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ABSTRACT

This thesis is concerned with different aspects of structure in the control system for
chemical plants.

e Control structure selection for the regulatory control level. A regulatory
control level that performs well is a prerequisite for the higher levels in the control
system (supervisory control and plant-wide optimization) to realize their full
potential benefits. The regulatory control level is typically highly decentralized.

Three decisions therefore have to be made in the control structure selection for
the regulatory control level:

1. Selection of controlled variables.
2. Selection of manipulated variables.

3. Pairing of controlled and manipulated variables.

The control structure can have a strong influence on the achievable control quality
for the regulatory control level. In this thesis tools are developed that can aid

the engineer in selecting a good control structure, both for stable and unstable
plants.

The tools for control structure selection are applied to the riser-regenerator sec-
tion of the fluid catalytic cracking process. The resulting findings resolve contra-

dictory claims in the literature on control structure selection for the fluid catalytic
cracking process.

¢ Design of decentralized controllers. Standard controller synthesis algo-
rithms, e.g. Hz- or H.,-synthesis, cannot handle a requirernent for a specific
structure for the controller. Instead three practical approaches to the design of
decentralized (i.e., highly structured) controllers have evolved: parameter opti-
mization, sequential design and independent design. The advantages and dis-
advantages of these three design methods are discussed, and improvements are
made to the independent design and sequential design methods.

¢ SVD controllers. In some cases the requirement for a specific structure for the
controller does not come from an & priori decision, but arises from analysis of the
plant itself. In this thesis three classes of design problems are found for which
the optimal controller has the structure of an SVD controller for H,-, H,, or
g-optimal control. This knowledge about the structure of the optimal controller
can be used to simplify controller design. The simplification of controller design

is especially dramatic for plants consisting of nominally identical units working
in parallel.

Model Predictive Control (MPC) has found wide application for supervisory control
of chemical plants. Step response models are very common in MPC algorithms. If
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is desired for plants with a slow open loop response, it has been necessary
i?)si:: I::rl(;lr;e number of };tep response coefficients. A large number of step resgf)nSAe‘
coefficients will put a large computational load on the control system. In Appen l()i(
a method is developed for reducing the number of step response coefficients needed.
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Figure 1.1: Structured multivariable controller decomposed into precompensator, di-
agonal matrix, and postcompensator.

e “Control structure selection”: Step 1 and (for a structured controller) Step
2a.

e “Control configuration selection”: Step 2a.

The reason we include Step 2a in the control structure selection is that for decentralized
controllers the issue of actuator and measurement selection is intimately linked with
the control configuration selection (pairing of actuators and measurements).

The difference between the words “structure” and “configuration” may seem mi-
nor, but note that they are significantly different within the context of this thesis.
There is also a linguistic basis for making this distinction; Webster’s dictionary [38]
defines “structure” as “the arrangement or interrelation of all parts of a whole” and
“configuration” as simply “the arrangement of parts”.

The term “structure of the controller” needs to be clarified (it is very different from
“controller structure”). Many standard controller synthesis algorithms for multivari-
able systems (e.g., H,- or H,, synthesis) generally give controllers with no apparent
structure. However, there are many design methods which lead to highly structured
controllers. These design methods typically involve controllers with the structure shown
in Fig. 1.1. The compensators Cy and C; usually contain only simple dynamics or no
dynamics at all, and primarily deal with multivariable effects. The main dynamics of
the controller is located in the diagonal matrix K, which handles requirements for in-
tegral action, speed of response, etc. Examples of controllers with the structure shown

in Fig. 1.1 are:
1. Decentralized controllers: C; = Cp = 1.

2. SVD controllers: C; and C, come from the singular value decomposition of the

plant.
3. Inverse-based controllers: Cy = I, C; = G, where G is the plant.

Other examples of controllers with the structure shown in Fig. 1.1 are one-way decou-
plers and the compensator designs of MacFarlane and of Rosenbrock, see [19].

1Chapter 6 also considers controllers for which K in Fig. 1.1isa block diagonal matrix
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One reason for using controllers with the structure of Fig. 1.1 is that the compen-
sators .Cl and C; may not have to be changed much if the operating conditions change,
af1d this makes retuning the controller relatively simple, as one just has to retune the
diagonal elements of K in Fig. 1.1.

1.1 Hierarchical Structuring of the Control Sys-
tem

1.1.1 Objectives of the Control System

A control system is required to fulfill a multitude of objectives. These include:

e Safe operation of the plant. The control system must ensure that injuries to
humans and damage to process equipment are avoided.

e Operation in accordance with environmental regulations. The release of pollu-
tants should be within legal limits.

° tl’hﬁe .control system must facilitate startup and shutdown of the plant and of
individual units within the plant.

e Maintain consistent operating conditions and quality specifications.

® Economically optimal operation. Within the limits imposed by the objectives
mentio_ned above, the control system should identify the economically optimal
operating conditions, and enable the operators to keep the operating conditions
close to these conditions. The economically optimal operating conditions will
dep.end on a number of external factors, such as the price and quality.of the
available feedstock, the market prices for the range of produck qualities the plant
can produce, and possibly ambient weather conditions. In addition scheduled
or unscheduled shutdown of individual processes within a plant can affect the
?ptimal operating conditions. The control system must therefore be able to
identify and track changes in the optimal operating conditions.

o The control system should be easy to understand for the operating personnel,
and the effect of changes should be easy to anticipate.

During the history of process control, the emphasis placed on each of these objectives
have varied. Of course, safety and the ability to start up, operate and shut down
the pl.ant have always been emphasized. The importance of environmental regulations
have increased as regulations have become more strict. The importance of operator
understanding and acceptance has become clear as the development in hardware has
enabled the implementation of more complex control systems. In the early years of
the che.mical process industry, the computational power necessary to calculate the
economically optimal operating conditions (accurately and with frequent updates) for
a large industrial plant was simply not available.
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Figure 1.2: Typical decomposition of control tasks
1.1.2 Typical Control System Organization

The organization of a typical control system for a large moder.n chemi?al plant reﬂect‘s
how current practice in process control has evolved from earlier practice. .The' organi-
zation of a control system for a typical large chemical plant is illustrated in Fig. 1.2.

At the lowest level one finds the regulatory control systerr}, which kee.ps a set of
measurements at setpoints specified by the operators or the higher leYels in the‘ con-
trol system. The regulatory control system is usually highly decentralized, conswt(;r}g
mainly of single input single output (SISO) feedback loops. Feedforv.vard. may be use11 in
some cases, and cascades are often used for flow control. True mul'tlyarlable contro ers
are relatively rare. Thus, although the regulatory control system 1s implemented usmg
electronics and computers, it has changed little conceptually from the days of SIS
pneumatic controllers. .

The middle level in the control system hierarchy may be termed sup‘erwsory'control.
This level in the control system usually coordinates several alternative manipulated
variables in order to avoid saturation in critical loops in the regul;.itory control §y§tem,
and maintain a set of measurements at setpoints or within maximum and minimum
limits. The supervisory control system commonly uses a model of th(.i‘ process to prt.edlct
the future values of the controlled variables. If no constraints are active or are pred{cted
to become active, some manipulated variables are commonly reset to predefined ideal
resting values. The concept of using a model to predict future outputs of the .plant
has become known as Model Predictive Control (MPC),. and many control algorltzrr}s
apply this concept, e.g., DMC [3] and GPC [2]. Supervisory control first appeared in
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the 1970s, and has become very popular during the 1980s.

The next level in the control system hierarchy is steady state optimization. At this
level the optimal plant conditions are calculated simultaneously for part of the plant or
for the entire plant. Plant wide steady state optimization became routine in the 1960s
and 1970s, and is now performed regularly in many modern plants. Usually, the lower
level uses linear models, the middle level uses linear models but allows for constraints,
while the top level uses a nonlinear model (or a linear model which is updated based
on linearization).

In addition there is of course higher levels of decision-making, like purchase of raw
materials, scheduled shutdown for maintenance, construction of new facilities and so
on. Likewise, there is an emergency shutdown system which may be considered to lie
below the regulatory control level. However, these additional levels are usually not
considered to be a part of the control system.

Some work can be found in the literature about how to decompose the control
system in a manner similar to what is described above (e.g. Morari et al. [22], Umeda et
al. [37]). However, there is little justification in the literature for why this decomposition
is needed, the most comprehensive discussion about the need for decomposition appears
to be given by Mesarovic [21].

The tasks of control structure selection and control configuration selection can be
applied to the entire control problem as discussed above. However, in this thesis these
tasks are mainly addressed within the regulatory control system.

1.1.3 Centralized Control System

As explained above, the control system in most large plants can be decomposed into
three different layers, and the middle layer can be further decomposed into separate
units with limited information interchange between each unit. It is clear that a control
system which can be decomposed in this way cannot be truly optimal in the sense that
it will achieve a lower rate of profit (within the constraints imposed by safety consider-
ations and environmental regulations) over any prolonged period of time compared to a
hypothetical control system that uses a dynamic model of the entire plant to optimize
plant operation continuously. All control actions in such a hypothetical, ideal control
system would be perfectly coordinated, and the control system would use dynamic op-
timization in real time instead of steady state optimization performed comparatively
infrequently?. Most chemical processes contain nonlinearities, and there are also non-
linearities in the relationship between quality and price for feedstocks and products. A
hypothetical, ideal control system would take full advantage of these nonlinearities (al-
though there are still many unresolved issues in nonlinear control theory), in contrast
to a traditional control system which is based mainly on linear control theory.

With the increasing availability of computing power it is therefore pertinent to
consider whether the conventional decomposition of the control system should be dis-
carded and attempts should be made to design and implement control systems which

*Vendors of supervisory control systems may claim that their package performs online economic
0.ptlmlzation, but the optimization performed in supervisory control systems is usually much too
simple to be considered a realistic economic optimization.
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more closely approximate the hypothetically optimal. Such a control system will in the
following be termed an “optimal centralized control system”, because it will consist of
only one “layer”, in which all the tasks of the three different layers of a traditional

control system are centralized. Yoeadlly Vomove. ity b

on dhinhotired lops
1.1.4 Drawbacks of an Optimal Centralized Control System

The advantage of the optimal centralized control system has already been pointed out:
When an optimal centralized control system is operating successfully, plant profitability
will be higher than for the same plant controlled by a traditional control system. The
drawbacks of an optimal centralized control system are not so clear, and need to be
considered more carefully.

o Economics. It is clear that the view of economics taken above is much too
simplistic. The costs of designing and maintaining a control system must also be
considered. These costs will be much higher for an optimal centralized control
system than for a traditional control system, because one cannot reduce problem
complexity by decomposing the problem when designing an optimal centralized
control system. The need for control systems with a minimum degree of com-
plexity is emphasized by Reeves et al. (1991), for the reasons of system cost,
maintainability and reliability. The top (optimization) layer in a traditional con-
trol system only uses a steady state model, which is much easier to build than
the plant wide dynamic model needed for an optimal centralized control system.
The middle, supervisory control level requires a dynamic model of its section of
the plant, but can take advantage of the simplification in plant behavior caused
by the control action of the lower (regulatory) control level.

It should also be understood that regularity is very important for plant economics,
as it often takes a long time to start up a chemical plant. Thus, if plant shutdown
occurs more frequently with an optimal centralized control system than with a
traditional control system, it is unlikely that overall profit will increase when
installing an optimal centralized control system even if the profit per hour of
operation increases significantly.

¢ Redesign and retuning. Because of changes in operating conditions, raw ma-
terials and equipment, it may be necessary to make adjustments to the control
system. This is much easier in a traditional, structured control system, where
it may be obvious where the changes should be made. In a centralized model-
based system, a costly and time-consuming change in the plant model and in the
mathematical objective function may be needed.

Startup and shutdown. Common operating practice during startup is that
virtually all controls are initially put on manual. The loops of the regulatory
control system are then put in service when the equipment that they control
approaches normal operating conditions. When the regulatory control level is in
service, the supervisory control can be turned on. Shutdown is performed in the
reverse sequence. Thus, there may be significant scope for improvement in the
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startup and shutdown procedures of a plant, as quicker startup and shutdown
can reduce plant downtime. However, a model of a plant which in addition
‘to normal operating conditions also is able to describe startup and shutdown
Is necessarily much more complex than a model which only covers the range
of conditions encountered in normal operation. Building such a model will be
difficult and costly. Startup and shutdown of a plant with an optimal centralized
control system that does not cover startup and shutdown, may be more difficult
than with a traditional control system, because it may not be possible to put an
optimal centralized control system gradually into service.

Operator acceptance and understanding. Control systems that are not
accepted by the operators are likely to be taken out of service. An optimal
centralized control system will often be complex and difficult to understand.
Operator understanding obviously makes acceptance easier, and a traditional
control system, being easier to understand, often has an advantage in this respect.
Plant shutdowns may be caused by an operator with insufficient understanding
of the control system. Such shutdowns should actually be blamed on the control
system (or those who designed and installed the control system), since operators

are an integral part of the plant operation, and their understanding of the control
system must therefore be ensured.

On 'the other hand, it is clear that operator acceptance of a control system will
be influenced by the available alternatives. Thus optimal centralized control
systems have a better chance of being accepted for processes where traditional
control systems have failed. One such example appears to be the Light Metal
Electrolysis studied by Balchen and coworkers (e.g. [36])

Hardware and software failure. In a traditional control system the operators
.retain the help of the regulatory control system in keeping thé plant in operation
if a hardware or software failure occurs in the higher levels of the control system.
A hardware backup system for the regulatory control level is much cheaper than
for the higher levels in the control hierarchy, as the regulatory control system can
be decomposed into simple control tasks (mainly single loops). In contrast, an
optimal centralized control system requires powerful computers, and it is therefore
more costly to provide a backup system. However, with continued increase in
availability and decrease in price for computing power this argument may weaken.

Robustness. The complexity of an optimal centralized control system will make
it difficult to analyze whether the system is robust with respect to model uncer-
ta.inty and numerical inaccuracies. Analyzing robustness need not be trivial even
with a traditional control system. The ultimate test of robustness will be in
operation of the plant. A traditional control system can be applied gradually,
first the regulatory control, then section by section of the supervisory control
level. When problems arise, it will therefore be easier to analyze the cause of the
problem with a traditional control system than for an integrated control system.
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o Existing traditional control systems. Where existing cc?ntrol. syste@s per-
form reasonably well, it makes more sense to put the eﬂoYt' into improving the
existing control system rather than to make the risky decision to de51g.n a new
control system. This will apply also to many new plants, as many chemical pro-
cesses are not well known. For such processes it will therefore be necessary t'o
carry out model identification and validation on the actual process. During this
period some minimum amount of control will be needed. The regulatory level
in a traditional control system requires much less information about the process,
and can operate during this period.

1.1.5 Conclusions on Hierarchical Structuring of Control Sys-
tems

Control systems for large chemical plants will probably continue to evolve from their
traditional structure. Major breaks with tradition are most likely to occur where
traditional methods for process control have been clearly unsuccessful.

Current research into improving the supervisory control algorithms (e.g. [17]) ap-
pears to be effort well spent. However, improved supervisory control does not imply
that the other levels of the control hierarchy become less important. A well designed
and structured regulatory control system is a prerequisite for applying supervisory
control, as a poorly designed regulatory control system may impose inherent control
limitations which cannot be removed by the higher levels in the control system. Also, a
well designed regulatory control system will simplify the design of a supervisory control
system, and will be of help to the process operators during startup and shutdown, and
when the higher levels of the control hierarchy are out of service.

1.2 The Regulatory Control Level

In the preceding section it was mentioned that the regulatory control level is flsually
highly decentralized, consisting mainly of SISO loops. Some reasons for choosing the
regulatory control level to be decentralized are:

¢ Operator understanding and acceptance. The need for operator under-
standing and acceptance is especially relevant for the regulatory control level, as
this is the control level that operators will most frequently interact with. The
operators may also occasionally have to keep the plant in operation without the
help of the higher levels in the control hierarchy, when the higher levels are out
of service.

e Ease of tuning. A result of the fact that a decentralized control system is easy
to understand, is that it is also relatively easy to retune. Operators may therefore
be allowed to retune the loops of the regulatory control level in order to counter
the effect of process changes. Retuning of the loops at the regulatory control level
will often reduce the need for changing the higher levels of the control system.
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e Startup and shutdown. A well-designed decentralized control system can be
taken into or out of service loop by loop, as noted in the preceding section.

¢ Implementation and maintenance. A decentralized control system is rela-
tively easy to implement and less costly to maintain, due to its low degree of
complexity.

A more complete list of objectives for the regulatory control system is given in Chapter
4. Prior to the application of any controller design methodology, the manipulated and
controlled variables of the control system must be identified.

Choosing all available manipulators and measurements will often make the control
system unnecessarily complex [24]. The regulatory control level typically provides faster
control than the higher levels of the control system. Thus, if fast control is required
for a given measurement (e.g. for reasons of stability or safety), it will normally be
controlled at the regulatory control level. It is also natural to control a measurement
at the regulatory control level if the control of that measurement helps the operators
keep the plant in operation when the higher levels of the control system are out of
service.

Obviously, the manipulated variables in the regulatory control system are chosen
to enable good control of the controlled variables. Using more manipulated variables
than controlled variables (e.g. split range control, using one fast and one slower ma-
nipulated variable) can sometimes make the control easier. However, the number of
manipulated variables should be the minimum necessary for effective control of the

controlled variables, as one otherwise restricts the freedom for design of the higher
levels of the control system.

A very important issue in the design of the regulatory control system is therefore
the control structure selection. That is, one has to select controlled and manipulated
variables, and decide what manipulated variable should be used for controlling a given
controlled variable (also known as the pairing of controlled and manipulated variables).
Several books contain recommendations and rules for control structure selection, e.g.
Stephanopoulos [35], Rijnsdorp [25] and Balchen and Mummé (1]. However, the issue
of control structure selection is still far from being resolved, and there is a need for a
more quantitative treatment of the issue than what is given in these books.

1.3 Design of Controllers with a Specific Structure

1.3.1 Decentralized Controllers

After the control structure of a decentralized control system has been determined, one is
faced with the problem of designing a decentralized controller. Unfortunately, standard
controller synthesis algorithms, such as H, or Hy, synthesis cannot handle a require-
ment for a specific structure for the controller. Instead, some practical approaches to
the design of decentralized controllers have evolved:

* Parameter optimization. This involves an & priori parametrization of the
controller, and a computable measure of control quality (e.g. the H, or H,
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norm of the closed loop system). The tuning parameters of the controller are
then optimized with respect to the chosen measure of control quality.

¢ Sequential design. Sequential design involves closing one control loop at the
time, and treating the design of each controller element as a SISO problem. The
controllers that have already been designed are assumed to be in service when
designing controllers for subsequent loops. Sequential design was introduced into
the control literature by Mayne [20].

* Independent design. In independent design one attempts to find bounds on
the design of the individual loops. If these bounds are fulfilled for all loops, the
overall closed loop system is guaranteed to perform satisfactorily. Independent
design was introduced by Skogestad and Morari [30].

1.3.2 Other Controllers with a Specific Structure

In some cases a specific structure for the controller does not result from an & priori
decision, but arises from analysis of the controller synthesis problem itself. This occurs
when the controller synthesis problem has some structure which makes it possible
to transform the problem such that it decomposes into non-interacting subproblems.
After decomposition, each of the synthesis subproblems will be of lower dimension and
contain fewer states than the original problem. Controller synthesis can therefore be
significantly simplified by such decomposition. The resulting overall controller will
then have a structure which is determined by the matrices used for transforming the
synthesis problem.

1.4 The use of the term “Controllability”

In state-space control theory the term “controllability” has a rather limited definition
in terms of Kalman'’s state controllability. If all the states of a system are controllable,
any value for the state vector can be achieved in finite time by the appropriate use of
the manipulated inputs.

However, in engineering practice, a system is called controllable if it is possible to
achieve the specified aims of the control, whatever these may be (Rosenbrock, [26], p.
171). At the risk of upsetting some readers with a background from state-space control
theory, the term controllability will throughout this thesis be used in a manner which is
more consistent with its use in engineering practice than in state-space control theory.
The definition of controllability used in this thesis is:

Controllability (of a plant) is the best quality of the response which can be obtained for
the plant by use of feedback control.

Admittedly, this definition is not very precise, since, for example, “best” is not defined.
The definition of controllability used here is similar to that used by Perkins [27]. A
key idea is that controllability is an inherent property of the plant, and that it is
independent of controller tuning (it is assumed that the optimal tunings are used).
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On the other hand, one may restrict the class of allowable controllers, for example
by considering “controllability using linear controllers” (which is done throughout this
thesis) or “controllability using decentralized controllers” (which we do in most parts
of this thesis).

1.5 Robust control

No model of a plant is perfect, any model will contain uncertainties and inaccuracies.
It is therefore not sufficient that a controller gives a stable system and performs well
on the model for which it was designed, when applied to the actual plant it must also
give a stable system and acceptable performance. One therefore needs a method for
ascertaining & priori whether the controller will perform acceptably when applied to
the actual plant. The problem here is obvious: It is impossible to know exactly how
the actual plant behaves. This problem can be circumvented by finding estimates of
the locations, structures and magnitudes of the uncertainties in the model, and use
a controller design method which guarantees stability and performance for the whole
class of possible plants described by the model and the uncertainty estimates. That
is, the controller should be robust with respect to the uncertainties of the plant. If the
closed loop system can be shown to be stable for the whole class of possible plants, the
system has Robust Stability (RS). Likewise, if the closed loop system can be shown to
fulfill the performance specification for the whole class of possible plants, the system
has Robust Performance (RP).

The Heo-norm of a transfer function matrix M(jw) is defined as sup,, 5(M(jw)) (where
o denotes the maximum singular value). A common frequency domain specification for
control system is that the weighted Ho,-norm of some matrix should not exceed some
specific value. Doyle [4] introduced the structured singular value, p. The structured
singular value is used to analyze whether a system fulfills H-nogm specifications in
a robust sense, and for designing controllers which result in closed loop systems that
robustly fulfill their H.,-norm specifications.

1.6 Thesis Overview

Chapter 2. This chapter gives frequency-dependent tools to assist evaluating con-
trollability and to use for control configuration selection and design of decentralized
control systems. In a broader sense these tools may also be use for control structure
selection. The relationship between the Relative Gain Array (RGA) and Right Half
Plane (RHP) zeros is clarified. The use of the RGA as a measure of the sensitivity
of the closed loop system with respect to input uncertainty and individual element
uncertainty is discussed.

The Performance Relative Gain Array (PRGA) and Closed Loop Disturbance Gain
(CLDG) are introduced. The PRGA and CLDG can be used to find bounds on the
designs of the individual loops for decentralized control. These bounds are valid at
frequencies below the closed loop bandwidth, and fulfilling the bounds ensures that the
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performance requirements with respect to setpoint following and disturbance rejection properties which allows decomposition of the controller design problem into smaller
| are met. The bounds may be used to evaluate the inherent sensitivity to disturbances subprob'lems For plants consisting of n units ip parallel, each unjt having n, outputs
/ for a particular decentralized control configuration. and n; inputs, the controller design problem can be performed on {wo “plants” with

| selection are discussed.
l The well known pairing criteria based on the Niederlinski index and the steady state

RGA are generalized to unstable systems. The use of several frequency-dependent tool

| structure selection for the regulatory control system for the riser-regenerator section
of a Fluid Catalytic Cracking process. Both the partial combustion mode and the
complete combustion mode of operation are studied. However, the main focus is on
! the partial combustjon mode, mainly in order to enable comparison with the results of
' Previous authors.

Indeed, it is found by using simple unitary transforms that H,-, H.-, and {-optimal
.contro'llers are on the form of an Sy controller for quite 5 large class of problems,

aid the Koriess coiitic structure [16] are including the example in [29]. This is interesting from a theoretical point of view,
but also Suggests that multivariable controllers based on SVD-compensators plus sim-

ple single-loop controllers may he close to optimal in many cases. That is, one may
led snd introduce a controller of the form ¢ = VKUT (see Fig. 1.1), where v and U are cop.-

stant matrices, and use the methods outlined in Chapter 5 to design the decentralized
controller K.

€ITors in the parameter valyes of the model are investigated. It is also shown how Chapter 8 Conclusions and Suggestions for future research are given ip this chapter
different assumptions about the mode] structure affect the results of the controllability
analysis. Appendix A The appendix contains material which 1S somewhat on the side of the
Chapter 5. This chapter is concerned with the design of decentralized controllers. It main topics of this thesis. For Model Predictive Control (MPC) based on step response
is here assumed that the control configuration (pairing) has been determined prior to models, fast sampling is required for fast control However, if the plant contains outputs
the design, e.g. by using the tools of Chapters 2.3, Chapter 5 gives new results on in which the responses are slow, fagt sampling means that large number of step
independent and sequential design of decentralized controllers. response coefficients are needed. A large number of step response coefficients leads
Independent design involves treating some controller-related quantity as uncer- to a large requirement for storage and computing power in the control system. A
tainty, and thereafter finding bounds on the allowable magnitude of this uncertainty. robust method for reducing the number of step response coefficients needed is given
For independent design to be powerful, the controller-related quantity for which the in Appendix A. This work was carried out under the guidance of Professor Manfred
bounds are found must be chosen such that the associated uncertainty is small. Ex. Morarj during a visit, ¢ the California Institute of Technology in 1990,
pressing the set of possible designs in terms of bounds on the sensitivity function and Most of the material in this thegjs has been presented previously or js submitted for

Presentation:
Morari [30], is shown to be conservative in most cases. Instead, finding bounds on the
IMC filter time constant, which corresponds to a much smaller class of possible designs, ® Section 1.1 of Chapter 1 roughly corresponds to this authors contribution to [39].
1s shown to be much less conservative. It js demonstrated that by finding bounds on o Chapter 2 consists of materia] f 39] and ]
the IMC filter time constant, it is possible to perform independent design on problems found iq (33] and [34] faterial from [32] an [10], and related Material can be
that have previously been claimed to be impossible to solve with independent design :

For sequential design, it is shown how simple estimates of the interaction can be ¢ Chapter 3 is presented in [12).

. . . . . . ® Most of Ch ter 4 j i ims;
Chapter 6. This chapter is concerned with the contro] of plants consisting of identical, in [6] and [SaJp er @18 presented in [9], and some preliminary results are bresented

cases a single unit would be too large to be practical. This type of plants has structural | * Chapter 5 wil] be presented in [13] and [15].
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e Parts of Chapter 6 is published in [11] and [31].
e Chapter 7 is submitted for presentation [14].
¢ Appendix A is presented in [7].

Overall this thesis is expected to result in 13 conference presentations and 9 journal
articles. Other work in which the author has participated, but which is not covered in
this thesis, can be found in references [18, 40].
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Chapter 2

Simple Frequency-Dependent Tools for Control
System Analysis, Structure Selection and Design
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N-7034 Trondheim, Norway
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Abstract

The paper presents results on frequency-dependent tools for analysis, strue-
ture selection and design of control systems. This includes relationships between
the relative gain array (RGA) and right half plane zeros, and the use of the
RGA as a sensitivity measure with respect to individual element uncertainty
and diagonal input uncertainty. It is also shown how frequerfcy-dependent plots
of the closely related performance relative gains (PRGA) and a new proposed
disturbance measure, the closed-loop disturbance gains (CLDG), can be used
to evaluate the achievable performance (controllability) of a plant under decen-
tralized control. These controller-independent measures give constraints on the
design of the individual loops, which when satisfied e that the overall system sat-
isfies performance objectives with respect to setpoint tracking and disturbance
rejection.
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2.1 Introduction

The relative gain array (RGA) has found widespread use as a measure of interaction and
as a tool for control structure selection for single-loop controllers. It was first introduced
by Bristol [5]. It was originally defined at steady-state, but it may easily be extended to
higher frequencies [6]. Shinskey [19, 20] and McAvoy [12] have demonstrated practical
applications of the RGA. Important advantages with the RGA is that it depends on the
plant model only and that it is scaling independent. It is straightforward to generalize
the RGA from single-loop controllers to block-diagonal controllers by introducing the
block relative gain (BRG) [10], and most of the results presented in this paper may
be generalized in such a manner. However, to simplify the presentation, and because
single-loop controllers are most common in practice, we shall consider only the RGA
in this paper.

Our interest in the RGA as a frequency-dependent measure was initially focused on
its use as a sensitivity measure with respect to model uncertainty [22] (see Theorem
2 and Eq. (2.12) below). However, based on its original definition as a steady-state
interaction measure for single-loop control, it seemed reasonable that the frequency-
dependent RGA should have some use as a performance or stability measure for decen-
tralized control. Some interesting relationships and reports of encouraging applications
presented by Nett [14] led us to investigate this in more detail.

Most authors have confined themselves to use the RGA at steady state, and a
thorough review of the use and interpretation of the steady-state RGA is given by
Grosdidier [8]. A frequency-dependent interaction measure Y, which is equivalent to
the RGA for 2 x 2 systems, was introduced by Balchen [3] and Rijnsdorp [17] and is
discussed for n x n systems in [4]. Balchen also gives some performance interpretation
to his measure. Applications of the frequency-dependent RGA are given by McAvoy
11, 12).

We use the dynamic RGA as defined by Bristol [6]. Other definitions have also
been proposed. Witcher and McAvoy (28] proposed a time domain definition of the
RGA, as did Tung and Edgar [27]. Arkun [1, 2] has proposed measures (DBRG and
Relative Sensitivity) which include the controller. Balchen and Mumme [4] generalize
the measure Y to include the controller. However, one then looses one of the main
advantages of the RGA which is that it depends on the plant model only. These
alternative definitions are not considered in this paper.

In the paper we first consider the RGA as a general analysis tool and refer to some
of its properties, which we believe are significant for engineering applications. However,
the main part of the paper is devoted to decentralized control. We study stability and
achievable performance (controllability) using simple frequency-dependent measures

for interactions (PRGA) and disturbances (CLDG).

One of the main criticisms against the use of the RGA has been its “failure” to
predict the poor performance one often has when using decentralized control for one-
way interactive systems because the RGA matrix is identity in such cases. We propose
a new measure, the Performance RGA (PRGA) which may be used to address also this
performance issue.
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2.2 Definitions
2.2.1 Relative Gain Array (RGA)

Consider a n x n plant G(s).
y(s) = G(s)u(s) (2.1)

The open loop gain from input u; to output y; is gij(s) when all other outputs y are
uncontrolled. Writing equation (2.1) as

u(s) = G7(s)y(s) (2.2)

it can be seen that the gain from u; to y; is 1/[G™'(s)];; when all other y’s are perfectly
controlled (e.g. [8]). The relative gain is the ratio of these “open-loop” and “closed-
loop” gains. Thus a matrix of relative gains, the RGA matrix, can be computed using
the formula

A(s) = G(s) x (G™X(s))T (2.3)

where the x symbol denotes element by element multiplication (Hadamard or Schur
product). The inverse G~1(s) may be non-proper or non-causal, and a physical inter-
pretation in terms of perfect control is of course not meaningful except at steady-state.
This has caused many authors to discard use of a dynamic RGA, or to restrict its use
to plants with no RHP-zeros (10]. This is unfortunate as the dynamic RGA as defined
above proves to have a number of useful properties. Furthermore, we shall mainly
consider the A(s) as a function of frequency, s = jw, and in this case A(jw) may be
computed for any plant G except for frequencies corresponding to jw-axis zeros.
[ ])The RGA matrix as defined above has some interesting algebraic properties (eg.,
8]):
a) It is scaling independent (eg., independent of units chosen for u and ¥). Mathemat-
ically, A(D,GD,) = A(G) where Dy and D, are diagonal matrices.
b) All row and column sums equal one.
¢) Any permutation of rows or columns in G results in the same permutation in the
RGA.
d) If G(s) is triangular (and hence also if it is diagonal), A(G) = I.
e) Relative perturbations in elements of G' and in its inverse are related by
dG™;i/[G™)5i = =Xijdgi; /gs;.

hese properties are easily proven from the following expression for the individual
elements of A

B4

i+ 9i5(8)det(GY(s))
/\i' - _1 I+Jg.7(s)
J(S) ( ) det(G(s))
Here G/ denotes the matrix G with subsystem ij removed, that is, row 7 and column
J is deleted.

(2.4)

2.2.2 Performance Relative Gain Array (PRGA)

pne inadequacy of the RGA (eg., [12], p. 166) is that it, because of property d, may
indicate that interactions is no problem, but significant one-way coupling may exist.
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To overcome this problem we introduce the performance relative gain array (PRGA).
The PRGA-matrix is defined as

T(s) = G(s)G(s)™" (2.5)

where G(s) is the matrix consisting of only the diagonal elements of G(s), i.e., G =
diag{gii}. The matrix I' was originally introduced at steady-state by Grosdidier [9] in
order to understand the effect of directions under decentralized control. The elements

of I' are given by

35(5) = gl )IG () = L8 x5 (2:6)
gii(s)
Note that the diagonal elements of RGA and PRGA are identical, but otherwise PRGA
does not have all the nice algebraic properties of the RGA. PRGA must be recomputed
whenever G is rearranged, whereas RGA only needs to be rearranged in the same way
as G. PRGA is independent of input scaling, that is, I'(GD,) = I'(G), but it depends
on output scaling. This is reasonable since performance is defined in terms of the
magnitude of the outputs.
The measures above may be extended to non-square systems by introducing the
pseudoinverse. However, the usefulness of the measures, at least for analyzing decen-
tralized control, then seems limited. In the following G(s) is assumed square.

2.3 The RGA as a General Analysis Tool

In this section we present some relationships involving the RGA of G(s) which do not
assume a decentralized control system. The results are based on the general definition
of the RGA given by Eq. (2.3), and the physical interpretation preceding Eq. (2.3) is
of limited interest in this case.

2.3.1 The RGA and Right Half Plane Zeros

Consider a transfer matrix G(s). Bristol [5] claimed in his original paper and later
[6, 7] that there is a relationship between RHP-zeros and negative values of A;;(0), but
Grosdidier et al. [8] showed with a counterexample that this is not true. However, as
we shall see there proves to be a relationship if we assume that the loops have been
paired such that A;;(c0) is positive.

Theorem 1 Assume lim,o, Aij(s) is finite and different from zero. Let gij(s)det(G¥(s))
have 2o, zeros at the origin, zp, zeros in the right half plane, po, poles at the origin and
Prn poles in the right half plane. Similarly, let det(G(s)) have zog zeros at the origin,
ZRd4 zeros in the right half plane, pos poles at the origin and ppry poles in the right half
plane. Define 2o = zon — 204, po = Pon — Pody 2R = ZRn — ZRd, And PR = PRn — DPR4.
Then the net change in the phase of Aij(jw) as the frequency goes from 0 to oo is

I

3(Po — 20) + 7(pr — 2R).
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Proof: See Appendix 1. If all elements of G(s) are stable (all poles in the closed left
half plane), then any net change in phase must have been caused by a different number
of RHP zeros in g;;(s)det(G”(s)) and det(G(s)). The direction of the phase change will
then tell whether the numerator or denominator of (2.4) has the most RHP zeros. The
theorem is useful, for example, if only the frequency-response of the plant is known.
The following Corollary is even more useful since it only requires knowledge about the
diagonal RGA-elements at w = 0 and w = oo which may be available even when the
detailed dynamics are unknown.

Corollary 1 Assume lim,_o Aij(s) is finite and different from zero. Consider a trans-
fer matriz with stable elements and no zeros or poles at s = 0. If Xij(joo) and A;;(0)
have different signs then at least one of the following must be true:

a) gij(s) has a RHP zero.

b) G(s) has a RHP transmission zero.

c¢) GY(s) (ie., the subsystem with input j and output i removed) has a RHP transmis-
sion zero.

That is, different signs of Aij(joo) and A;;(0) is a sufficient condition for the existence of
RHP zeros or RHP transmission zeros. Any such zeros may be detrimental for control
of the system. However, it is not a necessary condition, and there may be RHP-zeros
present even if the RGA elements do not change sign. For example, adding a time
delay or RHP-zero to an individual input or output channel will not affect the RGA
as it may simply be viewed as a kind of scaling. ' In most cases the pairings are
chosen such that A;(co) is positive (usually close to 1, see pairing rule 2 below) and
this confirms Bristols claim that negative RGA-elements imply presence of RHP-zeros.
In the case when the process does contain zeros or poles at s = 0 the Corollary still
applies if A;;(0) is corrected by adding Z(po — 20) to the phase angle.

Example 1. Consider a plant

1 s+1 s+4
G(s)=T3+1( . . ) (2.7

We have Aj;(c0) = 2 and A11(0) = —1. Since none of the diagonal elements have
RHP-zeros we conclude from Corollary 1 that G(s) must have a RHP-zero. This is
indeed confirmed as G(s) has a transmission zero at s = 2.

2.3.2 The RGA and the Optimally Scaled Condition Num-
ber
Consider any complex matrix G. Bristol [5] pointed out the formal resemblance between

the RGA and the condition number (@) = 7(G)/e(G) = (G)a(G~') However, the

condition number depends on scaling, whereas the RGA does not. Minimizing the

'Adding a time delay 6; to each output i yields the plant D;G where D; = diag{e~?*}, but the
RGA-matrix is unchanged since A(D1G) = A(G).
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condition number with respect to all input and output scalings yields the optimal

condition number .
7"(G) = min v(D1GDy) (2.8)
1,472

It is commonly conjectured that there is a close relationship between '.y‘(G) and the
magnitude of the elements in the RGA as is illustrated by the following lower and
conjectured upper bounds on v*(G):

1
7+(G)
where ||Allm = 2max{||Alla, [|Alli} and [|Alli = Zij|Ai;],and k(n) is a constant. The
lower bound is proven by Nett and Manousiouthakis [15]. The upper bound is proven

for 2 x 2 matrices with k(2) = 0 [8], but it is only conjectured for the general case with
k(3) =1 and k(4) = 2 [22].

lAllm — <7(G) < HIAll + k() (2.9)

2.3.3 RGA and Individual Element Uncertainty

Theorem 2 The (complez) matriz G becomes singular if we make a relative change
—1/X;j in its ij-th element, that is, if a single element in G is perturbed from gi; to

gpi; = gii(1 = )

v

Proof. Let G,(s) denote G(s) with g,; substituted for 9ij- Using (2.4), we find by
expanding the determinant of G,(s) by row ¢ or column j that

det(G)

L (—1)"*det(GY) = 2.10
(_1)i+jdet(G-‘j)( 1) det(GY) = 0 (2.10)

det(G,) = det(G) —

Theorem 2 provides necessary and sufficient condition for singularity of a matrix

with element uncertainty. It is actually a quite amazing algebraic property of the RGA

which seems to be little known. The theorem was originally presented by Yu and Luy-
ben [30], but the proof above is much simpler.

Theorem 2 has some important control implications:

1. Element uncertainty. Consider a plant with transfer matrix G(s). If thf: relative
uncertainty in an element at a given frequency is larger than |1/A;;(jw)| then
the plant may have jw-axis zeros and RHP-zeros at this frequency. Hovs./ever, t.he
assumption of element-by-element uncertainty is often poor from a physical point
of view because the elements are usually always coupled in some way.

2. Process identification. Models of multivariable plants, G(s), are often o}otained
by identifying one element at the time, for example, by using.step or impulse
responses. From Theorem 2 it is clear this method will most likely give mean-
ingless results (eg., wrong sign of det(G(0)) or non-existing RHP— 'zeros) if there
are large RGA-elements within the bandwidth where the model Is intended to b‘e
used. Consequently, identification must be combined with physical knowledge if
a good multivariable model is desired in such cases.
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3. Uncertainty in state matrix. Consider a stable linear system written on state
variable form; dz/dt = Az + -... Then changing the ij’th element in A from
a;j to aij(1 — 1/Xi;(A)) yields one eigenvalue of A equal to zero. Thus, we may
conclude that systems with large RGA-elements of A, will become unstable for
small relative changes in the elements of A.

2.3.4 RGA and Diagonal Input Uncertainty

One kind of uncertainty that is always present is input uncertainty. Let the nominal
plant model be G(s), and the true (perturbed) plant be G, = G(I+A). A = diag{A;}
is a diagonal matrix consisting of the relative uncertainty (error) in the gain of each
input channel. If an "inverse-based” controller (decoupler) is used, C(s) = G Y(s)K(s)
where K(s) is a diagonal matrix, then the true open loop gain G,C is

k)

G,C =(I1+GAGY)K (2.11)
Result: The diagonal elements of GAG! are directly given by the RGA [22]

(GAG™)a = T M (Q)A, (2.12)

Thus, if the plant has large RGA elements and an inverse-based controller is used, the
overall system will be extremely sensitive to input uncertainty.

Control implications. Consider a plant with large RGA-elements in the frequency-
range of importance for feedback control. A diagonal controller is robust (insensitive)
with respect to input uncertainty, but will be unable to compensate for the strong
couplings (as expressed by the large RGA- elements) and will yield poor performance
(even nominally). On the other hand, An inverse-based controller which corrects for the
interactions may yield excellent nominal performance, but will be very sensitive to input
uncertainty and will not yield robust performance. The physical reason for the problems
with the inverse-based controller is that the controller tries to apply‘large input signals
in certain directions to match weak directions in the plant. The input uncertainty
changes these directions and ruins the desired match. In addition, stability problems
are also expected for the inverse-based controller. In summary, plants with large RGA-
elements around the crossover-frequency are fundamentally difficult to control, and
inverse-based controllers should never be used for such plants.

2.3.5 RGA and Decentralized Integral Controllability (DIC)

Definition of DIC. A plant G(s) (corresponding to a given pairing) is DIC if there exists
a stabilizing decentralized controller with integral action such that each individual
loop may be detuned independently by a factor ¢; (0 < & < 1) without introducing

instability. DIC is a property of the plant and the chosen pairings. Unstable plants
are not DIC,

Theorem 8 Assume C(s) is diagonal and that G(s)C(s) is stable and proper.
Then Xii(0) < 0 for any i = not DIC
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Proof: Follows from Theorem 6 [8].
This condition is tight for 2 x 2 systems since in this case [23] DIC <+ /\1_1(.0) =
A22(0) > 0. For 3 x 3 systems with );; > 0 the necessary and sufficient condition is

DIC & /211(0) + 1/A22(0) + 1/A33(0) > 1 [29].

2.3.6 RGA and Stability of Decentralized Control Systems

Apart from the relationships between RGA and DIC presented above, we have not
found any strong relationships between the RGA and overall nominal stability (NS) of
a decentralized control system. However the following theorem holds:

Theorem 4 If A(G) = I Vw then stability of the individual loops imply stability of
the entire system.

The proof is straight forward: We find from Eq. (2.3) that A(G) = I can only arise
from triangular G(s) (with diagonal G(s) as a special case) or from G(s)-matrices that
can be made triangular by interchanging rows and columns in such a way that the
diagonal elements remain the same but in a different order (the pairings remain the
same). A plant with a triangularizable transfer matrix (as described above) controlled
by a diagonal controller has only “one-way coupling” and will always be stable provided
the individual loops are stable.

For plants that can not be made triangular by row and column interchanges Theorem
4 is of little use as it does not tell what deviations from A(G) = I can be tolerated
without impairing stability. Care should be taken to distinguish Theorem 4 from what
may be termed the conventional pairing rule.

Conventional pairing “rule”: Prefer pairings ij with \;;(jw) close to I (e.g. [5],
[18], p. 457)

We emphasize that the conventional pairing rule is an engineering rule of thumb, and
1s not based on any proof. Indeed, pairing in accordance with the conventional pairing
rule may result in unstable systems even if the individual loops are tuned to be stable
(for systems of dimension larger than 2 x 2).

