry s and the liquid split in the top
Ryr1. Giving a physical interpretation of the results, we argue that these findings are
as expected. This 1s based on the simple fact that Rys and Ry in fact determine
the distribution of liquid and vapor in all sections within the column, whereas the
other inputs only affect smaller “subsystems” (sections) of the column. This is also
reflected by analyzing the low gain direction in which only small changes in Rya.
To characterize the behavior of the Petlyuk arrangements we first consider the
open loop effect of perturbations in the internal splits on the product compositions.
The inputs (flows) used to keep the product purities at their set—points are thus kept
at the nominal (optimum) values. Tn Figure 7.19 we show the results from a nonlinear
dynamic simulation which illustrate the open loop effect of a 10 % perturbation in
the high gain direction (%) on the product compositions. The actual perturbation
corresponds to a 10 % increase in the nominal value of Ry3, which according to the
the SVD decomposition is the parameter with the largest impact. We see that the
impact is detrimental, as the purity of the intermediate component C' drops from
0.95 to 0.86. From simulations we also found as expected that perturbations in the
low gain directions had almost insignificant effects on the purities (results are not
displayed). The results clearly demonstrate that one needs feedback control to keep
the product purities at their set-points, although partial control may be sufficient.
We then consider the closed loop effect of perturbations in the parameters on the
energy consumption, i.e. the external flows are now consumed for purity control. In
figure 7.20 we illustrate the impact of changes in the liquid and vapor splits on the
boilup to feed ratio V/F along the high @ (solid line ) and low gain u direction (stapled
line). As seen from the Figure, we find that the fitting of a quadratic objective function
in the vicinity of the optimum is reasonable. Furthermore we note as expected that
the boilup changes very little in the low gain direction, whereas perturbations in the
high gain direction has a much larger impact. This demonstrates that for practical
operation, one needs some kind of monitoring and feedback control of the internal
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splits in order to maintain operation in the vicinity of the energy minimum. These
results further emphasize the need for monitoring of the process parameters and an
appropriate feedback control structure, in order to maintain operation in the vicinity
of the optimum. The issue of optimizing control is for this reason of great interest. In a
recent work by Halvorsen and Skogestad (1997) some steps are taken in this direction
for the ternary Petlyuk column. The authors addressed issues such as identifying
key variables that are available for on line measurements and finding appropriate
manipulated inputs for optimal operation.

7.7.3 Sensitivity to changes in output specifications

We here consider the effect of the output (purity) specifications on the energy con-
sumption. In the nominal optimum we may also obtain vital information by comput-
ing the shadow prices (Lagrange multipliers A\*), with respect to the purity specifi-
cations. For the purity constraints ¥ = 0.99, 25 = x5 = 0.95 and z}, = 0.99, the
optimal Lagrange multipliers was found to be

AT = [0.158, —0.0028, 0.403, 2.75] (7.29)

This means that if we decrease the purity specification in the bottoms product (z%,)
from 0.99 to say 0.985, the Lagrange multiplier indicates that the boilup should be
reduced by the amount 0.005 - 2.75 = 1.38 - 10=2. In order to verify the numerical
results, we performed additional numerical simulations in which we used the new
set-point 2}, = 0.985. From the optimizations we found that the reduction in V
was equal to 1.15- 1072, i.e. only slightly lower than the predicted value. For the
intermediate C', the prediction using the multipliers in fact came out even better. The
optimal multiplier /\Zé = 0.403 implies that increasing z{. by 1% to 0.96 requires a
boilup of V' = 0.7626. From numerical optimizations we obtained the actual value of
V = 0.7622. Taking into account that the Hessian only provides local information,
and that the changes in set-points are in the order of 0.5 and 1.0%, we take the results
as a proof of the usefulness of our analysis. For smaller deviations from the nominal
optimum, the Hessian off course provides even more accurate results. We again stress
that using information from the Hessian matrix presupposes that the solution surface
may indeed be approximated by a quadratic surface in the vicinity of the optimum.
Analyzing the above results in some more detail, one should note that the results
are obtained from a design in which we have not considered the optimal distribution
of stages within the different sections. This may in fact partly explain why the shadow
prices for the intermediate product (B) is much lower than for the top and bottoms.
If we examine the composition profiles given in Figure 7.21 (a), we find that the
maximum compositions of the intermediates does not occur at the stage from which
the sidestreams are withdrawn. This indicates that the location of the sidestream
outlet is suboptimal. Furthermore, using an analogy, this also means that there is
some “slack” with respect to the separation occurring in these sidestream sections.
Compared to the profiles for the light and heavy product, we find that the maximum
compositions indeed occur at the top (light) and bottom (heavy) stages. Hence, it
seems reasonable that the shadow prices is larger for the top and bottom products.
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To investigate this issue further, we considered the same column where we in-
creased the product purities of the intermediates so that all purities are z] = 0.99.
As one may expect we then found that the shadow prices was in the same order of
magnitude for all product specifications, i.e.

AT =[1.16, 1.21, 3.32, 2.17] (7.30)

This to some extent justifies the previous argument, and at the same time illustrates
that if one requires the same product purities, yielding a balanced column (relative
volatilities are equal; a;; = 3)), the sensitivities towards changes in purity require-
ments are in the same order for all products. The minimum boilup was in this case
V* = 0.799 compared to V = 0.759 with 2% = zf = 0.95. Since high purity dis-
tillation is known to be highly nonlinear, we also expect sensitivities to be larger in
this case. The sensitivities for perturbations in the strong direction is indeed more
strongly pronounced for both the closed loop (steady state) and open loop (dynamic)
simulations as shown in Figure 7.22. In Figure 7.22 (b) we also note the considerable
difference between the strong (solid line) and the weak directions (stapled). From the
open loop simulations we find that the purity of intermediate B in this drops from
0.99 to 0.87, whereas the top and bottoms changes relatively less.

7.8 Discussion and Conclusions

In this paper we have considered using Petlyuk arrangements for the separation of
quaternary mixtures, and demonstrated how such arrangements may be implemented
in a single shell using dividing walls. Numerical results for a few example problems
indicate that the fractional savings compared to conventional schemes typically are in
the order of 40%. However, we emphasize that the results are only tentative, in the
sense that savings may be even larger (or smaller) for other mixtures. Our results also
demonstrate that Petlyuk arrangements require a larger number of stages compared
to conventional designs to achieve the minimum boilup.

Since Petlyuk arrangements give a large number of DOFs at steady state, and
the conceptual models commonly display highly nonlinear behavior, the task of com-
puting the optimal solution is indeed a very difficult one. In fact, even finding a
steady state solution requires robust and reliable numerical algorithms. In this work
we used numerical integration of a dynamic model to obtain an initial steady state
solution. The optimized solutions were then computed from a steady state model by
continuation in the subspace spanned by the DOFs. Furthermore, due to the size
and complexity of the problems (typically 3Ny number of equations and up to 12
DOFs), there is no way of guaranteeing that a global optimum has been obtained
using the method proposed in this work. However, based on an a posteriori analysis
of the numerical results, in which we studied characteristics such as the composition
profiles, the internal distribution of components, the presence internal recycles etc.,
it seems likely that the results are at least close to the global optimum.

Furthermore, we stress that the Petlyuk arrangements have only been optimized
with respect to the degrees of freedom available for operation. For a column with a
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given structure (i.e number of sections and total number of stages), we stress that
additional savings are possible if one also takes into account discrete design parameters
such as the distribution of stages between the different sections and the feed— and side—
stream locations. Still, the main contribution from our work is to demonstrate that
there is a large potential for extending the Petlyuk ideas to separations of four or
more components. Future work is needed to investigate for what mixtures Petlyuk
arrangements yield the largest potential savings.

Acknowledgments. Contributions and valuable comments from John Morud are
gratefully acknowledged.

Nomenclature

A, B,C, D — Component indices
F — Feed flow rate [kmol/min]
Jg — Net flux of component B in section ¢
L — Reflux flow rate [kmol/min]
L; — Liquid flow rate in section ¢
M — Matrix representing a linearized model
Ng — Number of theoretical stages in main column
Np — Total number of theoretical stages in column arrangement
N; — Number of theoretical stages in section 2
ne — Number of communication points
np — Number of dividing walls
ns — Number of sidestreams
q — Feed enthalpy
R1 — Liquid split fraction
Ry — Vapor split fraction
S; — Side stream flow rate [kmol/min]
St — Separation factor between light I and heavy H component
U — Matrix of output singular vectors
u — Vector of input variables
u — High gain input direction
u — Low gain input direction
VH — Matrix of input singular vectors
V - Boilup from reboiler [kmol/min]
Vi — Vapor flow rate in section 7 [kmol/min]
x — Vector of (state) variables
z.; — Liquid mole fraction of component ¢ on stage i
z} — Product specification for component ¢
Ye,; — Vapor mole fraction of component ¢ on stage i
z — Augmented vector of variables and parameters
z; — Mole fraction of component 7 in feed
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Greek letters
a;j; — Relative volatility between components ¢ and j
A — Lagrangian multiplier
0 — Derivatives
® — Objective function
>~ — Matrix of singular values
Calligraphic

L — Lagrangian objective function
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Appendix A Optimization by Continuation

The optimization algorithm we have used in this work was described in chapter
3, and we therefore give only a brief summary of the principles, referring to chapter
3 for details. The task we consider here is thus to optimize any steady state model of
a Petlyuk arrangement, constituted by a system of NAE’s which we denote by

g(z,y,u) =0 (7.31)

Here z are the states (compositions), y the outputs (purities) and u a set of variables
which we are free to specify, i.e. control variables (flows) and system parameters
(vapor and liquid splits). The purpose of optimization is thus to minimize the energy
input (boilup), i.e.

minV (z,y,u) (7.32)
u
subject to the steady state model (7.31) and constraints on the purities. Given an ini-

tial solution, the purpose is thus to traverse the path to the optimum by continuation
in which search directions are defined according to a local linearization.

Appendix B Derivation of sensitivities from Taylor
series expansion

This appendix draws from a work by Morud (1995) for which the objective was
to derive a Taylor series expansion of the loss function, referring to the loss by not
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compensating for disturbances at a nominal optimum. This appendix is thus an anal-
ogy to the latter work, in which the purpose is to use the Lagrangian multipliers to
eliminate the first order terms in the objective function. Using this “trick” we may
use a first order process model to provide an expression for the sensitivity function
(Hessian) towards perturbations in the optimization parameters at a precomputed op-
timum. For convenience we first repeat the optimization problem in which V' denotes
the objective function, 1.e. the boilup

HhinV (2) (7.33)
s.t. f(z)=0 (7.34)

Commonly the optimum is found by solving the augmented system of equations con-
stituted by the original process model and the first order necessary conditions for the
Lagrangian L, i.e.

Ly=f(z)=0; L=V, +Af.=0 (7.35)

where subscript z refers to partial derivatives with respect to z. This constitutes a non-
singular system of nonlinear algebraic equations in the augmented vector of variables
z and the Lagrange multipliers A, which may be solved using any numerical algorithm.
However, in our case the optimum solution is already found (by continuation), and
we thus have an over-determined system of equations for determining A.

