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STUDIES ON ROBUST CONTROL
OF DISTILLATION COLUMNS
by
Sigurd Skogestad

ABSTRACT

Distillation is undoubtedly the most important unit operation in chemical en-
gineering. During design a significant effort is normally put into steady-state op-
timization of the column with respect to its size, feed location and reflux ratio.
However, operating the column close to this optimal point requires reasonably tight
control of the product compositions. This is usually not achieved in industrial prac-
tice due to stability problems. Improved strategies for distillation control offer a
viable means for significant economic savings as compared to the existing ad hoc
techniques. This thesis addresses robust control of distillation columns in the face
of model-plant mismatch caused by model uncertainty, nonlinearity and changes
in operating conditions. The robust control paradigm, introduced by Doyle and
coworkers, is used as the basis for controller design and analysis. An important tool
is the Structured Singular Value (SSV) which enables the evaluation of a plant’s
achievable control performance. This provides a consistent basis for comparing
controllers and design alternatives. Achievable performance is also related to other

commonly used measures such as the RGA and the condition number.

Physical insight is used to derive low-order column models which address the
issues most important for f;eedba,ck control. It is shown that the dynamic behavior
can be explained in terms of the fundamental difference between external and inter-
nal flows. This difference manifests itself both at steady-state and in the dynamic
response. Furthermore, the initial response, which is of principal importance for

feedback control, is affected much less by changes in the operating conditions than
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is the steady-state response. The initial response is even less markedly affected
when logarithmic compositions are used.

An important issue in distillation control is which two of the possible five ma-
nipulated inputs should be selected for composition control; each configuration may
yield entirely different control performance. Issues which must be addressed include
model uncertainty and dynamic response as well as rejection of flow disturbances
by the level loops.

Finally, a design method for robust decentralized controllers, which generalizes
the SSV-interaction measure of Grosdidier and Morari, is introduced. Each loop
is designed independently such that robust performance of the overall system is

guaranteed.
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Chapter 1

INTRODUCTION
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Distillation is undoubtedly the most important unit operation in chemical en-
gineering. During design a significant effort is normally put into steady-state op-
timization of the column with respect to its size, feed location and reflux ratio.
However, operating the column close to this optimal point requires reasonably tight
control of the product compositions. This is usually not achieved in industrial prac-
tice due to stability problems. Improved strategies for distillation control offer a
viable means for significant economic savings as compared to the existing ad hoc
techniques. A system is “robust” if it is insensitive to model-plant mismatch. This
thesis addresses robust control of distillation columns in the face of model-plant
mismatch caused by model uncertainty, nonlinearity and changes in operating con-

ditions. The thesis is naturally divided into three parts:
A. Robust control
B. Dynamic and steady-state behavior of distillation columns
C. Robust control of distillation columns

This introduction is organized accordingly.

A. Robust Control. Feedback control is used to control processes despite
unmeasured disturbances and model-plant mismatch without which feedforward
control would suffice. Another important factor which limits the achievable perfor-
marnce of a system is the presence of RHP-zeros (inverse responses, time delays) in
the plant. A good theory for feedback control should address these three issues in

a direct manner.

Control theory is a new science. The early work in the 1930’s and 40’s provided
a theory for single-loop (SISO) plants based on an input-ouput description using
the frequency domain. This theory addressed all three above-mentioned issues to
some degree . However, the extension of these results to multivariable (MIMO)
systems did not prove to be straightforward. During the 60’s the “optimal” control

theory based on a state-space system description in the time domain was developed.
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MIMO systems are handled readily within this framework. The design techniques
suggested, for example, the Linear Quadratic Gaussian (LQG) controller, treated
disturbances as stochastic processes. These methods represented significant theo-
retical breakthroughs, but in hindsight probably more so in optimization than in
feedback theory. The names ”optimal” and "modern” which were associated with
this theory proved to be deceiving, since they engendered the belief that all prob-
lems in linear control theory had been solved. However, the slow acceptance of
optimal control theory in industrial practice eventually led to the realization that
the theory had serious shortcomings (Horowitz,1975). For one thing, ”classical”
control theory, which had proven to work in practice for SISO systems, had no
clear link to the optimal control theory. Secondly, it became obvious during the
70’s that optimal control did not address the issue of model uncertainty at all.
Furthermore, important concepts such as RHP-zeros and bandwidth were obscured
by the state-space formalism. This finally led in the late 70’s and early 80’s to
the development of a robust linear control theory (e.g., Doyle, 1984) which directly
addressed the problem of model uncertainty and also provided a bridge between
"classical” frequency domain theory and the "modern” state space theory. The
formulation of the control problem is accomplished in the frequency domain. This
includes the definition of performance specifications (Hs) and the quantification
of model uncertainty. However, all computations are carried out within the state-
space formalism, and the LQG-theory (Riccati equations, etc.) remains useful for
solving the numerical problems which arise.

Robust Performance (RP) is satisfied if the performance specifications are also
met for the "worst case” plant as defined by the uncertainty bounds. The Structured
Singular Value (u) introduced by Doyle (1982) provides a non-conservative means

-for testing whether Robust Performance (RP) is satisfied:

RP & u(N)<1



where the matrix N depends on the plant model, controller, performance speci-
fications and uncertainty bounds. In the thesis, this theory is detailed and spe-
cific applications to chemical engineering problems (including distillation control)
are presented. New results which link quantities such as the Relative Gain Array

(RGA) and the condition number to RP are also provided.

Linear control theory is used throughout this thesis; only recently has a viable
theory which account for model uncertainty been introduced, and no such theory as
yet exists for nonlinear systems. A good understanding of linear systems is clearly

a prerequisite for attacking the vastly more complicated behavior of nonlinear sys-

tems.

B. Dynamic and steady-state behavior of distillation columns. A
precondition for applying any control theory is that a model of the physical system
is available. In particular, this model should include the characteristics of the
plant which are most important for feedback control. For distillation columns, this
includes the presence of RHP-zeros caused by the flow dynamics and the plant’s
ill-conditioned character. Furthermore, to use the u-theory, the sources of model
uncertainty must be identified and bounds on these must be quantified. For this step
it is very important to have a clear physically motivated picture of the process, so
that the "uncertainty” (which sometimes includes model-plant mismatch caused by
nonlinearity or changes in operating conditions) can be treated in a non-conservative
manner. Therefore, a main objective of this thesis is to develop simple dynamic

models for distillation columns.

The mathematical treatment of distillation columns is also a new ”science,” and
its development has followed an analogous pattern to that of control theory. The
early work of the 1920’s and 30’s treated the steady-state behavior using graphical
methods (McCabe and Thiele) and simple short-cut models (Gilliland). Restric-

tive assumptions made these methods inaccurate for certain design calculations,
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but they provided invaluable insight into the steady-state behavior of distillation
columns. The methods are difficult to apply for multicomponent and nonideal mix-
tures, and no simple methods for predicting the dynamic behavior were developed.
With the inception of the digital computer in the late 50’s and early 60’s, the need
for simple methods was no longer considered important; the governing nonlinear
differential equations for distillations columns are easily formulated, and virtually
any column could therefore be simulated. Consequently, most of the research effort
was directed away from simple analytical methods. Still, some progress was made in
the 60’s toward the understanding of the dynamic behavior of distillation columns
(Moczek et al., 1963, Wahl and Harriot, 1970). It was established that the dy-
namic response is dominated by one large time constant which is roughly the same
regardless of where a disturbance or input is introduced or where composition is
measured. Yet, the generally held belief remains that the dynamic behavior of dis-
tillation columns is difficult to predict. This is exemplified by the following quote
from Shinskey (1984) (the industry standard book on distillation control): “The
only general relationship that seems to apply to the dominant time constant is that
it is proportional to the total liquid volume divided by the column feed rate.” This
is an immediate observation because this essentially determines the scale factor for
time in the problem. One important objective of this research has been to provide
relationships which enable understanding and prediction of the dynamic behavior
of distillation columns without the need for reliance on simulations, and which may

also be used as an integral part of a control study.

C. Robust Control of Distillation Columns. Most two-product distilla-
tion column can be described as a 5 x 5 plant, but the control system design is

usually simplified by means of the following procedure:

1. Choose two manipulated inputs for composition control (corresponding to a

specific control ”configuration”).
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2. Design a level and pressure control system (usually three SISO controllers).
3. Design a 2 x 2 controller for composition control.

Step 1 is probably is the most important one, yet almost no guidelines are
available in the literature. The only exception is the work of Shinskey (1984) who
bases his analysis mainly on steady-state RGA-values. From Shinskey’s book the
reader is led to believe that the RGA is just an interaction measure which indicates
the difficulties one can expect when tuning single loops of multivariable systems.
But if this were true then the RGA recommendations regarding control configura-
tion selection would be archaic today, now that the implementation of multivariable
control systems is quite straightforward. Practical evidence suggests, however, that
an RGA evaluation should be very useful for the design of multivariable control
systems. Thus, while the RGA has proven to be very useful tool for categorizing
experience, it has not helped to ezplain the observed phenomena. A goal of this
research is to fill the apparent gap between the theory and the industrial experience
as represented by Shinskey (1984).

Another issue which has been obscure is the use of ratios between flows, e.g.
% or %, as manipulated inputs for composition control. It is well-known (Shinskey,
1984) that the RGA-values are affected, but apart from this, what is their real
effect? Do they result in a plant which is more linear? The results in the thesis
show that this is not the case, but that a main feature is that they provide improved

flow disturbance rejection.

Once the choice of control configuration is made, the design of the control sys-
tem is not too difficult. First, the level control system has to be designed and guide-
lines for this step are already available in the literature (e.g., Shinskey, 1984). Sec-
ondly, the 2 X 2 controller for composition control must be designed. The academic
literature (e.g., Weichedel and Mcavoy, 1980) have perennially discussed whether or

not to use "decouplers” as part of the controller. However, to address this problem
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rigorously, model uncertainty has to be considered. In this thesis, new results are
presented (partly in terms of the RGA) which clearly demonstrate those cases for
which decouplers may be used to good effect and cases for which robust performance

will be poor.

A final question which merits an answer is the following: Distillation columns
are strongly nonlinear, but can they be adequately controlled using a linear con-
troller? Industrial experience indicates that the answer is "yes.” This is indeed
confirmed by the results of this thesis. In particular, it is shown that the initial re-
sponse (which is of main importance for feedback control) does not depend strongly
on operating conditions. This claim is supported both by a general analysis of the
dynamic behavior of distillation columns and by a particular study of the robust
control of a high-purity column. It is found that the initial response is even less

markedly affected by nonlinearity when logarithmic compositions are used.

Thesis Overview.

This introduction motivates the need for a systematic approach to distillation
column control which yields a control system with robust performance, that is, a
system which performs satisfactory also in the presence of model-plant mismatch.
Important steps include modelling, selection of the control configuration as well as

robust controller design. This approach is presented in this thesis as follows:

Part A. Robust Control: Chapter II discusses the issue of robust stability and
how model uncertainty limits the achievable performance. The notion of disturbance
directions, which is important for multivariable systems (and in particular for ill-
conditioned plants), is tre:;.ted in Chapter III. Subsequently, Chapter IV discusses
general problems of controlling ill-conditioned plants, indicates the applicability
of the u-theory for the analysis and controller design for such plants in face of
model uncertainty, and demonstrates the usefulness of this approach via a simplified

distillation column example. The RGA is used extensively in the literature to screen
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design alternatives with respect to their expected control performance: Some new
relationships between model uncertainty and large RGA-elements are presented in
Chapter V which justify this measure’s widespread use. Chapter VI provides some
new properties of u; the application of these results to the design of decentralized

controllers yielding robust performance is demonstrated in Chapter VII.

Part B. Dynamic and steady-state behavior of distillation columns: This part
begins with Chapter VIII which provides an overview of the reminder of the thesis
and also shows how to evaluate the steady-state gains for various configurations.
Chapter IX discusses the use of the separation factor for the estimation of steady-
state gains. Chapter X and XI consider the dynamic column behavior and present
important new insights. It is shown that the dynamic behavior can be explained
in terms of the fundamental difference between external and internal flows. This
difference manifests itself both at steady-state and in the dynamic response. Fur-
thermore, the initial response, which is of principal importance for feedback control,
is affected much less by changes in the operating conditions than is the steady-state
response. The initial response is even less markedly affected when logarithmic com-

positions are used.

Part C. Robust control of distillation columns: Chapter XII addresses the
issues of control configuration selection. It is shown that ratio configurations yield
complex multivariable controllers which in some cases provide improved flow dis-
turbance rejection. However, their linearizing effect on the plant does not prove
significant. Finally, in Chapter XIII a more realistic study of the distillation ex-
ample of Chapter IV is presented. Chapter XIII shows that the robust control of
a high-purity distillation column over a wide range of operating conditions is in
indeed possible with a single linear controller. Logarithmic compositions were used
in this example to reduce the effect of nonlinearity. The simulation results as well

as the p-analysis presented in this chapter confirm the general results regarding
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the dynamic behavior of distillation columns of Chapter XI, and also support the

control theory developed previously in Part A.
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Abstract

The achievable quality of control for a particular system (its
dynamic resilience) is limited by the nonminimum phase characteristics
of the plant, constraints on the manipulated variables and model
uncertainty. Model uncertainty requires that the controller be
detuned and performance be sacrificed. The goal of this paper is to
quantify this well-known qualitative statement.

