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NOMENCLATURE.

B - Bottom product flow rate

d - disturbances

C - Controller

D - distillate flow rate

EPV - Explained Prediction Variance.

F - feed flow rate

F; - Gain matrixes from inputs to secondary measurement (temperatures)
G; - Gain matrixes from inputs to primary outputs.

K, kg - estimator constants

L - reflux flow rate

Ly - logarithmic temperatures based on reference temperatures
Mg, Mp, My - Holdups in the column, see Fig 1.1.

Mj, M, - Transferfunctions of measurement device. -
PCR - Principal Component Regression.

PLS - Partial Least Square Regression.

gr - fraction liquid inn feed

RGA - Relative gain array, (Bristol, 1966)

t - principal component (score), latent variable

T - matrix of scores

T* - boiling temperatures of pure component

u - manipulated inputs (= (L, V)T)

v - process noise (disturbance)

V - boilup rate from reboiler

Vr - overhead vapor flow

W; - weight functions for temperature scaling

x - mole fraction of light component

zpg - mole fraction of light component in bottom product
y - output vector = (yp,zp)T

yp - mole fraction of light component in distillate

zp - mole fraction of light component in feed

Greek symbols

« - relative volatility

N - Murphree tray efliciency

4(A) - condition number of matrix A

p - Structural Singular Value

w - frequency (min™!)

oi(A) - The i’th largest singular value of matrix A
Y - covariance matrix

0 - temperature

© - data matrix of §
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Chapter 1

Introduction

Distillation is perhaps the most important unit operation in process industry. In many
plants it involves about 30-40% of the total investment and energy costs. Thus, small
improvements in plant operation may imply important cost reductions. The very large
number of published articles dealing with various aspects of distillation operation reflect
the importance the industry and the academic community have given this subject over
the years.

During the last decade greater emphasis has been placed on saving energy. This is a
result of higher energy prices, but also of an increasing conscience in the community for
the environmental consequences of high energy consumption. In the future it will become
imperative to operate the distillation columns more efficiently with respect to energy. To
do so, not only the design and operation conditions must be optimal, but also the control
system involved in maintaining these optimal conditions.

Separation mixtures in distillation columns require input of energy. The energy needed
for a specific column increases exponentially with the degree of separation. Poor compo-
sition control implies large periods of operation with purer products than necessary, and
thereby losses of energy. Tight composition control is consequently important for energy

savings. It will also give larger profits in terms of product recovery.

1.1 Distillation Control.

Figure 1.1 displays a binary distillation column with one feed and two product streams.
The control objectives are to maintain the product compositions zp and YD, the holdup
of reboiler and accumulator, Mg and Mp, and the pressure, P, at desired levels. The

manipulable variables available are the distillate D, the bottom product B, the reflux L,

1
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Figure 1.1: Distillation column with 5 manipulated inputs (L,V,D,B and Vr) and 5 con-
trolled outputs (yp, 5, Mp, Mg and P).

the boilup V, and the overhead vapor flow Vr. The latter two are manipulated through
reboiler and condenser duties.

The five inputs and the five outputs to the plant give rise to a multivariate (5 x 5)
control problem. One might think that this problem is best solved by a full multivari
able (5 x 5) controller taking all possible interactions among the variables into account.
But, since the liquid and vapor dynamics turn out to be much faster than the composi-
tion dynamics, the holdups (Mg, Mp and P) are easily controlled by three single loops.
Actually, the most common control practice is to use single PID-loops for the product

compositions as well. This is quite surprising, since distillation columns are known to have
large interactions among these compositions loops. However, this gives less complex and
more robust control systems, which are also easier to understand and tune for the opera-
tors. This practice is also found, at least for some examples, to be quite close to optimal
(Skogestad and Lundstrom, 1990). The reason is that the distillation columns with large
interactions are ill-conditioned (high condition numbers and large RGA-values), that is,

the process gain is strongly dependent on the input direction (combination of inputs).

1.1. DISTILLATION CONTROL. 3

Figure 1.2: Distillation column with LV-configuration.

Inverse based controllers, e.g. decouplers, will then be very sensitive to uncertainties in
input and model.

Using five SISO-controllers, the next question is how to pair the input variables with
the output variables. The pressure is usually controlled by the condenser duty. The four
remaining variables may be paired in a lot of different ways. The different configurations
are denoted after which of the two manipulated inputs that are used for composition
control. The two most common configurations are the LV-configuration, i.e. the pairing
of yp with L and zp with V, and the DV-configuration, i.e. the pairing of yp with D and
xzp with B. The liquid holdups are controlled by the remaining inputs.

The selection of configuration is an important control issue which is extensively dis-
cussed in the literature, e.g. Shinskey (1984), Waller (1986), Skogestad and Morari (1987),
Waller et al. (1988) Skogestad et al. (1990). In this thesis, however, where the focus is
on the estimation problem, the selection is far less important, although not always irrel-
evant. In this thesis the LV-configuration has been chosen mainly because it seems to be
the most common configuration, but also because it in some sense is the most “basic”

configuration. L and V have a direct influence on the compositions in the column, while
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Setpoint input output
Controller }———p=! Process —
Measurement

Figure 1.3: General control loop.

D and B have more indirect influence through the control loops of the reboiler and accu-
mulator levels. The LV-configuration yields also a very ill-conditioned plant which is of
interest from a theoretical point of view.

Many industrial columns are today operated with one-point control of the product
compositions, i.e. only one of the composition control loops is closed. The reason may
be constraints on one of the inputs, or simply that the one-point control is a much easier
control problem to handle because one then omits the interaction problem connected with
two-point control. In this thesis, however, it is implicitly assumed that two-point control

is to be used.

Figure 1.2 shows a typical implementation of the LV-configuration.

1.2 Product composition measurement.

The control loop consists of the process, the measurement device, and the controller.
(Fig. 1.3). Each part should be designed with the other two in mind. A constraint
or a fault in one part will affect the performance of the whole system. For instance,
a substantial bias in the measurement device will normally have a damaging effect on
the control effort, no matter how sophisticated the controller is. In the following, the
measurement problems for distillation columns will be addressed.

The measurement of pressure and liquid levels is performed by pressure or differential
pressure sensors. These sensors are quite robust and easy to maintain. The placement

and implementation of the sensors may, however, sometimes involve problems, but this
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subject will not be considered here. (It is well covered for instance in Buckley et al., 1985,
p 256-273).

The measurement of the compositions is generally much more difficult. Among on-
line analyzers the gas chromatographs are most common, but also infrared and ultraviolet
analyzers, mass spectrometers, boiling point analyzers, flash point analyzers and refrac-
tive index analyzers are in use (Rademaker et al., 1975). Ideally, the analyzer method
chosen should be sensitive only to the actual component such that other components
and physical conditions do not interfere. This objective is often difficult to meet under
practical circumstances. The result is that frequent calibrations become necessary. If
the interfering conditions are changing periodically they will be especially troublesome
to handle. The sampling and sample conditioning are also week spots. Troubles such as
two-face sampling and plugging or partial phase changes in the sampling lines happens
quite frequently (Kister, 1990). All these matters often imply high maintenance costs.
One employee for every third analyzer may be typical for gas chromatographs.

For safety reasons the analyzers are often placed in separate control rooms some dis-
tance away from the column. This gives additional measurement delays. With gas chro-
matographs, a typical overall measurement delay then becomes 10 to 20 minutes, which
may imply serious control limitations.

These drawbacks of on-line composition measurement are the main reasons why most
distillation columns are still using temperature for composition control. Temperature
control is cheap, easy to maintain, fast in response to composition changes, and may be
measured continuously. Of course, the use of temperature also implies difficulties. These

will be discussed in the following chapters.

1.3 Brief survey of the thesis.

The thesis addresses the use of multiple temperatures for composition estimates. Chapter
2 and 3 will give a literature survey of this subject. Chapter 2 deals with basic principles of
temperature control, that is, how to keep some temperatures, or simple functions of them,
constant at some trays in the column. Chapter 3 will deal with the use of temperature in
model based product composition estimators.

Chapters 4, 5 and 7 contain the main results of the thesis. They are written as
articles and may thus be read separately. In Chapter 4 three different types of estimators

(Kalman, Brosilow, Regression) are compared in a linear study. Chapter 5 discusses
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several refinements of the most promising of them, the regression estimator. This study
involves nonlinear simulations and evaluation of the estimated predictive ability. Chapter
7 gives the results of an implementation of the regression estimator on a pilot plant
distillation column.

Chap'ter 6 contains a description of the experimental column and the associated equip-
ment. Finally, Chapter 8 gives a summary of the results and discusses some possible
directions for future work.

All references cited in this thesis are listed after Chapter 8, at page 148. At the end
of each article (Chapter 4, 5 and 7) there are separate lists of references and symbols as

well. For the other chapters please refer to the list of symbols at the beginning of the
thesis.

Chapter 2

Temperature control.

This chapter is divided in two parts. The first part addresses the basic principles of using
single temperature measurements, including the important issue of sensor location. The
last part contains various means of dealing with the weak spots of temperature control

by using additional temperatures.

2.1 Use of single temperatures.

The use of temperature to infer composition is based on the assumption of thermody-
namical equilibrium between liquid and vapor on the trays in a distillation column. At a
given pressure, P, there exists a unique boiling point temperature, 6, corresponding to a
specific liquid composition, z

by = f(z, P) (2.1)

Assuming constant pressure and equilibrium conditions, a temperature measurement
will consequently infer a binary composition exactly. In multicomponent systems, how-
ever, the temperature is not a true composition indicator since different mixtures may

have the same boiling point temperature.

2.1.1 Pressure compensated temperatures.

Changes in pressure caused by changes in setpoint, inaccuracies in the column pressure
control, or changes in pressure drops in the column from varying column loads will in-
fluence the temperature measurements according to equation 2.1. One common way to
compensate for the influence of pressure, is to obtain a measurement of the pressure. A

pressure compensated value of the temperature, 6, is then used as input to the controller,

7
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e.g.
80
Opc =0 — iP . AP (2.2)

This linear compensation is sufficient in most cases.

2.1.2 Problems with temperature measurements.

Consider for the moment a binary mixture with compensated temperatures. Accurate
temperature measurements at the top and the bottom tray in the column will then be
exact for composition estimation. However, different kinds of disturbances may affect the

temperature measurement:

e Noise and offsets associated with the measurement and data treatment device. This

includes the inaccuracy of the pressure measurement and the compensation.
o Temperature variations due to flow pulses and improper mixing on the trays.

o Temperature offsets due to improper equilibrium conditions.

2.1.3 Sensitivity.

The sensitivity-to-noise ratio of the measurement device is often a critical factor. If the
temperature span caused by the changes in the compositions is small compared with pres-
sure fluctuations and measurement noise, the use of temperature for composition control
will become very difficult. One problem with distillation columns is that the tempera-
ture variations are very small at the end of the column near the bottom product and the
distillate. This is due to the often extremely pure product compositions. However, the
temperature changes are much larger towards the middle of the column. Consequently, the
temperature sensors are usually moved to a location where the sensitivity is large enough.
According to Thurston (1981), the temperature change should be about 0.1 — 0.5 °C per
% change of the manipulated variable for the control tray (steady state changes).

2.1.4 Correlation with the products.

The reason why a tray some distance away may be employed for control is that the
temperatures on trays located close to each other are very correlated through the mass
and energy balances. However, the further the temperature measurement is from the

ends, the weaker is the correlation with the product composition, because the effect of

2.1. USE OF SINGLE TEMPERATURES. 9

the compositions of the other end and the feed will then increase. Keeping a temperature

constant will no longer keep the product composition constant.

2.1.5 Non-key components.

When the system is multicomponent the influence of the non-key components will make
temperature control much more difficult. However, there are usually sections in the col-
umn where the non-key compositions are rather constant. On the other hand, at the end
of the column, the temperature will be dominated of the separation between the non-key
and the pure key component. These places should, therefore, be avoided for temperature
control (Rademaker et al., 1975).

2.1.6 Measurement location.

The issue of temperature location has been extensively discussed in the literature. The
most important criteria have been the sensitivity and correlation criteria discussed above,
and for multicomponent distillation also the influence of non-key components. Other
criteria employed are considerations of dynamic and linearity properties of the control
loop, and minimum interaction between the loops. However, these matters are usually
less important because they may be often handled by the control system.

Among the textbook authors in distillation control theory, Buckley et al. (1985) are
the only ones who argue strongly for placing the measurements at the ends. The only
exception they find is when it is practically impossible (which according to the authors
is seldom with present-day measurement technology). On the other hand, Nisenfeld and
Seeman (1981), Shinskey (1984), and Desphande (1985) pay much more attention to the
sensitivity criteria. They argue that there frequently appear situations where placing the
temperature away from the ends is both necessary and favourable, for instance in high
purity columns and in multicomponent systems. This will be the case irrespective of the

measurement technology.

2.1.7 Procedures for measurement location.

Since measurement selection/location is a general problem encountered in many processes,
a lot of general procedures have been proposed to deal with this problem, (e.g. Morari and
Stephanopoulos, 1980; Jgrgensen et al., 1984; Ghosh and Knapp, 1989; Lee and Morari,
1989.).
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For the temperature location in distillation columns, several additional procedures
have been proposed, e.g. Tolliver and McCune (1980), Yu and Luyben (1987), and Moore
et al. (1987). These procedures focus mainly on the sensitivity criteria. The latter
two involve Singular Value Decomposition (SVD) on the steady state process matrices
between inputs and temperatures. Yu and Luyben (1987) use the gain matrix from the
disturbances to temperatures, while Moore et al. (1987) use the gain from inputs D and
V to the temperatures.! The main idea is to use corresponding column vectors in the
right and the left singular matrices. The largest element in each vector are paired, i.e.
the dominating input with the dominating output (temperature) for each singular value.
This method seems intuitively reasonable, but may yield very arbitrary results if the right
singular matrix has large non-diagonal elements (for instance for the LV-configuration).

A main drawback with many procedures is that they do not include noise and distur-
bance characteristics of the column. The solutions often are based on either the sensitivity
criteria or the correlation criteria, which of course gives these procedures a limited va-
lidity. In Chapter 5 a method for measurement selection is proposed that has much in

common with the SVD-method, but which does not suffer from the same weaknesses.

2.2 Use of several measurements.

In order to improve the temperature control, several methods which involve additional

measurements have been suggested. One frequently used extension is the differentjal
temperature control.

2.2.1 Differential temperatures.

The effect of overall pressure changes (not pressure drops) may be compensated for by the
use of differential temperatures. Since the column pressure has about the same effect on all
temperatures in the column, an additional temperature measurement (preferably located
at a tray where the composition is almost constant) will primarily track the pressure
variation. The temperature difference will then be a selective measure of the composition
changes.

One drawback is that the relationship between differential temperature and the prod-

uct composition usually has a point of inflection (Niesenfelt & Seeman, 1981). However,

1 sy g . .
Thfey used the condition-number as an additional criterium to prevent some solutions that gave too
strong interaction between the loops.

ST maaT
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if the range of composition changes is not very large, this is usually not a problem.

A lot of authors (e.g. Waller and Finnerman, 1987) discuss the use of sums and dif-
ferences between two temperatures in the column instead of single temperatures. This is,
however, not a method to improve the measurements, but rather an attempt to counteract

interaction between the loops.

2.2.2 Double differential temperature control.

Luyben (1969) proposed to use an additional differential temperature in the same section
to take care of the pressure drop changes in the column as well. Boyd (1975) reports a
successful industrial implementation of this scheme.

Use of two differential temperatures was also proposed by Yu and Luyben (1984) to
infer feed composition changes in a multicomponent system. One was selectively sensi-
tive to the key components, the other to the most important non-key components. The
temperatures were used to reset the setpoints of two ordinary temperature controllers.
In a simulation study they found that this control scheme was better than the Brosilow
inferential control (Joseph and Brosilow, 1978a). Only feed composition changes were
considered; the feed flow rate disturbances were supposed to be handled by some ratio
system, e.g. steam to feed. How this feed-forward control system affected the temperature

control was not discussed.

2.2.3 'Temperature profile control.

This application was first proposed by Luyben (1972) for columns with sharp temperature
profiles. They are characterized by high relative volatility and high product purity. Most
of the mass transfer will then take place in a rather narrow section in the column. The
centre of the profile will move up and down the column when the product composition is
changing. A sum of temperature measurements located on different trays will be able to
track this centre, and the product composition is supposed to be controlled by keeping
the centre at a desired position (tray).

A similar approach has been implemented on three towers (a deethanizer, a demetha-
nizer, and a Cy-splitter) by Johnson (1984), and on a C,-splitter by Whitehead and Parnis
(1987). They used a weighted temperature average of differential temperatures as input
to the controller.

Bozenhardt (1988) used temperature profile control on an azeotrope distillation of
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Figure 2.1: Parallel Cascade Scheme.

alcohol/water/ether column. Instead of a sum or an average, the maximum temperature
differences between two trays was measured and used as input to the position controller.

2.3 Hybrid control scheme: Parallel Cascade.

Figure 2.1 shows a quite frequently employed cascade scheme, involving both a gas chro-
matograph and a temperature sensor. It is denoted as parallel cascade control (Luyben,
1973), because the manipulative variable (e.g. L) affects the composition and the tem-
peratures through two transfer matrices in parallel. (This is a property of the process,
and the control structure is a cascade.) It uses the temperature, which is sampled fre-
quently, as an inner control loop, while the infrequent composition measurement is used
to update the setpoint of the temperature loop. It thus takes advantage of both the fast
temperature control and the more accurate analyzer control. To yield good performance,
the temperature loop must be tuned fast enough to take care of the main disturbances
before the outer loop starts adjusting the setpoint. Otherwise the loops may counteract
each other and give instability problems (Kister, 1990).

Alternatively, Bartman (1981) proposed a scheme to deal with this interaction problem
by involving a composition predictor which predicted the effect of the temperature control

2.3. HYBRID CONTROL SCHEME: PARALLEL CASCADE. 13

action on the composition. This effect was subtracted from the composition analyzer
measure before entering the outer loop controller.

The cascade system is a good alternative when both accurate and fast control is neces-
sary. Compared to the analyzer control it also has the advantage of giving control action
during analyzer breakdowns. The main disadvantages with this system are the interac-
tion problem for slow temperature loops, and most importantly, the costs associated with

composition analyzers.
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Chapter 3

Model based estimators.

Since the control objective is to keep the product compositions, rather than some tray
temperatures constant, a more appropriate means of using temperatures is for composition
estimation, and let the estimates be the input to the controller.

To build an estimator, some kind of a process model is needed. The level of sophis-
tication of the estimator will depend on the model complexity involved. The choice of
estimator will, therefore, often be a trade-off between performance and development costs.

The following presentation of estimators for distillation columns will be restricted to

those reported for distillation columns in the literature.

3.1 Static estimators.

Linear static estimators are the simplest and easiest to handle since their models consist
of only constant matrices.

3.1.1 Inferential Estimator.

In the early seventies Brosilow and co-workers proposed to use secondary measurements
in an estimator that inferred the product compositions. In 1978 the concept of “Infer-
ential Control” was introduced in connection with this estimator. The basic idea is to
use the secondary measurements, such as temperature and input flows, to infer all un-
known disturbances, and then to perform a kind of feed-forward disturbance rejection
control. Although the method is general, Brosilow and co-workers have mainly discussed
its application to distillation columns.

Weber and Brosilow (1972) claimed that a static estimator could yield a satisfactory

15
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dynamic performance for a class of processes. A method to decide when the process was
within such a class was not given, but they claimed that typical situations were when the
disturbances varied gradually and moved the process from “one steady state to another
through a sequence of steady states”. One example was a distillation column with very
slow disturbances in feed rate and feed composition.

Consider the following linear steady-state model of the column in terms of deviation

variables:

y=Gud+ Gyu (3.1)

Here the dependent variables are the outputs y (compositions) and secondary measure-
ments § (temperatures). The independent variables are the disturbances d, eg. (F,zp),

and manipulated inputs v, e.g. (L,V).

From eq. 3.2 an estimate of the disturbances is obtained
d=F}(6 - Fu) (3.3)

where F df denotes the pseudo-inverse of Fy.
The estimate of y is
§=Guu+Gyd (3.4)

If the number of measurements is equal to or larger than the number of disturbances,

the least square expression of the pseudo-inverse is:

F = (F{F)™'F] (3.5)

One restriction to this estimate is that (F7 F,) must be nonsingular, i.e. the rank must
be equal to the number of disturbances. A linear relationship between the disturbances
will violate this restriction. In that case, Weber and Brosilow (1972) recommended to
reduce the number of disturbances in the model.

In Joseph and Brosilow (1978) the estimator expression for the case of more distur-

bances than temperatures is given. In this case we have
Fl = Gy(FfFI)™ (3.6)

In the paper the derivation is based on stochastic theory and is as follows: Let the
disturbances be jointly distributed random vectors. Let yq and 6, be the part of y and 6
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that is due to the disturbances, i.e.
Ya=y—Guu=Gyd (3.7)

0,=0—Fu=Fd (3.8)

Since y4 and 6, also are random vectors the best linear least square estimator of yy from

0g is (Rhodes, 1971):

~

Ja = By0,55,0 (3.9)
iF Gdzdde(FdEddF})_l‘ed (3.10)

where ¥ denotes the covariance matrix. Redefining the disturbances such that ¥, is the
identity matrix gives Eq.( 3.6).

An implicit assumption for the Eq.( 3.10) is that the matrix (FyX4aFT)~! is nonsin-
gular. This will not be the case if there exists strong couplings between the temperature
measurements. Problems are also expected if the matrix is close to singularity. Weber
and Brosilow (1972) showed that the estimation error is directly related to the condition
number of Fy. A high condition number! means that the expression above is close to sin-
gular, and the estimator will be very sensitive to small model errors. Joseph and Brosilow
(1978) recommended to reduce the number of temperatures such that the condition num-
ber is less than 100. They suggested a temperature selection procedure based on 1) small
condition number and 2) small estimation error.

Two drawbacks of the inferential estimator for distillation columns in the present form
are quite apparent:

1. The matrices Gy, G, F, and F,; must be modelled carefully since the method seems

to be quite sensitive to modelling errors.

2. Temperatures (or possibly disturbances) have to be deleted in order to reduce this
sensitivity.

In the Inferential Control scheme the estimator is used in a kind of feed-forward
scheme, see Figure 3.1.

Lee and Morari (1989) proposed another selection procedure for the inferential control
based on the p-analysis of Doyle (1982). Compared to the one of Joseph and Brosilow

18ee chapter 5, section 3.1
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Figure 3.1: Inferential control system.

(1978), this procedure is more rigorous. However, also this procedure minimizes a kind of
condition number, and only a few of the available temperature measurements are selected.
In Chapter 4 we show that additional measurements generally improve the estimates and
make them less sensitive for different measurement locations.

Patke et al. (1982) did a comparison of the inferential and the parallel cascade schemes
by a simulation study of a multicomponent system. They found that the inferential
control had some steady state deviations, but was much faster in response to disturbances.
However, the comparison has some obvious weaknesses: For the cascade scheme the liquid
sampling is after the accumulator tank, and tuning of the analyzer Pl-loop is “trial and
error”. An integral time of 0.07 h for the inner loop and 0.10 h for the outer loop, indicates
that this cascade scheme also suffers from interaction problems.

In Patke and Deshpande (1982) an evaluation of the inferential control was performed
on an experimental binary column and compared with a one-temperature control. The
steady state deviation of the two systems was about the same, but the settling time of

inferential control was about half that of the temperature control.

3.1.2 Multivariate Regression Estimators.

In multivariate regression analysis (See, e.g., Mardia et al., 1979) the estimator is obtained

by a training set of known values of y and 4.
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Let K denote the linear estimator between p y-variables and q 0-variables

y =K (3.11)

The vectors y and 6 in eq. 3.11 are assumed to be centred (deviation variables).
The n different runs in the training set are lined up in two data matrices, Y™*? and

©"X4, such that the measurements of each run are placed in one row. We then have:
Y =0K7 (3.12)

The ordinary least square solution for K is:

Kors = YTO[G)T@]_l (313)

This corresponds to eq. 3.9, i.e.
K =3%,%} (3.14)
since Byyp, = (Y7O) is the covariance matrix for y and 6 and 5,4, = 1(670) is the

covariance matrix for # in the calibration runs. The matrix ©7© must be nonsingular,
L.e. the matrix © must have the full rank of ¢. This requires that n > q and that the
q measurements are linearly independent. This restriction corresponds to that of the
Brosilow estimator, and implies that only a limited number of measurements may be
included.

In Joseph et al. (1976) the inferential estimator was compared with the regression
estimator. Only steady state calculations were performed and no noise was included.
They concluded that the inferential estimator using five measurements was better than
those using four or six, and that the regression estimator was slightly worse in all cases.

The comparison has, however, some obvious weaknesses. Specifically, logarithmic
transform of the compositions was used in the case of inferential control, but not for
the regression estimator. This logarithmic transform linearizes the plant gain matrices
and improves the estimate. There were also different temperature locations for the two
estimators.

A comparison with a nonlinear regression estimator, i.e. a linear regression with
quadratic and product terms of the temperatures, was performed as well. The nonlinear
estimator was found to have very poor performance. The reason is, although not stated in
the paper, that this estimator has 17 coefficients (compared to 6 for inferential estimators),

and implies a very ill-conditioned regression problem using ordinary least square.
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Choo and Saxena (1987), after considering different kinds of model based estimators,
including the inferential estimator, ended up with an implementation of a regression esti-
mator on an extractive distillation column. The main reason was the small development
costs connected with this estimator. Based on historical data, this estimator used four
temperatures and a pressure measurement. Later on, an additional measurement of the

feed composition was included. Large improvements in control performance were reported.