The “trick” is in this case to use A in order to obtain the Taylor series expansion
for the objective function V(z). The derivation of the Taylor series expansion requires
that all functions (i.e. V and f) is expanded to the same order. However, in our case
V is linear in z (the boilup V is one of the system variables) so that the second order
term vanishes, hence we obtain the following Taylor series

8]“2 1 T82fi
Ep dz + 552 5.2
oV . 1. .0V .

fi(z) = fo+ 52+ 0(32°) (7.36)
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After multiplying equation (7.36) by A;, summing up all f; and finally adding equation
(7.37) we obtain
V(z) V(z)+0=V(z) + AT f(2)

1.
= (Vo+ATfo) + (V2 + Afe) 62+ §OzT (Vee + AT f.2) 62 + O (62°]7.38)

Since f(z) = 0, we have only added terms equal to zero to the objective function.
The underlying purpose for doing this derivation now emerges. Since the second term
L. =V, + AT f, is equal to zero at the optimum, we may rewrite equation (7.38) and
obtain

V(2) = (Vo+ AT fo) + %(hT (Vaz + X' f22) 62 + O(62°) (7.39)
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We have thus used the process model to eliminate the first order terms in the Taylor
series expansion of V(z). Hence, if we use a second order process model, the second
order terms will vanish since they are multiplied by zero. It is thus sufficient to use
simply a 1st order model for z, i.e.

flz,u) = fpdx + fudu=0 (7.40)
so that
5z = [gz] - [_ff_jlf“] Ju = Méu (7.41)

where [ is an identity matrix with same dimensions as u. The overall error using a
first order model will then still be of order 3, i.e. @(dz?), so that the Taylor series
expansion of V'(z) is still accurate to the 2nd order. Introducing the 1st order model
(7.41) into equation (7.39) we obtain

V()= (Vo + AT fo) + %(MT (MTL..M) u+ O(62%) (7.42)

Using that fy = 0, we finally obtain the following expression for V(z) in the vicinity
of the optimal solution

1
V=V -V = §5UT (MTL,. M) du+ 0(32%) (7.43)

However, if the first order term V, 4+ AT f, had not been eliminated, one would have
to use a second order process model.
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Abstract

The paper addresses parametric sensitivity in batch distillation processes. By
considering the effect of small changes in the operating parameters, e.g., initial
conditions, we show that even ideal binary columns may display highly sensi-
tive regions of operation. Through analysis of a general model we determine
operating conditions that favor parametric sensitivity and show that paramet-
ric sensitivity in general will be most severe in columns operated with reflux
or internal reflux ratio as a manipulated input. We also consider the impact
of different operating policies, for which we analyze columns operated with
constant reflux-ratio and constant distillate composition, respectively. The
analytical results are verified through numerical computations for several case
studies
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8.1 Introduction

Batch distillation has become of increasing importance in industry during the last
decades. In academia, this is reflected in the large number of articles that have ap-
peared on the optimization of batch distillation operations (see e.g. Sgrensen (1994) or
Diwekar (1995)). Somewhat surprisingly, however, the fundamental dynamic behavior
of batch distillation columns has received relatively little attention in the literature. In
particular, few studies attempt to establish qualitative results regarding the dynamic
behavior of batch distillation columns. Doherty and Perkins (1978) consider the dy-
namics of simple distillation with a focus on the behavior close to singular points of
the residue map. Singular points here refer to stationary states of the residue curve,
i.e., end points of the state trajectory. They show that such points occur only for
pure components or azeotropes, and that they are either (unstable) saddles or stable
nodes. Dongen and Doherty (1985) attempt to extend these results to multistage
batch distillation columns with reflux, and discuss how batch trajectories may be
predicted from residue curve maps in the case of azeotropic mixtures. More recently,
Davidyan et al. (1994) consider the dynamic behavior of batch columns with a middle
vessel, and show that such columns have additional singular points which are neither
pure components nor azeotropes. These additional singular points are always sad-
dles or unstable nodes, and occur due to additional degrees of freedom compared to
conventional columns.

In this paper we study the sensitivity of state trajectories in batch distillation to small
changes, or uncertainties, in the operating conditions. If small changes in some param-
eter, e.g., the initial concentration, produces large changes in the state trajectory, then
the system is said to exhibit parametric sensitivity (Bilous and Amundson 1956). Un-
derstanding the extent and causes of such behavior is important, not the least because
operating policies usually are implemented in an open-loop fashion (e.g., Macchietto
and Mujtaba (1992)). Thus, there is usually no feedback correction if key outputs
diverge from the desired trajectories, and the existence of parametric sensitivity may
cause the end-product to deviate significantly from the specifications. It i1s the aim
of this paper to answer whether parametric sensitivity may exist in batch distillation
and, if so, which operating conditions that favor such sensitivity.

The paper is organized as follows. First, we introduce the reader to batch distillation
and common ways of operating batch columns. We then discuss the analysis of
parametric sensitivity for general dynamical systems and critically review some of
the criteria employed in studies of parametric sensitivity in batch reactors. The
analysis of parametric sensitivity in batch distillation is divided into two parts. We
first analyze a model with the common assumption that the control variables, e.g.,
reflux, are specified in molar units. However, in practice, the control variables are
more likely to be specified on a mass or volume basis, and we therefore proceed to
analyze this case. Finally, we discuss some practical implications of the derived results
and present a complete example for illustration.
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8.2 Batch Distillation

Conventional batch distillation columns are usually operated as batch rectifiers or,
in some cases, as batch strippers. More recently one has also started looking at
alternative designs (see e.g. Hasebe et al. (1992),Hasebe et al. (1995), Davidyan et
al. (1994) or Skogestad et al. (1997)). In this work, however, we limit ourselves to
binary separations in rectifying columns as illustrated in the schematic in Figure 8.1.
A typical rectifying column consists of a heated vessel (reboiler) where the liquid

Qo Condenser
Vv Reflux Drum
H,, X,

A= o eew

n-1
L\L
Column Section Receiver
Hp . Xp
2 Vv
Reboiler

Figure 8.1: Rectifying batch distillation column.

is vaporized, the rectifying section with plates or packed material, the condenser
(total or partial) where the vapor leaving the column is condensed, a reflux drum
which collects the condensed vapor and one or more receivers (accumulators) where
the distillate is collected. Some of the condensed vapor is normally returned to the
column (reflux) in order to improve the separation.

Operating policies. Typically, after filling the reboiler with the batch charge, the
column is run under total reflux until steady state or to a state where the distillate
composition reaches a desired purity. Distillate is then continuously withdrawn ac-
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cording to the chosen operating policy, and different cuts are obtained by switching
to alternate receivers. The operation is usually performed according to one of the
following policies

(1) Constant reflux or reflux ratio, in which case the distillate composition contin-
uously changes as the batch proceeds.

(2) Constant distillate composition, in which case the reflux, or reflux ratio, is
continuously changed. Typically, the input profile is computed off-line and then
implemented in an open-loop fashion.

(3) Optimal reflux ratio, in which case the input profile is determined by solv-
ing an optimization problem, usually off-line. There exist a vast literature on
determining the optimal policy in batch distillation, and typical optimization
criteria involves amount of distillate of a given purity and distillation time (see

e.g. Serensen (1994), Mujtaba (1989) or Kerkhof and Vissers (1978)).

In all the above policies, it is common practice to assume the boilup V fixed for all
times.

In this work we will focus on operating policies (1) and (2). Operating policy (3) is less
generic since it depends on the specific optimization criteria chosen. However, since
this policy typically involves reflux profiles somewhere in between those of policies (1)
and (2), we expect the results derived to be relevant also for this case.

Control configurations. Having determined an operating policy, e.g., in terms of
reflux, there are several ways in which the policy may be implemented in practice,
depending mainly on the chosen control configuration. With a control configuration
we understand the manipulated inputs that are available after the level and pres-
sure control system has been configured. For instance, if condenser level is controlled
using distillate flow D and pressure is controlled using condensation rate Vp, then
reflux L and boilup V are left as free inputs for manipulation, and the configuration
is accordingly labeled the LV -configuration. Note that it is also possible to use dif-
ferent combinations of flows as manipulated variables, e.g. L/D or L/V. Here L/D
is the external reflur ratio and L/V is the internal reflur ratio. For batch distilla-
tion columns, the most common configurations are probably the LV-, (L/V)V and
(L/D)V-configurations. We stress that any given operating policy may be imple-
mented using any control configuration through the use of simple transformations.
For instance, with the LV—configuration, one may transform a computed policy in
terms of reflux ratio L/V into a policy in terms of reflux L.

Specification of flows. In model based studies of distillation column operations, it
is usually assumed that all flows, i.e., manipulated variables, may be specified on a
molar rate basis, i.e., in [kmol/min]. The main reason for this is probably that it is
the molar flows that naturally enters in the model of a distillation column. However,
in practice, liquid flows are more likely to be specified on a mass or volume rate
basis (Jacobsen and Skogestad 1991). At a first glance this may seem like a trivial
difference. However, as shown by Jacobsen and Skogestad (1991), the use of mass or
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volume flows may have a significant impact on the behavior of continuous distillation
columns. As they show, a column operating with mass or volume flows may display
multiple steady states and unstable operating points where a model with molar flows
would predict unique and stable solutions. The reason is that the transformation
between mass or volume flows and molar flows is nonlinear due to the composition
dependence, and may become singular under certain conditions. Based on these
results one might expect that the use of mass or volume flows may have a significant
impact also on the dynamics of batch distillation columns. Thus, having first analyzed
the case with molar flows, we proceed to analyze the effect of using mass flows on
parametric sensitivity. The rationale behind analyzing both cases is that we thereby
obtain insight into the importance of the choice of units for flows in models of batch
distillation units.

Dynamic Model. In this work we analyze a general dynamic model of a binary
batch distillation column. The modeling assumptions we employ are

e Binary separation.

Ideal VLE.

e Theoretical trays.

Total condenser.

Constant molar overflow.

Negligible holdup on the plates and in the condenser.

With these assumptions we obtain a model with only two states, one for reboiler
composition and one for reboiler holdup. Such a low order model is convenient for
deriving analytical results. However, in order to verify the analytical results we employ
simulations with more rigorous models, e.g., including tray holdups.

Material and component balances over the entire column yields the dynamic model

dHp

— =1 - Nl

o 4 (8.1)
dCL‘B L-V
b — 2
o T (yp —=B) (8.2)

where Hp is the reboiler holdup and zp and yp denote the fraction of light component
in the reboiler liquid and distillate flow, respectively. Based on the assumption of
negligible tray and condenser holdups, the tray compositions are given by the algebraic
equations

L(wiyr —2i) + V(i1 —yi) =0; i=2,N (8.3)

from which yp may be computed given L, V and zp.
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For the case of constant relative volatility, a, the vapor composition is given by the
VLE equation
Qar;

= e Tn (8.4)

Yi
Given this simple two—state model, our objective is to provide insight as to whether
batch distillation columns may exhibit parametric sensitivity, and if so, to investigate
under what operating conditions sensitivity is likely to be most severe.