The closed-loop system must remain stable for all possible
plants as defined by the uncertainty description. This robust
stability requirement is used to derive simple bounds on the nominal
performance for some specific cases. These bounds are relatively easy
to evaluate and should be effective tools for screening alternative
designs in terms of their resilience characteristics. The RGA and the
minimized condition number are accurate measures with respect to
element uncertainty,_provided the relative errors of the transfer

matrix elements are independent (uncorrelated) and have similar

magnitude bounds.
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I. INTRODUCTION

Most chemical plants are designed on the basis of steady state
considerations, and the control system is designed separately in a
subsequent stage of the project. This separation is acceptable
provided that there exist suitable design-stage methods which can
assess the "controllability" of the plant. That is, it must be
determined a priori whether the design of a control system offering
"reasonable" closed-loop response wWill subsequently be feasible,
Until recently, such methods were not available., As a result, the
expected performance often was not achieved in the operating plant.
In some instances, a minor change at the initial design stage could
have resulted in a "controllable" plant.

Previously, the controllability assessment has been based on
simulations. This approach is complex and requires a complete dynamic
model of the plant. Usually a number of case studies are performed
with different choices of inputs, disturbances, operating conditions,
controller structures and controller parameters. All those choices
could bias the controllability assessment in an erroneous manner.

Morari (1983) suggested making the problem of controllability
assessment independent of the controller selection problem. This is
done by finding a plant's best achievable closed-loop control
performance for all -possible constant parameter linear controllers.
This target, the upper bound on the achievable closed loop

performance, is defined as the plant's dynamic resilience. Thus,

"dynamic resilience" is an expression of the plant's inherent

limitation on the closed-loop system's dynamic response which is not

biased by specific choices of controllers.
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The limitations imposed by non-minimum phase elements and
constraints have been discussed in quantitative detail by Morari (1983)
and Holt and Morari (1985). Fundamentally, perfect control can only

be achieved if the plant is invertible. Non-minimum phase elements

(Right Half Plane (RHP) zeros and time delays) make it impossible to
invert the plant and retain (internal) stability of the closed-loop
system. The effect of constraints on performance is also related to
a plant's closeness to singularity. If the minimum singular value of
a plant P, (o (F)) is small then the plant is nearly singular. This
means that the plant has a very small gain for a particular input
direction. To achieve tight control, the controller would have to
provide very large input signals in this direction, possibly violating
input size constraints.

The objective of this paper is to study the effects of model
uncertainty on dynamic resilience. Model uncertainty requires that
the controller be detuned and performance be sacrificed. The primary
goal is to quantify this well-known qualitative statement by deriving
expressions relating achievable closed loop performance and
uncertainty.

The first (and most important) step is to quantify the model
uncertainty. This is usually not a trivial problem, and very
misleading results may arise if an inappropriate uncertainty
description is used. Another goal of this paper is to demonstrate
some of these pitfalls. Therefore, the design engineer encounters a
difficult situation: simple achievable performance bounds may be
obtained with a crude uncertainty description but such bounds are

often misleading. On the other hand, a detailed description of the
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model uncertainty is needed to find more meaningful bounds. Such
descriptions are normally not available. A first step in resolving
this dilemma is to identify for specific problem classes (e.g.
distillation columns) the sources of model uncertainty which are
likely to cause complications. The engineer can then concentrate on
these when quantifying the uncertainty. Some of the examples in this
paper will be helpful in this respect.

II. UNCERTAINTY, STABILITY AND PERFORMANCE

1. Model Uncertainty: Causes and Definition.

The linear time invariant models used throughout this paper
describe the actual plant dynamics only approximately.

1. All real processes are nonlinear. In this paper, linear
transfer functions are used to represent the plant and some
"uncertainty" is introduced by linearizing the nonlinear plant at
various operating points. This may lead to a linear model with
"uncertain" coefficients.

2. In other cases the process may be represented quite accurately

by linear models. However, different operating conditions can

lead to changes of the parameters in the linear model. For
example, increased throughput/flowrates usually result in
smaller deadtimes and time constants.

3. Consequently, in many cases parts of the "uncertainty" are known
accurately.  However, there will always exist "true"

uncertainties even though the underlying process is essentially

linear: The model parameters are never known exactly and, at

high frequencies, even the model order is unknown.
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Definition of Model Uncertainty: We assume the plant P is linear

and time invariant, but that its exact mathematical description is
unknown. However, it is known to be in a specified "meighborhood" of
the '"mominal" system, whose mathematical "model" P is available. This
neighborhood will be denoted the "uncertainty set"; it defines the "set
of possible plants" II. In some cases the uncertainty set I may
include a finite number of plants. However, in most cases we will
define II in terms of norm-bounded perturbations on 15, and the set I
becomes infinite.

2. The Effect of Model Uncertainty

Before discussing how uncertainty 1limits the achievable
performance (dynamic resilience), a digression on why feedback is used
for control is of interest. Obviously, for stable plants in the
absence of uncertainty, feedforward control would be sufficient.
Feedback is used to control a plant despite unmeasured disturbances
and model uncertainty. One particular example is the application of
integral action in order to achieve perfect steady state control.
Without exact knowledge of the steady state gain, perfect control may
be achieved through feedback.

However, even though high gain feedback can be used to reduce the
effect of uncertainty, it is intuitively obvious that there must be a
limit to the extent.that uncertainty can be tolerated before the
system must be detuned and performance sacrificed. Thus uncertainty
may impose limitations on the achievable performance (dynamic
resilience). Here, quantitative effects of uncertainty on closed-loop

performance will be found. First, additional terminology is required:
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Performance: "Performance" is the quality of the closed- loop
response. Typically, the error signal (e) should be small for the
expected disturbances (d) and reference signals (r) (Fig. 1). The
sensitivity function (S) describes the relationship between r, d and e.

e = S(r-d), S = (I+PC)! (1)
In order to have '"good" performance, S has to be "small." In this
paper, the magnitude of S is measured using the singular value 5. At
a given frequency w, 5(S(jw)) represents the "worst" amplification
(Iel |2/] [p=d[|) of (r-d). By ™worst" we mean that r-d is in the
direction giving rise to the largest amplification. A typical

performance specification is

5(S) < 1/|wp| ¥u (2)
where wp(S) is a weight which is used to define what responses are
acceptable. The complementary sensitivity function H will also be
used to measure performance. H is defined by

H=I-35
or H = PC(I + PC)~* (3)
H relates the output y to the reference signal r
y = Hr ' (4)
It is desirable to have H * I. §(H) < 1 at some frequency implies that
tight control (HI) is not possible. S and H are used to denote the
nominal (P=P) sensitivity and complementary sensitivity functions.

Nominal stability (N.S.): The nominal closed loop system (with no

uncertainty) is stable.

Nominal Performance (N.P.). The nominal closed loop system §

(with no uncertainty) satisfies the performance specification (2).
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Robust stability (R.S.): The closed loop system is stable for all

plants In the "uncertainty set."

Robust performance (R.P.): The closed loop system satisfies the

performance specification (2) for all plants in the "uncertainty set."
In the context of ‘'how' uncertainty affects performance, there
are at least three problems of interest:
Problem 1: The effect of the robust stability requirement on

nominal performance: How does the stability requirement for all

plants in the uncertainty set limit the nominal performance?
Problem 2: The effect of the robust performance specification on

nominal performance: If we specify that some particular performance

requirement has to be satisfied for all plants in the uncertainty set,
how does this bound the nominal performance?

Problem 3: Achievable robust performance: Design the best

possible controller; what is the best achievable performance by all
plants in the uncertainty set?

In Problem 1 and 2, a "lower bound" on robust performance is
specified (for Problem 1 this "lower bound" is simply the requirement
of stability), and we are considering effect on the nominal
performance. The goal is to derive some simple bounds on the nominal
system which, when satisfied, give the desired robust performance.
These bounds are intended to assist the engineer in designing a
controller for the nominal system such that the specified performance
for all plants in the uncertainty set is achieved.

In Problem 3, there is no in particular concern for the
performance of the nominal system. In this case, the problem is to

find the "upper bound" on robust performance using any linear
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controller. This situation is addressed by Doyle (1984) and actually

involves finding the optimal controller; this "u-synthesis" is a

complicated mathematical and numerical problem which will not be

addressed here,

This paper will be concerned mainly with Problem 1. Problem 2
may formulated trivially as a special case of Problem 1 provided that
the appropriate norm (523 is used to define performance (Doyle,
(1982b, 1984)). Problem 1 is important in itself for the case when
the plant is "operating" most of the time close to its nominal point,
but with occasional plant perturbations. In this case performance may
not be important when perturbations occur provided that the system
remains stable. Furthermore, for Problem 1 it will be possible to
derive reasonably simple bounds on the achievable nominal performance.
Simplicity is desired in order for the engineer to gain insight into
'why' a particular design is sensitive to uncertainty.

Two approaches may be taken in order to find bounds on nominal
performance imposed by robust stability (Problem 1):

1. A performance related transfer function which is to be bounded
(for example, a(H) or 3(5)) is selected. This requires that the
uncertainty be expressed in terms of a specific single
perturbation ("unstructured" uncertainty) as discussed in Section
III. The bounds derived using unstructured uncertainty are
generally conservative since the actual uncertainty rarely
nfits" into a single norm-bounded perturbation.

2, A reasonably "tight" description of the uncertainty is chosen.
This is done by identifying more precisely where the uncertainty

occurs in the system, such as by considering uncertainty in the
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model parameters. This generally leads to an uncertainty
description with multiple perturbations (Aj's). By assuming
norm bounds on these (e.g. G(A;) < 1) uncertainties, it is

possible to derive non-conservative conditions for robust

stability using the Structured Singular Value, u. This approach
is due to Doyle and coworkers (1982, 1984) and is considered in
Section IV. One disadvantage of this procedure is that the
resulting conditions are not in terms of a simple bound on 3(H)
or §(3), but involve u(N) where N may be a complicated function
of S and H.

A number of conditions in this paper are stated as both necessary
and sufficient for robust stability, but it is stressed that necessity
is only meaningful if the assumed uncertainty is an accurate ("tight")
description of the true uncertainty.

ITI. SINGLE PERTURBATIONS (UNSTRUCTURED UNCERTAINTY)

In this section, the uncertainty which occurs at different parts
of the system will be lumped into one single perturbation L. In most
cases this will correspond to "unstructured" uncertainty. (More
precisely, "unstructured" uncertainty means that several sources of
uncertainty are described with a single perturbation which is a "full"
matrix of the same size as the plant P).

Let Pe II be any member of the set of possible plants I, and let
Pell denote the nominal model of the plant. To describe unstructured
uncertainty the following four single perturbations are commonly used:
additive (Lp), multiplicative input (Ly), multiplicative output (Lp) and
inverse multiplicative output (Lg) perturbations (Fig. 2)

P=F+Lp or LA =P - P (5a)




Figure 1.

Figure 2.
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Four common uncertainty descriptions involving single

perturbations:
Input multiplicative uncertainty (Ly); Additive uncertainty (La)s
Output multiplicative uncertainty (Lg); Output inverse

multiplicative uncertainty (Lg).
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P = B(I+Ly) or Ly = P~(P-B) : (5b)
P = (ItLg)P or Lg = (P-P)B (5¢) |
P = (I+Ly)7'F or Lg = (P-P)P~ (5d) |

Additional examples are given by Doyle et al.(1982). The conditions
derived for robust stability will be different depending on which
single perturbation is chosen to describe the uncertainty.

1. Simple bounds on §(H), 3(H;) and 5(3)

In each of the cases above the magnitude of the perturbation L
may be measured in terms of a bound on 5(L)
g(L) < 2(w) Yu (6)
where
(w) = max  G(L)
Pe I
The bound %(w) can also be interpreted as a scalar weight on a
normalized perturbation A(s)
L(s) = 2(s)A(s) , 5(A) <1 Wu (7)
The magnitude bound %(w) will not generally constitute a tight
description of the "real" uncertainty. This means that the set of

o
plants satisfying 0?5 will be larger than the original set T.

Output Multiplicative Uncertainty. The sensitivity function S has to

be stable for all Pell. Using the identity

S = S(I+(P-P)P'H)™ = S(I+Lof)™ (8)
and the Nyquist stability condition, the following robust stability
bound is derived.

Theorem 1. Bound in terms of §(H) (Doyle and Stein, 1981,

Postlethwaite and Foo, 1985)

Assume the nominal system is closed loop stable, that is, assume

in particular that H is stable. Let I be any set of plants such that
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P and P have the same number of RHP (unstable) poles. Then robust
stability is guaranteed
if  8(H) < 1/80(w) where 2p(w) = pax 3L , Vo (9)
(Condition (9) is necessary and sufficient for robust stability if it is
assumed that all plants satisfying 3(Lg) < %p(w) actually occur (Doyle
and Stein, 1981)).