Improved regression methods.

There are, however, better ways of handling the collinearity problem encountered in the
regression estimator than by using a limited number of measurements. Two such methods
that handle the collinearity problem in a systematic way are the Principal Component
Regression (PCR) and Partial Least Square (PLS) (See Martens and Naess, 1989). The
principal idea of these methods is to find a small number of “latent variables”, i.e. linear
combinations of the temperatures which reflect the influence of main physical quantities
affecting the temperatures, and use those in the regression step. These latent variables are
selected such that they are mutually orthogonal. The methods are described in Chapter 5,
section 3, and are extensively used in the thesis.

The PCR method employs the singular value decomposition (SVD) of © and deletes
the small singular values corresponding to noise. Similarly, SVD should be employed on
the process gain matrix Fy in the Brosilow scheme to yield a better conditioned estimator.

This will avoid deleting temperature measurements or disturbances.

3.1.3 Nonlinear estimators.

Distillation columns are known to be nonlinear, and linear estimators will only be valid
close to the linearization point. To build estimators which are valid for a larger range of
operation is therefore important.

Luyben and co-workers developed a rigorous nonlinear estimator, first for binary sys-
tems (Shah and Luyben, 1979), and later for multicomponent systems (Yu and Luyben,
1987). In a n-component system they used feed rate, feed temperature, distillate product
rate, and n — 1 temperatures as input to a rigorous tray by tray calculation procedure,
which estimated all compositions and temperatures on the trays. In a closed loop simula-
tion study this static estimator was compared to a composition analyzer for step changes
in feed composition. For typical computer times and analyzer delays they found that the

estimator performed best. The estimator was, however, found to be somewhat sensitive
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to uncertainty in the measurements.

This method employs only the absolute minimum number of temperatures. In a binary
system this will involve only one temperature! However, including additional temperatures
may strongly reduce the effect of the noise and model-plant mismatch. In particular, the
estimate may be very sensitive to the value of £ (fraction distillate to feed rate).

Rhiel and Krahl (1988) used a much simpler nonlinear model on an industrial column,
On a selected tray some distance away from the end, the binary composition was first
found from a temperature and a pressure measurement. This composition was then in
turn used together with measurements of the reflux and boilup to estimate the product
composition. They assumed a linear equilibrium line and constant molar flows, but they
included a variable tray efficiency, using a experimentally found correlation between the
efficiency and the loads.

3.1.4 Alternative handling of nonlinearity.

Much of the nonlinearity in distillation columns may be alternatively handled by log-
arithmic transforms, for instance as proposed by Joseph et al. (1976), for the product
compositions. Also the concentration profiles will be linearized by using logarithmic trans-

forms, e.g. the logarithmic transform of the separation parameter

X =inZL (3.15)

TH

will yield a nearly straight line against tray number, unless there are pinch zones around
the feed tray. Linear models using logarithmic transformed variables may, therefore, apply

for quite a wide range of operation conditions.

3.1.5 Problems with using flow measurements in static esti-
mators.

A critical question concerning the static estimator is how they perform dynamically. The
time responses of the compositions on the different trays are very similar, in particular
for flow changes, (Skogestad and Morari, 1988a), and consequently the temperatures will
have much the same dynamics as the product compositions. On the other hand, the
dynamics between the compositions and the flows or the pressures are quite different, and
the claim of Weber and Brosilow (1972) that a static estimator may yield satisfactory

performance, will not apply for estimators including these measurements. Using static
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estimators with flow measurements is, therefore, not recommended, without doing some
kind of dynamic compensation or filtration. Both Brosilow and Luyben introduce lead-lag
elements to improve their estimators (Brosilow and Tong, 1978; Yu and Luyben, 1987).
However, this requires additional modelling effort, and may introduce additional sources

of model-plant mismatch.

3.2 Dynamic estimators.

3.2.1 Kalman filter.

The most popular dynamic estimator is undoubtedly the Kalman filter. It was developed
in the early sixties (Kalman, 1960; Kalman and Bucy, 1961) and is an integral part of
the traditional optimal control theory. This estimator contains a full dynamic mode! of
the plant, and the estimated states are corrected using gain feedback from the measure-
ments. The estimator is optimal in the sense that it minimizes the expected variance
of the estimated states. The Kalman filter is described in Chapter 4 section 2.1, and a
comprehensive survey of theory and applications is found in Sorenson (1985).

There seems to be very few implementations of Kalman filters for composition esti-
mation in distillation columns. However, some simulations and experimental studies have
been domne in connection to optimal (LQ) control, see e.g. Waller (1982). The Kalman fil-
ter has also become a kind of “standard” estimator for comparison with other estimators
in simulation studies, e.g. Tong and Brosilow (1978).

The main drawback with the Kalman filter is probably that it is time consuming to
implement and initialize, and that it yields a heavy computer load. Another drawback is

that it requires a very good model in order to prevent divergence problems (Griffin et al.,

1988).

3.2.2 Dynamic estimators for distillation columns

The more recent literature dealing with dynamic estimators for distillation columns con-
sists basically of two research groups, one in Stuttgart, Germany, and one in Newcastle

upon Tyne, Great Britain.

The Stuttgart group.
The group consists of Gilles and co-workers. Gilles and Retzbach (1980), picked up
the idea of tracking the temperature profile control proposed by Luyben (1972). An
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azeotrope distillation of isopropanol and water using an extractant was considered. The
column had a sidestream which mainly consisted of the intermediate component water.
Besides controlling the product compositions, it was desirable to keep the concentration of
water at its highest value at the tray where this sidestream was located. Two temperature
fronts were identified, one caused by the high mass transfer region of isopropanol/water
and the other of extractant/water. Their position in the column, together with heat input,
vapor stream and feed disturbances were used as state variables in a linear state space
model. This model gave rise to two different estimators; an observer and a Kalman filter.
The optimal feedback controller was combined with feed-forward control of feed rate and
feed composition, the latter estimated by the observer.

The tracking of the temperature profile is used quite nicely to optimalize the sidestream
product. However, the profile tracking takes care of only the main dimension in the
column, the split. Profile changes caused by changes in compositions in the feed or at the
other end will not be tracked. In this particular column, however, the feed was taken care
of by feed-forward control, and the other end had little influence because of pinch zones
around the feed trays.

In Marquardt (1986), Marquard and Gilles (1988), and Marquard (1988) these ideas
are developed further to generalize all types of distillation columns. Although the compo-
sition profile is not particularly sharp, it does move up and down the column by stream
changes. The location of the front, the maximum slope of the profile, is a state variable
together with some shape parameters and product compositions. According to Marquard,
the shapes generally do not change much, they are mainly a function of the equilibrium
line. The equilibrium line may be parameterized, and the shape constants calculated. The
model is used in a stationary Kalman filter (Marquard, 1988), and tested in a nonlinear
binary simulation study with feedback.

This approach is more rigorous than that of Gilles and Retzbach (1980), since it also
tries to track the other dimensions in the concentration profiles by introducing additional
shape parameters.? However, as already stated, most of the concentration profile shape
disappears when using logarithmic scales, so the concept of temperature front is somewhat
over-emphasized.

Lang and Gilles (1989) use a nonlinear observer model which calculates temperatures,

pressures, liquid and vapor compositions on each tray. The model is based on mass

But since it is stressed that these parameters do not change much, they do not seem well suited for
the purpose.
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transfer fluxes equations, and assumes that the mass transfer resistant is on the vapor
phase side.

The temperature measurement is placed at the same spot as the desired location of the
temperature front. The deviation between the calculated and measured temperature is
used as feedback to correct the mass transfer flux on all trays in the model. The feedback
gain, however, is proportional to the mass transfer flux on each tray. In binary systems the
proportional constant is the only parameter to tune. Otherwise, an additional parameter

and temperature measurement are required for each component extra.

The Newcastle group.

Guilandoust et al. (1986) use a linear dynamic SISO-estimator to estimate the prod-
uct composition. The other input is considered as disturbance, so one-point control is
probably assumed. The estimator is supposed to cope with the slow time varying plant
parameters by use of primary measurements. The parameters are not modelled, but up-
dated recursively each time a primary measurement is available, i.e., a kind of adaptive

estimator where only the structure is modelled.

In the paper they compare two different approaches, one starting with a state space
description, the other directly derived from an input-output model. In the state space
description they start with the innovation form of the model and transform it to an
observer canonical form. In the input-output model the noise is modelled as a stationary
process driven by zero mean white noise sequences. Both models end up with a similar
structure, although the latter has some additional parameters due to the more rigorous

noise model.

The models are tested in a simulation study for steps in feed rate and boilup. The
conclusion is that the estimators perform equally well, but the input-output estimator has
some more transient errors due to the additional parameters. However, the best control
performance is obtained by using a combination of estimator and adaptive controller.

In Morris et al. (1988) the estimator is tested on an industrial distillation column, but
the results are not very good. The temperatures are sampled every five minutes and the
composition measurements every 20 minutes, but still the estimates are lagging about 20
minutes after the composition measurements! The simulation example in the paper is the
same as the one used in Guilandoust et al. (1986) and Guilandoust et al. (1987).

The simulation studies suffer from not considering feed composition disturbance. The

often encountered difficulties with blow-ups of adaptive schemes is not discussed either.
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3.3 The use of input variable in estimatoré.

A common characteristic of most all estimators in the present literature about composition
estimators, is that they make extensive use of flow data. If the plant is ill-conditioned,
which distillation columns often are, this implies that the sensitivity for input uncertainty
and model-plant mismatch are great (Skogestad and Morari, 1987). A main drawback
of the literature so far, is that the consequences for the estimator performance of using

uncertain input flow data, is not treated. This matter is, therefore, given greater attention
in the following chapter.
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Abstract

Temperatures and flows are often used as secondary measurements to estimate
the product compositions (outputs) in distillation columns. The problem is charac-
terized by strong collinearity (correlation) between the temperature measurements,
and often between the effects of the inputs on the outputs. In a linear study three
different estimator methods, the Kalman-Bucy Filter, Brosilow’s inferential estima-
tor, and Principal Component Regression (PCR) are tested for performance with
mu-analysis. It is found that use of input flow measurement has a damaging effect on
the estimator performance for this ill-conditioned plant (with high RGA-elements).
This is the main reason why the Brosilow inferential estimator is found to perform
poorly. Somewhat surprisingly, it is found that the static PCR-estimator performs
well compared with the dynamic Kalman filter. The reason is that the temperatures
and compostions have very similar dynamic responses. Contrary to some claims in
the literature, it is found that the performance of the estimate, even when used for
feedback control, generally is improved by adding temperature measurements. For
high purity distillation columns and other plants with large elements in the (appro-
priately scaled) gain matrix, the use of input measuremets are not recommended in
the present of input disturbances.

27
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4.1 Introduction

This paper addresses the estimation of process outputs based on multiple secondary mea-
surements. The application chosen here is the use of temperature and flow measurements
to estimate the product compositions in a distillation column. This is an interesting ap-
plication which features: i) a large number of strongly coupled measurements, and i) a

large number of disturbances and inputs with similar effects on the outputs.

The use of temperature measurements for feedback control of distillation columns
is quite extensively discussed in the chemical engineering literature (eg., Nisenfeld and
Seeman, 1981, p. 85-95). Temperatures are usually not used because they are of interest
themselves, but as inexpensive and reliable indicators of composition. One problem is
that temperature is a true indicator of the tray composition only if the mixture is binary
and at constant pressure. Furthermore, even at steady state the correlation between the
composition on a tray inside the column and the product composition at the end is not
unique; it changes depending on the feed composition and the other product composition.

These problems may be partly overcome by using several temperature measurements.

Measurement selection. Many columns have temperature sensors located at about
every fifth tray in the column, that is, a typical column may have 5-10 temperature mea-
surements. In industry all these measurements are rarely used. Rather, each composition
measurement is replaced by a single temperature measurement and used for single-loop
feedback control. The main problem is then to find a suitable location for this tem-
perature. According to Nisenfeld and Seeman (1981) the most important issues are, i)
that the temperature should be sensitive to changes in the composition, and i) that the
correlation between temperature and composition should be insensitive to disturbances
in feed composition and in flows. Since the products are often very pure the first crite-
ria favours placing the temperature sensor away from the products. The second criteria
favours placing the sensors close to the product. However, in this paper, measurement
location is not an important issue. The reason is that we use several (typical five or more)
temperature measurements and then estimate the product compositions. In this case the
exact location is far less important than in cases where single temperature measurements

are used.

Problem definition. The objective is to obtain the best estimate § of the outputs

(product compositions) using all available information, 0. In terms of deviation variables
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the linear estimator may be written

4(s) = K(3)d(s) (4.1)

This estimate should be obtained based on a description of the process (nominal model
and expected uncertainty), the expected noise and disturbances, and a more precise def-
inition of what we mean by “best”. In the general case 0 should include all measured
dependent variables (primary measurements, y, and secondary measurements, §), and all
known independent variables (manipulated inputs, 4, and measured disturbances, d). In
this paper we usually have 0 = 0, that is, the estimate is based on only secondary mea-
surements (temperatures). The reason is that we assume no primary measurements, no
measured disturbances, and we shall show for our case that the additional information
contained in u is of limited value.

In this paper we consider three different approaches to the estimation problem: i)
The Kalman-Bucy Filter, ii) Brosilow’s Inferential Control Method, and iii) Principal
Component Regression (PCR). In the last two cases we shall base the analysis on the
steady-state, and use a constant gain matrix K.

Use of separate estimator. An estimator-based control scheme for the distillation
column is shown in Fig.4.1. Note that we are implicitly assuming that the controller
should be separated into two parts: one estimator which condenses all the measurements
into a few estimated outputs, and a “small” (in terms of number of inputs) controller
which uses these estimates for feedback control (Fig. 4.2). The motivation for doing this
is reliability, design simplicity and robustness. In general, this solution is suboptimal
compared to using one big controller which directly uses all available measurements. The
reason is of course that some information is lost when the original measurements are
condensed into the fewer estimated variables. In some cases it may be shown that no
information is lost and this is then referred to a separation principle. In particular,
this may be the case if all the states of the system are estimated since they contain all
information about the system at any given point in time. However, in this paper we
shall not use all states for feedback control and therefore the separation principle does
not apply. And as we in our case are estimating the actual controlled outputs, we may
postulate that the performance loss caused by the separation is not a major problem.

Use all available measurements ¢ The statement in the problem definition above that
the best estimate should be based on all available measurements is not as obvious as one

should think. Actually, a large number of authors (eg. Joseph and Brosilow, 1978, Morari
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Figure 4.1: Control scheme based on LV configuration.
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Figure 4.2: Controller block C' = CregCest split in separate blocks for estimation and
control.
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and Stephanoplous, 1980, Patke et al., 1982, Yu and Luyben, 1986, Moore et al., 1987,
Keller and Bonvin 1987) have suggested that one should only use a few of the temperature
measurements to avoid the poorly conditioned problem of obtaining information from the
strongly correlated temperatures. For example, our example column has 41 temperature
measurements. That is, we need to determine 41 parameters in K for each output if all
temperatures are used. However, the temperatures are of course strongly coupled and the
41 parameters must also be strongly coupled. Furthermore, our distillation column with
two components, two products and constant pressure has only three degrees of freedom
at steady state (eg., zr,yp, ). This implies that, at least for the linear case with small
perturbations from the nominal operating point, we may determine at most three of these

41 parameters independently (irrespective of how the temperatures are coupled).

Latent variables. The above discussion points out the need for a robust way of ob-
taining the matrix K which avoids this overparameterization. Intuitively, this may be
done by smoothening the available data, and obtaining a smaller number, k, of “latent
variables”, t, which are less coupled and contain most of the original information. These
are subsequently used for estimation. In the linear case the latent variables may be writ-
ten ¢ = Pi0, where P, is the projection matrix. The estimator then becomes g = Kit
where K, is a “small” matrix with k& parameters for each output (typically £ = 3 in our
examples), and the overparametrization in the regression step is avoided. The simplest
“method”, but certainly not the optimal one, is to delete measurements 8, and use, for
example, only three temperatures as latent variables. This approach is implicit in some
of the papers mentioned above. In Brosilows method estimated (inferred) disturbances
are used as latent variables. In the PCR and PLS methods a few linear combinations of
the secondary measurements are used as latent variables. These linear combinations are
those which are found to be most sensitive based on the calibration set. In the Kalman
estimator the states may be regarded as latent variables, although they are not indepen-
dent as they are coupled through the model. Also, their number is often not less than the

measurements.

Kalman estimator. The Kalman-Bucy filter (Kalman and Bucy, 1961) arises from
the traditional “optimal” approach of modelling disturbances and noise as stochastic pro-
cesses and minimizing a quadratic error function. This estimator contains a full dynamic
model of the plant, and the states are updated using constant gain feedback from the
measurements. Somewhat surprisingly, there are very few reports on the use of model-

based Kalman filters for composition estimation in distillation columns. Apart from its
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complexity the main disadvantage with the Kalman estimator is that model uncertainty
is not included, and that it is difficult a priori to find the weights for the disturbance and

noise.

Brosilow estimator. In process control, Weber and Brosilow (1972) proposed to use
secondary measurements to estimate disturbances. Their justification is that measure-
ment noise is usually less important in process control applications, and that the output
variations are mainly caused by disturbances, which tend to vary slowly compared to
the process dynamics. In Brosilows inferential controller, the disturbances are then as-
sumed to be constant in the future, and the disturbance estimates are used in a sort of
feed-forward scheme to counteract their expected effect on the outputs. We shall only
use the estimator part of Brosilows scheme (Joseph et al., 1976) and not the feedback
part. Brosilows scheme has a strong intuitive appeal and seems to have found some use
in industry. However, because of measurement noise, model error and poor numerical
properties caused by collinearity, we will show that the use of inferred disturbances as

latent variables may not work well for ill-conditioned plants.

PCR estimator. A more direct approach is to derive a direct relationship between 6
and y using a static regression estimator. The approach taken here is inspired by recent
efforts by analytical chemists in their “multivariate calibration problem”, e.g. Wold et al.
(1987). This ’soft modelling’ approach has an intuitive appeal to engineers as one seems to
skip the modelling step: One does not have to obtain an explicit ("hard’) model of how the
independent variables affect # and y (although typical variations should be included in the
calibration set). Rather, one seeks a direct correlation between the available measurements
(0) and the variables to be estimated (y). However, fundamental knowledge may not be
easily included in the estimator.

Analysis of estimators. The estimators are compared on a rigorous basis, considering
both the estimation error y—§ (“open loop” when the estimates are not used for feedback)
and the control error y — y, (“closed-loop” when the estimates are used for feedback).
Input uncertainty, disturbances and noise are explicitly included in the analysis using the
structured singular value, y, of Doyle (1982).

[ll-conditioned plants. The distillation column used in this paper is an example of an
ill-conditioned plant. Here the plant gain is strongly dependent on the input direction, or
equivalently the plant has a large condition number, 7(G). At each frequency

1(G) = a1(G)/ 0. (G) (4.2)
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(23 N NF ZF Yo Trg D/F L/F
1.5 40 21 0.50 0.99 0.01 0.500 2.706

Feed is liquid.

Constant molar flows.

Ideal VLE using Raoults law.
Constant pressure 1 atm.

Holdup on each tray; M;/F = 0.5 min

Parameters A,B and C in Antoine equation:

In p(mm HG) = A - B/(T(K) + C)

Light component
15.8366, 2697.55, —48.78

Heavy component
15.4311, 2697.55, -48.78

Table 4.1: Data for distillation column example.

Here o, is the largest singular value, and o, is the r'th (the smallest) singular value,
where r is the rank of G. 01(G) is a measure of the magnitude of the elements in the
matrix. The smallest additive perturbation matrix which may make G loose rank has
magnitude ov(G). Thus, the condition number, 7(G) gives the relative magnitude of the
additive error allowed to avoid singularity (loosing rank). Consequently, matrices with
a large condition number are very sensitive to numerical round-off errors (eg., Weber
and Brosilow, 1972). For square matrices the relative gain array (RGA) may be used as
an alternative measure. It is defined at each frequency as RGA = G x (G™)T, where
X denotes element-by-element multiplication. The magnitude of the RGA—-elements is
closely related to the optimal condition number (7(G) minimized with respect to input
and output scaling) (Skogestad and Morari, 1987). Skogestad and Morari (1987) have
shown that the RGA is also a very good indicator of how sensitive a plant’s feedback
control performance is to input gain uncertainty.

Ezample column. As an example column we use column A studied by Skogestad and
Morari, 1988. The column separates a binary mixture with relative volatility 1.5, and
has 40 theoretical stages, including the reboiler, plus a total condenser. Column data are
given in Table 4.1. The liquid holdups are assumed constant, that is, the flow dynamics
are neglected. This gives rise to a 41th order linear model in terms of the mole fraction

of the light component on each tray. The two dominant time constants of the column are
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Figure 4.3: Temperature profiles for different feed compositions when yp and zg are held
constant.
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Figure 4.4: Temperature profiles for different top product compositions when zp and zg
are held constant.

194 min and 15 min. The difference in boiling points of the two pure components is 13 °C.
In Figure 4.3 and in Figure 4.4 typical temperature profiles for the column are displayed.
We note that variations in temperature are small towards the ends of the columns, and
that changes in feed composition have a large effect on the temperatures inside the column

even though the product compositions are constant.
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>

Figure 4.5: Block diagram of the Kalman Estimator.

4.2 Estimation Methods

4.2.1 Kalman filter.

In this scheme a dynamic state space model is used in parallel with the process, and the
deviation between the outputs from the process and the model is used as feedback to the
model through a filter gain K (Fig. 4.5). The linear state space model for the process
is

T = Az + Bu+ Ev (4.3)
= Cz (4.4)
0 = Coz+w (4.5)

Here z is the state vector, u the manipulated inputs, y the primary outputs to be es-
timated, 0 the secondary measurements, v the process noise (disturbances), and w the
measurement noise. v and w are assumed to be white noise processes with covariance
matrices V and W.

Minimizing the expected variance of § — @ yields the estimated states

a

T = AZ+ Bu+ K;(0 - Co2) (4.6)
= (A—K;Co)i + Bu + K;0 (4.7)
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Figure 4.6: Block diagram of Brosilow Estimator.

where filter gain K is
K;=xCcIfw! (4.8)

Here X, the covariance matrix of £, is found from the matrix Riccati equation
X = AX + XAT — XCTW™'CyX + EVET (4.9)

We use constant filter gains which give X = 0, and Eq. (4.9) is reduced to an algebraic

equation. The overall Kalman estimator then becomes

§(s) = C(sI — A + K;Cy)~ (K 8(s) + Bu(s)) (4.10)

4.2.2 Brosilow estimator.

The following linear steady-state model of the column in terms of deviation variables is

used
y = Gad + Gyu (4.11)

0=Fid+ Fu (4.12)

Here d denotes the disturbances. The matrices above are of course related to those used
in the state space description in the Kalman filter. For example, G, = ~CA~!B and for
the case v = d we have F; = —CyA~1E. Using (4.12) the estimated disturbances become

d=F}(0 - Fu) (4.13)
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where the pseudoinverse F) is the optimal inverse in the general least square sense. For
the special case of more #’s than d’s and independent d’s (Weber and Brosilow, 1972)

F} = (FTF)™'FT (4.14)

For the special case of more d’s than #’s and independent 6’s (Joseph et al., 1976, Joseph
and Brosilow, 1978)

F} = F{(F,F])™ (4.15)
In the general case the pseudoinverse is obtained from a SVD of Fy by deleting directions

with singular values equal to zero (eg., see Strang, 1980, p. 142). Combining (4.11) and
(4.13) yields the Brosliow estimator (see Fig. 4.6)

9=Kgb+ (Gu — I(BF,,)U (416)
where
Kp = GyF} (4.17)

This static Brosilow estimator may be made equivalent to the Kalman filter at steady-

state only if non-stationary noise is allowed for the disturbances v (Morari and Stephanopou-
los, 1980).

4.2.3 PCR estimator.

We want to estimate p outputs (y) from q known variables (9). The problem is then to
obtain the matrix X in

y=Ko (4.18)
To this end obtain n “calibration” sets of corresponding values of y and 6, and place these

as rows in the matrices Y™*? and ©"*9, respectively. ! If the estimator was perfect we
would have

Y = 0K7T (4.19)
The ordinary least square solution for K is:

Kis=YTo[0TO]™! (4.20)

which is the “regression estimator” used by Joseph et al. (1976). The g x ¢ matrix ©70 is

n times the covariance matrix of the calibration measurements §. This matrix is singular

1t might seem more reasonable to place y and # as columns in the matrices, but we shall here use the
standard notation in statistics.
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Figure 4.7: Block diagram of a PCR Estimator that does not use input information.

ifn < g, that is, if we have too few calibration sets. It is also singular if strong collinearity
in the temperatures exists. This will usually be the case in a column with measurements
located close to each other.

To avoid these difficulties the general pseudo inverse in terms of the SVD is used,
and directions corresponding to small singular values (principal components) are deleted.

Using standard notation from the statistics literature, the SVD of © is written
© =t1p{ +tap] + -+ + tmpr, (4.21)

where m < min(n, q) is the rank of ©. Here p, is the eigenvector corresponding to the
largest eigenvalue of ©T@, (the square of the largest singular value of 0), and p; is the
eigenvector corresponding to the second largest eigenvalue, and so on. The loading vec-
tors (p’s) give the directions of the principal components, while the scores (’s) give the
magnitude. If all m terms in ( 4.21) are retained we obtain the generalized pseudoin-
verse. However, in PCR we select only those first k principal components that can be
distinguished from the measurement noise. Let the matrices P9*¥ and T™** include only
these k most important directions. Define the new latent variables as ¢ = PT#. Note
that PT = P~! since P is orthonormal. The least square solution to y = K,;t becomes
K, = YTT[TTT]"", and the overall estimator gain matrix becomes (see Fig 4.7)

Kpor = YTT[TTT)* PT (4.22)
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Gain V

L Vv F zZF
K1 diag{ 200 200 0.01 0.01 }
K2 diag{ 0.0 0.10 0.01 0.01 }
K3 diag{ 0.01 0.01 001 001 }
K4 diag{ 00 00 001 001 }

Table 4.2: Process disturbance covariance matrix of Kalman filter gains. In all cases

W =110T

In the general case § may be replaced by § which includes also the inputs and measured
disturbances.