8.3 Analysis of Parametric Sensitivity

The analysis of parametric sensitivity involves the analysis of dynamical systems
described by ordinary or partial differential equations. We here restrict ourselves to
systems described by ordinary differential equations on the general form

x = f(x,£(),1), x(0)=x0 (8.5)
XERM"EERY, fF:R" xR —R"

where x denotes the vector of state variables and & are the parameters including the
control inputs. The solution of (8.5) is conveniently denoted by

x(t) = ¢ (t,£(t), x0) (8.6)

A sufficient condition for the existence and uniqueness of ¢ (¢,£(¢), xg) is that the
function f and its first-order derivatives df/dz are continuous on the domain consid-
ered (see e.g Sansone and Conti (1964)). These conditions are met for any realistic
model of a batch distillation process with homogeneous mixtures.

In the analysis of parametric sensitivity we are interested in the sensitivity of a nomi-
nal solution z* () = ¢(t,£&*, 25) to small perturbations ¢ and dzg in the parameters ¢
and initial conditions zg, respectively. In the linear approximation, the perturbation
dz(t) of the nominal trajectory is given by solving the linear time-varying (LTV)
differential equation

§x = A(t)dx + B(t)d¢; 6x (0) = dxo (8.7)

with A(t) = 0f/0x and B(t) = 0f/9¢ evaluated along the nominal trajectory z*(¢). If
[|0z(%)]] in some sense becomes large for some ¢ and small ||§€]| or ||dz0]|, the system
is said to exhibit parametric sensitivity (e.g., Bilous and Amundson (1956), Vajda
and Rabitz (1992) and Vajda and Rabitz (1993)). Thus, the definition of parametric

sensitivity is qualitative rather than quantitative.

Since, in the general case, an analytical solution does not exist for (8.7), the sensitivity
functions §z(t)/6€ and dx(t)/dxo must be computed numerically for specific examples.
The sensitivity function for perturbations in the initial state z is given by the solution
of the first variational equation

§x = A(t)dx; dx(0) = dxq (8.8)
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A general solution is given by
dx(t) = ¢ (t,t0) 0xq (8.9)
Here the transition matriz ¢(t,t) is given by
¢ (t,to) = F(t,t0)F(to, t0)~" (8.10)
where F (t,1g) is a solution of the matrix differential equation
F (1) = A (t) F(t, o) (8.11)
with the initial condition F (¢g, ) being any non-singular matrix.

Using the transition matrix, one may also compute the sensitivity function for per-
turbations in the parameters &

Ix(t) = /tt o(t, 7)B(r)dldr (8.12)

Thus, sensitivity to changes in the parameters is directly related to the sensitivity to
changes in the initial conditions. We will in this work therefore focus on sensitivity
to initial conditions, which depend on the properties of the Jacobian A(t) only.

It is sometimes assumed that the transition matrix ¢(¢,¢g) may be approximated by
the matrix exponential of the integral of A (e.g.,Bilous and Amundson (1956), Douglas
(1972)), i.e.,

exp [/: A(T)dr] (8.13)

However, the integral solution (8.13) is correct only if the Jacobian matrices A(t1)
and A(t2) commute, i.e. A(t1)A(t2) = A(t2)A(t1) Vt1,%2. This is a rather severe
requirement which, except for in the scalar case, is rarely satisfied for time-varying
systems (see e.g. Wiberg (1972)). By comparing the solution of (8.13) with the
transition matrix for a number of examples, we find that the integral solution may
produce large errors, and thus contradictive results for the sensitivity functions.

An important issue in the present work is to determine under which operating condi-
tions parametric sensitivity is favored in batch distillation. Although some insight may
be gained from numerical case studies, it is hard to draw general conclusions based
on specific examples. Hence, instead of resorting to numerous and time consuming
simulations, we will consider simple indicators of parametric sensitivity that may be
evaluated analytically. Computation of sensitivity functions for specific examples will
be performed only in order to partly confirm the analytical results.

Eigenvalues as indicators of sensitivity. By considering the linear system (8.7),
we recognize that one particular situation in which to expect parametric sensitivity,
is when the nominal trajectory is locally unstable, i.e., when the perturbation dz(t)
grows exponentially on some time-interval for small perturbations dzq. If the Jacobian
A(t) is constant, the existence of at least one RHP eigenvalue, i.e., with positive real
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part, provides a necessary and sufficient condition for local instability. However,
in studies of parametric sensitivity, A(¢) is generally time—varying. In this case an
eigenvalue analysis can not be used to determine neither necessary nor sufficient
conditions for local instability, as is erroneously claimed in some studies of parametric
sensitivity in chemical reactors (e.g., Vajda and Rabitz (1992) and Vajda and Rabitz
(1993)). The only exception is for scalar systems, where the eigenvalue plays a similar
role as in time-invariant systems. For time-varying systems with more than one
state, the sensitivity functions may decay for all times despite the existence of RHP
eigenvalues (Sansone and Conti 1964). Similarly, it is known that systems with only
LHP eigenvalues for all times may have exponentially growing sensitivity functions
(Wiberg 1972). Tt is important, however, to note that all such examples involve
systems in which the elements of A(t) vary rapidly. Indeed, if the derivatives of
the elements of A(¢) are bounded below some limit, then stability of (8.7) may be
decided based on consideration of the eigenvalues (Rosenbrock 1963). Thus, it seems
reasonable to assume that the existence of RHP eigenvalues in A(t) usually will serve
as a strong indicator of parametric sensitivity.

Sufficient conditions for sensitivity. All existing necessary and sufficient con-
ditions for the stability, or equivalently instability, of (8.7) require the knowledge
of the transition matrix (8.10), which in general must be computed numerically
(Willems 1970). However, a number of sufficient conditions for stability and in-
stability, based on properties of the Jacobian A(f), are available. Most of these are
potentially highly conservative (Willems 1970). However, a sufficient condition for
instability of (8.7) is (Willems 1970)
t

lim trA(r)dr = oo (8.14)

t—o0 to

This condition is based on the relation

¢

det[o(t,t0)] = exp [/ t’PA(T)dT] (8.15)
to

Thus, if a perturbation in some or all of the system states is introduced at ¢y, a

positive trace of the Jacobian for ¢ >t acts as a sufficient condition for local growth

of some or all of the sensitivity functions on some time interval ¢ > #y. Note that the

trace of a matrix equal the sum of its eigenvalues, i.e.,

trA=>3"X\ (8.16)
i=1

and that a positive trace therefore always implies at least one eigenvalue with a
positive real part, while the opposite is not necessarily true.

In conclusion, it is not possible to derive exact analytical conditions for the existence
of parametric sensitivity in general dynamical systems. However, strong indicators of
parametric sensitivity, which may be evaluated analytically, include the eigenvalues
and the trace of the Jacobian A(t). We have in this work chosen to base our analysis
on these indicators.
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8.4 Parametric Sensitivity in Batch Distillation

84.1 LV—-,(L/V)V-and (L/D)V—configurations

In this section we make the common assumption that all flows may be fixed on
a molar rate basis and analyze the LV—-, (L/V)V- and (L/D)V - configurations.
These are all common control configurations in batch distillation practice. Since the
transformation between the different configurations are independent of the states,
under the assumption of molar rate inputs, the parametric sensitivity is independent
of the specific choice of configuration. We therefore refer only to the LV —configuration
below.

Analytical Treatment. As a first step in the analysis of parametric sensitivity we
linearize the model (8.1) — (8.2) along some nominal trajectory to obtain a LTV model
in terms of the perturbed state §z(t)

Sz = A(t)dx(t) + B(t)3E(t) (8.17)

With the LV-configuration, the Jacobian is given by

ALV (t) = V;I—%L (y?) —z3) vl’q—BL (1 _O(Si_g)L)] (8.18)

The input matrix BLY (¢) will depend on the specific parameters considered. However,
as noted previously, the existence of parametric sensitivity or, equivalently, exponen-
tial growth of dz(¢), depends on properties of the Jacobian A(t) only. The properties
of the parameter matrix B(t) will only affect the extent of the potential sensitivity.
We therefore restrict our analysis to consider properties of the Jacobian ALY (¢) only.

In order to determine the possible existence of parametric sensitivity we consider
the eigenvalues and the trace of the Jacobian ALV (t). Recall that eigenvalues with
a positive real part serves as an indicator of parametric sensitivity while a positive
trace of ALV () is a sufficient condition for local growth of at least one sensitivity
function. The eigenvalues of ALV (¢) (8.18) are given by

AV@y=0; AV @) = VI;BL (1 - (ayD)) (8.19)

dzp

Thus, one eigenvalue is zero for all times, which is explained by the integrating nature
of the holdup Hp. Furthermore, the structure of the Jacobian (8.18) reveals that the
eigenvalue ALV affects the composition zp only. The trace of ALY () is given by

trAMV (1) = APV (1) + A5V (8) = A3V (1) (8.20)

In this case a positive eigenvalue ALV (#) is hence a sufficient condition for local ex-
ponential growth of the sensitivity function for zp.



202 Chapter 8. Parametric Sensitivity in Batch Distillation

Since (V — L) > 0 at all times, we derive from (8.19) the necessary and sufficient
condition for a positive eigenvalue ALV

. 0

ALV s 0 iff <£) <1 (8.21)
8333 I

In order to understand under which operating conditions (8.21) is satisfied, we derive

below expressions for the partial derivative (Jyp /0zB)L.

Simple distillation. We first consider the simplest case with only a single equi-
librium stage, the reboiler, and no reflux, i.e., sstmple distillation. For this case we

have
yo/(1—yp) _
:L‘B/(l — :EB) -

where a is the relative volatility. Differentiation of (8.22) with respect to 2, assuming
a constant, yields

(8.22)

ayD _ @ _ yD(l_yD) N
<3IB>L_ (1+ (a—1zp)?  2zp(l—12p) (8.23)

and the condition for a positive eigenvalue (8.21) becomes

1

_ .24
rp > \/a+1 (8 )

or, equivalently,
yp > 1—zxp (8.25)

From (8.19) we have that the positive eigenvalue is largest when (Oyp /0zp)r is small.
Based on (8.23) and (8.24) we thus conclude that, in the case of simple distillation,
parametric sensitivity is most likely to occur when the reboiler is rich in light compo-
nent and the relative volatility is large, or equivalently, when the distillate i1s of high
purity relative to the reboiler composition.

In order to illustrate the results derived above we show in Figure 8.2 numerical results
for a simple distillation process of a mixture with relative volatility @« = 10, boilup
V = 1.0 [kmol/min], initial holdup Hpgo = 100 and initial composition zgq = 0.75.

As expected, the largest eigenvalue is positive during the first period of the batch, i.e.,
for t € [0,74.4] min, corresponding to the period for which x5 > 1/(+/10+ 1) = 0.24,
or equivalently, yp > 0.76. We also see that the positive eigenvalue grows over some
time interval, despite the fact that (Jyp/0zp)r increases as yp and zp decreases.
This is explained by the fact that the holdup Hp is steadily decreasing, thereby
increasing the magnitude of the eigenvalue according to (8.19). From Figure 8.2
we also see that the sensitivity dzp/0zpo increases over the time interval where the
eigenvalue is positive. However, the peak of the sensitivity is moderate with a value of
approximately 2.4. The interpretation of the sensitivity function is that a perturbation
of 0.01 in the imtial concentration xpgg will increase to a maximum deviation of 0.024
in zp(t).
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Figure 8.2: Maximum eigenvalue of Jacobian A(t) and sensitivity function for z 5 for simple
distillation column.