Example 2. Counterexample to the conventional pairing rule. Consider the
plant

1 —419 —-25.96
6.19 1 —25.96 (2.13)
1 1

The corresponding RGA matrix is at all frequencies

(1-s)

G = A sey

1 5 -5
AG)=| -5 1 5 (2.14)
5 =5 1

If we use the pairing indicated by Eq. (2.13) and tune individual PI controllers according

to the Ziegler-Nichols tuning rules we obtain controllers ¢;(s) = 4.462241  However,
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Z
— Gy

Figure 2.1: Block diagram of a decentralized control system.

the overall system becomes unstable even though the individual loops are stable. In

order to obtain overall stability we have to detune the controller gains by a factor of
125.

2.4 Performance Relationships for Decentralized
Control

In this section we consider the implications of overall performance requirements (nom-
inal performance - NP) on the single-loop designs. We derive bounds on the designs of
the individual loops

lgici(jw)| > bi(w); w<wp . (2.18)

which when satisfied yield performance (NP) of the overall systém (with all loops
closed). Note that the relationships for performance derived below require stability of
the overall system (NS) as a prerequisite, that is, NS must be tested separately.

2.4.1 Notation

The controller C(s) is diagonal with entries ¢;(s) (see Fig. 2.1). This implies that after
the variable pairing has been determined, the order of the elements in y and u has been
arranged so that the plant transfer matrix G(s) has the elements corresponding to the
paired variables on the main diagonal. Let y(s) denote the output response for the
overall system when all loops are closed and let e(s) = y(s) — r(s) denote the output
error. Then

e(s) = =S(s)r(s) + S(s)Ga(s)2(s); S=(I+GC)™ (2.16)

Here z denotes the disturbances. G is assumed to be a n x n square matrix, but Gy
may be nonsquare. The bandwidth of the system, wg, is defined as the frequency range
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where the asymptotes of &(S(jw)) and g(S(jw)) cross one. This frequency range is
also called called the “crossover region”. 5

The matrix consisting of only the diagonal elements of G(s) is denoted G(s). §(s)
denotes the response of the individual subsystems, that is, §;(s) is the response when
loop ¢ is closed and the other loops are open. The closed-loop sensitivity functions for
the individual loops may be collected in the diagonal matrix S:

&(s) = =8(s)r(s) + S(s)Ga(s)z(s) (2.17)

S = (I + GC)_I = diag{§.~.-}; 8 = (1 + g,',-c,-)_l (2.18)

Note that the elements in S are not equal to the diagonal elements of S.

2.4.2 Performance Requirements (Definition of NP)

Assume that G' and G4 have been scaled such that at each frequency 1) the expected
disturbances, |2x(jw)|, are less than one, and 2) the outputs, y;, are such that the ex-
pected setpoint changes, |r;(jw)| are less than one. As a NP performance specification
we shall require for any setpoint change, r;, that the offset e; is bounded:

lei(jw)/ri(jw)l = IS;;(jw)] < wa(jw)l;  Vw, ¥4, V) (2.19)
Here w;;(s) is a scalar performance weight. For any disturbance z; we require that
lei(gw)/zk(jw)| = [[SGal(jw)| < 1/|wai(jw)l; Ve, Vi, Vk (2.20)

Typically, both weights |wg4;(jw)| and |w,;(jw)| are large at low frequencies where small
offset is desired. |w,;| is often about 0.5 at high frequencies to guarantee an ampli-
fication of high-frequency noise of 2 or less. Thus we have a number of performance
specifications we want satisfied simultaneously.

2.4.3 Bounds on Single-loop Designs

In this section we shall use the above definition of performance to obtain bounds on the
individual transfer functions gi;c; at low frequencies. The Laplace variable s is omitted
to simplify notation. For w < wp we may usually assume

S=I+GC) '~ (GC)™? (2.21)

We thus have:
e =-Sr+8Gyzx-C'G r + C GG,z (2.22)
= —(GC)'GG1r + (GC)'GGGyz; w < wp (2.23)

where I' = GG-1 is the PRGA matrix, and I'Gy is known as the closed loop disturbance
gain (CLDG) matrix [26]. The elements of I are denoted by +;; and those of I'G, are
denoted by 6;;. The step from (2.22) to (2.23) requires that the diagonal elements of
G are nonzero. We have proven the following theorem:
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Theorem 5 For plants with nonzero diagonal elements in G(s), and at frequencies
w < wp where (2.21) holds, the NP specifications (2.19) and (2.20) are satisfied iff

|gisci(Gw)l > Iyswn(jo)l; Yo < ws, Vi, Vj (2.24)
|giici(jw)| > l6ikwai(w)l; VYw < wg, V3, Vk (2.25)

For a given choice of pairings Theorem 5 provides lower bounds on the individual
loop gains to achieve NP. We get one bound on the loop gain g;;c; for each setpoint 7
and each disturbance k. The bounds may be difficult to satisfy if ¥i; or bi are large. A
plot of |y;;(jw)| as a function of frequency will give useful information about for which
input-output pairs ij we may expect interactions. A plot of |6 (jw)| will give useful
information about which disturbances k are difficult to reject.

Comparison with all loops open. To get a better physical interpretation of the
PRGA and CLDG consider the response ¢; to a setpoint change r; and a disturbance
zr when all the other loops are open. We get

ei = —(1+ giici) 7' + (1 + giici) " gamnzi (2.26)
When all loops are closed simultaneously and we assume $ & (GCY! we get
ex ~STr+ STGyz; w< wp (2.27)
or
€ & —(1 + gijc;) My + (1 + giici) Tozr; w < wp (2.28)

Comparing (2.26) and (2.28) we see for a setpoint change r; in loop ¢ that the perfor-
mance relative gain, v, gives the approximate change in offset caused by closing all
the loops. In addition, v;; gives the effect of setpoint change r; on output e; when the
other loops are closed. That is, for w < wp we have 8i;/3i & vi;, and we see that i 18
a measure of performance degradation at low and intermediate frequencies. ‘Similarly,
for loop ¢ and disturbance z;, we see that the closed loop disturbance gain, 6, gives
the approximate gain from disturbance zx to offset e; when all the loops are closed,
which explains why the name closed loop disturbance gain is chosen for ['Gy.

2.4.4 Limitations of Theorem 5

1. The main limitation with the bounds in Theorem 5 is that they apply only to
lower and intermediate frequencies.

2. Furthermore, they only address performance, and stability must be considered
separately. For example, for input disturbances, i.e. Gy = G, we get the closed-
loop disturbance gains 6ik(s) = gii(s). Thus, it seems from performance con-
siderations with respect to input disturbances that large diagonal elements in G
(when appropriately scaled for disturbances) should be avoided. This is opposite
of the conventional pairing rule of selecting inputs that have large effects on the
controlled variables (i.e. |g;;(jw)| should be large, eg., [4], p. 48, [18], p. 683).
fl‘he reason for the apparent discrepancy is stability issues (NS) and even more
Importantly input constraints which generally favor pairing on large elements.
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3. Theorem 5 requires that the approximation S = (GC)™! holds for individual
elements in S. It may appear that this approximation is poor for elements in S
corresponding to elements in G~! equal to zero. However, we show in Appendix
2 that if 77" and G’' have zero gain in the same direction, the approximation
in (2.21) holds also for this element. Thus, in most cases Theorem 5 will hold
(structurally) also for the zero elements in G~ provided g;; # 0. For example, it
holds for all elements when G is triangular.

4. Another limitation with Theorem 5 is the assumption that g;; # 0,V:. However,
we may derive alternative bounds when g;; = 0 as shown below for the 2 x 2 case.

2 x 2 plant with diagonal element zero. Without loss of generality assume g;; = 0. In
this case the previously derived performance bounds (2.24) apply neither to loop 1 nor
to loop 2. To derive appropriate bounds consider the elements s;; of § = (I + GC)™!
directly, and assume

lg22c2] > 1 ea| > | 922 | (2.29)
g12921

such that det(I+GC) ~ det(GC). The performance requirements for setpoint tracking
to replace (2.24) then become

wys| (2.30)

|C1| > | 922
2

1
wali el > |—wnl;  lge| > [Rwal; el > |
g12921 g21 912

g12921

The last bound puts a requirement on the product of the controller gains. This is
reasonable since with g;; = 0 input u; can only affect output y; by the indirect action
of control loop 2. For disturbance rejection, closed loop disturbance gains can be
calculated for loop 2 as if g;1 is non-zero. For loop 1, bounds on the controller gain ¢;
for disturbance rejection are found from the elements in the first row of [G™1Gy].

2.4.5 Comparison with Previous Work

Mathematically, the performance specification (2.19) and (2.20) used above may be
written

WS WiSG4l(jw)|le <1, Vw (2.31)

where the e-norm used spatially (channels) is the largest modulus of the elements in
the matrix. W, = diag{w,;} and Wy = diag{ws;} are diagonal matrices specifying the
desired performance in in each output. This performance specification is very similar
to the He,-norm, but in the latter case the induced 2-norm is used spatially. Consider
the special case where W, = W; = Wp and we have the H,-performance specification

F(WplS SG4(jw)) < 1,Vw || Wo[S  SGa) [leo< 1 (2.32)

Skogestad and Morari [25] have shown how one from the NP-condition (2.32) may
derive the tightest possible bounds on the individual loops, for example, in terms of
bounds on |A;|, |s;| or |giici|]- These results are very powerful, but unfortunately the
same bound is used for all loops, and this may be conservative. It is possible to derive
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less conservative bounds by introducing additional adjustable parameters (“weights”),
but it is not all obvious how this should be done a priori (see [16] for an example on
how difficult it is even for a very simple case). However, using the spatial co-norm
for the matrix as in (2.19), (2.20) and (2.31) makes it is much simpler to derive tight
bounds on the individual loops.

In the paper we have shown that ~; = );; is a measure of performance degradation
in terms of the diagonal elements in the sensitivity function, S. These results apply
at small frequencies below crossover, but for control purposes the most important
frequency region is close to crossover. Nett (eg. [13]) has presented results which
relate (A — I) and performance degradation in terms of H = I — S. These bounds
are most useful at frequencies beyond crossover, but this frequency region by itself is
not too interesting. However, our results complement each other and indicate that we
should have A = I at crossover in order to avoid degradation in performance when
other loops are opened or closed. This provides a performance justification for the
conventional pairing “rule”. However, this justification only applies if we have as a
design objective to maintain the same performance for the overall system as for the
individual loops. However, we may want to sacrifice the latter in order to meet some
other design objective, as demonstrated in example 4 below.

2.5 Examples

2.5.1 Example 2 (continued)

We return to example 1 in section 2.3.6 to illustrate that pairing according to A; = 1V
may be undesirable from the point of view of performance. We consider the two alter-
native pairings corresponding to positive RGA values. For the pairing corresponding
to Ai; =1 the transfer function matrix G(s) is given by (2.13), whereas for the pairing
corresponding to A;; = 5 the transfer function matrix is rearranged to give

419 -25.96 1
1 —2596 6.19 (2.33)
1 1

iR (1-3s)
Gle)=g ¥ 59)?

The control problem is formulated as follows: With a diagonal performance weight
Wp(s) with all diagonal elements equal

1
Wp(s); = 057511 (2.34)

TCLS

minimize ¢, subject to an upper bound on the weighted sensitivity

| WpS < 1 (2.35)

rI"his means that we allow a maximum peak in the sensitivity function at high frequen-
ctes of 2, and seek the controller which minimizes the closed loop time constant in the
slowest direction. Only PI controllers were considered, and the tunings were obtained
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Ai =5 =1
ky —0.6840 0.1230

T 24.15 32.40
k2 | —0.02425 0.1443
Ty 7.270 34.54

ks | 0.007685 | 0.002940
T3 0.3688 3.988
TCoL 220 1 160

Table 2.1: PI controller parameters for Example 1 (ci(s) = k,%)

by a numerical search. The results demonstrate that it is advantageous to choose the
pairing corresponding to \; = 5 rather than \; = 1. For the pairing corresponding
to Aii = 5 we were able to fulfil] (2.35) with ro = 220 whereas for the pairing corre-
sponding to Ai; = 1 we had to increase TerL to 1160 in order to be able to fulfil] (2.35).
Although the resulting closed loop systems are quite slow for both pairings (relative
to the RHP zero at s — 1) the pairing corresponding to A;; = 5 is significantly better.
The controller parameters giving the above values for 7 are given in Table 2.1.

2.5.2 Example 3: Distillation Column Control
In order to demonstrate the use of the frequency dependent PRGA and CLDG for
evaluation of expected control performance and control structure selection, a binary
distillation column with 40 theoretical trays plus a total condenser is considered. This
is the same example as studied in [24], but we use a more rigorous model which includes
liquid dynamics in addition to the composition dynamics. Using model reduction, the
number of states in the model was reduced from 82 to 5. Disturbances in feed flowrate
F (z) and feed composition zp (z;), are included in the model. The LV configuration
is used, that is, the manipulated inputs are reflux [, (u1) and boilup V (uz). Outputs
are the product compositions yp (y1) and zp (y2)- The model then becomes

dy, _ duy dz
( dys ) = G(s) ( du, ) + Gq(s) ( iz, ) (2.36)

A state space description is given in Appendix 3. The disturbances and outputs have
been scaled such that a magnitude of 1 corresponds to a change in F of 30%, a change
in zp of 20%, and a change in zp and Yo of 0.01 molefraction units,

Pairings. We choose 1 to control y; and u, to control Y2, as indicated by (2.36), in
order to have positive steady state relative gains. This is in agreement with industrial
practice.
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Figure 2.2 Open loop disturbance gains |gg| for Example 3.
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Figure 2.3: Bounds on individual loop gains for Example 3. NP at low frequencies
(w < wp) requires lgiceil / [vij| > |wy| and lgiic:]/|6ix| > |wa;i|. Performance weights w,;

and wy; are not shown, but these are generally large at low frequencies and approach
lat wawg.

105 104 10-2

T‘he reason is that the direction of these two disturbances is quite different, that is,
disturbance 2 is wel] aligned with G' and s easy to reject, while disturbance 1 js not
[21]. This is seen from Fig. 2.3 where the closed-loop disturbance gains, 85, for z, are
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Figure 2.4: Responses for Example 3 to unit steps in z; (top) and 2, (bottom).

seen to be much smaller than &;; for z;. The performance relative gains for the loops
are also included in Fig. 2.3 (note that 713 = 2 for 2 x 2 plants). We see that rejection
of disturbance 1 (as indicated by |6;1]) and setpoint following (as indicated by |i|) put
similar bounds on the loop gain |gi;c;|. Assuming that the performance requirement
around crossover corresponds to performance weights |wq(jwp)| & |w.(jwg)| ~ 1 we
find that the minimum bandwidth requirement for both loops is about 0.5 rad/min.
That is, interactions become severe and performance will deteriorate drastically if the
loops are detuned.

Observed control performance. To check the validity of the above results we de-
signed single-loop PI controllers by optimizing robust performance using (2.32) as the
performance specification, assuming up to one minute unmodelled deadtime in the
inputs. The controllers obtained are:

1+3.76s 1+43.31s
C](S) = 0261w, Cg(S) = —0375W (237)

The loop gains, |giici|, with these controllers are also shown in Fig. 2.3. The loop gains
are seen to be larger than the closed-loop disturbance gains, |6;x|, at all frequencies
up to crossover. Closed-loop simulations with these controllers are shown in Fig. 2.4.
The simulations confirm that disturbance 2 is much easier rejected than disturbance

_‘q—.—-—il T ——
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Figure 2.5: Check of approximation SGy &~ ST'Gy for Example 3. The figure shows the
magnitude of [SGd];k/[SFGd];k.

1. In summary, there is an excellent correlation between the analysis based on |6 in
Fig. 2.3 and the simulations. This is not surprising when one considers Fig. 2.5 which
shows the accuracy of the approximation [S(s)Ga(s)lik = [STGy)ix which formed the
basis for the analysis in Fig. 2.3. The approximation is very good at low frequencies,
but as expected poorer at frequencies around the closed loop bandwidth. The most
significant deviation occurs for i = 1,k = 2 at frequencies around 0.1 rad/min, where
we see that the actual disturbance rejection is poorer than the approximation. This

explains why the effect of z, on 1 is somewhat poorer than might be expected from
Fig. 2.3.

2.5.3 Example 4: Pairing Corresponding to )\; =0

In order to demonstrate that acceptable performance may be achieved even with pair-
ings corresponding to A;; = 0, consider control of the top part of a distillation column.
It is desired to control the top product composition (y;) and the level in the condenser
(y2). The manipulated inputs are the distillate flowrate (u1) and the reflux flowrate
(u3). The vapor flowrate entering the top of the column is considered to be the only
disturbance (2;). The achievable bandwidth is limited by unmodeled measurement
delay in y; of one minute and valve dynamics in u; equivalent to a time delay of 0.1
minute. After scaling, the resulting transfer functions are

dy, 0 e | [ dw TTi0%
(dyz)_(‘% 2 ) ) T ) (239

This pairing corresponds to \y; = A2z = 0 at all frequencies. This pairing may be
preferred in some cases, for example, if the reflux is large such that constraints on the
distillate flowrate make level control with this input difficult. The chosen controllers
are

14105
10s '
To check NP, the controllers and the bounds (2.30) for the case with zero diagonal

ci(s) = —0.5 co(s) = =5 (2.39)

e




34 CHAPTER 2. SIMPLE FREQUENCY-DEPENDENT TOOLS...
102 T T T T ¥ E
01 3
10! B
(5] o
el -
2 100 J
= 3
< -
= 10 95 3
jg2[Loopl 21912 = . . . ]
10 10+ 10 102 2110 100 10! 102
Frequency [rad/min]
102 g T g
950 821
10! ; g12 ;
[ E 3
] - 3
2 o L
2= 10 3 E
& F :
= 1071 E -
10-2 :I‘{)o‘p 2 1 1 i 1 i i J
105 104 10-3 10-2 101 100 10! 102
Frequency [rad/min]
102 T T T T T E |
1€ 3
101 =
8 E
a =
= 100 E
3 :
2 101 ]
Loops 1 and 2 1 3
12 [combined, . 942954 ; , ]
10-5 10+ 103 10-2 10+ 100 10! 102

Frequency [rad/min]

Figure 2.6: Bounds on controller and loop gains for Example 4.

elements are shown in Fig. 2.6. The bounds in Fig. 2.6 indicate that interactions put no
serious limitations on achievable performance. In Fig. 2.7 we show responses to changes
in setf)oints r1 and r; and in disturbance z;. In the simulations a first order filter with
a time constant of one minute is used for both setpoints, and a one minute time delay
in the measurement of y; and a 0.1 minute time delay in manipulated variable u, are
approximated with first order Padé approximations. The observed control performance
is satisfactory, although there is an undesirable interaction from setpoint 7, to output
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Figure 2.7: Responses for Example 4 to unit step changes in ry at t = 0, rp at ¢t = 40
and in 2; at t = 80.

y1. This interaction cannot be predicted from Fig. 2.6, as Eq. (2.21) does not hold in
the crossover region where the interactions occur.

2.6 Conclusions on Decentralized Control

In the paper we have derived bounds on the designs of the individual loops which
when satisfied yield performance (NP) of the overall system (with all loops closed).
For setpoint tracking the bounds are given by the performance relative gains, |7;]
(Eq. 2.24), and for disturbance rejection by the closed-loop disturbance gains, |6;]
(Eq. 2.25). The bounds are tight (necessary and sufficient) at low frequencies where
S~ (GC)™'. 1t is desirable that the bounds are as small as possible because a large
bou'nd requires a large bandwidth in loop i. Since stability of the individual loops is
desired this may be impossible if gii(s) contains time delays, neglected or: uncertain
dynamics, or rhp-zeros. 2

. Importantly, these bounds depend on the model of the process only, that is, are
independent of the controller. This means that frequency-dependent plots of v;; and
i may be used to evaluate the achievable closed-loop performance (controllability)
under decentralized control. Plants with small values of these measures are preferred.
F.urthermore, the values of &;; may tell the engineer which disturbance & will be most
difficult to handle using feedback control. This may pinpoint the need for using feed-
forward control, or for modifying the process. For example, in process control adding
a feed buffer tank will dampen the effect of disturbances in flowrate, temperature or
composition. Plots of &;x may be used to tell if a tank is necessary and what holdup
(residence time) would be needed.

The bounds may also be used to obtain a first guess of the controller parameters.
However, as the derivation of the bounds depends on approximations which are valid
at low frequencies only, undesirable effects may occur at frequencies around the closed
loop bandwidth. Thus the behavior of the closed-loop system must be checked using
other methods, and the controllers possibly redesigned.

Acknowledgements. Support from NTNF is gratefully acknowledged.
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Nomenclature (see also Section 4.1)

Dy, D, - diagonal matrices
e =y — r - vector of offsets
gi; = [Gli; - ij’th element of G
gait = [Galix - 1k’th element of Gy
G - plant transfer matrix
G - matrix consisting of diagonal elements of G
G - G with row ¢ and column j removed
r - vector of reference outputs (setpoints)
u - vector of manipulated inputs o .
wy; - performance weight for disturbance rejectl.on in 109p 1.
wy; - performance weight for setpoint following in loop 1.
y - vector of outputs .
Y= % - Rijnsdorp or Balchen interaction measure for 2 x 2 system
z - vector of disturbances
reek letters
gk = gii[G1G4)ir = [GG~'G4)ux - Closed Loop Disturbance Gain (CLDG)
v(G) = &(G)/2(G) - condition number . N
7*(G) = minp, p, 7(D1GD;) - optimal (minimlz'ed) CO‘ndltIOIl number
¥i; = gi[G)ij = [GG7)i; - Performance Relative Gain
I' - Matrix of Performance Relative Gains (PRGA)
Ai(G@) - ’th eigenvalue of matrix G ‘
;i (G) = gi[G™)ji - i5°th element in RGA-matrix A
A - RGA matrix
w - frequency
wp - closed loop bandwidth

Norms .
p(A) = max; |M\;(A)| - spectral radius |

7(A) - maximum singular value or spectral norm (= ||A||iz - induced 2-norm)
a(A) =1/6(A™") - minimum singular value

lA]l1 = Zi;|ai;] - 1-norm '

|4]l2 = (Zij]ai;]%)%® - 2-norm (Euclidean norm) .

l|Alle = max;; |ai;| - e-norm (magnitude of largest element in A).

|Glleo = sup, &(G)-H*® norm of G(jw). )

|| Alli1 = max; £;|a;;| - induced 1-norm (”largest column sum”)

| A]lico = max; T;]a;;| - induced co-norm (”largest row sum”)

[[Allm = 2 max{|| Alls1, [| Allico}

Subscripts

1 - index for outputs or loops

j - index for manipulated inputs or setpoints
k - index for disturbances

AT | Mm . ou i R
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Appendix 1. Proof of Theorem 1. Consider Eq.(2.4) as a function of frequency, ie.,
let s = jw. Since lim,_,o A;;(s) is finite and different from zero, Eq.2.4 may be written
as a fraction of two polynomials in s where the numerator polynomial and denominator
polynomial are of the same order. The phase change in );;(jw) as w goes from 0 to oo
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must then be caused by RHP-poles or zeros in 9ii(s) , det(GY(s)) or det(G(s)) and the
theorem follows.

Appendix 2. Consider a non-singular plant transfer function matrix G, and assume
that neither G' nor the diagonal controller C' has a pole on the imaginary axis at the
frequency in question. We have [G™Y);; = (—1)"*9det(G?)/det(G) where G¥ denotes
the matrix G with row j and column i removed. Correspondingly, Sj; = (—1)*/det(I +
GC)"/det(I + GC)
Proposition: ([G='];; = 0 and (I% and G’' have zero gain in the same input direc-

Lion)) = S.'J' = [(I + GC]_I],'J' =0.

Proof: If I’ and G have zero gain in the same input direction, (GC)’* will have zero
gam ‘lsr') the same direction, as C is diagonal. Thus, det(I7+(GC)") = det(I+GC)* =

= 5;; = 0.

Appendix 3. Transfer function matrices for Example 2. The transfer function matri-
ces G(s) and Gy(s) can be calculated from the formulae
G(s)=C(sI — A)"'B + D and G4(s) = C(sI — A)~'By + Dy.

—5.161e — 3 0 0 0 0

0 —T7.366e — 2 0 0 0

A= 0 0 —1.82%¢ — 1 0 0
0 0 0 ~4.620e —1 9.895¢ — 1
0 0 0 —9.895¢ —1 —4.620e — 1

(2.40)

—6.296e — 2 6.236e — 2
5.48le —3 —1.719¢ —2
B=| 304le—3 —1.078¢—2 o (241)
—1.856e —2 —1.393¢ — 2
~1.229¢ —1 —5.608¢ — 3

o [ -T2 -5170 3.836 -1.633e—1 1.121
= (2.42)
—8.913 4.728 9.876  8.425  2.186
00
D=D, =
4 (0 0) (2.43)

—9.364e —3 —1.333e — 2
1.960e —2  8.018¢ —3
By = 3.266e —3 —2.116e — 2 (2.44)
—2.827e —2 5.319¢e -3
—6.784e —3 2.719¢ — 3




Chapter 3

Controllability Analysis for Unstable Processes

Morten Hovd Sigurd Skogestad*
Chemical Engineering, University of Trondheim-NTH
N-7034 Trondheim, Norway

Abstract

We study the controllability of unstable processes, with emphasis on selec-
tion of measurements and manipulated variables, and the pairing problem for
decentralized control. The well known pairing criteria based on the Niederlinski
Index and the steady state Relative Gain Array (RGA) have been generalized to
open loop unstable plants. Right Half Plane (RHP) zeros in individual transfer
function elements may make it practically impossible to stabilize the individual
loops, and in such cases these pairing criteria are not very helpful. We have
found RGA = I in the bandwidth region to indicate good pairings also when
paired elements have significant RHP zeros, but have found the Direct Nyquist
Array (DNA) to perform poorly as an indicator of good pairings. In some cases
it is preferable to avoid pairings giving narrow Gershgorin bands.

*Author to whom correspondence should be addressed. E-mail: SKOGE@KJEMI.UNIT.NQ,
phone: 47-7-594154, fax: 47-7-594080
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3.1 Introduction

In eI.lgmeel.'ing practice, a system is called controllable if it is possible to achieve the
.spec1ﬁed alms of the control, whatever these may be ([19], p. 171). Unfortunately
in sta.m.dard state-space control theory the term “controllability” has a rather limited’
fieﬁpltlon in terms of Kalman’s state controllability, which mainly has to do with real-
?zatl.on theory. State controllability will only be considered briefly in this paper, and
it will be clear from the context whenever the term controllability refers to a stat:e and
not to a plant.

For an unstable plant we must use feedback for stabilization. Thus, whereas the
presence of RHP-zeros put an upper bound on the the allowed bandwidth, the presence
of RHP-poles put a lower bound. It is also clear that it may be difficult to stabilize an
unstable plant if there are RHP-zeros or time delays - “the system goes unstable before
we are able to observe what is happening”. This qualitative statement is quantified by
the results on sensitivity relationships below.

In most of the paper we assume that a decentralized controller is used, as such
controllers are very common in the chemical process industry. A significant amount
of work has been done on the choice of pairings for decentralized control of stable
plants, e.g. [1], [4], [13], [18] and [20], to reference a few. The concept of Decentralized
Integral Controllability (DIC) [20], is not relevant for unstable plants, as the system
must necessarily become unstable when the controller gains are sufficiently reduced.
II.I the paper we show how stability based pairing criteria fail or must be interpreted
d}fferently when the number of RHP poles in G(s) and G(s) differ (G(s) consists of the
diagonal elements of G(s)). In contrast, we demonstrate the success of the frequency
dependent RGA for unstable plants.

Notation. G(.s)~ is the n X n transfer function of the process, with the i;’th element
denoted gi;(s). G(s) is the transfer function matrix consisting of the diagonal elements
of G(s). The controller is denoted C(s), with individual elements.¢;(s) for the case of
.def:entralized control. In the following, the Laplace variable s will be dropped where
1t 1s not needed for clarity. The sensitivity function is given by S = (I + GC)™! and
the complementary sensitivity function by H = I — S = GC(I+GC)~'. Similarly, for
decentralized control the sensitivity functions and complementary sensitivity functions
of the individual loops can be collected in diagonal matrices, giving S = (I + GC)~!
and H =1 -5 =GC(I + GC)™'. The following relationships are also used
(I+GC) = (I+ExH)I+GC) (3.1)
Ey = (G-G)G! (3.2)

3.2 Controllability Measures

In this section we review some proposed controllability measures, and generalize some
of th.e C(?ntrollabllity measures to unstable plants. In the paper we make use of the
multivariable Nyquist theorem, and we will therefore state it here




42 CH. 3. CONTROLLABILITY ANALYSIS FOR UNSTABLE PROCESSES

Theorem 6 Let the map of the Nyquist D contour under det(I + G(s)C(s)) encircle
the origin nc times in the clockwise direction. Let the number of open loop unstable
poles of G(s)C(s) be ny. Then the closed loop system is stable if and only if nc = —ny.

Proof: The theorem has been proved several times, see [12].

3.2.1 State Controllability and Observability

It is well known (e.g. [11]) that only states that are both observable and controllable
can be stabilized by feedback control. It is therefore necessary that the selection of
manipulated and measured variables result in all unstable states being controllable and
observable.

We believe that in most cases an engineer with a good understanding of the pro-
cess will intuitively choose measurements and manipulated variables such that this
requirement will be fulfilled. Nevertheless, it does make sense to check that all un-
stable states are controllable and observable. Preferably, the controllability and ob-
servability of the unstable states should not rely on one single manipulated variable or
measurement, as the system will then necessarily become unstable if this manipulated
variable/measurement fails.

3.2.2 Sensitivity Relationships and RHP-zeros

Assume a plant G(s) with a RHP-pole at s = p is stabilized by feedback control such
that S(s) and H(s) are stable. Then S(s) must have a RHP zero at s = p (follows
since H(s) = G(s)C(s)S(s) is stable while G(s) has a RHP pole at s = p). This shows
that the presence of an RHP-pole imposes restrictions on the closed-loop system in
addition to the requirement of stabilization. The approach of first stabilizing the plant
with some simple controller, and then proceed as if the RHP-pole never existed, as is
proposed by some authors (e.g., [15]), is therefore flawed.

To quantify the effect of the RHP-poles on the closed-loop system we shall consider
the sensitivity integral relationships of Freudenberg and Looze [2, 3] which extend
the Bode integral relationship to plants with RHP-poles and RHP-zeros. Let us first
consider Single Input Single Output (SISO) systems, and suppose that G(s)C(s) is
rational and has at least two more poles than zeros. Let G(s)C(s) have ny poles
(including multiplicities) in the open right half plane, at locations p;, 7 =1,2,...,ny.
Then, if the closed loop system is stable, the sensitivity function must satisfy:

No RHP zero:

o nu
/ In|S(jw)ldw = 73 Relp] (3.3)
0 1=1
One real RHP zero at s = z:
00 ny .
[T wIsG)W (z,w)do =73 1n | B te (3.4)
0 =1 pi—z
2z

W(z,w) = R
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Di dgnotes the complex conjugate of p;. Eq. (3.3) and Eq. (3.4) show that we need
!S(]u)l > 1 over some range of frequencies, which means that the effect of disturbances
is a‘ctually amplified at these frequencies. A RHP transmission zero of G(s) limits the
ach'le\./able bandwidth of the plant regardless of the type of controller used (e.g, [16))
This is c‘onﬁrmed by (3.4) where the shape of the weight W(z,w) (equals 2/z ,a,t lovx;
freq'u.enCJes and falls off with a -2 slope from w = z) implies that essentially all the
positive area for In |S(jw)| has to be at frequencies lower than the RHP-zero. and there
will have to be a peak |S(jw)| > 1 which will become increasingly large as th:e crossover
frequency approaches z.

Since with no RHP poles the integrals in (3.3) and (3.4) equal zero, wee see that the
presence of RHP poles increase the area for which |S| > 1. We also s,ee that the peak
of |S| will approach infinity if p — 2. In practice, this means that |p;| must be smaller
than [z in order to stabilize the plant. In contrast, in the absence of RHP zeros, RHP
poles do not impose any practical performance limitations (in terms of peaks i;l IS])
as th'e frequency range where |S| > 1 as required by Eq. (3.3) may be arbitrarily larg(;
and is only limited by high frequency roll-off considerations.

For Multiple Input Multiple Output (MIMO) systems the situation is not so clear,
although some useful insight exists. For a n x n system with no RHP-zeros we get

n o ny
)y /0 Ino[S(jw)ldw = 7' Relp] (3.5)
=1 i=1

The difference compared to SISO systems is that the relationship involves the sum

of the log magnitudes of the singular values, suggesting that it may be possible to

trade off s.ensitivity properties in different directions. For MIMO systems with a RHP
transmission zero at z, we have

/(; InG[S(jw)]W(z,w)dw > 0 (3.6)
Note .that this result depends on the presence of RHP-zeros only, an(i does not show the
combined effects of RHP poles and zeros similar to (3.4) for SISO systems. The reason

resylts for MIMO systems are so much harder to find is the issue of plant directionality.
as illustrated by the following simple examples ’

Gi(s) = f(s)[l 0 }

s—z 0
0 1

s—p

Gz(s)

I
=
N

[ an—— ]

where f(s) is an arbitrary stable minimum phase rational transfer function with at least
three more poles than zeros. G and G, both have one RHP transmission zero and one
RHP pole at the same frequencies. However, in G; the RHP pole and transmission zero
lie in the same direction and may cause a serious performance limitation if p approaches
z (recall (3.4)), whereas in G, the RHP pole and transmission zero lie in directions at
right angles to each other and only the RHP zero itself causes a limitation.
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Jacobsen and Skogestad [7] have studied the combined effect of RHP zeros (time
delays) and RHP poles for distillation columns.

Implications of RHP zeros on the selection of controlled and manipulated variables.
One should attempt to choose inputs and outputs such that RHP transmission zeros
are avoided. If an RHP transmission zero cannot be avoided, it should preferably be
at as high a frequency as possible, and lie in a plant direction such that it interferes as
little as possible with the control of any RHP poles.

Similar considerations apply for decentralized control when a paired element g;; has
a RHP zero that is not a transmission zero of the plant. In many cases such RHP
zeros will disappear when the other loops are closed, and there is then no fundamental
bandwidth restriction in channel ;. However, we know that the zeros of 1 + giic; will
approach the zeros of g;; for high gain feedback. A choice will therefore have to be made
between individual loop stability and system performance. This dilemma can only be
avoided if the selection of controlled and manipulated variables makes it possible to
choose a pairing for which none of the paired elements have RHP zeros within the
desired bandwidth.

3.2.3 Decentralized Fixed Modes

Wang and Davison [22] showed that it may be impossible to move some modes by
decentralized feedback, even if all states are both controllable from the inputs and ob-
servable from the outputs. Wang and Davison termed such modes “decentralized fixed
modes”. Lunze [11] gives a good explanation of a necessary and sufficient condition for
the existence of decentralized fixed modes. Consider a system described by

i=Az+ Bu; y=Cz+ Du

The simplest way to prove that an eigenvalue of A does not correspond to a decen-
tralized fixed mode is to try with an arbitrary constant feedback matrix /X' with the
structure of the pairing in consideration. A mode which is fixed for any constant decen-
tralized feedback is also fixed for dynamic decentralized feedback [22]. When selecting
input and outputs for decentralized control, one must clearly ensure that there exists
at least one pairing for which all decentralized fixed modes are stable. This will usually
not be difficult, as it suffices to ensure that the unstable state is both controllable and
observable in one individual channel [11].

Example 1: Consider the plant

~10 0 0 11
e = 0 2 0 |z+|0 1]u
R 1
(110
- . 3.7
y 001 (3.7)
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which yields

1 2!3+4!
G(s) = [ S0 oD } (3.8)

0

s+8

We first try the pairing y; — uy, y, — u, with a constant feedback matrix K =

diag{ki, k,} and computing the closed loop autotransition matrix
104k Kk ka
A+ BKC = 0 2k (3.9)
0 0 —8+4+k

The eigenvalue at 2 is unaffected by feedback, and it is therefore impossible to stabilize

.th(? system with this pairing. This is not surprising, by simple inspection of Eq. (3.8)
it is clear that decentralized feedback with the pairing y; — uy, Y, — uz cannot give
feedbz.lck ar9gnd the unstable state corresponding to the pole at s = 2. With the
opposite pairing, y; — uy, y; — u,, we have no decentralized fixed modes, and the
system can be stabilized by decentralized feedback.

' ’rhere are cases where the existence of decentralized fixed modes and the choice of
pairing for decentralized control is not as obvious as for Example 1.

Example 2: Consider the plant

[-8 0 00 ~10 3
s 0 200 12l
0 0 20 0 6
0 0 04 0 —4
y:F2103 oJm - 310)
13 12 0 —4 " '

corresponding to the transfer function matrix

(3.11)

—1854+36 495242385584
2)(s+8)  (s+2)(s+8)(s—4)
It can be shown 'that with the pairing indicated by Eq. (3.11) (y1 — u1, y2 — us), the
mode correspondl.ng to the pole at s = 2 is fixed, whereas for the opposite pairing the
mode corresponding to the pole at s = 4 is fixed. This process is thus impossible to

stabilize by decentralized feedback, even though all states are both controllable and
observable.

—10s4+40 4452 4300s—56
G(s) = | L+ <s+2)<s+8)(s—2)}

3.2.4 The Niederlinski Index
The Niederlinski Index [18] is defined as

_ detG(0)
Mr = detG(0) (3.12)
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For stable plants it has been shown that if all the individual loops are stable and have
integral action, a necessary condition for the stability of the overall system is that
N; > 0 [4]. This result also holds for unstable plants if we assume that the number
of RHP poles in G and G are the same, but this assumption generally does not hold.
However, we present a generalized Niederlinski index criterion for unstable plants:

Theorem 7 Assume:
1. The transfer function GC is strictly proper.
9. The controller C is diagonal, has integral action in all channels and is otherwise

stable.

3. The number of open loop unstable poles in G is ny.

4. The map of the Nyquist D contour under det(I+C~?C) = detS™! encircles the origin
fic times in the clockwise direction.

Then, a necessary condition for the overall system to be stable is

sign{ Ny} = sign{(—1)""v""c} (3.13)

Remark: The individual loops (i.e. 5’) may or may not be stable. If we require the
individual loops to be stable, then fic = —#y, where iy is the number of open loop
unstable poles in G.

Proof: Let the map of the Nyquist D contour under det(I + Eyfl) encircle the
origin ng times in the clockwise direction. Thus, from Eq. (3.1) we have n¢ = fic + ng
and we get from Thm. 1 that the overall system is stable if and only il ng = —ny —fic.
Ey H is strictly proper, as GC is strictly proper. I~{(0) = I because of the requirement
for integral action in all channels, regardless of whether H(s) is stable. We therefore
have (see Corollary 1.1 in [5])

lim (I + Ey(s)H(s)) =1 (3.14)
lim(7 + En(s)H(s)) = lim G(s)G7(s) (3.15)

Then the map of det(7 + EyH) starts at N; (for s = 0) and ends at 1 (for s = o).
For stability this map must have ng = —ny — fic encirclements of the origin, and we
must require N; to be positive if ng is even and Ny to be negative if ng is odd.

3.2.5 The Relative Gain Array

The Relative Gain Array (RGA) was first introduced by Bristol [1]. It is defined at
any frequency as

A=Gx G (3.16)

where the sign X denotes element by element multiplication (Hadamard product). The
ij’th element of A is denoted® A;;.

IThe ij’th relative gain A;; should not be confused with A; which denotes the i’th eigenvalue.

D e = = o ) 1= L (]
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To simplify notation, we will in the following consider loop 1, without loss of gen-
erlalh'ty (thg generalization to loop k is trivial). Introduce G = diag{g11, G*'}, where
G'! is obtained from G by removing row 1 and column 1. Let G’ have n}, RHP poles
Note that nj; may be different for different loops. 0 |

Theorem 8 Under assumptions 1-3 of Thm. 7, a necessary condition for simultane-
ously obtaining

a) Stability of the closed loop system

b) Stability of loop 1 by itself

¢) Stability of the system with loop 1 removed
is that

sign{A11(0)} = sign{(—1) vt} (3.17)

Proof:l_lFollows by substituting G’ for G in the proof of Thm. 7, and noting that
detGG'~! = 1/X;;. This theorem generalizes the widely used RGA pairing criterion
([1], [4]) to unstable plants.

. For 2.>< 2 plants Ny = 1/X1(0) but for larger systems these measures contain
different information.

3.2.6 The Direct Nyquist Array

The Direct Nyquist Array (DNA) [19] is simply an array of polar plots of the elements
9ij(s) of the plant transfer function matrix G(s). The usefulness of the DNA technique
stemns from. Gershgorins theorem, which states that the eigenvalues )\; of a matrix G(s)
must !1e within the union of circles |Ai = gii(s)| < ri(s) where ri(s) = e iz 19ii(s)]-
The circles ri(s) are superimposed on the plots of the diagonal elements of G]. As the
frequency .cha.nges, the circles will move (and their radius will change), thus forming n
bands of c1rf:ies, known as Gershgorin bands. Jensen et al. 8] suggést to use the DNA
also to obltam pairings for decentralized control, preferring pairings giving Gershgorin
bands which are narrow compared to the magnitude of the diagonal elements.

The following derivation shows why a plot of the Gershgorin bands of G(S) is useful
fo.r c‘losed loop stability: Consider first the eigenvalues of (I + GC), which are located
within the Gershgorin bands of (I4+GC). Since det(I+GC) = [I; Mi(I+GC) it follows
from Thm. 1 that if the number of encirclements of the Gershgorin bands of (I + GC)
equals the number of unstable poles, ny, and none of these bands include the origin,
the' closed loop system is stable. For decentralized control, the centers of the circles
whlch~ make up the Gershgorin bands of (I + GC) are given by (I + GC) When G
and G have different numbers of RIP poles and the individual loops are stable, the
numbers of encirclement of the origin of the Nyquist D contours under det(I + GC)
and (_iet(I + GC) must differ. Since the centers of the Gershgorin bands of I + GC
are given by (I + GC), some of the Gershgorin bands of (I + GC) must include the
origin for the overall system to be stable. Furthermore, it will then be undesirable that
‘the. Gershgorin bands of G are narrow, as this will make the stability margins for the
individual loops and the overall system small.
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To derive the relationship between the Gershgorin bands of (I + GC) and G nor-
malize the elements in G with the diagonal elements, and get

] @2 @
922 933
G=|@ 1 & diag{gs:} (3.18)
This should be compared to
(I+GC)=(I+EgH)I+GO) = (3.19)
b gy hagg
ha 1 3 diag{1 + giici}

We see that the width of the Gershgorin bands (relative to the magnitude of the
diagonal elements) will be the same for G and (I + GC) at frequencies below the
bandwidth (where h; = 1). At frequencies beyond the bandwidth (where hi < 1)
(I 4 GC) will have narrower Gershgorin bands than G. Only in the bandwidth region,
where peaks in k; may occur, can the Gershgorin bands of (I + GC) be wider than the
Gershgorin bands of G. Thus, the widths of the Gershgorin bands of G (relative to
the magnitude of the diagonal elements) can be used as estimates of the widths of the
Gershgorin bands of (I + GC). In this paper, we use the diagonal similarity transform
of Mees [14] in order to reduce the conservativeness associated with the location of the
eigenvalues of G. The diagonal elements of this transformation matrix are the elements
of the left eigenvalue corresponding to the Perron root of GG,

3.2.7 The SSV Interaction Measure

The Structured Singular Value Interaction Measure (SSV-IM)([5] is the structured sin-
gular value (pt) of E with respect to a stable perturbation matrix with the same struc-
ture as . The map of det(I + Ex ) cannot encircle the origin if p(EgH) <1 Vuw,
which is satisfied if 3(H)u(En) <1 Vw. The last relationship follows since the least
conservative way to “split up” p(ExH) is to use the structured singular value. Since
these relationships are useful only when we require that det(] + EHﬂ) should not en-
circle the origin (i.e. —ny — fic = 0), we see that they generally apply only when the
individual loops are stable and G and G have the same number of RHP poles.