4.3 Estimators for the example column.

In this section we describe how the different estimators were obtained for the example

column with 41 stages.

4.3.1 Kalman filter gains.

The covariance matrix of the measurement noise W was set to 0.041, where I is the
identity matrix. This corresponds to 0.2 °C noise on each temperature. The process
noise is here defined as v7 = [L,V, F, zp| (reflux, boilup, feedrate and feed composition)

Its covariance matrix, V, was assumed diagonal and was varied in order to tune the

filter. Four different values of the variance on L and V were selected (Table 4.2) and the
corresponding filter gain matrices are denoted K1 to K4. The assumption of white noise
process disturbances is somewhat unrealistic in a distillation column, but the estimator

is not expected to be very sensitive to this assumption.

4.3.2 Brosilow estimator.

With dT = [zp, F] and uT = [L, V], the matrices Fy4,F,,Gy and G, in equations (4.11) and
(4.12) were found by linearizing the model at the nominal operating point. The estimator
was obtained using Eq. (4.16).

A modified estimator K Bmoa Was formed by not using information about the manipu-
lated inputs u, and instead using L,V and z; as the disturbances @' to be inferred. The




40 ’ CHAPTER 4. OUTPUT ESTIMATION ...

2f Yd Ty 2f Yd Tp
0.4000 0.9810 0.0190 [[ 0.4000 0.9810 0.0010
0.4000 0.9990 0.0190 |f 0.4000 0.9990 0.0010
0.6000 0.9810 0.0190 |[ 0.6000 0.9810 0.0010
0.6000 0.9990 0.0190 |[ 0.6000 0.9990 0.0010
0.4500 0.9855 0.0145 |[ 0.4500 0.9855 0.0055
0.4500 0.9945 0.0145 |[ 0.4500 0.9945 0.0055
0.5500 0.9855 0.0145 || 0.5500 0.9855 0.0055
0.5500 0.9945 0.0145 [[ 0.5500 0.9945 0.0055

Table 4.3: Data to simulate stationary temperature profile. g = 1.0, P = 1.0 atm.

estimator then becomes § = Kg,,,48 where
Kpmod = G'(FTF) ' F'T (4.23)

and F’ and G’ are the process matrices formed by these three variables. In the linear case
with no errors in the matrices G’ and F”, this estimator is identical to the PCR-estimator.
This is also clear if we compare (4.22) and (4.23) and imagine using changes in L,V and
zp to generate the calibration sets. In both cases we obtain the least square estimate,

and if we disregard numerical problems it does not matter which latent variables we use.

4.3.3 PCR estimator.

In this paper the calibration sets are obtained from a linear steady state column model.
A factorial design method was used to select 16 different runs around the operating point
(Table 4.3). When stated random noise of magnitude 0.1 °C was added on all temperatures
in the calibration sets, but the default is no noise. The specified variables were chosen as
the outputs yp and zg and the feed composition zp. Note that the column conditions are
independent of the load (increasing all flows proportionally), and it is not necessary to
simulate different feed rates. The temperature data were reduced to the desired number
of principal components and Kpgcg was computed from (4.22).

Strictly speaking, with a linear model we need only three runs (in addition to the
nominal steady state) to generate the data, but we used 16 runs to better study the effect
of measurement noise and to get better statistical information.

It is important to note that with this approach we may freely vary the outputs, yp
and zp, and are thus able to span all directions in the output space. This is different

from the Brosilow approach, which is based on an open-loop model in terms of the inputs
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Case. Location (tray no.)

41 at every tray
5a 1,12,21,30,41
5b 10,15,22,29,33
Ja 2,22,41

3b 6,22,36

3c 10,22,33

3d 10,17,33

2a 1,41

2b 6,36

2c 9,33

2d 10,30

Table 4.4: Location of temperature measurements.

(L,V, F,zr), and where the output space will not be properly spanned for ill-conditioned
plants with strongly coupled outputs y.

4.3.4 Number of measurements and their locations

The estimation methods above were applied to different locations and numbers of tem-
perature measurements. The various cases are summarized in Table 4.4. Here tray no.

41 denotes the reboiler, no. 21 the feedtray, and no. 1 the condenser.

4.4 Analysis of the Estimators.

The objective is to evaluate the different estimation methods described above. In this

section we define our criteria for the evaluation.

4.4.1 Evaluation criteria

* Open-loop evaluation (OL). One obvious criteria for evaluating the different estima-
tors is their ability to follow the true composition value. The error e, in fig. 4.8 is
the difference between the real (y) and the estimated output (7). The column is
assumed to operate under feedback, since this is more close to a real situation than
a pure open loop test. The term “open loop” is still used since the controller uses
the actual y, that is, there is no feedback from the estimate §. We use single-loop

PID controllers since this is the most common choice in practice. The tunings in
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Figure 4.9: Block diagram for “closed-loop” test.

i : i “ -loop” u-test. We use A = 0 (nominal performance ) ) o
Flglure 4t.}81ér31i2:k5$&g;am for “open-loop™ p-tes ot ( P ) Table 4.5 yield optimal robust performance (minimize #) when the estimate is ex-
unless o .

act. To make our results only weakly dependent on the controller used, we shall
usually consider the nominal performance in this test, i.e., without any uncertainty.
This makes the comparison independent of the robust stability requirement of the

system which depends strongly on the controller.

o Closed-loop evaluation (CL). The main objective of the estimator is to replace the
primary measurement of y, that is, use the estimate 3 for feedback control. The

error, ey, of interest to be minimized, is then the control error, i.e. the difference

PID-Parameters between y and y,.., (Fig. 4.9). We use the same controller as for the open-loop

comparison, that is, a PID controller tuned optimally for perfect estimates. Using

Loop K. Ti 7d the same PID controller for all estimators will bias the comparison somewhat, as
yp 0.589 9.53 0.620

cp  0.555 442 0.332 the optimal controller in each case will depend on the estimator used.

4.4.2 p-analysis.

Table 4.5: PID-parameters for the distillation column example.

Our tool is the Structural Singular Value (i) analysis (Doyle,1982). In this framework
we rearrange our system to fit the general form shown in fig. 4.10. Here M denotes the

generalized nominal plant including the plant and the weights, d denotes external input

R S S R L S ISR SN S Ry SN
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Figure 4.10: General structure for studying any linear control problem.

disturbances and setpoint changes, and e is the ”error” we want to keep small. We have
one A-block loop, which represent the model uncertainty, and one controller loop. In the
u analysis we evaluate the maximum amplification from d to e at each frequency. Weights
are used to scale the signals, d and e, and the uncertainty A to be less than 1. These
weights are discussed below. u expresses the worst-case error at a given frequency, and the

performance requirement for the error is satisfied if 4 is less than one at all frequencies.

Uncertainty weights.

The most important source of uncertainty is assumed to be on the inputs (L and V). We

shall use the same uncertainty weight as Skogestad and Morari (1988), which is given by

ds+1
05541
The weight is shown graphically in fig 4.11a. In the low frequency range it allows for a

wi(s) = 0.2 (4.24)

20% uncertainty in flow changes (L and V are deviation variables), due to the inaccuracy
of valve settings. The uncertainty increases at higher frequencies, reaching a value of
100% at about w = 1 min~'. The increase at high frequencies will allow for a time delay

of about 1 min between L and V and the outputs yp and zg.
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Figure 4.11: Weights for y-analysis. a) Uncertainty weight. b) Inverse performance
weights. Solid line: Closed loop, dotted line: Open loop.

Performance weights.

In the “Open Loop” test we use the following performance weight

10
wy(s) = Lt
which is shown in fig 4.11b. This weight requires less than 10% estimation error for (1-39p)
and &p at steady-state (w < 0.1 min~1). At higher frequencies the weight increases to
one at w = 2.5 min~'. This allows for an error greater than 100% at frequencies above
2.5 min~'. In the “Closed Loop” test we chose a performance weight

(4.25)

wy(s) = 110‘:)’;_*;11 (4.26)

This implies that the deviation of y — Y, should be within 20% at steady state, i.e, we
tolerate a deviation of the product composition of about 0.2 mole%. Our feedback system
should be effective up to about w = 0.05 min~! and the amplification at high frequencies
should never exceed 2. Except for the allowed steady state offset this weight is the same
as the one used by Skogestad and Morari (1988).

Weights for external inputs.

The external inputs to the systems (the d’s in the block diagrams for mu-analysis) consist
of setpoints, as well as ordinary disturbances and noise. They are normalized by specifying

their maximum values at any frequency using weights. The maximum setpoint changes
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Figure 4.12: Elements in matrix K for estimation of 1) yp, 2) zp.

are set to 100% of x5 and (1 —yp). Since the operating point is 0.01 and 0.99 this implies
that the zp,e may vary from 0 to 0.02, and yp,e; from 0.98 to 1.0. The disturbances in
the feedrate F' and the feed composition zr are set to 20%, i.e. zr may vary from 0.4 to
0.6 in mole fraction. Noise was generated by adding a constant vector of random values
with normal distribution and a standard deviation of 0.2 °C to all 41 temperatures. No

noise is used in the mu-analysis unless otherwise stated.

4.5 Results.

4.5.1 Insights into the collinearity using PCR.

The elements in the matrix Kpcg for the case with 41 temperatures, are plotted in
fig. 4.12. In fig. 4.13 the three largest loading vectors p are displayed. These show
how the different measurements are summed up to make the latent variables (principal
components). The first component is mainly due to changes in the external flows, D
and B, and reflects moving the entire temperature profile up and down the column. The
second component is due to changes in internal streams (with D and B constant), and
reflects stretching or compressing the profile (changing the separation in the column).
The third component is due to changes in the feed composition. From the figures we
see that the temperatures near the product streams are weighted little compared to the

ones towards the middle of the column. The reason is that the temperature variation

4.5. RESULTS. 47

JLOADINGS |

-8.28] ©

—-8. 4

LOADINGS : Curve identifler = factor numbor

Figure 4.13: Loading plot of the first 3 principal components. Curve identifier: component
number.

is small at the ends, and the measurements are therefore much more sensitive to noise.
Pressure variations were not included in this study, but the temperatures near the ends
of the column would be useful to compensate for such variations. The forth vector is
displayed in fig. 4.14. We see that this vector contains only numerical noise, and there
are, as expected, only three different directions in the temperature space when pressure
is kept constant. This is also confirmed by Figures 4.15 and 4.16. They show how the
different principal components account for the total variance in the calibration set both
in y-space and in #-space.

4.5.2 Number of measurements and their location.

The p-plots in Figure 4.17 for the PCR estimator shows the effect of using varying num-
bers of measurements. It demonstrates that adding temperature measurements improves
the estimates and the control performance. The main difference is between two and three
measurements. With less than three measurements all principal components in the tem-
perature space can not be recovered, unless they are placed towards the ends where the
dimension of temperatures shrinks to one (see Figures 4.3 and 4.4). A comparison of var-
ious locations of the two temperatures are shown in the u-plots in Figure 4.18. Without
noise the best location is of course at the ends (trays 1 and 41, Case 2a in F igure 4.18a)
and a perfect estimate is obtained. With noise it is better to use measurements closer to

the middle of the column where the temperature changes are much larger (trays 6 and
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in the calibration set are corrupted with 0.1 °C noise.




50 CHAPTER 4. OUTPUT ESTIMATION ... 4.5. RESULTS. 5

Open Loop Closed Loop
g T 3 1 T
] 3a) ] X Ja
] ‘ ._ ‘
130 '1 2] ¥
TR EZ B [ T
] . \
1—‘—&f _//- 1\\‘\‘ i i :“b /ﬂ N
J . " i M
Open Loop ‘ Closed Loop - \k\ :‘?;y “\_‘_“__
3 i Sy ERTH
T — : o : uN!';" R T A 10? on" The wat e ez ie?
i 2¢ % 5] — frequency (radians/min) frequency (radians/min)
! ‘ 2d
H _ \ 1" Figure 4.19: Effect on g of location for three measurements. PCR with 0.1 °C noise in
126 | \ (e Z¢ | I calibration set.
1 ] ‘.‘ n\ :-2‘b./, ]
i R g Open Loop Closed Loop
i 2“ ‘\\.ulﬂ'?”"ﬂ -] 1 HE,... T UEELiimm iy s R Ly L 4 3 .
n;‘_’r“";;“”m;o“' s wooae? 0t 102 1w ot 1 10 10?10 ]

b2
)
) 82
=
- =i
-
_._u_n_f

o

i :' B z-
\ ll'l 2a \ l-l' //\ 1
: ~ ] ]
: 7 . > : S
AR ? Y \ | o™ T T —
Ko i\ A D 1% # T8
] \ 2b . 7

10 10 107! 1 10 102 1e? 1072 10‘;” 10“' o 1 J N 7 mu;n’
\ frequency (radians/min) frequency (radians/min)
Wi et W R b frequency (radians/min) Figure 4.20: Effect on u of location for five measurements. PCR with 0.1 °C noise in
frequency (radians/min) "

calibration set.

Figure 4.18: Effect on p of noise and location for two measurements. a) PCR without

36, Case 2b in Figure 4.18b). The same conclusion applies to cases with three (Fig. 4.19)
noise in calibration set, b) PCR with 0.1 °C noise in calibration set.

and five measurements (Fig. 4.20), but the location of measurements of course becomes

less important as additional measurements are used, provided they are reasonably evenly
spaced.

Also the Kalman filter is improved by adding measurements. This is illustrated by
the p-plots in Figure 4.21.

4.5.3 Comparison of Kalman filter and static PCR estimator.

In fig. 4.22 we compare the p-plots of the Kalman and PCR estimators, using 41 tem-
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4.5. RESULTS. 53

peratures. The first thing to note is how well the simple static estimator ¥ = Kpcrb
performs. The main reason is that the dynamic responses of the temperatures § and the
compositions y are very similar. This will be the case for most distillation columns, at

least for sections of the column, but may of course not be the case for other applications.

In the Open Loop analysis the Kalman filter is significantly better at higher frequen-
cies. This is due to the dynamics included in this estimator. On the other hand, the
“Closed Loop” test shows that the estimators will perform about equally well when used
for feedback, and also as well as using perfect measurements. Actually, for some frequen-
cies, the PCR estimator is even better than using perfect measurements. The reason is
that the temperatures in the middle of the column generally change slightly faster than
at the ends, and the steady state estimator will therefore have a small inherent "feedfor-
ward” effect. The simulation responses in Figure 4.23 confirm that the PCR-estimate is
almost equal to the true value. One exception is for feed composition disturbances, where

it shows a small inverse response.

4.5.4 Different Kalman filters and use of inputs in estimator.

Figure 4.24 shows p-plots for the Kalman filters obtained using the four different levels
of process noise on L and V in Table 4.2. The best Kalman filter, K1, is the one that
was compared with PCR above. The remarkable thing with this best estimator is the
very large assumed variance on the inputs u (L and V). In effect, this variance is so large
that the transfer function from u to § in Eq.( 4.10) is approximately zero, that is, the

estimator does not use the information about the input signals.

The worst Kalman filter, K4, assumes disturbances (noise) of magnitude 0.1 for F and
zF, but assumes no disturbances on the inputs. This estimator performs reasonably well
in the u-test when there is no uncertainty (upper left part in Figure 4.24). (But note that
disturbances on the inputs are not included in the u-analysis.) However, it is extremely

poor when input uncertainty is added (lower left).

The PCR estimator in this paper uses only temperatures, but we did also evaluate the
effect of adding inputs. However, the improvement in estimator performance was very
small even at steady state. Furthermore, the dynamic behaviour of the static estimator

is much worse when inputs are used.
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Figure 4.23: Comparison of output y(t) (solid) and PCR-estimate §(t) (dotted line).
Responses under feedback control are shown for a 20 % increase in feedrate at t=0, a 20
% increase in feed composition at t=80 min, and a setpoint change in yp at t=120 min.
a) y used for feedback control, b) § used [or feed backcontrol.
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Figure 4.24: Different Kalman filter gains (Table 4.2). Upper left: Nominal estimation
error. Lower left: Robust estimation error. Upper right: Robust control error. Solid line:

K4. Short dotted line: K3. Medium dotted line: K2. Long dotted line: K1.
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Figure 4.25: Effect of number of measurements for Brosilow Inferential Estimator. No
noise.

4.5.5 Brosilow estimator.

The Brosilow inferential estimator for the system with different numbers of measurements
is shown in Figure 4.25. It clearly demonstrates that the estimator as originally proposed
performs poorly, and its performance does not improve with increasing number of mea-
surements. The “Open-loop” test shows that the estimator nominally works well at very
low frequencies (w < 0.001 min~!). The poor dynamic performance (intermediate fre-
quencies) is due to the fact that the estimator uses the input signals u (L and V) as
shown in Eq. (4.16). The dynamic behaviour of u and the compositions y are very dif-
ferent and using a constant matrix G, — KgF, does not work well. This problem could
have been corrected using a low-pass filter on the inputs with a large time constant, e.g.,
194 minutes (that is, add dynamics to G, and F,). However, even this estimator would
not perform well in practice, as the “Closed-loop” test shows that the robust performance
is poor even at low frequencies. This is due to the input uncertainty, that is, the actual

values of I and V are different from what the estimator thinks they are.

We therefore conclude that using the measured input signals u (which are inaccurate)
does not improve the estimate. A better approach then seems to be to regard the inputs L
and V as unknown disturbance together with z;. This gives rise to the modified estimator
§ = Kpmogd where d_= [L,V,zg]T. This estimator performs much better as seen from
curve A in Figure 4.26. The estimated values of the latent variables L,V and zp may not
be correct, but this error is not important as long as the estimate § is accurate. However,

using L,V and zp as latent variables has very poor numerical properties. For example,
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Figure 4.26: Modified Brosilow estimator based on temperatures only. 41 temperatures.
A: Perfect model. B: Model rounded to 3 digits. C: Model when 1% random noise is
added to process matrices.

curve C in Figure 4.26 shows the drastic deterioration in performance caused by adding
1% random error to the elements of the matrices G/ and F’.

4.6 Discussion

4.6.1 Kalman filter.

Model uncertainty is not included explicitly when obtaining the Kalman filter and it may
require physically unrealistic values of the noise weights, V and W, in order to obtain
the best estimator when uncertainty is included. This is illustrated by the large value
needed for noise (disturbances) on the inputs in order to obtain the best Kalman filter,
K1. Otherwise, the Kalman Filter performed well in the u-tests and was undoubtedly
the best estimator in the open loop u-test. The main reason is its inherent dynamics,
which can track the changes in the process tightly. Furthermore, because of the weights,
it is flexible, and it may be tuned to perform well for ill-conditioned plants a well. As

mentioned above this is done by adding (artificial) large noise {(disturbances) on the inputs
to the process.
4.6.2 Brosilow estimator.

As discussed above the Brosilow Inferential estimator as originally proposed suffers from
four main weaknesses:
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W1. For ill-conditioned plants (with large RGA-values) input uncertainty causes poor

estimates when the estimator uses information about the manipulated inputs u.

W2. Even for plants which are not ill-conditioned, the dynamic behaviour of a static
estimator which directly uses inputs is often poor. The reason is the dynamic “lag”

which usually exists between the inputs u and the outputs y.

W3. It does not handle collinearity among the variables in an appropriate way. If the
number of disturbances are less than the number of measurements, like in our exam-
ple column, the problem arises when there is collinearity among the disturbances.
This makes the results sensitive to small numerical errors as shown above. On
the other hand, if the number of disturbances is larger than the number of mea-
surements, like in the work of Joseph and Brosilow (1978), the collinearity between
temperatures creates problems. Instead of using only selected measurements as pro-
posed by Joseph and Brosilow (1978), one should rather delete small directions in

F; using the singular value decomposition.

W4. For ill-conditioned plants (with large condition numbers) the use of inputs and dis-

turbances as latent variables is ill-conceived .

Weaknesses W1 and W2 may be corrected using the “modified” Brosilow estimator,
and also W3 may be corrected using an appropriate pseudoinverse of F;. However, the
use of secondary measurements to infer the disturbances and then estimate the primary
measurements is the key idea in the Brosilow estimator, and W4 can not be corrected. To
illustrate W4, consider an ill-conditioned plant, where we, in order to get a good estimate
must require that:

1) The estimate of the disturbances and the inputs is very accurate (this implies that
models F, and Fy, which are used to infer the disturbances, also must be very accurate).

2) The model from disturbances and inputs to disturbances (G4 and G,) is very
accurate (it must capture the low-gain direction as well).

If the condition number of any one of these four matrices is large then the estimate
may be sensitive to small numerical errors. The same applies to the modified Brosilow
estimator if the matrices G’ or F” are ill-conditioned. For our example column the con-
dition numbers of G’ are F” are 165 and 321. This explains the poor results in Fig.4.26.
We want to stress that this sensitivity to errors in the matrix elements is different from

the sensitivity to input uncertainty in W1, which is discussed in more detail below.
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The estimation scheme of Brosilow is based on explaining the observations by estimat.
ing the inputs using a causal input-output model. This approach may be satisfactory in
many cases, but not for ill-conditioned plants 2. However, for such systems there may stil]
be a rather simple direct relationship between various dependent variables, for example,
between temperatures and composition in a distillation column, and a simple regression

estimator may work well.

4.6.3 PCR estimator.

The PCR-estimator does not have the same weaknesses as the Brosilow estimator, First,
the estimator used here does not use the input values, and does not suffer from uncertainty
with respect to their exact value and poor dynamic performance. 'Secondly, and more
important, its numerical properties are much better. The matrix to invert in PCR, the
score matrix T in Eq. (4.22), is generally much better conditioned than F” used by the
modified Brosilow estimator. For example, for our column the condition number of T is
4.7, whereas the condition number of F’ is 321. To get a well-conditioned T' one must
ensure that excitations of the weak directions are included in the calibration set. To
ensure such excitations, one should use data from the column with feedback (that is, with
specified outputs), for example, by specifying the product compositions together with
the feed composition in an factorial design like in Table 4.3. One should not use open
loop data, like step responses etc., which will excite only the strong directions (The gain
matrices in Brosilow’s scheme will typically result from such excitations),

In an earlier study (Joseph et al., 1976) it was found that the Brosilow estimator
performed better than a regression estimator. However, they used the simple least-square
estimator in (4.20) which suffers from the same poor numerical properties as the Brosilow
estimator.

Conceptually, it is simple to generalize the static PCR estimator to obtain a dynamic
estimator. This may be done using the PCR method to derive an ARMA model relating

time series data for § and y.
Partial Least Square (PLS) estimator.

The PLS estimator is an alternative regression estimator, which also takes into account

the directions in Y when finding the approximate pseudo inverse of © (Héskuldson 1988).

2.The extreme of an ill-conditioned plant is a chaotic system where it is impossible to back-calculate
the inputs which have caused the observed outputs
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Ud

Figure 4.27: Actual input, u, may differ from value, u., used by the estimator because of
1) input disturbance uz and 2) input uncertainty Ay.

In the PLS method this is done by considering the eigenvalues of OTYYTO rather than
of ©TO used in PCR. This takes into account the directions in © which have the largest
covariance with Y, and thus ensures that these directions are not deleted. For the linear
distillation example studied in this paper the PCR and PLS methods gave almost identical

results. However, when nonlinear data were used we found PLS to be somewhat better.

4.6.4 Use of inputs in estimator

The p-results showed that when the inputs are used explicitly by the estimator, the
Brosilow estimator and the Kalman filter (case K4) are very sensitive to input errors. By
input error we mean the differences between the actual plant inputs, u, and the desired
input, u., computed by the controller and which are used for estimation (see Figure 4.27).
We consider two source of input error: 1) input disturbances, and 2) model uncertainty

at the inputs. We then have
u=(I+ Ar)(ue + ta) (4.27)

where uy is the disturbance on the inputs, and A; is the relative input uncertainty (see
below). To understand the effect of the input error, consider the somewhat unlikely case

when there are no secondary measurements, that is, Fy(s) = Fu(s) =0. In this case both
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the Brosilow estimator and Kalman filter become
§ = Gu(s)uc (4.28)

Assume also that there are no other disturbances (this assumption may easily be relaxed).
Then the actual plant output is

y = Guu (4.29)

and the estimation error becomes
e1=y—§ =Gulu—u) (4.30)

We shall now consider separately the two sources of input error.

1. Input disturbances. In this case u — u, = u4 and the estimation error becomes
y—3=Guug (4.31)

We note that the estimation error may be large even for small disturbances, ug, if the
elements in the matrix G,(jw) are large, that is, if (G4 (jw) is much larger than 1. This
assumes that G, has been scaled such that at any frequency expected input disturbances
have magnitude 1, and the allowed estimation error has magnitude 1. In cases where
#(G,) is much larger than 1, it is probably not advisable (or at least not very helpful)
to use the input signals for estimation. This is typically the case for distillation columns
with high-purity products. For example, in our case we have at steady-state (Skogestad

and Morari, 1988)
87.8 —86.4
Gu(0) = (108.2 —109.6)

Here the gain matrix is scaled such that the allowed estimation error is 1 in mole%

(4.32)

(corresponds to about 100% error of the nominal impurity) and the allowed disturbances
on the inputs, L and V, are equal to the feed rate (corresponds to about 30% of the
nominal inputs). The largest singular value, &(G4(0)), is 197.2. We conclude that the
use of input signals will not be very helpful for estimation in this case. This was also
confirmed by the results in this paper.