Multistage Columns. We next turn to multistage columns with reflux. For this
case the Separation factor
g_ Y /(1 —yp)
:L‘B/(l — :L‘B)
plays much the same role as the relative volatility a in the single stage case. The
separation factor S usually varies only slightly with varying operating conditions and
may thus be assumed constant under small perturbations in zp. Differentiating (8.26)
with respect to zp, assuming S constant, yields

<3£)L _ o —yp) (8.27)

8;‘133 :L’B(I—CL’B)

(8.26)

[The exact expression when S is not constant is

(ayD)L _ yo(1—yp) [1+ zp(l - yp) ( 95 )L] (8.28)

(31‘3 :L‘B(l—:L‘B) YD (31‘3

and we see that the contribution from (95/0xg); becomes negligible when either the
reboiler or the distillate is of high purity, i.e., zp & 0 or yp ~ 1.]. From (8.19) and
(8.27) we get that the largest eigenvalue is positive when

1
VS+1

rp > & yp>1l—=zp (829)

100
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Thus, like for the case of simple distillation, we conclude that parametric sensitivity
is likely to be most severe under the following conditions

— The reboiler is rich in light component, i.e., during the first period of the batch.
— The separation factor is large.
or, equivalently, when

— The distillate is of high purity relative to the reboiler composition.

The main difference between simple distillation and multistage distillation is that the
compositions, and hence the gain (Jyp /0zp)r according to (8.27), may change more
drastically in the latter case. In particular, for sharp separations with a constant reflux
policy, the distillate composition yp is typically close to 1 until the reboiler is almost
depleted in light component, in which yp abruptly drops to almost 0. If we denote
the time when yp starts to drop by t*, we may use the following approximations for
the maximum eigenvalue (8.19)

t<t*: yp~1 = dyp/dzp~0 = AV ~(V-L)/Hp

t>t*: yp~0 = OJyp/lzp>1 = )\%V<0 (8.30)

Thus, for sharp separations with the constant reflux policy, one should expect para-
metric sensitivity to exist throughout almost the whole period in which the light
product is drawn off.

For separations with a constant distillate composition policy, it is seen from (8.27)
that the gain (Jyp/Jdzp)r decreases with an increasing yp and thus the maximum
eigenvalue (8.19) will expectedly be larger for higher purity separations. The criterion
yp > 1—zp for a positive eigenvalue is also likely to be satisfied for a larger fraction of
the distillation time for higher purity separations. Thus, parametric sensitivity should
increase with increasing distillate purity for separations according to the constant
distillate composition policy.

Note from the expression for the eigenvalue ALV (¢) (8.19) that the magnitude of the
positive eigenvalue will depend on the size of the distillate flow D = V' — L and reboiler
holdup Hp. The effect of increasing D and decreasing Hp is to increase the magnitude
of the eigenvalue. Thus, it might appear that parametric sensitivity depends strongly
on the size of D and the initial holdup Hpy. However, this is somewhat misleading
since an increase in D, or a decrease in Hpg, in general will reduce the time for
which the distillate is of high purity and thus the time for which a positive eigenvalue
exist. In the examples below we introduce a scaled eigenvalue which essentially is
independent of D and Hpgg.

Numerical Examples In order to verify the analytical results derived above, we
consider here some numerical examples. Data for the base case column we consider
are given in Table 8.1. Two different levels of separation are considered, one with
intermediate purity of the final collected distillate, zp, = 0.95, and one with relatively
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Table 8.1: Data for base case column

Number of trays : N = 8 + total condenser
Molar Boilup : V = 5.0 [kmol/min)]
Relative volatility : a=4

Molar weight of light component : My = 20 [kg/kmol]
Molar weight of heavy component : My =40 [kg/kmol]
Initial composition in reboiler : xpo = 0.5

Initial amount in reboiler : Hpgg =100 kmol

Final amount of collected distillate: Hps = 50 kmol

Final collected distillate composition: zps = 0.95 / zps, = 0.99

high purity, zps = 0.99. In both cases the final amount of collected distillate is
specified to be Hps = 50 kmol. We first consider operation according to the constant
reflux policy, i.e., constant L, after which we present results for the constant distillate
composition policy using a precomputed reflux profile L(¢).

Since the length of the production period, t¢;,4;, Will vary significantly from case to
case, we introduce a dimensionless time 7 = ¢/t ¢;,4; in order toﬁfacilitate comparisons
of the results. The eigenvalues are scaled accordingly so that A = X #f54.

Constant Reflux Policy. The distillate composition profiles for the two separations,
corresponding to zp, = 0.95 (L = 3.433 kmol/min, tf;na = 31.91 min) and zp, =
0.99 (L = 4.616 kmol/min, tsina = 130.21 min), respectively, are shown in Figure
8.3. From the figure we see that in both cases the distillate composition stays close
to 1 for a prolonged period of time before dropping down to a relatively low value.
The transition from high purity to low purity distillate is seen to be more abrupt for
the high-purity separation as discussed for sharp separations above.

The maximum (scaled) eigenvalue Amaz Tor the two cases are shown in Figure 8.3 and
we see that in both cases the eigenvalue is positive during the period for which the
distillate has high purity, i.e., where yp 1s close to 1. This is as expected from the
analysis above. From (8.19) we have that the maximum scaled eigenvalue during the
period when yp &~ 1 is

- D(T) _ HDs
)\max (T) ~ mtﬂnal — HB (7_)

(8.31)

Thus, the scaled eigenvalue is the same for both separations initially and increases
with time due to the decrease in Hp(7). The eigenvalue peaks at a larger value for
the higher purity separation, zps; = 0.99, due to the fact that the distillate purity
stays close to 1 for a larger fraction of the production period.

The sensitivity functions dzg/dz po are also shown in Figure 8.3, and we see that the
sensitivity functions grow during the period for which there exist a positive eigenvalue.
Since the higher purity separation, zp, = 0.99, has a larger eigenvalue for a longer
period of time, the sensitivity function peaks at a higher value for this case. The
size of the sensitivity functions are, however, moderate in both cases with a peak of
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Figure 8.3: Distillate composition profiles and corresponding maximum scaled eigenvalues
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approximately 1.65 and 1.95, respectively.

We next consider the effect of changing the initial concentration zpg and the relative
volatility «, respectively, on the parametric sensitivity. In both cases we consider the
separation corresponding to zp; = 0.99. The final amount of collected distillate is
specified as Hps = Hporpo, 1.6., the recovery is the same in all cases. In the first case
we increase a from 4 to 8, while in the second case we increase xpgg from 0.5 to 0.75.
The resulting distillate composition profiles are shown together with the base case
profile in Figure 8.4. As seen from the Figure, the profile yp(7) is almost unaffected
by the changes in a and 2. This is explained by the fact that, in each case, the area
under the profile yp (7) should equal zp, = 0.99, and since all separations are sharp,
the profiles become almost identical. The effect on the eigenvalues may therefore be
derived from (8.31). Since changing a has no effect on Hp, and Hp(7), the maximum
scaled eigenvalue, and hence the sensitivity, is almost unaffected. This is confirmed
by the numerical results in Figure 8.4, i.e., the maximum scaled eigenvalues and
sensitivity function for &« = 4 and a = 8 are almost indistinguishable. The main
effect of increasing «, with zp; and Hp; given, is to decrease the required distillation
time ¢;nq;. The main effect of increasing xpg is to increase Hp, while simultaneously
decreasing Hp(7), thus increasing the magnitude of the positive eigenvalue according
to (8.31). Note that decreasing Hp(7) is a result of the scaling and thus applies only
to this case, where have Hp (1) = Hp(0) + 7(Hp(1) — Hp(0)). In the nominal case
we thus have Hp (1) = Hp(0) — Hp(0)zp(0) so that dHp/dtau = —Hpoxzpo. This
is confirmed by the numerical results in Figure 8.4.

Constant Distillate Composition Policy. We next consider operation corre-
sponding to a constant distillate composition yp, in which the required reflux profile
L(t) is assumed to be implemented in open loop. Figure 8.5 shows the maximum
eigenvalue and sensitivity function for the separations corresponding to zps, = 0.95
(tfinar = 21.96) and zp, = 0.99 (tfina = 30.36), respectively. From the figure we
see that positive eigenvalues are displayed in both cases. As expected from the anal-
ysis above, the higher purity separation has a larger eigenvalue which furthermore is
positive for a larger fraction of the production period, resulting in a larger sensitiv-
ity. By comparing the results for constant yp with those for constant L, we see that
the eigenvalues are positive for a shorter period of the batch and furthermore have
smaller magnitudes. This results in a smaller sensitivity for the case with constant
yp compared to the case with constant L.

In conclusion, we have shown both by analytical results and numerical simulations
that batch distillation columns with flows specified on a molar rate basis may display
parametric sensitivity. The sensitivity is most likely to occur when the distillate is of
high purity and the reboiler is rich in light component. The sensitivities found in the
numerical examples may appear small and insignificant. However, note that we, in
order to illustrate the presence of parametric sensitivity and its dependence on oper-
ating conditions, have restricted ourselves to consider the sensitivity of the absolute
reboiler composition to changes in initial conditions only. In practice, the sensitivity
relative to the absolute purity, e.g., dzp/xp, will be more relevant. Furthermore,
sensitivities of other key variables like the accumulated distillate composition zp will
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be of interest. In a detailed case study at the end of the paper we consider the sen-
sitivity of all key variables to changes in several key operating parameters and show
that the sensitivity in practice may become severe.

8.4.2 L,V-and (L,/V)V—configurations

We here consider the case where the liquid flows are given on a mass rate basis, i.e., Ly,
and D,, in [kg/min]!, which applies to most industrial batch columns (Jacobsen and
Skogestad 1991). We assume, however, that the boilup V' may be fixed on a molar
rate basis. This is a reasonable assumption since the boilup usually is determined
by fixing the heat input g, which corresponds to fixing V' if we assume the heat
of vaporization to be independent of composition (Jacobsen and Skogestad 1991).
Note that the choice of units for the flows has no implications for the (Ly/Dy)V-
configuration when there is a total condenser and the distillate flow D,, and reflux L,
are given in the same units. Thus, in most cases the results presented above for the
case of molar flow units applies also to the (L, /D, )V-configuration, i.e., operation
with external reflur ratio as an independent input. We furthermore note that there is
no difference between the (Lw/V)V- and L,, V-configuration since we assume boilup
V fixed, that is, fixing L, /V corresponds to fixing L,,. Thus, in the following we
refer to the L, V—configuration only.

Analytical treatment. The dynamic model with the L, V-configuration is the
same as for the LV-configuration, i.e., (8.1) and (8.2). However, since we now specify
the reflux on a mass basis, the molar reflux I becomes dependent on the distillate
composition according to the transformation

L= Lﬁw, M =ypM; + (1 —yp)M> (8.32)
Here M; and M, denote the molecular weight of the most volatile and least volatile
component, respectively. Note that the transformation is nonlinear and introduces
a feedback from the distillate composition yp to the molar reflux L. The feedback
i1s positive when Ms > M, i.e., when the least volatile component has the larger
molecular weight, which applies to most mixtures. Due to the nonlinear positive
feedback effect one might expect the transformation (8.32) to have a significant impact
on the parametric sensitivity of batch distillation columns.