3.2.8 The Performance RGA

The Performance Relative Gain Array (PRGA) has recently been introduced [21, 6].
It is derived from simple manipulations with the transfer function from setpoints r to
offset e = y —r = —Sr: At low frequencies (w < wp) where H ~ I, we have

(I+EgH)~T14+Eg=GG* =T"", w<uwp (3.20)
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and we derive from Eq. (3.1) that

e~ ~STr, w < wg (3.21)
where the PRGA matrix is
| I'=GG™" (3.22)
Despite their differentn use this definition points to the similarity between the PRGA
and the Inverse Nyquist Array. The PRGA is dependent on scaling of the outputs, and
must be recomputed for new pairings. Note, however, that the diagonal elements (;f the
PRGA matrix are equal to the diagonal elements of the RGA matrix, and are hence
1ndeper‘1de.nt of scaling. If G is scaled such that the maximum acceptable magnitude
of the individual offsets e; is unity, the PRGA matrix gives approximate bandwidth
reqmrer.nel.lts and loop gain requirements at frequencies below the bandwidth, as the
%oop gain in loop 4 should be larger in magnitude than the magnitude of any ;elernent
in row ¢ of the PRGA matrix, and small PRGA elements are therefore preferred. The
use and the limitations of the PRGA is discussed more thoroughly in [6].

3.2.9 High Frequency RGA and Stability

The encirclements of the origin of det(7+G'C) caused by the RHP poles of G, will occur
in the frequency region corresponding to the RHP poles of G. For practical systems
the bandwidth region will lie at frequencies significantly higher than the RHP poles
of Q, and we therefore do not want any additional encirclements in the bandwidth
region. The poles of G lie at the same locations as the poles of GG, and we therefore
want det(/ + G'C) also to avoid encirclements of the origin in the bandwidth region.
We' thus want det(/ + GC) and det(I + GC) to behave similarly in the bandwidth
region. If G is triangular then det(] + EgH) = 1 and det(I + GC) = det(I + GC)
agd in this case we also have that the RGA matrix A = I and the PRGA matrix I is’
trlangu%ar with diagonal elements equal to 1. We therefore prefer pairings which give
A =~ I in the bandwidth region. This agrees with the results of Nett and coworkers
([17]). In summary, we want the PRGA elements to be small at low frequencies, and in

t{le b:ndlwidth region we desire the PRGA close to triangular with diagonal elements
close to 1.

3.3 Examples

3.3.1 Example 3
Consider the system G(s) = C(sI — A)"'B + D, with

0 0 5 —8
A= |0 -1 0]|; B= |4 10
0 0 -2 2 -8

(3.23)
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Figure 3.1: DNA with Gershgorin bands for Example 3.

The transfer function matrix G has one unstable pole at frequency 1 [rad/min], and we
must therefore expect the closed loop bandwidth to be at least 1 [rad/min]. Note that
G has two unstable poles for both pairings, because the RHP pole appears in all four
elements of G. Neither G(s) nor any of its elements have RHP zeros. G(0) is given by

MR

The pairing (y; — u1, y2 — u2) indicated by Eq. (3.24) we term “pairing 1”, and the
opposite pairing we term “pairing 2”. The Niederlinski Index is —8 for pairing 1 and
0.89 for pairing 2. Thm. 7 tells us that a negative Niederlinski Index is necessary if
we require both loops in addition to the overall system being stable and we therefore
have to choose pairing 1. If we use the steady state RGA in accordance with Thm. 8,
we would arrive at the same conclusion.

(3.24)
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Figure 3.2: PRCA for Example 3. Solid lines denote pairing 1, and dashed lines and
labels in parenthesis denote pairing 2

The DNA of pairing 1 and pairing 2 are shown in Fig. 3.1, with Gershgorin bands
superimposed on the 1,1 and 2,2 elements for pairing 1, and on elements 1,2 and
2,1 for pairing 2. We see that all the Gershgorin bands include the origin. However,
pairing 1 gives much wider Gershgorin bands relative to the magnitude of the diagonal
elements than pairing 2. We explained above that when G and G have different number
of RHP poles and stability of the individual loops is desired, narrow Gershgorin bands
are undesirable. The DNA thus gives a weak indication that pairing 1 is preferable to
pairing 2.

The PRGA for pairing 1 and pairing 2 are shown in Fig. 3.22, With a closed
loop bandwidth in the region 1 — 30 [rad/min] (approximately) the PRGA indicate
that pairing 1 is preferable (The PRGA is close to triangular and the RGA~ I). For
pairing 1, using the controllers a(s) = =2 (s) = —%%)ﬂ we find that both
loops and the overall system is stable, and the predictions using the Niederlinski Index
and the PRGA are shown to hold. This example also demonstrates that for unstable

systems there is no reason to avoid pairings corresponding to negative steady state
RGA values.

3.3.2 Example 4: Polypropylene Reactor

This example illustrates the problems encountered when we are not able to stabilize the
individual loops. We consider the polypropylene reactor control example studied by
Lie [9, 10]. A schematic outline of the process is shown in Fig. 3.3. The monomer feed
enters into a stirred tank reactor containing a slurry of monomer, catalyst, cocatalyst,
polymer and some impurities. The reaction is exothermic, causing some of the slurry
components to vaporize. The vapor leaving the reactor is transferred to an accumulator
vessel. Heat is removed from the system by condensing parts of the vapor leaving the
reactor, before it enters the accumulator. Heat removal is adjusted by adjusting a split
range valve which determines what fraction of the vapor leaving the reactor is passed

*We assume the outputs in Eq. (3.23) to be properly scaled. For the PRGA plot for pairing 2,
G(s) has been rearranged to bring the paired elements on the diagonal.
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Compressor

e
=

4

Condenser

Reactor

Figure 3.3: Schematic outline of the process in Example 4, with pairing 1 selected for
control.

through the condenser. The liquid in the accumulator is returned to the reactor, and
the vapor from the accumulator is compressed and bubbled through the reactor slurry.
This results in a 3 x 3 plant model G(s) with seven states as given in [9, 10]. The
inputs and outputs are

Y1 - reactor slurry level (0 — 1)

Yo - Teactor pressure (gauge pressure in atmospheres)
Y3 - accumulator liquid level (0 — 1).

uy - monomer feed flowrate (kg/h).

uy - split range valve position (0 — 1).

uz - accumulator to reactor liquid flowrate (kg/h).

We scale the outputs such that a magnitude of 1 for the scaled outputs correspond to
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deviations: y; = 0.05, y, = 1.0atm and ys = 0.10. The plant G has a pair of RHP
poles at s = 0.685 + 0.688;, one pure integrator (the accumulator level) and no RHP
transmission zeros. The reactor holdup becomes unstable because of the overhead
condensation loop. All elements of G except g11 have RHP zeros at frequencies close
to the RHP poles (e.g. g1, has a RHP zero at 2.16, go; have a pair of complex RHP
zeros at 0.10 £ 0.907).

As we are considering the use of low-order controllers (typically PI or PID con-
trollers), we cannot expect loops with a RHP zero at frequencies around or lower than
the frequency of the RHP pole to be stable. This makes it difficult to apply the Nieder-
linski Index (Thm. 7) or the steady state RGA (Thm. 8) for this example. Although
six different pairings is possible for a 3 x 3 system, we will here only consider the two
pairings that pair y; with u;. There is a strong incentive for pairing y; and u,; as g1y
has no RHP zero we are able to stabilize the system with only this loop closed. Readers
are referred to [9] for a more thorough discussion of all possible pairings. Thus, for this
example, the pairing y; —uy, y3 —us, Yy3— ug is termed pairing 1, and the pairing y; — u;,
Y2 — Us, Y3 — Uz is termed pairing 2. Pairing 1 is shown in Fig. 3.3. The RGA plot is
not shown here, but the diagonal elements equal the diagonal elements of the PRGA
shown in Fig. 3.4. The figure clearly shows that pairing 1 is preferable, as the PRGA
values for the paired elements are closer to one in the bandwidth region for pairing 1
than for pairing 2¢. The PRGA also shows that for both pairings, the interaction leads
to increased loop gain requirements at low frequencies for loops 2 and 3.

For this problem, we can only expect loop 1 to be stable by itself, the map of
the Nyquist D contour under 1 + gr1rc1 will therefore encircle the origin twice in the
anticlockwise direction. For pairing 1, g5, and ga3 both have two RHP poles and two
RHP zeros within the desired bandwidth. The two RHP zeros will most likely result in
two unstable poles of 1 + gy5c; and 1 + gsacs. 1+ gaz¢s and 1 + gases must therefore be
expected to add no net encirclements of the origin, and narrow Gershgorin bands would
therefore be a sufficient criterion for the viability of pairing 1. For pairing 2, g23 and g3,
both have two RHP poles and one RHP zero within the desired bandwidth. 1+ 923¢2
and 1 + gsyc3 must therefore be expected to each add one anticlockwise encirclement
of the origin. Wide Gershgorin bands are thus necessary for the viability of pairing
2. From Fig. 3.5 we see that the Gershgorin bands are very wide for both pairings®.
Thus, the DNA plot does not tell that pairing 1 is a good pairing, nor does it give any
reason for discarding pairing 2.

Based on the plots of the PRGA (or the frequency dependent RGA), we choose
pairing 1. This conclusion is consistent with the simulations of Lie [10] and with
industrial practice.

3For this example the steady state RGA is positive and close to I for another pairing, y; — us,
Y2 —u3, Y3 —u;. This pairing defies common sense. For example, it means controlling the accumulator
level with the monomer feed flowrate to the reactor. However, the desired bandwidth is about 10rad/h,
and 1n this frequency range the RGA indicates that pairing 1 is preferable.

“For pairing 2 G(s) has been rearranged to bring the paired elements for pairing 2 on the diagonal.

5For the Gershgorin band for the 1,1 element the similarity transform for pairing ! is used.
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Figure 3.4: PRGA for Example 4. Solid lines denote pairing 1, and dashed lines and
labels in parenthesis denote pairing 2.

Nomenclature

A - Matrix in the state space description of a transfer function matrix.
B - Matrix in the state space description of a transfer function matrix.
C - Controller transfer function matrix; matrix in the state space description of a

transfer function matrix.
D - - Matrix in the state space description of a transfer function matrix.

3.3. EXAMPLES 55

1,2 element 1,3 element

Al
L
)
=
il b bt

&

'
S o e L

0.6 2,1 element

Imaginary

02010 01 02 03 04 05 0.6

o 3.1 element gx104 3,2 element gx104 3.3 element
e 2 L O 5
2000 4 i g 4 ammees .
ol * v s 1
-3000 " e, \ 3 7 N
-4000 ! ™ \ £ %
l" ’ am |‘ [} 2 T \.
- N
-5000 o} (@) ' 1 £ N .I
-6000( : y teeert ; of vt iy b
. al R [ 20 J
=T000 '\ M “; .1 \“ ~ -“':" J
8000 b I S 2 . rd
-9000 N -’ 3] e -
ao000lo ] P I e
000 2000 020003000 & 4 2 0 3 4 R e
x104 %104
L ]
Real

Figure 3.5: DNA plot for Example 4, with Gershgorin bands superimposed on the
paired elements for pairings 1 and 2.

¢ - 11'th element of controller ¢ (for diagonal C).
Ey-(G-G)G.

G - Plant transfer function matrix.

G' - G with row 1 and column 1 deleted.

G - Matrix consisting of the diagonal elements of G.

G' - diag{g1, G1}.

gi; - 15°th element of G.

H - complementary sensitivity function GC(I + GC)~1.

go-) nllatrix of complementary sensitivity functions for the individual loops GC I+
h; - complementary sensitivity function for loop ¢, 7i’th element of .
K - diagonal, constant feedback controller matrix.
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N - Niederlinski Index, detG(0)/detG(0).
n - plant dimension (n x n). _
n¢c - number of encirclements of the origin by the map of the Nyquist D contour under

det(I + GC). i

ng - number of encirclements of the origin by the map of the Nyquist D contour under
det(I + Ex H).

fic - number of encirclements of the origin by the map of the Nyquist D contour under
det(I + GC).

ny - number of open loop unstable poles of GC.

7y - number of open loop unstable poles of GC.

ny; - number of open loop unstable poles of G’C.

fiy - number of open loop unstable poles of GC.

pi - Location of pole in the open right half plane.

S - sensitivity function (I + GC)™.

S - matrix of sensitivity functions for the individual loops (I +GC)™.

s - Laplace variable.

s; - complementary sensitivity function for loop i, i7’th element of 3.

u - vector of manipulated variables.

W - weight in the integral in Eq. (3.4) and Eq. (3.6).

z - vector of states.

y - vector of outputs.

z - Location of zero in the open right half plane.

Greek symbols:

I' - Performance Relative Gain Array matrix GG-1. A - Relative Gain Array matrix
G x [GTYT.

Aij - 2J'th element of A.

Ai - 7'th eigenvalue of a matrix.

g - structured singular value.

p - spectral radius (magnitude of largest eigenvalue) of a matrix.
o - singular value of a matrix.

o - largest singular value of a matrix.

w - frequency.

wp - bandwidth frequency.
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Chapter 4

A

—

Procedure for Regulatory Control Structure
Selection with Application to the Fluid
Catalytic Cracking Process

M. Hovd and S. Skogestad*

Chemical Engineering
University of Trondheim, NTH
N-7034 Trondheim, Norway

Abstract

The paper outlines a methodology for control structure selection for the reg-
ulatory control system. Control structure selection consists of the selection and
pairing of manipulated and measured variables, and involves use of tools such
as the existence of right half plane (RHP) transmission zeros, the relative gain
array (RGA), the performance relative gain array (PRGA), and the closed loop
disturbance gain (CLDG). The objectives of the regulatory control level and its
interaction with the higher levels in the control hierarchy is discussed in detail.
The regulatory control system for the Fluid Catalytic Cracking process is used
as an example. Several authors have found the Kurihara control structure to be
preferable to the conventional control structure. The reason for this is shown to
be that RHP transmission zeros limit the achievable bandwidth for the conven-
tional control structure. However, it is shown that two other control structures
have better controllability characteristics than both the conventional and the
Kurihara control structures. The sensitivity of the measurement selection and
variable pairing with respect to changes in the operating point and parametric
uncertainty is also studied.
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Figure 4.1: Schematic overview of an FCC plant.

4.1 Introduction

In the chemical industries, the lowest level in the control system is virtually always
a regulatory control level, which keeps a set of measurements at setpoint which are
determined by higher levels in the control hierarchy. The higher levels in the control
hierarchy depend on a regulatory control system that performs well. The performance
of the regulatory control system can be strongly affected by the control structure used,
and control structure selection is therefore an important issue in the design of the reg-
ulatory control system. In a recent book Rijnsdorp [21] spends a full chapter discussing
control structure selection. However, his approach is rather qualitative. In this paper
we apply a more quantitative method for control structure selection to the control of
of the reactor-regenerator complex in a Fluidized Catalytic Cracking (FCC) unit.
The FCC process is an important process in refineries for upgrading heavy hydro-
carbons to more valuable lighter products. Both decentralized controllers and more
complex model predictive controllers are used to control the FCC process. However,
when model predictive control (MPC) is used, it is usually applied on top of a highly de-
centralized regulatory control level and sends setpoint changes to the individual loops.
Thus, it is important also in this case that the regulatory control level is well designed.
A schematic overview of the FCC process is shown in Fig. 4.1. Feed oil is contacted
with hot catalyst at the bottom of the riser, causing the feed to vaporize. The cracking
reactions occur while the oil vapor and catalyst flow up the riser. As a byproduct
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of the cracking reactions coke is formed and is deposited on the catalyst, thereby
reducing catalyst activity. The catalyst and products are separated in the stripper,
which for historical reasons is still often called the reactor !. Steam is supplied to the
stripper in order to remove volatile hydrocarbons from the catalyst. The catalyst is
then returned to the regenerator where the coke is burnt off in contact with air. The
combustion of coke in the regenerator provides the heat needed for feed vaporization
and the endothermic reaction in the riser.

The issue of regulatory control structure selection has been discussed by several
authors, e.g. Kurihara [12], Lee and Weekman [15] and Lee and Groves [14]. In this
paper we provide a more quantitative analysis. Specifically, the existence of right half
plane (RHP) zeroes and the frequency dependent relative gain array (RGA), perfor-
mance relative gain array (PRGA), and closed loop disturbance gain (CLDG) are used
for control structure selection, and we study the effect of structural and parametric
uncertainty in the models and uncertainty in the manipulated variables on the choice

of control structure for decentralized control. The use of frequency dependent RGA,
PRGA and CLDG are explained in [25, 10].

4.2 The Regulatory Control Problem

The overall control objective is to maintain safe operation while keeping the operating
conditions close to the economically optimal conditions. This objective is commonly
achieved using a hierarchical control system, with different tasks assigned to each level
in the hierarchy. In this paper we consider what is typically the lowest level in this
control hierarchy, the regulatory control level. The objective of this level is generally
to facilitate smooth operation and not to optimize objectives related to profit, which is
done at higher levels. Usually, this is a decentralized control system which keeps a set
of measurements at given setpoints. This is a cascaded control system where the value
of these setpoints are determined by the operator or by higher levels in the control
hierarchy. Note that also the regulatory control system itself may include cascaded
loops. For example, one often cascades the valve position to a flow measurement
such that flow becomes the manipulated input rather than the valve position. In the
following, the terms “regulatory control system” and “lower-level control system” will
be used as synonyms.

At the intermediate level (supervisory control level) there may be a model based
system that uses a multivariable process model to calculate how the plant should
be operated to optimize some objective. An important feature of the supervisory
control level may be to take into account constraints in the controlled and manipulated
variables, by coordinating the use of the manipulated variables, that is, use additional
degrees of freedom to avoid reaching constraints for the manipulated variables used
by the lower-level control system. The top level in the control hierarchy is a plant
wide optimization. This optimization is usually steady state and is performed offline

.1With less active catalysts, the residence time in the reactor was needed to perform the cracking.
Wlth modern catalysts, the catalyst and products must be separated as quickly as possible at the
riser outlet to prevent overcracking.
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Figure 4.2: Schematic representation of a hierarchical control system.

at regular intervals. A schematic representation of such a control hierarchy is depicted
in Fig. 4.2. Note that we have not in this figure included functions related to logic
control (startup/shutdown) and safety systems. These are of course important, but
need not be considered during normal operation.

Although the implementation may be done in many different ways, and even on
the same control system, it is still important to distinguish between the various control
levels due to their different objectives. The largest amount of money is probably made
at the higher levels, but the lower level must function properly to realize the benefits
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of the higher levels. Although seemingly obvious, this is often not understood.
The regulatory control system should fulfill the following objectives:

O1. It should provide a sufficient quality of control to enable a trained operator to keep
the plant running safely without use of the higher levels in the control system.
This sharply reduces the need for providing costly backup systems for the higher
levels of the control hierarchy in case of failures.

O2. It should be simple to understand and tune. Thus, in most cases simple decen-
tralized control loops are used at this level. There are of course cases for which
interactions are so strong that multivariable control may be needed at this level.
However, very simple schemes are then preferred to compensate for interactions,
such as ratios, sums, etc.

03. It should make it possible to use simple (at least in terms of dynamics) models at
the higher level. We want to use relatively simple models because of reliability and
the prohibitive costs involved in obtaining and maintaining a detailed dynamic
model of the plant, and because complex dynamics will add to the computational
burden on the higher level control system. This may be achieved by having a
regulatory control level at the bottom of the control hierarchy. This may also
reduce the effect of model uncertainty and provide for local linearization, for
example, by using a cascade on a valve to avoid the nonlinear valve characteristics.

O4. It should make it possible to use longer sampling intervals at the higher levels
of the control hierarchy in order to reduce the need for computing power at this
level. Preferably, the time scales of the lower-level and higher-level control system
should be separated such that response of the lower-level control system, as seen
from the higher level, is almost immediate.

*

As a consequence of the objectives listed above, the following more'speciﬁc objectives
for the regulatory control system arise:

O5. It should provide for fast control when this is needed for some variables.

06. It must be able to follow the setpoints set by the higher levels in the control
hierarchy. The setpoints of the lower loops are the manipulated variables for the
higher levels in the control hierarchy, and we want to be able to change these
variable as directly and with as little interaction as possible. Otherwise, the
higher level will need a model of the dynamics and interactions of (he outputs
from the lower level control system.

O7. It should provide for local disturbance rejection. This follows from 06, since
we want to be able to keep the controlled variables in the regulatory control
system at their setpoints. As disturbances we must also include the “unused”
manipulated variables (additional degrees of freedom) which are adjusted directly
by the higher levels of the control system.
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O8. It should be designed such that the remaining control problem does not contain
unnecessary performance limitations such as RHP-zeros, large RGA elements,
or strong sensitivity to disturbances. The “remaining control problem” is the
control problem as seen from the higher level which has as manipulated inputs
the “unused” manipulated inputs and the setpoints to the lower-level control
system. By “unnecessary” is meant limitations that do not exist in the original
problem formulation without the lower-level control system in place.

In this paper we will primarily consider objectives 5, 6 and 7. These objectives are
related to the “controllability” of the lower level control system. Objective 2 is auto-
matically fulfilled since we will only consider a fully decentralized lower level control

system.
Control Structure Selection

To fulfill the objectives for the regulatory control system listed above, one must perform
a control structure selection. This involves making the following structural decisions:

D1. Outputs y: selection of controlled variables (control objectives for the regulatory
control system).

These variables include primary and secondary controlled variables. The primary
outputs are often easy to select as they are variables which are important to con-
trol in themselves, also in terms of the overall control ob jective. Typically, these
include variables for which reasonably fast control is needed (see Objective 5
above), such as liquid levels, certain temperatures and pressures. The secondary
outputs are usually easily measured variables which in them selves are not impor-
tant to control, but which are selected to meet objectives 1-3 above. Typically,
the secondary variables include temperatures and pressures at selected locations
in the process. The problem of selecting the output variables for the regulatory
control system is therefore closely related to the issue of measurement selection.

D2. Inputs u: selection of manipulated variables for the regulatory control system.

These selected inputs will be a subset of all possible manipulated inputs, and the
remaining “unused” variables will be manipulated inputs available for the higher
levels.

D3. Pairing of the chosen controlled and manipulated variables for decentralized con-
trol.

The choice of pairing will influence the effect of interactions and disturbances,
as well as the systems ability to tolerate failure of one or more loops in the
decentralized control system.

For decision D1, selection of outputs, the FCC example presented in this paper provides
a very good example. Here a relevant issue is whether to control the regenerator
temperature, T;,, or the riser outlet temperature, T}, as secondary controlled outputs
for the regulatory control system (see Fig. 4.1).
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Distillation column control provides an excellent example of the importance of se-
lecting appropriate inputs (decision D2) to use for the lower-level control system, which
in this case is the level control system. It is well known that closing the level loops
with the “LV-configuration” (corresponding to having reflux L and boilup V as the re-
maining unused inputs for composition control) may make the remaining composition
control problem very difficult because of serious interactions (resulting in large RGA-
values, see e.g. [26]). Note that the lower level control system for the LV-configuration
meets essentially all of the objectives mentioned above, except objective 8.

4.3 Measures for Evaluating Controllability

The measures used in this paper for evaluation controllability are outlined in this
section. Additional measures also exist, see e.g. [31, 29).

Right Half Plane Transmission Zeros. A right half plane (RHP) transmission
zero of G(s) limits the achievable bandwidth of the plant. This holds regardless of the
type of controller used (e.g., [18]). The reason is that with a RHP transmission zero
the controller can not invert the plant and perfect control is impossible. Thus plants
with RHP transmission zeros within the desired bandwidth should be avoided.

In the multivariable case a RHP transmission zero of G(s) does not imply that the
matrix elements, g;(s), have RHP zeros. Conversely, the presence of RHP zeros in
the elements does not necessarily imply a RHP transmission zero of G(s). If we use a
multivariable controller then RHP zeros in the elements do not imply any particular
problem. However, if decentralized controllers are used, then we generally avoid pairing
on elements with “significant” RHP zeros (RHP zeros close to the origin), because
otherwise this loop may go unstable if left by itself (with the other loops open).?

Relative Gain Array. The relative gain array (RGA) has found widespread use as
a measure of interaction and as a tool for control structure selectjon for single-loop
controllers. It was first introduced by Bristol [1]. It was originally defined at steady-
state, but it may easily be extended to higher frequencies [2]. Shinskey [23, 24] and
several other authors have demonstrated practical applications of the RGA. Important
advantages with the RGA is that it depends on the plant model only and that it
is scaling independent. For n x n plants G(s) the RGA matrix can be computed
frequency-by-frequency (s = jw) using the formula

A(s) = G(s) x (G7(s))" (4.1)

where the x symbol denotes element by element multiplication (Hadamard or Schur
product). An important use of the RGA is that pairing on negative steady-state rel-
ative gains should be avoided [5]. The reason is that with integral control this yields
instability of either 1) the overall system, 2) the individual loop, or 3) the remaining
system when the loop in question is removed. It is also established that plants with

?Usually the main reason for using a decentralized control system in the first place is to allow for
loops to be operated independently.
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large RGA-values, in particular at high frequencies, are fundamentally difficult to con-
trol irrespective of the controller used (poor controllability) [28]. On the other 'hand,
if the RGA elements corresponding to the paired inputs and outputs are small in the
bandwidth region, this indicates possible stability problems when using decentralized
control [10, 11].

PRGA. One inadequacy of the RGA (e.g. [17], p. 166) is that it only measures two-
way interactions (e. g. A = [ for a triangular plant), and it may therefore indicate that
interactions are not a problem when significant one-way coupling exist. To overcome
this problem we introduce the frequency dependent performance relative gain array
(PRGA). The PRGA matrix is defined as

I(s) = G(s)G(s)™ (4.2)

where G(s) is the matrix consisting of only the diagonal elements of G(s), ie., G =
diag{gi;}. The matrix I' was originally introduced at steady-state by Grosdidier [7] in
order to understand the effect of directions under decentralized control. The elements
of I' are given by

-1 gﬁ(s)
7ii(8) = gii(s)[G (s)):; gj{(S)A]l(S) (4.3)
Note that the diagonal elements of RGA and PRGA are identical, but otherwise PRGA
does not have all the nice algebraic properties of the RGA. PRGA is independent of
input scaling, that is, I'(GD,) = I'(G), but it depends on output scaling. This is
reasonable since performance is defined in terms of the magnitude of the outputs.

Closed Loop Disturbance Gain. A disturbance measure closely related to the
PRGA, the closed loop disturbance gain (CLDG), was recently introduced by Skogestad
and Hovd [25]. For a disturbance % and an output i, the CLDG is defined by

Sik(s) = 9ii(s)[G(5) 7 Ga(s))k (4.4)
A matrix of CLDG’s may be computed from
A = {4} = GGGy (4.5)

The CLDG is scaling dependent, as it depends on the expected magnitude of distur-
bances and outputs. Actually, this is reasonable since CLDG is a performance measure,
which generally are scaling dependent.

The use of PRGA and CLDG: Performance Relationships for Decentralized
Control. The following derivation follows (25, 10]. Assume the controller C(s) is
diagonal with entries ¢;(s). (see Fig. 4.3). This implies that after the variable pairing
has been determined, the order of the elements in y and « has been arranged so that
the plant transfer matrix G(s) has the elements corresponding to the paired variables
on the main diagonal. Let y(s) denote the output response for the overall system when
all loops are closed and let e(s) = y(s) — r(s) denote the output error. The closed loop
response becomes

e(s) = =S(s)r(s) + S(s)Ga(s)d(s); S = (I+Ge)t (4.6)
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Figure 4.3: Block diagram of controller and plant.

where S(s) is the sensitivity function for the overall system, and d(s) denotes the
disturbances. The Laplace variable s is often omitted to simplify notation.

At low frequencies (w < wp) we usually have S ~ (GO = CIG1GG! =
(GC)1GG! ~ GG and we get

e~ —SGG'r + SGGGud; w < wg (4.7)

Here we recognize the PRGA (GG~') and the CLDG (GG 'Gy4). When we consider
the effect of a setpoint change r; and a disturbance d; on the offset e; this gives

Yij bik

6N ———r; + —di; w<wp (4.8)

GiiCi GiiGi
From (4.8) we see that the ratio ;;/(giic;) gives the magnitude of the offset in cutput
¢ to a unit setpoint change for output j. This ratio should preferably be small. That
is, on a conventional magnitude Bode plot (log-log), the curve for |v;;| should lie below
|giici| at frequencies where we want small offsets. From (4.8) we see that the ratio
bix/(giici) gives the magnitude of the offset in output 7 to a unit disturbance d,,. That
is, the curve for |6;| should lie below |giici| at frequencies where we want the offsets
less than 1 in magnitude. A plot of [6:x(jw)| will give useful information about which
disturbances k are difficult to reject.

Assume that G and G, have been scaled such that 1) the expected disturbances,
[di(jw)|, are less than or equal to one at all frequencies, and 2) the outputs, y; are
such that the allowed errors, |e;(jw)|, are less than or equal to one. In this case the
Jrequency where |8;(jw)| crosses one, directly corresponds to the minimum bandwidth
needed in loop i to reject disturbance k. It is preferable that this frequency is low in
order to avoid stability problems for the individual loops.

Limitations of (4.8). The main limitation with (4.8) is that it applies only to
lower and intermediate frequencies. Furthermore, the issue of stability is not addressed.
Another limitation is the assumption that all diagonal elements in G(s) are nonzero.
In particular, it is obvious that relations involving |gii¢;] in the denominator are not
meaningful when g;; = 0. These issues are addressed by Hovd and Skogestad [10].
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4.3.1 Summary of Controllability Rules
Let us at this point summarize some results we shall use in this paper:

Rule 1. Avoid plants (designs) with RHP transmission zeros within the desired band-
width (i. e. RHP transmission zeros at low frequencies are bad).

Rule 2. Avoid plants (designs) with large RGA-values (in particular at frequencies
near cross-over). This rule applies for any controller, not only to decentralized control
[28].

Rule 3. Avoid pairings ij with negative values of the steady-state RGA, X;;(0) [5].

Rule 4. Prefer pairings ij where g;;(s) puts minimal restrictions on the achievable
bandwidth for this loop, that is, avoid pairings with RHP-zeros in ¢i;(s). The rule
follows from (4.8) above in order to satisfy performance and at the same time have
stability of the individual loop. Rule 4 is the conventional rule of pairing on variables
“close to each other”.

Rule 5. For decentralized control avoid control structures (an entire set of pairings)
with large values of || or |7i;| in the crossover region, and in particular if the achiev-
able bandwidth for the corresponding loop 1 is restricted (because of g;;(s), see rule 4)
(the rule follows from (4.8) above).

Rule 6. For decentralized control prefer pairings with RGA values close to 1 in the
Crossover region.

4.4 The FCC process

4.4.1 FCC Operating Modes

The FCC process can be operated in two distinct modes, the partial combustion mode
and the complete combustion mode. The emphasis in this paper will be on the partial
combustion mode.

In the partial combustion mode, large amounts of both CO and CO, are formed when
the coke is burnt in the regenerator. The CO rich regenerator flue gas can be sent to
a CO boiler where high pressure steam is produced. However, if there are significant
amounts of oxygen leaving the regenerator dense bed, this will react with the CO to
form CO; in the zone above the regenerator dense bed, or in the regenerator cyclones
and downstream piping. This “afterburning” is a strongly exothermic reaction, and
since there is relatively little mass in this zone a large temperature rise will occur if
there are significant amounts of oxygen present. It is therefore necessary to control the
afterburning to avoid violating metallurgical temperature limits for the regenerator
cyclones or downstream piping.

In the complete combustion mode, little CO leaves the regenerator dense bed because

excess quantities of air are supplied so that most of the CO formed by the combustion
of coke is oxidized to CO, within the regenerator dense bed. Special catalysts which
promote the oxidation of CO to CO, may also be used [20]. When operating in
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the complete combustion mode afterburning is therefore not such a serious concern.
However, it is not always possible to operate an FCC unit in the complete combustion
mode, especially if the feed oil has a large coke production tendency. There is also an

economic incentive for operating in the partial combustion mode, as the heat recovered
in the C'O boiler is valuable.

4.4.2 FCC Model

The models used in this work derive in the main part from the model proposed by Lee
and Groves [14] for the partial combustion mode. This model augments the regenerator
model of Errazu and coworkers [4] with the riser model of Shah and coworkers [22].
Details about the model are given in Appendix 1.

Riser Model

A static model is used for the riser. We use an ideal plug flow model and the three
lump kinetic scheme of Weekman and Nace [30], where the feed is gas oil, which can
crack to gasoline or light gases/coke. The static riser model is used to compute

T, — temperature at the riser outlet.

Cse — mass fraction of coke on catalyst at riser outlet.

Regenerator Model

When modeling the regenerator it is common to assume that the temperature and the
amount of coke on the catalyst is uniform throughout the regenerator dense bed. In
the model used in this paper, oxygen is also assumed to be uniformly distributed, as
Errazu and coworkers [4] found that this assumption allows operational data can be
described well. .

This yields a third order model for the regenerator, with the following states:

Cre — mass fraction of coke on regenerated catalyst.
T,, — regenerator dense bed temperature.
Os — mole fraction of oxygen in the gas leaving the dense bed.

To compute the regenerator cyclone temperature Tey, we represent the afterburning of
CO to CO; in the dilute phase in the regenerator by using a simple equation taken
from [12]

Ty = rg + 104 (4‘9)

For Eq. (4.9) to be reasonable, there must be an excess of CO over O, in the gas leaving
the regenerator dense bed, that is, Eq. (4.9) is only valid in the partial combustion
mode. Note that when using Eq. (4.9), controlling AT,y = Tey — T,, (the temperature
rise from regenerator dense bed to regenerator cyclones) is equivalent to controlling Oy
(the amount of oxygen leaving the regenerator dense bed).

Some authors use the assumption that the oxygen moves in perfect plug flow
through the dense bed (e.g. [12], [13]). In the discussion we will comment on how
the assumptions about oxygen flow pattern affect our conclusions.
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Stripper Model
The stripper is modelled as a mixing tank, and yields two additional state variables:

Cst — mass fraction of coke on catalyst in the stripper.
Ty — temperature in stripper.

The catalyst holdup in the stripper W, is assumed to be kept constant by perfect
control. This means that the flowrate of spent catalyst from the stripper to the regen-
erator, £, equals the flowrate of regenerated catalyst, F,.

Complete Combustion Mode

For the complete combustion mode the same model is used, except that some of the
parameter values are adjusted, as discussed in Appendix 1.

4.4.3 Constraints in FCC operation

The optimal operating point for an FCC usually lies at one or several constraints. The
control structure which allows operation closest to the constraints is therefore prefer-
able. The location of the optimal operating point, and consequently the importance of
the different constraints can vary depending on the feed characteristics and the desired
product split. Different control structures may thus be preferable at different operating
points, but it is not realistic to expect the control structure to be reconfigured when
the operating conditions are changed.
Common constraints include:

® Maximum regenerator cyclone temperature (Tty) constraint. This constraint is
usually important in the partial combustion mode, and is determined by the
metallurgical properties of the cyclones.

¢ Minimum flue gas oxygen concentration (Oyg) constraint. This constraint is im-
portant in the complete combustion mode, as a sufficient concentration of oxygen
in the flue gas ensures virtually complete combustion of CO to C'O; within the
regenerator dense bed, and therefore ensures that afterburning is avoided. Fur-
thermore, sufficient oxygen in the flue gas also ensures that the concentration of
CO in the flue gas is within environmental limits.

e Maximum wet gas compressor capacity. The wet gas compressor is situated
downstream of the FCC unit, and compresses the wet gases produced in the
FCC for transportation to downstream gas treatment plants.

e Maximum air blower capacity (F,). The air blower provides the air needed for
the combustion in the regenerator.

Implications for regulatory control: Constrained outputs (measurements) should be
selected as controlled outputs for the regulatory control system, thus enabling operation
close to these constraints. This means that there is an argument for selecting the
regenerator cyclone temperature Ty, as a controlled variable in the partial combustion
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mode, and for selecting the flue gas oxygen concentration Oy, as a controlled variable
in the complete combustion mode.

Manipulated inputs that are prone to reach constraints should be avoided in the
regulatory control system. The feed flowrate Fy strongly influences the wet gas pro-
duction, and should be avoided as a manipulated variable for plants operating close to
the wet gas compressor constraint. Similarly, the air blower capacity constraint is an
argument for avoiding the use of the air flowrate F, as a manipulated variable for reg-
ulatory control. Nevertheless, in papers on regulatory control of the FCC process (e.g.
[19, 9]) F. is consistently used as a manipulated variable. For plants operating close to
the air blower capacity constraint, the supervisory control level must then ensure that
this constraint is not encountered, for instance by changing reaction conditions or feed
composition such that less coke is formed.

For a more complete description of the constraints encountered in the operation of

FCC’s, see [8].

4.5 Controllability Analysis for the FCC process

4.5.1 Scope of the Controllability Analysis

The following sections will address:

¢ Choice of controlled variables. How does the choice of controlled variables affect
controllability?

¢ Pairing of controlled and manipulated variables for decentralized control.

e Effect of operating point. Is the control system sensitive changes in the operating
conditions?

e Sensitivity to parametric uncertainty. Do changes in parameter values lead to
different conclusions?

¢ Sensitivity to input uncertainty. The actual moves in the manipulated variables
will not be exactly equal to those calculated by the controller. Does this influence
performance?

¢ Disturbance rejection. Using the CLDG explained in section 3, we will investigate
the effect of disturbances on the FCC when decentralized control is used.

o Effect of model features. Which features of the models are important for making
decisions about the control of the FCC process?

These points will be examined for both the partial combustion and complete combus-
tion modes.

In the following we assume that a decentralized control system is used and that
the transfer function matrices have been arranged to give the paired elements on the
diagonal. The word "RGA” or "RGA’s” will refer to the diagonal elements of the
RGA-matrix of G(s). Note that the RGA’s are identical when G(s) is a 2 x 2 matrix.
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4.5.2 Variable Classification

Independent Variables (u’s and d’s). We will consider the following six indepen-
dent variables:

* F, - The flowrate of regenerated catalyst entering the riser®.

F, - The flowrate of air to the regenerator.

k. - The coke production rate factor (1. e., feed oil composition)

Ty - The feed oil temperature.

Fy - The total feed oil flowrate (both fresh and recycled oil).
e T, - The air temperature.

There are actually a few more manipulated variables, but we have assumed that these

are already used by the regulatory control level to control holdup and pressure. These
variables include (see Fig. 4.1):

o . Spent catalyst flowrate.
¢ Ff, - Flue gas flowrate.

* Wy, - Wet gas compressor throughput?.

F} is used to control the catalyst holdup in the stripper, whereas F, is used to control
the regenerator pressure Pry. W,y indirectly controls the stripper pressure P,,. Since
we have assumed the loops to be closed, we should actually have included the pressures
Frg and P, as disturbances for the model we are considering. However, we have not
done this in order to keep the model simple. In practice the pressures P,, and P,
may have to be adjusted when the catalyst slide valve position is changed, in order to
avoid reversal of the catalyst flow (F%). This is taken care of by the supervisory control
system.

Other possible independent variables which are not included here are the fraction
of dispersion steam, A, and the stripping steam flowrate (not included in the model), as
these are known to have relatively little effect provided they are above some minimum
threshold values necessary for the proper operation of the plant®.

All the six independent variables above may be used as manipulated variables (u’s)

for control, but in most cases we will only use two: the regenerated catalyst flowrate,
F, and the air flowrate F,.

3The true manipulated variable is actually the regenerated catalyst slide valve position. We use
the regenerated catalyst flowrate as a manipulated variable in order to keep the model simple.

Wy is not shown in Fig. 4.1, as the wet gas compressor is situated downstream of the distillation
column receiving the reaction products.

$A minimum amount of dispersion steam is needed for good and rapid mixing of feed and catalyst
at the riser entrance. A minimum amount of stripping steam is needed for effectjve stripping of volatile
hydrocarbons from the spent catalyst.
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The remaining independent variables may then be regarded as disturbances (d’s)
in the regulatory control system. The variables k., Ty and F; are all related to the
oil feed. k. is the coke production rate factor and depends on the feed composition.
(Immediately downstream of the FCC there is a distillation column which separates the
products from the cracking reactions. The heavy fraction from the distillation column,
“slurry”, has a large coke producing tendency. The coke production rate factor can
therefore be changed indirectly by changing the amount of slurry which is recycled to
the riser). The air temperature 7, is generally a disturbance since there is usually no
air preheater.

Measurements. Typically, the following measurements are available:
Partial combustion mode:

¢ T;, - The riser outlet temperature.

o T, - The regenerator dense bed temperature.

o T., - The regenerator cyclone temperature.
Complete combustion mode:

® T, - The riser outlet temperature.

o T, - The regenerator dense bed temperature.

® Osy ~ Oy - The oxygen concentration in the flue gas

Controlled Variables (y’s) (Structural decision D1.)

It is not obvious what controlled variables should be used for the regulatory control

system. In some implementations only T}, is controlled by the regulatory con-trol system

(see [8]). However, in this work we shall first consider controlling thrge variables: 1},

Tr4, and T, (partial combustion mode) or Oy, (complete combustion mode). The

justification for trying to control three variables is as follows: .
The product distribution is determined by the reaction conditions inside the riser,

which are therefore very important for the economic performance of the FCC process.

Both T;, and T, are related to the conditions in the riser. There is an incentive to

control both T,, and T4, as the product distribution depends both on the temperature

inside the riser and the catalyst to oil ratio. For a given value of T,,, a high value for

T,y implies a low catalyst to oil ratio. _
The need to control afterburning in the partial combustion mode and to avoid

afterburning in the complete combustion mode should be obvious. Specifically, the

controlled variables considered in this work are:

Partial combustion mode:

Primary variable: Toy or AT,y = Toy — Ty

Secondary variables: 7., and T,

Complete combustion mode:

Primary variable: Oy,

Secondary variables: T., and Tig.
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4.6 Analysis of the Partial Combustion Mode

All the numerica] values in this section are for Case P1 in Table 4.1, unless otherwise
is stated.

4.6.1 Control Structure Alternatives

3x38 Control Systems. As discussed above we may want to control three outputs.
CUS = (Troy Tcy, Trg)T (410)

We will consider the following rwo sets of manipulated variables (Structural decision
D2.):
ui = (F,, By, k)T (4.11)

uy = (F,, F,, )T (4.12)

individual inputs and outputs are numbered according to their position in y?, u3, and
u3, and that the transfer function matrix G(s) has been arranged accordingly (such
that, e.g. the 1,2 element of G(s) is the transfer function from F, to Tro).

When computing the RGA matrices, we find that the only pairings giving positive
steady state RGA values are those indicated by Egs. (4.10)-(4.12). We thus find that
when using the inputs in u$, the pairing 7,,-F,, Tey-Fq, T, -ke should be used. Likewise,
when using the inputs in 3, the pairing Ty-Fy, Ty F,, T.,-Ty should be used. These
RGA’s are shown as functions of frequency in Fig. 4.4a for u3, and in Fig. 4.4b for uj.
We see that u} gives RGA values reasonably close to 1 at steady state, but the small
RGA'’s for loops 2 and 3 in the desired bandwidth region (approximately 1 [rad/min))
indicate control problems. The use of u3 gives rise to unfavorably large steady state
RGA’s, and in the desired bandwidth area the RGA’s are small for loops 1 and 3.