We might consider basing the estimation on, for example, D and V' (DV- -configuration)
rather than L and V. In this case we have u = [DV]T and the gain matrix becomes (Sko-

gestad et al., 1988)

-87.8 1.4 )

GY(0) = (—108.2 —1.4 (4.33)
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This assumes disturbances on D of magnitude F. This seems large, and a value of 0.1F
may seem more reasonable. Rescaling the gain matrix gives

v _ [ —8.78 1.4)
G (0)—(—10.82 —1.4 (4.34)

However, also in this case the elements in the matrix (and therefore also 5(G.)) are rather
large, and the estimate will be sensitive to input errors.

2. Input uncertainty. In this case we have
u=(I+Apu, (4.35)

where the uncertainty matrix A; = diag{A,} is a diagonal matrix consisting of the relative

input errors on each input channel j. The estimation error becomes
y—§=GuAgu, (4.36)
From Eq. (4.28) we have u. = G;'§ and we get
e1 =y —§ = GuAG') (4.37)

Skogestad and Morari (1987) found that the :’th diagonal element of the term G,A;G;*
is given by ;A;;(G)As where X;; denotes the 7j'th RGA-elements. Consequently, in the
presence of input uncertainty, the estimation error e; is likely to be very large for plants
with large RGA-elements. Note that this result is independent of the controller used. The
model Eq. (4.32) used throughout this paper has diagonal RGA-values of 35.1, and we
obtain at steady-state

(4.38)

G.AG- = (35.,1A1 —34.1A, =27.74A, + 27.2A2>
uBajlr, =

43.241 — 43.24; —34.1A; + 35.14,
The elements in this matrix may be large even for very small relative input gain, A;.
This is consistent with the p-analysis of the estimation error (“open-loop”) where we
observed very large p-values for the Brosilow and Kalman(K4) estimators for the case
with uncertainty (eg., lower left in Fig.4.24).

For plants with small RGA-elements the diagonal elements in the error term G, A;G1

are small, but the off-diagonal elements may still be large. However, for the DV-configurations

mentioned above the offdiagonal elements represent no problem. The model in (4.34) has
diagonal RGA-values of 0.45 and we obtain

0.45A; + 0.55A,; 0.45A; + 0.45A2)

0.55A; + 0.55A; 0.55A; + 0.45A, (4.39)

GDVA!GDv-l - (

4.6. DISCUSSION 63

All elements in this matrix are small. This implies that an estimator which uses infor-
mation about D and V' will not be sensitive to input uncertainty. However, as noted
above it may still be sensitive to input disturbances. Furthermore, we found for the PCR
estimator, that adding input information did not improve the estimate significantly even
the case of no input error (caused by disturbances or uncertainty). The reason is that the
temperature measurements contain most of the relevant information.

When secondary measurements, 6, are used by the estimator, then some of the input

error may be detected and corrected for. Nevertheless, the results above demonstrate that
the estimator should not use information about the input signals for plants where either 1)
G (when appropriately scaled) contains large elements, or 2) G, has large RGA-elements.
Both these cases are often encountered for ill-conditioned plants. Note that the RGA is
independent of scaling.

The conclusion for our distillation column is to base the estimate on temperature mea-
surements only. Input information does not improve the estimate because of 1) sensitivity
to input error, 2) poor dynamic response when used in a statjc estimator, and 3) the fact

that the temperatures contain so much information that the estimate is not improved
significantly (even if we disregard the first two items).

4.6.5 pu-analysis of estimators

The structured singular value, 4 is a powerful tool for comparing multivariable linear

systems with unknown disturbances and uncertainty, without having to perform a large

number of simulations. Since g is a worst case measure, this tool discovers explicitly
the weak spots in a system. For example, it would have been much more difficult to
discover the estimators’ sensitivity to input uncertainty from simulations. However, the
test requires additional modelling effort to capture the uncertainty in an adequate way.
While using the p analysis we encountered problems with how to include measurement
noise. Modelling it as independent disturbances would give a worst-case combination

which would be extremely unlikely to occur when there are many temperatures. Therefore,

in the p-analysis we added the noise as n = kng, where k is a frequency-dependent

constant to be varied in the p-analysis, but where ng is a constant random vector. This
approach works well when comparing estimators with the same location and number of
measurements. However, in other cases the specific value of the random numbers in the

noise vector ng may be important and may bias the p-values. When comparing various
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PCR-estimators we therefore did not include noise in the p-analysis. However, here we

included noise on the calibration sets.

4.6.6 Nonlinearity

All models used in this paper are linear. This simplifies the problem and is necessary
for using the y-analysis. But distillation columns are known to be very nonlinear, so the
effect of nonlinearity should be taken into consideration. Nevertheless, in general a system
that does not perform well in the linear case, will not perform well in the nonlinear case,
and a linear study is therefore a good first step in a performance evaluation.

The Kalman Filter may be extended to the nonlinear case using the so-called Extended
Kalman Filter, where the process matrices and the gains are updated on-line. For distil-
lation columns this may give a heavy computer load. For the PCR/PLS estimator the use
of additional principal components may be used to eliminate some of the nonlinearity.

For distillation columns an alternative way to counteract nonlinearity is to use loga-
rithmic transformations of the compositions (Joseph and Broslilow, 1978, Skogestad and
Morari, 1988). This approach may be used for all estimators. In another paper by the
authors, the questions of nonlinearity and multicomponent mixtures will be discussed in
detail.

4.6.7 Obtaining and implementing the estimators

Both the Kalman filter and the Brosilow estimator require a linear open-loop model.
On the other hand, the PCR approach only deals with the data. This is an advantage,
especially when experimental data are used, but also when we do have a good model, as
in this paper, since we save a significant effort in obtaining the linear model matrices.
To obtain the Kalman filter one must specify weighting matrices for noise and distur-
bances. These may be difficult to determine a priori, especially since the best value of
these weights may not be physically meaningful. The Brosilow estimator has the advan-
tage of having essentially no tuning parameters, but this makes it inflexible, and it does
not work for ill- conditioned plants. Although not discussed in this paper, the PCR/PLS
estimator depends strongly on the scaling of the variables. These scalings are then ef-
fective tuning parameters, which are used primarily to reflect the measurement noise. In

this paper no variable scaling was applied.
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As for implementation, the static Brosilow and PCR, estimators are of course much
simpler than the dynamic Kalman filter. For all estimators it is necessary to have some
scheme for dealing with measurement failures, that is, to detect and correct outliers.

Pressure variations were not included in this study. Pressure compensation is easily

included in the PCR estimator if different pressure levels and pressure drops are included
in the calibration data set.

4.7 Conclusions

1. With the Kalman and PCR estimators, the estimate is improved by adding temper-
ature measurements. With more than three temperatures the improvement for our
example column is mainly to reduce the effect of measurement noise. The Brosilow
estimator does not handle collinearity well and the estimate is not improved by
adding temperatures. In general, one should not use few measurements (that is,

delete measurements), but rather use only a few combined measurements (in the

dominant directions of the measurement space).

2. From a theoretical point of view it is obvious that one may always improve the
estimate by “appropriate” use of additional information (measurements). However,
in some cases the usefulness of the additional information may be minimal (see use
of inputs below). In other cases the improvement of the estimate must be traded off
against the cost of obtaining the measurements and the increased chance of failures.

Therefore, in practice one may not always want to use additional measurements.

3. For plants with large elements in the appropriately scaled gain matrix, G,, the
presence of input disturbances implies that the use of input signals does not improve

the estimate. This will be the case for most high-purity distillation columns.

4. For ill-conditioned plants with large RGA-elements for G,, the presence of input
uncertainty implies that the use of input signals does not improve the estimate.
This was illustrated for our example column by the Kalman filter where the best

tuning corresponds to not using information about the input flows.

5. The Brosilow estimator uses the inputs directly and the estimate may be very sen-

sitive small errors in input measurements. In the modified Brosilow estimator,
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introduced in this paper, the inputs are regarded as disturbances and this sensitiv-
ity is avoided. However, the estimate remains sensitive to small model errors if the

condition number is large.

6. In the case of perfect models the modified Brosilow estimator and the (linear) PCR

estimator are equivalent. This is quite obvious since both minimize the 2-norm OC’I;
the estimation error. However, for ill-conditioned plants, PCR is better behave

numerically and is less sensitive to model errors.

7. When the dynamic response of the process outputs and the secondary measurements

are similar, a static estimator may be sufficient. This is the case for our distillation
b

example when inputs are not used.

8. For our distillation example, the PCR and Kalman estimators were almost identical

in the closed-loop p-test. The Kalman filter is more difficult to implement, requires
more computer time, and needs initialization of the states. Thus the much simpler

static PCR estimator is preferable.

9. The PCR and PLS estimators gave very similar results for our linear distillation

example.

10. The exact location of the temperature measurements is important when few mea-

surements are used, but is less critical for our example when we have about fou'r
or more measurements. 10. It is important to check the performance of an esti-
mator both in “open loop” (estimation error) and in “closed loo;'>” (contn?l error).
Some errors in the “open loop” estimation may have only-minor mﬁuence' in clos;d
loop. One disadvantage with the closed loop test is that it depends heavily on the

controller chosen.

11. Although the p-analysis has some difficulties of representing noise, it was found to be

most suitable for studying the performance of the estimators for this ill-conditioned

plant.

In conclusion, we believe that our study presents a number of results which may prove

t liab}
useful in practical control of distillation columns. Temperature mez.a.suremen s are rc;'1at,) l e
and without delay, and the need for on-line GC measurements, which are very unreliable,

d on, for example, using off-line
may be eliminated. However, a less frequent update base
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GC may be needed. We also believe that our comparisons of various estimators, and the

analysis of sensitivity to input error, are of interest from a general point of view.

NOMENCLATURE.

d - disturbances

D - distillate flow rate

d - external inputs in g-analysis

F - feed flow rate

F; ,F’ - Gain matrixes from inputs to secondary measurements (temperatures)

G;, G' - Gain matrixes from inputs to primary outputs.
K - estimator matrix

K - Kalman filter gain
L - reflux flow rate
N - number of theoretical trays
Ng - location of feed tray
p - loading vector (direction of principal component) or no. of y-variables
PCR - Principal Component Regression.
q - no. of #-varibles
qr - fraction liquid inn feed
t - principal component (score), latent variable
T - matrix of scores
u - manipulated inputs (= (L, V)T)
v - process noise (disturbance)
V - process noise covariance matrix.
V - boilup rate from reboiler
w - measurement noise
w; - input uncertainty weight
w, - performance weight
W - measurement noise covariance matrix.
zp - mole fraction of light component in bottom product
y - output vector = (yp,zp)T
yp - mole fraction of light component in distillate

zr - mole fraction of light component in feed
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Greek symbols

« - relative volatility

A - uncertainty block

4(A) - condition number of matrix A

p - Structural Singular Value

w - frequency (min™")

o:(A) - The i'th largest singular value of matrix A
9 - secondary measurements (temperature vector)
6 - vector of all available information

O - data matrix of 4
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Abstract

The paper addresses the use of temperature measurements to estimate product
compositions in distillation columns. A simple linear multivariate calibration proce-
dure based on steady state data is used, which requires minimal modelling effort. It
is found that these PCR—- and PLS-estimators perform well, even for multicompo-
nent mixtures, pressure variations, and nonlineartity caused by changes in operating
conditions. The use of weighting functions, additional factors and logarithmic trans-
formations improve the estimates and counteract nonlinearities, provided there is
not too much noise on the temperatures. The estimators employed in the paper use
temperatures on all trays, but only 3-7 temperatures are necessary. The calibration
coefficients from the original full set of temperatures may then provide a basis for
the measurement selection.
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5.1 Introduction.

Reliable and accurate measurement of product compositions is one of the main difficulties
in distillation column control. Most product analyzers, like gas chromatographs, suffer
from large measurement delays and high investments and maintenance COST,S.‘ Th.e over-
all measurement delay is typically 10 to 20 minutes. This imposes severe limitations o'n
achievable control performance. However, the reliability of the analyzers is perhaps their
weakest point, and this also results in high maintenance costs in terms of rr‘lanpower an.d
expensive back up systems. One employee per every three GC analyzers is commor.l in
industry. The most popular alternative to analyzers is single temperature cont:‘rol, ie.,
control of a given tray temperature. Temperature measurements are reliable and‘ 1nfexpen-
sive, and have negligible measurement delays. However, they are not acc'ura,te indicators
of product composition. Nevertheless, in most cases temperature control is pre.ferred. F?r
example, Kister (1990) recommends using temperature control unless the d‘lfference in
boiling point between the key components is very small, or there are substantial econom-
ical benefits in keeping tight control of the product compositions.

This paper addresses two-product columns where we make a split between two defined
key components, denoted the light (L) and heavy (H) key component. We can‘ szke t.wo
independent specifications to define the split between these components. The distribution
of the remaining components, denoted the off-key or non-key (N) components, I.nay nolt
be specified. In this paper the specifications are chosen as the product mole fractions, yp

and z'g, of light component on a pseudo binary basis.

Problems with single temperature control. Figure 5.1 displays typical steady state pro-
files for the binary example column®. For this binary mixture at constant pressure, the
temperature at the column end is an exact indicator of composition. However, as seen
from Figure 5.1 the temperature variation is very small at the top and .a.t the bottom
of the column and may be difficult to distinguish from measurement noise. Therefore,
temperatures further removed from the end are preferred (Nisenfeld.alnd seeman, 1980).
However, the use of a single temperature to indicate product composition is generally not

reliable because of the following:

e Composition changes. Even for binary mixture the relationship between a tempera-
ture inside the column and a product composition, depends on the feed composition,

and also on the product composition at the other end of the column.

!The column is described in section 5.2.1
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Figure 5.1: Steady state profiles of the example column. Binary mixture.

e Off-key components. For multicomponent mixtures the presence of off-key compo-
nents implies that even at the column ends temperature is not an exact indicator of

composition. The effect of variations in off-key components is largest near the feed
and at the column ends.

e The measurement device. 1) Random noise associated with the measurement and
data treatment device. This high frequency noise will have the same magnitude

on all trays. 2) Low-frequency measurement offsets, for example, due to fouling or

changes in the ice-point temperature compensation.

e Temperature variations due to flow pulses and improper mixing on the trays. These

variations have a peak at intermediate frequencies and are largest in column sections
with large temperature gradients.

e Pressure changes. 1) Changes in total pressure which have a similar effect on all
temperatures. 2) Changes in pressure drop due to changes in throughput, which
yields the largest pressure change near the bottom. Varying liquid holdups and tray

performances may give local pressure variations as well.

Some measures may be taken to counteract these problems. The high frequency noise

may easily be filtered. Pressure variations may be compensated using pressure measure-
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Figure 5.2: Effect of changes in top composition on the temperature profile. The feed and
bottom compositions are constant.

ments, or using differential temperatures. The effect of non-key components may b‘e
reduced by locating the temperature measurement in regions of the column where their

composition is nearly constant (Rademaker et.al., 1975).

However, some of these problems may not be corrected. In particular, keepiflg a
temperature constant on a tray some distance away will not keep the product cornpos1t1cTn
constant. For example, consider Figure 5.2 where it is shown that the temperz.a,tures in
the lower part of the column are affected by changes in top composition, and Figure 5.3

where it is shown how the temperatures are affected by different feed compositions.

Multiple temperatures. One solution to these problems is to use multiple tempera-
ture measurements to infer the product composition. There has recently been .reports
from industry on sucessful implementations of somewhat ad hoc ap.proaches. Whitehead
and Parnis (1987) used a weighted temperature average of differential temper‘:a,tures on a
C,-splitter. Bozenhardt (1988) used multiple temperatures to track the mavimum te1}111-
perature difference between two trays in an alcohol/water/ether column. Ilc founfl -t e
position of this maximum difference to be strongly correlated to the product composition.

A more rigorous approach is to use a temperature-based composition estimator. In

another paper (Mejdell and Skogestad, 1990) we compared rigorously three different es-

timators using linear data for the binary example column. These estimators were the
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Figure 5.3: Effect of changes in feed composition on tem

perature profile. Top and bottom
compositions are constant.

dynamic Kalman-Bucky filter (Kalman and Bucy, 1961),

the static Brosilow Inferential
Estimator (

Weber and Brosilow, 1972, Joseph and Brosilow, 1978), and the static Prin-
cipal Component Regression Estimator. It was found that for feedback control the static
PCR estimator performed almost as well as the Kalman filter. The reason is that the tem-
peratures and the compositions have similar dynamic responses. The Brosilow Estimator
was very sensitive to model error for this ill-conditioned

plant with large RGA-values.
Mejdell and Skogestad (1990)

therefore recommended using the simple regression estima-
tor, which is obtained simply by considering corresponding values of temperatures and
composition. Such data sets are most easily obtained from simulations.

In this paper we consider some additional aspects of using regression estimators for
composition estimation, including

e nonlinearities in the column
® pressure variations

e multicomponent mixtures

® measurement noise.

We discuss different ways of handling these problems, such as variable transformations
and scaling.
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In the paper temperature measurements on all trays are used. This is not because it
is strictly necessary, but te emphasize that all available measurements should be used,
and to exclude the influence of measurement selection, which otherwise would bias the

results.

5.2 Problem definition.

The following problem is treated in this paper: Given the temperatures on all trays in
a distillation column, find a good static estimator for the product compositions. The

example column described below is used to illustrate the main issues.

5.2.1 Example column.

The column has 40 theoretical stages (including the reboiler), and a total condenser. The

feed stream enters the column at stage 20 as saturated liquid. Two cases are considered:
1. Binary mixture with constant relative volatility of 1.5.

2. Multicomponent mixture consisting of one heavy and one light non-key in addition

to the binary components in case 1.

The column in case 1 is “column A” (Skogestad and Morari, 1988b), which is the same
example as used by Mejdell and Skogestad (1990). Data for the column and for the
mixtures are given in Table 5.1. The difference in boiling point between the two pure
key components is only 13 °C. This is approximately the lower limit for what is usually

recommended when using single temperature control (Riggs, 1990).

5.2.2 The estimation problem.

Consider the case with binary mixture, constant pressure and feed and reflux as saturated
liquid. Then specifying different values of feed composition zf, distillate composition YD,
and bottom product z g, yields unique steady state profiles of the 41 temperatures 8. This

may be expressed as
9! = f(zr,yp,zB) (5.1)

We want to find the inverse relation

A2Xx1 __ gD _ 41x1
g = ( Py ) = g(0"*") (5.2)

5.2. PROBLEM DEFINITION.

A. Binary mixture:

t comp zp YD T

I LK 0500 099 0.01

2 HK 0.500 0.01 0.99

B. Multicomponent mixture:

t comp zp YD Tg

I LNK 0.050 0.125 0.000

2 LK 0.350 0.866 0.006

3 HK 0.350 0.009 0577

4 HNK 0.250 0.000 0.417

e InP(mmHg)=A— B/(8(K) + C)
o Feed is saturated liquid.

o Constant molar flows.

* Ideal VLE using Raoults law

¢ Constant pressure, 1 atm.

o N=40,Nr =21 (theoretical trays)
o Holdup on all trays; M;/F = 0.5 min
°

Flow dynamics are neglected.

i1 T (K)

1.5

Qv
2.0
1.5
2.0

341.9
355.4

T (K)
3214
341.9
355.4
370.1

Antoine parameters

A
15.83660
15.43113

A
16.52975
15.83660
15.43113
14.73799

B
2697.55
2697.55

B
2697.55
2697.55
2697.55
2697.55

C
-48.78
-48.78

-48.78
-48.78
-48.78
-48.78

Table 5.1: Data for distillation column example.

7
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The simplified linear estimator used in this paper may be written
g = K0 (5.3)

where the matrix K is of dimension 2 x 41. The problem is to find optimal values of these
82 parameters. These parameters can not be determined independently because 1) the
temperatures are not independent, and 2) there is not enough degrees of freedom in the
excitations. The first fact is illustrated by Figure 5.1 where we see that temperatures close
to each other changes in nearly the same way. From Equation (5.1) we see that there
are only three degrees of freedom in the excitations, and the temperatures have only
three different ways to vary. However, note that the number of directions in the linear
temperature space may be larger than three if large perturbations are used in zp, yp and
zg. Pressure variations and off-key components also increase the degrees of freedom but
they are for the moment assumed to be constant.

The estimation problem may be divided in two steps:
1. Data reduction of the temperatures into k latent variables ¢ (also denoted factors):

kXL = p(gH1xY) (5.4)

2. Obtain estimator by finding a relationship between the latent variables and the

product composition.

( yo ) = g(t") (5.5)
ip

The key question is now how to find suitable latent variables, in order to make the
second regression step easy. Preferably the latent variables should be independent, and

they should contain all the original information relevant for estimating the compositions.

e The simplest is to delete measurements and select only a few which are mutually
independent. Then the problem of optimal measurement selection becomes a key
issue. A lot of articles have been published on this subject, for example, Joseph and

Brosilow (1978), Morari and Stephanopoulos (1980), and Moore (1986).

e Use unknown disturbances as latent variables. This procedure has been proposed
by Brosilow and co-workers and employed in their inferential control, e.g. Weber

and Brosilow (1972) and Joseph and Brosilow (1978).
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¢ Use some geometric shape factors of the temperature profile as latent variables. This
idea is used by Gilles and Retzbach (1980) and later by Marquardt (1988). Here
the first factor is the location of the steepest temperature gradient.

e Use the principal components (PCR method) or the partial least square factors (PLS
method) as latent variables. These methods have been introduced for distillation

columns by Mejdell and Skogestad (1990), and are further outlined in the next
section.

The simplest of the above methods is of course to reduce the number of measurements.

However, this is not optimal, because additional measurements will

e improve the estimate because they contain more independent information (at least
for few measurements)

e reduce the effect of measurement noise

e make the estimator less sensitive to measurement selection and changes in operating
conditions

o better capture the effect of nonlinearities.

We have briefly investigated Marquard’s method and found it to perform very well
with perfect measurements, but it was sensitive to measurement noise for our colummn.
It might perform better for distillation columns with sharp profiles, for which it was
originally developed.

The Brosilow estimator was studied in detail by Mejdell and Skogestad (1990). We
found that it performed poorly for the binary distillation example. The reason is that
for ill-conditioned plants, like distillation columns, the estimate is very sensitive to small
errors. This sensitivity has indeed been pointed out also by Brosilow and co-workers.

Mejdell and Skogestad (1990) studied the static PCR estimator for the example column
and found that it performed almost as well as an optimally tuned Kalman filter. In this
paper we shall use the static regression estimators, PLS and PCR.

5.2.3 TUse of transformed variables.

The composition and temperature profiles are nonlinear functions of the operating vari-

ables. One way to deal with nonlinearity is to find other variables (factors) which can
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capture the nonlinearity. The Marquard method is one such method. A simpler method
is to use nonlinear transformations on each variable. Logarithmic transformation of the
product compositions has been proposed by several authors (eg., Joseph et al., 1976) as
an effective way to linearize the dynamic and static response (with L,V,F,zr etc. as

independent variables). For binary mixtures
Yp= ln(l - yD); Xg = lnz'g (5.6)

These transformations apply also for multicomponent mixtures if pseudobinary composi-
tions are used. The composition profile (with tray number as an independent variable)
may also be linearized using similar transformations. Ryskamp (1981) plotted the com-
positions on a probability scale. It is also common to use the logarithm of the separation
parameter (eg., PROCESS, 1981)

=inIL
X = lan, (5.7)

Skogestad and Morari (1988a) showed that this transformation also linearizes the dynamic
response. Note that since most columns have yp = zp = 1 and (1 — zg) = zpy = 1,
(5.6) may be viewed as a special case of (5.7).

Temperature is often a nearly linear function of composition. We therefore propose to

use the following transformation to linearize the temperature response and profile
(5.8)

Here T} and T}, are the boiling temperatures of pure light and heavy components, re-
spectively. For our example column this results in a nearly linear profile as shown in
Figure 5.4 (compare with the unscales profiles in Figure 5.1 ). Column with pinch zones
around the feed will not have a linear profile.

Instead of using boiling temperatures, one may use the transformation

99
Ly = In(- _‘[;) (5.9)

where 6, and 0y is some reference temperature at the top and the bottom of the column,
respectively. For binary mixtures, one may use the temperature at the column end, which
is very close to the boiling temperature. For multicomponent mixtures, one must select
the reference temperature at a location some distance away from the ends where the
effect of changes in operating conditions and off-key components is less. To avoid taking

logarithms of negative numbers, the temperatures between the reference locations and

5.2. PROBLEM DEFINITION. 81

164
s.8
-5.8
=18, 8 . :
i : . i i i Tray no.
[ 5 1a 15 Z8 25 3s as 48
Condenser Reboiler

Figure 5.4: Temperature profiles in terms of logarithmic transformed temperatures, L

column ends must be treated separately,

for instance by using the absolute value of the
temperature differences in Eq. (

5.9). To avoid large effects of noise on the temperatures
closest to the reference temperatures one should also specify a lower permitted limit on
the difference temperatures in Eq.( 5.8) and Eq. (5.9)

Using reference temperatures instead of boiling point temperatures also provides pres-
sure compensation of the temperature measurements.