The Jacobian of the dynamic model (8.1), (8.2) and (8.32) linearized about a nominal
trajectory becomes
0 (#)
Lu

L
AL“’V (t) = (V—L)(l—(ayD) }3_?waL
. EE Pz
VH_}%L (yD - IB) - Hg -

(8.33)

)Lw(IB—yD)

I Similar results are obtained if we instead consider volumetric flows
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oL My — My &UD
—_— =— | == .34
<amB)Lw 7 <amB)Lw (8.34)

<3yD> _ (gg—g)L
Ly - 1

Ozp _LMz—M1 9yp
M o5

Here

and

(8.35)
oL

Note from (8.33) that, since the molar flows now depend on the compositions through
(8.32), the holdup is no longer a pure integrator and hence parametric sensitivity will
affect holdup as well as composition. The expressions for the eigenvalues and trace
of the Jacobian become significantly more involved in this case compared to those
obtained for the LV-configuration. In order to obtain some insight into the effect of
using mass flows on parametric sensitivity we will therefore first consider a one-stage
column before proceeding to the multistage case.

One-Stage Column with Reflux. We consider a one-stage column with reflux.
Obviously, such a column would never be operated in practice since the reflux has no
effect on separation and therefore simply wastes energy. Nevertheless, we consider it
here to illustrate the effect of using mass flows on parametric sensitivity.

The fact that reflux has no effect on separation implies that (dyp/dL),, = 0 in
(8.35), and hence (Oyp/0zp)r, = (Oyp/dxp)r. The Jacobian (8.33) thus becomes
Mo—M, (Syp
AV (1) = : L (34), (8.36)
I EE X (v-L)(1-(328) ) +L 25 (322) (vp—5) '
HE Hp

Since the analytical expressions for the eigenvalues become rather complicated, we
make use of the fact that the eigenvalues for a 2 X 2 matrix may be expressed in terms
of the trace and determinant according to

trA + \/(IrA)Z — 4det A
Ao = (”2) c (8.37)

,2

We easily deduce from (8.37) that A(¢) has at least one RHP eigenvalue when detA < 0
and/or trA > 0.

We first consider under which conditions the determinant of AL«V (¢) is negative, in
which the Jacobian has a single positive eigenvalue. From (8.36) we derive

; V—L M2 —M1 6yD
det ALwV (1) = ——= — L—— | —
e (t) 2 (yp — =) ” <3=’L‘B i

(8.38)
From (8.38) it is easily deduced that, provided My > My, i.e., the least volatile
component has the larger molecular weight, det AL=V (¢) is negative at all times. Thus,
with mass reflux and My > M;, the one-stage column displays one RHP eigenvalue,
and thus potential parametric sensitivity, throughout the production period.
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We next consider the trace of AX»V (¢), which from (8.36) becomes

At )= g |V =1 (1= (52) )+ 12 (52) (-0

(8.39)
Comparing (8.39) with the expression for the trace of A(t) for the LV -configuration
(8.20) we see that we may write

trATwV = AV 4 [ 22

—xp My — M, <3yD> (8.40)
L

HB M 8;‘63

Thus, trAPY is always larger than trA*Y if My > M;, implying that we should
expect larger sensitivity with the L, V-configuration than with the LV -configuration.

We next consider operating conditions that favor parametric sensitivity with the L, V-
configuration. From (8.38) and (8.40) it is seen that increasing L while keeping
(L — V) constant, i.e., increasing the internal flows, increases tr ATV while decreas-
ing det AL»V  which implies that the magnitude of the positive eigenvalue increases.
Increasing the difference in molecular weights, i.e., increasing My /M, is seen to have
the same effect. Thus, increasing the internal flows and the difference in molecular
weights should generally increase the parametric sensitivity throughout the produc-
tion period. The other parameters in (8.38) and (8.40) will vary significantly during
the production period. The gain (dyp /Ozp)1 is typically close to 0 initially and thus
trAL»V o tr APV and det ATV x det AYV = 0, i.e., the effect of using mass flows
is typically negligible during the first period of the batch. However, as the batch
proceeds, and zp decreases, (Jyp/dzp) increases according to (8.23). As this gain
exceeds 1 at some point, i.e., when yp = 1 — zp, trA"Y becomes negative and the
effect of using mass reflux becomes significant as seen from (8.38) and (8.40). The
size of this effect is proportional to the difference in purity between top and bottom
(yp — ), which reaches a maximum for some intermediate purity in the top. Thus,
we conclude that parametric sensitivity with the L, V-configuration is likely to be
most severe under the following conditions

— Large internal flows, i.e., large L/V.
— Large difference in molecular weights, i.e., large My/Mj.

— Similar purities in the top and bottom, i.e., yp & 1 —zp.

We illustrate the results above through numerical computations of a one-stage dis-
tillation column with e = 10, 2o = 0.75, Hgo = 100.0 kmol, M; = 20.0 kg/kmol
and My = 40.0 kg/kmol. We first consider fixing the boilup at V = 5.0 kmol/min
and the mass reflux at L, = 82.58 kg/min, corresponding to an initial distillate
flow rate D(0) = 1.0 kmol/min. The resulting maximum eigenvalue Amaz and sen-
sitivity function dzp/dzpo are shown together with the corresponding results for
the LV-configuration with L = 4.0 kmol/min (D = 1.0 kmol/min), in Figure 8.6.
From the figure we see that, initially, the difference between the LV- and L, V-
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Figure 8.6: Maximum scaled eigenvalue and sensitivity functions for batch distillation column
with L. V-configuration. Solid line - V' = 5.0 kmol/min, dashed line - V = 10.0 kmol/min,
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configurations in terms of the maximum eigenvalue is small. However, at the point
where the maximum eigenvalue for the LV -configuration drops to zero, the eigenvalue
for the L, V-configuration starts to grow almost exponentially and hence peaks at a
considerably larger value. The larger eigenvalue for the L,,V-configuration implies a
larger sensitivity for zp as may be seen from Figure §8.6.

In order to illustrate the effect of the internal flows on parametric sensitivity, we
also show results for the case where the boilup is increased to V' = 10 kmol/min
and L, = 185.8 kg/min, again corresponding to D(0) = 1.0 kmol/min. As seen
from Figure 8.6, the effect of increasing the internal flows is to increase the maximum
eigenvalue A4, and the sensitivity function dzg/0zpgo.

As noted above, with the L, V-configuration, parametric sensitivity will affect also
the holdup Hp(t). To illustrate this we show the sensitivity functions § Hg/dzpg and
0Hp/6Hpgo in Figure 8.6. As seen from the figure, the sensitivity functions increase
during the period for which the maximum eigenvalue is positive. However, somewhat
surprisingly, the sensitivity functions do not decrease when the maximum eigenvalue
becomes negative. This is understood by the fact that the sensitivity for Hpg(t) is
given by the differential equation

d(0Hp) My — M, <3yD

=1
dt M 3:)33

) dzp(t) (8.41)
L

Here the coefficient on the right hand side is always positive when My > M;, and
since dzp(t) never changes sign, d(0Hp)/dt has the same sign for all . From Figure
8.6 it is seen that the peak of dHg/dzpo is about 900 with V' = 10 kmol/min, which
corresponds to a maximum deviation of 9.0 kmol in Hg(t) for a perturbation of 0.01
in zpg.

Multistage Columns. For the LV-configuration we found that the results for the
one-stage column carried almost directly over to the multistage case, and that the
main difference was that the gain (dyp/dxzp)r varies significantly more over the
production period in the multistage case. Similar arguments apply to the L, V-
configuration, i.e., the main difference between the one-stage case and the multistage
case is found in the gain (Qyp/0xp)r, . For the multistage case this gain is given by

(8.35), i.c.,
9yp
<a£) - (MB)L (8.42)
L 1

dzp _ [ Ma=M, 9yp
M oL
B

<6—L)x5 =yp(l —yp) < EY )xB (8.43)

From (8.43) it is seen that (Oyp/0L)s, is close to zero when yp ~ 1 or yp = 0
and thus reaches a maximum for some intermediate yp. From (8.42) it is seen that
the variation in (Jyp /L)y, will amplify the variation in (dyp/0zp)r such that
(Oyp /0zB)L, generally will have a significantly larger variation. In fact, as seen

Here
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from (8.42), the gain may even become infinite, or singular, if

@Lf) - ﬁ (8.44)

In fact, we find that this condition is fulfilled at some point for most separations
we have considered, in which the final collected distillate is of intermediate or high
purity. Around a singularity, the gain (dyp /0zp)1, , and hence the gain (0L/0zp)1,,
according to (8.34), changes sign through +oo. From (8.33) we see that this implies
that det A"V and trA"+V changes sign through 4oco. Thus, close to a point at
which (8.44) is fulfilled, we will have at least one eigenvalue at infinity. From a linear
point of view, this suggests that we can have “infinite” parametric sensitivity in a
multistage column operated with the L,V -configuration. However, this only serves
as an indicator that a linear analysis no longer is sufficient and that we need to consider
nonlinear aspects. Indeed, the singularities in the Jacobian elements implies that the
right-hand side of the differential equations (8.1)-(8.2) are discontinuous, and hence
the sufficient condition for uniqueness of the trajectory (Hgp(t),zp(t)), as discussed
previously, is violated. Thus, we need to consider whether the nominal trajectory still
is unique when (8.44) is fulfilled.

We consider first the case in which the column is operated according to the con-
stant reflux policy, i.e., constant L. In this case, the fact that (Jyp/dzp)r, and
(0L/0zp)L, changes sign through +oo implies that we will have at least two solu-
tions for L and yp for a given zp in some neighborhood of the singular point. This is
illustrated in Figure 8.7 for the base-case separation zps = 0.95 in Table 8.1, achieved
with L,, = 83.8 kg/min. As seen from the figure, there are two singular points and
hence there exist three solutions in terms of yp and L for zg(¢) in the range 0.071 to
0.104. However, since the start of the batch corresponds to zp(0) = 0.5, for which
only the upper solution branch exist, and dzg/dt < 0 for all times, yp (¢) and L(¢)
will simply jump from the upper to the lower solution branch as the singular point
at g = 0.071 is reached. Thus, the trajectory is unique despite the singularity in
the Jacobian elements. We might therefore expect that the sensitivity close to the
singular point will be large, although it will not be infinite as suggested by the linear
analysis above. One might also consider the possibility of starting the product drawoff
in an operating region where multiple solutions are displayed, i.e. the initial distillate
composition yp (0) may have mutliple solutions. However, if one assumes that start
up commences from a state of total reflux until equilibrium is reached (as considered
here), we have that yp (0) = aVzp(0) so that no multiplicity arise.