The robust stability condition (9) can always be satisfied for
open loop stable systems since H = 0 (no feedback) is always possible.
However, good disturbance rejection and good command following require
H = I (i.e., 5(H)71). Condition (9) says that the system has to be
"detuned" (G(H)<1) at frequencies where Lolw) > 1. This is reasonable
since 2p(w) > 1 for some w implies that the plant can have zeros on
both sides of the imaginary axis; it is well known that RHP-zeros
limit the achievable performance.

Input Multiplicative Uncertainty. 1In this case a theorem similar to

Theorem 1 is obtained, but with H replaced Hy (Postlethwaite, 1985):
R.S. if 5D < 1/87(w) , t7(w) = max 5(Lp) )’v‘w (10)
where
Hr = C(I+PC)™'P = PP (11)
Hr is the nominal closed loop transfer function as seen from the
input of the plant. It is desirable to have this transfer function
close to I in order to reject disturbances affecting the inputs to the
plant. However, since performance is usually measured at the output
of the plant it may be of interest to use (10) in order to derive a
bound in terms of H, To derive this bound the inequality
(Hp) = 6(5“95)__ 5(B~1)5(H)o(P) = Y(B)5(H)

is used; the bound is:
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R.S. if a(ﬁ)gﬁ ﬂ;@ ¥u . (12)
Here Y(P) = &(P)/o(P) is the condition number of the plant. (12) has
been used to introduce the condition number as a stability sensitivity
measure with respect to input uncertainty (Morari, 1983), but this is
misleading. The condition number enters the stability condition (12)
mainly as the result of the conservative step introduced by going from
an input (Eq. (10)) to an output uncertainty description (Eq. (12)).
For Y(P) large, (12) may be arbitrarily conservative even though the
uncertainty is tightly described in terms of a norm-bounded input
uncertainty such that (10) is both necessary and sufficient. However,
even though (12) is misleading and the system is stable, input
uncertainty usually does cause control problems when Y(P) is large.

As shown by Morari and Doyle (1986), robust performance (measured at

the output of the plant) is usually poor in such cases (even though

the nominal performance may be excellent). Output uncertainty does
not lead to the same performance problems, and this indicates why

input uncertainty is of more concern than output uncertainty for ill-
conditioned plants.

Inverse multiplicative output uncertainty. Using the identity

S = S(I+LgS)™'PP~! = (I+8Lg)~'5PP™ (13)
and the inverse Nyquist stability condition, the following theorem may
be derived.

Theorem 2. Bound in terms of S (Postlethwaite, 1985)

Assume the nominal system is closed loop stable, that is, assume
in particular that § is stable. Let I be any set of plants such that

P and P have the same number of RHP zeros. Then robust stability is
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guaranteed if
~ 1 )
5(S) < where fg(w) =max _ o(L < 14
_m s PEHO(S))‘VI\»J (14)

For minimum phase systems (no time delays or RHP zeros), the
nominal sensitivity function S may be arbitrary small ("perfect
control™) and (14) can always be satisfied. Therefore, Condition (14)
seems to imply that for minimum phase systems arbitrarily good
performance (S small) is possible regardless of how large the
uncertainty is. This is claimed by Postlethwaite, but is not quite
true. The pitfall is that any real system has to be strictly proper,
and S = I and S = I as w » » must be required. Consequently, to
satisfy (14) it is necessary that G(Lg) = G(P-P)P™' < 1 as w » = for
all possible P. This condition is usually violated in practice,
because the order of the actual plant is higher than that of the
model.

Theorems 1 and 2 prescribe two fundamentally different ways of
handling uncertainty: To guarantee robust stability Theorem 1
prescribes that the system be detuned (low gain), while Theorem 2
prescribes that the control be tightened (high gain). In practice, it
is desirable to combine the two approaches: By tightening the control
at low frequencies better performance is obtained. Eventually, at
higher frequencies, the system has to be detuned to guarantee robust
stability. In fact, Postlethwaite (1985) has shown that it is possible
to combine Theorem 1 and 2 over different frequency ranges. However,
the bounds are still conservative since there is no ntight" description
of the uncertainty. A better approach is to derive tighter

uncertainty descriptions in the first place and then derive robust
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stability bounds (Section IV).

2. Input Uncertainty for Distillation Column (Example)

Conditions (9) and (10) indicate that the system has to be detuned
7 1 5 1 .
such that §(H) < To@ (or G(Hp) < (&) ) in order to guarantee

robust stability. However, because of the conservativeness introduced
Dy using unstructured uncertainty, these conditions are generally only
sufficient for robust stability; the detuning indicated may be much
larger than what is actually necessary. This is illustrated
conveniently through an example.

Consider the distillation column described in Table 1 where the
overhead composition is to be controlled at yp = 0.99 and the bottom
composition at xp = 0.01 using the distillate D and boilup V as
manipulated inputs. By linearizing the nonlinear model at steady
state and by assuming that the dynamics may be approximated by a
first order response with time constant t = 75 min, the following

linear model is derived (Skogestad, 1986):

= Ts+1 |-1.082 -0.014

5 1 [—0.878 o.o1u]
A simple decentralized control system with two PI controllers is

chosen

1+1ts [-0.15 0 ]
LORE . (15)

This controller gives acceptable nominal performance, and can be
shown (Section IV) to give Robust Stability when there is relative

uncertainty of magnitude wy(s) on each manipulated variable:

_ 55+1
WI(S) = 0.2 m

This implies a relative uncertainty of up to 20% in the low frequency
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Binary separation, constant molar flows, feed liquid

Relative volatility o= 1.5

No. of theoretical trays N = 50

Feed tray location Np = 21

Feed rate and composition F = 1 kmol/min, zp = 0.5
Product compositions yp = 0.99, xg = 0.01
Product rates D = B = 0.5 kmol/min

Computed from steady state model

Reflux rate L = 2.71 kmol/min (1.39
Lmin)
Linearized steady state gains.

LV-configuration:

[dyp| T0.878 =0.8647 TdL]
dxg| [1.082 =-1.096] [adV
DV-configuration:

[dvp| _ [-0.878 0.0147 TaD])
dxg| = |-1.082 -0.014] |av

Table 1. Data for distillation column example.
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range which increases at high frequencies, reaching a value of 1 at w
=1 min~'. This increase with frequency allows for a time delay of
about 1 minute, and may represent the effect of the flow dynamics
which were neglected when developing the model. This relative
uncertainty can be written in terms of two scalar multiplicative
perturbations Ap and Ay.

dD = (1+wi(s)ap)dDe , |ap| < 1 Yo

av = (Trwrls)aypddle , |Ay| <1 ¥o (16)
(dD and dV are the actual inputs, while dD, and dV, are the desired
values of the flow rates as computed by the controller). (16) can be

approximated by an "unstructured" single perturbation Ly = wr A1 (A1 is

a "full" 2x2 matrix)

rapl dDg |
ng‘] = (I+wy(s)ag) [GVEJ , 6(Ap) <1 Yu an

with 21(w) = |w1(jw)|._ (10) indicates that Robust Stability is

guaranteed if §(H) < 1/27(w) ¥w. However, from Fig. 3 it is seen that

this condition is violated over a wide frequency range, despite the

fact that the system is known to be robustly stable. The reason for

the conservativeness of condition (10) in this instance is that the use

of unstructured uncertainty (17) includes plants not included in the |
"true" uncertainty description (16). These problems may be avoided by

using the structured singular value u(ﬁI) as discussed in Section IV.2.

3. Integral Control and Robust Stability

Because of the importance of integral control in the context of
process control we will derive specifically conditions under which
controllers with integral action can be designed in the presence of

uncertainty. We will keep the uncertainty as general as possible. To
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Figure 3. Robust stability for the distillation column with diagonal input
uncertainty is guaranteed since u(Hp) < 1/|wI| ¥w. The use of
unstructured uncertainty and d(Hy) is conservative, and would

require the system to be detuned to guarantee robust stability.

> W, A W,

_T—C — P

Figure 4. System with weighted additive uncertainty. Rearranging this

system to fit Fig. 6 gives M = W,C(I+PC)~W,.

this end define Ny as the set of plants which is generated by a single
weighted additive norm bounded perturbation (Fig. 4)

My = {P: P =P+ Lp}, Ly = WlpWy, 5(Ap) <1, Wu (18)
This is a generalization of (7) because the weights W, and W, are
allowed to be matrices. Mp includes additive uncertainty (5a) (W, =
%p» Wp = I), multiplicative input uncertainty (5b) (W, = I, W, = Pe1) and

multiplicative output uncertainty (Sc¢) (W, = Plp, W, = I) as special

cases.
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A necessary and sufficient condition for "perfect control" and
robust stability will be stated first. Note that "perfect control" (H
= I, ¥w) is clearly not possible for real systems which must be
strictly proper, (i.e., H+0as w » =), but the notion of "perfect
control" is nevertheless useful.

Theorem 3. Perfect Control( M=Ia). Assume: P is minimum phase, all

plants have the same number of unstable poles. Robust stability and
nperfect control” (H=I) may be achieved
iff det(P P~Y) 40  ¥u, ¥Pellj (19)
This theorem implies that perfect control is possible if and only

if none of the plants P in the set Iy have zeros on the ju-axis (i.e.,
detP40). From the proof and (5) it is clear that det P { 0 ¥u is

equivalent to

Additive uncertainty: 24 < o(P) ¥u

Multiplicative input uncertainty: 7 <1 ¥w

Multiplicative output uncertainty: %29 < 1 ¥w
The necessity of condition (19) is obvious since perfect control
(S=8=0) is never possible for plants with RHP zeros. Regarding
sufficiency, it is clear from Theorem 2 that for minimum phase plants,
perfect control is always possible in principle. The search for zeros
is restricted to the jw-axis as the result of the particular norm
bounded uncertainty assumed, it implies that zeros cannot appear in
the RHP without crossing the jw-axis. Theorem 3 offers little that is
new; it is stated mainly as a means to prove Theorem 7 in Section V.

The following conditions for integral control are more interesting.
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Theorem 4A. Integral Control. Let Il be any set of plants such that P

and P have the same number of RHP (unstable) poles. Also, assume
that PC and PC are strictly proper. Then robust stability and
integral control (H(0)=I) may be achieved
only if  det(P(0)B(0)™') >0  ¥Pe T (20)
Theorem 4A implies that for stable plants, integral control is
never possible if the sign of the plant, expressed in terms of detP(0),
changes. This is a direct generalization of the result for SISO

systems. Note that Theorem 4A does not apply to cases where the pole

1 1
=3 and P = ey (a>0).

may cross the jw-axis. As an example, let P =

These plants may be stabilized using a single controller with integral

action (e.g. C = k(ss+a) , k>a) despite of the fact that they do not

satisfy condition (20).
For the special case when Il is of the norm-bounded form My (18),
condition (19) is both necessary and sufficient:

Theorem Y4B. Integral Control( Il = My). Assume all plants Pe I are

stable and that PC and Bc strictly proper. For controllers with
integral control robust stability may be achieved
if and only if  det(P(0)P(0)~") > 0  ¥Pe Iy (21)

The sufficiency of condition (21) follows mainly from the assumed
norm-bounded additive perturbation, and also from the fact that at
frequencies w # 0, the robust stability condition (similar to (10)) may
always be satisfied by detuning the system (provided the plant is
stable). Note that condition (21) does not imply robust stability if
I is not on the form IIp. As an example, consider the set II consisting

of the two plants P = diag{1,1} and P = diag{-1,-1}. Since this



~ 31 -
corresponds to two SISO plants where the gains change sign, integral
control is not possible.
IV._ MULTIPLE PERTURBATIONS ("STRUCTURED" UNCERTAINTY)

In this section, we will describe the uncertainty in a
"structured" manner by actually trying to identify the sources and
locations of uncertainty in the system. This usually leads to an
uncertainty description with multiple perturbations (A1) These
perturbations may correspond to uncertainty in the model parameters,
uncertainty with respect to the manipulated variables (input or
actuator uncertainty) and the outputs (measurement uncertainty), etc.
By using such a mechanistic approach, we can norm-bound each
perturbation (e.g. ||Aj||<1) without introducing too much additional
conservativeness and get a "tight" description of the uncertainty set.

However, we should not necessarily describe the uncertainty as
rigorously as possible. Rather, we should take the engineer's
approach and describe the uncertainty as rigorously as necessary.
This means some of the sources of uncertainty (occurring at different
places of the system) should be lumped into an "unstructured"
multiplicative perturbation, for example, if this does not add too

much conservativeness. This leads to a practical uncertainty

description: Some sources of uncertainty are described in a
"structured" manner (e.g., parametric uncertainty), while the rest
(usually uncertain high-frequency dynamics) is lumped into a single
"unstructured" perturbation (see Reactor Example below).

The main objective in this section is to familiarize the reader
with the work of Doyle (1982, 1984), The results are presented

without further motivation; subsequent examples illustrate how these
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results may be used in practice.