5.2.4 Multicomponent mixture.

The multicomponent mixture is the originally binary mixture extended w
nonkey (LNK) and one heavy nonkey (HNK) component (See Table 5.1).
objective for the separation is still the split with respect to the key compon

notes the pseudo-binary molefraction (based on key components)
ie.

ith one light
The control
ents. Let 2’ de-

of light key component,

1;' = z_L
Py (5.10)
The product specification for both the binary and multicomponent case is 4}, = 0.99 and
z'g = 0.01. T
The composition profile for the multicomponent mixture at the nominal operating

point is displayed in Figure 5.5. The off-key components are almost constant in the
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Figure 5.5: Concentration profiles of the multicomponent mixture.

column except at the column ends and around the feed tray. The composition profile

on a pseudobinary basis, z’

, is compared with that of the binary example column, z,
in Figure 5.6, and the corresponding temperature profiles are shown in Figure 5.7. The
concentration profiles are almost identical, whereas the temperature profiles are quite

different.

5.2.5 Calibration set for PCR and PLS.

The calibration set used in the paper consists of 32 different simulation runs. The outputs
zg and yp and the feed composition zr (disturbance) were specified, and the correspond-
ing steady-state temperature profiles obtained using a nonlinear column model. The 32
values are listed in Table 5.2. The data were spread with equal distances around zp, zg
and yp. The first run in the left column is the nominal operating point, the other 15 runs
were randomly chosen. The 16 runs in the right column were selected by a two composite
design in four levels. These 32 runs correspond to maximum variations in column end
temperatures of about 0.4 °C and of interior temperatures of about 5 °C.

Different versions of the 32 calibration set was made, which included
¢ Total pressure variations of 4 0.1 atm spread randomly on the various runs.

e Normal distributed random noise of magnitudes 0.1 or 0.2 °C on all temperatures.

5.2. PROBLEM DEFINITION.
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ZF YD B RF Yo TB
0.5000 0.99000 0.01000 || 0.4000 0.97000 0.03000
0.5375 0.99130 0.02620 || 0.4000 0.97000 0.00333
0.4250 0.97380 0.01510 [ 0.4000 0.99667 0.03000
0.5250 0.97000 0.01320 || 0.4000 0.99667 0.00333
0.4125 0.98010 0.00580 || 0.6000 0.97000 0.03000
0.6000 0.98490 0.00440 (| 0.6000 0.97000 0.00333
0.5125 0.99420 0.00660 || 0.6000 0.99667 0.03000
0.5500 0.98270 0.00760 || 0.6000 0.99667 0.00333
0.4875 0.99620 0.01890 || 0.4500 0.98268 0.01732
0.4750 0.99560 0.00870 || 0.4500 0.98268 0.00577
0.5625 0.99340 0.01150 || 0.4500 0.99423 0.01732
0.4625 0.97720 0.03000 (| 0.4500 0.99423 0.00577
0.4375 0.99500 0.00380 || 0.5500 0.98268 0.01732
0.4500 0.99240 0.01730 || 0.5500 0.98268 0.00577
0.5750 0.98680 0.02280 | 0.5500 0.99423 0.01732
0.5875 0.98850 0.00500 | 0.5500 0.99423 0.00577

Table 5.2: Specifications used in simulations to obtain static temperature profiles. P =
1.0 atm.

o Non-key components. The pseudobinary compositions were as in the binary case
(Table 5.2), but in addition the feed molefraction of light non-key component were
varied between 0.025 and 0.075, and of heavy non-key between 0.15 and 0.35. All
temperatures were rounded to one decimal, which may be viewed as a (coloured)

noise source.

5.2.6 Evaluation criteria.

The main criterion used to evaluate the performance of the estimators is the Mean Square
Error of Prediction (MSEP), which is a measure of the expected error of future predictions.
An estimate of MSEP was performed by a cross validation procedure as follows: The 32
calibration runs were divided into seven groups. Then the calibration procedure (i.e.,
finding the estimator ) was performed seven times, each time with six. gl‘.oups used for
calibration and one for testing. The mean square error of all test predictions was then

obtained from
] 32

MSEP(K) = 33 (5i(k) - vi)? (5.11)

=1
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Here k is the number of factors (or principal components) used in the calibration, and y;
is yp or zg for the ¢’th test run. MSEP will generally not go to zero when the number of
factors increases, since the test runs are independent from the ones used in the calibration.
Rather, MSEP will increase when factors containing only noise are included.

We then compute the Explained Prediction Variance in %

MSEP(k)
B MSEP(O)) (5.12)

MSEP(0) is approximately the variance in the calibration data.

EPV (k) = 100(1

5.3 Data treatment and multivariate regression.

We want to estimate p outputs (y) from ¢ known variables (6). Multivariate regression is
a linear statistical technique for obtaining the matrix K in

§ =Ko (5.13)

Both vectors y and # are centred (deviation variables) so there is no constant term. Obtain
a “training set” consisting of n calibration tuns of corresponding values of y and 4, and
place these as rows in the matrices Y™*? and ©"*9, We have the desired relation

Y =0K7T (5.14)
The general least square solution for K is (Strang, 1981, p. 139)
KT = oty (5.15)

In addition to minimizing (y — 9)? this solution minimizes the norm of K. The pseudoin-
verse OF is most easily obtained using the SVD of @,

5.3.1 Singular Value Decomposition (SVD).
The SVD of ©® may be written
©=UzvT (5.16)

or as a sum of m rank 1 ~ matrices (of decreasing importance)

0 =yl + uga'gv;;" + o+ UpoR vl (5.17)
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where m is the rank of ®@. If m < min(n,q) then both columns and rows in © are
linearly dependent (the matrix is singular). Here the columnvectors of U, u1...%n, are
the orthonormal eigenvectors of (@©7), and the columnvectors of V, vy ...vm, are the
eigenvectors of (7@). o; are the singular values; o? is the largest eigenvalue of (©07)
(or (©7@)), o2 the second largest and so on. o2, is the smallest non-zero eigenvalue. The

pseudoinvers of © is

ot =ve 1yt (5.18)

Here 7! is diag (07,05 ...0;!). The smallest singular value, o,, becomes the largest
in the pseudoinverse. Consequently, the sensitivity of the pseudo-inverse to small errors

(eg., noise) in © may be large if o, is small, that is, if the condition number
7(0) = 2 (5.19)

is large. The key idea of the PCR estimator is to reduce this sensitivity by choosing only
k < m terms in the sum in Eq.(5.17).

5.3.2 Principal Component Regression.

Write the SVD in Eq. (5.17) on the alternative form
O =t1p] +t2p; + - + tmph, (5.20)

Here t; = u;0; is the score vector (or latent variable) and p; = v; is the loading vector for
principal component :. Keep only the k first terms which may be distinguished from mea-
surement noise, and let the matrices P7** and T™** include only these k most important
directions. Then © ~ O, = TPT. The latent variables for a given temperature vector,
8, are then given by t¥*! = PT§7*!, The least square solution to ¥ = TK7 becomes
K, = YTT[TTT|™!. The condition number of T', v(T) = ¢1(T)/ox(T), may be adjusted
by selecting the number k. Since P~' = PT (P is orthonormal), the overall estimator

gain matrix then becomes
I&’pcn = YT(@k)T = YTT[TTT]—l.PT (521)

5.3.3 Partial Least Square (PLS) Regression.

This is a variation of the PCR method which recently has become popular among ana-

lytical chemists. The latent variables are here determined in order to have the greatest
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covariance with the y-variables. It is an iterative process, which roughly (
1988) may be described as follows:
For O find:

see Hﬁskuldsson,

1. the largest eigenvalue a, and corresponding eigenvector w; of OTYYTQ Scale
to length one. ' bt

2. the scores t; = Quy
3. the loadings p, = (—?;t—’ll
1
4. the residual matrix £; = © — tipT

For Y find:

1. the largest eigenvalue a; and corresponding eigenvector ¢ of YTOOTY Scale ¢, ¢
length one. 1o

2. the scores u; = Y¢,

3. the loadings ¢; = Yy

uj vy

4. the connection b, between the scores of 6 and y: by = Yh
ty

5. the residual matrix F; = Y — bltlcf

Then start from the top with the residual matrices E; and F| in stead

. of ©
and continue until the matrix EEFkFEEk and ¥,

e has only small eigenvalues left. For a more
exact description of the algorithm and its different versions, see Martens and Nzes 1989
The estimator based on & factors is , .

Kprs = Q(PTW)'wT (5.22)

where the matrices QP*¥, P9** and W%k are formed by the vectors q,

p and w introduced
above.

The main advantage of the PLS-algorithm compared to PCR, is that it selects the
directions in © which have the largest covariance with y,

irect and thus ensures that these
directions are treated first.

87
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5.3.4 Scaling of variables (weight functions).

The objective of scaling is to improve the estimate by giving each temperature a weight
corresponding to the inherent prediction ability.

The most common weight is the inverse of the standard deviation. This ensures that
variable scaling (or variable transformations) do not bias the results. The weight for the
2’th temperature is

Wi = — (5.23)
Sci
We use s as the standard deviation of the calibration set for temperature 3, that is, it is
the square root of the i'th diagonal element of 2(©70).

This weight simply scales all temperatures such that their changes are of the same
magnitude. Since the change in terms of unscaled temperatures is small towards the end
of the column, this means that measurements close to the ends will have a large weight,
W,. However, we know that this may not be a good approach because the noise is large
(in relative terms) close to the ends. In order to take noise into account in the weighting,
Martens and Naes (1989) suggest using the weight

Wa = —-l— (5.24)

Sci t+ Seyi
Here s.,; is an estimate of the noise level, defined as the square root of the residual variance
after k factors, i.e, the square root of the i’th diagonal element of %(E,Z'Ek) This variance
includes all contributions of model/data mismatch, i.e both noise and mismatch due to
nonlinearities etc. Note that S = 8epi = Se,i, Finally, we propose to use the weight

function .
Sci — Seii
Wy = —=2 "% (5.25)
Sci Sei
This weight is equal to W; when there is no noise, but gives zero weight to measurements
where all variation is unexplained (due to noise).
To calculate the weights, we first performed the calibration once without weights. In
the weight functions k = 3 was used for the binary mixture, and k = 4 in the multicom-
ponent mixture. Typical examples of weight functions are given in Figure 5.8. We see

that weight W; puts less weight on the column ends than Wy and W2.

5.3.5 Estimators for the example column.

The different PLS and PCR estimators are identified with an code sequence given in

Table 5.3. A ‘M’ denotes a multicomponent mixture. A 'P’ denotes that different pressure
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Figure 5.8: Weight functions Wy, W, and W; for Cas i
037 comiom ae) 3 e nz. (Untransformed data with

M Multicomponet mixture.

P Pressure variations of + 0.1 atm.

Ly Log. transf. comp. only

Lr  Log. transf. comp. and temp. (ref.: boiling temp.)

Ly Log. transf. comp. and temp. (ref.: tray temp.)
Ny  NO noise

ny  0.1°C noise
ne  0.2°C noise
W, Weight function n

Table 5.3: Estimator cases
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levels of + 0.1 atm are included randomly in the calibration set. Ly denotes an estimator
with logarithmic compositions and untransformed temperatures, Ly denotes logarithmic
compositions and logarithmic temperatures, Ly denotes the same, but with tray 1 and 41
(binary mixture), or tray 4 and 37 (multicomponent mixture) as reference temperatures,
rather than the pure component boiling temperatures. Trays 4 and 37 are selected because
they have minimum variance in the calibration set and are just outside the non-key
separation area, see fig 5.5. The logarithm of the absolute value is used for temperatures
1-3 and 38-41. ng,n; and n, denotes estimators with zero, 0.1 °C, and 0.2 °C normal
distributed noise added to the calibration set. These are added to each measurements
except for cases P where we add noise on the temperature differences 6 — 0y, and g — 6.
Note that estimators based on Ly have a varying reference temperature, which will be
corrupted by noise, whereas Ly and PL, do not. Finally, Wy, W,, and W3 denote the

different temperature weight functions in section 5.3.4.

5.4 Results.

The static Explained Prediction Variance (EPV) (see section 5.2.6) for a number of cases
are summarized in Table 5.4 and we shall study these results in more detail below. All

estimators use PLS-regression unless otherwise stated.

5.4.1 Dynamic and static estimation

We shall first discuss the use of PLS-estimator ng (no noise) for the binary column. This
uses no transformations on y and § and no weighting. For the linear case (if we use a linear
column model at the operating point) with three factors these estimates are identical to
those obtained with the PCR-estimator studied by Mejdell and Skogestad (1990). They
found this static estimator to perform excellently also when used dynamically and for
feedback control. Typical simulation results for the linear case are shown in the left part
of Figure 5.9. However, the column is strongly nonlinear and in this paper we also include
nonlinearity. The corresponding simulations in the right part of Figure 5.9 show that the
dynamic results are quite similar also in this case. From the figure the main problem
seems to be the static prediction capability of the estimator, and we shall therefore use

mainly static arguments to evaluate the estimators in the following.

5.4. RESULTS.
No noise:
No. of factors

1 2 3 4 5 6 7
ng 19.61 81.97 94.17 97.18 98.18 99.43  99.96
noLy 21.78 80.14 92.86 93.45 96.92 97.20 98.80
noLyp 19.72 96.38 99.97 99.98 99.99 100.00 100.00
nolyg 32.90 95.39 99.95 99.96 99.97 100.00 100.00
noP -2.31 4677 7571 92.19  95.50 95.95  97.59
noLgP 19.16 94.90 99.94 99.97 99.97 100.00 100.00
Mn, 10.66 48.02 56.78 88.35 89.58 91.50 91.94
MnoW, 11.14 48.44 5740 87.76 90.61 91.84 92.25
MnyLy 18.52 48.88 52.59 83.66 84.10 87.84  87.43
MnyLg 22.73 77.52 94,10 95.81 96.27 97.61 97.55
MnoLeW, 2069 73.75 93.81 95.87 96.75 97.68 97.66
0.1°C noise

1 2 3 4 5 6 7
ny 19.59 81.78 93.81 97.00 97.59 97.86  98.05
niLrWs 23.10 91.42 98.89 98.92 98.92 98.82  98.80
nyLeWa 23.18 84.60 91.09 94.01 96.16 96.69  97.06
mLsWsP  26.89 91.05 98.25 98.78 99.04 99.08 99.04
0.2°C noise

1 2 3 4 5 6 7
ng 18.87 81.10 93.78 94.92 94.49 94.42  94.47
na Wy 17.06 86.04 95.75 94.66 94.39 94.18 93.64
n, W 20.40 84.65 95.66 95.36 94.74 94.70 94.12
nyWa 19.78 83.34 95.08 95.59 95.40 95.25 95.04
noLy Wy 18.14 80.14 91.53 92.57 91.73 91.29  90.53
no Lt 12.50 78.41 81.90 84.04 87.59 90.63 91.16
no Ly W, 22.65 86.65 95.44 96.25 96.70 97.22 97.33
noLr W, 22.78 87.66 96.43 96.99 97.30 97.64 97.59
ng Ly W3 23.04 89.07 97.49 97.68 97.86 98.14  98.05
naLeWa 26.41 84.53 86.59 87.43 90.07 89.10 88.52
naLyW3P  20.58 86.30 98.01 98.09 97.89 97.84 97.80

=)

Table 5.4: EPV for different PLS estimators.
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Linear study

Nonlinear study
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Figure 5.9: Closed loop responses of yp for steps in feedrate (upper) and feed compositions
(lower). Input to controller; Solid line: Perfect measurement, dotted line: Estimator with
3 factors, long dotted line: Estimator with 7 factors.
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5.4.2 Effect of nonlinearity.

From the simulations in the right part of Figure 5.9 we see that increasing the number of
factors in the PLS-estimator from three to seven almost removes the effect of nonlinearity.
The same conclusion is obtained by considering the static EPV-values. In Figure 5.10 the
EPV is plotted as a function of the number of factors. Since the column itself hag only
three degrees of freedom, three factors would account for 100% of the variance if the
column were linear (small perturbations). However, because of nonlinearity,
EPV with three factors is only 94%, and the EPV increases by adding factors.

the actual

5.4.3 Influence of measurement noise.

However, the simulations above and the EPV-values are for the ideal case with no noise
and in practice the results with many factors will not be as good. Figure 5.11 comparesj
EPV for different levels of measurement noise on the temperatures in the calibration set.
The noise will corrupt the smallest factors, and after 3-5 factors there is no improvement
of adding factors, and it may even reduce the prediction ability. We therefore see that

in the presence of noisy measurements, it is doubtful to use additional factors to capture
nonlinearity.
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Figure 5.11: Effect of measurement noise on EPV for estimator n;. ¢ = 0: no noise, 1:
0.1°C, 2: 0.2°C.

5.4.4 Insights about directions in the temperature space.

Fig. 5.12 displays a typical plot of the three largest loading vectors, that is, how the
different measurements are summed up to make the factors (latent variables). The first
factor is due to the changes in external streams, D and B, and reflects moving the tem-
perature profile up and down the column. The second factor is connected to changes in
the internal streams, L. and V, when D and B are held constant. It reflects the magnitude

of separation in the column. The third factor is due to changes in feed composition.

5.4.5 Effect of pressure.

Figure 5.13 shows the EPV for the calibration set with total column pressure variations of
10%. From Figure 5.14 we see that the first factor, which has no predictive ability, mainly
represents the pressure variation. The pressure variation may alternatively be taken care

of by using differential temperatures.

5.4.6 Use of logarithmic transformations.

The results in Table 5.4 seem to indicate that use of logarithmic transformed compositions,

i.e. Yp =In(l —yp) and Xg = Inzpg, combined with untransformed temperatures (Ly-
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Figure 5.12: Loading plot (vector p;) of first three factors for estimator ng. Curve identi-
fier: i, factor number.
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Figure 5.13: EPV for case ngP with pressure variation.
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Figure 5.14: Loading plot for case noP with pressure variation. Curve identifier: Factor
number.

estimators), generally has a negative effect on the estimate. However, the results are not
quite comparable because the EPV is based on Yp and Xg in stead of Yp and zg. Other

conditions (eg., Skogestad and Morari, 1988b).

However, estimator performance is significantly improved by using logarithmic trans-
formations also on the temperatures. We see from Table 9.4, that with no noise EPV
is close to 100% after only 3 factors. This is the case also when pressure variations are

included, that is, these are automatically taken care of when transformed temperatures
Ly are used.

5.4.7 Effect of weights on temperatures.

We shall consider the case with logarithmic temperatures. In cases noLy and n, Ly with
ne noise there is no improvement of weighting the measurements, because the logarithmic

transform will automatically weigh the temperatures similar to weight W,. But when
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Figure 5.15: Effect of weights on EPV for estimator na Ly W; with logarithmic tempera-
tures and 0.2 °C noise. Curve identifier: weight function i, 0: no weight.

noise is added to the calibration set, weighting is very important,. Figure 5.15 compares
different weight functions with 0.2 °C noise. Weight W, yields the best result.

5.4.8 Noise of reference temperaures

Case nyLyW; in Table 5.4 show that estimators using corrupted (noisy) reference temper-
atures perform poorly. The values of Ly close to the location of the reference will then be
very sensitive to noise. However, in practice temperatures close to each other are perhaps
more likely to have correlated than independent noise. The results with the noise put on
the temperature difference instead, such as L, P and Ly, may therefore be more realistic.
Anyhow, the results demonstrate that logarithmic transforms may be quite sensitive to

noise.

5.4.9 Multicomponent mixture.

The results in Table 5.4 for case MngLy show that with no noise we obtain EPV-values in
the range 94.1%-97.6% for static PLS estimators using logarithmic temperatures and 3-6
factors. We see that we need more factors compared to the binary mixture, mainly due
to the additional degrees of freedom caused by the two additional components. However,

we see that even with more factors, we do not attain the same Prediction capability as for
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Figure 5.16: Closed loop responses of yp and zp for multicomponent case. Estimator
Mno LW, with 4 factors. Results are shown for 20 % step in a) fee‘dl.'ate, b) fe.ed com-
position 2}, c) heavy non-key composition, d) heavy non-key composition whfan 1.nput to
the controller is the estimate, §. (In cases a—c y is used for feedback). Solid lines: y,
dotted lines: 3.

the binary mixture. The improvement from using logarithmic temperatures is however

substantial also in this case.

The simulations in Figure 5.16 illustrate the dynamic performance of the static PLS-
estimator. The performance is somewhat worse than for the binary mixtures shown in
Fig 5.9. The worst disturbance seems to be changes in heavy component. However case
d in Fig. 5.16 demonstrates that the estimate works reasonably well for feedback control

even here.
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Factors k

Case 1 2 3 4 5 6 7

ng -9.64 090 0.06 0.14 0.01 0.49 0.00
N -9.76  0.87 0.07 0.06 060 0.68 1.16
Ny -9.63 091 0.05 0.03 -0.32 -0.23 -0.35
noLy -9.26  1.00 0.01 0.35 460 0.86 0.01
ngP 148 -1.70 499 0.02 0.13 0.34 0.59
neleWy <1170 1.37 431 229 214 211 2.34
MnoLg  -5.96 1.64 16.54 4.11 -0.27 1.36 0.33

Table 5.5: Improvement in %-EPV using PLS rather than PCR estimator

5.4.10 Comparison of PLS and PCR.

In Table 5.5 the two methods are compared. The values of practical interest are those for

3-5 factors. In most cases the difference is small, although PLS is generally somewhat
better.

5.5 Discussion.

Comparison with one temperature estimator. All results above were based on using all 41
temperatures for estimation. To compare with the conventional one-temperature control,
we used the same calibration data to compute the EPV for an estimator using only
one temperature. Different measure locations were considered for the case with binary
mixture and 0.2 °C noise. To estimate Yp tray no. 9 was found to be optimal with
EPV = 88.7% and for logarithmic compositions EPV = 85.4%. This compares to
EPV = 97.5% obtained with logarithmic estimator ny LyWs with three factors and using
all temperatures. The relatively high EPV-values for the case with one temperature may
explain why one temperature control is popular for composition control. However, the
accuracy of the estimate is quite sensitive to the location, and EPV is reduced 4-5 %
only two trays off tray 9. In addition to yielding better estimates, the use of multiple
temperatures is therefore less sensitive to measurement location and to noise.

Neglected effects. The results have demonstrated that it is possible to obtain quite
precise estimates with the PLS and PCR regression methods. However, these results

are based on a simulation study where we neglected variations in tray efficiency, liquid



100 CHAPTER 5. ESTIMATION OF PRODUCT COMPOSITIONS...

fraction in feed, reflux subcooling, local pressure drops, etc. Variations in these will
affect the temperature profile to some extent. However, we believe that most of these
variations will be too small to be distinguished from noise, or will not significantly change
the relationship between 8 and y.

Noise level. Our mixture has a relative volatility of 1.5, corresponding to a temper-
atures difference between the two key components of only 13 °C. Nevertheless, for the
binary mixture we were able to obtain prediction capability (EPV) of 97.5% with only
three factors for the case with 0.2 °C noise. This noise level is about 1.5 % of the temper-
ature difference. Hence, a mixture with a temperature difference of 40 °C should be able
to cope about equally well with a noise level of about 0.6 °C .

Coping with nonlinearity and noise. A major problem for the estimator is that the
temperatures at the column ends, which are most representative for the product streams
(at least in the binary case), also are most affected by nonlinearity and noise.

We have proposed three different methods to deal with this problem:
e Using more factors

e Weighting according to temperature variation and noise

e Logarithmic transforms

Using a larger number of factors than the number of degrees of freedom is helpful when the
noise level is not too high. The reason why this may help is that the product compositions
have different nonlinear relations to different temperatures. These differences will appear
as extra directions (factors) in the linear temperature space. However some of these
differences are small and may be distinguished from noise. A useful rule is to increase the
number of factors until they no longer have any significant positive effect on the EPV.
For distillation columns, the typical optimal number of factors are 3-5.

Weighting of variables is commonly used for dealing with different kind of measure-
ments. This is to prevent that the measurements with the largest nominal changes dom-
inate. In our distillation column only temperature measurements are used, so one might
think that weighting is unnecessary. Nevertheless, weighting proved useful. The reason
is that the temperature changes are very small at the column ends (in the calibration set
their standard deviation is only 6% of the temperature with the largest variation), but even
in the presence of noise they do contain useful information about the end compositions.

By using weights we avoid that the PLS method discards the use of these temperatures.
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However, the noise should also be taken into account, and weight functions W, and even

more W3, which include information about the noise, yield better results.

Compared to PCR, there is also a kind of weighting inherent in the PLS-method
(Hoskuldsson 1988), since it searches for directions in the OTYYTO, in stead of only
©70@. The weighting with the matrix YY7 gives temperatures which have the largest
covariance with y larger weight when making the factors. The comparison between PLS
and PCR shows that these “weightings” improved the estimates in some cases, although
the difference was quite small.

The use of logarithmic transformations of temperatures was clearly the single method
with the greatest effect. It appears to be a very powerful method to cope with the nonlin-
earity in distillation columns, and also automatically gives the temperature measurement
at the ends a greater weight. However, when the temperatures are corrupted with noise,
the noise will also be transformed, and have a relatively large effect on these end tem-
peratures. Therefore, as seen from Figure 5.15, it is absolutely necessary to weight the
transformed data to take this into account. As already mentioned, one should also take

action to avoid very small or negative temperature differences before transforming the
temperatures.

Choice of reference temperature. For multicomponent mixtures the reference temper-
atures should be located some distance away from the ends: 1) They should be in the
section where the concentration of the off key component is almost constant (See Fig: 5.5).
Much of the off-key component’s contribution to the temperature will then be cancelled.
2) They should be located as far out to the ends as possible to capture the nonlinearity.
A method which coincides with this two criteria is to use the temperature with least

variation in the calibration set.