Consider next the case in which the column is operated with a pre-computed reflux
profile L (t) according to a constant distillate composition policy. Also in this case
will a singularity in (Oyp /0zp)r, and (0L/0zp)r, imply that at least two solutions
exist in terms of yp and L for a given zp close to the singular point. However,
in this case the nominal solution has yp(t) constant, and hence there will be no
discontinuous jump along the nominal trajectory. Instead, the singularity will in this
case imply that at least two solutions in terms of yp(¢) and L(t), and hence zp(t),
branch out from the singular point. This is illustrated in Figure 8.8 for the base-case
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Figure 8.7: Distillate composition yp and reflux L as a function of reboiler composition x5
for batch column in Table 8.1 with zps = 0.95 and constant reflux L,, policy. Dotted line
shows possible solution, solid line shows nominal trajectory.
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separation zps = 0.95 in Table 8.1. As seen from the figure, for a given reflux profile
Ly (t), there exist three possible solutions in terms of yp(t) and L(¢). The upper
solution yp1(¢) is continuous but has a discontinuous first derivative with respect to
time at the singular point. The lower solution yps(t) is discontinuous at the singular
point. The actual solution will follow the upper solution for an infinitesimal positive
perturbation in z gg, while it will follow the lower solution for an infinitesimal negative
perturbation in zpo. In this case we can therefore talk about an “infinite” sensitivity
because an infinitesimal perturbation to the system will yield a finite perturbation in
the state variables at times after the singular point is passed. We should furthermore
comment that although there may be multiple solutions, these will not be realized
unless a perturbation is applied, i.e. the solutions will remain at the upper branch
up to the singular point. Thus, in order to perturb the solution from the upper to
the lower branch at an earlier point, one would have to introduce perturbations in
another parameter, e.g. L, , V or a. It is possible to compute the required extent
of such perturbations, but as we comment next this is not of great interest since the
singularities will not occur if we include holdup on the stages.

The results presented above may appear somewhat surprising in light of the statement,
made earlier in this paper, that any realistic model of a batch distillation column will
yield a unique trajectory. However, note that the singularity found above appears in
the algebraic equations (8.3)-(8.4) relating yp, I and zp. These algebraic equations
results from the assumption of negligible holdup on all trays including the condenser.
Indeed, when holdup is included in the model, a singularity is no longer possible. In
light of this one may be attempted to conclude that the results presented above are
artificial and of little relevance to real columns. However, it is reasonable to suspect
that a large sensitivity in the model neglecting holdups indicates a large sensitivity
also in a model including holdup. Indeed, we show in Figure 8.9 results for the
base-case separation zps, = 0.95 with the constant distillate composition policy and
a holdup of M; = 0.1 kmol on all trays including the condenser. In this case there
are no singularities along the trajectory and the nominal solution yp(¢) = 0.95 is
therefore unique. However, as seen from the figure, a perturbation of only 0.1% in
zpo has a large effect on the solution. Furthermore, a negative perturbation yields a
trajectory which approaches the lower solution of the model neglecting holdup, while
a positive perturbation yields a trajectory which approaches the upper solution.

Note that similar results to those obtained for the base-case separation with zp, =
0.95 are obtained for the base-case separation with zps; = 0.99. We do not present
more detailed results for the base-case separations in Table 8.1 here, since the presence
of singularities along the nominal trajectories imply that a linear analysis becomes
meaningless. Rather, we present in the last section detailed results for the case where
holdup is included on all trays.

In conclusion, we find that columns operated with the L, V-configuration usually
will display a larger sensitivity than models with the assumption of molar inputs,
i.e., LV -configuration. The sensitivity will generally increase with increasing internal
flows and increasing difference in molecular weight. Furthermore, the sensitivity is
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Figure 8.8: Profiles for distillate composition yp and reflux L for batch column in Table
8.1 with zp, = 0.95 and constant distillate composition policy using L.,V-configuration.
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likely to be most severe when the distillate and reboiler has similar purities.

8.4.3 Other Configurations

Among other possible configurations we may consider the D,V configuration. By
following the treatment of the L, V-configuration above, we find that conditions for
RHP eigenvalues become opposite to those for the L, V-configuration, i.e., the effect
of mass flows reduces the sensitivity if My > M;. This result compares well to similar
results on multiplicity for the continuous case (Jacobsen and Skogestad (1991) and
Jacobsen and Skogestad (1994)), where it is found that multiplicity with the D,V
configuration is unlikely. Sensitivity with the L,V configuration may therefore be
significantly reduced by switching the condenser level control from using distillate
flow D, to using reflux L,,.

8.5 Implications for Operation of Batch Columns

We present here a detailed numerical analysis of parametric sensitivity for the base-
case separation in Table 8.1 with zp, = 0.99. Whilst we previously have neglected
holdup on all trays, we here include a holdup of M; = 0.1 kmol on each tray, including
the condenser. The feed mixture is then assumed to distribute over the column, so
that the tray holdups prior to total reflux operation have the same initial composition
as the reboiler holdup.

8.5.1 Constant Reflux Policy

We consider operation both with constant molar reflux L = 4.383 kmol/min,i.e., LV-
configuration, and constant mass reflux L,, = 92.15 kg/min, i.e., L, V-configuration.
In both cases we assume that the column is run under total reflux until equilibrium.
The initial time ¢ = 0 is taken to be the time at which distillate draw-off commences.

The first difference to note between the two configurations is that the required time
for the separation is t¢inq = 81.0 min with constant L and tf;,4 = 125.2 min with
constant L. This implies a 55% increase in distillation time and approximately 58%
increase in utility usage [computed as fgf”“” (L + V)dt] with the L, V-configuration
compared to the LV-configuration. This is not surprising since the optimal way of
operating batch columns typically involves increasing the molar reflux L as the batch
proceeds, while operation with a constant mass reflux L,, implies that the molar reflux
L decreases as the batch proceeds and yp decreases.

Rather than computing the linear sensitivity functions, we present here the actual
sensitivities resulting from nonlinear simulations with perturbations in the initial
composition zpgg and in the boilup V| respectively. We stress that the sensitivity
functions, e.g. dzp/dxpo, are obtained from solving the (linearized) first variational
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equation and thus do not depend on the size of the perturbation, i.e. they are in-
dependent of scaling. For the nonlinear case this i1s however not the case, and the
nonlinear sensitivities, e.g. dzg/dzpo depend on the magnitude of the perturbation.
Figure 8.10 shows the resulting sensitivities for zg and zp for a 1% perturbation in
zpo and V, respectively. Note that we apply a negative perturbation in zpo and a
positive perturbation in V', implying that yp decreases in both cases. As seen from
Figure 8.10, the sensitivity functions for zp increase during most of the production
period, corresponding to the period in which the distillate is of high purity. The non-
linear sensitivities dzg/dV are seen to increase over the same horizon where dz g /dz g
increase, illustrating the fact that the presence of sensitivity at large i1s independent
of which parameter we consider. We also see that, as the sensitivities for the LV-
configuration start to decrease, i.e., when yp &~ 1 — zp, the sensitivity functions for
the L, V-configuration increase further for a short period of time. However, since the
separation is sharp, yp drops quickly towards 0 after the point where yp ~ 1 — zp,
and the difference between the two configurations therefore becomes small.

Also note that the nonlinear sensitivity dzp/dzpo for the LV-configuration with
holdup on all trays in Figure 8.10 is similar to the corresponding linear sensitiv-
ity without holdup in Figure 8.3. Thus, the presence of holdup does only have a
slight effect on the parametric sensitivity in this case.

The sensitivity for the accumulated distillate composition zp in Figure 8.10 is close
to 0 for most of the production period, which is explained by the fact that zp ~ 1
during the period for which yp &~ 1. However, as yp starts to drop, and hence the
sensitivity functions for zp decrease with the LV-configuration, the sensitivity for
zp 1s seen to increase. This is explained by the fact that the accumulated distillate
composition is given by

eplt) = / D(r)up (r)dr/ Hp() (8.45)

Thus, the sensitivity of zp depends on the integrated sensitivity of the distillate
composition yp. The sensitivity of yp is given by

_ (9% s
5yD = <3:L‘B) ()IB (846)

and hence is close to zero as long as (Oyp/Jdzp) ~ 0 and becomes significant only
when (Oyp/0zp) and dxzp are both large. This occurs where the sensitivity dzp
reaches a maximum with the LV-configuration, i.e., when yp &~ 1 — zp. Thus, the
sensitivity for xp will start to increase approximately where the sensitivity for zp
with the LV-configuration starts to decrease.

In practice, the final sensitivities of the product qualities and amounts will be of
most interest. The product qualities are best represented in terms of the fraction of
impurities, i.e., zp and 1 — zp. We therefore introduce the scaled variables

51—z 5.
A(l—zp) = %100% L Arp = Z2100% (8.47)
~—Tp g
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Figure 8.10: Nonlinear sensitivities for base-case column with zps = 0.99 and constant
reflux policy. The sensitivities correspond to perturbations of 1% in o and V. Solid line
- Ly V-configuration, dashed line - LV-configuration. Note the different time-scales in the
upper and lower figures.
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where superscript # denotes nominal values. Thus, the scaled variables gives the
percentage deviation in fraction of impurities. Similarly, we consider the scaled accu-
mulator holdup

dHp

AHp =

100% (8.48)

The final sensitivities will in general depend also on the chosen operating strategy, 1.e.,
the decision regarding when to stop the distillation of a given cut. We here consider
the following strategies

1. Stop at a given time, ¢¢inai.
2. Stop at a given size of the cut, Hp;.
3. Stop at a given temperature on tray i, Tjs.
The motivation behind the last strategy is that composition measurements in the

accumulator usually are unavailable, or are significantly delayed, while essentially
delay free temperature measurements usually are available at a number of trays.

Tables 8.2 and 8.3 show the final sensitivities in terms of Azg, A(1 —zp) and AHp
for the different operating strategies above. For the strategy in which the distillation
is stopped at a given tray temperature we have chosen the temperature on the tray
below the condenser, 1.e., tray 8, as the reference.

Table 8.2: Scaled sensitivities for 1 % perturbation in x g with constant reflux policy.

LV/L’LUV tfinal HDs TSs
Azp 204 /313 | 204 /5.01 | 0.13 / 0.36

A(l—zp) || 62.9/571 | 63.0/90.8 | 2.41 / 2.79
Afp 0/517 0/0 1.01 / 1.01

Table 8.3: Scaled sensitivities for 1 % perturbation in V with constant reflux policy.

LV/LwV tfinal HDs TSs
Azxpg 64.5 /974 | 8.5 /985 | 881 /6.0

A(l—2zp) || 373.7 /3283 | 88.3 /97.6 | 17.2 / 167.2
Afp 8.10 /584 0/0 2.77 / 5.60

The results in Tables 8.2 and 8.3 clearly demonstrate that small changes in the initial
conditions, or some other parameter, may have a severe effect on the final product.
Note that a 100% change in A(1 —zp) corresponds to the final accumulator composi-
tion changing from zp = 0.99 to xp = 0.98. From the tables, the final sensitivities are
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seen to depend strongly on the chosen operating strategy. Stopping at a given time
generally yields the largest sensitivities, while stopping at a given tray temperature
yields the smallest sensitivities. For the latter strategy, a 1% change in V yields a
17% change in 1 — zp with the LV -configuration and a 167% change with the L, V-
configuration. Thus, the L,V configuration has a severe final sensitivity even with
the least sensitive operating strategy.