2x2 Control Systems: Selection of Controlled Variables. The above results
indicate that with the available manipulated variables, the 3 x 3 control problem is
not well suited for high performance control with a decentralized controller. We will
therefore in the Jollowing consider the 2x 2 problem,

Restricting our attention to the 2x2 control problem allows us to compare and
contrast our results with the results of previous authors, and will give a good illustration
of the effect measurement selection can have on plant controllability. Furthermore, the
output variables T}, and T4 are strongly coupled, and good control of one will in many
cases also limit the offset in the other variable. There is thus probably little need to
control both 7,, and T,y in order to fulfill the objectives for the lower level control
system given above. In the following we will use

u=(F, F)T (4.13)

as manipulated variables. These two manipulated variables are always used for 2x2
control systems for F CC’s, because of their strong and direct effect on the process
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Figure 4.4: RGA for the 3 x 3 control problem in the partial combustion mode. a)
y%-u}, with pairing T,,-F,, Tey-Fu, Trgke. b) y3-ud, with pairing T;o- Fy, T, F, T0,-T
(Case P1, Table 4.1).

conditions. Wolff et al. [31] also found from an analysis of the disturbance sensitivities
that this is a good choice. The remaining independent variables ke, Tt, Fy and T, will
in the following be considered as disturbances. We will investigate the following five
choices of controlled variables:

L. yo = (Tr, AT,,)T. This corresponds to the conventional control structure, which
uses F, to control 7%, and F, to control AT, It appears to have been described
first by Pohlenz (1963), but the name is due to Kurihara (1967).

2. yk = (Try, AT,,)T. This corresponds to the Kurihara control structure (Kurihara,
1967), which uses F, to control Ty and F; to control AT,,.

3. yax = (Ty,, T.,)T. We have chosen to call this the alternative Kurihara control
structure, as the elements of Yax are linear combinations of the elements of yk.
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4. yg = (T,D,Tcy)T. We call this the Hicks control structure as it was first proposed
by Hicks [9], who used F, to control T}, and F, to control Ty

5. yr = (Tyo, T,4)T. We will name this the riser-regenerator control structure.

4.6.2 Scaling of Variables

The PRGA and CLDG depend on scaling, and the variables must therefore be scaled
appropriately to allow easy interpretation of the PRGA and CLDG. The PRGA de-

pends on the scaling of the outputs, and the CLDG depends on the scaling of outputs
and disturbances.

For the partial combustion mode, the transfer functions are scaled such that output
Crrors, e; = y; — r; of magnitude 1 correspond to

1. Riser exit temperature, T,,: 3 K

2. Regenerator cyclone temperature, T,,: 2 K

3. Regenerator dense bed temperature, 7,,: 3 K
and such that a disturbance d, of magnitude 1 corresponds to

1. Feed oil temperature, Ts: 5K
(when considered as a disturbance)

2. Air temperature, T,: 5 K

3. Feed oil flowrate, Fy: 4 kg/s (ca. 10%)

4. Feed oil composition, expressed by the coke production rate factor ke: 25 %
relative to its original value (when k, is considered as a disturbance)

4.6.3 RHP Transmission Zeros

1) Conventional Control Structure, yo = (T, AT,,)7.
For this choice of controlled variables we get a transfer function matrix with a RHP
transmission zero at 0.018 [rad/min]. This RHP transmission zero will seriously limit

the achievable bandwidth, and only slow control is possible. This choice of controlled
variables will therefore be discarded.

2) Kurihara Control Structure, yx = (T, AT,,)T.

For this choice of controlled variables we get a RHP transmission zero 0.19 [rad/min].
This is one decade higher than for the conventional control structure, and is thus a
much less severe restriction on the achievable bandwidth. This result is in accordance
with the results of Kurihara [12] and Lee and Groves [14], who found the Kurihara
control structure to be preferable to the conventional control structure.

3) Alternative Kurihara Control Structure, yax = (T,,, T, )7.
For this choice we get the same result as for the Kurihara control structure, a RHP
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transmission zero at 0.19 [rad/min]. This is as expected, since the measurements for
the alternative Kurihara control structure are linear combinations of the measurements
for the Kurihara control structure (7., = T,y + ATy).

4) Hicks Control Structure, yy = (Tro, T2, T.

For this choice of controlled variables we get no RHP transmission zero (see also Table
4.1). This means that .there is no inherent bandwidth limitation in the model, and the
bandwidth will be limited solely by unmodeled effects and uncertainty.

5) Riser-regenerator control structure YR = (Tro, Trg)T. .
Also for this choice of controlled variables there is no RHP transmission zero.

The existence and location of RHP transmission zeros is a fundamental measure of
controllability, as a RHP transmission zero will limit the achievable bandw'idth for any
type of controller. Our analysis of RHP zeros clearly indicate that one either should
choose yy = (Tro, Tty )T or yp = (Tro, Tr4)T as controlled variables.

It may be argued that controlling T,, and T, is the best choice with respect to the
constraints:

o Controlling T, avoids exceeding the metallurgical temperaure limit in the regen-
erator cyclones.

¢ The amount of wet gases produced is a strong function of the riser exit temper-
ature, T;,. Controlling 7}, therefore helps ensuring that the wet gas compressor
operating limits are not exceeded. Controlling T,, instead of T;, would not have
the same beneficial effect on the operation of the wet gas Compressor.

When using yr = (T;,,T:,)7 as controlled variables, one must ensure that T,, does not
drift above its metallurgical constraint. This may be done with a (slower)‘control loop
from T, to the setpoint for T:g, or by including T., as a controll'b.d Yarla,ble for t';he
supervisory control system. Based on the results in this section, we will in the folloxivmg
concentrate on the Hicks control structure, but also state briefly results for the riser-
regenerator control structure, which also has the potential for high performance control.

4.6.4 Pairing of Controlled and Manipulated Variables

For the Hicks control structure, the steady state RGA for the pairins Tro - F,, Toy - Iy,
proposed by Hicks [9], is about 0.5. In Fig. 4.5 the PRGA for this pairing is .show'n. We
see that the PRGA is relatively small for all frequencies, and approaches identity ‘for
frequencies higher than 0.1 [rad/min]. As the desired bandwidth is above 0.1 [rad/min],

the interaction between the loops can be expected to be small for the pairing T}, — Fj,
T — F,.

For the riser-regenerator control structure, the RGA is close to 1 at steady stat.e fc.)r the
pairing Ty, — Fy, T,y — F,. The frequency dependent PRGA (not shown) also indicates
that this pairing gives little interaction between the loops.
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Figure 4.5: PRGA for the Hicks control structure with the pairing T, — Fy, T,, — F,
(Case P1, Table 4.1).

4.6.5 Disturbances

The effect of disturbances has been investigated using the closed loop disturbance gain
(CLDG) explained above. Note that it is not meaningful to use the CLDG to directly
compare different choices of controlled output variables, as the CLDG contains no
information about uncontrolled outputs. For this reason, we have chosen to include
the CLDG’s only for the Hicks control structure.

Based on the results in the previous sections, we will here only consider the pairing
Tro— Fy, T,y — F,. The frequency-dependent CLDG’s shown in Fig. 4.6 predict that
disturbance k& = 3 in the feed oil flowrate, Fy, is most difficult to reject, followed by
disturbances 1 (in 7%) or 4 (in k.). Disturbance 2 (in T,) appears to have very little
effect. 613, the CLDG for the effect of Iy on T,, does not toll of at high frequencies.
Some high frequency effect of Fy on T, must therefore be expected. This suggests
the use of feedforward from F s to F, used together with feedback control for good
disturbance rejection at high frequencies, unless Fy is controlled such that only slow
changes in this variable can occur. The predictions based on the CLDG’s, which are
independent of the controller, are verified by closed loop simulations using two PI
controllers in Fig. 4.7. Since it is mainly unmodelled effects that limit the achievable
bandwidth for the Hicks control structure, we have chosen to tune each loop to give a
closed loop bandwidth for the loop of approximately one minute. This results in the
following PI controllers

0.56s + 1
= pp322bstl 14
e(s) 0565 (4.14)
1
eas) = 0.531r (4.15)

These controller tunings result in a sensitivity function S with essentially no peak.
Let us now consider the regenerator temperature, T}, which is uncontrolled in the
Hicks control structure. From the simulation in Fig. 4.7 we see that the effects of
disturbances on T;4 are relatively small, certainly much better than for the open loop
system. Nevertheless, we see from Fig. 4.7 that the disturbances combine to produce an
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Figure 4.6: Closed loop disturbance gains, 6;x, for the Hicks control structure. i de.:notes
output and k disturbance. The loop gains resulting from the controller used in Fig. 4.7
are shown with dashed lines. (Case P1).

offset in Tr; of about 4.5 K. Note, however, that there is no hard constraint associated
with T7,. Thus if control of T:g is desired (e.g. using k.), it can be made sufficiently
slow, such that the control of T, does not interfere significantly with the control of 7.,
and T,.

For the riser-regenerator control structure, the CLDG’s (not shown) give similar re-
sults as for the Hicks control structure. However, we emphasize that with the riser-
regenerator control structure T, is uncontrolled, and measures must be taken to ensure
that T¢, does not exceed its maximum temperature constraint.

4.7 Discussion

In this section we discuss the effects of changes in the operating point, sensitivity to
uncertainty in the parameters, and the effects of model features.
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Figure 4.7: Closed loop simulation of the effect of disturbances for the Hicks control
structure using the PI controllers in eqs. (4,14)-(4.15). A 5K step increase in T, occurs
at 60 minutes, 5 K decrease in Ty at 180 minutes, 2.5% increase in k. at 300 minutes
and a 4 kg/s decrease in Fy occurs at 420 minutes. (Case P1).
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Case P1 Case P2

Try 965.4 K 966.6 K

Tro 776.9 K 770.6 K

Tey 988.1 K 9974 K

C,. 5.207x10~3 3.578x1073

G (0) ( 0.5587 10.16) ( 0.3893 10.83)

—0.5577 10.35 —0.7606 8.22

RGA(0) 0.505 0.280

RHP zeros [rad/min]

Multivariable - -

In elements <: :) (: :)

Table 4.1: Operating Points used for the partial combustion mode. Control-related
data is for the Hicks control structure (- denotes that no RHP-zero is present at

frequencies below 100 [rad/min)).
4.7.1 Effect of Changes in the Operating Point

The transfer function matrix Gy for the Hicks structure is defined by

Tro
T,
Although a number of operating points (“cases”) have been studied, our findings can be

illustrated by the two cases in Table 4.1. Case P1 was studied above, and corresponds

to an operating point with a catalyst to oil ratio of 7.0, and Case P2 corresponds to a
.

(4.16)

catalyst to oil ratio of 6.7.
The results on selection of controlled variables appear unaffected by changes in the

operating point, as we have not found any operating point with a RHP transmission
zero for the transfer function matrix with yy = (Tro, Tey)T 08 yr = (Tro, T1y)T as
controlled variables. The RHP transmission zeros found for the other possible choices
of controlled variables are also found when the operating point is changed, although
their locations do vary somewhat.

The choice of pairing also appears insensitive to changes in the operating point,
as the RGA at steady state is positive for the operating points studied, and is close
to 1 in our desired bandwidth region, for both the Hicks and riser-regenerator control

structures.

4.7.2 Sensitivity to Parametric Uncertainty

The objective of this discussion is to investigate whether small errors in the parameters
can have consequences for control performance, and whether parametric uncertainty
therefore should be considered in the process of control structure selection. Due to the
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large number of parameters in the models, the sensitivity to parameter uncertainty has
not been exhaustively researched.

The results on selection of controlled variables appear unaffected by parametric
uncertainty also. We have not found any parameter change which causes a RHP
transmission zero with yg = (Tro,Tey)” or yr = (T10, Trg)T as controlled variables.
Again, the RHP transmission zeros found for the other possible choices of controlled
variables are also found when parameters are changed, although their locations do vary
somewhat.

In general, we have found the choice of pairing also to be insensitive to changes in
the parameters both for the Hicks and the Grosdidier control structures. Cases has
been found for which the steady state RGA indicates that the pairing for the Hicks
control structure should be changed. However, on closer scrutiny these cases appear
to be unrealistic, since disturbances have such a large effect that the plant would be
virtually inoperable.

Lee and Weekman [15] claim that the control structure selection for the FCC process
can be very sensitive to the model structure and the parameter values used. Our results
appear relatively insensitive to errors in the parameter values for the particular model
structure used. The sensitivity to the model structure will be discussed below.

4.7.3 Effect of Model Features
Afterburning.

Inclusion of the simple model for afterburning in the partial combustion mode given
in Eq. (4.9) allows considering T., as a controlled variable. The results in this paper
demonstrate how controllability in the partial combustion mode is improved when /47
is chosen as a controlled variable instead of ATy =Ty— Tiy = ¢0y. The afterburning
model is therefore important. The results have proved to be relatively insensitive to the
value of c;, and since afterburning is known to be a very fast phenomenon it appears
to be little need for modelling afterburning in more detail.

Air Flow Pattern in the Regenerator.

Errazu and coworkers [4] found that the behavior of the regenerator is well described
by a model which assumes that the oxygen in the regenerator dense bed is uniformly
distributed. Other authors, e. g. Kurihara [12] and Krishna and Parkin [13] assume
the air to move in plug flow through the regenerator. We have studied the effect of
this assumption on our results.

Kurihara assumes the oxygen leaving the regenerator dense bed to be at a pseudo-
steady state, and provides the following equation

Oq = Ojpexp

—Why/Fe J (4.17)

(1.06 x 1010/ F2 4 1/(korexp(—Eo [ RT,4)Che)]

Re, the rate of coke combustion is found from a mass balance with the oxygen con-
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Case K1 Case K2
Try 966.1 K 983.2 K
T 777.3 K 783.7T K
Ty 987.3 K 993.1 K
Cre 5.039x10™3 4.409x1073
G (0) ( 2907  36.72 ) ( 0.695 12.72)

—5.562 —45.73 -1.125 5.306

RGA(0) —1.87 0.205
RHP zeros [rad/min]
Multivariable - -
In elements (_ 0.025) (_ _ )

Table 4.2: Operating points assuming plug flow of air in the regenerator for the Hicks
control structure in the partial combustion mode. (- denotes that no RHP-zero is
present at frequencies below 100 [rad/min]).

sumed: P 41 +0)
a o
Rcb = E(Oin - Od)(l T 0')7’1 +2+ 40’MC (418)
The values of E,, and P,, are taken from Denn [3], whereas the value for ko has been
adjusted to give a steady state close to Case P1 in Table 4.16.

The results for the Hicks control structure in the partial combustion mode are
summarized for two cases in Table 4.2. In Case K1 the gain from F, to T.y is negative,
and we have a negative RGA. The immediate effect of increasing F, will be to increase
Ou, and hence also T.,. However, T, will also increase, and because Oy in Eq. (4.17)
is a very strong function of Ty, Oy eventually decreases to a valug below its original
value. We therefore get a negative steady state gain from F, to Tey. In Case K2 in
Table 4.2 the value of O, is lower because of the higher T,,. There is therefore less
scope for further reduction of Oy, and the steady state gain from F, to T, is positive,
and we get a positive RGA.

Kurihara [12] states that the Hicks control structure is “incomplete” from a safety
point of view, because it has incomplete feedback information with respect to the states
T;y and C,., which he states are the variables which govern FCC safety. The argument
is supported by a closed loop simulation of the Hicks control structure in which the
system goes unstable after the air blower saturates. The controller tunings used in the
simulations are not provided, but these results are probably explained by the negative
RGA found for Case K1 in Table 4.2 which means that one of the control loops must

%1t should be noted that Kurihara ignored the presence of hydrogen in the coke. Clearly, for
the mass balance in (4.18) the presence of hydrogen in the coke, represented by the parameter n, is
important. The omission of hydrogen in the mass balance is repeated by Denn (3] in his presentation
of the Kurihara model when he states that a ratio of COz to CO of unity results in a value of C; = 2
in his equation (5.62a). The right hand side of eq. (5.62a) also need to be multiplied by 32/M, to be
correct.
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be unstable for the overall closed loop system to be stable [5]. In Kurihara’s simulation
example it must therefore be the loop Fs-Tr. which is unstable, and the system theref_ore
becomes unstable when the other input (Fa, the air blower) saturates. In our opinion
the assumption of plug flow of air in the regenerator used by Kurihara is naive, as
strong backmixing occurs in the regenerator. These results do however demox.lstrate
the validity of Lee and Weekmans [15] claim that the control structure selection for
the FCC is sensitive to the model structure used.

Model Reduction.

All the calculations above were based on a five state model. However, the dynamics
of the oxygen in the regenerator and the temperature and coke concentration in the
stripper are much faster than the dynamics of the temperature and coke concentration
in the regenerator. We have found that the FCC model can be reduced to only two
states by setting %‘i, %‘t-ﬁ and % equal to zero. The error introduced by this model
reduction is minor, the most important effect being that the RHP transmission zero for
the Kurihara control structure appears at a slightly higher frequency for the two state
model than for the five state model. The zeros for the individual model elements are
also affected, but we have found no instance where this will affect the conclusions for
control structure selection. To provide the reader with a simple model, a state space
realization of the two state model for Case P1 in Table 4.1 is given in Appendix 2.

4.7.4 Sensitivity to Input Uncertainty

In this paper, only decentralized controllers are considered. Decentralized controllers
are known to be relatively insensitive to input uncertainty (uncertainty in the ac-
tuators). The low RGA values found indicate that more complex controllers (e-g.
decouplers) will also be insensitive to input uncertainty [28].

4.7.5 Complete Combustion Mode

The control structure selection for the FCC in the complete combustion mode has been
studied using the same procedure as demonstrated above for the partial combustion
mode. We will here only include the main results. Numerical results are for Case C1
in Table 4.3, unless otherwise stated.

Control Structure Alternatives

Analysis of the RGA’s shows that the 3 x 3 control problem with y* = (T, Os4,T1g)T
as controlled variables is not well suited for decentralized control. In the following we
will therefore consider the 2 x 2 control problem. We use u = (Fs, F,)T as manipu-
lated variables, and consider the remaining independent variables ke, Ty, Fy and T, as
disturbances. The following three choices of controlled variables will be considered:

L. yoc = (Ty0,04,)T. We term this the conventional control structure for the com-
plete combustion mode.
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2. yrc = (Trg, Oyy)". We will call this the Kurihara control structure for the com-
plete combustion mode, although Kurihara [12] only considered the partial com-
bustion mode.

3. yr = (T, T,g)T. We will consider the riser-regenerator control structure also for
the complete combustion mode.

Scaling of Variables

We use the same scalings as for the partial combustion mode. For the oxygen con-
centration in the flue gas, Oy, the transfer functions are scaled such that an offset of
magnitude 1 corresponds to 0.1 mole%.

RHP Transmission Zeros

1) Conventional Control Structure, yoc = (Tro, 055)F
For this choice of controlled variables we obtain no RHP transmission zero.

2) Kurihara Control Structure, yx¢ = (T,,, Oy,)7
For this choice of controlled variables we obtain a RHP transmission zero at the fre-
quency 0.40 [rad/min).

3) Riser-regenerator Control Structure y YR = (Tro, Trg)T
A RHP transmission zero is found at the frequency 0.013 [rad/min].

We will therefore only consider the conventional control structure in the following.

Pairing of Controlled and Manipulated Variables

The RGA for the pairing T;,-F;, Oyg-F, is positive and quite small (2-3) "at steady
state for almost all operating points investigated. ’

The only exception is found in a region of high regenerator temperatures and low
concentration of oxygen in the flue gas. In this region the RGA at low frequencies is
negative and larger (ca. -9), whereas the RGA approaches 1 at high frequencies also in
this region. This operating region should be avoided, as the low oxygen concentration
in the flue gas indicates that the oxygen concentration in the dense bed is insufficient
to convert all CO to CO, within the dense bed, and afterburning may therefore result.
This problem is discussed further below.

The PRGA (not shown) also indicates that the pairing Tyo-F;, Oy4-F, is preferable.

Disturbances

We find from the CLDG’s (not shown) that a disturbance in Fy will have some high
frequency effect on T, the other disturbances can be rejected provided both loops have
bandwidths of around 1 [rad/min]. At low frequencies, somewhat higher loop gains are
required in the complete combustion mode than for the Hicks control structure in the
partial combustion mode.
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Case C1 Case C2

T,, 998.4 K 1012.3 K

T, 788.0 K 797.3 K

04 1.038x10~2 3.098x 1073

C.. 9.645x10~3 2.527x1073

° 29.98 —11.23 —11.23 84.18

Geo(0) (—0.001875 0.01210) (0.004131 —0.02798)

RGA(0) 2.38 9.3

RHP zeros [rad/min]

Multivariable — 0.014

In element ( 0.018) (— 0.0007)
.- 1 0.08

Table 4.3: Operating points used for the complete combustion mode, with control-
related data for the conventional control structure (- denotes that no RHP-zero is
present at frequencies below 100 [rad/min)).

Effect of Changes in the Operating Point

Although a number of operating points (“cases”) have been studied, our findings can
be illustrated by the results in Table 4.3.

Case C1 in Table 4.3 shows a typical operating point. Case C2 shows an unstable
operating point, found in a region of high regenerator temperatures and low concentra-
tion of oxygen in the flue gas. We concluded above that this operating region should
be avoided. The transfer function matrix G¢ has a RHP pole at 7 x 104 [rad/min].
At this operating point there is also a pair of complex RHP transmission zeros in Ge
at a frequency of 0.14 [rad/min]. The system is easily stabilized, e. g. by feedback
from T,, to Fj, but fast control of both T}, and Oy, will not be possible in this region.
However, the drift into the unstable region is slow and a well designed control system
should easily avoid this region.

4.8 Conclusion on FCC Controllability Analysis

Partial Combustion Mode.

A favorable selection of controlled variables is critical for good control of the FCC
process. Both the conventional control structure, which has T;, and AT, as controlled
variables, and the Kurihara control structure, which has T.; and AT,, as controlled
variables, have RHP transmission zeros which limit the achievable bandwidth. On the
other hand, we get no RHP transmission zeros with the Hicks control structure, which
has T;, and T, as controlled variables, or with the riser-regenerator control structure,
which has T}, and T}, as controlled variables. Either the Hicks control structure or the
riser-regenerator control structure should therefore be chosen. The best pairing for the
Hicks control structure is T5,- Fj, Tey-Fa, and for the riser-regenerator control structure
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the best pairing is T},-F,, T,o-F,. These pairings result in RGA’s which are positive
at steady state and close to 1 in the frequency range around the desired closed loop
bandwidth.

The Hicks control structure has the advantage over the riser-regenerator control
structure that it controls T,,, which often is constrained in the partial combustion
mode. With hindsight the choice of the Hicks control structure might appear obvious,
but the fact that the socalled conventional control structure was predominant for many
years ([19, 15]) makes it clear that it is not so obvious. To our knowledge, this paper
is the first to demonstrate quantitatively how controllability of the FCC process is
affected by the choice of controlled variables.

We argue that Kurihara’s [12] claim that the Hicks control structure is unsatis-
factory for safety reasons does not hold. Since T}, is controlled in the Hicks control
structure, it should also be easier for operators to accept than the Kurihara control
structure. According to Lee and Weekman [15], the Kurihara control structures fail-
ure to control T, leads to resistance from the operators. The Hicks control structure
corrects this shortcoming of the Kurihara control structure without having to use the
somewhat more complex structure proposed in [15].

Complete Combustion Mode.

T, and Oy should be chosen as controlled variables, as this choice of controlled vari-
ables give no RHP transmission zero. In contrast, choosing 7., and O, or T, and Try
as controlled variables gives RHP transmission zeros which limit the achievable band-
width. The best pairing is T;,-F,, Og-F,, as this corresponds to positive steady state
RGA values and to RGA values close to 1 around the desired closed loop bandwidth.

Disturbances.

Both in the partial combustion mode and in the complete combustion mode the effect of
disturbances in the feed oil rate on the riser outlet temperature is most difficult to reject.
Fortunately, the feed oil flowrate is usually controlled, but our results demonstrate that

any deliberate change in this variable should be made slowly, or feedforward from Fy
to F, should be used.

Sensitivity to Parametric Uncertainty and Changes in the Operating Point.
Our results on measurement selection and variable pairing appear relatively insensitive
to parametric uncertainty and changes in the operating point.

Effect of Model Features.

1) The FCC process can be described fairly well with a second order model.

2) A model of the afterburning in the partial combustion mode is essential for a proper
selection of measurements.

3) The negative steady state RGA obtained at some operating points in the partial
combustion mode when assuming plug flow of air in the regenerator means that one of
the control loops must be unstable on its own (at the same operating points) in order
to have a stable closed loop system. However, in our opinion the assumption of plug
flow of air in the regenerator is a poor one.

Acknowledgement. The authors would like to thank Pierre Grosdidier for the many
helpful comments and suggestions he has made during the preparation of this paper.
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Nomenclature

FCC Models:
Nominal parameter values are given in parentheses. When different values are used for
the partial and complete combustion modes, the values are given as (partial combustion
mode/complete combustion mode).

Cear - Catalytic coke produced in riser, mass fraction

C'. - Coke on regenerated catalyst, mass fraction

Cyc - Coke on catalyst leaving riser, mass fraction

Cy - Coke on catalyst in stripper, mass fraction

Cpa - Heat capacity of air (1.074kJ/kgK)

¢pe - Heat capacity of catalyst (1.005kJ/kgI{)

¢po - Heat capacity of oil (3.1355kJ/kgK)

cpp - Heat capacity of steam (1.9kJ/kgK)

[COR] - Catalyst to oil ratio on a mass basis

¢, - Factor in Eq. (4.9) (5555K /molefraction)

E.; - Activation energy for coke formation (41.79kJ/mole/20.00kJ/mole)

E¢ - Activation energy for coke combustion assuming uniformly distributed oxygen in
the regenerator (158.59kJ/mole).

Ey - Activation energy for the cracking of gas oil (101.5kJ/mole)

E, - Activation energy for the cracking of gasoline

(112.6kJ/mole)

Eor - Activation energy for coke combustion assuming plug flow of air in the regenerator
(146.4kJ/mole).

F, - Flowrate of air to the regenerator (25.35%2/28.0kg/s)

Fy - Feed oil flowrate (40.63kg/s)

Fyg - Flue gas flowrate

F, - Flow rate of regenerated catalyst (294kg/s)

F, - Flowrate of spent catalyst (assumed = F).

k1 - Reaction rate constant for the total rate of cracking of gas oil (9.6 x 105s71)

ks - Reaction rate constant for the rate of cracking of gas oil to gasoline (7.2 x 10°s~?)
ks - Reaction rate constant for the rate of cracking of gasoline to light gases/carbon
(4.22 x 10°s71)

kc - Reaction rate constant for the production of coke (0.0195~1/0.0093s1)

ke - Reaction rate constant for coke combustion assuming uniformly distributed oxygen
in the regenerator (2.077 x 108s71).

kor - Reaction rate constant for coke combustion assuming plug flow of air in the
regenerator (58.29m?/(sN))

M, - Molecular weight of air (28.8544)

M. - Bulk molecular weight of coke (14)

m - Factor for the dependence of the initial catalyst

activity on C;. (80)

n - Number of moles of hydrogen per mole of carbon

in the coke (2)

N - Exponent for the dependence of C,; on C,. (0.4/0.0)
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Oq - Concentration of oxygen in gas leaving regenerator dense bed, molefraction
Oin - Concentration of oxygen in air to regenerator (0.2136 molefraction)
R - Universal gas constant

R - Rate of coke combustion (kg/s)

P, - Regenerator pressure (172000N/m?)

P, - stripper pressure

To - Temperature at riser entrance

T, - Temperature of air to the regenerator

T.y - Regenerator cyclone temperature

T - Temperature in stripper

Ts - Feed oil temperature

T;, - Temperature at riser outlet

T'(z) - Temperature at elevation z in the riser

t. - Residence time in riser (9.6s)

W - Holdup of catalyst in regenerator (176000kg)

W, - Holdup of air in the regenerator (20kmol)

Wi - Holdup of catalyst in stripper (17500kg)

Wy - Wet gas compressor throughput

¥y - Mass fraction of gas oil

Yo - Mass fraction of gasoline

z - Dimensionless distance along riser

o - Catalyst deactivation constant (0.12s71)

a3 - Fraction of the gas oil that cracks which cracks to gasoline, ky/k; = 0.75.
AH., - Heat of combustion of coke (kJ/kmol)

AHy - Heat of cracking (506.2kJ/kg)

A - Mass flowrate of dispersion steam / mass flowrate of feed oil (0.035)
o - Molar ratio of CO; to CO in the regenerator dense bed

¢o - Initial catalyst activity at riser entrance

© - Dimensionless temperature at position z in riser 1

Control Analysis:

C(s) - Diagonal controller transfer function matrix

ci(s) - Controller element for output i

d(s) - Vector of disturbances.

e(s) = y(s) — r(s) - Vector of output errors

G(s) - Process transfer function matrix

Geo(s) - Transfer function matrix for the conventional control structure in the com-
plete combustion mode

GH(s) - Transfer function matrix for the Hicks control structure in the partial com-
bustion mode

Ga(s) - Disturbance transfer function matrix

9i;(s) - i7’th element of G(s)

94ik(8) - ik’th element of Gy(s)

r(s) - Reference signal for outputs

S(s) - Sensitivity function S = (I + GC)~!
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u(s) - Vector of manipulated inputs.

y(s) - vector of outputs

A(s) - Closed loop disturbance gain matrix
bix(s) - 45°th element of A(s)

A(s) - Relative gain matrix

Aij(s) - i5'th element of A(s)

w - Frequency

wp - Closed loop bandwidth
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Appendix 1. Details of the FCC Model.
Riser Model

Material balance for gas oil:

d
L = ~Ky¥coRas, (4.19)
Material balance for gasoline:
dy
— = (a2 K1y} ~ Kay,)[COR]®t, (4.20)
where
. —E
£(0) = klexp(WiO)) (4.21)
K3(0) = kaezp(WEie)) (4.22)
© = (T(z) - To)/To (4.23)
® = doexp(—at [COR)?) (4.24)
$o = 1—mC,, (4.25)

Hfzre {i’ly}[COR] represents the kinetics for the cracking of gas oil and K3y,[COR)]
the kinetics for cracking of gasoline. @ represents the deactivation of the catalyst
caused by coke depumtlop,_of which @y represents the reduction in catalyst activity
caused by the coke remaining on the catalyst after regeneration. %, is the residence

time]_in the riser, and @y = ky/k; is the fraction of the cracked gas oil which cracks to
gasoline.

_The catalyst to oil ratio [COR), which was omitted in [14], is reintroduced into
® in order to be consistent with the original model of Shah and coworkers [22]. A
correlation taken from Kurihara (12] is used to estimate the amount of coke produced.

[t -E
Cca = kc = —— .
t CN exp( RTM) (4.26)

The amount of coke on the catalyst leaving the riser is thus

Csc = C’rc + Ccat (427)
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The energy balance yields:

dG) AHfFf @i

il 4,28
dz  To(Fycps + Frepo + AFpepg) dz ( )

Regenerator Model

The regenerator is described by the following equations. Balance for coke on regener-
ated catalyst:

W%C,C = F,(Cu = Cre) — Ry (4.29)

Energy balance:

d
Wc,,,ET,g =T Fscps + ToFacps — Trg(Fycps + Focpa) — AH R /M, (4.30)

where AH., depends both on the temperature and o, the ratio of CO, to CO produced
[4]. Here n denotes the average coke composition C'H,. The concentration of oxygen
in the regenerator dense bed is given by a material balance

d F, (14+o)n+2+40 Ry
204 = 2200, — 0,) - 4.31
Weg02 = 37,0 — 0d) Wl+o0) M, (4.31)
The rate of coke combustion is given by
Ra = kaex (_E°")oc w (4.32)
cb = Reh€TP RTrg dLre .

Stripper Model

The flowrate of stripping steam is small compared to the flowrates of catalyst and feed
oil, and the effect of the steam on the heat balance of the stripper i therefore ignored.
Assuming the stripping is effective, the only effect of the stripper will be to introduce
a lag between the riser outlet and the catalyst return to the regenerator. This lag is
modeled using an ideal mixing tank, and the balances for coke and energy yield the
following equations.

d
WstaCst = F,(Cy. — Cy) (4.33)

d
WstcpsETst = Fscps(Tro - Tst) (434)

Parameter Values

The parameter values used are given in the nomenclature section. The values used
are taken from Ljungquist [16], who has slightly modified the values given by Lee and
Groves. The value of ¢, is taken from [12].

Complete Combustion Mode

'fI‘lllle above model has been adjusted to describe the complete combustion mode as
ollows:
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: . is fixed to a high value

1. The ratio of CO; to CO produced in the regenerator, o, 15 ,
such that there i: an excesI; of Oy over CO in the gas leaving the regenerator dinie
bed. Then the oxygen concentration in the flue gas, Oyg, will be approxunabe dy
equal to the oxygen concentration in the gas leaving the regenerator dense bed,

Oa.

; enerator, the coke production rate (k.) and the feed ol
2 ;I;};?pzlrratrjﬁs }fgvzhsezigadjusted’in order to achieve energy balance in the desired

operating region.

3. Finally the model parameters have been adjusted to obtain the same signs for
" the steady state gains as observed by Grosdidier [6]:
F,

Tro + -

Od - + Fa
These signs for the steady state gains should be obtained in the region of the
following operating conditions [7):

Flue gas oxygen concentration: 0.4-1.4 mole%

Regenerator dense bed temperature: 989-1009 K L
In order to obtain the desired signs for the steady state gains the activation
energy for coke formation, E.;, has been reduced, and the exponent expressing
the dependency of the coke production on the amount of coke on regenerated
catalyst, V, has been set to zero'.

Appendix 2. Linear Two State Model for the FCC.

A linear two state model for the FCC in the partial combustion mode (Case Pl in
Table 4.1), obtained by linearization and model reduction of the five state nonlinear
model in Appendix 1:

(4.35)

d
d—f — Az + Bu+ Ed (4.36)
y = Czx+Du+ Fd (4.37)

[ 9. -2 151 x 1078
4 55 x 10 51 x 10 (4.38)
227 —4.10 x 10-2

-6 _ -5
B - 3.29 x 10 2.60 x 10 (4.39)
—-2.80 x 1072  7.80 x 107!

1.32 x 10® 0.559
C = | —4.42x10° 0.538 (4.40)
0 1

"This seems reasonable since FCC’s operating in the complete combustion mode commonly achieve
very good regeneration with very small amounts of coke on regenerated catalyst [20]. For these low
amounts of coke on regenerated catalyst, Eq. (4.26) would predict both a very large coke production
and a very strong dependence of the coke production on the amount of coke on regenerated catalyst.
This does not appear realistic, and we have therefore set N = 0 in our studies of the complete
combustion mode of operation.
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0.362 0
D = 0 0.877 (4.41)
0
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|
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Chapter 5

Design of Robust Decentralized Controllers

Morten Hovd Sigurd Skogestad*
Chemical Engineering, University of Trondheim, NTH,
N-7034 Trondheim, Norway.

Abstract

The procedure for independent design of robust decentralized controllers pro-
posed by Skogestad and Morari [20] is improved by requiring the -controller to be
a decentralized Internal Model Control (IMC) type controller. It is shown how to
find bounds on the magnitude of the IMC filter time constantssuch that rob}lst
stability or performance is guaranteed. This allows the use of real perturbation
blocks for modeling the uncertainty associated with the controllers. In contrast,
Skogestad and Morari [20] found bounds on the sensitivity functions and com-
plementary sensitivity functions for the individual loops, and therefore allowed
a much larger class of designs, resulting in more conservative conditions.

The concept of Robust Decentralized Detunability is introduced. If a sys-
tem is Robust Decentralized Detunable, any subset of the loops can be detuned
independently and to an arbitrary degree without endangering robust stability.
A simple test for Robust Decentralized Detunability is developed for systems
controlled by a decentralized IMC controller.

The problem of sequential design of robust decentralized controllers is also
addressed. It is shown how to include into the design problem for loop k a simple
estimate the effect of closing subsequent loops will have on loop k& and the loops
that have already been closed.

*To whom correspondence should be addressed. FAX: 4+47-7-594080, e-mail: skoge@kjemi.unit.no
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5.1 Introduction

Decentralized control remains popular in the chemical process industry, despite de-
velopments of advanced controller synthesis procedures leading to full multivariable

controllers. Some of the reasons for the continued popularity of decentralized control
are:

1. Decentralized controllers are easy to implement.
2. They are easy for operators to understand.

3. The operators can be allowed to retune the controllers to take account of changing

process conditions (as a result of 2 above).

4. Some measurements or manipulated variables may fail. Tolerance of such failures

are more easily incorporated into the design of decentralized controllers than full
controllers.

5. The control system can be brought gradually into service during process startup

and taken gradually out of service during shutdown.
The design of a decentralized control system consists of two main steps:

a) Control structure selection, that is, choosing manipulated inputs and controlled

outputs, and pairing inputs and outputs.
b) Design of each single-input single-output (SISO) controller. )

In this paper we will consider b), and assume that a) has already been done (e.g.
by using the tools in (8, 9]). Standard controller synthesis algorithms (e.g. H, or
H,, synthesis) lead to multivariable controllers, and cannot handle requirements for
controllers with a specified structure. Instead, some practical approaches to the design
of decentralized controllers have evolved:

e Parameter optimization,
* Sequential design [3, 14, 16).
¢ Independent design [20].

We discuss all these three approaches to the design of decentralized controllers, with
reference to the potential advantages of decentralized control listed above. Parame-

ter optimization will be considered only briefly, whereas we discuss and illustrate the
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unique problems associated with sequential design in more detail. New results on in-
dependent design are presented which represent improvements over the existing design
procedure. Throughout this work we will use the structured singular value (see below)
as the measure of control quality.

A system is said to have robust stability if it is stable regardless of whatever uncer-
tainty is contained within the system. Because of items 4 and 5 above, we would like
the system to remain stable if any subset of the control loops are out of service, or if
the individual controllers have been detuned. Furthermore, we would like this stability

to be a robust property, We define such systems to be Robust Decentralized Detunable:

Definition 1 A closed loop system is said to be Robust Decentralized Detunable if
each controller element can be detuned independently by an arbitrary amount without

endangering robust stability.

Decentralized detunability for a given controller should not be confused with decentral-
ized integral controllability (DIC), which is a property of the plant only. DIC implies
that there for a given plant exists a decentralized controller with integral action in all

channels that is decentralized detunable.

5.2 Notation

In this paper, G(s) will denote the plant, which is assumed to be of dimension n x n.
The matrix consisting of the diagonal elements of G(s) is denoted G(s), and gi;(s) is
the ij’th element of G(s). The reference signal (setpoint) is denoted r, manipulated
inputs are denoted u and outputs are denoted y. If disturbances are present, G4(s) de-
notes the (open loop) transfer function from disturbances d to outputs y. Throughout
this work, all controllers are assumed to be completely decentralized. The decentral-
ized conventional feedback controller is denoted C(s), with 7’th diagonal element ¢;(s)
(Fig. 5.1a). Likewise, the decentralized IMC controller is denoted @, with +’th diagonal
element ¢;(s) (Fig. 5.1b). The controllers C(s) and Q(s) are related by

C(s) = Q(s)(T = G(s)Q(s)) ™ (5.1)

The sensitivity function is S(s) = (I + G(s)C(s))™* and the H(s) = I — S(s) =
G(s)C(s)(I + G(s)C(s))7! is the complementary sensitivity function. The sensitivity
functions and complementary sensitivity functions for the individual loops are col-
lected in the diagonal matrices S(s) = (I — G(s)C(s))™" and H(s) = G(s)C(s)(I —
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Figure 5.1: Block diagram of feedback systems. (a) Conventional decentralized con-
troller. (b) Decentralized IMC controller.

G(s)C(s))~". Note that the diagonal elements of S(s) and H(s) do not equal the di-

agon;il elements of~S (s) and H(s), respectively. The i’th element on the diagonal of §
and H are §; and h;, respectively.

5.3 Robust Control and the Structured Singular
Value

Since no model is a perfect representation of the system, the control system stability
and performance should be little affected by the uncertainties of the model. In this
paper we use the structured singular value, y, introduced by Doyle [5], as a measure
of the robustness of feedback systems. Within the p framework, one accepts that it
is the impossible to find a perfect model, and instead require information about the
structure, location and estimates of the magnitude of the model uncertainties.

In Fig. 5.2 we have drawn an example of a feedback system with uncertainty in the
inputs and outputs’, represented by the perturbation blocks A; and Ag, respectively.

Note that the individual perturbations can be restricted to have a certain structure.

1 . .
. Many.other types of uncertainties possible, see [5] for details on how to represent different uncer-
tainties with perturbation blocks.
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, [Caran o [Weflen

Figure 5.2: Block diagram for feedback system with uncertainty in the inputs and
outputs.

For instance, as individual inputs and outputs usually do not affect each other, both A,
and Ao are assumed to be diagonal. The weights Wy and Wy are frequency-dependent

and normalize the maximum magnitude of A; and Ap to unity.

A-—

— M

Figure 5.3: Feedback system rearranged into a perturbation block A and an intercon-

nection matrix M.

Any block diagram with uncertainties represented by perturbation blocks can be
rearranged into the M — A structure of Fig. 5.3, if external inputs and outputs are
neglected. In Fig. 5.3, A is a block diagonal matrix with the perturbation blocks of
the original block diagram on the diagonal, and M contains all the other blocks in the
block diagram (plant, controller, weights). For the specific case in Fig. 5.2, we have

that

. —W[CG(I + CG)_l —WIC(I + GC)_]
A = diag{A,A0}; M= WoGll 4+ GG —WoGC( 4 GC)-!

Provided M is stable (the system has Nominal Stability, NS) and A is norm bounded
and stable (stable perturbation blocks), it follows from the Nyquist stability criterion
(5] that the overall system is stable provided det(] — MA) # 0 VA,Vw. In this cas.e
the system is said to have Robust Stability (RS). The structured singular value is
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defined such that
#a' = min{6det(I — MA) =0 for some A,5(A) < 6} (5.2)

If weights are used to normalize the maximum value of the largest singular value of A
to unity (6(A) = 1) at all frequencies, like in Fig. 5.2, the system will remain stable
for any allowable perturbation A provided pa(M) < 1.

Doyle [5] showed that performance can be analyzed in the g framework by con-
sidering an equivalent stability problem of larger dimension. In this paper we use a
performance specification of the type o(WpS,) <1 Vw where S, is the worst sen-
sitivity function (S) made possible by the perturbation blocks. This performance
specification can be incorporated in the y framework by closing the loop from outputs
to output disturbances with the performance weight Wp and a full perturbation block
Ap. If pa(M) <1 VYw (after normalizing the magnitude of the perturbation blocks)
and M is stable for the corresponding M — A structure of increased dimension (in
our specific example, A = diag{A;, Ao, Ap}), the system is said to have Robust Per-
formance (RP), as the performance specification is fulfilled for all the possible model
uncertainties.

To simplify notation, we will use “u(M)” in the meaning sup,, a(M). Doyle and
Chu [6] proposed an algorithm for the synthesis of controllers which minimizes g,
known as D — K iteration. However, D — K iteration results in full controllers, and

the problem of synthesizing p-optimal decentralized controllers has not been solved.

5.4 Parameter Optimization

When using parameter optimization, an & priori parametrization of the controller and
the chosen measure of control quality (in our case g) is optimized with respect to
the controller parameters, using some optimization routine. Controller design using
parameter optimization is easily formulated in a computer program and often gives
satisfactory designs (e.g. [21]). However, the optimization is not necessarily convex,
and problems with local minima may be encountered. Another problem is that, since
all the loops are assumed to be in service at each step in the optimization, advan-
tages 4 and 5 in the introduction may not be achieved. One must therefore check
specifically whether these advantages are achieved after the optimization is finished.
More importantly, the parameter optimization approach gives no guidelines for how to
achieve advantages 4 and 5 if analysis of a proposed controller shows that they are not

achieved.
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5.5 Independent Design

Independent design of robust decentralized controllers was introduced by Skogestad
and Morari [20]. It is based on Theorem 1 in [19], which we state here:

Theorem 9 Let the pu interconnection matriz M be written as a lower Linear Frac-

tional Transformation (LFT) of the transfer function matriz T
M= F[(N, T) = N11 + N12T(I - NQQT)_INgl (53)

and let k be a given constant. Assume pua(Ni1) <1 and det(] — NyoT) # 0 then

pa(M) <1 (5.4)
if
o(T) < er (5.5)
where cr solves
Jia Ni Nyg -1 (5.6)
crNaw e Ny

and A = diag{A, T}

Proof: See [19)].