Measurement selection. The results above are based on using all 41 temperatures as
measurements. This is of course not necessary. However, the number of measurement
should at least be equal to the number of factors needed for prediction. For example,
to capture 3 factors, we need at least 3-5 temperatures. The highest number applies to
estimators which use differential temperatures, for example, Ly. Additional temperatures
will mainly reduce the effect of measurement noise. As a simple method to select the
location of temperature measurements, we recommend identifying the peak elements in
the I-matrix for the weighted (scaled) variables. The number of peaks is usually the
same as the number of factors. As an illustration, consider Figure 5.17 which displays the

elements in K for the weighted untransformed temperatures for Yp using PLS-estimators
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Figure 5.17: Estimator vector K (yp) for PLS-estimator n;W;. Curve identifier ¢: 0 - no
noise, 1 - 0.1°C, 2 - 0.2°C, 3 - o0 °C (the same as no weighting.)

noWa, nyWa n,Ws and no (the weight W, is different in the cases as it depends on the
noise level). We see that when the noise is increased it is better to locate the temperatures

further from the end.

A simple procedure for measurement selection and obtaining the estimator is: 1)
Determine all possible measurement locations. 2) Determine expected magnitudes of
outputs (y) and all variables (disturbances) affecting the system. 3) Perform simulations
that include the expected variations (Use factorial design and make sure the entire output
space is spanned). 4) Add random noise to all measurements. 5) Transform the variables,
and perform the PLS-regression. 6) Determine the number of optimal factors, and weigh
the variables with a suitable weight function, for example, W3. 7) Do the PLS-regression
once more with the weighted variables, but without noise on the measurements, and find
from the weighted K-matrix where to place the measurements. 8) Perform the final

calibration to obtain the estimator with the selected set of weighted measurements.

The advantage with this procedure, compared for instance to Moore(1986), is that for
each measurements it takes explicitly care of both its correlation to the outputs and its

noise level.
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5.6 Conclusions.

The problem addressed in this paper belongs to a broad class of problems concerning
how to handle multiple measurements in an estimator. Depending on the magnitude of
correlation with the estimated variable and its sensitivity to noise, the different sensors
should be weighted to give the best estimate. The paper has shown that this indeed also
applies for sensors of the same type such as the temperatures in a distillation column.

For distillation columns the main difficulty of using linear estimators is the nonlinearity
in the process. It is found that the logarithmic transforms of compositions and tempera-
tures proposed in this paper is a highly powerful means of coping with this nonlinearity.
Together with weight functions that place less weight on sensors with large noise, these
transforms are found to give a substantial improvement in the prediction ability.

Use of logarithmic temperatures, Ly, which makes use of differential temperatures,
gives the additional benefit of counteracting pressure variations.

The results for multicomponent mixtures indicate that the estimator may perform well
in a wide range of applications. Using section reference temperatures at locations with
the least temperature variance, will make logarithmic transforms useful also here.

Besides being an efficient method of obtaining estimators, the standard multivariable
calibration techniques yield added benefits, such as insight in the process, good statistical

information about the prediction ability, and a method for sensor location.

NOMENCLATURE (also see Table 5.4)

B - Bottom product flow rate

D - Distillate flow rate

EPV - Explained Prediction Variance in %. See sec. 5.2.6

F' - feed rate

k - number of factors used in estimator

K - estimator constant

L - reflux flow rate

L - logarithmic temperatures based on boiling points

Ly - logarithmic temperatures based on reference temperatures
t - vector of latent variables

T - matrix of latent variables () for calibration runs
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T® - boiling temperature of pure component

V - boilup from reboiler

zp - mole fraction of light component in bottom product
yp - mole fraction of light component in distillate

y - output vector (ypzp)?

Y - matrix of outputs (y) for calibration runs

zp - mole fraction of light component in feed

Wi, Wy, Ws - weight functions for temperature scaling
Greek symbols

o ; - relative volatility between components ¢ and j

v - condition number

a; - 1’th singular value

8§ - temperature vector

81,0y - reference temperature in top and bottom of column

© - matrix of temperatures (6) for calibration runs

Subscripts
H - heavy key component
L - light key component

Superscripts
' - pseudobinary basis
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Chapter 6

Experimental setup.

The experimental investigations were performed on a pilot plant distillation column at the
Norwegian Institute of Technology, Department of Chemical Engineering. The objective
was to check that the results obtained from theoretical simulation studies were useful in
practice, and to gain further insight into the estimation problem by dealing with a real
system. During the first part of the Dr. ing. study much time was spent on rebuilding
the column, improving the instrumentation, and writing software for the control system

to prepare for a later implementation and testing of the estimators.

6.1 Distillation pilot plant.

6.1.1 The distillation column.

The experimental distillation column (Figure 6.1) is about 5 meters high, has a diameter
of 125 mm, and consists of eleven sieve-trays. The space between the trays is 300 mm. A
tube with a diameter of 35 mm is a combined outlet weir and downcomer. (Figure 6.2)
The downcomers are equipped with liquid seals and are located 42 mm above the tray
below. The advantage of this arrangement compared to a system with inlet weirs, is
that it gives more active hole area, though it might give some poorer liquid distribution.
The entire column is made of 2 mm stainless steel and consists of flanged sections. It is
insulated with rock wool. Inspection glasses are provided at the feed point and upper and
lower tray levels.

The pilot plant is basically the same as the one used by Loe (1976), although various
modifications have been performed. The rectifying section and the feed tray have been

changed and are now identical to the stripping section by means of a downcomer system
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Figure 6.1: Pilot Plant Distillation Column
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Figure 6.2: Downcomer arrangement.

and hole area. All outlet weir levels in the column have been changed to 30 mm. (Fig-
ure 6.3). Each tray now has 65 holes, and the diameter of the holes has been increased
from 2.2 to 2.7 mm. The changes have been performed to better meet the recommenda-
tions in the literature ( Ludwig, 1971; Huang and Hodson, 1958; Hunt et al., 1955 and
Mayfield, 1952.) with respect to percentage hole area, vapor speed in empty tower, and
pressure drops. The vapour and liquid rates may now be run from about 20 to 100% of
the capacity without flooding, weeping, or noticeable entrainment.

The liquid houldup inside the column is approximately 3.5 litres during operation.
The liquid transport delay from top to bottom of the column is approximately 15 seconds,
and the liquid fraction over weir is about 0.1. This fraction is rather small compared to
industrial columns (typically values there are 0.5). No Ky-effect (Rademaker et al., 1975)
has been observed.

More details about the column are found in Wahl (1989).

6.1.2 Peripheral Equipment

The reboiler consists of a 15 litre kettle with 6 electrical heating elements, each of 2.5 kW
power. In normal operation it contains about 6 litres of liquid.
A water-cooled total condenser is placed right on top of the column. A vent with an

extra condenser ensures atmospheric pressure. The accumulator tank is reduced to 435
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Figure 6.3: Sieve-tray, mounted between two flanged sections.

ml and placed at the floor.

The feed enters the column at tray five (counted from bottom). Both the feed and
reflux flows are provided by two Wallace & Tiernan metering pumps with a capacity of
one litre/min. The pumps have a constant motor drive (1425 rev/min.) and a variable
stroke length driven by a servo motor. Changing the flows from zero to 100 % of their
capacity takes approximately one minute. Two preheaters with power capacities of 2 and
5 kW are connected to the reflux and the feed pipe line respectively.

The distillate and bottom product streams are adjusted by two Foxboro needle style

control valves. Their capacities are about 400 ml/min.

6.2 Instrumentation.

A cromel-alumel thermocouple is placed in the reboiler and in the liquid at the centre
of each tray. (Figure 6.3). These 12 thermocouples are connected to a Data Translation
terminal panel card which provides cold-junction compensation and a 200 times amplifi-
cation of the signals. The computer’s 12 bits A/D-card will then provide a bit resolution
of the temperatures of approximately 0.05 °C.

There are also thermocouples placed in the feed and reflux lines. Each is used in

connection with a analog PID-controller and a preheater to maintain desired constant
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temperatures in the flows, usually the boiling point temperatures.

Three Foxborough Differential Pressure Cells measure the column pressure drop and
the liquid levels of the accumulator and reboiler. (It is also possible to read these quantities
manually.)

Two solenoid valves are used for sampling the bottom and top product. A 3-way
valve is used for the distillate and is located right below the condenser, while a 2-way
valve is used for the bottom product. It is located below the lower tray in the connection
line between the column and the reboiler. The two control valves are equipped with
actuators and voltage-to-current transmitters so they can accept control voltage signals
from 0-10 Volts. The servo motor of the reflux pump and the reboiler power supply have

corresponding equipment.

The product composition is analyzed by a Chrompack 9000 Gas Chromatograph with
a flame ionization detector.
6.3 Data sampling and control system.
The data sampling and control unit consists of:

1. Hewlett Packard 9000, model 216 personal computer.

2. Multiprogrammer, model 6942A for I/O-cards.

3. Control panel for switching and adjusting control parameters.

4. Think Jet writer.

5. HP -plotter.

All units are interconnected by HPIB (IEEE 488) interfaces. The software is written by
myself in HP-Basic and consists of approximately 1800 statesments.

6.3.1 Sampling.

The twelve temperatures and the three differential pressures are sampled every second.
The 12 bits A/D-converter in the multiprogrammer is converting signals in the range +1
Volt. From the multiprogrammer the values are read in one batch into the computer

where they are checked for outliers or faults. Every fifth second an average value of the
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accepted values is stored into an array. The computer has 1.5 Mbyte memory, and is
capable of storing runs for about 2.5 hours without writing the data to hard disc.
A digital output card handles the solenoid valves for liquid composition sampling. The

sampling is done during one second.

6.3.2 Control.

Output signals to the four actuators are updated every fifth second. These are the two
controller valves for the product flows, the input power to the reboiler, and the metering
pump for the reflux. The range of all output signals is 0-10 Volts.

The four control loops are implemented as ordinary PID-controllers with anti-windup.
The anti-windup is implemented such that the integral part of the controller stops when
the actuators are either in maximum or minimum position. Different control configura-
tions are stored in separate files such that they may be read into the computer whenever
desirable. The control parameters to each configuration are initialized by stored values
from a previous run.

All control parameter values, setpoints, and output signals (when the loops are in
manual) may be changed at any instant from the computer by either writing in desired
values, or adjusting the existing values from the control panel. The digital reading of the
control panel is done every second.

All output signals and all changes of parameter setpoints and auto/manual switches
of the control loops are also stored in arrays.

There exists an analog backup system for the control.

6.3.3 The data program.

The whole realtime program consists basically of interrupt sub-routines. Many interrupt
commands are available in HP-Basic language and have facilitated the writing of the
program, for instance variable priority setting of each sub-routine. The sub-routines are
compiled to get a higher computer speed.

All instant values of inputs, outputs, product estimates, and control parameters are
continuously displayed in real units on the screen. Two of these variables are selected at
any time to be shown graphically. The time horizon of these plots is updated automati-
cally. The change between graphic mode and display mode is almost instant.

The graphic commands are the same to the screen as they are to the plotter. An
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Figure 6.4: A typical plot on screen during operation.

example is given in Figure 6.4. After finishing an experimental run the setpoints and
control parameters are available for plots too. One may also write selected parts of the
data to the printer or to an ASCII-file.

One advantage with using Basic is that the variables declared in the program will not

loose their values when the program is stopped. Using arrays is therefore a relatively safe

and very quick means of data processing in realtime mode.
6.4 Binary component system.

In the search for a suitable binary system, the following criteria were considered:

1. The system should have a high relative volatility in order to get a high purity

distillation column. (The column has only eleven trays.)

2. The system should perform quite typically, i.e. it should not be too un-ideal. This

would also support the use of simple simulation programs.

3. The system should be relatively convenient to handle, i.e have low toxicity, relatively

low flammability, boiling temperatures around 100 °C, and be easily analyzed.

4. The system should be inexpensive.
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Figure 6.5: Equilibrium and temperature diagram.

The binary system ethanol/l-butanol was found to fulfill most of these requirements.
The system is quite ideal and follows the Raoults law quite closely (Brunjes and Bogart,
1943). Figure 6.5 shows the equilibrium diagram and the corresponding boiling-point
temperatures for the system (Hellwig and van Winkle, 1953).

The equilibrium data cited in most data books (e.g Chu et. al., 1956; Hirata and
Nagahama, 1975; Gmehling and Onken, 1977) are that of Hellwig and van Winkle (1953),
Gay (1927), and to some extent also Brunjes and Bogart (1943). While the first two
references give almost constant relative volatility, the last one does not (Figure 6.6).
However, since this seems to be much less cited, a constant relative volatility value of 4.3
is assumed and used in simulation programs.

The relation of density and heat of vaporization to the temperature is found in Gal-
lant (1968) for both alcohols. Antoines Parameters used for temperature calculation in

simulation programs are taken from Boublik et. al., (1973).
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Abstract

Results are given for the implementation of a static Partial Least Square (PLS)
regression estimator for product compositions on a high-purity pilot plant distil-
lation column. Temperatures on all 11 trays are used as inputs to the estimator.
Several estimators were tested off-line to compare their performance, and one es-
timator was used on-line for dual composition control. It was found that the es-
timators perform very well when appropriate logarithmic transforms and scalings
are used. Since the estimator is static, the implementation is straightforward. An
estimator based only on experimental data gave excellent performance over a wide
range of operating points. Estimators based on simulations did not perform quite
as well, and the bias had to be adjusted when changing from one operating point
to another. Nevertheless, since it may be difficult to obtain good experimental data
in an industrial setting, this estimator is probably most useful in practice. In the
paper we discuss how to combine information from simulations (basic modeling)
and experiments.
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7.1 Introduction.

Product composition analyzers for distillation ;:olurnns, such as gas chromatographs, have
large investment and maintenance costs, in addition to unfavourable large measurements
delays. The most popular means of product control is therefore temperature control
(Kister, 1990), which provides an easy, fast and inexpensive means of composition control.

The temperature selected for control is usually located at a tray some distance away
from the column ends, because the products may be extremely pure, and the tempera-
tures variations are too small compared to the noise. Furthermore, pressure variations
and off-key components will interfere the relationship between product composition and
temperature and favors locating the measurements away from the ends (Rademaker et.
al., 1975). However, at this location the temperature will be strongly influenced by the
composition of the feed and of the product at the other column end.

An important issue in conventional temperature control is therefore to find the best
measurement location by making proper compromises between these considerations.

However, some of the interferences may be handled by using more measurements.
Since the column pressure has about the same effect on all temperatures in the column,
the pressure variation may for instance be compensated using temperature differences.
This requires an additional temperature measurement which preferably is located at a
tray where the composition is almost constant.

Along the same line of thoughts are the proposals to use double differential temper-
atures. Yu and Luyben (1984) proposed to use the other differential temperature for
off-key component compensation, while Luyben (1969) and Boyd (1975) proposed to use
it for column pressure drop compensation. However, these ideas do not seem to be widely
applied.

On the other hand, for the special case of high purity columns with large relative
volatility between the components the use of multiple temperatures has found some ap-
plications because the conventional temperature control is difficult. In these columns the
main temperature drop will take place in a small region consisting of only a few trays.
Quite small deviations from normal operating point may lead to a control temperature
outside this region. On the other hand, the location of this temperature front (region) will
have large correlation to the compositions and may alternatively be the control object.
Bozenhart (1988) located the front by scanning multiple temperatures for the maximum

temperatures drop between two trays. Another simple way of tracking the temperature
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front is to use an average of many tray temperatures (Luyben, 1971) Whitehead
3 - ’ e
Parnis (1987) used a weighted average of many differential temperatures in a (¢ al-tand
2-Splitter.

A more rigorous means of using multiple temperatures in to provide an estimator f
product compositions. Many approaches have been proposed, e.g. by Brosilow or for
workers, (Weber and Brosilow, 1972; Joseph and Brosilow, 1978) who used tem and co-
together with stream measurements and a linearized process model, and by I\I/JIZZ::e;

T

(1988), who used a state space observer for the location of the temperature front
nt.

In another paper by the authors (Mejdell and Skogestad, 1990a) three different est;
tors were compared on a rigorous basis using linear data for a 40 trays hi oo
example column with a constant relative volatility of 1.5. These estimators w.
dynamic Kalman-Bucky filter (Kalman and Bucy, 1961), the static Brosilow Infere t’he
Estimator (Weber and Brosilow, 1972; Joseph and Brosilow, 1978), and the stati e;efltlfl
pal Component Regression (PCR) Estimator. It was found that for feedback co ct .
static PCR estimator performed almost as well as the Kalman filter. The reason isnt}i‘oi e
temperatures and compositions have similar dynamic responses. The Brosilow Esti; tthe
was very sensitive to model error for this ill-conditioned plant with large RGA- ? >
(Skogestad et al., 1988). Mejdell and Sogestad (19902) therefore recommendeq usi:;L ?}?Z

simple regression estimator, which is obtained simply by considering correspondj
of temperatures and composition. g values

gh'Purity binary

Mejdell and Skogestad (1990b) further investigated the use of regression estimators
a nonlinear study. The impact of different levels of temperature noise, pressure vaa‘ otr‘s -
and off-key components were also studied. The estimators were found to yield satisrfl ) :Ons
estimates, especially when using proper weighting (scaling) and logarithmic transi;LC -
The use of multiple temperatues by the estimators effectively counteracted the eff:z;n S%
pressure variations, measurement noise, off-key components and the nonlinearity in t:e

column. The PLS and PCR estimators were also com d
pared, and the first
slightly better. s found tobe

These results are the starting point of the present paper. We will present some of th
results from an implementation of the PLS-regression estimator on a pilot plant distillat; N
column, and discuss some issues that may be important when implementing the esti 5 lton
on industrial columns. The pilot column separates a binary mixture of ethanol and bljltl:nz

and has temperature measurements on all 11 trays.
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7.2 The experimental equipment.

Condenser .\
7.2.1 The pilot plant column. Cooling water
The experimental distillation column (Figure 7.1) consists of eleven sieve-trays and has
a diameter of 125 mm. The space between the trays is 300 mm. A kettle type reboiler
is heated by electrical elements with a total power of 15 kW. The reboiler contains 6-7
litres of liquid. A water-cooled total condenser is placed right in top of the column and is
open to atmosphere. A small accumulator tank is placed at the floor. It contains about
250 ml distillate.

The feed and reflux flows are provided by two metering pump with a capacity of one
litre/min. The pumps have a variable stroke length driven of a servo motor. Both flows [ L}
have preheaters with temperature controllers. The distillate and bottom product flows are
adjusted by two needle style Foxboro control valves. The bottom product will normally
have the same composition as the liquid from the bottom tray (insignificant thermosyphon
effect in the reboiler).

Two solenoid valves are used for sampling the liquid from the bottom and top product.
They are placed below the bottom tray, and after the accumulator. Because of the small
accumulator size, this will imply a composition lag of only 1-2 minutes. The liquid samples
are analyzed off-line by a Chrompack 9000 Gas Chromatograph.
Each tray in the column is equipped with a cromel-alumel thermocouple placed in the
liquid. There is also a thermocouple in the reboiler. Differential pressure cells are used
for measuring pressure drop in the tower and for liquid levels in the accumulator and Accumulator
reboiler.

Feed |
preheater |

G H—

The column may be run under a wide range of operating conditions. The vapor and

liquid rates may be run from about 20 to 100% without flooding, weeping or serious Reflux pump Feed pump

Distillate
entrainments. valve (H(
D B F

? “bottom product feed

% Bottom valve

distill
7.2.2 Data sampling and control. istillate

Sampling and control are provided by a Hewlett Packard 200 model 16 personal computer
with a Multiprogrammer model 6942A for I/O-cards. The software is written in HP-Basic.

The twelve temperatures and the 3 differential pressures are sampled every second. Figure 7.1: Pilot Plant Distillation Column
Every fifth second an average value is stored, and control signals sent to the actuators.
They are the two controller valves for the product flows, the power to the reboiler, and

the metering pump for the reflux flow.
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Liquid sampling of the distillate and the bottom products are controlled by the com-
puter and taken precisely every 2*¢ minute.

The controller loops are implemented as ordinary PID-controllers with anti-windup.

7.2.3 Chemical Components.

In the search for a suitable binary mixture, we considered the following criteria:

1. The mixture should have a high relative volatility in order to get a high purity

distillation column. (The column has only eleven trays.)
2. The mixture should be reasonably ideal to avoid unusual behavior to bias the results.

3. The system should be relatively convenient to handle, i.e. have low toxicity, relative

low flammability, boiling temperatures around 100 °C, and be easily analyzed.
4. The system should be inexpensive.

We found the mixture ethanol/1-butanol to suit most of these requirements. It has nearly
constant relative volatility of 4.3 (Hellwig and van Winkle, 1953).

7.3 Data treatment and multivariate regression.

Multivariate calibration (regression) is a statistical approach to obtain a linear estimator
using a “training” set of known values of inputs and outputs to the estimator.

For the distillation column we want to obtain the matrix X in
y=K0+k (7-1)

Here y denotes the outputs of the estimator (top product, yp, and bottom product, zz)
and the 4, the inputs (temperatures). The vector ko is the bias or mean of the outputs.

A training set (calibration set) of n runs of corresponding values of § and y are obtained
and lined up in two matrices Y and © such that measurements of each run are placed in
one row. Deviation variables are used, that is, all measurements are first centred around
the mean in the calibration set, yo and 0. The data are in most cases also weighted
(scaled). Using 2 y-variables and 12 f-variables we get

Ynx2 — @nxl2I(T (72)
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where K has the dimension 2 x 12. We search for the solution
KT = oty. (7.3)

where O denotes a pseudo-inverse of ©.

Different calibration methods will yield different solutions. Using Singular Value De-
composition (SVD) we obtain the Principal Component Regression (PCR) estimator. To
avoid collinearity and an ill-conditioned estimator we delete the directions in © with small
singular values (corresponding to noise). The number of remaining non-zero singular val-
ues, or equivalently the number of principal components (factors) used, will give the rank,
k, of the pseudo-inverse ©f, In our application on distillation columns k is typically 3-5
(Mejdell and Skogestad, 1990b)

The Partial Least Square (PLS) regression method used in this Paper is very similar,
but it also takes into account the covariance with the y-variables when doing the decom-
position. This may yield an estimator with fewer factors than PCR (Hiiskuldsson, 1988).
However, Mejdell and Skogestad (1990b) found that the differences were rather small for
their distillation column example. The procedure is given by Martens and Nazes (1988),
and is also explained by Mejdell and Skogestad (1990b).

7.3.1 Use of transformed variables.

The composition and temperature profiles are nonlinear functions of the operating vari-

ables. Logarithmic transformation of the product compositions, i.e.
YD = 111(1 — yD); XB = lIl.’L‘B (74)

has been proposed by several authors (e.g., Joseph et al., 1976) as an effective way to
linearize the response (with L,V F, zF etc. as independent variables).

The column composition profile may also be linearized using logarithmic transforma-
tions, for instance .

X =In(

- a:) (7.5)
for binary systems. Skogestad and Morari (1988) showed that this transformation also
linearizes the dynamic response. Temperature is often a nearly linear function of compo-
sition. Mejdell and Skogestad (1990b) therefore proposed to use the following transfor-

mation to linearize the temperature response and profile

0—T
Ly =In( Gy Z) (7.6)
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Here T} and TY are the boiling temperatures of pure light and heavy components, re-
spectively. Column with pinch zones around the feed will not have a linear profile.

Instead of using boiling temperatures, one may use the transformation

6 -0
) (1)

where 01 and 0 is some reference temperature in the top and the bottom of the column,

Lg = ln(

respectively. For binary mixtures, one may use the temperature at the column end, which
is very close to the boiling temperature, and which does not change very much with
operating condition. To avoid large effect of noise on the temperatures closest to the
reference temperatures one should also specify a lower permitted limit on the difference
temperatures in equations (7.6) and (7.7).

Using reference temperatures also provides pressure compensation of the temperature

measurement.

7.3.2 Scaling of variables, weight functions

In all cases the data were centred around the mean. In most cases the temperatures were

weighted. Weight 1 is given by

W]_.' = =1— (78)
Sci

This is the inverse of the standard deviation of temperature 7 in the calibration set and

ensures that, for example, variable scaling does not bias the results. Weight 3 (the num-

bering follows Mejdell and Skogestad, 1990b) is given by

Wa.’ — Lsci — Sei (79)

Sei  Sci
Here s,; is the residual standard deviation between the model predictions and the ob-
servations. s.; takes into account both noise and mismatch due to nonlinearity. In our
example s.; is the residual after three PLS factors based on a preliminary calibration
without weighting. Weight W3 is equal to W; when the model is perfect (no noise), but

gives zero weight to measurements when all the variation is unexplained (s.; = s.;).

7.4 Experiments and simulations.

7.4.1 Experimental Steady State Runs.

In order to obtain a calibration set, 19 different steady-state runs were performed on

the experimental column. The runs were first checked for consistency and outliers. Two
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No. F(mol/min) zp(%) yp(%) zp(%)
1 4.12 45.02  99.20 0.37
2 4.14 45.71  99.64 0.64
3 3.65 34.63 99.67  0.88
4 3.64 34.32  96.82 0.16
5 4.57 34.58 98.81 0.16
6 4.57 34.53  99.15 0.27
7 3.65 34.53  99.50 0.95
8 3.63 34.61  96.81 1.10
9 4.56 54.61  95.54 0.11
10 4.55 54.36  99.10 2.66
11 3.64 55.28  99.13 0.22
12 4.58 55.60 99.27  2.18
13 4.22 50.79  99.01 0.36
14 4.48 50.70 97.7M1 0.22
15 3.36 44.03  99.50 0.31
16 3.35 4295 99.14  0.25
17 3.39 45.70  99.41 0.33

Table 7.1: The 17 experimental runs used for calibration.

runs were deleted from the calibration set during this check. The remaining 17 runs used
for calibration are listed in Table 7.1. To ensure that the different directions should be
present in the calibration set, a fractional design was adapted. The obtained values of YD
and zp show some minor deviations from the original design. Nevertheless, the runs do
have a good spread. We stress that jt may be very difficult and time-consuming to obtain
such good data on an industrial column.