1. General Theory

Consider the uncertainty as perturbations on the nominal system.

Each perturbation A; is assumed to be a stable and norm-bounded

transfer matrix

g(Ag) < 1 Yu (22)
Weighting matrices are used to normalize the uncertainty such that the
bound is one at all frequencies; that is, the actual perturbation L; is
written

Li = W, A{ W, (23)

If Aj represents a real parameter variation we may restrict A; to be
real, but in general Aj may be any stable rational transfer matrix
satisfying (22). The choice of the singular value § as the norm for
bounding Aj is not arbitrary, but is needed to obtain the necessity in
the theorems which follow.

The perturbations (uncertainties) which may occur at different
places in the feedback system (e.g., Fig. 5), can be collected and
placed into one large block diagonal perturbation matrix

A = diag {A,, ... Ap} (24)
for which we have

g(a) < 1 Yw (25)

The blocks Aj in (24) can have any size and may also be repeated. For
example, repetition is needed in order to handle correlations between
the uncertainties in different elements. The nominal closed loop
system with no uncertainty (A=0) is assumed to be stable. The
perturbations (uncertainty) give rise to stability problems because of

the "additional" feedback paths created by the uncertainty. This is
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Figure 5. System with weighted multiplicative input and output uncertainty.
Rearranging this system to fit Fig. 6 gives M as in Eq. (29).
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Figure 6. Interconnection structure for studying effect of uncertainty on
stability. A = diag{A,, ..., 4p}.
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shown explicitly by writing the uncertainty as perturbations on the
nominal system in the form (MA-structure) shown in Fig. 6. M is the
nominal closed loop system "as seen from" the various uncertainties,
and is stable since the nominal system is assumed stable. More
precisely, M is the interconnection matrix giving the nominal transfer
functions from the output of the perturbations A; to their inputs.
Constructing M is conceptually straightforward, but may be tedious for
specific problems.

We want to derive conditions on M in order to guarantee robust
stability. It may be shown (Doyle et al., 1982) that for a nominally
(A=0) stable system, robust stability is equivalent to the stability of
the MA-structure in Fig. 6. This system is stable if and only if
det(I+AM) does not encircle the origin as s traverses the Nyquist D
contour for all possible A. Because the perturbations are norm
bounded, (i.e. all A's satisfying (25) are allowed) this is equivalent
to

det(I+AM) # 0 Yw, ¥4, 3(a) <1 (26)
<=> p(aM) <1 Yuw, ¥4, §(A) <1
Condition (26) by itself is not very useful since it is only a yes/no
condition which must be tested for all possible perturbations A. What
is desired is a condition on the matrix M, preferably on some norm of
M. This is supplied by the following theorem.

Theorem 5. Necessary and Sufficient Condition for Robust Stability

(Doyle et al., 1982). Assume the nominal system (A=0) is stable.
Then the closed loop system (Fig. 6) is stable for all A, 9(A) < 1 if
and only if

uM) <1 Yo @7
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Theorem 5 may be interpreted as a "generalized small gain theorem"
applied to (26) which also takes the structure of A into account. The

function y, called the Structured Singular Value (SSV), is defined in

order to get the tightest possible bound on M such that (26) is
satisfied. A more precise definition of p and some of its properties
are given in Appendix 1. It is important to note that u(M) depends
both on the matrix M and on the structure of the perturbations A.
u(M) is a generalization of the spectral radius p(M) and maximum
singular value (M) in that u(M) = p(M) when the perturbation A is
totally structured (A=6I,|6|<1), and u(M) = (M) when the perturbation
is unstructured (A is a full matrix). Note that the matrix M is a
function of the nominal system only, and the condition uM) <1 limits
the possible nominal transfer functions.

At this point, it is not apparent that the uncertainty description
(22)-(25), does indeed provide a useful framework for handling
uncertainty. Furthermore, it is not clear how to find the matrix M.
Hopefully this will become clearer through the examples below.

2. Input uncertainty for distillation column (Example)

It is now possible to derive a less conservative robust stability
test for the distillation column example. Previously, we assumed that
the input uncertainty was unstructured, but now A7 in (17) may be
restricted to be a diagonal matrix which results in a tight
description of the uqcertainty. The interconnection matrix M = wI(s)ﬁI

and, from Theorem 5,
R.S. iff w(fp) < 1/|wI(jm)| = 1/81(w) Yu

where p(ﬁl) is computed with respect to the diagonal matrix Aj. From

Fig. 3 we see that this condition is satisfied and robust stability is
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guaranteed with the chosen controller (15).

3. Simultaneous Input and Output Multiplicative Uncertainty

Consider the system in Fig. 5 which has both input and output
multiplicative uncertainty with respect to the model of the plant P.
The possible plants are given by

P = (I+Lg)P(I+L])

LT = WgAW,1, 3(A7) <1 Yuw (28)

Lo = WaoAgW:g, 3(80) <1 Yu
The perturbation block Ay represents the multiplicative input
uncertainty. If its source is uncertainty with respect to the
manipulated variables, then

A7: diagonal, W,y = diag{wir} , Wor = I

where wyj represents the relative uncertainty on each manipulated
input.

The block Ap represents the multiplicative output uncertainty.
If its source is uncertainty or neglected deadtimes involved in one or
more of the measurements, then

Ag. diagonal, W,g = diag{wgjl, Wop = I

woji represents the relative uncertainty for each measurement. These
sources of input and output uncertainty are present in any plant. Ar
and A, are restricted to be diagonal matrices, since there is little
reason to assume that the actuators or measurements influence each
other. However, some of the unmodelled dynamics in the plant P
itself, which has cross terms, may be approximated by lumping them
into A1 or Ap, thus making either one of them a "full" matrix.

To examine the constraints on the nominal system imposed by the

robust stability requirement for this uncertainty description, let A =



- 37 -
diag{A1,Ap} and rearrange the system in Fig. 5 into the form in Fig. 6.

The interconnection matrix M becomes:

W, ICB(I+CP) W,y -W.C(I+P)™ Wy
W,oP(I+CP)™W,r  =W,oPC(I+PC)™ Wy

W T -p~ip i |[W N

TR )
and robust stability is guaranteed for all A such that g(A) < 1 if and
only if u(M) < 1, ¥w. u is computed with respect to the structure
of A which in turn depends on the structure assumed for Ay and Ap.
Note that conditions (9) and (10) in Section IV are special cases of
(29) when the weights are assumed to be scalar, A7 and 4g are "full"
matrices, and either A7 = 0 or Ag = O. However, this only applies for
stable A's; an unstable Ag (or A7) may be allowed in condition (9) (or
(10)), while only stable A's were allowed when deriving (29).

4., Simultaneous Parametric and Unstructured Uncertainty (Reactor

Example)

Consider a perfectly mixed batch reactor where an exothermic
reaction is taking place. The reaction temperature T is controlled
using the temperature T, of the fluid in the cooling jacket (the fluid
in the cooling jacket may be boiling, and T, may be adjusted by
changing the pressure). A heat balance for the batch reactor gives

Col = (-8Hp)r = UA(T-To)

where
T reactor temperature (K)
To:  coolant temperature (K)
r: reaction rate (function of T) (mol/s)

AHp: heat of reaction (negative constant) (J/mol)
Cp:  total heat capacity of fluid in reactor (J/K)
UA: overall heat transfer coefficient (J/sK)
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Linearizing the reaction rate
r = r° + kpdT

results in a linear transfer function from T, to T

UA/Cp
dT(s) = 53 dTe(s) (30)
where
UA-(-AHp)K
a = ________(C rKT (31)
P

Two sources of uncertainty will be considered for the linear model
(30): 1) The effect of nonlinearity expressed as uncertainty in the
pole location a. 2) Neglected high-frequency dynamics.

Pole Uncertainty (Ag). Most of the terms in (31) are nearly constant,

except for kr = 3r/dT which is a strong function of temperature
(operating point). From (31) we see that the reactor may be open loop
stable (a>0) at low temperatures where kT is small, and unstable at
high temperatures where the reaction is more temperature sensitive.

To describe the effect temperature has on a, let

a:  nominal pole location
raz:  relative "uncertainty" in a (real constant)

If r5 > 1, the plant may change between stability and unstability.
Equivalently, the possible a's may be written in terms of a norm-
bounded perturbation -Ag

a = a(1+rzag) , |as| < 1, g real (32)
and this may be written as an inverse multiplicative perturbation
(I+WsAs)=* on the plant.

4
1+s8/a

11 1  wg(s) =

5+a  g4+a 1+Wg(8)Ag (33)
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Neglected Dynamics (modelled as unstructured output uncertainty (Ag)).

A plant always has some unknown uncertainty, mainly at higher
frequencies, which cannot be modelled in a "structured" manner (using
parametric uncertainty, etc.). These sources are most conveniently
modelled as multiplicative uncertainty; in this case we choose to use
output multiplicative uncertainty (I+wglg). Physically, this
uncertainty may include neglected (and unknown) dynamics for changing
the cooling temperature T, (if T, is manipulated indirectly with
pressure), neglected actuator dynamics (the valve used to control
pressure) and neglected dynamics introduced by the heat capacity of
the walls. A conservative choice for wp(s) is found by approximating
the neglected dynamics as an effective time delay, and choosing
|wo(jw)| % 1 at the frequency where the phase lag represented by the
neglected dynamics reaches 60° (|1~e39| =1 for 8 = 60°),

A block diagram representation of the uncertainty is depicted in
Fig. 7. Note that both blocks (Ag and Ag) are in general needed: We
cannot lump the pole uncertainty (Ag) into the output uncertainty (Ap)
if the pole is allowed to cross the jw-axis. This would result in
|wo(jw)| + o at w = 0. Similarly, we cannot lump the output
uncertainty into the pole uncertainty. The reason is that the inverse
multiplicative uncertainty description (Ag) cannot be used to model
neglected or uncertain RHP zeros (this would require an unstable
perturbation Ag). It is therefore not suited for handling neglected
high frequency dynamics which most certainly include RHP zeros (one
simple example is the "dead band" on any valve).

Combining the two scalar perturbations into one Dblock

perturbation A =diag{Ag,A,} and rearranging Fig. 7 to match Fig. 6
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gives the following interconnection matrix:

L | WS ol (34)
WgS -woH
From Theorem 5, robust stability is guaranteed
iff uM) <1 Vo
or iff  |wg§| + Jwoll| <1 W (35)

Because of the identity H + S = 1, this bound is impossible to satisfy
if ]wsl and |wO| are both "large" (that is, close to one or larger)

over the same frequency range. For ry > 1 the pole may cross the
Ju-axis, and |Ws| >1 for w < w* = a Yrz*=71 and stl <1 forw > wt.

In that situation, Robust Stability 1is guaranteed only if the
"unstructured" relative uncertainty given in terms of Iwo(jw)' reaches
one at a frequency higher than w®.

If pole uncertainty were the only source of uncertainty (wp=0),
the robust stability bound would be |§|_§ |ws|. Since the plant is
minimum phase, this bound could always be satisfied by increasing the
gain and making S small, regardless of the size of rj.

In summary, the pole location uncertainty is handled by
"tightening" the control at low frequencies. Indeed, S small ("tight"
control) is needed in order to stabilize an unstable plant. However,
to realize robust stability in face of the uncertain high-frequency
dynamics, it is neceséary to detune the system and make H small (S =
I) at frequencies where wg(w) is larger than one. The implication of
this result for process design is that we cannot stabilize an unstable
plant if there are RHP-zeros or model uncertainty in the same

frequency range as the location of the unstable pole.
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A cH? [Lrel 5P [Tt
7.

Block diagram representation of uncertainty for Reactor Example.
Ap represents the neglected (and uncertain) high-frequency
dynamics. Ag represents the pole uncertainty (changes between
stability and instability are possible if |ws(jw)| > 1 at some
frequency). Rearranging this system to fit Fig. 6 gives M as in

Ec. (340,

inty:  |P1yPij (j(w). The disk
Figure 8. Additive element uncertainty: lle p13| < alJ(m)

represents the set of possible pij(jw) at a given frequency.
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5. Independent Uncertainty in the Transfer Matrix Elements

In many cases the uncertainty is most easily described in terms
of uncertainties on the individual transfer matrix elements. This kind
of uncertainty description may arise from an experimental
identification of the system. No claim is made that this uncertainty
description is a good representation of how the uncertainty actually
occurs, but it is included as a possibly useful description in some
cases.

The simplest form of element uncertainty arises from the
assumption that each element Pij in the plant P is independent, but
confined to a disk with radius aij(m) around ISij in the Nyquist plane
(Fig. 8), i.e.