8.5.2 Constant Distillate Composition Policy

We consider here operation with a pre-computed reflux profile aimed at keeping the
distillate composition yp constant. We assume that the column is run under total
reflux until yp reaches the desired value, i.e., yp = 0.99, and that t = 0 is taken to be
time where product draw off commences. The total time required for the separation is
in this case t¢ipa = 30.4 min for both configurations Thus, as expected, the constant
distillate composition policy is superior over the constant reflux policy in terms of
time and energy usage.

The sensitivity functions for g and zp for 1% perturbations in zgg and V', respec-
tively, are shown in Figure 8.11. The corresponding final scaled sensitivities are given
in Tables 8.4 and 8.5. Note that we in this case has chosen the temperature in the re-
boiler T} as a stopping criterion. The reason for this is that for the constant reflux (L)
policy, the temperature in the top (75) will be the most sensitive when yp decreases.
However for the constant yp policy, the temperatures in the top are naturally rather
constant, so that the largest variation occur near the bottom of the column.

Table 8.4: Scaled sensitivities for 1 % perturbation in x gy and constant distillate composition

policy.
LV/L,V ttinal Hps Ths
Azrp 23.5/66.2 | 23.5 / 503 0/0
A(l—=zp) || 46.1 / 2811 | 46.1 / 554 | 44.5 / 2181
AHp 0/ 405 0/0 0.27 / 28.3

Table 8.5: Scaled sensitivities for 1 % perturbation in V' and constant distillate composition

policy.
LV/L,V ttinal Hps Ths
Azxp 37.1/79.3 | 163.2 / 658 0/0
A(l—=zp) | 198 / 3121 124 / 617 178 / 2337
AHp 3.03 /485 0/0 2.40 / 32.3

As seen from Figure 8.11 and Tables 8.4 and 8.5, the sensitivities are, as expected,
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Figure 8.11: Nonlinear sensitivities for base-case column with zps = 0.99 and constant

distillate composition policy. The sensitivities correspond to perturbations of 1% in x o and
V. Solid line - L., V-configuration, dashed line - LV -configuration.
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also in this case significantly larger with the L, V-configuration than with the LV-
configuration. By comparing the results in Table 8.4 and 8.5 with the results in
Tables 8.2 and 8.3 for the constant reflux policy, we see that the scaled sensitivities
generally are larger with the constant distillate composition policy. In particular, the
constant distillate composition policy with the L, V-configuration is seen to display
an exceedingly large sensitivity. For this case, the least sensitive strategy is to stop
the cut at a given accumulator holdup Hps. However, even with this strategy, we see
that a 1% change in xzpg results in a final change of 554% in 1 — zp, i.e., the final
accumulator composition becomes xp = 0.935 instead of the desired zp, = 0.99.
The corresponding change with the LV-configuration is “only” 46%, i.e., the final
zp = 0.985 after the perturbation in zpgg.

To illustrate the severe sensitivity with the L, V-configuration, we show in Figure 8.12
the nominal trajectories zp(t) and Hp(t) together with the trajectories resulting
from a 1% perturbation in zpg. As seen from the figure, the trajectories start to
diverge rapidly around 7 = 0.65. This corresponds to the point where the underlying
model neglecting holdups predicts a singularity according to (8.44). Thus, the the
corresponding model with neglected holdup displays multiple trajectories for a given
reflux profile Ly (), and as we anticipated above, this implies a large sensitivity also
in the column including holdups.

8.6 Discussion

Model Assumptions. The analytical results derived in this paper are obtained from
simplified models. Among the model assumptions we expect the effects of negligible
or constant column holdup and constant molar flows (CMF) to be the most severe
with respect to the applicability of our conclusions. Furthermore it is often argued
that assuming CMF represents a limitation to the usefulness of the model for batch
distillation columns (see e.g. Huckaba and Danly (1960) and Distefano (1968)). As
a general remark we however stress that since the main objective of this work is to
derive conditions that favor parametric sensitivity, emphasis is at large put on the
the qualitative, rather than the quantitative results, and as such our conclusions are
expected to be highly relevant in practice. Some discussion on the effect of column
holdups on dynamic behavior is however included, partly since we included holdups
in our final example.

Effect of Column Holdup. In order to derive our two—state model, we neglected holdups
on all trays and in the condenser. The holdups basically have two dominant effects
on system behavior, one which affects the transient behavior and the other being
a steady state effect due to total reflux conditions. The dynamic effect, referred to
as the flywheel phenomenon (see e.g. Rose and Welshans (1940) or R. L. Pigford
and Garrahan (1951)), arises since holdup makes the changes in compositions occur
more slowly due to its capacitive nature. Column holdup thus exerts an inertia effect
which slows the dynamic response down, in the sense that changes in for example the
reboiler heat duty do not have an immediate effect on the distillate compositions. The
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Figure 8.12: Profiles for accumulated distillate composition = p and accumulator holdup Hp
for base-case column with z ps = 0.99 and constant distillate composition policy using L., V-
configuration. Dashed line - nominal solution, solid line - solution after 1% perturbation in
Y Bo.
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results in this paper conveniently illustrate this effect, in that singularities which may
occur for columns where the holdups are neglected, do not occur when the holdups
are included. Hence, the “infinite” sensitivity due to discontinuous trajectories apply
only for columns with negligible holdups. The static influence of column holdup was
considered by R. L. Pigford and Garrahan (1951), who found that increasing holdup in
general increased the size of the intermediate cut, i.e. the distillate which is withdrawn
immediately after yp starts to drop. However, for sharp separations the effect of
increasing holdups was an initial decrease in the intermediate cut, followed by an
increase when the holdups exceeded certain limits. Since the size of the intermediate
cut is shown to have a significant influence on PS, the overall impact of holdup on
system behavior is somewhat ambiguous.

One should also be aware that there is a connection between column holdups and
reflux ratio which may have a strong impact on for instance parametric sensitivity. If
the column is operated at a high initial reflux ratio, the distillation of a cut takes rela-
tively long time, and small perturbations may have a large effect on the accumulated
distillate composition since rather small amounts of product is removed per time—
unit. If, however, the reflux ratio and thus the required batch time is small, changes
in the reboiler will not affect the accumulated distillate to the same extent, due to
the flywheel phenomenon. Since there are several, and somewhat opposing effects of
column holdup, which depend on both design and operating policies, it is difficult to
draw general conclusions with respect to the overall effect on system behavior.

Energy balance. For continuous columns Jacobsen and Skogestad (1991) showed that
including the energy balance may give rise to multiplicity even for molar flows, i.e. the
LV —configuration due to interactions between the flows and compositions. The energy
balance was thus shown to have the same impact as the transformation between mass
and molar flows. Since we have demonstrated that the conditions for instabilities
and multiplicity for continuous columns, at large carry over to batch distillation, we
expect that including the energy balance will have a similar (large) impact also for
batch columns, 1.e. for parametric sensitivity.

Multicomponent muztures. We have in this work restricted ourselves to binary mix-
tures. However, we believe that the results presented here in general may also apply
to multicomponent mixtures, since one may treat the distillation of each cut as essen-
tially separating a pseudo—binary mixture. This is the case at least if there 1s sufficient
difference in relative volatilities, so that one essentially withdraws one component at
the time in the distillate.

Feedback Control. A summary of the existing literature on closed loop control in batch
distillation was recently given by Sgrensen (1994). Since reliable and fast composition
measurements are available only in rare cases, the use of temperature measurements
to estimate on—line compositions has been suggested. By appropriate use of feedback
control, combined with suitable on—line measurements, it should be possible to prevent
the drastic effects of parametric sensitivity, and thus avoid costly re—distillation due
to deterioration of product compositions.
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8.7 Conclusions

We have in this paper addressed the issue of parametric sensitivity in batch distillation
columns. We find that ideal binary batch columns may exhibit parametric sensitivity
(PS), i.e. nominal trajectories are locally unstable. Evidence for such sensitivity are
given through a mathematical analysis of a general model. We find that a linear
analysis in most cases is useful, and we demonstrate that right half plane (RHP)
eigenvalues of the Jacobian usually occur in the regions where parametric sensitivity is
exhibited, i.e. RHP eigenvalues serve as strong indicators of sensitivity. Based on the
eigenvalue analysis we derive analytical results that indicate under which operating
conditions sensitivity is likely. These findings are then verified by dynamic simulations
of simple models, and an example column where we also include holdups. Conditions
that favor PS were found to be (7) large relative volatilities, (47) large differences in
molar weights and (i77) large internal flows.

Interestingly we find that the linear analysis in some cases predicts that the nominal
trajectories of the state variables are not unique, i.e. singularities may arise along the
trajectory. This indicates that the sensitivities become infinite at the singularities.
However, this occurs only when the holdups on the trays are neglected, so that per-
turbations in the bottoms have an immediate effect on the top composition. When
holdups are included the singularities no longer arise, but as shown the sensitivity
may still be very large.

In order to address the implications for operation we also demonstrate that the choice
of control configuration and operating strategy has a large impact on the sensitivity.
Among the control configurations considered in terms of finding the optimal operating
policy, we found that operating the column with the D,V configuration is the best
in terms of sensitivity. The most sensitive configuration was found to be columns
operated with a constant distillate composition and a precomputed L, —profile, i.e.
Ly V—configuration. PS was furthermore shown to have greatest effect on columns
operated with a final time policy.

Nomenclature

A — Jacobian matrix
det A — Determinant of the Jacobian matrix

trA — Trace of the Jacobian matrix

B — Coefficient matrix for input variables

D - Distillate flow rate (kmole/min)

F — Matrix solution of first variational equation
Hp — Molar holdup of reboiler (kmole)
Hp — Molar holdup in accumulator (kmole)

L — Reflux flow rate (kmole/min)

M — Molar weight, usually of distillate stream (kg/kmol)
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M, — Molar weight of more volatile component (kg/kmole)

M5 — Molar weight of less volatile component (kg/kmole)
N — Number of theoretical stages

Qp — Heat input to reboiler (kJ/min)

Qp — Heat removal in condenser (kJ/min)
S — Separation factor

ttinar — Final time for distillation of a cut

V - Boilup from reboiler (kmole/min)

xp — Liquid mole fraction of more volatile component in reboiler

rp — Liquid mole fraction of more volatile component in collected distillate
z; — Liquid mole fraction of more volatile component on stage ¢ distillate

yp — Vapor mole fraction of more volatile component in distillate stream
y; — Vapor mole fraction of more volatile component on stage 7

Greek letters

a — Relative volatility

(# — Variable of scalar time varying system
d — Nonlinear sensitivies, e.g. dzg/ zpo

A — Scaled deviation variables, i.e. Azp
A; — ith eigenvalue of the Jacobian matrix

A — Scaled eigenvalue

0 — Sensitivity functions, e.g. dzp/0zpg

¢ — Transition matrix

7 — Dimensionless time 7 = t/tfina

& — Vector of parameters and control inputs

Subscripts

s — Set points for operating strategies
w — Mass flows in (kg/min)
0 — Initial conditions
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Chapter 9