The column profile was stabilized by controlling the temperatures on tray 3 with the
reboiler heat input, and tray 9 with the reflux pump. When the column temperatures had
been constant values for at least 10 minutes, samples of the feed and the product streams
were taken. In addition, the average and the standard deviation of all temperatures,

pressures and output signals during the last 5-10 minutes were calculated and stored.

7.4.2 PLS-estimators based on experimental runs.

Different transforms of the experimental data give three different PLS estimators, denoted
El, E2 and E3.

o FEstimator E1 uses the 12 temperatures and the product compositions without doing

any logarithmic transformations. The temperatures were weighted with the weight
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Figure 7.2: Weight W, for estimator E1

function W;. The weight is shown in Figure 7.2.The optimal number of factors was

found to be four.

o Estimator E2 contains also four factors, but was obtained using the logarithmic
transforms Yp and Xp in Eq. (7.4) . The data were centred, but no weighting was

performed.

e FEstimator E3 uses in addition to the logarithmic transform of the compositions, also
the transform Ly (Eq. 7.7) on the temperatures. The temperature in the reboiler,
0o was not found suitable as reference temperature, so the temperature in tray 1
was used in stead. The number of inputs to the estimator then became nine for this
estimator (compared to 12 for E1 and E2). The data were centred and weighted
with the weight function W;. The optimal number of factors was found to be three.
W5 and s, is plotted in Figure 7.3

7.4.3 PLS-estimators based on simulation runs.

For simulating the experimental column a steady-state simulation program assuming con-

stant relative volatility and constant molal flows was employed. From experimental runs
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Figure 7.3: Mismatch s, x 10, and corresponding weight W; used for estimator E3. Log-
arithmic transformed temperatures are used.

a correlation between the column pressure drop AP (atm) and the boilup V (mol/min)
was found and included in the simulation program:

AP =0.0166 — 0.0014021V + 0.0003438221/2 (7.10)

From literature data (Helwig and van Winkle, 1953; Gay, 1927) the relative volatility of
ethanol/butanol was estimated to be 4.3. To obtain a model of the column one generally
adjusts the number of theoretical trays to match the experimental data. We used a
constant Murphee tray efficiency 7y throughout the column. To obtain the estimators
we used 32 different simulations runs as listed in table 7.9, Simulations were performed
(and estimators obtained) for the following two cases

1. Estimator S1: Using an average Murphees tray efficiency, nar of 0.82.

2. Estimator S2: Using a correlation between the Murphee efficiency and the boilup
V and reflux L (mol/min):

m = 0.040898L — 0.0464262V + 0.928233 (7.11)
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Figure 7.4: Comparison of temperature profiles for Run 16

During the experiments L and V varied in the range 3-15 mol/min. These two calibra-
tion sets gave rise to estimators S1 and S2 respectively. A typical temperature profile
comparison is shown in Figure 7.4. The match with the experimental data is somewhat
better for case 2.

Both estimators included the same logarithmic transforms and weight function as E3.
The s.; in weight function in equation (7.9) were found by first corrupting the data with
0.1°C random noise and performing a preliminary calibration. Afterwards the weight
function from this calibration was used with the original uncorrupted data in a new

calibration step to yield S1 and S2.

7.4.4 Dynamic Test runs.

Two test runs with large composition variations were performed for comparing the differ-
ent estimators. At distinct times, usually every second minute, a liquid sample was taken
and analyzed off-line. Various feed and composition disturbances and setpoint changes
were introduced during these tests. The column was controlled using the LV-configuration,

i.e. the top composition was controlled by the reflux and the bottom composition by the

boil-up.

7.4. EXPERIMENTS AND SIMULATIONS.
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F oz YD Tp P & zp YD zg P

4.5 0.5000 0.9900 0.0100 0.993 | 5.0 0.4000 0.9700 0.0300 0.993
4.2 04875 0.9962 0.0189 1.000 | 4.0 0.4000 0.9700 0.00333 0.991
4.6 0.5375 0.9913 0.0262 1.003 | 4.0 0.4000 0.99667 0.0300 0'990
4.0 04750 0.9956 0.0087 0.991 | 5.0 0.4000 0.99667 0.00333 0.998
4.3 0.4250 0.9738 0.0151 0.990 | 4.0 0.6000 0.9700 0.0300 1.010
4.8 05625 0.9934 0.0115 0.996 | 5.0 0.6000 0.9700 0.00333 0'997
4.7 0.5250 0.9700 0.0132 1.005 | 5.0 0.6000 0.99667 0.0300 0'990
4.5 0.4625 0.9772 0.0300 0.998 | 4.0 0.6000 0.99667 0.00333 0'999
4.1 0.4125 0.9801 0.0058 0.997 (| 4.25 0.4500 0.98268 0.01732 0.996
5.0 04375 0.9950 0.0038 1.004 || 4.75 0.4500 0.98268 0.00577 1'005
4.4 0.6000 0.9849 0.0044 0.995 [ 4.75 0.4500 0.99423 0.01732 0'993
4.3 04500 0.9924 0.0173 0.992 [ 4.25 0.4500 0.99423 0.00577 0'992
4.9 05125 0.9942 0.0066 0.992 || 4.75 0.5500 0.98268 0.01732 1'005
4.6 05750 0.9868 0.0228 1.007 || 4.25 0.5500 0.98268 0.00577 0'993
4.8 0.5500 0.9827 0.0076 0.999 || 4.25 0.5500 0.99423 0.01732 1'002
4.2 05875 0.9885 0.0050 1.010 [[4.75 0.5500 0.99423 0.00577 0:99_0_I

Table 7.2: Specifications of F (mol/min), zg, yp, = in si
L » ZF, Yp, g and P (atm) to obt
temperature profiles. Feed is saturated liquid. (3tm) to obtain simulated

In the first test run, denoted DYNI, the column was operated by temperature contro]
of tray 3 and 9. The column was switched between one-point control and two-point
control. In one-point control larges changes in reboiler power were made, while in two
point control large setpoints changes were performed. The column was also subjected to
disturbances in feed rate, F, and feed composition, zp, of about 30 %.

In the second test run, DYN2, the estimator S2 was used in the feedback loop, and
setpoint changes in the estimated values of ¥p and zp were performed. In addition 25 %
increase in feed rate were introduced at time t=29, 10% decrease in feed rate at t=43 min
and 30% decrease in feed composition at time t=53 min. The LV-configuration was used’
that is, reflux L is used to control top composition, and boilup V for bottom composition.,
The estimator S2 was corrected for bias before start.

Controller tunings for test run DYN2,

Each composition control loop was first submitted to a Ziegler-Nichols tuning test
letting the other loop stay in manual. These individual the Ziegler-Nichols ll’I-parameteres7
were then detuned by a factor f to compensate for interactions between the loops.

‘o kZN. N
=7 = I (7.12)
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Data taken during 10 min for Run3

Measurements: Average Stand. dev.
Temp Reboiler (°C) 119.1208 0.0145
Temp. tray 1 (°C) 117.6565 0.0312
Temp. tray 2 (°C) 115.7841 0.0498
Temp. tray 3 (°C) 112.2051  0.1026
Temp. tray 4 (°C) 107.0069 0.1371
Temp. tray 5 (°C) 99.4882 0.1676
Temp. tray 6 (°C) 92.5084 0.1531
Temp. tray 7 (°C) 85.3724 0.0987
Temp. tray 8 (°C) 80.5095 0.0516
Temp. tray 9 (°C) 79.0260 0.0295
Temp. tray 10 (°C) 77.6493 0.0203
Temp. tray 11 (°Cc) 77.5407 0.0123
(

Q
i)

Reboiler Level 7.9115 0.0551
Accumulator Level (Cm ¢ 12.8806 0.1015
Diff. pressure (Cm H,O) : 16.6909 0.0476

Output signals to actuators:

Reboiler duty (Volt) : 3.0499 0.0000
Distillate pump (Volt) : 2.4296 0.0337
Bottom valve (Volt) : 8.7820 0.1436
Distillate valve (Volt) : 5.0953 0.0994

Table 7.3: Data from a typical experimental run.

This is similar to the BLT procedure of Luyben (1986).
Based on the results of Skogestad and Lundstrém (1990) who studied PID-control of a
similar column we first selected f = 2. However, additional detuning was found necessary

and f = 2.5 was used.

7.5 Results.

7.5.1 Experimental steady state runs.

The results of all runs are given in appendix A. In Table 7.3 the results from a typical run
are shown. The standard deviations of the temperatures in the middle of the column are
approximately 10 times larger than at the ends. They are evidently related to the slope

of the temperature profile, as seen from the dotted line in Figure 7.5. Consequently, the
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Figure 7.5: Co.mparison of standard deviation of the temperature measurements and the
temperature difference A between the trays. Steady state experiment Run 3

main noise factor for the temperatures seems to be connected to liquid flow on the trays
and not to the measurement device.

In Fig. 7.6a the temperature profiles for runs 5, 6, 7 and 8 are displayed. The
corresponding logarithmic profiles are seen in fig 7.6b. The linearizing effect on the profile

is clear, except for the top section of run 8 which has a pinch zone around the feed tray.

7.5.2 Experimental test DYN1.

The estimator were compared off-line using experimental temperature data from DYNI.
The estimates of the experimentally based estimators E1 and E2 are displayed in Fig-
ure 7.7. The estimator E1 performs well for YD, but not as well for zp. Although it
tracks the main changes, it has a tendency to overdo them, and gives also negative values
of zg. On the other hand, the bottom product estimates are excellent for E2, while the
top product estimates show some steady state offsets. Note that the use of logarithmic

transformed compositions in this case guarantees that the estimates of zp and yp stay
between zero and one.

The effect of using logarithmic transforms both for compositions and temperatures is
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Figure 7.6: Temperature profiles for runs 5-8. a) Temperatures b) Logarithmic trans-
formed temperatures.
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Figure 7.7: Performance of estimators E1 and E2 in test DYNI.
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Figure 7.8: Performance of estimator E3 in test DYN1

shown in figures 7.8 where estimator E3 is employed. The estimates are excellent both
for top and bottom compositions. Note that the bias term ko was not adjusted from its
original value for any of the experimental estimators, E1, E2 and E3.

The performance of the estimators based on simulations, S1 and 52, are shown in
Figure 7.9 The difference between S1 and S2 is minimal. In both cases the bias term k,
in the estimator had to be adjusted for off sets before start. Although the estimators

based on simulations are not as good as the experimental estimator, E3, they still show
reasonably good performance.

7.5.3 Experimental test DYN2

In Figure 7.10 the setpoints and the estimated outputs are shown for the dynamic test
DYN2, where estimator S2 was used on-line as part of the control loop. The controller
tracks the setpoints very well, and the interaction between the loops does not seem to cause
problems. In Figure 7.11 the analyzed compositions are compared with the estimate. We
see that the 52-estimates deviate substantially for the bottom composition when moving

to the new operating point.

For comparison the estimates of the experimental obtained estimator E3 is also dis-
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Figure 7.9: Estimators based on simulated data with constant (S1), and variable (S2) tray
efficiency in test DYN1
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Figure 7.10: Control performance of estimated compositions when using estimator S2 in
closed loop. (Test DYN2)
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Figure 7.11: Performance of estimators S2 and E3 in test DYN?2,

played in Figure 7.11. We note that E3 is much more sensitive to changes in the bottom
product. Again, it was not subjected to any off-set adjustments, whereas the bias for 52
was adjusted.

The trend of the other estimators E1, E2 and S1 was similar as for the test DYN1.

7.6 Discussion.

The results confirm that a static estimator is sufficient for the distillation column. The
estimates are generally a little ahead in time compared to the actual compositions. This
is mainly due to the lag in the accumulator and the transport delay from tray one to
the solenoid valve for bottom product sampling. This elimination of the lag is clearly an
additional advantage of using temperture measurements for feedback control.

The accuracy of the estimators is also satisfactory, especially for the experimentally
based estimators. Even without adjusting the bias these estimators gave very little steady-
state offsets. The experimental calibration runs were obtained over an extended period
of time (more than a month) and about half a year before the dynamic test DYN2. This
indicates that it may not be necessary to update these estimators.
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Ezxperimental Estimators.

A comparison between the experimentally obtained calibration estimators, El and E2
for test DYN1, shows that E1 performed best for the top composition and E2 best for the
bottom composition. The reason is the difference in purety for zp and yp in DYNI: zp
varied from 0.15 to 0.40 mole %, while 1 —yp varied from 1 to 3 mole %. The logarithmic
transforms of the compositions (E2) will perform best in the pure range, that is, for z5.

The estimator with best overall performance is E3, which seems to provide accurate
estimates over a wide range of operations. This is primarily due to the linearizing effect
of using logarithmic transformed temperatures. This confirms the results of Mejdell and
Skogestad (1990b) who introduced logarithmic transformed temperatures and found them

to give a substantial improvement in the steady state accuracy.

Controller Tuning.

The tuning of the control loops with estimator on line was straight forward. The
Ziegler-Nichols tuning procedure proved to work although a substantial detuning was
necessary. The estimator (and thereby also the controller) employs temperatures from
both sections. One should consequently expect additional interactions between the loops.
In this column, however, the interactions was not a large problem. In case it should happen
to be a problem, one might include additional punishment into the weight function of the

temperatures located far away from the estimated product.

Simulation Estimators.

A comparison of the two simulation based estimators, S1 and S2, shows small differ-
ences. The effect of varying tray efficiency in the simulation runs thus seems to be of
minor importance for this column.

The static accuracy of the simulation estimator S2 was not satisfactory for the bottom
product in the test DYN2. This estimator must consequently be updated when changing
from one operating point to another. The experimental obtained estimator E3 performed
better. It may therefore give insight to look at the differences of the K-matrix elements
between estimator E3 and S2 as shown in Figure 7.12a. It is mainly the feedtray element
(tray 5) that differs. Changing this element in estimator 52 from -0.6 to -0.1 gives an
excellent response for DYN2 as shown in Figure 7.13a. Alternatively, one may shift the
K-values for S2 one tray as seen in Figure 7.12b. This gives the response in Fig. 7.13b,
which is very similar to E3. This illustrates that the estimator may be quite sensitive for
for mismatch between the simulated and the experimental data for tray numbers where

the K-matrix elements are subjected to large changes from one tray to another.
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For a given estimator, one might use some test runs, such as test DYN1 and DYN2,
to “adjust” a coeflicient in the k-matrix as discussed above. A more rigorous approach
would be to get a better estimator in the first place. For our column we could possibly

have improved the simulation based estimator by including
1. Different tray efficiencies i in different sections.

2. Variable noise in stead of constant noise when performing weight W3 for 52, e.g.

according to Figure 7.5
3. Constant feed temperature rather than boiling point temperatures.

For our experimental column the first proposal would probably have minor importance
since the difference in performance between S1 and S2 are very small. A more realistic
noise would have given the feed tray temperature less weight, and a weight function W3
which is more similar to the one used by S3. The last proposal would probably had
the largest affect on the estimator. In the experimental column the feed temperature
controller was set to a fixt value (boiling temperature of zp = 0.5). This will not give a
constant liquid fraction in the feed, as was assumed in the simulation runs. The last two
items explain probably some of the difference in the k-element for the feedtray.

The reason why we care about the simulated based estimator is of cause that ex-
perimental calibration runs may be difficult to perform on many industrial columns in
operation, and one has to rely on simulations. In particular, it is difficult to ensure
that all the “directions” in the space of independent variables (yp, =g, disturbances) are
sufficientlty exited.

The problem is then to adapt the simulated estimator to the real column. Although
the above proposals may help, there will always be some mismatch between simulated
and experimental runs left. There are consequently a need for more systematic methods.

Experimental data give a good representation of the true system, but it may be difficult
to obtain reliable data which span the desired range of operation. On the other hand,
simulations may not represent the true system as accurately, but it is easy to use the model
to generate changes which are difficult to do experimentally. Also, there may be effects
or disturbances on the real system which are not represented by the simulation model.
This discussion leads to the conclusion that the optimal estimator should combine both
simulated and experimental data. In some sense, this is done since the simulation model

is obtained by adjusting the tray efficiency to match the experimental data. However,

N
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Figure 7.14: Block diagram for a combined estimator based on simulations

corrected (Ay) using experimental data. (Jsim) and

the results in this paper show that this is not sufficient, that is, the experimental data
contains additional information.

One possible approach is shown in Figure 7.14.

:'; = gaim + A3’/At::>r-r- (713)

The simulation based estimator K is obtained first. This gives rise to the estimate
Jsim- The correction Afjeop, is found from the available experimental runs. The data
matrices for the correction estimator corresponding to equation (7.2) become

AY =Y = Yy = 0,5, KT (7.14)

The basic idea is to use the simulation based estimator, Kg, to capture effects (“direc-

tions”) due to different feed compositions and product composition which may be difficult
to excite in the real column. This estimate is then corrected by the experimenta] “cor-
rection estimator”, K. In directions which are not exited by in the experiment the
correction is only a constant term (bias), as for estimators S1 and $2. On the other hand,
in directions where the experimental data has adequate excitations it should use the entire

temperature profile. One important issue will be to ensure that the noise and uncertainty

R o
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in the experimental obtained data runs do not corrupt the estimate, by for example using
a conservative number of factors in the correcting estimator. This approach may include

an up-dating procedure for the correction estimator to handle long terms changes in the

distillation column.

7.7 Conclusions.

The paper addresses the implementation of a Partial Least Square estimator on an pilot
scale distillation column. An experimentally based estimator, with logaritmically trans-
formed temperatures and compositions, gave excellent performance over a wide range of
operating points. The need for up-dating of this estimator was minimal.

Estimators based on only simulated data showed reasonable performance. However,
when changing to different operating points the steady-state bias had to be corrected. An
important area of future work is to find estimators which efficiently combine data based

on simulations and experiments.
NOMENCLATURE

B - Bottom product flow rate

D - Distillate flow rate

F - Feed rate

ee; - Residual standard deviation of temperature on tray i.

E, - Residual data matrix of the temperatures after extracting k factors.
E1 — E3 - Estimator based on ezperimental calibration runs.
K, ko - Estimator constants

L - Reflux flow rate

Ly - Logarithmic temperatures based on reference temperatures
S1 — 53 - Estimator based on simulations.

V - Boilup from reboiler

zp - Mole fraction of light component in bottom product

yp - Mole fraction of light component in distillate

y - Output vector (ypzp)7

zp - Mole fraction of light component in feed

Greek symbols

nas - Murphree tray efliciency
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¢ - Temperature vector
© - Data matrix of §
Subscripts
¢ - from calibration set
e - error term
0 - average term
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Chapter 8

Final summary and discussion.,

This thesis address the issue of estimating product compositions in distillation col

The research has been motivated by the large limitations in control performancun(lins.

to the difficulties both with on-line analyzers and the traditionally temperature ¢ et ule

Distillation columns play an important role in process industry, and better solut'on e

this problem may give substantial economical savings. o fo
In order to find the most suited estimator for distillation columns, this work st

by exploring the general properties of some different approaches. wried

The most important questions to clarify were

1. The necessary complexity of the estimator, for instance, the loss of performance of
ce o

using a static estimator compared to a dynamic estimator.
2. The impact of number and types of inputs to the estimator.,
3. The impact of noise and uncertainty in measurements and models

From the literature we chose the classical Kalman filter and the, in process control
and for distillation columns, very much cited Brosilow inferential estimator, In amdditiro
we found the regression estimator appealing, since it is very simple to implement N

The Structural Singular Value, g, were chosen as the main tool for performan;:e eval
uation of these estimators, because it formed a framework where uncertainty easily coulé
be included, and the need for numerous simulations could be avoided. It also focus the
weak spots of the system by always calculating the worst case performance.

The results from tests in this thesis will of course depend somewhat on how we define
our system, e.g. how we define the performance and uncertainty weights,

] and the ma,gni-
tudes of disturbances etc. However, we believe that the tests are reasonable “fair”, that i
y 18,
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that they includes the most important issues that may affect the estimator performance.
However, the tests were performed for just one example column, and the results will not
necessarily be valid for all types of columns. However, we think that the example column

chosen at least is quite typical for high purity columns.
Main results from the thesis.

Chapter 4. ,

By including both an “open loop” test and a “closed loop” test, (both estimation
and control error test), the following important conclusion can be drawn for the PCR
estimator: In spite of substantial estimation error in some frequency ranges, these errors
has very little impact on the control performance. We even conclude that the simple
regression estimators is preferable to the Kalman filter for the example column. Although
the Kalman filter has better open loop performance, the difference in control performance
is rather small, and the PCR estimator is much simpler to implement.

These results show that a static estimator might be sufficient for distillation columns.
Nonlinear simulations and experimental work confirm this important conclusion. This
conclusion has certainly been claimed in the literature before, but an important assump-
tion has not been made clear there: The input to the estimator must consist of tempera-
tures only. The p-test of the Brosilow estimator shows that including flow measurements,
will yield a static estimator with poor performance.

The p-tests also show that it might be highly questionable to use the input data in
dynamic estimators as well. This conclusion applies for ill-conditioned plants, where small
errors in certain input directions (caused by input gain uncertainty or disturbances) will
have large negative impact on the performance. The sensitivity of the estimator for input
uncertainty is rarely addressed in the literature. The results should therefore also be
viewed as a contribution to highlight this important issue.

Another contribution has been to correct the widespread misconception in the chem-
ical control community that one should delete measurements in order to get a better
conditioned estimation problem. The paper shows that one should delete small directions
in the measurement space rather than the measurements themselves. This may be done
by employing for instance PCR or SVD. The use of additional measurements will gener-
ally average the measurement noise and for distillation columns yield an estimator with
less sensitivity to measurement locations. Chapter 5 shows that additional measurements
may also help to counteract the impact of nonlinearity in the column.

Although simple, PLS and PCR are not completely straight forward methods. For
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example, care must be shown in the design of the calibration set to ensure that al] impor-
tant directions are sufficiently exposed. However, the most difficult issue is how to deal
with the nonlinearities in high purity columns, i.e. how to obtain a linear estimator that
may perform satisfactory in a relative wide range of operating conditions.

Chapter 5 conclude that the nonlinearity may be partly counteracted, by using ad-
ditional factors. However a better approach is to use logarithmic transformations of the
variables. The idea of using logarithmic transforms of temperatures is introduced in this
thesis. Since this transform employs differential temperatures it will also give pressure
compensation. The benefits of using logarithmic transforms are also confirmed experi-
mentally.

Another approach to improve the estimates is using variable weighting. The results
show that the impact of measurement noise should be incorporated in the weight function
in addition to the standard deviation. The chapter provides a method for measurement
selection based on the weighted temperatures.

This chapter also considers a multicomponent system, and shows that reasonable
estimation and control performance can be achieved in this case as well. An important
matter dealing with multicomponent systems is to select a reference temperature in the
part of the column where the nonkey components have almost flat concentration profiles.
The differential temperatures based on these references will then give a kind of non-key
compensation in addition to pressure compensation.

In Chapter 7the experimental work verifies the usefulness of the logarithmic transforms
and weighting. It also shows that an estimator obtained by experimental steady state
profiles may yield an estimator with good performance over a wide range of operating
conditioned. The need for updating and bias correction was very limited for this estimator.

However, such good data may be very difficult to obtain on an industrial column.
Alternatively, one may use an estimator based on simulated calibration runs. The results
show that a logarithmic transformed estimator based on simulation runs performs well,
as long as the changes operation conditions are relatively small. Some kind of infrequent

updating is necessary for this estimator.

Possible improvements and directions for future research.

Even better results may probably be obtained by combining experimental and simu-
lated data. How to perform such a combination, and how to update the estimator are
important issues to explore further.

Instead of obtaining a linear calibration estimator, a more rigorous method would be
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to use the full nonlinear static model of the column. This approach would give more exact
estimates, and pitfalls like bad excited calibration sets would be avoided. Luyben and co-
workers applied this idea (see Section 3.1.3), but they used basically low measurements,
and only a minimum number of temperatures. However, one would have to use additional
measurements to get good results.

The main argument against involving a rigorous nonlinear model is that it is very likely
that this approach will give severe computational problems. An on-line routine must of
cause guarantee against divergence problems. Whether it is worthwhile to try such a
rigorous approach is also a matter of possible improvements in estimate performance.
Compared to the PLS and PCR methods they may be relatively small.

In the thesis only product composition estimates are considered. However, a prelim-
inary steady state study indicates that temperatures may be used for feed composition
estimates as well. The use of a feed-forward control scheme based on this estimate may

perhaps improve the control performance.

There may be situations where a dynamic state observer is preferable and necessary,
for example if a predictor is going to be used in the control scheme. Model-predictive
control (MPC) and related control schemes have the advantage of including future known
setpoints changes in the control action. They explicitely handle hard constraints in the
process as well. A comparison of MPC-algorithms with the static PLS-estimator may be
an interesting subject for future work.

The temperature measurements, together with other secondary measurement may
also be employed for fault detection in distillation columns. Here one could use runs from
simulated fault situations as a calibration set to build a simple detection estimator.

Another promising method for better measuring product compositions seems to be on-
line Near Infra Red spectroscopy. One drawback with this approach, is that it is not very
sensitive for small concentration, and may therefore be difficult to use in the high purity
columns. However, this problem is quite analog to that of temperature control. Using
tray measurement locations some distance away from the ends could possible extend the
application area of this method. Many of the principles of this thesis for temperature
estimators might then be employed as well. A combination of temperatures and NIR-
measurements may be an even more attractive approach.