.pij_sijl < aij(w) Yuw (36)
This corresponds to treating each element as an independent SISO plant
with additive uncertainty of size aij(m). Multiplicative (relative)
uncertainty rjj on the elements may also be written in the form (36)
by using
agjlw) = rij() |By; (37)
The main limitation of the uncertainty description (36) is that
correlations between the elements cannot be handled (potentially very
conservative as shown for the distillation example in Section V.3).
Defining the complex perturbation, A5 (36) becomes
Pij - Bij = Ajj a1 o |Aij| <1 (38)

Or equivalently, in matrix form

allau ﬂlzaxz
e 621821 LR

P-F
o (39)
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Introducing weighting matrices E and L it is possible to rewrite (39)
in terms of the "large" diagonal perturbation matrix Ag

P - P = EARL (40)

anz

where E € Rm‘“z, L € RN*XN angd Ag € ch are defined as

— - ali
a "
2t 2 "- y
=[II..I],Ls= an v 3 ani )
AE = diag{Alqulv evey Ann} ’ |AiJ| <

A block diagram representation of (40) is given by Fig. 4 with W,
= E and W, = L. This system may be rearranged into the form in Fig. 6
with the interconnection matrix M = LC(I+PC)™'E = LP™'HE. From

—

Theorem 5 follows the necessary and sufficient condition for robust

stability:

WLPTHE) <1 W (42)
where u 1is computed with respect to the diagonal matrix Ag. In
principle, this condition may be used to generate all nominal closed
loop transfer matrices H for which the closed loop system is robustly
stable. Alternatively, it may be used to check whether a particular
design meets the robust stability requirement. However, at the design
stage (when dynamic resilience is to be determined), H is not known,
but rather the restrictions on H as imposed by the uncertainty are of
interest. In order to obtain an explicit bound on H from (42), assume
that H = hI, that is, assume the nominal response is decoupled with

identical responses. From (42) follows:

R.S. (H=R1) iff o(H) = |R] ¢« 1 ___ 4
Al < W 43

Again, this bound shows that the system has to be detuned and
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performance be sacrificed when the uncertainty is large, that is, in
this case when w(LP~'E) > 1. w(LP~'E) is a measure of the dynamic
resilience which takes into account both the size of the uncertainty
and the sensitivity of the plant to uncertainty. In Section V.3, a
numerical example incorporating condition (43) is provided.

Upper bounds for w(LP~!HE). Alternative sufficient robust stability

conditions for this uncertainty description have been derived by
Kouvaritakis and Latchman (1985) and by Kantor and Andres (1983).
Kouvariakis and Latchman's (1985) condition provides a tight upper

bound on u

. 3(D,AD -
p(LP7HE) < min ODAD2) def \x (y F-15) (44)

D,,D, o(D,A™'FD,)
Here A = {aij} and D, and D, are diagonal matrices with real, positive
entries. Kouvaritakis and Latchman (1985) claim that (44) is an
equality, but their proof is wrong (Doyle, 1986). However, the bound
is tight in most cases and is useful since it is easier to compute
than p(LB~'HE). Another upper bound which is even easier to compute,
but is more conservative, is given by Kantor and Andres (1983)

wLP~HE) < p(a|PH|) (45)
The spectral radius of the positive matrix Alﬁ'lm is easily computed
as the Perron-Frobenius root of the matrix.

Special case: Equal relative uncertainty. Consider the special case

when all the elemem';s have the same relative uncertainty r, i.e.

A = r'lf’l (46)
Assuming H = hI and using (44) and (45), the robust stability condition
(42) becomes

R.S. if |h] < 170 k*(B[,B)  ¥u (47
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i R < /e o(|B||Bt) W _ (48)
These conditions obviously also hold for the case when the relative
uncertainties are different provided that r is replaced by the largest

relative uncertainty in any element, rpax

rpax(w) = maﬁ ri j(w) (49a)
where
P1§~Pi j
rij = max L 1 (49b)
Pew Pij

Note that k*(|P|,P) can be viewed as a minimized condition number. A

more thorough discussion of this result appears in Section V.
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V. THE CONDITION NUMBER AS A SENSITIVITY MEASURE

This section discusses the use of the condition number Y(P) as a
sensitivity measure with respect to uncertainty. A plant is called
ill-conditioned if the condition number Y(®) is high. Physically, this

.means that the gain of the plant is strongly dependent on the input

direction (see Notation). We give two interpretations to the condition

number:

1. The minimized condition number, Y¥(P) is a stability sensitivity
measure with respect to independent uncertainty on the elements
with similar relative uncertainty,

2. Y(P) is a robust performance sensitivity measure with respect to
input uncertainty (as discussed following Eq. (12)).

1. Y¥P) as a sensitivity measure

It has been argued previously in a somewhat qualitative manner
(Grosdidier, et al., 1985) that for robust stability the minimized
condition_number Y*(P) is a measure of sensitivity with respect to
model uncertainty. Furthermore, there is a direct relationship
between large elements in the Relative Gain Array (RGA) and Y¥(P)
(Grosdidier, et al., 1985), and large elements in the RGA are often
claimed to indicate sensitivity to model uncertainty. It will be
shown that the minimized condition number Y*(P) and the RGA are useful
measures with respect to element uncertainty, but only if the relative
errors of the transfer matrix elements are independent and have
similar magnitude bounds. This proves to be a restrictive assumption

in many cases.
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Express the uncertainty in terms of the largest relative
uncertainty, rpax, in any of the transfer matrix elements (49). This
uncertainty description is independent of scaling.

Theorem 6. Condition number criterion. Let II be any set of plants

such that P and P have the same number of RHP (unstable) poles, and
define rpax as in (49). Assume the nominal response is decoupled, H =
diag{ﬁi} and assume the system is nominally stable. Then robust

stability is guaranteed

Yw, Wi (50)

which is satisfied

iRy < 1 vu, Vi (51)

rpax’n Y¥(P)

Y*(P) is the minimized condition number and Y;(IS) is the minimized
"absolute" condition number as defined in the Notation. The minimized
condition numbers Y*(B) and Y;(ﬁ) are similar in magnitude since (Lemma
2, Appendix 2)

Ya®)//m < YB) < Ya(B)
Condition (50) in Theorem 6 is very similar to condition (47) involving
k*(|B|,P), but there are two differences:
1. Condition (50) also holds the when the decoupled nominal
responses are not identical.
2. Condition (50) is less conservative since Ya(B) < k*(|B|,B) (use

5(|D.FD.|) < 500, |B[D2)).

By comparing (47), (48), (50) and (51) the following chain of

inequalitites is obtained

VB < Y4B < k*(BLE) < o(B] B (52)
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Condition (50) is clearly conservative if the individual relative
uncertainties on the elements, rij are different in magnitude.
However, from the discussion following Eq. (44), the bound is expected
to be tight when the relative error bounds are equal; in fact, the
bound is the tightest possible for 2x2 plants.

Theorem 7 (2x2): Assume H = hI and rij = Cmax. 1nen condition (50) in

Theorem 6 is necessary and sufficient for robust stability.

In particular, Theorem 7 implies that, for the case of equal
relative element uncertainty (using the nomenclature from Section
Iv.5),

(2x2): WLFIE) = rYa(P) (53)
and for higher order systems rY;(I's) is expected to give a tight upper
pound on u(LP™'E).

Improved condition at steady state. The uncertainty description above

assumes that each transfer matrix element is given by
Pij = Bij(1+f'iinj) , |Aij| <1

where Ajj is a complex scalar. This may be reasonable at non-zero
frequencies, but does not make any physical sense at steady state
(u=0) where P, P and Ajj are real. Theorem 7 may therefore be
conservative at w = O where complex perturbations cannot occur.
Fortunately, for 2x2 systems it turns out that we can derive a tight
condition by replacing Y;(ﬁ) by Y¥(F). Indeed, for the case of equal
relative uncertainty,

(2x2): upeal(Lﬁ"‘E) = rY*(F) (w=0) (51
Theorem 4B and (54) may be combined into the following theorem.

Theorem 8. (2x2) Integral Control (H(0)=I)
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Assume the uncertainties of the elements in P(0) are independent
and real and have equal relative magnitude bounds r. Then for open
loop stable systems, robust stability and integral control may be
achieved

ire  Y¥(P(0)) < 1/r (55)

If the magnitude bounds on the relative uncertainties are not
equal, and r is replaced by rpax, Theorem 8 provides a sufficient
condition for robust stability and integral control. Theorem 8 is
unique to 2x2 systems; numerical examples show no such relationship
for systems of higher dimensions.

Theorem 7 and 8 give very clear interpretations of the minimized
condition numbers as sensitivity measures: Y*(P(0)) and Y;(ﬁ(jw)) are
accurate measures of sensitivity only if the plant uncertainties are
given in terms of independent (uncorrelated) norm-bounded elements

with equal relative error bounds. For other uncertainty structures

the minimized condition number may be a very misleading sensitivity
measure, and bounds on the uncertainties such as (55) may be
arbitrarily conservative. This will be illustrated by a subsequent
example,

2. Relationship to the RGA

A relationship between Y*(P) and the induced 1- and =-norms of
the RGA has been conjectured by Grosdidier et al. (1985):
Y*(P) < 2 max| |RGA| |11, | |RCA| |iw] (56)
Numerical examples show that this bound does not hold for systems of
dimension qu.or higher. However, for 2x2 systems (56) holds even
with Y*;(P), and a stronger result is:

Theorem 9 (2x2):  Y*;(P) < ||RGA||,

(57)
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Note that for 2x2 systems ||RGA||, = 2| |RGA||i, = 2| |RGA||{=. Numerical
examples for 3x3 and 4x4 systems support the following extension to
systems with higher dimensions:

Conjecture 1 (nxn): Y*;(F) < ||RGA| [, + k(n) (58)

with k(2) = 0, k(3) = 1 and k(4) = 2.

The use of the function k(n) was suggested by Nett (1986). For
real matrices and high condition numbers, ||RGA||, approaches Y*a(f’).
The bound (58) appears to be most conservative for small condition
numbers. Note that these relationships also hold for the frequency
dependent RGA if it is defined as in the Notation.

Theorems 6 and 7 and Conjecture 1 provide at least a partial
explanation of why ill-conditioned multivariable systems with large
RGA should already be avoided at the design stage: When Y*a (or Y¥)
or equivalently ||RGA||, is large, then the performance measured in
terms of IHI is very restricted (c.f. (50)) even if the model
uncertainty rpax is small.

i

3. Integral Control of High Purity Distillation Column (Example)

This example will illustrate that the stability bounds (50) and
(55) can be extremely conservative if the element uncertainties are
not independent. Once again consider the distillation column of Table
1, but this time with reflux L and boilup V as the manipulated inputs.

The steady state gain matrix is

- -

. 0.878  -0.864
P(°)=l_1.082 —1.096J

and

(RGA).; = 35.07, | [RGA||, = 138.275, Y*(B) = YA(F) = 138.268, Y(B) = 141.7



- 51 -

From the high condition number Y*(PB), one might conclude that the
plant may become singular for very small perturbations. This would
be true if the uncertainty had the form of independent element errors,
but not necessarily otherwise. To illustrate this point consider
conditions for using integral control (H(0)=I) under two different
assumptions about the uncertainty.

Case 1: The elements are assumed independent and norm bounded
with equal relative error r. From Section IV.5, Eq. (43) implies that
robust stability with integral control may be achieved iff u(LP~'E) <
1 (w=0) where u is computed with respect to the real perturbation

matrix Ag. Here:

[ 0.878 0
1.082 0
1 0 1 0] 0 0.864
B = [o 10 1J yL=r ] o 1.096 |

[35.07 -27.65  35.07 -27.65
34.07  -27.65  34.07  -27.65
43,22 -34.07 43,22 -34,07
43.22  -35.07 43.22  -35.07 |

LP™'E = p

which gives ppea1(LPT'E) = 138.268 r which is equal to rY*(P) as
expected from (54). The upper bound p(l?“?“l) on Y*(B) (52) happens
to give the same result, i.e. p(|13||§“|) = 138.268. Consequently,

1
Y*(p)

robust stability with integral action is possible iff r <

0.0072. In practice, the variation in each element (mainly due to
nonlinearities) is ml:th larger than 0.7%, and integral control does
not seem to be possible for this distillation column.

Case 2: A more realistic uncertainty description for this high purity
distillation column is the following additive uncertainty (Skogestad,

1986)




P-p- |4 ']

which may be written in terms of one real scalar A-block

P - B = WAW, W,=|d] _11J JW = D1 =17, a] <1
This highly structured uncertainty is mainly due to the material
balance constraints which cannot be violated. Using Theorem 5, robust

stability and integral control (H(0)=I) are possible iff ureal(wlﬁ‘*wz) <

1 (w=0). Here W,P~W, =0 -+

d| and therefore robust stability and
integral control are possible for any value of d and the elements may
even change sign without causing stability problems. Thus, despite
the high condition number, the system is not at all sensitive to this
physically-motivated model error.
VI. Conclusions

To guarantee robust stability, model uncertainty requires
feedback controllers be detuned and performance be sacrificed. To
what extent detuning proves necessary depends on the size of the
uncertainty as well as the sensitivity of the plant.

I) General Case: The Structured Singular Value u(M) is by definition

the best measure of the effect of uncertainty on performance:
Robust stability iff M) <1 Yuw 27)
However, here the issue is not control system design but rather
process design. From this viewpoint, systems whose closed loop
stability and performance are very sensitive to model error are
undesirable because they are either impossible to control or require
that enormous effort be put into the design of the control system.