The condition pa(M) is typically the RP condition we want to satisfy, and T is some
important transfer function which depends on the controller. Skogestad and Morari [20)]
uses Thm. 9 to find bounds on the sensitivity function and complementary sensitivity
functions for the individual loops (i.e. T = § and T = H are used). The bounds on
S and H can be combined over different frequency ranges. Thus, if either the bound
on S or the bound on H is fulfilled for all loops at all frequencies, then pa(M) < 1 is
achieved.

The rationale behind Thm. 9 is to treat the transfer functions (T) as a “class
of possible designs” (i.e. as uncertainty), and finds bounds on the magnitude of this
fictitious uncertainty which guarantees that pua(M) < 1. One is faced with finding
controllers such that the bounds on the transfer functions are fulfilled. It is therefore
important for the success of independent design that T' introduces as little additional
uncertainty as possible. It turns out that parametrizing the class of possible designs

as T = § and T = H are not ideal for this purpose.

S
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5.5.1 Example 1

Consider Example 1 in Chiu and Arkun [3]:

1.66 —1.74¢=2*
_ 39541 4.4s5+1
G(s) = 03¢~ 1.4 (5.7)
8.9s5+1 3.85+1

There is independent input uncertainty with input uncertainty weight W;(s) = 0.071,,
and the performance requirement is given by the performance weight W,(s) = 0.25-717}1]2

Chiu and Arkun (3] attempted independent design for this example, using T' = §
and T = H, but were unable to find a controller which fulfilled the resulting bounds. In
(3] it was therefore claimed that independent design can not be performed for this ex-
ample. We will however demonstrate below that independent design can be performed

for this example, by parametrizing the class of possible designs within the framework
of Internal Model Control.

5.5.2 Independent Design with Decentralized IMC
Controllers

We use the Internal Model Control (IMC) technique [7] to parametrize the individual
controller elements, and select 7" not as a transfer function, but rather as a parametriza-
tion of the tuning constant ¢ in the IMC controller. Our approach is similar to that
of Lee and Morari [10], but we use ¢; as the parameter rather than the filter f;. The

relationship between the elements ¢; of the IMC controller and the elements ¢; of the
conventional controller is given by

C; = q,'(l - g,-;c,-)_l (58)

In the IMC design procedure [15], ¢; has the form
¢ =g f; (5.9)

where §;; is the minimum phase part of g;;, and fi is a low pass filter used to make ¢;
realizable and to detune the system for robustness. In order to simplify the exposition,

we will assume the plant G to be open loop stable, and use a low pass filter of the form

1

fi= (€:s + 1)

(5.10)

That is, the f; is taken to be a low pass filter of order ny, consisting of ny identical
first order low pass filters in series. For details on IMC design, and on filter form for

unstable systems, the reader is referred to Morari and Zafiriou [15].
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Choice of T for Independent Design. After fixing ny, the only thing which re-
mains uncertain in the IMC technique is the value of ¢;. To fulfill performance require-
ments at low frequencies, the closed loop system must be sufficiently fast, which means
that the filter time constant ¢ must be smaller than a certain value. On the other hand,
the closed loop system must be sufficiently detuned to avoid robustness problems at
higher frequencies, thus requiring € to be larger than a certain value, meaning that
1/€ must be smaller than some value. We will therefore use Thm. 9 to find bounds on
€ and e; e /e which can be combined over different frequency ranges. Since we are
using a specific control structure the class of possible designs is much smaller than if we
use Thm. 9 to find bounds on & and fI. Bounds on S and I are therefore potentially
much more conservative.

To derive conditions on ¢; and e; that guarantee pa(M) < 1 we will proceed as
follows: First we parametrize the u interconnection matrix M as an LFT of the IMC
filter F and then as an LFT of the “uncertainty” in the filter time constant. We refer
the readers to [19] or [15] for details on how to find the LFT’s needed in Iig. 5.4.
Below we will only elaborate on how to express f; as an LFT of the “uncertainty”
associated with ¢; or e;. We then solve Eq. (5.6) at each frequency point to find the
desired bound. Note that it is sufficient at each frequency to satisfy the bound either
for ¢; or for e; = 1/¢;, but we must of course use the same bound for ¢; (and e;) at
all frequencies. Note that although §7' in Eq. (5.9) will normally not be realizable,
its frequency response is easily calculated. Also note that since we work with the
frequency response, we will have to check & posteriori for the (internal) stability of the

p interconnection matrix.

First Order Low Pass Filters. Consider first the case ny = 1. We then have
fi = 1/(eis +1). The objective is to find the allowable ranges for ¢; and e; = 1/¢; that
at each frequency guarantee u(M) < 1. Since we do not allow negative values for ¢;

we should not write l¢;| < ¢.. Instead write

& = —62—(1+A€) Al <1 (5.11)
e = %(1 +A) A< (5.12)
and fix ¢, = 1 and ¢, =1 in Eq. (5.6). The y interconnection matrix in Eq. (5.6) then

depends only on €* or e* (depending on whether we try to find bounds on ¢; or ;).

Note that all quantities, including A, and A, are real. In order to use Thm. 9 we now
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A FA* A =

&S

F]iure 5.4: The interconnection matrix M expressed as an LFT of the IMC filter F
and as an LFT of the “uncertainty” associated with the filter time constants.

need to write f; as an LFT of A and A,. For T = A, we have

fi= e
SA1+A)s+1 (5.13)
which may be written as an LFT, fi = Fi(Ne,, A,), with
1 1 -1 *
N, ==
i ] o
Similarly, for T = A., we have
1 [
Ne. = — 2 2
2[5 8] "

This shows how to express an individual filter element fi as an LFT of the real “uncer-
tainty” in the filter time constant in that filter element. The LFT for the overall IMC
filter F' = diag{f;} is then just a simple diagonal augmentation of the corresponding
blocks of the LFT for the individual filter elements. For example, let V!, denote the
N11 block for the LFT of element 7. The block Ny; for the LFT of theuoverall IMC
filter will then be given by Ny; = diag{Nj,}.

We use |A,| <1 and |A,] <1 and correspondingly fix ¢. = 1 and ¢, = 1 in Eq. (5.6)

The required bounds for ¢; and e; are then found by iterating on the value of ¢* or e*
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(as appropriate) until pz = 1 (the matrix N in Eq. (5.6) will depend on €* when we

iterate on €*, and depend on e* when we iterate on e*). Denote the values of ¢ and

e* which give ppz,, = 1 € and ej, respectively. For a fixed frequency, we are then
eita

guaranteed that pa(M) < 1 provided
& < €eVi; or (5.16)

1 .
e < eVi &= < ;Vz (5.17)

Note that although the €’s are independent, we get the same bound for all ¢;.

The iterations are performed using only positive real values for €* and e*. Note
that uz in Eq. (5.6) is non-decreasing with increasing values of €* or e*. This follows
from the fact that we use |A,| < 1 and |A.| < 1, therefore the set of possible values for
€ = %(1 + A,) for any fixed value of €* contains all the possible values for ¢; for any

smaller ¢* (and similarly for e; and €*). A very simple iteration scheme, e.g. bisection,

can therefore be used.

Higher Order Low Pass Filters. In IMC design, one will often use filters of order
higher than one. We therefore need to be able to express the higher or(%er ﬁlte.rs as
LFT’s of A, and A.. For this we can use the rules for series interconnection of linear
dynamical systems. First note that G(s) = C(sI — A)~'B + D may be written as an
LFT of %I, with

Nu=D; Nip=C; Na=B; Nnp= A

The formulae for series interconnection G = GG of dynamical systems Gi(s) =

Ci(sI — A;)™'By + D1 and Gy(s) = Ca(sI — Ag)"'By + D, are (e.g. [13]):

Ar 0
A =
B201 A2

B=| D

= | B,D
c = [DC G
D = D,D,

The formulae for series interconnection of dynamical systems can be used directly to
express an n;'th order low pass filter as LFT’s of diag{Aa, -, Aen, } and diag{Ae1, -+
Aen,}. As we will normally use the same time constant for all first order factors of the
o — . =
ny'th order filter, we will have Ag =Ag =+ =0Aqm, and A = Agp = JAU
and we have repeated scalar, real “uncertainty” associated with the filter in each IMC

controller element.
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Note that although we have repeated scalar “uncertainties” for each individual filter
element, the filter time constants may differ in different filter elements, and the “uncer-
tainties” in different filter elements are therefore independent. For a plant of dimension

n x n we therefore end up with n repeated scalar uncertainty blocks for the IMC filter,
each of these blocks being repeated n; times?.

5.5.3 Independent Design Procedure

With the preliminaries above, we can now propose an independent design algorithm:

1. Find the matrices N,, expressing the p interconnection matrix M as an LFT
of A, and the matrix N,, expressing M as an LFT of A,. N, will depend on
the value of €%, and N, will depend on the value of e*, and we must therefore

recompute N, and N, for every new value of ¢* and e, respectively.

2. We get
pM) <1
if
0<e<e; Vi (5.18)
where €] solves
p(Ne) =1 (5.19)
Similarly, let e} solve pu(N,) = 1, giving the bound )
0<e<e;, Vi <=1/ei<¢ Vi (5.20)

3. From 2 and Thm. 9 we know that u(M) < 1 for the range of values of € which

at all frequencies is either within the range of values in Eq. (5.18) or within the
range of values in Eq. (5.20).

4. Choose a value of ¢ within the range of values found in point 3, and verify the
stability of M for this choice of €. 3

?One may use low pass filter of different orders in the different filter elements, in which case the
value of n; will differ for different filter elements.
3For any value of ¢ within the range found in point 3, the map under the Nyquist D-contour of

det(] — M A) will encircle the origin the same number of times. Thus, if M is found to be unstable in
Step 4, it is “robustly unstable”.
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If we are successful in Steps 3 and 4, the controller design is completed. Since we have
both real and complex perturbations, Step 2 requires p calculations for mixed r.ea.l and
complex perturbations [24], which is still a research topic. However, the existing p

software has proved to be acceptable in many cases.

5.5.4 Examples

Example 1 (continued)

Consider again Example 1 studied above. For this problem we choose .a second order
low pass filter in each element of the decentralized IMC controller. Since we hav.e a
2 x 2 system, this will add two real, repeated scalar perturbations, each repeated twice.
Solving Eq. (5.6), we obtain the results in Fig. 5.5. We see that values of ¢ between

10!

L 1 LN T )

Filter time constant bounds

0 i i ! 1 RS S S T :
1(%0'2 10! 10

Frequency

Figure 5.5: Filter time constant bounds for Example 1. Solid: €] (upper bound).
Dashed: 1/e? (lower bound).

3.7 and 6.6 are at all frequencies either below the upper bound or above the .lower
bound. Choosing € = 5 for both loops, it is easily verified that the system is nominally

(internally) stable. We have thus completed an independent design for this example.

Example 2

Here we consider Example 2 in [3].

0.66 —0.61 -0.005
6.79+1 8.4s+1 9.06s+1
— 1.11 —2.36 —0.01 (5_21)
G(S) - 3.255+1 535+1 7.095+1
34.7 46.2 0.87(11.61s+1)

815341 10.9s+1 (3.895+1)(18.85+1)

In this example only robust stability is considered, with independent, multiplicative

. . _ 5541 . . h t
input uncertainty with uncertainty weight Wi(s) = 0.13522t5. In [3] it is found tha
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independent design using Thm. 9 with T = H and T = S cannot be used to design a
robust controller for this example. Since the process is stable and only multiplicative
uncertainty is considered, this clearly illustrates the shortcomings of that method.

As for Example 1, a second order low pass filter is used in each diagonal element
of the IMC controller. This will add three real, repeated scalar perturbations, each

repeated twice. From Step 2 in the independent design procedure we obtain the results

]00 : L] T T TTTrTrr L T T TTT T T T rTTrrTTT T T Ll TTTrrTT T T T T
k= E__Allowable range forg; 1 E
=1 = L eSS R S e e sn —
2 g // PSa ]
§ ~ / \\\ 7
g 101 AN //\“// RN 3
8 2 foN N 3
o e / Ny S e
- ~ -
5 5
E 10.2 L L1 4 L T L S W L L1 i iy 1 Al 1 8114
10-3 10-2 10! 100 101 102
Frequency

Figure 5.6: Lower bound on filter time constant (1/e;) for Example 2.

in Fig. 5.6. From Fig. 5.6 we see that any value of ¢ larger than 0.55 will be acceptable.
Choosing € = 1 for all loops, we find that the system is stable. We thus find that the

system will be robustly stable for any value of ¢ > 0.55. In general we want € to be

small for a faster nominal response.

For both Example 1 and Example 2, Chiu and Arkun [3] were unable to pérform an in-
dependent design, using the procedure of Skogestad and Morari [26] This demonstrates
the importance of introducing as little conservatism as possible in the description of the

uncertainty associated with the controllers when performing an independent design.

Robust Decentralized Detunability in the IMC Framework

In the IMC framework, controllers are detuned by increasing the filter time constants.
We have thus found for Example 2 above that, the loops can be detuned independently
of each other, without endangering robust stability, provided all loops have ¢; > 0.55.
Thus the closed loop system in Example 2 with ¢ > 0.55 in all loops is found to be
robust decentralized detunable according to Definition 1. After removing the perfor-
mance requirement from Example 1 and redoing the calculations for robust stability,

we find that it is robust decentralized detunable provided ¢; > 0.16 for both loops.

A requirement for Robust Decentralized Detunability is that the individual loops are
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stable. A decentralized IMC controller as parametrized in Eq. (5.9) 'will make Fhe
individual loops stable, which in most cases is an advantage. However., m.te.gral action
is inherent in IMC controllers, and integral action and stability of the 1n<?1v1dual loop}s
is known to be incompatible with stability of the overall system for certain plants. -V\e
would like to emphasize Step 4 in the Independent design procedure, that nominal
stability must be checked explicitly for one value of € within the bonds f01.11.1d. The
Niederlinski Index criterion [17] gives a necessary condition for obtaining stab.lhty.both
of the individual loops and the overall system when there is integral action in all
channels. The Niederlinski Index criterion has recently been generalized t'o open loop
unstable plants [9]. Let the number of Right Half Plane (R~HP) poles in G be n.U
(including multiplicities), and the number of RHP poles in G be #iy. l\'Ic?te that in
general iy # ny. If all the individual loops are stable, a necessary condition for the

stability of the overall system is that

sign{N;} = sign{j—z—g%} = sign{(=1)""v*"} (5.22)

Thus, before attempting to perform an independent design, one should check that

overall stability can be achieved with integral action in all channels and having stable

individual loops.

Example 3

Consider the process .
5
_— 2052412541  20s2+4125+1 ()23)
G(s) = 6 2
1057+120+1 4057 +123+1

. . : r — 10541
with independent actuator uncertainty with uncertainty weight Wi(s) = 0.2 1.

Since this plant is stable and the Niederlinski Index is negative, Ny = —3.8. we know
that we cannot have the individual loops stable and at the same time achicve overall
system stability. Nevertheless, we proceed with independent design, and choose third

order low pass filters for both loops. We find that Step 3 in the independent design

procedure indicates that any value of € > 4 (approximately) will give robust stability
(figure omitted). Calculating g for € = 5 for both loops, we do indeed obtain a value
of p < 1 at all frequencies. The reason, which we find in Step 4 in the independent

design procedure, is that the overall system is nominally unstable. The p test merely
tells us that this instability is a robust property. For other cases, it may not be this

. . dividual Toons
easy to tell & priori that the overall system will be unstable with the individual loops

stable.
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5.5.5 Conclusions on Independent Design

We have proposed a parametrization of the class of allowable decentralized designs

which is based on the following four key steps:

1. Use an IMC controller design for each loop.
2. Select the filter time constant ¢; as the “uncertain” parameter.
3. Parametrize ¢; and e; = 1/¢; such that only positive values are allowed.

4. Obtain bounds on both ¢; and e; that guarantee robust stability /performance.

We have found that:

o The result of considering only decentralized IMC controllers with a specified filter
structure, is that the set of possible controller designs considered is much smaller
than the set of possible controller designs when trying to find bounds on S and

H, and the resulting bound are therefore less conservative.

¢ One can derive a bound on the IMC filter time constants which ensures that the
system is robust decentralized detunable.

It is critical that real perturbations are used for the parametrization of ¢; and e;.

# software capable of handling real perturbations is therefore needed.

The bounds obtained are common to all the filter elements, and it is not obvious how to
take advantage of the possibility of having differing filter time constants in the different
filter elements. However, one may easily use constant ratios between the filter time
constants in the independent design procedure (e.g. choosing €; = €*, €, = 10¢", etc.).

If independent design fails in the first step with our improved independent design
procedure, the “uncertainty” associated with the filter time constants can be reduced
even further by assuming all filter time constants to have fixed values relative to each
other (e.g. assuming all filter time constants in e/l filter elements to be equal). This may
be termed “simultaneous design”. For a plant of size n x n and low pass filters of order
ny, this will reduce the “uncertainty” associated with the filter time constants from
n real scalar uncertainties repeated ny times, to one real scalar uncertainty repeated
n X ny times.

The independent design procedure proposed here can also be applied to other types
of controllers, for example, one can find bounds on the ratio of gain to integral time
(k/T;) for PID controllers. However, decentralized IMC controllers have only one

tuning parameter, and are therefore preferable for our independent design procedure.
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One can easily use parameter optimization to find the filter time constants ¢; that
minimize p(M). Independent design has the advantage of providing a range of values
for which robust stability/performance is fulfilled, and can also guarantee that the

system is robust decentralized detunable.

5.6 Sequential Design

Sequential design of decentralized controllers was introduced in the control literature by
Mayne [14], but it is probably fair to say that it has always been the most common way
of designing decentralized controllers in industry. Sequential design involves closing and
tuning one loop at the time. This is the advantage of sequential design: each step in
the design procedure may be considered as a single-input single-output (SISO) control
problem. The loops that have already been designed are (assumed to be) kept in service
when closing and tuning subsequent loops. However, if the subsequent closing of other
loops makes a loop perform badly, the engineer must go back and redesign a loop that
has been closed earlier. Thus sequential design may involve iteration.

If the loops of a decentralized control system have been designed in the order
1,2,--+,k, k+1,--+,n without having to redesign any controller element, and stability
has been achieved after the design of each loop, sequential design will automatically
ensure a limited degree of failure tolerance: The system will remain stable if all the
loops k+1,---,n are to fail or be taken out of service simultaneously. Similarly, during
startup the system will be stable if the loops are brought into service in the same order
as they have been designed.

Sequential design of decentralized controllers has been addressed by several authors
(e.g. [2, 3, 14, 16, 23]). However, the only published procedure for robust (in terms of
pt) sequential design of decentralized controllers appear to be the one due to Chiu and
Arkun (3, 4].

5.6.1 The Robust Sequential Design Procedure of Chiu and
Arkun

The sequential design procedure of Chiu and Arkun [3, 4] involves performing the
independent design procedure of Skogestad and Morari [20] at each step in the design.
One loop is then closed with tuning parameters in accordance with the bounds obtained
from independent design. A new independent design is then performed with this loop
closed, and so on. If the independent design procedure fails (the bounds conflict and

Eq. (5.5) cannot be satisfied) in the first step, Chiu and Arkun propose to close a
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sufficient number of loops to enable independent design to be performed. No guidelines
arfz given for how to choose tuning parameters for these loops that have to be closed
prior to the application of independent design.

Another weakness with their design method is that the controller design for loop
k is done by finding bounds for all remaining loops k& — n, which guarantee robust
stability or performance if the controllers in all loops k — n fulfill the bounds. Closing
only loop k with a controller fulfilling the bounds found, will not necessarily mean that
the subsystem consisting of loops 1 — k is stable.
' The improved independent design procedure presented in Section 5.5 can readily be
m‘corporated into the sequential design procedure of Chiu and Arkun. However, even
with this improvement we may encounter all the problems mentioned above. Th,ere is
therefore a need for a robust sequential design procedure starting from one single loop

rather than a procedure involving a large number of loops simultaneously.

5.6.2 Problems Unique to Sequential Design

In sequential design, three problems arise which are not encountered using independent
design or parametric optimization:

1. The final controller design, and thus the control quality achieved, may depend

on the order in which the controller in the individual loops are designed.

2. The optimal design for the controller in loop k depends on the design of the

controllers in all the other loops, some of which are still not designed.

3. The individual elements of the plant transfer function G ;hay contain right half

plane (RHP) zeros that do not correspond to RHP transmission zeros of ¢

The conventional rule for dealing with problem 1 is to close the fast loops first, the
'reason being that the loop gain and phase in the bandwidth region of the fast l,oops
is relatively insensitive to the tuning of the slower loops. While this argument is
reasonable for loop k, output k may still be sensitive to the tuning of the controller in
a slower loop [, if u; has a large effect on y;.

We will attempt to reduce the severity of problem 2 by using simple estimates of
how the undesigned loops will affect the output of the loop to be designed.

We require the system to be stable after the closing of each loop, but it may not be
possible to close the fast loop (k) first, if the corresponding transfer function element
has a significant RHP zero that is not a transmission zero of the plant G. However,

such RHP zeros in the individual elements of G may disappear when the other loops
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are closed (as the RHP zero is not an transmission zero), and it may therefore be
possible to achieve fast control in loop k if the controller for this loop is designed at a

later stage. This is illustrated in Example 4 below.

5.6.3 Preliminaries

In the following, we will assume without loss of generality that the loops are closed
(and controllers designed) in the order 1,2,---,k, k4 1,---, and that the loop to be
designed is k. Let Gy denote the submatrix of dimension k x k in the upper left corner
of G. Tntroduce G = diag{Gr,gii}, i = k+ L,k +2,---,n, S = (I + GxC)™" and
H=I-5= GkC(I + GkC)‘l. We then have

S = §u(I + Budl)™ (5.24)

where By = (G— G’k)Ggl. When performing sequential design, one should keep in mind
that the effective transfer function from ux to yx can change when subsequent loops
are closed. This is due to the interaction between the loops. We see that rows 1 to k
of (I + ExH,)™! expresses how interaction affects loops 1 to k, and can be considered
as an input weight to Sy = (I + GiCk)™".

For the special case k = 1 we have Gy =G, S, = S and H=H (see Notation).
Recall that & and H consist of the closed loop transfer functions of the individual

loops.

Loop Gain Requirements for Setpoint Following and Disturbance Rejection

Consider the feedback system in Fig. 5.1a. Assume that the plant transfer function
G and the disturbance transfer function Gy are scaled such that the largest tolerable
offset in any controlled variable has magnitude 1 and the largest individual disturbance
expected has magnitude 1 at any frequency. Prior to designing the first loop we have
k=1and Gy = G = diag{gi;} in Eq. 5.24. Eventually all the loops will be closed
and at low frequencies we will have h; ~ 1Vi. We use this information to predict the
overall response in terms of the individual loop responses. Consider only frequencies
below the bandwidths of all the loops (~.- ~1Viand (I + Elff)"l ~ GG'I) and find

e=y—r=—Sr+8Gyd~-8Tr 4+ 8TGyd; w<uwp (5.25)

where I' = GG~! = {;;} is known as the Performance Relative Gain Array (PRGA)
[8] and TGy = {6} is known as the Closed Loop Disturbance Gain (CLDG). Thus

lyi;(jw)| gives the loop gain requirement at frequency w for a change in setpoint j
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to cause an acceptably small offset in output 7. Likewise, |6;x(jw)| gives the loop gain
requirement in loop ¢ for rejecting disturbance k. The PRGA and CLDG are introduced

in (8, 22], and a more detailed explanation of their uses can be found therein. Here we
will use the PRGA for two purposes:

1. Determine the order of loop closing (closing first loops that are required to be
fast).

2. Estimate loop gain requirements for counteracting interactions and disturbances
)

thereby finding an estimate of the complementary sensitivity functions (71,-’5) for
the loops that are not closed.

5.6.4 Sequential Design Procedure

The proposed sequential design procedure is outlined here. We assume that the design

specifications include a performance requirement of the type
d(W,S[I G4]) < 1 Vw

i.<'e. we want to optimize robust performance (for some specified model uncertainty) both
with respectﬂto setpoint changes and disturbances?. Note that S can be expressed
in terms of Sk as shown in Eq. (5.24). Obviously, we can only have a performance
requirement for an output where we have a controller. For this reason, define W, as
the matrix of dimension k x k consisting of the upper left corner of W,. Like:vise,

define Wy, as the matrix consisting of the first k rows of (I + EvH)I G4, using an
estimate of M. ’

Our sequential design procedure is then for step k to design a SiS'O controller that min-
vmizes sup,, & (WprSkWik). If model uncertainty is included the problem is to minimize

the structured singular value of some matriz, in which Wi, is used as an input weight
for performance.

Comments to the Sequential Design Method:

Step 1. When desjgning loop 1, we have Gy = G = diag{gi}; 71 =1,---,n. An
est.imate .of H = diag{h;} is needed for calculating (I + E H)™'. The loop
gain requirements given above in terms of the PRGA and CLDG are helpful for
this purpose, as will be demonstrated in the examples. W1 consists of the first
element on the main diagonal of W,,, and Wy, is the first row of (I+EH) I Gy).
For a plant of dimension n x n and with ny disturbances, the perturbation block

for performance will thus be of dimension (n+nq) x 1.

PEP -
If disturbances are not considered, an empty matrix can be substituted for Gq.
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Step k. Here Gy = diag{Gx,gi}; i=k+1,-- ,n}. Controllers for loops 1,---, k-1
have now been found, and My is estimated to be b = diag{Hk_l,h;}; 1 =
k,.--,n, where h; is the original estimate of the complementary sensitivity func-

tions for loop i. Here Wiy consists of the k first rows of ({ + E H)™'[I G4}, and

the perturbation block for performance is of dimension (n + ng) X k.

Step n. The controllers in all the other loops have been designed, and we therefore

have Wy, = [I G4}, and the perturbation block for performance is of dimension

(n + ng) xn.

Design Method for the Controllers in the Individual Loops

A choice has to be made as to what design method should be used for designing

the controllers in the individual loops. We will consider p-synthesis and parametric

optimization.

u synthesis is relatively fast, but it results in controllers with a high number of states.
The number of states in controller element ¢; will be equal to the number of
states in the p interconnection matrix for the design problem, plus the number of
states in the D-scaling matrices that are used to scale the interconnection matrix.
Controller element ¢; will become a part of the interconnection matrix when

designing subsequent loops, and the number of states will therefore accumulate.

Model reduction for the reduction of the number of states in the controller is
therefore necessary. In our experience, performance may suffer severely when

the number of states in each controller element is reduced to a number normally

considered acceptable for process control (typically three states or less).
Parameter optimization is relatively slow on the computer. The controller has to

be parametrized & priori, e.g. using a PID structure, and the achievable control

quality is dependent on the controller parametrization. However, the number of
states in the controller is fixed, and no model reduction is necessary. In this work

parametric optimization is therefore chosen for the design of the individual loops.

Tteration

Iteration (redesigning loops) is in general undesirable, both because it is time consum-

ing and because one is no longer guaranteed the limited degree of failure tolerance

normally associated with sequential design when one has to resort to iteration. One

objective with our procedure is that the estimate of Wiy (using the estimate of )
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Figure 5.7: Performance relati i

T ive gain array and uncertaint i X '
Element 13 is smaller than 102 at all frequencies. y weight for xample 2
should reduce the need for iteration. However, it will of course be possible to reduce

i . .
he value of y further using iteration, but the improvement has been small for the
examples we have considered.



118 CHAPTER 5. DESIGN OF ROBUST DECENTRALIZED CONTROLLERS

5.6.5 Examples

The sequential design procedure outlined above will be demonstrated in two examples.

Example 2 (continued)

Consider again Example 2 from [3], and add the performance requirement a(W,S) < 1.
This should be satisfied for all possible plants allowed by the input uncertainty. We

choose the performance weight

0.41'013 +1

Tel
The objective is to make the system as fast as possible in a robust sense, by minimizing
7. subject to prp <1 (upp meaning for robust performance).

We choose to pair on the diagonal elements of G as done previously. The PRGA
for this example is shown in Fig. 5.7, together with the uncertainty weight. PRGA
elements larger than 1 imply interactions, and the figure shows that there is severe
interaction from loops 1 and 2 into loop 3. The loop gain in loop 3 must consequently
be high at the frequencies where the feedback in loops 1 and 2 is effective. This means
that the bandwidth in loop 3 has to be higher than the bandwidths in loops 1 and 2.
The bandwidth in loop 3 will be limited by the input uncertainty. When attempting to
minimize 7, we must therefore minimize the difference in bandwidths between loop 3
and the two other loops. From Fig. 5.7 and Eq. (5.24) (with I substituted for Hy) we
also see that we want hy and h, to roll off quickly at frequencies beyond their respective
loop bandwidths, as this will reduce the interactions from loops 1 and 2 into loop 3 in
the frequency range above the bandwidths of loops 1 and 2. The initial estimates for

the complementary sensitivity functions for the individual loops are therefore chosen

to be of the form 1

hi(s) = ——(i 1)
Estimating h; to be a first order low pass filter would imply that loops 1 and 2 would
roll off more slowly beyond their respective bandwidths, and the interactions from loops
1 and 2 into loop 3 would therefore make it necessary to have a larger difference in
bandwidths between loop 3 and loops 1 and 2. The approach taken here to minimize
., may be considered somewhat naive: 7o is minimized (subject to g < 1) during
the controller design for each loop. However, as the same 74 in the end will apply for
all outputs, we choose w; in Eq. (5.26) to be consistent with 7., that is, we specify a
B = 1 — § such that |w,(jw)3i(jw)| < 1Vw. We thus choose w; = 1/7q. From the

PRGA'’s in Fig. 5.7 we see that |ya| & 5[va2] at frequencies around 1 and assuming

(5.26)
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.the magnitude of the loop gain in loop 3 to have a slope of —2 on a log-log plot this
indicates wy/w; = 2.2. Loop 3 is the fast loop, and considering the uncertainty weight
we therefore fix w3 = 1rad/min. It is clear from Fig. 5.7 that loop 3 must be clofed
first, and probably loop 2 second as there is some interaction from loop 1 to loop 2
especially at high frequencies. T

The controller parametrization is chosen to be

TIS+1 T23+1

Ci(8) = k

i\lote that this is not on the PID form since the pole in the last term is at a lower
requency (s = 0.1/T3) than the zero. This controller parametrization allows loops 1
and 2 to roll off quickly beyond their respective bandwidths, whereas the loop gain in

loop 3 can increase rapidly over one decade at frequencies slightly lower than the loo
bandwidth. '

Step 1: Loop 3. Wiy is the third row of (I + Eka)'l, and there is one 1 x 1 per-
turbation block for the input uncertainty, and one 3 x 1 perturbation block for
the performance specification. Iterating on 7, (and changing w; and w, corre-

spondingly, as explained above) yu = 0.992 is obtained for 7; = 8.5, and the
corresponding controller is

4.70s +14.0ls +1

c3(s) = 84.9
3(s) 4.70s 40.1s + 1 (5.28)

Step 2: Poo_}j 2. hjz is updated in Hk, and Wi, is the second and third rows of (I +
EyH,)™'. There is one diagonal perturbation block of diménsion 2 x 2 for the

input uncertainty, and a 3 x 2 perturbation block for performance. u = 0.998 is
obtained for 74 = 11, and we find

1.32s +10.186s + 1
1.32s 1.86s+1 (5.29)

c2(s) = —0.079

Step 3: Loop 1. Now all loops are included in the design problem (and there are no
disturbances present), consequently Wi; = I3, and there is one diagonal 3 x 3
perturbation block for the input uncertainty and a full 3 x 3 perturbation block
for performance. u = 1.000 is obtained for T4 = 18 and

0.385s +10.898s + 1

ei(s) = 0.04
(o) 0.385s 8.98s + 1 (5.30)

In comparison, the best decentralized controller found using simultaneous parametric

optimization with the same controller parametrization gave u = 1 for 7 = 16
o = 16.
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Compressor

Figure 5.8: Schematic outline of the process in Example 4.

Example 4

We consider the polypropylene reactor studied by Lie and Balchen [11, 12] and Hovd

and Skogestad [9]. A schematic outline of the process is shown in Fig. 5.8. There are

three inputs, three outputs and four disturbances. The process has a complex pair

of RHP poles, but no RHP transmission zeros. However, there are RHP zeros in all

elements of G except in gi; at frequencies close to the frequency corresponding to the
RHP poles. A more detailed description of the process and details on the scalings used
are given in the appendix, together with a state space description of the process. Only

input uncertainty is considered, and the uncertainty weight is

Ls+1
Wi(s) = wi(s)]; wils) = 0«2%—3

which reflects a steady state uncertainty of 20% and a maximum neglected time delay

of 0.5 minute. The performance requirement, in terms of the scaled outputs and

disturbances, is (W, S[I Ga]) < 1 at all frequencies and for all uncertainties allowed

by the uncertainty weight. The performance weight is given by
0.2s+1
Wy(s) = I =04
p(s) = wp(s) wy(s) 0.25
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We will use decentralized control with pairings as indicated in Fig. 5.8. This pairing
was found to be preferable in 11, 9], and corresponds to industrial practice. The PRGA
and CLDG for this process are shown in Fig. 5.9 and Fig. 5.10 respectively, together

with the uncertainty and performance weights. Fig. 5.9 shows that the interaction

is relatively modest in the bandwidth region, except for loop 3 where the interaction
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Figure 5.10: Closed loop disturbance gains, uncertainty weight and per_f;)rmance weight
for Example 4. Elements of the CLDG not shown are smaller than 1072 at all frequen-

cies.

between the loops causes increased loop gain requirement at low frequencies. From
Fig. 5.10 we see that loop 3 1s also most severely affected by the disturbances. Loop
3 must therefore be the fastest loop, and loop 1 is chosen as the second fastest loop

as it is somewhat more affected by disturbances than loop 2 at frequencies around 2
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[rad/min]. The uncertainty and performance weights give upper and lower bounds for
the bandwidths of the individual loops. We choose to spread out the bandwidths of
the individual loops between these bounds, and choose the following initial estimated

for the complementary sensitivity functions for the individual loops:

5 1

hy =" ——; :
0.04s +1

025 +1°

1
T 0.015s8 + 1

hy = ha
PT controllers, ¢;(s) = kI‘T’—I"sﬂ are used for all loops. Because of RHP zeros in individual
elements and subsystems, the design sequence for this example must be 1-2-3, i.e., we
are required to design the fastest loop last. In contrast to Example 2, the performance

weight for this example is fixed, and we therefore minimize x at each stage in the
design.

Step 1: Loop 1. Wy, is the first row of (I + E;H)7'[I Gy], and there is one 1 x 1
perturbation block for the input uncertainty and a 7 x 1 perturbation block for

performance. The minimum value of y found is 0.6363, and the corresponding
(unscaled) controller ¢;(s) = 2.31 - 105 - 0902041,

Step 2: Loop 2. H, is updated, using the controller found for loop 1. Wi, consists of
the first two rows of (I + E;f,)~1[I G,), there is one diagonal 2 x 2 perturbation
block for the input uncertainty and a full 7 x 2 perturbation block for performance.
The minimum value of x found is 1.09, and the corresponding controller is ¢;(s) =
4.99-107% . 54841

-

Step 3: Loop 3. Now all loops are included in the design prl'oblem, consequently
Gs = G and W, = [I G4]. There is a diagonal 3 x 3 perturbation block for
the input uncertainty and a full 7 x 3 perturbation block for performance. The

minimum value of x found is 0.89, and the corresponding controller is ca(s) =
—-1.27. 105 , 0131541

0.131s °

In comparison, with the best decentralized PI controller found using simultaneous
parametric optimization p improved only marginally, from 0.89 to 0.86. The best
multivariable controller found using p-synthesis gave u = 0.65.

The fact that a lower value of y is achieved after closing all loops that when closing
loops 1 and 2 only, illustrates that the design problem may become easier as more
loops are brought into service, and that the estimates of W;; used may be conservative.
However, it appears that the controller found using sequential design is relatively close
to the optimal for a decentralized PI controller.
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5.6.6 Discussion on Sequential Design

1. Sequential design using parameter optimization consists of much smaller opti-
mization problems than designing all loops simultaneously by parameter opti-
mization, and designing one loop at the time is therefore preferable. Also, pa-
rameter optimization for all loops simultaneously does not guarantee the limited
degree of failure tolerance that ‘s associated with sequential design. For the ex-
amples studied in this paper, the sequential design procedure presented in this
paper achieved a quality of control that is not significantly poorer than that

achieved using parameter optimization for all loops simultaneously.

9. The idea of using a simplified estimate of the effect of closing the other loops is
not new. Balchen and Mummé ({1}, Appendix C) derive an estimate the transfer
function between input u; and output y; when all the other loops are closed, using
an estimate of the complementary sensitivity function for the other loops. In [1]

this is used to find pairings for decentralized control.

Other uses can also be considered using the estimated transfer function from u; to
y; when the other loops are closed. For example, one may use the Ziegler-Nichols
tuning rules using this estimate of the transfer function. Since the Ziegler-Nichols
tuning rules are very simple, the loops can be redesigned with little effort, thus
reducing the problem that the initial estimate of the complementary sensitivity

function for the other loops may well be poor in the bandwidth region.

3. Tt is easier to estimate the complementary sensitivity function for the individual
loops than to estimate the controller in the individual loops. This holds especially

at low frequency, where control is almost perfect, and we know that i~ 1.

4. The idea of using an estimate of the effect of closing the other loops is not confined

to the Hy, or p framework, it may also be used with other norms, e.g. Ha.

5. Many multivariable controllers consist of simple pre- and/or post-compensator
and have the main dynamics in a diagonal matrix. The compensators are often
designed to counteract interactions at a given frequency (e.g. steady-state decou-
pling), and there will be interactions at other frequencies. Both the independent
design and the sequential design procedures in this paper may be used for design-
ing the diagonal matrix of such multivariable controllers. Note that decentralized
controllers are known to be relatively robust (but the performance may be poor
even nominally), when using non-diagonal compensators the issue of robustness

is more important [18].
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Appendix. Description of the Process in Example 4

The monomer feed enters into a stirred tank reactor containing a slurry of monomer,
catalyst, cocatalyst, polymer and some impurities. The reaction is exothermic, causing
some of the slurry components to vaporize. The vapor leaving the reactor is transferred
to an accumulator vessel. Heat is removed from the system by condensing parts of the
vapor leaving the reactor, before it enters the accumulator. Heat removal is adjusted
by adjusting a split range valve which determines what fraction of the vapor leaving
the reactor is passed through the condenser. The liquid in the accumulator is returned
to the reactor, and the vapor from the accumulator is compressed and bubbled through

the reactor slurry. This results in a 3 x 3 plant model G(s) with seven states. The

inputs and outputs are

Y1 - reactor slurry level (0 — 1)

Y2 - reactor pressure (gauge pressure in atmospheres)

Y3 - accumnulator liquid level (0 — 1). !
u; - monomer feed flowrate (kg/h).

uy - split range valve position (0 — 1).

ug - accumulator to reactor liquid flowrate (kg/h).
Four disturbances are considered:

dy - monomer feed temperature (°C)
dy - cooling water flowrate through heat exchanger (kg/h)
d3 - catalyst mass feed flowrate (kg/h)

d4 - recycle flow of unreacted monomer (kg/h)

We scale the outputs such that a magnitude of 1 for the scaled outputs correspond to
offsets: y; = 0.05, y, = 1.0atm and y; = 0.10. Likewise, the disturbances are scaled
such that a magnitude of 1 for the scaled disturbances correspond to: d; = 20°(",
dy = 10000kg/h, d3 = 3kg/h and dy = 1000kg/h.
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State space description of the plant in Example 4.

The description is given as y(s) = G(s)u(s)+Ga(s)d(s) = [C(sI—A)"'B+Dlu(s)+
[C(sI = A)~*Ba + Dald(s).

0 0 0 —3.08¢ + 03
4.30e — 04 —4.Tle — 01 0 0
3.49¢ — 01 0 —4.71e — 01 0
A = 0 0 0 —7.50e + 00
0 0 0 3.08¢ + 03
0 0 0 3.57e + 01
| 0 —3.81e + 02 0 —3.53e + 02
0 3.17e+03 1.00e+00 |
0 0 0
0 0 —1.00e + 00
0 8.49¢+00 —1.96e—02
0 —3.17¢+ 03 0
0 —6.77¢ + 01 0
0 0 —1.00€ + 00 |
1.00e + 00 0 1.00¢ + 00 |
0 0 0
0 0 0
B = —1.45¢ — 03 0 —4.79¢ — 04
0 0 —1.00e + 00
0 2.73¢ 4 03 0
| 0 0 0 ]
[0 0 0 —1.00e + 00 |
0 0 1.00e + 00 —9.15¢ — 04
0 0 0 —7.40e — 01
Bi = | 299 —05 0 0 0
0 0 0 0
0 —9.02¢ — 04 0 0
o0 0 0 o |
[ 7.49¢ —05 0 3.29¢ —05 1.23¢ — 02 0 0 0
C = 0 0 0 4.86e — 01 0 0 0
|0 0 0 0 539 — 04 5.75¢ — 03 0
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Chapter 6

Robust control of systems consisting of
symmetrically interconnected subsystems

M. Hovd S. Skogestad*

Chemical Engineering
University of Trondheim, NTH
N-7034 Trondheim, Norway

Abstract

This paper is concerned with robust contr.ol of syst.ems consilsltmg of :L Is:lrsm:::
interacting subsystems. The transfer function matrices for these sys e.m o
block circulant matrices. For Ho-optimal control, we show that.we can s1aspth)é
controller synthesis by considering two syste.ms of the same dmllenst;)n oo e
subsystems instead of the overall system. This leads to a (%ra.matlc re tjuc fon
dimension for systems consisting of many subsystems, en'«.Lbhn.g us tohop tlm o the
H,, criterion in n directions, and not only in the worst dlrectlonf ’{‘1 es rur(; e
singular value, , is shown to be independent of the structure of t 1e uncekind O}I:
for cases with single-input single-output (S1S0) subsys"cems a'nd only on.e ind o
uncertainty. For MIMO systems with subsystems of dimension n, X ‘;L}.l 0 cases
with several full or repeated uncertainty blocks, we are able to reducef d.e sy o
size from n - n, X n - n; to a block diagonal syst.em ‘w1'th two blocks o't 1énenf lhe
n, X 1. In the case of SISO subsystems, we derive limits on the mafﬁu 15 -e :e he
interaction within which the system is guaranteed to be decentralized integ

controllable (DIC).

il: .NO,
* Author to whom all correspondence should be addressed. E-mail: SKOGE@KJEMIL.UNIT
phone: 47-7-594154, fax: 47-7-591410.

130

6.1. INTRODUCTION 131

6.1 Introduction

Whenever possible, one should make use of any special properties of the system in
order to simplify control system analysis or design. In this paper we study systems
consisting of symmetrically interconnected subsystems, and show how controller design
based on Hy,, H, or 4 (structured singular value) may be simplified.

Systems consisting of similar subsystems in parallel which interact with each other
occur quite often in practice, for instance in distribution networks, when there are
parallel units (e.g. reactors, compressors, heat exchangers) in a chemical plant [14, 15]
or for electric power plants operating in parallel (13]. With » nominally identical

subsystems in parallel the n x n transfer matrix of the plant may be written

G(s)=| i(s) i(s) g(s) "-. : (6.1)

i(s) i(s) ... i(s) g(s) |
where the diagonal elements g(s) denote the transfer function of the individual subsys-
tems, and the offdiagonal elements 2(s) denote the interactions. For MIMOQ subsystems,
both g(s) and i(s) are matrices. We have not found any name for the matrix G(s) in
the literature, but we shall refer to it as a block parallel matriz in the following, as we

believe that transfer function matrices of the form of G(s) in Eq. (6.1) occur predomi-

N

nantly for nominally identical, interacting processes in parallel.