Another important task for future work is to gain more experience for the regression
estimator with different types of distillation columns. In the theoretical studies a lot of

simplification were made, for instant using constant values of relative volatility, tray effi-
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ciency and molar flows. The experimental work gave some valuable additional experience
but the extent of that work was nevertheless limited, The binary component system Wa.s’

also rather ideal compared to many systems encountered in industry. The question sti]]

remaining, even though the results so fare are very promising, is whether the estimator

will prove useful in industry. Experience from implementing the estimator on industria)
columns may provide the answer to this question.
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Data taken during 10 min for Run1 Data taken during 10 min for Run 2
Stand.
Measurements: Average dev. Measurements: A Stand.
Temp Reboiler (°C) . 118.7106 0.0218 Temp Reboiler C) 11;671‘?86 dev.
Temp. tray 1 (°C ) 117.5057 0.0334 Temp. tra.y 1 (°C ) 118-2601 0.0235
Temp. tray 2 (°C) 116.4079 0.0398 Temp. tray 2 C) 165 36 0.0435
Temp. tray 3 (°C) 114.1504 0.0775 Temp. tray 3 C) 112-3204 0.0663
Temp. tl‘a.y 4 (°C ) 1098088 0.1598 Temp. tl‘a,y 4 (°C ) 105-8790 0.1220
Temp. tray 5 (°C) 101.9490 0.2698 l Temp. tray 5 Cc) 97-0527 0.1668
Temp. tray 6 (°C ) 05.8902 0.1621 Temp tray 6 (°C ) 895348 0.1315
Temp. tray 7 (°C) 88.0099 0.1120 Temp. tray 7 C) 83.51(1)3 0.1419
Temp. tray 8 (°C) 81.6402 0.0722 ‘ Temp. tray 8 (°C) 80.042 0.0782
Temp. tray 9 (°C) 79.1890 0.0372 I Temp. tray 9 C) 79-1333 0.0433
Temp. tray 10 (°C) T7.2144  0.0275 Temp. tray 10 G 191522 0.0244
Temp. tray 11 (°C) : 76.7842  0.0230 ‘ Temp. tray 11 C) 77-7446 0.0230
Reboiler Level (Cm) ¢ 12.6954 0.1539 Reboiler Level (Cm) . 10-232 0.0184
Accumulator Level (Cm) : 11.9891 0.0943 Accumulator Level (Cm) 11-9711 0.2680
Diff. pressure (Cm H,0) : 30.9018 0.3134 Diff. pressure (Cm H,0) 24.6518 ggggg
Output signals to actuators: Output signals to actuators:
Reboiler duty (Volt) : 5.0668 0.0706 Reboiler duty Volt .
Distillate pump (Volt)  :  4.7280 0.0489 Distillate pump Evzlt; : igggg 0.1069
Bottom valve (Volt) : 8.0087 0.4509 Bottom valve (Volt) 8.0336 0.0267
Distillate valve (Volt) : 5.5950 0.2037 Distillate valve (Volt) 5.6835 g;ggg
Gas Chromatograph analysis: Gas Chromatograph analysis:
Top composition yp (Mol%)  : 99.1952 0.012 Top composition
L YD MOIW .
Bottom composition z5  (Mol%) :  0.3713 0.005 Bottomn composition o5 EMol%(:g : 93233(1) ggg;

Feed composition z¢ (Mol%) : 45.0212 0.10 Feed composition z (Mol%)  : 457114 0.006
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Data taken during 10 min for Run3

Measurements:
Temp Reboiler
Temp. tray 1
Temp. tray 2
Temp. tray 3
Temp. tray 4
Temp. tray 5
Temp. tray 6
Temp. tray 7
Temp. tray 8
Temp. tray 9
Temp. tray 10
Temp. tray 11
Reboiler Level

Accumulator Level

o

addadacaaacaaaa

o C o

o ©

(=] o ©

o

N N P
Q 2
—

Cm)

Diff. pressure (Cm H,0)

Output signals to actuators:

Reboiler duty (Volt)
Distillate pump (Volt)
Bottom valve (Volt)
Distillate valve (Volt)

Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg  (Mol%)
Feed composition z; (Mol%)

Average
119.1208
117.6565
115.7841
112.2051
107.0069
99.4882
92.5084
85.3724
80.5095
79.0260
77.6493
77.5407
7.9115
12.8806
16.6909

3.0499
2.4296
8.7820
5.0953

99.6694
0.8787
34.6280

Stand.
dev.

0.0145
0.0312
0.0498
0.1026
0.1371
0.1676
0.1531
0.0987
0.0516
0.0295
0.0203
0.0123
0.0551
0.1015
0.0476

0.0000
0.0337
0.1436
0.0994

0.035
0.013
0.035

Data taken during 10 min for Run 4

Measurements:

Reboiler Level (Cm)
Temp. tray 1 (°C)
Temp. tray 2 (°C)
Temp. tray 3 (°C)
Temp. tray 4 (°C)
Temp. tray 5 (°C)
Temp. tray 6 (°C)
Temp. tray 7 (°C)
Temp. tray 8 (°C)
Temp. tray 9 (°C)
Temp. tray 10 (°C)
Temp. tray 11 (°C)
Temp Reboiler (°C)
Accumulator Level (Cm)
Diff. pressure (Cm H,0)
Output signals to actuators:
Reboiler duty (Volt)
Distillate pump (Volt)
Bottom valve (Volt)
Distillate valve (Volt)
Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition g  (Mol%)
Feed composition z; (Mol%)

Average
6.9140
118.4099
117.5784
115.9890
113.7347
108.2402
107.1631
102.5545
94.1451
86.2750
80.4592
78.5636
119.2397
12.1467
24,0524

3.9640
3.5428
8.4124
5.0779

96.8195
0.1617
34.3224

Stand.

dev.

0.0170
0.0204
0.0319
0.0412
0.0833
0.2627
0.0833
0.0862
0.1094
0.0895
0.0477
0.0205
0.0233
0.1476
0.1706

0.0540
0.0539
0.0853
0.0853

0.0132
0.010
0.058
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Data taken during 10 min for Run5

Measurements:

Temp Reboiler (°C)
Temp. tray 1 (°C)
Temp. tray 2 (°C)
Temp. tray 3 (°C)
Temp. tray 4 (°C)
Temp. tray 5 °C)
Temp. tray 6 (°C)
Temp. tray 7 (°C)
Temp. tray 8 (°C)
Temp. tray 9 (°C)
Temp. tray 10 (°C)
Temp. tray 11 (°C)
Reboiler Level (Cm)
Accumulator Level (Cm)
Diff. pressure (Cm H,0 )
Output signals to actuators:
Reboiler duty (Volt)
Distillate pump {Volt)
Bottom valve (Volt)
Distillate valve (Volt)
Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg  (Mol%)
Feed composition z (Mol%)

Average
120.5731
119.4466
118.4088
116.7508
113.1436
107.8791
99.4420
90.6699
83.0626
80.2326
77.8984
77.3718
7.7118
12.0115
83.8899

8.8216
7.7103
8.4271
5.1680

98.8059
0.1575
34.5751

Stand.
dev.

0.0220
0.0279
0.0257
0.0405
0.1582
0.1959
0.1867
0.1473
0.1238
0.0506
0.0267
0.0192
0.0728
0.0994
0.7087

0.0382
0.0141
0.2147
0.0971

0.008
0.003
0.011

Data taken during 8 min for Run 6

Measurements:

Temp Reboiler (°C)
Temp. tray 1 (°C)
Temp. tray 2 (°C)
Temp. tray 3 (°C)
Temp. tray 4 (°C)
Temp. tray 5 (°C)
Temp. tray 6 (°C)
Temp. tray 7 (°C)
Temp. tray 8 (°C)
Temp. tray 9 (°C)
Temp. tray 10 (°C)
Temp. tray 11. (°C)
Reboiler Level (Cm)
Accumulator Level (Cm)
Diff. pressure (Cm H,0)
Output signals to actuators:
Reboiler duty (Volt)
Distillate pump (Volt)
Bottom valve (Volt)
Distillate valve (Volt)
Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg (Mol %)
Feed composition z; (Mol%)

Average
119.8009
118.5689
117.4720
115.3521
110.5777
103.9084

94.6654

86.6303

80.9081

78.9508

77.1644

76.8118

6.3719

12.1218

68.5401

8.0060
7.4502
8.4012
5.3467

99.1530
0.2657
34.5325

Stand.

dev,

0.0338
0.0296
0.0299
0.0621
0.1930
0.1998
0.1874
0.1226
0.0614
0.0332
0.0249
0.0297
0.0375
0.1211
0.2240

0.0000
0.0240
0.1602
0.1302

0.005
0.013
0.012
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162 APPENDIX A. EXPERIMENTAL STEADY STATE DATA. o
Data taken during 10 min for Run7 Data taken during 8 mijp for Run 8

Stand. M . Stand.
Measurements: Average dev. Tee;su;;l):llt; " Average dev.
Temp Reboiler (°C) : 118.0637 0.0274 TemP oo (OC) : 118.0600 0.0251
Temp. tray 1 (°C) 116.5353 0.0450 Temp- tmy 5 (OC) : 116.3130 0.0432
Temp. tray 2 (°C) 114.6205 0.0696 Temp- tmy 3 (00) : 114.1973 0.0671
Temp. tray 3 °C) 111.0866 0.1122 TemP- tray ; (OC) : 109.8925 0.1880
Temp. tray 4 (°C ) 106.1335 0.1363 TemP= tmy ; (OC) : 103.3056 0.1320
Temp. tray 5 (°C) 99.2240 0.1413 Temp- tra>’6 (00) :  95.3015 0.1077
Temp. tray 6 °C) 94.6438 0.1732 TP tmy - (°C) . 950420 0.0696
Temp. tray 7 °C) 88.0976 0.2522 TemP- myg (°C) : 93.6251 0.0630
Temp. tray 8 (°C) 81.8279 0.1267 TemP- o y 0 (OC) :  90.3434 0.0640
Temp. tray 9 (°C) 79.1376  0.0519 T p- . ay 0 (OC) :  86.9583 0.0721
Temp. tray 10 (°C) 77.1478 0.0215 TemP- tray 0 (.,C) : 82,1347 0.0650
Temp. tray 11 (°C) : 76.7359 0.0216 RCI;IP_-I riy 1 (°C) : 178.9255 0.0390
Reboiler Level (Cm) :  9.1142 0.0146 pose o e | (Cm)  : 116552 0.0691
Accumulator Level (Cm)  : 12.3385 0.0987 i T ator Leve . (Cm) ~: 12,0817 0.1026
Diff. pressure (Cm H,0) : 13.7681 0.0709 Ul pressure (CmH;0) : 129815 0.0621
Output signals to actuators: OUtP}lt signals to actuators: i
Reboler duty (Volty ;24560 0.0000 Disillate s TR 2o
Distillate pump (Volt) = 22982 0.0270 Bottom salve fvfiu; L 74421 0'1‘11;7
Bottom valve (Volt) : 8.7811 0.0291 Distillate wal his 5.9220 L
Distillate valve (Volt)  :  5.0416 0.0957 istillate valve (Volt) ; 0.0998
Gas Chromatograph analysis: g:; S)};;(;r::i‘z?f;a?f;l analy S]?i\dol%) o 106 SITBROT
golztcompositior'ltyp El\l\zg}g@ gggggg gggg Bottom composition zzg  (Mol%) :  1.1048 0.0

ottom composition rg 0 H . . e .

Feed composli)tion zy (Mol%) : 34.5325 0.012 Feed composition zf (Mol%) 1 54.6133 0.23 |
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APPENDIX A. EXPERIMENTAL STEADY STATE DATA.

Data taken during 10 min for Run9

Measurements:
Temp Reboiler
Temp. tray 1
Temp. tray 2
Temp. tray 3
Temp. tray 4
Temp. tray 5
Temp. tray 6
Temp. tray 7
Temp. tray 8
Temp. tray 9
Temp. tray 10
Temp. tray 11
Reboiler Level

Accumulator Level

o o

o

o

Adddddadadaaaaa

Q
EIN

P e e L R e
o o o o o

o

AAAA/\OA/-\A

Q
£,

Diff. pressure (Cm H,0)

Output signals to actuators:
Reboiler duty (
Distillate pump (Volt)
Bottom valve (
Distillate valve (

Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg (Mol%)
Feed composition 2z (Mol %)

Average
119.0318
118.0322
117.2418
115.8392
113.0386
107.4998
106.5423
102.9092
95.6881
88.5641
81.2432
78.3191
8.1062
12.0473
49.0246

6.2470
5.3283
7.5547
6.2866

95.5430
0.1103
54.6133

Stand.
dev.

0.0277
0.0319
0.0235
0.0439
0.1451
0.3865
0.1044
0.0880
0.1196
0.1334
0.0710
0.0502
0.0848
0.0911
0.2875

0.0095
0.0617
0.1091
0.0880

0.0
0.0
0.0

Data taken during 8 min for Run 10

Measurements:
Temp Reboiler
Temp. tray 1
Temp. tray 2
Temp. tray 3
Temp. tray 4
Temp. tray 5
Temp. tray 6
Temp. tray 7
Temp. tray 8
Temp. tray 9
Temp. tray 10
Temp. tray 11
Reboiler Level
Accumulator Level Cm)
Diff. pressure (Cm H,0)

o

4

o o o ©
loNoNoNoNe]

AAAFS/-\"\/-\’-\

c © o0 o
oloNoNoNoNoNe)

FTN TN TN N N
O o
g

Output signals to actuators:
Reboiler duty ( )
Distillate pump {Volt)
Bottom valve (Volt)
Distillate valve (Volt)

Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg  (Mol%)
Feed composition z; (Mol%)

Average
117.4242
114.7042
110.7779
104.2589

96.9124

90.7225

88.6991

85.5856

81.7902

79.8036

77.5941

76.9087

9.3011

12.2172

14.8465

2.8879
2.3181
8.4438
6.2695

99.1007
2.6616
54.3574

Stand,

dev.

0.0142
0.0699
0.1325
0.2221
0.1663
0.1436
0.0533
0.0609
0.0598
0.0441
0.0308
0.0242
0.0430
0.0659
0.1082

0.0000
0.0339
0.0579
0.0609

0.0
0.0
0.0
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166 APPENDIX A. EXPERIMENTAL STEADY STATE DATA.
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Data taken during 8 min for Run11 Data taken during 8 min for Run 12

Stand. Stand.
Measurements: Average dev. Measurements: Average dev.
Temp Reboiler (°C)  : 119.2820 0.1750 Temp Reboiler (°C) 116.9290 0.0088
Temp. tray 1 (°C) 118.1958 0.0392 Temp. tray 1 (°C) 114.6895  0.0542
Temp. tray 2 (°C) 117.0935 0.0245 | Temp. tray 2 (°C) 111.2956  0.0972
Temp. tray 3 (°C) 115.0797 0.0642 | Temp. tray 3 (°C) 105.2364 0.1648
Temp. tray 4 (°C) 110.2600 0.1722 Temp. tray 4 (°C) : 97.9585 0.1482
Temp. tray 5 (°C) 103.4164  0.2990 Temp. tray 5 (°C) : 90.9828 0.1432
Temp. tray 6 (°C) 94.6442 0.2124 Temp. tray 6 (°C)  : 88.5562 0.0505
Temp. tray 7 °C) 86.6701 0.1739 Temp. tray 7 (°C) 84.8269 0.0510
Temp. tray 8 °C) 80.6245 0.0985 Temp. tray 8 (°C) 80.7646 0.0525
Temp. tray 9 °C) 78.5017 0.0427 Temp. tray 9 (°C) 78.7793  0.0314
Temp. tray 10 (°C) 76.5798  0.0222 Temp. tray 10 (°C) 76.7647 0.0213
Temp. tray 11 (°C) 76.1866  0.0205 Temp. tray 11 (°C) : 76.1306 0.0155
Reboiler Level (Cm) : 7.7216 0.0618 Reboiler Level (Cm)  :  6.7539 0.0573
Accumulator Level (Cm) : 123898 0.1227 Accumulator Level (Cm) v 13.2422 0.0616
Diff. pressure (Cm H,O) : 60.2642 0.1862 Diff. pressure (Cm H,0) : 5381 0.1169
Output signals to actuators: Output signals to actuators:
Reboiler duty (Volt)  :  8.3749 0.0000 Reboiler duty (Volt)  :  2.9620 0.0486
Distillate pump (Volt)  :  7.6630 0.0432 Distillate pump (Volt)  : 2.9411 0.0234
Bottom valve (Volt)  :  6.4099 0.0947 Bottom valve (Volt)  :  7.9444 0.2053
Distillate valve (Volt) : 5.5466 0.1292 Distillate valve (Volt) 6.1934 0.0597
Gas Chromatograph analysis: Gas Chromatograph analysis:
Top composition yp (Mol%) 99.1275 0.0 Top composition yp (Mol %) 99.2696 0.0
Bottom composition zg  (Mol%) 0.2215 0.0 Bottom composition z5  (Mol%) 2.1758 0.0
Feed composition z; (Mol%) 55.2762 0.0 Feed composition z; (Mol%) 55.5999 0.0
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APPENDIX A. EXPERIMENTAL STEADY STATE DATA.

Data taken during 10 min for Run 13

Measurements:

Temp Reboiler (°C)
Temp. tray 1 (°C)
Temp. tray 2 (°C)
Temp. tray 3 (°C)
Temp. tray 4 (°C)
Temp. tray 5 (°C)
Temp. tray 6 (°C)
Temp. tray 7 (°C)
Temp. tray 8§ (°C)
Temp. tray 9 (°C)
Temp. tray 10 (°C)
Temp. tray 11 (°C)
Reboiler Level (Cm)
Accumulator Level (Cm)
Diff. pressure (Cm H,0)
Output signals to actuators:
Reboiler duty (Volt)
Distillate pump (Volt)
Bottom valve (Volt)
Distillate valve (Volt)

Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg  (Mol%)
Feed composition z¢ (Mol%)

Average
117.3782
116.4614
115.3909
113.1179
109.2585
101.6148
97.6285
90.5700
82.9688
79.2094
76.5135
75.8429
7.4824
11.7970
26.0508

4.6052
4.5858
8.0328
5.4723

99.0091
0.3588
50.7911

Stand.
dev.

0.0370
0.0278
0.0341
0.0852
0.1728
0.3884
0.2145
0.1829
0.1196
0.0611
0.0372
0.0401
0.0831
0.1160
0.2251

0.0322
0.0353
0.1020
0.1140

0.0
0.0
0.0

Data taken during 6 min for Run 14

Measurements:

Temp Reboiler (°C)
Temp. tray 1 (°C)
Temp. tray 2 (°C)
Temp. tray 3 (°C)
Temp. tray 4 (°C)
Temp. tray 5 (°C)
Temp. tray 6 (°C)
Temp. tray 7 (°C)
Temp. tray 8 (°C)
Temp. tray 9 (°C)
Temp. tray 10 (°C)
Temp. tray 11 (°C)
Reboiler Level (Cm)
Accumulator Level (Cm)
Diff. pressure (Cm H,0)
Output signals to actuators:
Reboiler duty (Volt)
Distillate pump (Volt)
Bottom valve (Volt)
Distillate valve (Volt)
Gas Chromatograph analysis:

Top composition yp (Mol%)
Bottom composition zg  (Mol%)
Feed composition z; (Mol%)

Average
118.1077
117.0019
116.1711
114.4489
110.7948
103.6304
101.5202
96.1429
88.2151
82.6177
78.1987
76.7576
8.4560
11.8353
40.4861

5.8836
5.4169
7.5867
6.2904

97.7121
0.2187
54.3241

Stand.
dev.

0.0189
0.0316
0.0305
0.08587
0.1580
0.4031
0.1093
0.0908
0.0979
0.0781
0.0414
0.0194
0.0613
0.1010
0.1991

0.0953
0.0343
0.1824
0.0983

0.0
0.0
0.0
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Data taken during 10 min for Run 13 Data taken during 6 min for Run 14
Stand.

Measurements: Average dev. Measurements: Av Stand,
Temp Reboiler (°C)  : 117.3782 0.0370 Temp Reboiler (°C) o T
Temp. tray 1 (°C) 116.4614 0.0278 Temp. tray 1 (°C) 117.0919 3'0189
Temp. tray 2 (°C) 115.3909 0.0341 Temp. tray 2 (°C) 116.1711 0'3316
Temp. tray 3 (°C) 113.1179  0.0852 Temp. tray 3 (°C) 114.4482 o'og05
Temp. tray 4 °C) 109.2585 0.1728 Temp. tray 4 (°C) 110.7948 0'15:7
Temp. tray 5 (°C) 101.6148 0.3884 Temp. tray 5 (°C) 103.6304 0'403(1)
Temp. tray 6 (°C) 97.6285 0.2145 Temp. tray 6 (°C) 101.5202 0.1093
Temp. tray 7 (°C) 90.5700 0.1829 Temp. tray 7 (°C) 96.1420  0.0908
Temp. tray 8 (°C) 82.9688 0.1196 Temp. tray 8 (°C) 88.2151 0'0979
Temp. tray 9 (°C) 79.2094 0.0611 Temp. tray 9 (°C) 82.6177 0.0751
Temp. tray 10 (°C) 76.5135 0.0372 Temp. tray 10 (°C) 78.1987 0.0414
Temp. tray 11 (°C) . 75.8429 0.0401 Temp. tray 11 (°C) 76.7576  0.0194
Reboiler Level (Cm)  :  7.4824 0.0831 Reboiler Level (Cm)  : 8450 0.0613
Accumulator Level (Cm) : 117970 0.1160 Accumulator Level (Cm)  : 11.8353 0.1010
Diff. pressure (Cm H,0) : 26.0508 0.2251 Diff. pressure (Cm H,0) : 40.4861 0.199]
Output signals to actuators: Output signals to actuators:
Reboiler duty (Volt)  :  4.6052 0.0322 Reboiler duty (Volt)  : 58836 0.0053
Distillate pump (Volt)  :  4.5858 0.0353 Distillate pump (Volt)  :  5.4169 0.0343
Bottom valve (Volt)  :  8.0328 0.1020 Bottom valve (Volt)  :  7.5867 0.1824
Distillate valve (Volt)  :  5.4723 0.1140 Distillate valve (Volt)  :  6.2004 0.0983
Gas Chromatograph analysis: Gas Chromatograph analysis:
Top composition yp (Mol%)  :  99.0091 0.0 Top composition yp (Mol%)  : 977121 0.0
Bottom composition zg ~ (Mol%) :  0.3588 0.0 Bottom composition 5 (Mol%) :  0.2187 0.0

Feed composition z; (Mol%) : 507911 0.0 Feed composition z; (Mol%)  : 54.3241 0.0




ITEADY STATE DATA.

Stand.
e dev.
1 0.0206
1 0.0216
2 0.0279
3 0.0645
5 0.1223
4 0.2531
T 0.1724
5 0.1932
9 0.1522
7 0.0632
5 0.0248
4 0.0115
8 0.0207
7 0.1238
0 0.1021

19 0.0192
6 0.0436
)7 0.0373
13 0.1087

)0 0.0
)0 0.0
24 0.0

Data taken during 9 min for Run 16

Measurements:

Temp Reboiler (°C)
Temp. tray 1 (°C)
Temp. tray 2 (°C)
Temp. tray 3 (°C)
Temp. tray 4 (°C)
Temp. tray 5 (°C)
Temp. tray 6 (°C)
Temp. tray 7 (°C)
Temp. tray 8 (°C)
Temp. tray 9 (°C)
Temp. tray 10 (°C)
Temp. tray 11 (°C)
Reboiler Level (Cm)
Accumulator Level (Cm)
Diff. pressure (Cm H;0)
Output signals to actuators:
Reboiler duty (Volt)
Distillate pump (Volt)
Bottom valve (Volt)
Distillate valve (Volt)
Gas Chromatograph analysis:

Top composition yp, (Mol%)
Bottom composition g (Mol%)
Feed composition z; (Mol%)

Average
119.4909
118.5821
117.8307
116.0574
112.6562
106.1199

98.7210

90.1314

82.6873

79.9062

77.6835

77.1810

8.3206

10.9759

47.3977

6.5591
6.1109
7.1673
4.9173

99.137
0.253
42.95

Stand.

dev.

0.0108
0.0167
0.0225
0.0637
0.1719
0.1796
0.1875
0.1538
0.0974
0.0427
0.0245
0.0120
0.0467
0.1178
0.2413

0.0264
0.0288
0.1791
0.1412

0.0
0.0
0.0

17
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Data taken during 10 min for Run 17

Stand.
Measurements: Average dev.
Temp Reboiler C)  : 1177772 0.0169 ‘
Temp. tray 1 (°C) 116.8447 0.0282
Temp. tray 2 (°C) 115.6590 0.0324 |
Temp. tray 3 (°C) 113.3402 0.0649 |
Temp. tray 4 CC) 109.3144 0.1421
Temp. tray 5 C) 101.4459  0.2443 ‘
Temp. tray 6 (°C) 95.8662 0.1808
Temp. tray 7 (°C) 87.7973 0.1723
' Temp. tray 8 (°C) 81.1274 0.0998
Temp. tray 9 (°C) 78.5457 0.0452
Temp. tray 10 (°C) 76.5404 0.0192
Temp. tray 11 (°C)  : 76.1441 0.0103
Reboiler Level (Cm) : 7.5826 0.0507
Accumulator Level (Cm) : 23.2305 0.1161
Diff. pressure (Cm H,O0) : 26.3798 0.0782
Output signals to actuators:
Reboiler duty (Volt) : 4.0462 0.0172
Distillate pump (Volt) ¢ 4.0510 0.0486
Bottom valve (Volt) : 7.3448 0.1529
Distillate valve (Volt) : 5.0378 0.1980
Gas Chromatograph analysis:
Top composition yp Mol%) 99.415 0.0
Bottom composition zg ~ (Mol%)  : 0.330 0.0
Feed composition zf (Mol%) : 45,700 0.0