Condition (27) assumes that a control system has already been designed
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and is therefore unsuitable for screening purposes at th_e design
stage. If additional assumptions are made on the type of model
uncertainty and the control structure, achievable performance can be
related directly to characteristics of the system itself. In the
following summary it is assumed that the nominal closed loop system
is decoupled (H=hI) with identical responses. This proves to be a
reasonable assumption at low frequencies, and leads to the least
conservative bounds.

II) Uncorrelated Element Uncertainty: P - P = EAL (40)

A = diag{aj}, 3(43) <1

Robust stability iff

~ 1
A < W (43)

III) Uncorrelated element uncertainty with similar relative errors:

Each element: Pij = Bij(“riinj)v lAijl <1
Largest relative error: rpagy = max rijj
1]
1. Robust stability if
g 1
h| ¢ ———= %o (50)
4] rmaxY a(P) '

2. 2x2 systems, rij=r ¥i,j, complex flij

Robust stability iff (Theorem 7)

= 1
Ihl < Py*a(ﬁ) v

3. 2x2 systems, rij=r ¥i,j, real Aij

Integral control and Robust stability may be achieved iff

RO)| = 1 ¢ —1—
R =1 < T (Bon (55)

The minimized condition number Y*(or Y*a) or equivalently the RGA

is a reliable indicator of closed-loop sensitivity to element
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uncertainty only if the relative errors of the transfer matrix
elements are independent (uncorrelated) and have similar magnitude
bounds.
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Notation

C(s)

P(s)

P(s)

|G|

HG1 s

1G] |2

|G |1

[ 1G] |ie

RGA

p(G)

3(G)

o(G)
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rational transfer matrix of fixed-parameter controller

nxn square rational transfer matrix of actual plant

{pi3}

nxn square rational transfer matrix of nominal plant
{p1 3}

set of all possible plants, i.e.Pe I and Pell

matrix G with all elements replaced by their absolute

value

Z Igijl - 1-norm of matrix G
i,J

b |gij lz 1/2 - 2-norm or Frobenius-norm of matrix G.
i,J

n
max Z |gi~jl - induced 1-norm ("max column sum")
J =1
n
maix Z lgijl - induced =-norm ("max row sum")
J=1

6x(G™")T where x denotes element-byRelement multiplication

(also called the Schur or Haddemard product) |
spectral radius of G, i.e. magnitude of largest eigenvalue

maximum singular value or spectral norm of the transfer

matrix G, which at each frequency is equal to the induced

2-norm

|Gul |.

B(G(juw)) = SUp LT (Gu) - 116] |12

minimum singular value



Y(G)
Ya(G)

Y*(G)

Y;(G)

<(G)

u(G)
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0(G(jw)) = min [ICul |- (Jw)
ha u | |u| |2

We have the property o(G) = 1/3(G™")

5(G)/a(G) = condition number

3(|G|)/0(G) - absolute condition number

minimized condition number, Y¥(G) = min Y(D,GD,), where D,
1Dz

and D, are diagonal matrices with real, positive entries.

For G, 2x2 and real:

1/2

14K k>0
—772
v¥(G) = [1-<'72] (Grosdidier, 1985)
1 Kk <0

minimized absolute condition number,

* ; 6('[)1002')
Y5(G) = Dmlg O

1972 —_

1/2

*
(2x2): Y5(G) = 11—1'31{/—2-[ (Appendix 2)
1-Kk

Rijnsdorps interaction measure for 2x2 plant

G) = —22%
k(@) £11822

structured singular value (see Appendix 1).

The Laplace variable s or jw is omitted in most cases.
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Appendix 1. The SSV p and its properties

Definition (Doyle, 1982). The function u(M), called the structured
singular value (SSV) is defined at each frequency such that p~'(M) is
equal to the smallest G(A) needed to make (I+AM) singular, i.e.

M) = mién {6]det(I+aM) = O for some A, F(A) < &(w)} (A1-1)
A is a block diagonal perturbation matrix. w(M) depends on the matrix
M and the structure of the perturbations A. The definition of u may
be extended by restricting A to a smaller set, e.g., A real. The
above definition is not in itself useful for computing u since the
optimization problem implied by it does not appear to be easily
solvable. Fortunately, Doyle (1982) has proven several properties of
p which makes it more useful for applications.

Properties of u (Doyle, 1982)

1. The following bounds exist for u:

p(M) < u(M) < (M) (A1-2)
u(M) = p(M) in the case A = 8I. u(M) = G(M) in the case A is
"unstructured", i.e., A is a full matrix.

2. Let W be the set of all unitary matrices with the same

structure as A, then
Jax p(MU) = u(M) (A1-3)
This optimization problem is in general not convex.

3. Let D be the set of real positive diagonal matrices D =
diag{djIj} where the size of each block (size of Ij) is equal to
the size of the blocks Aj. Then for 3 or fewer blocks

iR DOMD) - u(M) (A1-1)
For 4 or more blocks numerical evidence suggests that (A1-14)

gives a tight upper bound on w(M). A good estimate for the
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scaling matrix D is found by minimizing |[DMD™!||, (the Frobenius
norm).
waM) =|aju(M), a is a scalar.
For real matrices M with real, non-repeated perturbations, the
search in (A2-3) may be performed with real matrices U only, and
only the cornerpoints ("+1") need to be considered. For (20) and
(21) in Theorem U4 this implies that only cornerpoints for the

possible P(0)'s need to be checked.
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Appendix 2. Proof of Theorems

Proof of Theorem 3: The proof uses condition (26) from Section IV

which applies to any stable norm bounded perturbation. The
interconnection matrix M for the norm bounded additive set of plants,
Tp, is (rearrange Fig. 4 to get Fig. 6)
M = WC(I+BC)"W, = W,F~'fw, (A2-1)

Using P - P = WApW, we find det(I+AgM) = det(I+AaW,P 'fW,) =
det (I+W,ApW,P~'H) = det(I+(P-P)P~'fi), and assuming nominal stability and
using (26) it is found that robust stability is guaranteed

iff  det(I+(P-P)P™'H) # 0  ¥Pe T (A2-2)
Theorem 3 follows from (A2-2) by assuming H .= I.

Proof of Theorem 4A: Applying the Nyquist stability condition to (8)

we see that closed loop stability requires that the image of

det (I+(P-P)P~ ) (A2-3)
does not encircle the origin as s traverses the Nyquist D contour for
any Pell. For the case of integral control, the image starts from
(w=0) detP(0)P(0)~'. Using the strictly-proper assumption, the image
ends at (w==) det I = 1. The image of (A2-3) will therefore always
encircle the origin if it starts on the negative real axis and the
system will be unstable.

Proof of Theorem 4B:

Necessity: Follows from Theorem 4A
Sufficiency: For this uncertainty description robust stability is
guaranteed (Theorem 5)
iff  uW,PTHW) <1 Yo (A2-4)
iff  det(I+(P-P)P~'H) # 0  ¥w, ¥Pe Iy (A2-2)

w = 0: (A2-2) with H(0) = I is satisfied if (21) is satisfied.
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w > 0: For stable plants, it is always possible to select a
controller such that f = AI and |A| < 1/u W.P~W,) ¥u, i.e., such that
(A2-4) holds. This proves that by assuming (21), (A2-4) is satisfied

for all w, and robust stability can always be achieved.

Proof of Theorem 6: Consider any set of plants T, such that all Pe
I have the same number of RHP poles. Assuming nominal stability, the
Nyquist stability condition applied to (8) implies that robust
stability is guaranteed if and only if the image of det(I+(P-P)P'H)
does not encircle the origin as s traverses the Nyquist D-contour for
all Pe II. A sufficient condition for robust stability using the small
gain theorem is therefore

p((P-P)P™'H) < 1 ¥w, ¥Pe I (A2-5)
Here the spectral radius p is invariant under similarity
transformations. In particular, let D; and D, be real diagonal
"scaling" matrices P and P. Then for any Pe II we have
o((P-P)P™'H) = p(D,(P~F)D,D,'F~'D,”'D,HD,~*) < §(D,(P-F)D,D,~'F~'D,”'D,HD, ")

5(D,(P-P)D,)5(D,HD,™*)  3(D.(P-P)D,)

< . g(H) (for H = diag{h;}XA2-6
s o(D.FD,) a0y Y (for H - diaglng JIAz-0)
< rpax 9(D:FD) 5(f)  (Lemma 1) (A2-7)

- E(DIPDZ)

Combining (A2-5) and (A2-7) and choosing the scalings D, and D, to get

the least conservative bound, R.S. is guaranteed

3/D.PD . -
_ . = g|PifP2 —di . -
if Jrin S(M)rpaxy 5Py <1 e (H=diag{hi}) (A2-8)

192 —_

which is equivalent to

e (Rediagify}) (50)

This proves condition (50). Condition (51) follows directly from (50)
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by applying Lemma 2 below.
Lemma 1
Consider any set of plants II. Then,
max (304(P-F)D,) < rpax 3(|DPD.|) (A2-9)
and equality applies if the set N is norm bounded with independent
elements and all elements have the same relative uncertainty.
Let A be the matrix which bounds each element in P - P
|P-P| < A(w) ¥Pe T (A2-10)
Then
max (p- B) < A < rmaxc(|P|) (A2-11)
(The first inequality is an equality if all P satisfying (A2-10) may
occur in practice). The last inequality follows trivially since A <
Fmax|§|- It will be an equality if the relative uncertainty bounds of
the elements are equal. To derive (A2-9), note that the relative
errors rijj and rpax are unchanged by applying the diagonal scalings D,
and D, to the plant.

Comment: Note that the bound involves lDlﬁD2 and not DJﬁIDz. The

last would be more conservative since for D, and D, real and positive
3(|D.D.|) < 5(D:[F[p2)
Lemma 2

Let G be a matrix of size nxn. Then
5(0) < 5(G]) < YA 3(G) (A2-12)

Proof: The following property is proved by Stone (1962)

—= 116l < 3@ < |[e] |
n
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Using the obvious property |[G]|, = || |G| ||. we get
5GP < |16]|. £ V1 5(G) QED

Proof of Theorem 7:

Let P be a nonsingular 2x2 transfer matrix and consider the case

of independent elements with equal relative errors r.

[511(1+PA11) 512(1+PA12)

P=]. -~ y 4131 <1 Yo (A2-13)
p21(1+r.A21) p22(1+I‘A22)J ' lJ'

Comparing (50) with (43) we see that Theorem 7 holds if it can be
proved for this uncertainty description that
(2x2):  W(LP~E) = ry*;(F) (53)
Since both W(LPT'E) and rY*;(B) scale linearly with r, (53) is
equivalent to the following statement
WLPTIE) <1 <=> rY*(B) < 1

Note from (43) that w(LF™'E) < 1 is a condition for having "perfect
control" (H=I). Then using Theorem 3, which applies to robust
stability and "perfect control," we get

WLP™E) < 1 <=> detP(ju)) 40, ¥
Theorem 7 will therefore be correct if for each frequency

eY*a(B) <1 <=> det(P(ju)) £ 0 , ¥P (A2-14)
i.e. if it can prove the following statement:
"At each frequency the smallest r which makes detP = 0 is r =
1/7* (B (h2-15)
Define at each frequency

= Pi2Day :
K 511522 = || eJ¢

and use
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detP = 0 iff  (1+rA, )(1+rAs,) = x(1+rA ) (1+rA,,) (A2-16)
The smallest r which satisfies (A2-16) is found for A,; = A, = Ay, Ay
= Ay = A, and
(1+rA)?% = k(1+rp,)?
Introduce A, = eJ$1, A, = eJ92, where ¢, and ¢, are free to be chosen,

to find:

(2
172 5o s

1-1c|'2ed¢/2 < p«|
The left hand side is fixed. Using geometrical arguments it is evident
that the smallest r satisfying this expression is found when ¢, and ¢,
are chosen such that the two terms on the right hand side are aligned

and in the direction of the left hand side:

[1_|K|1/2ej¢/2| - |1_K1/2| = r(jx|1/2+1)

1= 172
r - |_.__7_l1 ] (A2-17)

T+[k]
The derivation of the expression for Y*a(ﬁ) is very tedious but
straightforward and follows the derivation for Y¥(P) (Grosdidier et
al.,1985). This derivation shows that r given in (A2-17) is equal to
1/Y*a(§) which proves (A2-15) and thus proves the theorem.

Proof of Theorem 8:

The proof is similar to that of Theorem 7. The set of plants is
again given by (A2-13) but the perturbations are assumed to be real
(—1<Aij<1) and all the elements in P are also assumed to be real. As
for the proof of Theorem 7, (54) is proved if we can prove the
following statement is proved:

"The smallest r which makes detP = 0 (P and B j real) is r = 1/Y*(®"
(A2-18)
It is necessary to find the smallest r which satisfies (A2-16) when Ajj

is real.
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Case 1: kK < 0. In this case (A2-16) cannot be satisfied for any r < 1,

but it may clearly be satisfied if r = 1 (e.g. choose A,, = -1 and A, =
-<1). Consequently, the smallest r which makes detP = 0 in this case
is r = 1, and since Y*(F) = 1 for k < 0 (Grosdidier, 1985) we have r =
1/7%(P).