This type of system is termed a Symmetrically Interconnected‘;System by Sundare-
shan and Elbanna [17]. Sundareshan and Elbanna studies conditions for controllability
and observability of the system and solutions to the matrix Riccati and Lyapunov equa-
tions. They also give a methodology for the synthesis of a decentralized controller and
an alternative “almost decentralized’ control structure. No robustness analysis is per-
formed. Lunze [13] studies robust stability of symmetrically interconnected systems.
Lunze’s model formulation can take account of a variety of different uncertainties and
model errors. However, Lunze does not account for the structure of the uncertainty,

which can lead to very conservative results, as we illustrate in this paper.

6.2 Notation

In this paper, G(s) denotes the plant, which is assumed to consist of n subsystems

in parallel, each subsystem of dimension n, X ni. The plant G(s) therefore has the

T R
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Figure 6.1: Block djagram of a feedback system.

dimension 1 - 1, X - 1. The controller is denoted K(s), and S(s) = (I + G(s)K(s))™
denotes the sensitivity function. The reference signal is denoted r, the manipulated
inputs u, and the controlled outputs y. A block diagram of a feedback system is shown
in Fig. 6.1. Circulant and block circulant matrices are denoted C(s), and parallel
and block parallel matrices are denoted P(s). The Laplace variable s will often be
suppressed to simplify the notation. Eigenvalues are denoted X, with two subscripts: a
letter referring to the matrix of which X is an eigenvalue, and a number to distinguish
the different eigenvalues of a matrix. Thus Axi is the first eigenvalue of the matrix X.
The blocks on the diagonal of a matrix that is transformed to be block diagonal (see
Eq. (6.22)) are denoted ~; subscripts are used for 7 in the same way as for A. The
matrix M is in general a matrix consisting of blocks which are block circulant, but M
is also used for the matrix in the design objective, i.e. we want to optimize the H,
norm or structured singular value of M. The matrix N is the matrix in the design
objective (M) expressed as a linear fractional transformation (LFT) of the controller

K. The matrix A means that a matrix A has been transformed, such that it consists

of blocks which are block diagonal.

6.3 Examples of Processes Consisting of Symmet-
rically Interconnected Subsystems

It is quite common to have units in parallel, either because one single unit would be
too large or to add flexibility. Typical examples of parallel units include reactors, heat
exchangers and compressors, and some examples may be found in the books of Shinskey
(14, 15]. Similar examples are found for clectric power generation plants [13].
For a system consisting of SISO subsystems, we define the degree of interaction at
steady state
a(0) = (0)/9(0) (6.2)
Example 1. Flow splitting. One example is the control of flow in parallel streams
from a single source as shown in Fig. 6.2 ([14], p- 201), where the manipulated inputs
are the n valve positions and the controlled outputs are the n flows. Opening valve

1 causes ¢; (flow 1) to increase and ¢ (flow 2) to decrease because of the consequent

6.3 EXA
MPLES OF PROCESSES CONSISTING OF SYMMETRICALLY.

—"@__’ q
E ?} —e= {3

S

Figure 6.2: Splitting into parallel streams.
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Figure 6.3: Cooling system for parallel reactors (Example 2).
form 2 -
1 a a a
al a ... a
i KO (6.4)
= 1 R
G(s) el K a
a
e a ... @ 1

where k and a are real constants and 7 is the time constant for holdup in each of the
reactors. Based on physical arguments we have

—1/(n-1)<a<1 (6.5)

The lower limit is obtained by considering the case with no precooler and assuming
constant total flow (recall the parallel flow example above). The upper limit is obtained
by considering the case with no evaporator, and thus no heat exchange taking place
in the tanks. In this case the cooling streams are split and then recombined without
changing their temperatures, and an increase in any cooling stream will affect all reactor
temperatures equally and we have a = 1.

Note that G(s) is singular both for a = —1/(n — 1) (rank(G) =n —1) and for a =1
(rank(G) = 1). Obviously, when G is singular, independent control of the controlled
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outputs is not possible. An example of this is found in Braatz et al. [2], who consider

the cross directional control of a coating process for which a = —1/(n—1).

We have searched for other examples of parallel processes with a outside the bounds

given by Eq. (6.5), but have been unable to find any.

In many cases the individual subsystems may have several inputs and outputs, for ex-
ample, if there are reactors in parallel for which one wants to control both temperature

and some concentration(s), using cooling and flow(s) as manipulated variables.

In the example above the processes were parallel but the control objectives (e.g. to keep
the individual reactor temperatures constant) were otherwise decoupled. There are also
interesting examples of control of parallel processes where the control objectives are
coupled. For example, consider again the stream split example in Fig. 6.2 and assume
the control objective is to keep the total flow 2i ¢ at a fixed value g, subject to the
constraint that the individual flows should be equal, that is, @1 =¢q¢=---=gq, The
requirement of equal flows may be needed, for example, to avoid overheating of tubes
in a burner with parallel passes ([15], p. 104). Since the equal flow objectives yield
n — 1 objectives of the form ¢, — ¢; = 0, there are a total of n control objectives which
may be collected in the output vector y, but note that the overall transfer function

from inputs (valve positions) to outputs y is no longer an example of a symmetrically
interconnected system as defined in Eq. (6.1).

6.4 Results from Matrix Theory

6.4.1 Systems with SISO Subsystems

Consider the parallel matrix P, which is a complex square n X n matrix of the form

1 a a a
a a a
P=k|la a 1 . (6.6)
.o a
[ a a a 1_

where both a and k in general can be functions of frequency.

T
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Classification of the Matrix P

The parallel matrix P is a symmetric matrix which belongs to a subclass of circulant

matrices. The general form of a circulant matrix C is:

[ 5] c; €3 ** Cqn
Cn € € r* Cp-l
C=|¢i-1 & €1 '+ Cn-2 (6.7)
L C2 c3 €4 ' O
i = =¢, = = C. Th
It can easily be seen that if ¢ = kand ¢z = €3 = -+ = ¢ = ak then P = C e

results in this section on circulant matrices are from [1] and [5]. Circulant matrices

belong to the class known as Toeplitz matrices, as all elements along any one diagonal

are identical.

Properties of the Matrix P

Eigenvalues, Eigenvectors and Singular Value Decomposition. Introduce v; =
exp(Q—"—(l_—l)i) where i = /—1 and [ = 1,---,n. That is, v is a root of the equation
n

p™ = 1, and we have
l+v 402440 =0foro#1 (6.8)

From the theory of circulant matrices we know that the eigenvalues of the circulant

matrix C are given by:
Aot = €1+ cav + o] + o+ Cav] ! (6.9)
This means that the parallel matrix P has eigenvalues Ap; given by the formula:
)\pl/k=1+a(vl+v,2+---+vf_1) (6.10)

From Egs. (6.8) and (6.10) we see that the matrix P will have at most two distinct

eigenvalues’ which are given by
Apr = (1+ (n—1)a)k (6.11)
Apz=Aps=---=Xpn=(1—a)k (6.12)
The eigenvector corresponding to Apy is:
my=[1vv} T (6.13)

1This is a key property that we make use of in this paper.
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n F, R,
1 1 1 1
- 2 1 1
" a [ 1 -1 J V2 [ 1 -1 |

1 1 1 1 V2 0
n=3 |21 —0.5(1+iv3) —0.5(1—iV3) =1 -0.5V/2 0.5V6
1 —0.5(1 —4v3) —0.5(1 +iv/3) 1 —05v2 —0.5V6

11 1 1 11 1 1

n=4 |t - -1 11 -1
11 -1 1 -1 1 -1 1 =1

1 i -1 —i 1 -1 -1 1

Table 6.1: Alternative choices for the eigenvector matrix for n x n parallel matrices.

Since vy can take n distinct values, P will always have a complete set of eigenvectors,
and will thus always be diagonalizable. In fact, all circulant matrices of the same order
have the same eigenvectors, and are therefore diagonalized by the same eigenvector

matrix, the Fourier matrix. The Fourier matrix of order n is given by [5]

1
FH = %[ml mq -« mn] (614)
F'is unitary (I'F¥ = FHF = I), and we have for any circulant matrix C
C=F"AcF;  Ac=diag{)c1, -, Acn) (6.15)

Furthermore, we have for the singular value decomposition C = ULoV¥ that the
singular values o; =| \; |, and V = F¥, the eigenvector matrix, and U = FHD, where

D= diag{dI}, d] = /\l/ | /\1 |= /\1/0'1.

Diagonalization of Parallel Matrices Using Real Eigenvector Matrices. In
general, the eigenvectors corresponding to repeated eigenvalues are not unique. Thus,
for parallel matrices, any linearly independent set of n — 1 vectors arising from linear
combinations of mg,---,m, can be used instead of ma,---,my,. We may make use of
this property to obtain real eigenvector matrices, R, for parallel matrices. In the theory
that follows it will be required that R is orthogonal. In Table 6.1 we show the Fourier
matrix and one choice for the corresponding real orthogonal eigenvector matrix R for
n =2,n=3and n = 4. For diagonalization one has Ap = XPX~! where X = F
(Fourier matrix) or X = R (real, orthogonal matrix).

For systems consisting of symmetrically interconnected subsystems, R may be used
instead of F' throughout this paper. Furthermore, for realization of controllers we

require the use of the real matrix R, as will become clear below. When generalizing
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the results of this paper to symmetric circulant plants, we have to impose further
restrictions on R in addition to requiring it to be a real, orthogonal matrix. The choice

of R for symmetric circulant matrices is explained in a later section.

Combinations of Parallel Matrices

If A and B are parallel matrices of the same dimension and k; a scalar, then AT,
A# kA + kB, AB, ¥ k; A’ are parallel matrices and A and B commute, that is,
AB = BA. Note that A™! is also a parallel matrix.

For example, if a both the process G and the controller C are parallel transfer
function matrices, the sensitivity function 5 = (I + GC)™" and the complementary

sensitivity function H =1 — S are both parallel matrices.

Matrices Consisting of Circulant Blocks

Consider a matrix M consisting of my x m2 blocks, each block being a circulant matrix
of order n. We shall call the class of such matrices C By myn - The many results from
the theory of circulant matrices do not hold for matrices consisting of circulant blocks.

However, we can find some results which will prove helpful.

e If M, and M, both belong to the class CBm; myn and a; and a, are scalars. then
a1 My + a; M, also belongs to the class C B, msn and J\Jf’ belongs to the class
CBumym,m- 1 Mi belongs to the class CBum,mym and Ma belongs to the class
C By then My M, belongs to the class C Bm,myn-

e For “diagonalization” we have
My = (Iny ® Fo)Mi(Im, ® Fu)" (6.16)

where ® denotes the Kronecker product, and M is a matrix with the same block
structure as M, each block in M, being the (diagonal) eigenvalue matrix of the

corresponding block in M. This is illustrated by an example. Consider

C C
M= G2 G (6.17)
Cs Cs Cs
where Ci,Ca, - - -, Ce all are circulant matrices of order n. M, then belongs to

the class C By 3n. We then have

M, = (I2®Fn)HA~11(13®Fn) (6.1%)
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H

I FnH — F,, 0

(® ) { 0 FH (6.19)
[F. 0 o

LOF) = ;

(Is ® Fy) 0 F, 0 (6.20)
[0 0 R,

Ml _ Aci Aps Acs

where Ag; is the (diagonal) eigenvalue matrix of block C;.

6.4.2 Systems with MIMO Subsystems
Block Circulant and Block Parallel Matrices

The matrix C in Eq. (6.7) is block circulant if €1,C2, -+, ¢y all are blocks of dimension

n X . o .
o X n;. For such a block circulant matrix C' we can generate a block diagonal matrix

C=F®L,)C(F.®I)" (6.22)

where C = dj -
re diag{v1,72, -, 7}, and 71,72, -+, 7, all have dimension no, X n; and can
be calculated from the blocks of C' using 1

e C1
ez _ \/_F H Ca

— ( ni'y, @ Ino) . (623)
Ten &

Proof: Follows from the proof of Theorem 5.6.4 in [5], by setting By = I, Axy1],
) — dnoitk+14n,-

I == _— s —

fes=cy = ¢, then we term the matrix C block parallel, and we have
Yor = e+ (n—1)c (6.24)
Yc2 = Y= =Ya=C —C (6-25)

In thi . .
n this way, a symmetrically interconnected system C consisting of n units in parallel

can be decomposed into one distinct subprocess ¥c1 and n ~ 1 equal subprocesses ~
C2-

Combinations of Block Circulant Matrices
If Ais a block circulant matrix with n x n blocks, each of size n, x n; we have

H T :
e A" and A” are block circulant matrices with n x n blocks of size n; Xn
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o If A1 exists, it is a block circulant matrix.

e If B is block circulant, consisting of n x n blocks of size n; X n, then AB 1s a

block circulant matrix with blocks of size n, X ny.

e In general, block circulant matrices do not commute, AB # BA.

Matrices Consisting of Blocks which are Block Circulant

Consider a matrix N consisting of m, x m, blocks, each block being a block circulant
matrix with n x n subblocks. Subblocks belonging to the same column of main blocks
must have the same number of columns. Let nf denote the number of columns of the
subblocks in column ¢ of main blocks. Likewise, subblocks belonging to the same row of
main blocks must have the same number of rows, and we use nj, to denote the number

of rows in the subblocks of blocks in row r of main blocks. To illustrate, consider

M= Mll M12 (6.26)
Mpn Mz

Let My, Myy My and My, all be block circulant matrices consisting of n x n subblocks,
and let the subblocks of M;; have dimension n¥ X n. Then n!! = nl? = n}, n2' =
n22 = p2, n!' = n?' = n! and n!? = n?® = n}, but n; may be different from n?, and n}
may be different from n?. Introduce the matrices

Fo = diag{F,® I} (6.27)

Fr = diag{F. ® In¢} (6.28)
We then have that N can be “diagonalized” by the following transformation
N = FeNFRY (6.29)

where N is a matrix consisting of blocks which are block diagonal, where each block

of N can be calculated from the corresponding block of N using Eq. (6.23).

6.5 Realization of Full Block Parallel Controllers

In the following we will consider the use of block parallel controllers for the control
of plants described by block parallel transfer function matrices. We assume that the
controller design has resulted in that the distinct subprocess 7a1 of the plant G is
controlled by the controller yx; and the n — 1 identical subprocesses are controlled

by n — 1 controllers all equal to yx2, and that k1 and k2 both have dimension
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ni X n,. The controller K will then be a block parallel matrix with diagonal blocks
ki = [vK1 + (n — 1)7K2]/n and offdiagonal blocks kij = [yx1 — vx2]/n.

In order to not increase the number of states in the controller unnecessarily, the
controller should be realized as

I{(S) = (Rn ® In.’)Tf((s)(R'n ® Ino) (630)

where K = diag{yx1,7k2, - ,Vk2} and R, is the real eigenvector matrix for a parallel
matrix of dimension n x n (recall Section 6.4.1 and Table 6.1). A block diagram for
K(s) is shown in Fig. 6.4.

Figure 6.4: Realization of a full block parallel controller K.

6.6 H, Control

In this section we will use H,, theory for analyzing robustness of control systems
and for synthesizing controllers meeting predefined robustness criteria. Throughout
Sections 6.6 and 6.7 we will assume that the plant can be described by block parallel
transfer function matrices. We will also assume that all performance requirements are
the same for all subsystems. The uncertainties are assumed to be the located in the
same positions and to have the same magnitudes for the different subsystem, as the
subsystems are designed to be nominally identical. The uncertainty and performance
weights are therefore also assumed to be block parallel matrices.

All H, syntheses, p-calculations and y-syntheses in this section are performed with
MuSyn Inc.’s y-Analysis and Synthesis Toolbox for MATLABTM.

6.6.1 Optimal H,, Control

Hoo control theory can be used for designing controllers which ensures that the closed

loop system satisfies singular value loop shaping specifications. For example, the stan-
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dard “mixed sensitivity” Ho problem is to minimize

WoH
WpS

where S = (I + GK)™ is the sensitivity function and H = GK(I + GK)™' the com-
s corresponds to simultaneously trying to optimize

1Ml = (6.31)

(o]

plementary sensitivity function. Thi
robust stability with respect to output uncertainty and nominal performance.

consider the design of a controller in order to minimize

Problem: In the following,
(6.31)). We

the H,, norm of some matrix M (not necessarily of the form used in Eq.

assume that the plant G(s) is a block parallel matrix consisting of n units in parallel,
we assume that all weights are

each block of G(s) having dimension 7, X n;. Likewise,
ension of the

block parallel matrices with blocks of dimension compatible with the dim

blocks of G(s). Furthermore, we assume that the matrix M consists of m, x m, blocks,
each block of dimension n - n}, x n - n¢ (e.g. for the matrix M in Eq. (6.31) we have
m, =2 and m, = 1).

Theorem 10 The He.-optimal controller for this problem can be obtained by designing

two Ho-optimal controllers for the two systems corresponding to the “plants” va and

YG2-

Proof:

1. Express the matrix M(s), whose Ho, norm is to be minimized, as a Linear Frac-

tional Transformation (LFT) of the controller K(s) (see Fig. 6.5a).
M(s) = Nui(s) + Niz(s)K(s) [T = Naz(s)K (8)] 7 Naa(s) (6.32)
Ny1, Niay, Nay and Noz consist of blocks which are block parallel.

9. Premultiplication or postmultiplication of M(s) by unitary matrices will not

change the singular values, and will thus leave the Ho, norm unchanged (Fig. 6.5b).
We use the matrices F and Fr defined in Egs. (6.27) and (6.28)

M = FMFRY (6.33)

= Nu+ NpK [I - an\’]—l Ny (6.34)
Ny = FeNoFrY (6.35)
My = FeNup(Fa® )" (6.36)
Ny = (Fa® Tng) N Fc” (6.37)

Ny = (Fa® In,)Naa(Fu ® L)Y (6.38)

6.6. H,, CONTROL ”
3

’I:hus,~since~N11, Nu: Nj1 and Ny, all consist of blocks which are block parallel
Ni1, Niz, Ny and Ny, all consist of blocks which are block diagonal, the first
subblock in each block being distinct and the other n — 1 subblocks equal

vV —= M(s) F—> W

(2) II

~
Fapn
¥
S
A

b)) L=

FI . . 13 I
Klgure (:).5. (a) Expressing M (s) as a linear fractional transformation of the controller
(s). (b) Pre- and postmultiplication of M(s) by unitary matrices.

Tf:s implies that the controller design has been decoupled into n non-interacting design
;u prob{ems, one of these design subproblems being distinct, and n — 1 design subprob-
ems being equal. Thus, the controller K can be designed by designing one controller

for the distinct subproblem, and one controller for one of the n— 1 subproblems. QED

Remark 1: To see why the structure of N given in Egs. (6.33)-(6.38) implies that

the controller synthesis problem can be decomposed into n non-interacting synthesis

——
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ay bl a -‘
as b2 €2
as b2 €2
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g h i )
92 ha .
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1 Permutations

a b o
dy e1 fi
g ki o0
a; by o
d2 €2 f2
g2 hy 12
a; by ¢
dy e fa
g2 hy 12

L

Figure 6.6: Top: N for a case with 3 x 3 main blocks. Bot.tom: N permuted to have
the n independent synthesis subproblems along the main diagonal.

for a case where N has 3 x 3 main blocks. After permutations (row and column
) we get the matrix at the bottom of Fig. 6.6, from which it is apparent

interchanges ndent subproblems, one distinct

that the controller design problem consists of n indepe

and n — 1 identical.

Remark 2: The same also holds for the H,-optimal problem, since the Frobenius
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norm is also unitarily invariant.

Remark 3: The controller K in Fig. 6.5 will be block diagonal, the first block on the
diagonal being distinct and the n — 1 other blocks equal. Consequently,

K(s) = (Fa ® I) K (s)(Fa ® In,) = (Ra ® I,)TK (s) (R ® I,,) (6.39)

will be a block parallel matrix. We see that instead of designing a n - n; x n - n,
dimensional controller for a system with a n - n, x n - n; dimensional plant, we can
design two controllers of dimension n; x n,, each controller designed for a system with

a plant of dimension n, x n;.

Remark 4: Note that this corresponds to optimizing the H,, objective for both the
systems corresponding to vg; and vg2. f me =n; =1 or m, = n, = 1, all directions
in the He, criterion are optimized. In contrast, the controller Doyle et al. [9] terms
the “central solution” to the H,, synthesis problem only optimizes the wors! direction
in the overall H,, criterion. In general, the solution to the H., controller svnthesis
problem is non-unique [9], since many controllers will achieve the optimum /,, norm
in the worst direction, while doing equally well or better in the other directions. How
to minimize the peak values of the singular values corresponding to directions other
than the worst direction is a line of research, called “super-optimal” H,, control (10].
We have here found a class of problems where the solution to the super-optimal 1

control problem is very simple.

Remark 5: The interconnection matrix N(s) in Fig. 6.5b has the same number of
states as N(s) in Fig. 6.5a. The number of states in the controller A" will therefore
equal the number of states in a controller based on regular H,, synthesis. That is,
for this class of problems super-optimality does not require a controller with a higher

number of states.

Example 3. Consider the process

1 —0.25s + 1 0.75s
Gls) = ot : (6.40)
(20s + 1)(100s + 1) 0.75s —0.25s 41
with eigenvalues
0.5s +1 —s+1
/\Gl(s) = AGQ(S) = (G.”)

(20s + 1)(100s + 1)’ (205 + 1)(100s + 1)

We want to minimize the Hy, norm of M in Eq. (6.31), with weights Wo(s) = wols)l:

wo(s) = 0.20?5343::—] and Wp(s) = wp(s)I; wp(s) = 0.52L, Using the approach outlined

above we may solve this problem by considering the two SISO “plants™ Ag; (s) and
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Ag2(8). Heo synthesis for these two “plants” gave H,, norms of 0.56 and 0.89, respec-

tively. State space descriptions of the resulting “controllers” Ax1 and Ak are given in 1 . . (a)
the Appendix. The “controllers Mgy and Mgz may be combined into a regular controller
with eight states using Eq. (6.30). Conventional Hy synthesis for the overall system
also gave a controller with eight states which achieved a Ho norm of 0.89. However,

0<8"

in this case the peak of the singular value corresponding to the “good” direction was 0:

0.73 (for the central solution), whereas our controller gave 0.56. In Fig. 6.7 is shown 04
the responses to setpoint changes for the two cases. We also show the response for '
an inverse-based controller with gives peak values of 0.89 for both singular values (see
section on Inverse-based controllers below). When the setpoint enters in the “bad”
direction, the three responses are indistinguishable, whereas when the setpoint enters 0

in the “good” direction it is clear that the controller synthesized using our method is

Output

superior and the inverse-based controller is worst. -0.2
Example 4. Consider the 8 x 12 plant 04+
o 2 4 6 8 10 12 14 16 18 20
Gi(s) Ga(s) Ga(s) Ga(s)
G G G G
Gy = | ) G 2(s) Gals) (6.42) 1
GQ(S) GQ(S) Gl(S) G2(S)
Ga(s) Ga(s) Ga(s) Gils) 08
Reference signal [1] 1
where Gy(s) and Ga(s) are transfer function matrices with two outputs (n, = 2) and 0.6F !
three inputs (n; = 3) with state space realizations Gi(s) = Ci(sI — A)7'Bi + D, |
1=1,2, and 04r / ‘
4 j 4 ,': —— Synthesis based on system decomposition
—0.05 0 0 8 02 / / - E&i’ntral ts)olut(ilon to H-infinity synthesis |
r o T erse base
A = A= 0 —0.1 0 . _’; ; controller
0 0 —-0.2 1
239 3 -2 1 0.2}/
Bi = |69 4|; Bo=|-2 10 ' |
8 0 1 - 04 |
0 2 ‘ : : : ' ' ' -
o, = |08 000 0 2 4 6 8 10 12 14 16 18 20
0.45 —0.20 2.40 Time
-1.25 0 0 Fi
D, = Di= [ } igure 6.7: Response of the closed loop system to setpoi ing i
“l o 1m “ . ‘ point ch
0 -125 —-1.25 bad” (a) and “good” (b) directions in Example 3. anges entering in the
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The design criterion is to minimize the infinity-norm of

W,GK(I + GK)™
M=| W(I+GK)™ (6.43)
W.K(I + GK)™

with weights

4s+1
= — ]
W a1 °
_ 0528l 0
WP = dla’g 0 0‘50.(1)3;:{:31
I/Vu = 0.1]12

We decompose the plant G(s) into ye1 and Y62 = Y63 = 164> each of dimension 2 x 3,
using Eq. (6.22), and design one 3 x 2 controller v for the system corresponding to
vc1, and one 3 x 2 controller Yx2 for the system corresponding to vg2. For both these
design subproblems a Hy-norm of 0.91 was achieved, and the same Ho,-norm of 0.91
was achieved for the overall system after calculating the controller K from 4, and yx2
according to Eq. (6.30). The best value of the Ho,-norm achieved when .attcmpt ing Hc.o
synthesis on the overall plant was 0.99. This demonstrates weaknesses in the synthesis
software we have available?, and that controller synthesis becomes simpler when the
system is decomposed into problems with fewer states and of lower dimension. [
synthesis for the overall plant gives an interconnection matrix with 28 Stat,c:& whereas
the number of states in each synthesis subproblem is 7 after decomposition ol the
plant. The number of states in the final controller is 28 for both cases. State space

descriptions of the “controllers” yx1 and k2 are given in the Appendix.

6.6.2 Inverse-based Controllers

Consider a parallel plant G(s) consisting of SISO subsystems, and the special case

when the following conditions hold:
Cl. Mg and g have the same RHP zeros.
C2. All weights are scalar times identity matrices.

(3. G and K only appear as products of each other in the problem statement (as in

Eq. (6.31))

2The p-tools and Robust Control toolboxes for MATLAB.
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C4. The plant eigenvalues have the same pole excess.

Then if we design a controller Ak, for the plant eigenvalue Agy, the H,, norm that was
obtained for the SISO “system” corresponding to Ag; can be obtained for the overall

system by choosing
Akz =+ = Akn = Ax1Ac1/Ac2 (6.44)

The result will be an inverse-based controller of the type

K(s) = k(s)G™(s) (6.45)

thus effectively transforming the n x n H,, design problem to n identical SISO prob-
lems. Condition C1 ensures that any RHP zeros in the plant eigenvalues cancel in
Eq. (6.44), such that the controller is stable. If Ag, has a larger pole excess than
Ag1, calculating Agy from Eq. (6.44) may result in an improper controller which is
impossible to realize. Condition C4 ensures that this is not a problem. The conditions
C1-C4 ensure that the same H,, norm is achievable for the subproblems corresponding
to Agi and Agz. Thus, the H,, controller will be unique if the solution to the SISO
subproblems corresponding to Ag; and Ag; are unique. Whereas condition C2 will
normally hold for SISO subsystems in parallel, condition C3 may well be violated, e.g.
if M contains a term like W, K (I+ GK)™* corresponding to a bound on the closed loop
transfer function from reference signal to manipulated variables.

There may exist an inverse-based controller achieving the optimal Hs, norm also
when conditions C1-C4 are not fulfilled (or when the plant consists of MIMO subsys-
tems), and in many cases this inverse-based controller can be found by first synthe-
sizing the controller corresponding to the most difficult system direction and then use

Eq. (6.44) to find the controller corresponding to the other direction. For such cases
the H.-optimal controller will not be unique.

Example 5. To illustrate, consider Example 2 in Section 2, with four reactors in
parallel (n = 4), and choose the values k = 1, 7 = 100 and a = 0.7. From Eq. (6.11)
and Eq. (6.12) we then have that the plant eigenvalues are

3.1 0.3

Aoy = ———- -
ST 100s+10 %7 100s +1

We use M as in Eq. (6.31), with weights Wp = wpl; {wp = 0.5} and Wo = wol;
{wo = 0.2%5’—;%}. Thus conditions C1-C4 are all fulfilled. The magnitude of the
weights wp and wo are shown together with the magnitude of the plant eigenvalues
(=singular values) in Fig. 6.8.
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Figure 6.8: Magnitudes of plant eigenvalues A1 and Ag2, performance weight wp,
output weight wo and first controller eigenvalue Ak, for Example 5.

An H..-optimal controller Ag1 was designed for the SISO “plant” Ag according
to Eq. (6.31) (with weights wp and wo substituted for Wp and Wo, respectively),
achieving a Ho, norm of 0.50. The magnitude of Ak is also shown in Fig. 6.8, and
a state space description is given in the Appendix. After calculating Axz from AK1
according to Eq. (6.44), and combining the two controllers Ax1 and Ao according to
Eq. (6.30) to find the controller K for the full plant, we found that the same Ho,
norm was achieved for the full system as for the SISO case. Furthermore, we found
numerically that the controller K was the same as the controller resulting from He,

synthesis for the full 4 x 4 plant.

Example 3 continued. We see that condition C1 above is violated, as Ag2 has a zero
at s = 1, whereas Ag; has no RHP zero. Calculating Ak, from Ak using Eq. (6.44)
gave an internally unstable closed loop system. Stability of the closed loop system was
achieved when calculating Ay from Ago using Eq. (6.44), but in this case the peak

value of the singular value was 0.89 in both directions.
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6.7 p-optimal Control

Consider the feedback system in Fig. 6.9. Assuming that M and A are stable, the
structured singular value (6], , is defined such that p~'(M) is the smallest \,/alue
of the maximum singular value of A for which the system (I + MA)~! can become
unstable. Note that the value of (M) depends on the structure of the perturbation

block A. In Fig. 6.10 is shown an example of a system that can be rewritten in

'

A

— M

Figure 6.9: M-A structure for u calculation.

S Ly Gy Py L BN

vy =<

Figure 6.10: Block diagram of plant with uncertainties.

the M-A structure of Fig. 6.9 (after neglecting external input r and external output
y). Ay and Ap are blocks representing the uncertainties in the system, and for this
example A = diag{A;,Ap}. The weights W; and Wy normalize the uncertainties
such that Ay and Ap have a maximum singular value less than or equal to unity
at all frequencies. Thus the system will remain stable for any allowed perturbation
provided the system is nominally stable (i.e. the system is stable if the uncertainty
blocks are removed) and p(M) < 1. This property is termed Robust Stability (RS).
Robust Performance (RP) may also be addressed in the ;¢ framework, by considering
an equivalent stability problem of increased dimension. We will use a performance
specification of the type (WpS,) < 1,Vw, where S, is the worst sensitivity function
made possible by the uncertainties and Wp is a performance weight. This performance

specification is included in the i framework by closing the loop from offset to reference
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signal with the performance weight Wp and a full perturbation block Ap, and using
A= diag{A], Ao, Ap}

It is possible to calculate (M) exactly only in some special cases, but reasonably tight
upper and lower bounds are readily available. We will use the following properties of

7
p(M) < p(M) < 5(M) (6.46)

p(M) < &(DiMD) (6.47)

Eq. (6.46) holds for any complex valued perturbation A, but g may be lower than the
lower limit for real perturbations. D; and D, are real positive matrices with a structure
such that D;'AD; = A. For example, D = dI if A is a full matrix, and D is a full
matrix if A = 61 (repeated scalar uncertainty). If all blocks in A are square, D; = D;.
The upper bound on the value of x in Eq. (6.47) is usually quite tight (7], and the
standard D-K iteration procedure for p-optimal controller synthesis used in MATLAB
involves finding the controller for which the upper bound in Eq. (6.47) is minimized

[8]. D-K iteration involves two steps:
Step 1: Find D-scales (D;, D;) by computing the upper bound on g in Eq. (6.47).

Step 2: Scale the controller design problem with the D-scales found in Step 1, and

design an Ho.-optimal controller for the scaled design problem.

Although convergence is not guaranteed D-K iteration appears to work well [8]. Note
that although the magnitude bound for any given uncertainty is the same for all
subsystems, the uncertainties do allow the individual subsystems to differ from each
other. Furthermore, we put no particular restriction on the location or type of the
uncertainties—additive, multiplicative, inverse multiplicative uncertainty blocks and
any other type of uncertainty description which can be recast into the M-A structure

in Fig. 6.9 can be handled.

6.7.1 Robust Stability for SISO Subsystems with One Un-
certainty Block for Each Subsystem

In this section we consider RS with SISO subsystems and only one source of uncertainty
in each subsystem, and the perturbation block A and the interconnection matrix M

are both square matrices of dimension n X n.

# Analysis: The interconnection matrix M will be a parallel matrix. We know from

Section 6.4.1 that for parallel matrices the magnitude of the eigenvalues equal the
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magnitude of the singular values, and from Eq. (6.46) we see that the value of x will
equal the spectral radius. Thus for this problem the value of y is completely insensitive
to the structure of the uncertainty for any complex uncertainty, we get the same value

for 4 regardless of whether the uncertainty block is full, diagonal or is a repeated scalar
block.

p Synthesis: The observation that the value of u is insensitive to the structure of the
uncertainty can be used to simplify the design of a robust controller. We get identical
results if we choose A to be a full matrix, and the solution is therefore identical to
the Ho, solution considered previously. The controller design can be performed by
designing controllers for two SISO systems, one SISO system for Ag; of the plant,
and another SISO system for Ags,--+,Agn. Note that synthesizing a controller for
minimizing p for RS is only meaningful if the system (including uncertainties) can

become open loop unstable, as otherwise K = 0 is an optimal choice.

6.7.2 pu Analysis and Synthesis for Systems with More Than
One Uncertainty Block

For systems with more than one uncertainty block, or for systems consisting of MIMO
subsystems, the interconnection matrix M will in general not be parallel (or circulant),
but it will be a matrix consisting of blocks which are block parallel (recall Section
6.4.2). For matrices consisting of blocks which are block parallel, the magnitudes of
the eigenvalues and the singular values will in general differ, and the upper and lower
limits in Eq. (6.46) will not be particularly helpful. However, the structure of the
problem is such that significant simplifications to analysis and synthesis for the upper
bound on 1 can be achieved. Henceforth we will therefore only consider the upper

bound on x in Eq. (6.47), that is, consider the problem
n}\jn(igf&(D,]MDr‘l)) = i%f(n}\ip a(DiM DY) (6.48)

where D denotes the allowable set of matrices D; and D,. The “inner problem” on the
right of Eq. (6.48), ming (DM D), is an H,, problem, and we shall see that this
H,, problem is similar to those studied in Section 6.6.1. Below we shall consider D,
and D, fixed and consider ming &(D;M D).

We start from the conventional M-A block structure of Fig. 6.9, and express M as an
LFT of the controller K in the same way as in Fig. 6.5a. Clearly, an identity matrix
can be inserted anywhere in the block diagram without altering it. We therefore insert

_ H H . .
I = Fr"Fr and I = F;" F. (if M is not a square matrix, the dimensions of these two
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price we have to pay for the resulting simplifications in g analysis and synthesis Not
. (6] e’

b . . .
however, that if A does not contain any independent diagonal perturbation block
. . S
have introduced no conservatism by transforming to the M-A structure. We sh -
. vati . ow
ow transforming to the M-A structure simplifies y analysis and synthesis =

B

1. Consider first the case when A contains only full blocks. The correspondi
ing

scaling matrices D; and D, are then diagonal matrices of the type D = diag{q;7, }

L T BN where I, is an identity matr of dimension corresponding to the dimer

jche ith block of A. Express DIMD;! as an LFT of K, and call the enslon. 3

lnteI:COnnectioIl matrix Np. We see that Np has the same structure asre;l-ltljlg

consists of blocks which are block diagonal, the first subblock on the d; Vo

of each block being distinct and the n — 1 other subblocks being identicl":;goil\z;ll
. We

th V i i
erefore find that Ny consiste of n independent design subproblems, one distinct
) inc

and —1ti i
one repeated n — 1 times. For clarity, recall that permutations do not change

singular values, and recall Fig. 6.6. The matrix at the top of Fig. 6
same structure as ND. 1

6 has the

Z
Z

. N . e .
ow consider the case when A contains both full and repeated scalar pertur

bation blocks. W i \
e want to show that, as in the full block case, Np consists of

| e . -

only tw.o distinct design subproblems, one distinct subproblem and one repeated

n — 1 times. To see this, let A have the structure A — diag{A,, A }. where A
y Sr J

i
f i i
E K contains the full block uncertainties and A, contains the repeated scalar blocks

Now, absorb the repeated scalar blocks A, into M to give the structure M,-A

Ther.eafter, ap}~)ly the D-scales Dy, and Dy, corresponding to A/ to \~I. Illufs.
obtalnin% Dﬂ]Wfo',l. Expressing DﬂMfD;rl as an LFT of K wefgol ‘\J. Al
thou'gh Npy includes the repeated scalar perturbation blocks, it will l)(-.al:lll;il{ri;
consisting of blocks which are block diagonal, the first subblock on the diagonal of
each main block being distinct and the n — 1 other subblocks being identical. We

h .
ave therefore found that Ny also consists of only two distinct design subprob-

Figure 6.11: Expressing M as an LFT of K, and transforming to obtain A, N and K.

identity matrices will differ), I = (F, ® L)F(F.®1,),and I = (F, ® L) (F.®l,)
in the block diagram, see Fig. 6.11. Thus, instead of studying M and A, we can study
N, K and A = FrAF:H. N has the same structure as in Section 6.6, and thus
consists of n independent design subproblems, one distinct and one repeated n — 1

times. Repeated scalar blocks in A will remain as repeated scalar blocks in A, and full

lems, one disti i
, distinct and one repeated n — 1 times. This is true irrespective of the

articul A
p .cu "fr values of A, and the same must therefore hold for the interconnection
matrix Np corresponding to D;AM D1,

blocks in A will remain as full blocks in A. However, independent, diagonal blocks in A

will become full blocks in A3. This loss of structure in the uncertainty description is the

3The full blocks of A which correspond to independent, diagonal blocks of A, will have a certain
structure which cannot be utilized in the u framework.

(I:I(:rt;l;edc.alcula';]on of the u?per bound on (M), we only need the two first subblocks

! 1agonal of each main block of M. However, unlike the H,, case. we cannol
consider yg; and 7g, independently, because of the full uncertainty blocks (i-c. the
values corresponding to the full uncertainty blocks in D; and D, must be the same for
Y61 and 7g2). This follows from Eq. (6.48) where we see that for the [ull uncertainty
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blocks the minimization over D gives the same “D-scales” for all subproblems. If there
is only one full block, the subproblems may be considered independently, as the D-
scale corresponding to the full block can be normalized to one for all subproblems. Of

course, when there is only repeated scalar uncertainties the subproblems may also ber

considered independently.

To recapitulate, we have found that if we approximate any independent diagonal un-

certainty blocks with full uncertainty blocks, we obtain the following results:

Step 1 in D-K Iteration (u analysis). We can calculate the upper bound on g in
Eq. (6.47) and obtain the D-scaling matrices D; and D, by considering a block diagonal

plant G = diag{yc1,762} instead of the full plant G.

Step 2 in D-K Iteration (Hy synthesis for the scaled problem). The controller
synthesis problems for y¢1 and g2 can be considered independently (the scaled problem
will also fall within the class of problems considered in the section on He.-optimal

control).

That is, Step 2 in D-K iteration may be solved as two independent problems, while
in Step 1 we have to combine the two controllers vk and g2 before finding p(M)
and the D-scales. However, note that the size of the problem is also reduced in Step
1 relative to a regular p optimization where the block parallel nature of the problem
is not taken into account. If we have a large number of subsystems, the size of the p
synthesis and analysis problems can thus be reduced dramatically.

If and when D-K iteration converges, the full controller K can thereafter be found
from K using Eq. (6.30). The value of u for the interconnection matrix M found from

G and K is guaranteed to be equal to or lower than the value of pu achieved in the
controller synthesis®.

Remark 1. Intuitively, it is not surprising that the we can keep the structure of the
repeated scalar uncertainty blocks when we consider GG = diag{"s1,7c2} instead of G,
as repeated scalar uncertainty is the only type of uncertainty which can not ruin the
block parallel structure of G.

Remark 2. When the subsystems of the plant have multiple inputs and multiple

outputs, the uncertainty weights must be chosen carefully to try to minimize the con-

servativeness introduced by assuming full uncertainty blocks, as scaling problems must

otherwise be expected.

4We may have introduced conservatism in the design by approximating independent diagonal
uncertainty blocks by full uncertainty blocks. p(M) may therefore be lower than the p-value achieved
in the controller synthesis.

s |

6.7. p-OPTIMAL CONTROL

157

. To illustrate this problem, consider a hypothetical system consisting of sub

with two uncertain inputs. The relative uncertainty in each input is 10% oy
two inputs are independent. The range of operation for input u; is 0 — 1(.; iji e
r~ange of operation for input u; is 0 — 1. This uncertainty can be Inodeledn 'the
i = (I + 0.11,A)u, where A is a diagonal 2 x 2 perturbation matrix, &(A) u<S]ng
However, to be able to simplify analysis and synthesis in the way describ;d abov‘ 3
are f.orced to make A a full 2 x 2 matrix. Considering the ranges of operation ? b
two inputs, the uncertainty should then be modeled as -

. 10 0.1 0
(I“L[o 0.1JA[ 0 1})“ (6.49)

Th - . .
u.s, the fictitious uncertainty going from u; to i, is no larger than the physicall
motivated uncertainty between u, and @,. e

Remark' 3. For some problems the assumption of full uncertainty blocks can b
conservative, as some uncertainty blocks may be diagonal. However, it will in -
cases be worthwhile to initially synthesize a controller assuming full un’certa,int b]malily
as the reduction in system size and in the number of independent uncertainty b;)C ks,
makf:'s the synthesis task much simpler. The controller thus found can be u:ed s
starting point for the synthesis of a controller using the actual uncertainty struc’::lsrea

)

if additional improvement in robust performance is necessary

Examp'le 6. Consider the same process as in Example 5, but with input and output
uncertainty as shown in Fig. 6.10. We also included a performance specificati o
pressed as 6(WpS,) < 1,Vw. The output uncertainty Ap and input uncertaint Zn .
both assumed to be diagonal, with uncertainty weights Wo(s) - diag{O.?isii}Iaa:j

N o ) 0.2
1(8) dlag{O.Qr;;%}. We also include the performance specification as 6(5;/-}1:,5’ )<
P

1,Vw. The performance specification is equivalent to closing the loop from offset

reference signal with a full perturbation block (“uncertainty block”) Ap and thse ;
formance weight Wp(s). The performance weight used here is Wp(s) = diag{0 SLZ%
Thus, without taking into account the parallel nature of the problem, for this .pr(:f);er}n-

we have two diagonal 4 x 4 uncertainty blocks and one full 4 x 4 performance block
and we get a 12 x 12 4 interconnection matrix: ,

~WIKG(I + KG)™!
M=1 WoG(I+KG)™
-WpG(I + KG)™!

~WiK(I 4+ GK)™! WiK(I + GK)™!
—WoGK(I+GK)™' WoGK(I +GK)! (6.50)
| -Wp(I + GK)~! Wp(I + GK)™!
Using our method we may design a parallel controller, by assuming all the uncertainty

block i
ocks to be full and reducing the system to get one 6 X 6 p interconnection matrices for
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Step 1 in D-K iteration and two 3 x 3 Ho, problems for Step 2 in D-K iteration. Using

this procedure we were able find a controller resulting in a p-value of 0.93. The state

space representation of the eigenvalues of this controller are given in the Appendix. = A P
Thereafter we tried to improve the controller design by using the true structure 1 j sl

for the uncertainties, with the input and output uncertainties being diagonal blocks of

dimension 4 x 4 and using M in Eq. (6.50). However, we found that this increased the

complexity of the controller synthesis problem so much that we were unable to improve

the design. The best controller we were able to find gave a p-value of 0.96. This result

shows that there are numerical problems as the p-optimal controller should obviously — k“

-
Y
~

Z,

g(s)

B
Yy

give a p-value of 0.93 or lower. *

6.8 Comparison with Previous Work

Lunze [13] studies robust stability of symmetrically interconnected systems. Lunze

makes full use of the structure of the system for assessing nominal stability of the

overall system. However, he does not make use of any structure in the uncertainty

— e s ccmm e mm e ——-

description, as he uses independent element-by-element uncertainties, with a common
magnitude bound on the uncertainty for all elements. He then rewrites the system in , - An PSI‘I

a structure similar to the M-A structure of Section 6.7, and his robustness criterion

is that the Perron root of MA should be less than one. This method can be very — ksn —Lb g(s)

conservative. This will be illustrated by considering the example in Section 7.1 of [13].