Postscript

The motivation for this work is to enhance the understanding of issues related to
operation and design of integrated distillation arrangements. The growing interest for
considering such column arrangements stems from the scrutiny of tighter operational
constraints as well as environmental requirements for increasing the energy efficiency.
It is well documented in the literature that operation of conventional (industrial)
distillation columns require large amounts of energy, In this work we perforce discuss
issues related to design, simulation, optimization and operation of complex distillation
arrangements. The main contributions from this thesis may be summarized as below

9.1 Conclusions

Chapter 2 discusses numerical methods to obtain initial solutions to a system of nonlinear
algebraic equations (NAEs). By initial we here understand solutions for which
all the degrees of freedom (e.g.system parameters) are specified, so that the
task is to solve a square system of NAE’s. We briefly discuss how one may find
constrained solutions using feedback control when a dynamic model is available.
The main part of the paper concerns different features of homotopy—continuation
methods, and in particular we discuss situations in which the solution path be-
comes unbounded for which convergence problems are encountered. We propose
simple strategies to deal with asymptotic behavior, based on simple transfor-
mations of the variables that display asymptotic behavior or the variable space
to align the asymptotes and the coordinate axes. We however emphasize that
these strategies are rather simple, and are not in their present state well suited
for large systems. In the latter case one should instead use other more sophis-
ticated methods proposed in the literature, for instance methods that use other
homotopies that are restricted to certain domains in the variable space. We
then introduced a novel tear and grid method based on conventional techniques
of partitioning and precedence ordering. However, on top of this we propose to
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make a grid of the tear variables to obtain partitions that are easier to solve. We
thus avoid iterating on the teared functions in order to converge the system of
NAEs. However, depending on the form of the non-teared functions, iterations
are still required in the general case for the reduced partitions. In some special
cases, for instance when the proper choice of tear variables reduce the remaining
partitions to sets of linear equations, explicit solution schemes result.

extends the scope of using numerical methods to solve systems of NAEs, where
we now want to explore solutions in the parameter space, 1.e. solve the system of
NAE for a range of parameter values. We considered different implementations
of a parameter continuation scheme, where we found that the most efficient was
to use a secant predictor and apply Broyden’s method to solve an augmented sys-
tem of equations. Using Broyden’s method allows one to use rank one updates
of the Jacobian along the continuation path, so that expensive re-evaluations of
this matrix are avoided. We also demonstrated that the tear and grid method
may be used to solve non-square NAE’s. The main advantages when using these
methods are that they are easy to implement and still rather robust. The ex-
tent of “book—keeping” is kept reasonably low by using an augmented vector of
(state) variables and parameters, so that we do not distinguish between those in
the solution procedure. However, we recognize that both methods falls within
the class of N P-hard problems, in that the computational complexity typically
increases exponentially with the problem size. But for certain class of sparse
problems, such as the conceptual design of distillation columns, the methods
are very useful. The continuation method is also well suited for ill-conditioned
problems, since one always stays close to the feasible solutions along the path.
We also demonstrate how one may embed steady state optimization in such a
continuation scheme.

Whereas we in chapters 2 and 3 consider numerical methods for (exact) solu-
tions of NAEs, for instance a conceptual model of a distillation column, we in
this chapter propose an explicit shortcut method to obtain the minimum en-
ergy usage for multicomponent distillation. This method is based on certain
simplifying assumptions regarding the distribution of non-key components. Al-
though the method is only approximate, and may yield relatively large errors
compared to exact methods such as Underwood’s method, they may be used to
extract valuable qualitative information that are not otherwise available. This
is in fact the main contribution of the method, for which we argue that shortcut
methods should be used to obtain insight that are not otherwise available, for
instance using rigorous simulations. We use the method to obtain expressions
for the potential energy savings of prefractionator arrangements, relative to con-
ventional arrangements with regular columns in sequence. Another important
contribution is that we elaborate on the optimality conditions for different col-
umn arrangements for ternary split. Although this is a well known problem, and
an exhaustive amount of works are found in the literature, we find that many of
these are based on the limiting assumption of using only total condensers and
thus liquid feeds to downstream columns. In fact we show that using partial
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condensers and thus vapor feeds to downstream columns, dramatically alters
the picture of the optimality regions for the direct and indirect split scheme.
Whereas the literature seems to indicate that the direct split is usually superior,
we find in fact that the indirect split with a partial condenser is optimal for the
majority of mixtures for ternary separations.

In this chapter we consider prefractionator arrangements for the separation of
ternary mixtures, with particular emphasis on the concept of the preferred sep-
aration. For a prefractionator arrangement, we show in terms of analytical
results and numerical simulations, that the preferred separation always require
the smallest energy usage. However, in terms of practical operation we find that
it is usually not optimal to operate the column at this operating point. This
is due to the finding that there is usually (at least for sharp splits) a “flat”
operating region, in which the energy usage is relatively insensitive to changes
in the operating parameters. Towards the ends of this region, “enclosed” by
parameters for the preferred separation and a “balanced” main column, the
energy usage is more sensitive. In terms of control we find that one may fix
the boilup at the optimal value, and use the reflux for one-point control in the
prefractionator. For practical operation we demonstrate that one should control
the composition in the top or the bottom of the prefractionator, depending on
whether the preferred separation or the balanced column requires the largest
recovery of intermediate in the distillate. For the Petlyuk column we find that
there is a similar region where the energy usage in fact remains constant, so that
operation may take place within the region without any increase in the energy
usage. We thus demonstrate that results in the literature, for infinite columns
and sharp splits, carry over also to columns with a finite number of stages and
non-sharp splits.

Whereas chapter 5 consider using the Petlyuk column for ternary separations,
we here extend the Petlyuk ideas to include also integrated columns for the sep-
aration of quaternary mixtures. We present a conceptual analysis, in which we
propose definitions of Petlyuk and sharp split arrangements. A brief discussion
of reversibility and how this relates to Petlyuk arrangements is also given. We
then discuss the issue of finding appropriate superstructures, and show how
these may be implemented in a single shell using vertical partitions. We give a
discussion of the large number of degrees of freedom (DOFs) available for such
design, and propose simple formulas to obtain these.

We here proceed the discussion from chapter 6, and compare the energy usage
of optimized Petlyuk arrangements with that of conventional arrangements of
regular columns in sequence. We discuss certain aspects related to providing
good initial guesses for the optimizations, which also serve the purpose of an a
posteriori analysis of the optimized arrangements. For the examples considered,
we find that using Petlyuk arrangements for quaternary separations typically
offer savings in the order of 40%. In order to characterize the optimal solutions,
we show how one may derive sensitivity functions for the energy usage. To
obtain these we use the process model in order to eliminate the first order
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terms in the Taylor series expansion of the energy usage. From a singular value
decomposition of the Hessian matrix, evaluated at the optimum, we then obtain
the high and low gain directions for changes in the parameter space, i.e. the
directions in which the energy usage is the most and least sensitive to such
changes. From these results we conclude that feedback control is required to
maintain operation in vicinity of the optimal solution.

then makes a slight diversion from the preceding analysis in chapters 2-7. Here
we consider the fundamental dynamic behavior of batch distillation columns.
Through analysis of a general model, we find that ideal binary batch columns
may exhibit severe parametric sensitivity (PS), i.e. operation may become very
sensitive to changes in some parameter. From a linear analysis, where we neglect
column holdups, we derive analytical results that indicate under what conditions
PS is favored. We find that the conditions that favor PS corresponds to those
that cause multiplicities and instabilities for continuous columns, e.g. large
internal flows and large differences in molar weights. In order to address the
implications for operation, we also consider the influence of the choice of control
configuration and operating policy on PS. In general we find that sensitivities
are largest for columns operated with either constant or a pre-computed profile
for the mass reflux, i.e. L, V—configuration, and a final time policy. The impact
of PS on important quality parameters, such as the composition and amount of
collected distillate, are finally illustrated in terms of an example column where
we also include column holdups.

9.2 Directions For Future Work

Some of the issues addressed in this thesis still resides on a conceptual level. We
therefore suggest the following topics to be investigated in future works:

Optimal split sequences for multicomponent mixtures. In this work
we have derived approximate expressions to obtain the minimum energy usage
for prefractionator arrangements, although detailed analysis are only carried
out for the ternary case. An issue of great import in this respect is to extend
the analysis of the preferred separation to the general case of multicomponent
mixtures. Since the preferred separation deals with a certain optimal split se-
quence, for which the separation task may be decomposed to a sequence of
pseudo—binary splits, there is ample scope for a comprehensive analysis also for
more components. The analytical results derived in this thesis for prefraction-
ator arrangements should be extended also to other multicomponent mixtures.
In particular one may examine to what extent the findings from the ternary
case given in chapter 5, carry over to the optimized Petlyuk arrangements for
quaternary mixtures considered in chapters 6 and 7. One should furthermore
elaborate on the impact of non-sharp separations in Petlyuk arrangements, in
particular since results presented in this thesis indicate that the energy sav-
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ings for Petlyuk arrangements increase with decreasing product purity of the
intermediate component.

¢ Optimal operation of Prefractionator arrangements. We have addressed
issues related to the optimal operation of prefractionator arrangements, includ-
ing also the Petlyuk column. Among the important findings are that there
exist enclosed regions in which the energy usage is “flat” (prefractionator) or
constant (Petlyuk). For the Petlyuk column this is previously shown in the lit-
erature to hold for infinite columns and sharp splits, but we showed that it also
applies to columns with a finite number of stages. We further showed that one
may extract information from these findings that are important for aspects of
on—line control. However, since we only considered the steady state properties,
it 1s crucial in terms of operation to also analyze the dynamic behavior. Due
to the highly non-linear behavior and strong element of coupling, Petlyuk ar-
rangements should provide interesting and challenging examples for studies on
controllability analysis and controller design. Preliminary results indicate the
need for tight composition control and on-line control of the system parame-
ters, i.e. the internal splits. We therefore pose the issue of optimizing control,
which deals with how one should maintain optimal operation through the use
of feedback mechanisms, as one of the promising and important tasks for future
work. Current research at our institute aims at a greater understanding of this
concept.

¢ Rigorous modeling of Petlyuk arrangements. Most of the work on Pet-
lyuk columns found in the literature, draws from studies of simplified concep-
tual models. This 1s also the case for the results presented in this thesis. Al-
though industrial practice seems to be taking up, there is still an apparent
lack of understanding of practical issues and understanding of “real” operating
columns. In order to promote industrial applications, and enhance the present
understanding, we suggest that future work should study also rigorous models
with non-ideal thermodynamics. One should thus assess other features with
strong impacts on design and energy efficiency. Even though most investiga-
tions of non—ideal and azeotropic distillation up to this date have relied on
time-consuming simulations, more recent trends indicate that reliable short-cut
methods are emerging also for non-ideal mixtures. Recent developments in the
area of minimum energy calculations, aims towards avoiding simulations and
directly calculating the pinch points. Another important feature is that Pet-
lyuk arrangements indeed should provide strong candidates for the separation
of azeotropic mixtures. The reason for this lies in the finding that the largest
relative energy savings of the Petlyuk columns arise when the relative volatilities
approach one, which is the case for azeotropic mixtures. Other possible aspects
to be covered are examining the effect of including the energy balance as well
as incorporating liquid and pressure dynamics in the models.