Case 2a: « > 1. Only cornerpoints of (A2-16) need to be checked (see

Appendix 1). Then it is obvious that the smallest r which satisfies
(A2-16) for « > 1 is the solution of (choose A, = A, = 1, A = Ay =
-1)

(1+4r)? = k(1-r)?

which has as its smallest root r = (Vi-1)/(Yk+1) = '1-»’? /(1+/%)

Case 2b: 0 < k < 1. The smallest r which satisfies (A2-16) in this

case iIs a solution of

(1-r3) = k(1+r)?

which has as its smallest root r = (1-/g)/(1+/K) = l1-/? /(1+/%).

Y*(P) is given in the Notation. From this it is evident that r is
equal to 1/Y*(P) also for k > 0 and this proves statement (54),
QED

Proof of Theorem 9:

For 2x2 systems the RGA becomes

) =Xy ] P,.p
o [N L e
1-A11 11 Pllpzz_PIZPZI K
| RGAI [, = 20| A e 1-An]) = 2 K (A2-20)

Using the expression for Y*, (po-17)

o 1+ [1/2 ¢ Le2lell 72+l ¢ |jmea]). ;@D
® 0 (|x|-2lk|2cospr2+1)T72 T (el
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Chapter III

EFFECT OF DISTURBANCE DIRECTIONS
ON CLOSED LOOP PERFORMANCE
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Abstract

The effectiveness of disturbance suppression in a multivariable
control system can depend strongly on the direction of the disturbance.
The "disturbance condition number" is introduced to quantify the effect
of disturbance direction on closed 1loop performance. As an example a
two point composition control system for a distillation column is

analyzed for various disturbances and setpoint changes.

*1o whom all correspondence should be addressed
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I. Introduction
Disturbance rejection is often the main objective of process
control. For multivariable systems, usually each disturbance affects
all the outputs. As an example consider a distillation column. A feed
composition disturbance corresponding to an increased amount of light

component in the feed leads to an increase of both product compositions

yp and xp. (Here yp and xp correspond to the mole fraction of light
component in the top and bottom product). In this paper we define as
ndisturbance direction" the direction of the system output vector
resulting from a specific disturbance. As we will show some disturbance
directions may be easily counteracted by the control system, while
others may not. The aim of this paper is to develop simple measures
which may be used to tell how the disturbances are "aligned" with the
plant and thus how well they can be rejected.

Consider the linear control system in Fig. 1. The process model is

y(s) = G(s)m(s) + Gq(s) z(s)
= G(s)m(s) + d(s) (1)

where y is the output vector, m is the manipulated input vector and d
represents the effect of the disturbances z on the outputs. The
transfer matrix G(s) is the process model, and Gq(s) is the disturbance
model expressing the relationship between the physical disturbances zj
and their effect on the output. For a distillation column the
components of 2 = (Z;, «uey Zis +oes zn)T may correspond to disturbances
in feed rate, feed composition, boilup rate, etc. The column vector g4i
of Gq represents the disturbance model for each disturbance zj., The

effect of a particular disturbance zj on the process output is dj,



Figure 1.
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Biock diagram of linear control system. The physical

disturbances z have the effect d = G4z on the outputs.
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dj = 8di 2 - (@)
The direction of the vector dj will be referred to as the direction of
disturbance i. The overall effect of all disturbances zj on the output
is d,

d=zdi=zgdizi=Gdz (3)
T ,

1

In most cases we will consider the effect of one particular disturbance
zi. To simplify notation we will usually drop the subscript i, and d =
g4z will then denote the effect of this single disturbance z; = z on the
outputs. We will also be referring to d as a "disturbance", although in
general it represents the effect of the physical disturbance.

We will consider two different effects of disturbance directions.
One is in terms of the magnitude of the manipulated variables m needed
to cancel the influence of the disturbance on the process output
completely at steady state. It is independent of the controller C.
Tnis may be used to identify problems with constraints at steady state.
However, the issue of constraints at steady state is not really a
control problem, but rather a plant design problem. Any well designed
plant should be able to reject disturbances at steady state. The second
and most important effect of disturbance directions is on closed loop
performance. Here we mean by performance the behavior of the

controlled outputs y in the presence of disturbances.

II. Singular Value Decomposition

Throughout this paper we will make use of the Singular Value

Decomposition (SVD) of a matrix (Klema and Laub, 1980). Any complex nxn
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matrix A can be written in the form

A =U zvH ()
where U and V are unitary matrices (UH = U™') and T is a diagonal matrix
with real nonnegative entries

T = diag {03} (5)
The superscript H denotes complex conjugate transpose. The set of {oJ-}
are the singular values of A, and we have
0y 2 022 oo on 2 0

The number of nonzero singular values is equal to the rank of the matrix
A. If the matrix A is nonsingular all singular values are greater than
zero, and this will be assumed in the following. The maximum singular

value ¢, = § and the minimum singular value o = ¢ are of particular

interest because of the properties

| [Av] |2

max = G(A) (6a)
V40 Vil

and
min LAV a(A) (6b)
V£C [V =

Here | |||, denotes the Euclicean vector norm.

K] = (2 %972
i

Consequently, § corresponds to the largest amplification of the matrix A
and ¢ to its smallest -amplification. The matrix U consists of the left
singular vectors {uj}, |IUJ| | = 1, and the matrix V of the right singular
vectors {vj}, ||vJ-| |o = 1. For each right singular vector vj we have

Avj = o3(A) uj (7

and in particular for the singular vectors associated with the maximum




and minimum singular value

Av = G(A)D (8a)

Av = a(Au (8b)
¥#(A) therefore corresponds to the direction of the input with the
largest amplification, and v(A) to the direction with the smallest
amplification. Furthermore

A~ =y z7'UH 9)
which is the SVD of A~!, but with the order of the singular values

reversed. Let & = n-j+1. It then follows from (9)

OJ(A—l) = 1/ag9(A) (10a)
uj(A™") = vy(A) (10b)
V(AT = ug(A) (10¢)
and in particular
5(A™) = 1/0(A) (11a)
aA™) = v(A) (11b)
u(A™) = ¥(A) (11¢)

III. Effect of Disturbance Direction on Manipulated Variables

Assume the disturbance model and the process model have been
scaled such that at steady state -1 < zj <1 corresponds to the expected
range of each disturbance and -1 < mj < 1 corresponds to the acceptable
range for each manipulated variable. For process control mj = -1 may
correspond to a closed valve and mj = 1 to a fully open valve. The

steady state process model is

y = Gm + G4z (12)
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For complete disturbance rejection (y=0) we require

m = -G™' Ggz (13)
Let ||x||» denote the largest component of the vector x. To avoid
problems with constraints we have to require

|Im |o < 1 for all |[z]]a < 1

Mathematically this is equivalent to requiring

|167Gq] 1o < 1 (1)
|[A] ]i= is the induced =-norm of the matrix A which is equal to its

largest row sum:

[IA] ;= = max (2 |ag) (15)
1 i

Whether (14) is violated and constraints cause problems depends both on
the process model G and the disturbance model Gq. Even if ||G7||i~ is
"large", ||G7'Gq||i» can be "small" if Gq is "aligned" with G™' in a
certain manner. We will discuss tnis in more detail below.

The disturbance condition number

Even when constraints are not causing any problems, it is of
interest to investigate the magnitude of the manipulated variable
necessary to compensate for the effect of a disturbance. In this
context it is more reasonable to use the Euclidean (2-) norm as a
measure of magnitude because it "sums up" the deviations of all
manipulated variables rather than accounting for the maximum deviation
only (like the «-norm). Consider a particular disturbance d = ggqz. For
complete disturbance rejection of this disturbance

m = -G-'d (16)

The quantity
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[ 1m] /1 1d] | = 16™a] |./{ |a] |2 an
depends only on the direction of the disturbance d but not on its
magnitude. It measures the magnitude of m needed to reject a
disturbance d of unit magnitude which enters in a particular direction
expressed by d/||d| ..

The "best" disturbance direction, requiring the least action by the
manipulated variables, is that of the singular vector G(G) associated
with the largest singular value of G.

d = v(G™) = T(G)
In this case we find by using (11b)
[1G™4d] /| |d] |» = | |GT'¥(G™")] l. = 0(G™") = 1/3(G) (13)
By normalizing Eq. (17) with this "best" disturbance, we obtain the

following measure which we call the disturbance condition number

|167'd] |

'Yd(G) = —ﬂ'aﬂ:— 5(G) (19a)

_ 1l6™"edl |2

T 5(G) (19b)

It measures the magnitude of the manipulated variables needed to reject

a disturbance in the direction d relative to rejecting a disturbance with
the same magnitude, but in the "best" direction.
The "worst" disturbance direction is

d = 9(G™) = u(G)

and in this case we get
Y4(Gmax = 3(G™1)3T(G) = Y(G) (20)

where Y(G) is the condition\number of the plant. It follows

1 < v4(G) < Y(G)

and Yq(G) may be viewed as a generalization of the condition number Y(G)
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of the plant, which also takes into account the direction of the
disturbances. The disturbance condition number Y4(G) is clearly scaling
dependent since Y(G) is scaling dependent. We know that ill-conditioned
plants (Y(G) large) indicate control problems (Morari, 1983, Skogestad
and Morari, 1986a). A large value of Y(G) indicates a large degree of
directionality in the plant G, which may have to be compensated for by
the controller in order to get good response. We used "may" in the last
sentence, because this also depends on the disturbance direction: If
Yq(G) is small for all disturbances, then it really does not matter if
Y(G) is large.

In the next section we will look at closed loop performance and
show explicitly the physical significance Yq(G) in this context.
However, let us first look at another measure which has been suggested
for measuring disturbance directionality.

The Relative Disturbance Gain

We will show that the Relative Disturbance Gain (RDG) introduced by
Stanley et al. (1985) is similar to the disturbance measure Yq4(G) defined
above, but with a different normalization. One advantage of the RDG is
that it is scaling independent, while Y4(G) is scaling dependent. On the
other hand, the physical significance of the RDG is less clear than that
of Y4q(G).

For a particular -disturbance z, the RDG, By, is defined for each
manipulated variable, my, as

(3mg/92)y 5
By = (3mgl/BZ)YQ‘,mj,4Q

(21)

(Bmp/az)yj is the change in manipulated variable mj needed for perfect

disturbance rejection. (aml/az)yl,mjﬁl is the change in manipulated
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variable my needed for perfect disturbance rejection for the
corresponding output yg, while keeping all other manipulated variables
constant. To find the relationship between 3y and Y4(G) use the

following identities (Grosdidier, 1985)

[—am J (G'gq) (22)
- -(G™'g

om
[—a—ﬂ - -((Gg1ag)™'8d)s (23)
Yo oMikg

Here Gqjag denotes the matrix consisting of the diagonal elements in G.
Using d = g4z, the definition of Ry (21) may be rewritten as

-1gq
3 = (G™'d)y (1)

(24) is similar to the definition of Y4(G) in Eq. (19), but with the
diagonal plant as the normalization factor. Note that 8¢ = 1 if G is
diagonal.
We can also define a RDG matrix for the case when we have several
disturbances z as
RDG = G™'Gq+ (Ggiag)™ 'Gd (25)
where the division in this case denotes element by element division.
Note the resemblance with the Relative Gain Array (RGA) which may be
defined as the matrix
RGA = G x (G™)T (26)
where x denotes elemenf by element (Schur) multiplication. The RGA is
also scaling invariant.
Stanley et al. (1985) claim that the RDG can be used to investigate
the effect of decoupling. However, Eg. (21) and (24) clearly show that

the RDG is independent of the controller which may or may not include
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decoupling. The meaning of (24) when G is replaced by GH, where H
denotes a decoupler, is not clear. The variables mg will then be some
internal variable in the controller with no direct physical significance.
Below we will derive an alternative physical interpretation for 8y
in terms of closed loop performance which retains it significance when G

is replaced by GH in Eq. (24).

IV. Effect of Disturbance Direction on Closed Loop Performance

In Section III we derived measures of how the magnitude of the
manipulated variables depends on the disturbance direction. In this
section we will rederive these measures in terms of closed loop
performance. This will give us a more powerful interpretation of these
measures and will allow us to define dynamic measures and to include
"decouplers".