—
1 )

Example 7. In this example we study the stability of a multi-area power system with
different nominal values of power generation ([13], Section 7.1). The block diagram > k 4
of the system is shown in Fig. 6.12, where g(s) is the scalar transfer function of an In A

individual power station, the block diagram of which is shown in Fig. 6.13. Thus, all

the individual power stations are assumed to have the same dynamics. Furthermore, all Pln
the power stations are assumed to have the same amount of rotating mass, T'. To = nT'
is the total amount of rotating mass in the system. For further information about

the model we refer to {13] and the references contained therein. The parameter ks;

is adjusted proportionally to the nominal value of power generation of the :th power — 1 *
station, k,; = —15 corresponds to a 200 MW power station. The A-blocks in Fig. 6.12 Net ST{) Power accelerati
represent this adjustment of the parameters k,;, we thus have real uncertainties. k;; = frequency all rotating r?};asl;:sg
—9.51s used for all subsystems, and T = 15.3 is assumed, as this value of T agrees with
the intermediate results of Lunze (the value T = 16.25 which Lunze claims to use, does
not agree with his intermediate results). Furthermore, the state space representation

of the subsystems used by Lunze does not agree with the transfer function model given

Figure 6.12: Block diagram of the multi-area power system studied by Lunze [13].
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Figure 6.13: Block diagram of an individual power station corresponding to transfer

function ¢(s) in Fig. 6.12.

in Fig. 6.13 (nor does it agree with Figure 4b in [13]). We will use the transfer function
description in Fig. 6.13 for g(s) in Fig. 6.12. With these modifications, Lunzes method

finds that the overall system is stable provided

%i“Ail} < 0.805 (6.51)

for k,; having the nominal value of —15.%

Rewriting the system in Fig. 6.12 in the M-A structure, we find

Apn = diag{A} (6.52)
Avi 0 - 0
wo=rr| 0 F (6.53)
0 0
. : 6.54
= — | : —— O | (6.54)
1

hagr, = 1 — (g(s)ksi + ku)/sT

The reason for all the zero eigenvalues of M is that the only feedback occurs through the

SISO integration 7=, and M can therefore have only one nonzero eigenvalue. Clearly,
sTo

ey — '
5Lunze [13], using apparently erroneous data, found that stability is ensured for = S A <
0.735.
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because M has only one nonzero eigenvalue, this M-A structure can be rewritten as

1

A = %[1 -+ 1] diag{Ai} | (6.56)
1

- %i{m} (6.57)

Mixi = Mn (6.58)

This is the same as the M-A structure for a system consisting of only one subsystem,
which is stable for any A such that —240.7 < koi(1 + A) < 2.5. Values of k(1 + A)
larger than the upper limit gives positive feedback, and hence instability because of
the integration, whereas values lower than the lower limit gives a magnitude larger

than one at wyg in a Bode plot. Thus any combination of A;’s such that 25):_—k_t <
1sn . ~240.7—k,
wlim A < TR0

) DY will give a stable overall system. For the nominal value of
ksi = —15 used by Lunze, this gives —7/6 < 17" {A;} < 15.0. This is significantly
less conservative than the result using Lunze’s method, which guarantees stability for
~0.805 < £ =%, {A;} < 0.805. From Fig. 6.12 we see that in addition we must require
that the individual power stations g(s) are stable (which they are), as there otherwise
is a possibility that the outputs from the individual power stations grow unboundedly,
while the signal entering the integration ﬁ remains bounded.

Clearly, careful examination of Fig. 6.12 reveals that this example deals with a SISO
stability problem, as there is only one feedback path in the system. Knowledge of the
mathematics used above is therefore not required here. However, this example clearly
illustrates the importance of taking the structure of the uncertainties into account.
Another disadvantage with the work of Lunze is that his robustness analysis appears
to give little help in the synthesis of controllers. Lunze suggests using a decentralized
controller with identical elements on the diagonal. Lundstrém et al. [12] found such
controllers to not necessarily be optimal for symmetrically interconnected systems, even

when considering decentralized controllers only.

6.9 Decentralized Control

In this section, we will only consider single input, single output (SISO) systems in
parallel, i.e. we will assume that the plant transfer function matrix is a parallel matrix.
The only type of controller which is both decentralized and circulant, is a controller

with all the diagonal elements equal. If a # 0, the distinct eigenvalue Ag; will differ from
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the other eigenvalues of the plant, and a circulant and decentralized controller which is
optimal for the control of Agy will not be optimal for the other plant eigenvalues. Thus,
when designing decentralized controllers for systems consisting of similar interacting
subsystems, one should consider allowing the controller elements to differ. This issue
has been discussed previously by Lundstrém et al. 12].

However, althoug}i the theory of circulant matrices is of limited use for the design
of decentralized controllers, we can use this body of theory to prove the existence of
a plant property which indicates that decentralized controllers can be useful for the

control of systems consisting of similar interacting subsystems.

6.9.1 Decentralized Integral Controllability

Decentralized Integral Controllability (DIC) is a system property which means that
there exists a decentralized controller with integral action for which the proportional
gain in the individual loops can be reduced independently of each other by an arbitrary
amount without upsetting stability. That is, for a system which is DIC, there exists a
diagonal controller K (s) = %diag{k;}f\’(s), where K (s) is a diagonal transfer function
matrix and the k;’s are variable gains, such that the closed loop system is stable for
any k; provided 0 < k; < k}; Vi. For this problem DIC can be tested using the steady
state gain matrix only, since the steady state gain matrix is symmetric, and therefore
has real eigenvalues®.

In this section we will assume the system to be open loop stable, as this is obviously
a prerequisite for DIC.

The special properties of the parallel matrix P makes conditions for DIC easy to
find. We will use Lemma 7.2 in [4] which gives a sufficient condition for what is known
as D-stability. Any matrix which is D-stable and whose principal submatrices are all

D-stable is DIC.

Lemma 7.2, {4].

The matriz A is D-stable if:

(I + A)7! exists and there ezists a diagonal D > 0 such that
| D(I = A)(I + A)7'D7 |la< 1

Assume without loss of generality that the elements on the main diagonal of G(0) are
positive. Clearly the plant is D-stable if || (7 — G(0))(I + G(0))™* lla< 1. The matrix
(I — G(0))(I + G(0))" is parallel, with 2-norm (largest singular value) equal to the

6For problems where the steady state gain matrix have eigenvalues on the imaginary axis, it is not
known whether DIC can be tested using the steady state gain matrix only [4].
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magnitude of the largest eigenvalue. Th i i
o g ue. The magnitude of the largest eigenvalue is given
p=max{1—)\cl 1— g
L+ a1 | |1+ Ag2 (6.59)

wl;ere Ag1 is the first (distinct) eigenvalue of G(0) and Ag; equals the repeated eig
‘ en-
value of G(0). It is clear that p < 1 provided both Ag; and gy are positive (at steady

state both )\Gl and Ag; must be real). We find that \g; and Ag2 are both positi
and D-stability is thus ensured, provided -

-1
n—1

<a(0) <1 (6.60)

b . . .

w erltla (11(0) is defined in Eq. (6.2). Analyzing the principal submatrices (which are also
parallel matrices) the same way, we find that the

ral \ y are also all D-st

within the limits given in Eq. (6.5). et for e e
R D-stability of G(0) and its principal submatrices is a sufficient condition for DIC
) necessary condition for DIC is that the elements on the main diagonal of the steady
state RGA matrix should be positive for the steady state gain matrix and all its prin-

cipal submatrices [4]. To use this conditi
. ndition we need some furth i
parallel matrix P in Eq. (6.6): e propatie othe

Inverse. The inverse of P is a parallel matrix with

[Py = — Lt (=2 1
1+ (n—-Da(l-a)k (6.61)

Proof: Can be found from the eigenvalue decomposition.

¢

Relati .
elative Gain Array (RGA) [3]. From the above result follows directly

RGAy = py[P-1), = — LT (n = 2)a]
il T+ (m-Da(l-a (6.62)

F - .
rlorn Eq. (6.62) it is clear that this necessary condition for DIC is fulfilled only for
values of a(0) within the limits given in Eq. (6.60). We therefore conclude that

1
DIC = —1_
1 <a0) <1 (6.63)
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the other eigenvalues of the plant, and a circulant and decentralized controller which is
optimal for the control of Agy will not be optimal for the other plant eigenvalues. Thus,
when designing decentralized controllers for systems consisting of similar interacting
subsystems, one should consider allowing the controller elements to differ. This issue
has been discussed previously by Lundstrém et al. [12].

However, althoug}i the theory of circulant matrices is of limited use for the design
of decentralized controllers, we can use this body of theory to prove the existence of
a plant property which indicates that decentralized controllers can be useful for the

control of systems consisting of similar interacting subsystems.

6.9.1 Decentralized Integral Controllability

Decentralized Integral Controllability (DIC) is a system property which means that
there exists a decentralized controller with integral action for which the proportional
gain in the individual loops can be reduced independently of each other by an arbitrary
amount without upsetting stability. That is, for a system which is DIC, there exists a
diagonal controller K(s) = J;diag{k,-}]?(s), where K(s) is a diagonal transfer function
matrix and the k;’s are variable gains, such that the closed loop system is stable for
any k; provided 0 < k; < kf; Vi. For this problem DIC can be tested using the steady
state gain matrix only, since the steady state gain matrix is symmetric, and therefore
has real eigenvalues®.

In this section we will assume the system to be open loop stable, as this is obviously
a prerequisite for DIC.

The special properties of the parallel matrix P makes conditions for DIC easy to
find. We will use Lemma 7.2 in [4] which gives a sufficient condition for what is known
as D-stability. Any matrix which is D-stable and whose principal submatrices are all

D-stable is DIC.

Lemma 7.2, [4].

The matriz A is D-stable if:

(I + A)™" exists and there erists a diagonal D > 0 such that
| D(I = A)(T + A)7'D7 |2< 1

Assume without loss of generality that the elements on the main diagonal of G(0) are
positive. Clearly the plant is D-stable if || (I — G(0))(1 + G(0))7! |l2< 1. The matrix
(I — G(0))(I + G(0))™! is parallel, with 2-norm (largest singular value) equal to the

6For problems where the steady state gain matrix have eigenvalues on the imaginary axis, it is not
known whether DIC can be tested using the steady state gain matrix only [4].
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magnitude of the largest eigenvalue. The magnitude of the largest eigenvalue is given
1—=Ag1| 1= g2

by
p = max
{ 1+ Ag1| |1+ Ag2 } (6.59)

where Ag; is the first (distinct) eigenvalue of G(0) and g, equals the repeated eigen-
value of G(0). It is clear that p < 1 provided both \g; and Ag, are positive (at steady
state both Ag; and Ag; must be real). We find that \g, and Ag2 are both positive
and D-stability is thus ensured, provided |

H

-1
n—1

<a(0) <1 (6.60)

where a(0) is defined in Eq. (6.2). Analyzing the principal submatrices (which are also
parallel matrices) the same way, we find that they are also all D-stable for values of a
within the limits given in Eq. (6.5).

D-stability of G(0) and its principal submatrices is a sufficient condition for DIC.
A necessary condition for DIC is that the elements on the main diagonal of the steady
state RGA matrix should be positive for the steady state gain matrix and all its prin-

cipal submatrices [4]. To use this condition we need some further properties of the
parallel matrix P in Eq. (6.6):

Inverse. The inverse of P is a parallel matrix with

i} 14 (n—2)d 1
[P~ a = [ -
) Q4+ (n—1)a)(1-a)k (6.61)
Proof: Can be found from the eigenvalue decomposition.
Relative Gain Array (RGA) [3]. From the above result follows directly
- 1 —
RGA; = pi|P 1].’,‘ = [+ (n — 2)a] (6.62)

"1+ (n=1)d)(1-a)

From Eq. (6.62) it is clear that this necessary condition for DIC is fulfilled only for
values of a(0) within the limits given in Eq. (6.60). We therefore conclude that

DIC = <a(0) <1 (6.63)

n —

.
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6.10 Generalization to Block Circulant Processes
with a Symmetric Block Structure

The results in this paper on He-optimal control and p analysis and synthesis are easily
generalized to processes described by block circulant transfer function matrices with a

symmetric block structure, i.e. transfer function matrices of the form

aq ¢ € € - 3 G .‘
Co 8] C2 C3 cg -+ C3
3 € € C G

G(s)= | oo oo e e el et (6.64)

3 € € € C3

cg3 -+ € €3 C2 C O
L Co Ccy - O C3 Co (4] J
Note that it is only when the individual blocks ¢, ¢2,¢s, - - - are symmetric that G(s) is
symmetric. If ¢, ¢o,ca,- - - are of dimension 1 x 1, G(s) is termed a symmetric circulant

matrix. Symmetric circulant matrices occur for example in the cross directional control

in paper manufacturing [11, 18], if edge effects are neglected.

The generalization of Ho, synthesis and p analysis and synthesis from block parallel
plants to block circulant plants with a symmetric block structure is straight forward.
Let k be the number of independent blocks vg; in Eq. (6.23). In general, if n is an even
number, k =n/2 + 1, and if n is and odd number, k = (n — 1)/2+ 1. Then:

1. The design of an He,-optimal controller (including the second ‘K’ step in D-K iter-
ation in p synthesis) for a block circulant process with a symmetric block structure

involves k independent synthesis subproblems for the k “plants” g1, -, 7Gk.

9. The first ‘D’ step in D-K iteration (p analysis), involves p analysis for the plant
G = diag{ve1,-" -, ek}

3. However, one has to exercise some care when finding the real matrix R used for
controller realization in Eq. (6.30). Recall from Section 6.4.1 that only linear
combinations of eigenvectors corresponding to identical eigenvalues may be used
to find real eigenvectors. If the matrix F' H is used as the eigenvector matrix for
a symmetric circulant matrix, the first eigenvalue of the matrix is distinct, and
the corresponding eigenvector is the first column of F H_ which is real. Similarly,

if n is an even number, eigenvalue number (n/2) + 1 is also distinct, and the

6.11. CONCLUSIONS
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c?rresponding eigenvector is column (n/2) 41 of F¥, which is real. All the oth

eigenvalues of a symmetric circulant matrix occur in pairs, eigenvalue numb N
and eigenvalue number n 4+ 2 — p being identical (for p = {2,3,... v} w;r .
VT= (n+1)/2ifnisodd and v = n/2 if n is even). Columns p,ar,ld n,+ é —pe(r)j"
RH must th.er.efore result from linear combinations of columns pand n+2—pof
FH, -In addition, we require all columns of R to be real, mutually orthogonal and
of unit length. Let r; denote column I of RT, and m; denote column / of' F Em

Eqgs. (6.13-6.14). Note that ™y is the complex conjugate of m,, .,

see

- d that m

and muyy_, are orthogonal. The matrix R wi py all P
: will fulfill all i

if we choose: ulfill all the requirements above

n = m
T(n/2)+1 = M(n/2)41 Iif n is an even number
1
Tp = z(mp + Muta_p)
)
Tnt2—p = E(mp ~Mnyap) forp={2,3,... v} (6.65)

6.11 Conclusions

He, .Cont.ro]: For symmetrically interconnected systems, instead of considering a plant
of dlme'ns1o'n M Mo XN -n; we can consider two plants, each of dimension n. x n. pH -
.synth?sw will then result in a block parallel controller which optimizes the f; cr".t "

in n directions. For plants with SISO subsystems, the controller will have th(;o t et
of an SVD controller. ’ e

Th i
e Structured Singular Value, p: For cases with SISO subsystems and one

sour 1 1
ce of uncertainty in each subsystem, the value of 4 is shown to be insensitive t
the structure of the uncertainty. )

In th i i
e general case, for the first step in D-K iteration (p analysis) the plant size

may be reduced to a block diagonal plant with two blocks of dimension n

diagonal, X n; on the

The two blocks on the diagonal of the plant can be considered separately

if th i i
e perturbation matrix for the transformed system (A)) contains no more than

one f Y i w y e -
}111 blocl\. FOI‘ the SeCOnd Step Of D-K lteration, these t O bIOCkS ma b Consid

ered wWev 1 (8)
]ndependently. HO € eI‘, thls reduction in plant SiZe I‘equireS that a.ny diag nal
bl

ind i
ependent uncertainty blocks are approximated by full uncertainty blocks

Dece 1 :
ntralized Control: A necessary and suflicient condition for Decentralized Inte-

ral . . .
gral Controllability of symmetrically interconnected systems is proven to be that the

@
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steady state interaction parameter a(0) must be within the limits given in Eq. (6.60).
We have been unable to find any physical system with interaction parameter a(0)
outside these limits.

Extension to Block Circulant Processes with a Symmetric Block Structure:
The results in this paper are easily generalized to plants described by transfer function
matrices which are block circulant with a symmetric block structure. The details of

how to generalize the results are given above.
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Appendix. State space descriptions o
the examples.
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f controllers found in

A
4.993E—07 -1.633E—04 2.858E—02 3.357E—06
-1.853E—04 -0.1051 -7.644E+02 3.392E-02
2.929E—02 7.995E+02 -2.908E+03 -0.5641
-3.220E-06 -6.248E-02 0.2264 -2.000
B ¢t D
0.6859 0.6972 0
1.436E4+02 1.454E402
-2.420E+04 -2.419E+04
1.891 -2.346

Table 6.2: State space description of Ak for the controller found in Example 3.

A
5.009E—07 -2.046E—02 -1.183E—05 3.120E—05
2.001E—02 1.294E+03 -6.275E+02 3.182
1.352E—05 6.276E+02 -1.430E—04 1.056E—-03
-2.966 E—05 -3.182  1.276E-03 -1.611
B cT D
0.5429 0.5314 0
1.353E+04 1.353E+04
-5.061 4.495
16.61 -16.61

Table 6.3: State space description of Ak for the controller found in Example 3.

APPENDIX. STATE SPACE DESCRIPTIONS OF THE CON TROLLERS

diag{ A } B
231439 | 0.0134 2.9209
2470 | 1.2090 | -2.1960
-0.823 | -0.3021 0.5568
-1.064 | -0.3085 0.0152
-0.176 | -0.1196 |  -3.4066
-1E—08 | 1.82E—04 4.6785
2E-09 | 07891 | 3.1E—09
CT
0.0565 | -41.2565 |  37.2301
0.0455 | -0.4676 0.3644
0.1665 | -0.1291 |  -0.0588
0.0720 |  -0.1922 0.0877
-0.0221 [ 0.0114 | -0.0050
-0.0331 | -0.0253 0.0350
-0.0395 | -0.0237 0.0410
D
-0.0125 0
0 -6.25E—03
0 -6.25E—03

Tab ) I
able 6.4: State space description of vk, for the controller found in Example 4.
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diag{ A } B
-3591.5 0.0107 -20.3237
-266.7 0.0330 -24.2771
-130.4 0.0257 15.3908
-1.120 0.0663 | 1.031E£-03
-0.0521 0.0734 -0.37111
-3.9E-08 -3.0E-10 -0.6377
-4.7E-09 -0.2745 -6.5E-11
CT
-1241 316.2 -171.4
53.76 41.55 38.59
-18.46 46.87 21.23
-9.744E—-03 0.2968 0.1639
1.219E—-02 | -2.804E—03 | 4.267E—03
-3.593F—-02 | 2.020E-02 | 2.295E-03
6.100E—03 | -1.288 E—02 | -4.801E~—03
D

0

0
0 0

APPENDIX. STATE SPACE DESCRIPTIONS OF THE CONTROLLERS

Table 6.5: State space description of yx2 for the controller found in Example 4.

A
Sub-diagonal Main diagonal Super-diagonal
-9.692E—08 0

0 -1.509F—-01 0

0 -1.021E400 0

0 -9.600E+00  9.525E+00
-9.526 E+00 -9.600E+00 0

0 -1.338E£4-02 0

0 -1.110E4-04

B cT D
-1.944 F-01 -5.222E-01 0
-7.293E-02 9.074E-00
2.644FE-01 1.218E+01
-2.228 £+00 -4.392E+01
LT4TE400  -2.743E+01 !
2.460E+-01 -2.472E+03
-1.633E+01 -3.098E£4-05

A B
-1.00E-07 -1.73E-03 1.29E-06 0.187
-1.73E-03 -4.44E+05 1.11E+03 | 1.63£+03
-1.30E-06 -1.11E403 -0.60 1.20
C D
0.188 1.62E+03 -1.21 0

Table 6.6: State space description of Ak for the controller found in Example 5.

Table 6.7: State space description of Ak, for the controller found in Example 6.
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Table 6.8: State space description of Axs = Ak3 = Agq for t

Example 6.

CHAPTER 6. ROBUST CONTROL OF SYSTEMS CONSISTING OF-...

A
Sub-diagonal Main diagonal Super-diagonal
-9.975E—-08 0
0 -1.535E—-02 0
0 -3.325E-01 0
0 -4.099E-01 0
0 -2.192E-00  9.25TE—01
-9.257E-01 -2.192E+01 0
0 -1.645E401 0
0 -1.250E£4-02 0
0 -1.987E402
B cT D
4.426 E-01 6.897E—-01 0
-8.813E—-02 1.931E—-01
2.441E-01 -1.079E—-00
6.614E-01 1.413E+01
5.825E—02 -5.937E400
5.437E—01 -5.180E400
-3.673E-01 -6.958 £4-01
-1.435E402 9.608 402
-1.437E402 -1.541E403

he controller found in

Chapter 7

On the Structure of the Robust Optimal
Controller
for a Class of Problems

Morten Hovd, Richard D. Braatz* and Sigurd Skogestad!
Chemical Engineering
University of Trondheim, NTH
N-7034 Trondheim, Norway

Abstract

In this paper we investigate the structure of the robust optimal controller for
a class of control problems investigated by many researchers. The robust optimal
controller for a problem in this class is an SVD controller. This finding may be
used to simplify the controller synthesis (K) part of the D-K iteration procedure
used for synthesizing p-optimal controllers. .

Conditions for when the optimal controller in general has the structure of
an SVD controller are discussed, focusing on the issues of realizability of the
transformed interconnection matrix and whether the transformation makes the
structure of the perturbation block (A) more conservative.
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7.1 Introduction

In this paper we investigate the structure of the robust optimal controller for a class of

control problems investigated by many researchers. A
in this class is given by the robust controller design pr
studied previously by Skogestad et al. [22].

The nominal plant for this problem is given by

. —0.864
_ 1 0.878 —0.8 (7.1)
75s+1 | 1.082 —1.096

n example of a control problem

oblem for a distillation column

G(s)

condition number of 141.7 and a RGA-value of 35.5 at all frequencies.
ms with ill-conditioned

which has a
This model is an excellent example for demonstrating the proble

plants and has been studied by many researchers [17, 3, 24].

For this problem, the relative magnitude of the uncertainty in each of the manipu-

lated variables is given by

wifs) = 0.2(5s +1)/(0.5s +1) (7.2)

The robust performance specification is that ||wpSplle < 1 where
wp = 0.5(10s +1)/10s (7.3)

and S, is the worst sensitivity function possible with the given bounds on the uncer-

tainty in the manipulated variables.
This robust controller design problem is easily captured in the framework of the

structured singular value, g [6]. The resulting p condition for Robust Performance

(RP) becomes:

RP < pa(M)<l W (7.4)
—W;KSG WiKS

_ | WikSG W . A= diag{Ar, Ap) (7.5)
WpSG  —Wp

where Aj is a diagonal 2 x 2 perturbation block, Ap is a full 2 x 2 perturbation block

and
W] = wIIg and IVP = wPIQ

Skogestad et al. [22] designed a controller giving a value of g = 1.067. Freuden-
berg [10] used another design method to find a controller with u = 1.054, and also used
]. Lundstrom et al. [17) used the latest state-space
8. In a somewhat altered form,

this problem as an example in [4
H., software [1] to design a controller with ¢ = 0.97
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this robust controller design problem has been considered by Yaniv and Barlev [24]
and was used as a benchmark for the 1991 CDC [3]. ,

Engstad [9] found numerically that the controller obtained by Lundstrém et al. [17
has the structure of an SVD controller. We prove that the p-optimal controller 1 ]
SVD controller for this robust controller design problem. This suggests that the o
troller obtained by Lundstrom et al. [17] is very near p-optimal. The resultin analCOI'l-
suggests how the design problem can be simplified prior to applying D-K itefationy(Sls
H,-synthesis) for finding the controller. The simplified design problem is equival Oi
to the original design problem provided this contains only full and/or mult?plicitfi::e

repeated scalar perturbation blocks. We then describe the class of problems for which

the optimal controller is an SVD controller.

7.2 Background

SVD Controller The plant G(s) which can be decomposed into G(s) = UXg(s)VH

where

So(s) = — [

755 + 1 0 0.0139

v [0.6246 —0.7809]_‘/:[ 0.7066 —0.7077J

1.9721 0 ]

0.7809  0.6246 —0.7077 —0.7066 (7.6)
U anld V are unitary matrices. This is the singular value decomposition of the plant
G(s)'. We define an SVD controller for the plant G(s) to have the form

K(s)=VEg(s)UH (7.7)
where Lk (s) is a diagonal matrix.

SVD controllers have been studied previously by Hung and MacFarlane [13] and Lau
et al. [14]. However, in both of these references the SVD structure is essentially used
to counteract interactions at one given frequency, as the problems considered ar}; such
that U and V change with frequency. In this paper we consider problems for which
U and V are constant at all frequencies and can be chosen to be real. Restricting OflI‘

us t T th mm ll S
a-ttentloll t() tllese cases aliow [0 add €8s € 0 t. a t Of the % D COIltIOHeI {OI

'"With the sligh i i
ght modification that the dynamic term, 1/(7 i i
| ] 5 o .
value matrix T, thus giving the singular values phase. (751, s mulipled into the singuler
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Robust Performance The goal of any controller design is that the overall system
is stable and satisfies some minimum performance requirements. These requirements
should be satisfied at least when the controller is applied to the nominal plant, that is,

we require nominal stability and nominal performance.
In practice the real plant G, is not equal to the model G. The term robust is used

to indicate that some property holds for a set II of possible plants G, as defined by the
uncertainty description. In particular, by robust stability we mean that the closed loop
system is stable for all G, € Tl. By robust performance we mean that the performance
requirements are satisfied for all G, € II. Performance is commonly defined in robust

control theory using the Ho,-norm of some transfer function of interest.
Definition 2 The closed loop system ezhibits nominal performance if
¥l = stipﬁ(\l') <1 (7.8)
Definition 3 The closed loop system exhibits robust performance if
190 = sgpa(li;) <1, VG,ell (7.9)

For example, for rejection of disturbances at the plant output, ¥ would be the weighted
sensitivity
U =W SW,, S=({I+GK)!
¥ =wWiS,W,, Sp=(I+G,K)™!
In this case, the input weight W, is often equal to the disturbance model. The output

(7.10)

weight W, is used to specify the frequency range over which the sensitivity function
should be small and to weigh each output according to its importance. The value i
is the transfer function of the controller.

Doyle [6] derived the structured singular value, p, to test for robust performance. To
use ;2 we must model the uncertainty (the set I1 of possible plants G,) as norm bounded
perturbations (A;) on the nominal system. Through weights each perturbation is

normalized to be of size one:
Al <1 (7.11)

The perturbations, which may occur at different locations in the system, are collected

in the block-diagonal matrix Ay (the U denotes uncertainty)

Ay = diag {A;} (7.12)
and the system is arranged to match the left block diagram in Figure 7.1. The inter-
connection matrix M in Figure 7.1 is determined by the nominal model ((7). the size

and nature of the uncertainty, the performance specifications, and the controller (K).
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For notational convenience in this section we assume M and each A. are
- 1 s
(analogs to the definitions and theorems in this section hold in the nonsquar ke
e case

(16]). We assume each A; is complex. For the example studied in this paper. th
assumptions hold. The definition of g is: ReEiCiese

Definition 4 Let M € C™" be a square complez matriz and define the s A
block-diagonal perturbations by ¢

! m
Ai € C 6, €C, ) p; +Xri=n

t=1 j=1

A= {diag{AI,---,A,,élLl,---,6mI,m}

. (7.13
Then pa(M) (the structured singular value with respect to the uncertainly structy !
re

A) is defined as

0 if there d i
JA(M) = { ere does not exist A € A such that det(] + MA) = ¢

. -1
[IAnelg{U (A) |det(I + MA) = 0}] otherwise (7.14)
Partition M in Fig. 7.1 to be compatible with A = diag{Ay, Ap}:
M = My My
My Mo, (7.15)

The following are tests for robust stability and robust performance 6]

Theorem 11 The closed loop system exhibits robust stability for all ||Aylls < 1 if and

only if the closed loop system is nominally stable and K

Theorem 12 The closed loop system exhibits robust performarice for all ”AUHOO <1

if and only if the closed loop system is nominally stable and
pa(M(jw)) <1 Yw (7.17)

where A = diag{Ay, Ap}, and Ap is a full square matriz with dimension equal to the

number of outputs (the subscript P denotes performance).

Multiple performance objectives can be tested similarly using block-diagonal Ap. Note
that the issue of robust stability is simply a special case of robust performance.

It is a key idea that p is a general analysis tool for determining robust performance.
Any system with uncertainty adequately modeled as in (7.11) can be put into M-Ay
form, and robust stability and robust performance can be tested using (7.16) and (7.17).
Standard programs calculate the M and A [1], given the transfer functions describing

the system components and the location of the uncertainty and performance blocks
A,
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Figure 7.1: Robust Performance and the M — A block structure

Computation of p p with complex A is commonly calculated through upper and

lower bounds. First define two subsets of C**"
Q ={Qea:Q"Q=1} (7.18)

where Q¥ is the conjugate transpose of Q and I, is the n x n identity matrix, and

D = {diag[d;];] : dim(I;) = dim(A;), d; positive real scalar} (7.19)
then [6)
< < inf 7 -1 .
max p(QM) < pa (M) < jinl7 (DMD™) (7.20)

A result of Doyle [6] is that the lower bound, maxp (QM), is always equal to pa (M).
Unfortunately, the maximization is not convex, and computing the global maximum of
such functions is in general difficult. In contrast, the computation of the upper bound
is convex. However, the upper bound is not necessarily equal to p except when the
number of complex A-blocks is < 3. The upper and lower bounds are almost always
within a percent or so for real problems [19], so for engineering purposes y never has

to be calculated exactly.

Controller Synthesis M is a function of the controller /. The H-optimal control
problem is to find a stabilizing K which minimizes sup@(M(K)). The state-space
approach for solving the Hy-control problem is describ“:ed in [8].

The D-K iteration method (often called p-synthesis) is an ad hoc method which
attempts to minimize the tight upper bound of g in (7.20), i.e. it attempts to solve

- —_ - -1
min inf sup7 (DM(K)D™) (7.21)
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[

The approach in D-K iteration is to alternatively minimize supE(D]u(K)D—l) f

either K or D while holding the other constant. For fixed D, the controller synthe:‘r
is solved via H..-optimization. For fixed K, the quantity is minimized as 5 convel)i
optimization. The resulting D as a function of frequency is fitted with an invertible
stable minimum-phas? transfer function and wrapped back into the nominal intercon-
nection structure. This increases the number of states of the scaled M, which leads
the next He,-synthesis step to give a higher order controller. The iterations stop after
sup T (DM(K)D‘I) is less than 1 or is no longer diminished. The resulting high-ord

controller can usually be reduced significantly using standard model reductiin tccl(if
niques [1]. Though this method is not guaranteed to converge to a global minimum, it

has been used extensively to design robust controllers and seems to work well (7]

7.3 The Structure of the u-Optimal Controller

In Section 7.3.1 we give the structure of the optimal controller found by Lundstrom et
al. in [17]. In Section 7.3.2 we show that the p-optimal controller is an SVD controller
when Ay is a full uncertainty block. In Section 7.3.3 we explain how this also allows
us to derive a simplified D-K iteration design procedure in which the synthesis part

(K) can be solved as two decoupled subproblems. The issue of the structure of Agis

treated in Section 7.4.

7.3.1 The Structure of the Controller Found by Lundstrém
in [17] g

In Fig. 7.2 the elements of K (s) = VHEK(s)U for the controller found by Lundstrém
in (17] are shown. We see that the diagonal elements of K (5) are much larger than the
offdiagonal elements. Engstad [9] showed numerically that removing the offdiagonal
elements of 1;'(3) does not alter the value of u, and thus showed that the optimal
controller found by Lundstrém in [17] can be chosen to have the structure of an SVD

controller.

7.3.2 Analysis of the Optimal Control Problem

Here we analyze the control problem for full block A; as used by Lundstrém et al. in
[17]. We prove that the g-optimal controller must be an SVD controller.

In Fig. 7.3 and 7.4 we give equivalent block diagrams for the M — A structure in
(7.5). In Fig. 7.3a the original feedback system with the uncertainty block A; and
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Figure 7.2: Magnitude plot of the elements of ¥ = VHKU for the controller X found
by Lundstrém in [17].

the performance block Ap is shown®. In Fig. 7.3b the corresponding M — A structure
is shown, and in Fig. 7.3c the weights W; and Wp have been factored out, and M
is expressed as a linear fractional transformation (LFT) of the controller K. Clearly,
an identity matrix can be inserted in any channel between the blocks in Fig. 7.3c
without altering the problem. In Fig. 7.4a we have inserted identities in four different
places (e.g. VUM = U¥U = I). U and V are given by the non-standard singular
value decomposition of the plant G in Eq. (7.6), and g is the corresponding singular
value matrix for which the singular values have phase (and are realizable). Note that
diag{VH,U H} commutes with diag{Ws, Wp}, since both Wy and Wp are scalar times

identity matrices. The blocks within each dashed box in Fig. 7.4a are combined to form

2The minus sign in front of Wp may appear odd. This is due to Lundstrom [17] defining offset e as
measurement y - reference signal r. Including the performance specification by closing the loop from
offset to reference signal then introduces the minus in front of Wp. Note, however, that removing this
minus sign and substituting —Ap for Ap does not change the system.
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Figure 7.3: a) The feedback system with perturbation blocks. b) The corresponding

M- A strt'xcture of the synthesis problem. c) Expressing M as a linear fractional
transformation of the controller K .

A, N, and K, which we show in Fig. 7.4b. In Fig. 7.4c we show the corresponding

conventional feedback system with perturbation blocks.

Now we consider the structure of the transformed system in Fig. 7.4b. All the
blocks in N in Fig. 7.4b are diagonal. The transformed performance block Ap is a full
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tive conjugate transposes) into the problem. b) The result%ng transf?’rmed feedbac
system M — A. ¢) The corresponding feedback system with “plant” Y and con-

troller K.
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block. With A; diagonal, the transformed uncertainty block A; = VEAIVin A would
be a full block, with a certain structure that cannot be utilized in the u framework.
We will return to the issue of structure of A; in Section 4.1, for now we will assume
Aj to be full with no additional structure, as was also assumed by Lundstrsm during
the design of the controller in [17].

Now consider the robust optimal control problem, in which we desire to minimize
%

min o (M(K)) = min g (M(K)) = min inf sup7 (DM(K)D™)  (7.92)

= grelfjn};i_nsgp?(DM(K)D") (7.23)
The first equality holds because the transformed system is equivalent to the original
system. The second equality holds because the number of uncertainty blocks is < 3.
Because the perturbations are full block, the D-scales are diagonal. Since we also have
that every block in NV is diagonal (see Fig. 7.4b), the controller synthesis with given

D-scales

minsup 7 (DAt(K)D™) (7.21)
consists of (in this case two) completely decoupled synthesis subproblems, cach sub-
problem involving a SISO “plant”, since the optimal controller may be obtained from
Eq. (7.23) when the D-scales are adjusted in an outer loop. The resulting robust opti-
mal controller K must therefore be diagonal, and the overall controller K = V'R U/ s
an SVD controller (£x = K in Eq. (7.7)). Note that the fact that the robust optimal
controller is an SVD controller does not imply that it is an inverse-based controller.
i.e. we do not have to choose K = kEz!. Y

To see why the fact that the D-scales are diagonal and all blocks of N are diagonal
implies that the controller synthesis problem can be decomposed into n non-interacting
synthesis subproblems, consider Fig. 7.5. We express DM D! as a LFT of i and term
the resulting interconnection matrix Np. This matrix Np will consist of blocks which
are diagonal. The matrix at the top of Fig. 7.5 may represent Np. After permutations
(row and column interchanges) we get the matrix at the bottom of Fig. 7.5. from
which it is apparent that the controller design problem consists of two independent
subproblems.

Finally, note that a simple way to realize that the optimal controller is on the SV
form is to go directly from Fig. 7.3a to Fig. 7.4c by introducing G = UV and
assuming the weights W; and Wp are scalar times identity matrices and that 3, and
Ap are full blocks. From Fig. 7.4c it is clear (except for the full A; and Ap) that the

design in terms of K involves a set of SISO subproblems.
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Figure 7.5: Top: Np. Bottom: Np permuted to have the two independent synthesis
subproblems along the main diagonal.

7.3.3 Consequences for D-K iteration

Now consider performing the D-K iteration design procedure to the transformed system
to try to determine the robust optimal controller. The controller synthesis part (K)
of D-K synthesis consists of two completely decoupled synthesis subproblems, each
subproblem involving a SISO “plant”. This holds also after applying the D-scales from
the robustness analysis (D) part of D-K synthesis, since the D-scales also consist of
diagonal blocks. When using (7.7) to find the controller K from the diagonal Xk, we

see that the resulting controller will have the structure of an SVD controller.

However, since A contains full blocks, the same D-scales must be applied to both
synthesis subproblems. This is seen from Eq. (7.23) where we iterate on the D-scales
in an outer loop. The robustness analysis (D) part of D-K jteration must therefore
be performed simultaneously for both subproblems, i.e. we must consider the diagonal

matrix L for robustness analysis, and not its diagonal elements separately.

Performing D-K iteration on the transformed system will converge faster and is
numerically better conditioned than on the original system. This is both because the
H,, subproblems are smaller than the original problem, and because the algorithm will

be initialized with a controller which has the correct (optimal) directionality.
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7.4 Discussion

7.4.1 The Structure of A; for Robust Performance

We now show numerically that the robust performance of the p-optimal controller is

insensitive to the structure of A; for the specific example used in this paper

In Fig. 7.6 we give the robust performance x plots for the controller of Lundstrém
et al. for both when Aj is full block and when A consists of independent scalar blocks
The plots are indistiguishable, i.e. robust performance is independent of the structure;
of Aj for the SVD controller. Notice the flatness of the p plots; it is well-known that the
p-optimal controller has the property that the optimal u(M(jw)) is constant, except
at very high frequencies where y must approach |wp| for proper controllers. Since the
p plot for the controller of Lundstrdm et al [17] is very flat, and the controller is an

SVD controller [9], we expect that this controller is very nearly p-optimal.
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Figure 7.6: Comparison of robust { i
performance lots with
; iagonal block. i plots with Ay equal to full block and

We emphasize that in general it does not hold that the robustness of SVD con-
trollers is insensitive to the structure of the individual blocks. For example, in [22]
Skogestad et al. used an inverse-based controller (i.e., a kind of SVD controller) for
distillation column control with the DV-configuration, and found that the value of i
for robust performance is strongly dependent on whether A; is a full or a diagonal
uncertainty block. The transfer function matrix for the DV-configuration is found by
postmultiplying G(s) in Eq. (7.1) by

-1 1
0 1 (7.25)
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7.4.2 The Structure of the Uncertainty Block for Robust
Stability

We now show that the structure of the uncertainty block is unimportant in determining
robust stability for cases with only one multiplicative or inverse multiplicative uncer-
tainty provided that the controller is an SVD controller. To do this, we will need the

following result, where AH is the conjugate transpose of A.

Theorem 13 (i for Normal Matrices) Assume M is normal (i.e. MEM = MM"),
then pa(M) = p(M) = T(M) irrespective of the structure of A (provided A is complez).

Proof: Result follows directly from (7.20) and that p(M) = (M) for normal matri-
ces. QED.

This theorem states that the value for g is independent of the structure of A
provided that the M matrix is normal. This result has proven useful for studying the
robust control of cross-directional paper manufacturing [15] and coating processes [2],
and for parallel processes [12, 20].

We now apply this theorem to show that for SVD controllers the robust stability
for the system under study is independent of the structure of the uncertainty block for

cases with only one multiplicative or inverse multiplicative uncertainty block.

Theorem 14 (Structure of the uncertainty block) Assume that the weights are
scalar times identity matrices and that an SVD controller is used. For cases with only
one multiplicative or inverse multiplicative uncertainty block, the robust stability for

the system is independent of the structure of the uncertainty block.

Proof: In general, for cases with one uncertainty block the g interconnection matrix
for robust stability, M;;, can be expressed as My = W,TW,. We are considering cases
where W, and W, are scalar times identity matrices. There are only two different types
of multiplicative uncertainty, input and output multiplicative uncertainty. Likewise,
inverse multiplicative uncertainty at the plant input and output are the only two dif-
ferent types of inverse multiplicative uncertainty. In Table 7.1 we give the transfer
function matrix T for these four cases. The proof follows from Thm. 13 by substitut-
ing K = VErUH and G = UTgVH into My;. Noting that W, and W, will commute
with any square matrix, and that diagonal matrices always commute, proving that

MﬁMu = JWHM{{ only involves trivial (but tedious) algebra. QED.

In the example used in this paper, A is a multiplicative input uncertainty. We there-

fore conclude from Thm. 14 that for robust stability the structure of Ay does not
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Type of uncertainty T
Multiplicative input uncertainty -KG(I+ KG)!
Multiplicative output uncertainty -GK(I+GK)
Inverse multiplicative input uncertainty (I+KG)?

Inverse multiplicative output uncertainty (I +GK)™?

Ta.Lble.7.1: Tr'ansfer function matrix T (M, = WiTW,) for different types of :
plicative and inverse multiplicative uncertainties. e

matter, since an SVD controller is used. Note that this is not necessarily true wh
the controller is not an SVD controller. =

7.4.3 Generalization of the Results

It is of interest to determine for which class of controller synthesis problems th
optimal controller has the structure of an SVD controller. It is easier to consider wel #'
the “p-upper bound” optimal controller has the structure of an SVD controller. Si &
the D-K iteration procedure uses the upper bound when designing the controllt;r '::;
the upper bound is within 1-2% of g for all practical problems to date considerin‘ tl
optimally in terms of the upper bound is not restrictive. , K
' A pryactical requirement is that the transformed interconnection matrix (correspond-
ing to N in Fig. 7.4) must be realizable, in order to enable the use of standard state-
space based H.-synthesis algorithms, e.g. [8]. In order to be specific, we give the

following three classes of systems for which the transformed interconnection matrix

will always be realizable:

1. the plant is described by scalar dynamics multiplied by a constant matrix, with
scalar times identity weights,

2. the plant is parallel, with parallel weights, and

3. the plant is symmetric circulant, with symmetric circulant weights.

See [11] for the definitions of parallel and circulant matrices. Theorem 14 can be
generalized to hold also for Cases 2 and 3, this involves only trivial algebra, and will
not be done here. In general, it will be possible to find a realization of the transformed

interconnection matrix provided:

e U and V are real, and

e the weights used have a specific structure. Denote the unitary block diagonal

matrix used to transform the interconnection matrix by X and the block diagonal
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: H p7H
matrix of weights W. For example, at the right of Fig. 7,.4.a X = dlagl{.Vr , Uthl
and W = diag{ Wy, Wp}. We require that W = XAswX it W prenfm tip 1e)s(H y
rest of the u interconnection matrix (as in Fig. 7.3), and.that W= A‘Ew E:) OD;I
W postmultiplies the rest of the p interconnection matrix. Here Xy 1s a diag

matrix for which the diagonal elements are realizable transfer functions.

The distillation column example studied in this paper is in Class 1. Alt.hough1t1.t 11;:
relatively poor model, distillation column models given by scalar dynamics 1mus elf -
by a constant matrix have been used by numerous researchers' (for.exan.lp e, e

references listed in [21]). Restricting the weights to be scalar tfmes identity lma ri S,
as is done for Class 1, is a relatively severe restriction, since it, for example, r.nez:}?

that one output of the plant cannot be weighted more than any othe.r output tmd be
performance weight. However, in many cases this problem may be circumvented by
scaling the plant.

Nominally identical units in parallel with interactions, for example pumps, corsri(presstor(s1
or heat exchangers in parallel, are described by parallel models. Hovd and Skogesta

[12] have studied the robust optimal control of these systems in detall.. .
It is easy to show that such models are diagonalized by a real Fourier matrix.” 'lo

i h
show how this diagonalization works on a simple example, a 2 x 2 parallel process has

del
the mode } (7.26)

The 2 x 2 Fourier matrix, which diagonalizes G(s), is

1 [1 1 (7.27)
F:E[l—l}

Applying this to G(s) gives

a(s) + b(s) 0 } (7.28)

Ye = FG(s)FT = [ 0 a(s) — b(s)

Paper machines [15, 23] and coating processes [2] have been approximated by sylrln-1
metric circulant models. Though this class is more general than the class of paralle

mode mim C! ulan models are diagonali db h ame rea. Fourier mat 1X.
Is sy etric circ lant ls ar 1ag lize y the s real rier T
Y

. . h
3The standard Fourier matrix of [5] has pairs of columns whlch.are fconllplex cg;_]:f:lt;;rzfp:izte
i ix1i by replacing each of these pairs of columns
ther. A real Fourier matrix is defined by '
:cal(:)g to the addition and subtraction of the columns (see [11] for details).
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Whether the p-optimal controller is an SVD controller also depends on the location
and structure of the perturbation blocks.* The p-optimal controller will be a SVD
controller only if the transformations of the interconnection matrix involved do not
make the structure of the resulting perturbation matrix A more conservative than
the structure of the original perturbation matrix A. If the original problem contains
only full perturbation blocks and/or multiplicative (or inverse multiplicative) repeated
scalar perturbation blocks, the structure of A will equal the structure of A. On the
other hand, if the problem contains diagonal or additive repeated scalar blocks, the
structure of A may be more conservative than the structure of A. For the special case
when the plant is described by a normal transfer function matrix (such as for parallel or
symmetric circulant plants), additive repeated scalar perturbation blocks do not make

the structure of A any more conservative than the structure of A.

Even when the structure of the transformed perturbation matrix A is more conser-
vative than the structure of the original perturbation matrix A, it may still be useful to

perform D-K iteration on the transformed system to get initial D-scales for performing
D-K iteration on the original system.

For the cases of H,- and H..-optimal control there is no perturbation block (A) in the
problem, and considerations about the structure of the perturbation block therefore
do not apply. However, both the H, and H,, norms are invariant under unitary trans-
formations, and the optimal controller will have the structure of an SVD controller

provided N is realizable, as discussed above for the p-optimal controller.

7.4.4 Other Uses of the SVD Controller Structure
Design of controllers with a low number of states

t+ synthesis using D-K iteration is known for resulting in controllers with many states.
The SVD structure can also be used for designing controllers with a low number of
states. Using V as a pre-compensator and U¥ as a post-compensator, we are left with
n SISO controllers to design for a plant of dimension n x 7. In this way, Engstad [9]
managed to design a controller with four states for the distillatjon column used as an

example in this paper which gave a value of u = 1.036.

“Recall that the performance s
blocks. Thus without loss of
and

pecifications can be written in terms of performance perturbation

generality we can speak only of the locations of the perturbation blocks
not on the locations of the transfer functions of interest for performance.
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Use as a Controllability Measure

The SVD controller structure can be used for obtaining a simple lower bound on the
achievable value for u. The frequency response of the interconnection matrix can be
decomposed frequency-by-frequency. At each frequency the simplified D-K iteration
can be used. Clearly, in this case state-space based algorithms cannot be used for the
controller synthesis part (K) of D-K iteration, but because each design subproblem at
a fixed frequency only involves finding one complex scalar, finding this complex scalar
should be relatively simple. This frequency-by-frequency approach is not likely to lead
to any realizable controller, since issues such as causality and phase-gain relationships
are ignored. Instead, the resulting value for p will be a lower bound on the structured
singular value obtainable by any realizable controller, and may therefore be regarded

as a controllability measure.

Since state-space based synthesis algorithms cannot be used anyway in the controller
synthesis part of D-K iteration, we are for this case not concerned with the realizability
of the decomposed x interconnection matrix. This controllability measure can therefore
be calculated also for processes for which U and V' are both complex and varying with
frequency.

In [16] it is also suggested to use the upper bound on g on a frequency-by-frequency

basis as a controllability measure. Use of the SVD structure in the calculation of the

upper bound will simplify the calculations involved.

7.5 Conclusions

We have shown that the robustness of an SVD controller is insensitive to the structure
of the uncertainty for cases with only one uncertainty block, if the uncertainty block is
multiplicative or inverse multiplicative. For the distillation control problem in [22], we
further showed that the p-optimal controller has the structure of an SVD controller.
This finding may be used to simplify the controller synthesis (K) part of the D-K
iteration procedure used for synthesizing p-optimal controllers.

Conditions for when the optimal controller in general has the structure of an SVD
controller have been discussed, focusing on the issues of realizability of the transformed

interconnection matrix N (see Fig. 7.4b) and whether the transformation makes the

structure of the perturbation block (A) more conservative.
Theree cases have been given for which the compensation given by unitary transfor-
mations of the SVD controller handles the multivariable effects in an optimal manner,

provided the problem contains no independent diagonal perturbation blocks (or such
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bl i
ocks are approximated by full blocks). Tuning for robustness and performance may

for th i i i
t r . esle‘ cases b‘e obtained by a simple diagonal controller. These results can be used
(1) simplify D-K iteration for the synthesis of robust optimal controllers for these three
c

asses of problems, and also show how the SVD controller structure can be used to find

b . .
robust controllers with only a few adjustable parameters and a low number of states
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Chapter 8

Final Discussion, Conclusions and
Directions for Future Work

8.1 Discussion

This thesis deals with different aspects of “structure” in control systems. It starts with
discussing whether imposing structure on a control system is a sensible thing to do. It
is argued that for most plants it is sensible to use a control system with three layers.

Starting from the bottom these layers are':
1. The regulatory control level.
2. The supervisory control level.
3. Plant wide optimization level.

Tt is found that there is a further need for imposing structure within the regulatory
control system. In practice, the regulatory control level is therefore highly decentral-
ized, consisting of single loops. In each loop, a manipulated variable is used to keep a
controlled variable at a setpoint which is determined by the higher levels in the control
hierarchy.

Having established the need for imposing a specific structure on the control system.
the thesis then deals with how to select a sensible structure for the regulatory cont rol
level. The control structure selection problem for the regulatory control level consists
of the selection of controlled and manipulated variables and (since the regulatory con-

trol level uses mainly decentralized control) the pairing of controlled and manipulated

variables.

1There are also other layers of decision making, but in this thesis these other layers are not con-
sidered to be a part of the control system
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The tools for control structure selection for the regulatory contro] level h
applied to the riser-regenerator section of the FCC process. It is demonstra:: tthen
proper control structure selection for the regulatory control of the FCC process i ':: t
cal. Specifically, the choice of controlled variables is shown to determine th l's ;i
bandwidth of the regulatory control level. o

After having determined what would be a sensible control structure. one also h
to be able to design a controller for that control structure. The design of,decentrs:l' a:
controllers is therefore studied, starting from the premise that the control st;ructurel}zle
been determined a priori. Standard controller synthesis algorithms (e.g. Hy- or H. B
synthesis) cannot handle a requirement for a specific structure for the cont:oller I::

stead three practical approaches to the design of decentralized controllers have evolved:
e Parameter optimization.
¢ Independent design.

o Sequential design.

The thesis discusses the advantages and drawbacks of these three different design ap-
proaches, and presents new results on independent and sequential design.

In some cases a specific structure for the controller does not arise because of any
a priori decision, but rather because of the structure of the controller design problem
itself. In the latter part of this thesis, it is shown how the SVD controller structure
arises naturally for certain classes of controller design problems?® for Hy:, He-, and
p-optimal control. It is thereafter shown how the knowledge of the structure of the
optimal controller can be used to simplify controller synthesis.

In summary, this thesis deals with four different aspects of structure in control
systems:

1. The need for structuring the control system.
2. How to determine a sensible structure for the regulatory control level.
3. The design of decentralized (i.e., structured) controllers.

4. A specific controller structure arising from the structure of the controller design

problem itself.

Whe.n the 1ndn{1dual units have multiple inputs and/or outputs, the controllers found in Chapter
6 are strictly speaking not SVD controllers, but the controller structure is very similar.
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8.2 Conclusions

This thesis has dealt with control structure selection and design of robust controllers.

The main contributions of this thesis are summarized below:

¢ Chapter 2. The relationship between the sign of the RGA elements and RHP
geros is clarified in Thm. 1. From Thm. 2 it is clear that the RGA is a measure
of the sensitivity to uncertainty in the individual elements. The proof of Thm. 2

is new, and it is much simpler than the original proof of Yu and Luyben [17].

The Performance Relative Gain Array (PRGA) and the Closed Loop Disturbance
Gain (CLDG) are introduced. For decentralized control the PRGA and CLDG
give loop gain requirements for setpoint following and disturbance rejection, re-
spectively, for frequencies below the bandwidths of the individual loops. The
PRCA and CLDG depend on on the plant alone, and may therefore be used
to evaluate controllability under decentralized control. Specifically, pairings of
inputs and outputs giving large clements of the PRGA and/or the CLDG in the
bandwidth region should be avoided. The CLDG may also be used to pinpoint
the need for feedforward control or modification of the process to reduce the effect

of disturbances.

e Chapter 3. The Niederlinski index pairing criterion and the steady-state RGA
pairing criterion have been generalized to hold for open loop unstable plants.
It is found that for unstable processes it may be preferable to choose pairings
giving negative values for the Niederlinski index and/or the steady state RGA.
The chapter discusses the use of several tools for control configuration selection,
and comments on how they must be applied differently or not be used at all for
open loop unstable plants. It is demonstrated that it is advantageous to select
pairings which around the closed loop bandwidth result in a RGA matrix that
is close to identity (or, equivalently, a PRGA matrix that is close to triangular,

with diagonal elements close to one).

e Chapter 4. The control structure selection for the regulatory control level is
first studied in general and a set of specific objectives for regulatory control are
introduced. Subsequently, the riser-regenerator section of a FCC plant is studied,
with emphasis on the partial combustion mode of operation. It is demonstrated
that the selection of controlled variables for the regulatory control level has a
strong effect on the controllability of this plant. Specifically, with the model used

in this thesis it is shown that the conventional control structure (Pohlenz, (13])

8.2.
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has a RHP transmission zero which severely restricts the achievable bandwidth
The Kurihara control structure (Kurihara, [8]) has a RHP transmission zero at.
a frequency that is one decade higher than the RHP transmission zero for the
conventional control structure, and the achievable bandwidth for the Kurihara
control structurf.: is therefore less severly restricted. However, neither the Hicks
control structure (Hicks, [6]) or the riser-regenerator control structure have any
RHP transmission zero, and one of these two control structures are therefore
preferred over the conventional or Kurihara control structures. For the complete
combustion mode of operation, the conventional control structure has no RHP
transmission zero, and is therefore preferable to the alternative control structures
studied. Feed flowrate disturbances will affect the riser outlet temperature at high
frequencies, and thus only slow changes in the feed flowrate should be made. The
other disturbances studied can be satisfactorily rejected by the regulatory control
system. The findings in Chapter 4 are shown to be insensitive to changes in the

operating point and parametric uncertainty.

Chapter 5. Skogestad and Morari’s independent design procedure [15] for design
of robust decentralized controllers has been extended and made less conservative.
Specifically, it is shown how to find bounds on the filter time constant for a de-
centralized IMC controller such that robust stability and/or performance can be
guaranteed. In contrast, Skogestad and Morari derived bounds on the sensitivity
function and complementary sensitivity function for the individual loops, which

results in a much larger class of possible designs and hence is more conservative.
Key steps in the new procedure, which can also be apf)lied to other controller
parametrizations, are:

1. Treat the controller parameters as real design uncertainty.

2. Ensure that only positive parameters are allowed by the uncertainty descrip-

tion.

3. Find bounds on the controller parameters such that robust stability or robust

performance is guaranteed.

The concept of Robust Decentralized Detunability 1s introduced. If a decentral-
ized controller is used to control a plant, and any of the loops in the system can

be detuned by an arbitrary amount without endangering robust stability, then

the system is said to be Robust Decentralized Detunable. It is shown how to
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find bounds on the filter time constants for a decentralized IMC controller which

ensure Robust Decentralized Detunability.

For sequential design of decentralized controllers it is shown how one can incor-
porate into the controller design problem for loop k a simple estimate of the effect
of closing the loops that are still open. For the examples studied, in which robust
control in terms of j is considered, this improvement of the sequential design pro-
cedure gives controllers that are only slightly inferior to the best decentralized

controller (with the same controller parametrization) that has been found.

The two design procedures outlined above both include model uncertainty explic-
itly, and both may also be used to design multivariable controllers which contain
a diagonal part, e.g. SVD controllers (Chapter 7). In this case it is crucial to
include the model uncertainty to avoid poorly conditioned controllers (e.g., de-

couplers).

Chapter 6. In this chapter the control of plants consisting of n interacting
units that are nominally identical. For Hy- and H.-optimal control, it is shown
how the controller synthesis problem can be decomposed into two independent
synthesis problems of smaller dimension. If each individual unit has n; inputs
and n, outputs, each of these two design problems involve a “plant” of dimension
n, X n;. Since the overall plant is of dimension n - n, X n - n;, the reduction in
size for the synthesis subproblems is large if the number of units n is large. For
H..-optimal control, the resulting overall controller will be super-optimal, since

it optimizes the Hy, objective in n directions.

For p-optimal control, the “D” part of D-K iteration (u analysis) involves a block
diagonal “plant” with two blocks, each block of dimension n, x n;. In some cases
these two blocks can be considered independently. For the “K” part of D-K
iteration (controller synthesis) the two blocks of the block diagonal “plant” can
always be considered independently. However, this reduction in problem size for
D-K iteration requires that any independent diagonal perturbation blocks are

approximated by full blocks, which may introduce conservatism.

If n; = n, = 1, the controllers which minimize the Hj- and He- norms both
have the structure of an SVD controller, as has the controller which minimizes

the upper bound on y (u(M) < DIMD).

For decentralized control, conditions for Decentralized Integral Controllability

are derived for the case n; = n, = 1.
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e Chapter 7. For the distillation control problem in [14] it has been shown
nu-

merically [5] that the robust optimal controller® has the structure of

controller, and this is proven in general for certain classes of probl(:e . E‘I’VD
shown that provided there are no independent, diagonal uncertaint IEIS kt 'ls
the problem (or if they are approximated by full perturbation blocks),ytheorcobsulsltl

optimal controller is an SVD controller for the following three classes of problem
s:

1. ]he plallt l‘S deSCI]bed by SCalaI dynaHllCS Inultlphed by a COIIStant InatIlX,
. . .

with scalar times identity weights.
The plant is parallel, with parallel weights.

The plant is symmetric circulant, with symmetric circulant weights

In these cases the compensation given by unitary transformations of the SVD
controller handles the multivariable effects in an optimal manner 'ded

problem contains no independent scalar uncertainty blocks (or SL’ICI}):Z:] i o
approximated by full blocks). Tuning for robustness and performance (:;as ?re
these cases be obtained by a simple diagonal controller. The results in C}lll N
ter 7 can be used to simplify D-K iteration for the synthesis of robust opti adp—l
controllers for these three classes of problems, and also show how the S\(/)]I)) l(lr:)lj

troll
oller structure can be used to find robust controllers with only a few adjustabl
parameters and a low number of states. )

Th i
e robustness of an SVD controller is shown to be insensitive to the struc-

tu . .
re of the uncertainty for cases with only one uncertainty block, provided this

uncertainty block is either multiplicative or inverse multiplicative

8.3 Directions for Future Work

8.3.1 Structuring of the Control System

A more mathematical © " C
atical “proof” or motivation is needed for why “simplicity of structure”

is preferable for the
control system. The “proof” would have to quantify the cost of

obtaini .
’ aining and maintaining a model of the plant (cost of information), the cost of making
. .
anges to the control system, the reliability of the control system, and possibly oth
, er

faCtOIS. SuC]l a p]O()I Wll Ie(lll Te a ()l ()I WO 1\ a. (1 ]]lay be dl”i(:lllt 10 “Ild {01 tlle
1 1 I
genelal case.

The COHtrO”el’ thh inimi
] mimi i
: l ]] . w minimizes t]le upper bound on u (M(M) < D[MD’. ) 18 termed the IObUSt
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This can be seen as a part of the more general problem of obtaining the mathemat-

ical framework needed to get good mathematicians involved in important engineering

problems.

8.3.2 Control Structure Selection

Further work is still needed to make the task of control structure selection easier. Two

specific areas for further work are:

¢ Simplification of Controllability Measures. Recent work aims to take into
account the effects of uncertainty [11, 12] and constraints in the inputs or outputs
[16]. Ideally, controllability measures should be easy to calculate, in order to
make it possible to test a large number of alternatives with relatively little effort.
Unfortunately, many of the criteria in [11, 12, 16] require heavy computations.
It would therefore be advantageous to either develop simpler criteria or to find
closed form solutions to the calculation of the measures involved. The test for the
existence of a controller with integral action which fulfills the robust performance
requirement, presented by Braatz et al. [2], is one example of such a simple

measure.

¢ Inherent Bandwidth Limitations with Decentralized Control. Individual
elements of the transfer function matrix can contain RHP zeros that do mnot
correspond to a RHP transmission zero of the plant. These RHP zeros in the
individual elements may disappear when the other loops in the control system
are closed. In this case the RHP zero in the element does not cause any inherent

bandwidth limitation for the loop.

Likewise, closing some loops may introduce RHP zeros in the transfer function
element for a loop that is still to be closed. Bristol [3] claims that pairing on
a negative RGA element will cause the corresponding transfer function element
to become nonminimum phase (either with a RHP zero or a RHP pole) when
the other loops are closed. This claim is not correct, as trivial counterexamples
can be found. To make this claim correct, one will at least require additional
assumptions about the speed of the direct effect of a control move relative to the

indirect effect (via the other loops).

A better understanding of the role of RHP zeros in individual transfer function

elements when using decentralized control would therefore be valuable.
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8.3.3 Controllability Case Studies

Controllability case studies should be performed, in order to investigate how design
modifications may improve controllability. Controllability analysis should be used not
only for control structure selection, but also during process design to ensure that the
.process that is designed has acceptable controllability. This point is becoming more
important, as modern processes are designed with tight integration between units, and

the resulting designs are prone to result in control problems with a high degree of
interaction.

8.3.4 upp as a Controllability Measure

Lee et al. [12] suggest using the frequency-by-frequency upper bound on prp, ming a(DM D)

as a controllability measure?. Alternatively, one may avoid D-K iteration and minimize
rrp(M(K)) directly provided a relatively simple parametrization of the controller is
used. Specifically, it has been shown in Chapter 7 that the SVD structure is optimal

in ma i
ny cases, and this may be used as one such controller parametrization.

8.3.5 Controllability Analysis — Consequences for Supervi-
sory Control

Controllability analysis may reveal that the regulatory control level is sensitive to
changes in some variables that are used as manipulated variables by the supervisory
.control level. This will be an argument for ensuring that the supervisory control level
in the control system change these manipulated variables slogly. However, limiting
the rate of change of the manipulated variables will of course also limit the achievable
bandwidth for the supervisory control level. This means that there may be a tradeoff

Ln the design of the supervisory control level, and it is not clear how this tradeof should
e made.

8.3.6 Controllability Analysis for the FCC

The scope of the controllability analysis should be enlarged, by including the down-
stream fractionation column and wet gas compressor, and other units with strong in-
teractions with the riser-regenerator section of the FCC process. Increasing the scope
of.the controllability analysis will make it more realistic, and the result of such an anal-
ysis would be very interesting. Such a controllability analysis would require substantial

modeling work, or access to unpublished models possibly held by operating companies

4 .
#rp denotes the structured singular value for Robust Performance
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or liCence holders. However, it is the experience of this author that operating compa-
nies and licence holders for the FCC process are very secretive, and it therefore does
not appear that anyone from academia would be given access to and/or be allowed to

publish the necessary information.

8.3.7 Multiple Steady States for the FCC

In the literature on steady state multiplicity in FCCs, e.g. (7, 10, 4, 1], a number of
conflicting views are presented, and the authors base their analysis on different models
and assumptions. An attempt to clarify the situation with respect to steady state

multiplicity would therefore be worthwhile.

8.3.8 SVD Controllers and Other “Compensator-based” Con-
trollers

Further investigations into the design of SVD controllers and other “compensator-
based” controllers are needed. The SVD controller structure or other “compensator-
based” controller structures should be tried on selected examples, and the diagonal
part can be designed using the methods described in Chapter 5. In this case it is
important to include uncertainty in the design problem, since the overall controller is

not diagonal.

8.3.9 Robust Decentralized Control

Tests for Robust Decentralized Detunability for conventional decentralized controllers
(e.g., PI or PID controllers) should be developed, along the lines of the test for Ro-
bust Decentralized Detunability for decentralized IMC controllers that is described in
Chapter 5. This is not quite as straight forward as it may appear, since setting the
proportional gain to zero in a controller with integral action will remove the feedback
around the integrator, which will then be on the limit of instability. The problem
formulation must avoid this problem, which is only of a mathematical nature and does

not correspond to a physical problem.

8.3.10 Cross-directional Control of Paper Machines

The direct application of the theory of Chapters 6 and 7 to the cross-directional control
of paper machines requires that edge effects are ignored. Further work is needed to

include the edge effects in the problem, or to study the effect of the error that is intro-

e
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duced by neglecting the edge effects. The assumption of repeated scalar 2 ‘
the actuators, which is implicitly used by Laughlin et al. (9], should be um:.:eirtjmty in
2 avoided.
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Model Requirements for Model Predictive |
Control
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Abstract

. ./: rrllethod f01: deri\.'ing truncated step response models for Model Predictive
ontro (MPC) is derived and demonstrated. Truncated step response mnodels
can result in a dramatic reduction in the number of step resflonse coefficients
needed, and can therefore significantly reduce the computational load on the
co'nt.rq system. The truncated models are derived in a way which attempts to l
minimize t'he robustness degradation caused by the modeling error introduced
by .trun.catlon. The truncation of the step response model only affects the state
estimation part of the MPC. The algorithm for finding the control move s not

?ﬂected as long as the prediction horizon is kept smaller than the truncation
ime.
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A.1 Introduction

Many chemical plants have outputs whose response times differ widely. In conventional

Model Predictive Control (MPC), using a step response model, it 1s necessary to use
a model which represents the behaviour of the slow outputs with sufficient accuracy.
Thus the model must be able to predict plant behaviour far into the future. However,
the presence of fast outputs necessitates the use of a short sampling time in order to
enable good control of these outputs. As a result, a high-order model is needed to
describe the plant, leading to a large computational load on the control system, and

The same problem arises if the responses of

possibly causing computational delays.
nse 1s

all outputs are dominated by a large time constant, but fast closed loop respo

desired.

MPC has traditionally been used only for asymptotically stable plants, with ad hoc
g required for integrating plants. Recent developments have extended
These

corrections bein
the use of MPC to integrating and unstable plants in a consistent manner [1].

developments are used in this paper to find models which resolve the dilemma described
above. In the models found in this paper the the step response model is truncated at

a time such that the fast modes have settled, and a very simple state space realization

is used to describe the remaining dynamics.

A.2 Truncated Models

The truncated models used in this work are formulated as follows:

P(k) = MTP(k = 1) + SAu(k — 1) + TAw(k - 1) (A1)
j(k) = NY(k) (A.2)
where
Y(k) = [G(k|k),- -, Gk +n— 1|k), gs, ip]" (A.3)
(0 I,, 0 -~~~ 0 0 0 0 |
0 0 I, --- 0 0 0 0
Mo |0 00 L, 0 0 0 (A4)
00 0 0 I, 0 0
00 0 0 I, Cr Cp
0 0 0 0 0 Ar 0
[0 0 0 0 0 0 Ap]
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N = | I, 0 --- 0] (A.5)
[ 5 ] [ Spr ]
Sy Sp2
S = So1 |3 T=1 Spar (A.6)
Sn SDn
Br 0
0 J Bp |
where
Sini Sizi o St
G S21i Sazi - S2nuii ;
; E : : i (=1, ,n) (A7)
Sﬂ,.l.i Sn,.2,:' iy Sn,,uu.i

The element Sy is the ith step response coefficient for the effect of a step in mani

u?ated variable [ on output k. The Sp;’s are step response coefficient matrices fi ntl}Il)-
dlstlfrbances, and correspond to the S;’s for manipulated variables. The change ?r the
manipulated variable at time k is given by Au(k) = u(k) — u(k — 1), and ~(i) lllsl the
current process output (for MIMO systems §j(k) is a vector). The d’ynarnig(/: states o(f3
Fhe system are contained in the vector Y(k). Each dynamic state §(£}k) has a special
1ntf.:rpretation: it is the expected process output at time £ assuming the mani fl ted
variable does not change at present or in the future (i.e., Au(k+j)=0for >p0 . ed
that no disturbances enter at present or in the future (ie,wk+3)=0 gor—' )>a(r)l)
The vec:tors ys and jp contain dummy states through which the slow effectsJ o; th.
change in the manipulated variables and the effects of the disturbances, respectiv le
enter. Note that the upper left corner of M” equals M* in [1]. The f7a,st fi) narr(:' .
are therefore described by M5 and 8, - -, S,, with the slow dynamics being dZscribleC(j
by AT,‘ Br and Cr. Ar, Br and Cr constitute a state space description of the slow
dynamics, and describe the effect of changes in the manipulated variables on the out

puts after the truncation time n sampling intervals into the future. The matrix A i;
the autotransition matrix, containing the discrete pole locations for the slow dynam?cs

and Br and Cr are input and output matrices, respectively. Similarly, Ap, Bp and,

Cp constitute a state space description of the slow effects of the disturbances

First Order Dynamics for the Truncated Step Response. Although Ar, Br

and Cr i inci i
T 1n principle can describe a system of any order, we will from here on assume

th i
at the truncated part of the step response is modelled using first order responses for




4

it
UriES fatind A,
ﬁ.:'! e
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each plant element. This results in the following equations:

aiy
ar=| (A8)
L Uny.ny
by ]
I bn,!
Br = S, (A.g)
bin,
0 bny.n
Cr= [ In, I“” e I"‘v ] (A.10)

This means that the residual dynamics of the ij’th element of the transfer function is
modelled as b;;/(z — a;;). In equations (A.8), (A.9) and (A.10) the responses for the
slow dynamics are completely decoupled from each other. However, it is important
to realize that fitting the coefficients in Ar and Br corresponding to each output and
manipulated variable independently, without taking into account the coefficients used
to fit the other responses, may not give a good model for the overall system, especially
for ill-conditioned plants. This is because directions in the plant will then be neglected.

The values of all a;; and b;; should therefore be fitted simultaneously.

A.3 State Estimation

The model for the disturbances in the previous section is very general. However, we will
in this paper restrict ourselves to consider only disturbances which can be described
by stable or integrating transfer functions of first order, as this will allow a very simple

parametrization of the optimal Kalman filter gain.

First Order Disturbance Dynamics. We assume that the disturbances w(k) are
white noise. The following choices for Sp, Ap, Bp and Cp will then give first order

disturbance dynamics.

S 0 Vi (A.11)

A.3. STATE ESTIMATION

Apin M7 is a diagonal matrix

With M™ as given above, the effect of disturbances o

order. Hence, q;
integrated twice) and o;

integrated once).

This model of the disturbance dynamics allows the fo
of the Kalman filter gain K:

= 1 implies a ramp disturbance at the ?

209

C _
D In,, (A.12)

Bp =
p = I, (A.13)

23]

Ap =
(A.14)
Qy,,

0 < o<

< <1 (A.15)

n the outputs will be of first
'th output (white noise

= 0 implies a step disturbance at the ¢’th output (white noise

llowing simple parametrization

( 0
I,
B I f1a Ap+1,, S
= 0 ‘. :
; + : (A16)
fra Tis Ab oo
0 .
ApT ]
Boe ol
Py (A.17)
- ':_ T
7 = [f,,, Loy i I,,,J (A.18)

The optimal state estimate js thus:

V(klk) = (M~ KNM)P(k - 1)k —1)

where §(k)
Eq. (

+ Ki(k)+ (I - KN)SAu(k — 1) (A.19)

d .
enotes the measurement at time k. It js worth noting that as a result of

A.17) the Kalman filter contains only one adjustable parameter for each controlled

variable. It is therefore feasible to tune the Kalman filter online
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A.4 Prediction

y ptl al eStl atO S eve Oped 1 p 1 p'
Ihe d namic Sta,tES Of the o) m. m T d 1 n the revious SeCt on re
p m all CuIIeIIt a.nd futu[e lllputs are zero
g
IeSent the CUIIellt a,nd futule Ol.lt thS assum
l-e., Au k+ ’) - 0 fOI‘ 1 > 0). Ihe pl‘edlct] ve C()ntIOlleI COmputeS hhe beSt CUII‘eIlb alld
o) t e ed t on o € ou f ur p
( ( 1 oves ba»sed 213 h pI‘ iction ffutul‘ tputS. Ihen ut (3 Ollt lltS
futul‘e Contro m

i h the following
be expressed in terms of current and (m — 1) future inputs throug
can be

equation: A.20)
I (k + 1]k) = MY(k|k) + Sy AU(K) (
where
0 0
52 Sl 0 e 0
P poowa e
> :
Sm Smop vrr e 51
. . cer o ses Soon
[ S5 Sp1 oy (A.21)
. (A.22)
A[p = [IP'"vXP'"y O]M..
[ Au(k)
k+1
) A“(_ ) (A.23)
AUK) = :
\_ Au(k+m—1) |

ion Y™ (k + 1|k) denotes the predicted future outputs up to t.1me k + p for
foiZtr;jltta:;;I;tﬁ(artinglat) time k+m, based on the mea.s?rem:ntsotzst(:n tl(rrlle <k.TTI;I<;nc:),
we allow the flexibility of setting tl?e numl.)er of fu;l;: anl;ti(r)r; o pr;\,ides i
diﬂefentl’)’l from' t}'le ouft I:E(te ?::jri:t;:;p};zlz;;ei on the qcurrent measurements since
:_Optl;n‘?l t };l);id]tcitrllj):l Zstimate of the states representing the 01‘1rrent ant'i iutou;;a] p;o;::z
f\ftk;uzslsassum?ng Au(k+j7) =00(k+J + 1)=0 z.mdlw(k,]) =0 Vj2> ,
v(k+ j 4 1) is the measurement noise at time k +j + 1.

ST SRR —.....
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A.5 Feedback Control
We adopt the following quadratic optimization objective (used in QDMC [4]):

Din [T (k + 11k) = R(k + 1) + [[AAU(K)|[? (A.24)

R(k + 1) = [T‘(k + l)a U ,T‘(k +p)]T
weighting matrices that are chosen

problem can be cast into the followi

is the future output reference vector. T and A are
to be diagonal for most cases,

ng least-squares problem:

[rs,;n}Au(k) _ [r 0 J[R(k+1)—M,,5’(klk)J
A 0 I,

0
[ TE(k + 1[k) QJ

This optimization

0 (A.25)
The solution to this least-squares problem is
AU(k) = {(S7)TTTTS™ + ATAYN(SMTTTTE(k + 1]k) (A.26)
The current control move is implemented:
Au(k)=[1,, 0 -.. ¢ JAU (k) (A.27)
The controller can be interpreted as a state-observer-based compensator since
Au(k) = Knrpo(R(k+ 1) — M, D(k[t}) (A.28)
where |
Kyupe=[1, 0 0 {(S)TITrsr + ATAY Y (S™TTTT (A.29)

From the above it js clear that the error intro

the state estimation, and will not affect th
the prediction horizon

It will often be sufficj

time, especially if the

duced by truncating the model only affects
e prediction or feedback contro) provided
» P 1s less than the number of step response coeflicients used. 5.
ent to choose the prediction horizon shorter than the truncation
residual dynamics are monotonic.

A.6 Requirements for Model Accuracy

The requirements for model accuracy will vary with frequency, depending on perfor-

mance requirements and mode] uncertainty (which should not be confused with the
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error in the model deliberately introduced by truncation). For instance, any error in
the magnitude of the steady state gain less than 100% can be handled by a controller
with integral action, provided the sign of the steady state gain is correct. At fre-
quencies far beyond the closed loop bandwidth, even larger errors can be tolerated, as
performance requirements are lax and the loop gain is very small. The need for high
model accuracy therefore occurs primarily at intermediate frequencies. A procedure
for choosing the a;;’s and b;;’s in equations (A.8) and (A.9) therefore needs to take the
different accuracy requirements at different frequencies into account.

The measure adopted in this work is the y performance weighted plant reduction

measure of Rivera and Morari {5].
| DyN12S(P — PYP~ ANy DY |oo (A.30)

Here D, is the D—scale used in the calculation of the structured singular value [3]
for robust performance for the full plant. Nj; and Ny are the 1,2 and 2,1 blocks,
respectively, of an affine parametrization of the y interconnection matrix M, in terms
of S.

M, = Ny + N128Ny (A.31)
S and H are the sensitivity function and complementary sensitivity function using the

reduced plant model P.
S=(+PC)yYy, A=1-§=PCc(+PC)" (A.32)

P is the full model and C is the controller. Details on how to find affine parametriza-
tions of M, in terms of § can be found in [6].

The use of S and H in the above measures implies knowledge of both the controller
and the reduced order plant. Knowledge of the controller is also necessary in order to
find the p interconnection matrix M, which is needed to find the D—scale. Usually
neither the controller nor the reduced order plant will be known a priori, and therefore
S and H will not be known. We will therefore initially design a controller for P (the full
model) which fulfills the robust performance requirements in terms of the structured
singular value. The resulting controller can be used to calculate S and H, which are
used instead of S and H in Eq. (A.30). The inaccuracy thus introduced is usually minor
and can be tolerated since the final controller design will be checked by calculating the
structured singular value for the closed loop system. Numerical experience suggests
that Eq. (A.30) works well with S and H substituted for S and H. This is reasonable
as the controller design for the full order model reflects performance requirements and

bandwidth limitations. The result will then be that the measure (A.30) will weight

A.7. HEURISTIC RULES
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Yevenif S and H are substituted for $ and f7
the same as $ and A. ,

If increased accuracy i
y in the use of (A.30) is desj i i
That is, first a reduced order model is fou ) g & len can be Py
in (A.30). Thi
( )- This reduced order model can be used to design a new controller, whj h i
r, which is

used both to update D, § and A
- nd H. These updated est;
reduced model, and so on. Note that the Dp e will s ot o nd P

the controller changes.

provided S and H are approximately

nd by using S and H instead of § and A

—scales will change for each iteration since

A.7 Heuristic Rules

resulting number of step response coefficients

7 j gOO model ﬁt at h]gh er uenciles can be Obtallled

are chosen so that starti
i e 0 ng from the value of the step response

choiems fo o amoie a fits the step responses at times n 4+ 1 and n + 2. With such
ij and b;; the error in the step respo i .
scoond donri b the P response will accumulate slowly (unless the

tep response chan
' ges very fast
occur mainly at lower frequencies, ;

considered Important, an initial est;

. : and the error will therefore

hus if a good model fit at high frequencies is
mate of a;; and bij can be obtained from:
bis = Suyrij— Snij (A.33)
% = (Sntaij = Sny1is) /by (A.34)
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because of the integral action inherent in MPC. Using the estimates in Eq. (A.33) and
Eq. (A.34) gives no guarantee that the sign of the determinant of the steady state gain
is correct.

We emphasize that the values for a;; and b;; found from equations (A.33) and (A.34)
should only be considered as reasonable initial estimates, and a method which weighs
the accuracy requirements at different frequencies should be used to determine the final
values of the a;;’s and b;;’s. However, the criterion we have used to determine the best
model, (A.30), is not convex. Minimizing (A.30) one may therefore only find a local

minimum, and reasonable initial values for the a;;’s and b;;’s are therefore useful.

A.8 Example

To demonstrate the use of truncated models in MPC, we will apply such a model to
the control of a distillation column. The true plant is chosen to be column A, model

F2 used by Skogestad and Lundstrém [7]. The model is given by:
87.8 14 87.8

d _°t° - d
yo 1+ 194s (T3 15 Tr191:%Y
108.2 1.4 108.2
_ _ d A3
dzp T4 1025 92(8) (T 15s 1015 (A-35)

where g (s) represents the liquid flow dynamics and is given by

1

gr(s) = m (A.36)

The uncertainty considered by Skogestad and Lundstrom (7] is uncertainty in the ma-

nipulated variables, with a diagonal uncertainty weight

5s+1
{s)=0.2 .
Wi(s) =0 055 1 112 (A.37)
The performance weight is
10s +1
Wp(s) =0.5 T0s I (A.38)

The p—optimal PI controller found by Skogestad and Lundstrém is

2.74s541
[ oy } - [“4 U (A.39)
v 0 0.6213 st

With this controller x# = 0.94 was obtained, and the performance requirements are
therefore fulfilled (a p—value less than 1 means that the closed loop system will fulfill

the performance requirements specified by W;(s) for all uncertainties allowed by W;(s)).

A.8. EXAMPLE

Magnitude
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—
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Figure A.1: Maximum sin
control example.

magn]tud Of I(S) a,Clles l at a q y / . nsur that a )l”l
| € e [[’ re fle uenc 0{11&(1 min I()e € S n” 14

dOeS not ]. i 1 i
lmlt the aCh]e able bandWIdth, a Sampling inter\/al Of 0 5 minutes i l
V . 18 cnhosen.
l].le ],2 element Of the Step reSpOnse has an inﬂection point a.t approximalcl} l(‘
. ¥
| : i . )
IHIHUtes It was t'helefOIe deCIded tO tIuIlCate the Inodel at tl”le 12.5 m llllt(‘.s, 1.C.

use 35 step response coefficients per plant element. H and S a
controller in Eq. (A.39). re

to

calculated using the

A constrained optimization algorithm was used to fi

imizes (A.30). The values found are: nd the Al

Ar = diag ((0.9962 0.9965 0.9967 0.9966 ) (A.40)
0.2071 0 ’
0.2473 0
Br =
0 —0.1913 P
0 —0.2504

y s}'ilifnrr;:x};rir;uil :;ingTuhl:r valuc‘ of the corresponding multiplicative error (P — ) -t
AL resulting model step responses can be compared to the step

responses of the true plant in Fig. A.2
The error at low frequencies is larger than what is commonly considered acceptable.
However, stability at low frequencies is not impaired because the directions of the
model at low frequencies closely match the directions of the plant, it is only the gains
are significantly different. The model reduction measure (A.30) clearly emphasizes
accuracy at high frequencies for this case. The mode corresponding to the time constant
of 15 minutes has not settled at the truncation time of 17.5 minutes. An accurate model

fit at all frequencies using first order dynamics in all elements is therefore not possible,




_

APPENDIX A. MODEL REQUIREMENTS FOR MPC A.8. EXAMPLE 217
216 Output 2 input uncertainty. The resulting closed loop system was found to have a #—value of
Output 1 100 0.91. This is a slight improvement i the structured singular value from the value
100 21 | found in [7], but may not by itself be sufficient to Justify the added complexity of using
80 r =TT model predictive contro] Instead of diagonal PI controllers. However, one of the main
60 . /,” i advantages for using MPC is the ease with which constraints can be accommodated
/d i This advantage does not show up in the #—analysis. When constraints are present,
40 r the controller actjon must be calculated by solving a Quadratic Programming (QP)
20 | . problem instead of the least squares solutjon used in section 5, The solution of the
N QP problem will, as shown in section 5, not be affected by the model error introduced
‘é § 0 | by truncating the step response model if the prediction horizon is shorter than the
§~ § 4 truncation time.
i @ 20 1 An observant reader may note that the values for Joyp and fozp do not correspond
2 ? 40 + | to the values found from Eq. (A.17). It is by no means Surprising that the value for )
\\.\ i which minimizes the error in the state estimate jg not the value which optimizes robust
-60 \\\\\ performance, as the optimization criterja are different.
80 \\§‘;2‘"" The best MPC controller found by calculating f,,  and Jozpy from Eq. (A.17) had a
| p—value of 1.11, meaning that the performance specified by Wy(s) cannot be guaran-
- l| »'{' 100 =00 -100 0 500 teed for all cases. Since the example contajns no information about the disturbances,
° Time [min] Hime min]

one may consider using a,, and Qzp as variables in the optimization, while stj]] cal-

culating Joyp and Jozp from Eq. (A.17). For this example it turns out that this only
time, e.g. 50 minutes, it should be possible to helps a little, as the resulting y—value obtajned is 1.06.

' If we had chosen to truncate at a later time, e.g.

. : It in a close The p—values found in this work
first order responses for the residual dynamics which would resu w0 reasens for (11
| i find four firs

g tep eSpOIlse O t € 10} €. O el da:sh.ed 1 €s).
A 2 S T f T h plant (S l]d hn S) a,nd the m d ( m )
I 1gure L.

may not be the true optimal values. There are
model fit at all frequencies.

The beSt MPC COIltIOller tun]ng parameters a.nd ﬁltel‘ paIaIIleteIS that we ha.Ue

optima.
. found are: Controller Filter
ll b Teht Parameter | Value ¢ Our optimization Program is not able to handje Integer optimization variables
|I Variable Welig = 01589 We therefore had to fix the number of moves and the prediction horizon a prior;
J I a .
|' . YD ;;'02 f w 0.1423 Based on a few initial calculations these were chosen to be:
ol IB ’ e Number of moves: 5
L 0‘00(2]:;?5 ;w 0.00193 Prediction horizon: 6
1% 0.0 bzp :

i i informa-
6m [7] did not contain any in

igi kogestad and Lundstrom | | |
The original example by S tohg efore decided to consider disturbances which affect MPC without a truncated model would need
. . |
O dl?tu'rbances. t:}lvema(:lipulated variables. Thus oy, = a;, = 0.9965 was o.rder to use t.he :same number of coefficients

the outputs similarly to b ed‘ turbance dynamics emulate the error arising from the times the main time constant. The best

is wi the distur
chosen. This will make
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laad tyd 8 huchure,

sampling interval is 4.88, which demonstrates the improvement in performance for the

same number of coefficients that can be obtained by using truncated models.

A.9 Conclusion

A method for finding truncated models for MPC has been derived and demonstrated. I
:| - e These truncated models result in a dramatically reduced number of step response coef-
Y ficients needed to model the system, leading to a significant decrease in the computa-
tional load on the control system. The model error introduced by truncation need not
affect system robustness or performance. An important advantage of MPC, the easy
handling of constraints, is unaffected provided the prediction horizon is kept shorter

than the truncation time. |
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