The disturbance condition number

One objective of the control system (Fig. 1) is to minimize the
effect of the disturbances on the outputs y. Consider a particular
disturbance d(s) = gq(s)z(s). The closed-loop relationship between this
disturbance and the outputs is

y(s) = (I+G(s)C(s)~' d(s) = S(s)d(s) (27)
where S(s) = (I+G(s)C(s))™* (28)
Let |ly(jw)||. denote "the Euclidean norm of y evaluated at each
frequency. The quantity
alw) = ||8d(iw)] |/] |d(Gw)] |2 (29)
depends only on the disturbance direction but not on its magnitude. a(w)
measures the magnitude of the output vector y(jw) resulting from a

sinusoidal disturbance d(jw) of unit magnitude and frequency w.
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The "best" disturbance direction causing the smallest output
deviation is that of the right singular vector v(S) associated with the
smallest singular value og(S) of S. By normalizing a(w) with this best

disturbance we obtain the disturbance condition number of S™*

| 154] |2

Yq(8™) = ST (Jw) (30)

S™! is used in the argument of Y4 for consistency with the previously
defined Y4(G) in Eq. (19).
Again

1 < Yg(8™) < Y(S) (31)

At low frequencies where the controller gain is high we have

S(jw) = (GC(jw))™! (32)
In particular, this expression is exact at steady state (w=0) if we have
integral action. Based on this approximation we derive the disturbance

condition number of GC.

| [(GC)™'d] |

T 0(GC)(Jw) (33)

Yq(GC) =

As stated-above this measure has physical significance only when o(GC)
>> 1. To avoid problems with evaluating the measure at w = O write

C(s) = k(s)H(s) (31)
where k(s) is a scalar transfer function which includes any integral
action. H(s) may be vi_ewed as a "decoupler". We have

[|(GH)~"] .

Yd(GC) = d i

5 (GH)(Jw) (35)

To evaluate how the disturbance direction is aligned with the plant G
itself, choose H = I (i.e. the controller is k(s)I) and rederive the

disturbance condition number of G
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167} ). _

Y4(G) = —I—I—d—l-lj— a(G) (36)

Y4(G) can be interpreted in terms of closed loop performance as follows:
If a scalar controller C = k(s)I is chosen (which keeps the
directionality of the plant unchanged), then Y4(G) measures the magnitude
of the output y for a particular disturbance d, compared to the
magnitude of the output if the disturbance were in the "best" direction
(corresponding to the large plant gain). If Yq(G) = Y(G), the disturbance
has all its components in the "bad" direction corresponding to low plant
gain and low bandwidth. If Yd(G) = 1, the disturbance has all its
components in the "good" direction corresponding to high plant gain and
high bandwidtn.

Though a large value of Y4(G) does not necessarily imply bad
performance, it usually does. In principle we could choose a
compensator C which makes ’Yd(GC) = 1 for all disturbances. However,
this controller often leads to serious robustness problems. Whether
robustness problems arise or not depends very much on the type of model
uncertainty which is encountered. For a detailed analysis the reader is
referred to Morari% Doyle (1986) and Skogestad & Morari (1986a).

Decomposition of d along singular vectors

The objective here is to gain insight into the type of dynamic
response which is to be expected when disturbances along a particular
direction affects a system with a high degree of directionality (Y(S) is
"large"). The singular vectors vj(S) of S form an orthonormal basis.

The disturbance vector d can be represented in terms of this basis

n
d= 2 T - d) vyS) (37)
j=1
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Then the output y is described by

y(jw) = Sd(jw) (38a)
n
= 2. Svy(s) (vi8)T - d) (Gw) (38b)
=1
n
= 2 oy SuyS)vyS)T + d)(w) (38¢)
3=1
n
= 2 0y(8)dI(w) (384)
j=1

where we have defined the new "disturbance components"

dJ = (Vj(S)T . d)uJ'(S) (39)
(38d) shows that the response to a particular disturbance can be viewed
as the sum of responses to the disturbances dJ passing through the
scalar transfer function Oj(S). The magnitude of dJ depends on the
alignment of the disturbance d with the singular vector Vj(S). The
characteristics of the response (speed) to dJ depend on Oj(S).

For the controller
C(s) = k(s)H(s) (40)

with integral action in k(s) the approximation

S(w) ¥ L (G (Jw) (41)

is valid for small w. Defining £ = n - j + 1 and using (10), (38d)

becomes
e 4
y(w) & Ko7 (GH) d (42)
where
gL - an=i+1 - (u](GH) - d)vy(GH) (43)

The magnitude of d% is given by the component of d in the direction of
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the singular vector ug(GH) and d% affects the output along the direction
of the singular vector vg(GH). If the loop transfer matrix GH has a
high gain in this direction (i.e., 0g(GH) is large) then the control will
be quick and good. If the gain is low the response will be slow and
poor. If GH is ill-conditioned (Y(GH) large), the widely different
response characteristics for different disturbance components will
result in unusual overall system responses. These issues will become
clearer from the example at the end of this paper.

Performance Interpretation of the RDG

The process response to a particular disturbance d = g4z is given

Dy

y(s) = (I+GC(s))~'d(s) (4d)
Let the controller C be given by

C(s) = H(s)K(s) (45)

where K(s) is diagonal and includes integral action in all channels.
Since at 1low frequencies g(GC)(jw) >> 1, (44) can be approximated by

y(ju) & (GHK)™'d(jw) (46)

and in particular for oufput yg

. 1 s
v (Jw) = K2 Cm) [(GH)~'d(Juw) 1y (47)

Compare yg(jw) to the response that would occur if the off-diagonal

elements in the system GH were neglected:

((GH)™'d(Jw) ]y
[((GH)giag) ™ 'dly

8¢ (GH)(jw) = (jw) (48)

(48) gives a performance interpretation to the RDG and extends it to
frequencies other than zero. More importantly this definition provides a

justification for using RDG to evaluate the effect of decouplers H.
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Given:

Binary separation, liquid feed, constant molar flows

Relative volatility a=1.5

No. of theoretical trays N = 40

Feed tray location Np = 21

Feed composition xp = 0.5

Product compositions yp = 0.99, xg = 0.01
External flow rates F=1,B=0.5,D=20.5
Computed:

Reflux ratio L/D = 5.41

Gains using L and -V as inputs (linarized tray-by-tray model):

aya|  [o.878  0.8647 [ AL
axg| T L1.082  1.096] |-av

Table 1. Data for distillation column.
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The normalization using (GH)qjag makes the RDG scaling independent
which might be viewed as an advantage over Y. (In particular, the RDG
is the same for any diagonal controller K). However, contrary to Y4, a
physical interpretation becomes difficult or impossible. If a
disturbance does not affect yy at all one finds By = =. For example,
for a full 2x2 system with

dal = [0 1]

we find (Stanley et al., 1985)

RDG = B .7 =]

T 82| T LA(GH)
where X is the 1,1 element of the RGA of GH. (Also note that if GH were
diagonal, then 8, would be undefined for this épecific d). Consequently,

By may range in magnitude from -« to », and contrary to Yq(G) the

magnitude of 8¢ by itself is not very informative.

V. Example: LV-Distillation Column

Consider the distillation column in Table 1 with L and -V as
manipulated variables and the product compositions yp and xp as
controlled outputs. The steady state gain matrix is (Skogestad and

Morari, 1986Db)

_0.878 0.804
G- t1.086 1.096J (49)

We assume there will be no problems with constraints. We want to study
how well the system rejects various disturbances using a diagonal
controller C(s) = k(s) + I. Since we are only concerned about the
outputs (yp and Xg), the scaling does not matter provided the outputs

are scaled such that an output of magnitude one is equally "bad" for
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Disturbance z Setpoint
change
XF F aF *Vq YDS XBS
i 0.8817 [o.394] [0.868] [0.8647 [t 0
1.119 0.586 1.092] [1.096]| LO 1

RDG (Eq. (24)) [-10,1305] [-66.'0015] [8:'2121 [(1)]

= [s4]

Yaeg) (Ea. (19)) | 1.48 11.75 1.09 1.4 110.7  88.5

Table 2. Disturbance measures for distillation example.

10

18

16

FREQENCY (RADIANS/MINUTE)

Figure 2.  Disturbance condition number of S~' for disturbances in feed
rate F, feed composition xp, and setpoint change in yp. C(s)

= 0.1/s 1.
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both yp and xg. We have
3(G) = 1.972, 0(G) = 0.0139, Y(G) = 141.7, Apga(G) = 35.1
Consider disturbances z of unit magnitude in feed composition, Xxp,
feed flow rate, F, feed liquid fraction, qp, and boilup rate, -Vgq. The

linearized steady state disturbance models are

__Jo.8817 J0.3947 [0.8687] [0.864]
d-&q- L1.119} ’ Lo.586J ’ L1.092J ’ b.o%J (502)
Also consider setpoint changes in yp and xg of magnitude one. These are

mathematically equivalent to disturbances with

d=2gq-= {é} and [?} (50b)

The steady state values of the RDG, B8¢(G), and the disturbance condition
number, Y4(G), are given for these disturbances in Table 2. The
disturbance condition number of 87!, using the controller described
below, i3 shown as a function of frequency in Fig. 2. From these data
we see that disturbances in xp, qp and V are very well "aligned" with
the plant, and there is little need for using a "decoupler" to change the
directions of G. The feed flow disturbance is clearly the "worst"
disturbance, but even it has its largest effect in the '"gocd" direction.
A "decoupler" is clearly desirable if we want to follow setpoint
changes which have a large component in the "bad" direction corresponding
to low plant gains. However, a decoupler is not recommended for this
distillation column because of severe robustness problems caused by
uncertainty (Skogestad & Morari, 1986b). Therefore we cannot expect to
get good setpoint tracking for this LV-configuration. Other
configurations which are less sensitive to input uncertainty may be

better (Skogestad & Morari, 1986b). If setpoint changes are of little or
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no interest, the LV-configuration using a diagonal controller may be a
good choice. The response to a feed rate disturbances is then expected
to be somewhat sluggish because of the high value of Yd(G).

Time Responses

We will now confirm the predictions based on the data in Table 2 by
studying some time responses. Assume the plant G(s) has no dynamics,
i.e.,G(s) is as given in Eq. (49) at all frequencies. This may seem
unrealistic, but the dominating dynamics are often similar in all the
elements of G(s), and we can assume that these dynamics are exactly
compensated for by the dynamics in the controller. This also assumes
that the magnitude of the disturbances is small, such that a linear
approximation with constant time constants for the column is valid. We
use a diagonal controller of the form

C(s) = k(s)I
where k(s) is a simple integrator with gain 0.1 (min™!')

k(s) = gél

(In practice k(s) may be a PI-controller k(s) = (1+Ts)/s with integral
time T equal to the time constant of the distillation column).

Time domain simulations are shown for "disturbances" in xp and F
and for setpoint changes in yp in Fig. 3-5. We have simulated all
responses as step setpoint changes of size d (Eq. (50) to make
comparisons easier. All simulations are linear, and readers who are
concerned about nonphysical values for yp and xp may assume, for
example, that the deviations, Ayp and Axg, from the initial steady state,
are in ppm. Dynamics have not been included in the "disturbances" for xp

and F, which is clearly unrealistic, but this has been done to make the
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1.2
1 bxg
8.8 Byq
8.6
8.4
8.2
e—fTTTTT BERRERERERRRRRE LERRE
"] 268 400 6060 864Q 18006
SIMULATION-TIME (MIN.)
Fic.r= 2 Step chnange in sstpoint = (2.881, 1.119)T,
(Closes loop response to "disturbance" in xp.)
|
|
e e e e o
T G [ g —
K “p
8.2— |
= |
1T T S EEREE RN RN RRERE
B 208 400 6008 8008 1660

Figure 4,

SIMULATION-TIHE (HIN.)D

Step change in setpoint = (0.394, 0.586)7T.

(Closed loop response to "disturbance" in F.)
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1 —-———-—————————————

9—] EEEERRRRERE LN AL I ™)

e 200 400 608 8ge igee
SIMULATION-TIME (HMIN.)D

FLLLT D Step chiangs in setpoint = (1, O)T.
(Close? locp response to seipoint change for yp.)
Disturbance Setpoint change
XF F YDS

d' (Eq. (52a))

"
L =
dz (Eq. (52b)) [" y

Table 3.

d* and d* for distillation example.
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example simpler. The time responses confirm what could be predicted
based on the disturbance measures in Table 1 with respect to which
disturbances are the worst. However, the measures in Table 1 give no
direct way of predicting the shape of the responses. The responses are
odd-looking and one might almost expect that the system Iis nonlinear.
This is obviously not the case, and the response may in fact be easily
explained by decomposing the disturbances along the singular vector
directions of the closed loop system, as shown before. For each
disturbance, the closed loop frequency response at low frequencies can

be approximated by
y(w) = G dw)
By decomposing d along the "directions" of G as in Egs. (42) and (U43), we

may write this response as the sum of two SISO responses

y(jw) = LGLG) o+ k;G EZJ (51)

wnere
di = @l « d) ¥(G) (52a)
dz = T+ d) ¥(@) (52b)

Thus, each disturbance response will consist of two responses: one fast
in the direction d! and one slow in the direction of d?. The singular

value decomposition G =U zvH gives

s o] _ 1. 7
10 o] 00139
_ [-0.625 -0.781
u-r[o ul- L—0.781 0. 625]
s _ [-0.707 -0.708|
v-Lv vl L—o.708 0.797J

d! and d* are given in Table 3 for the cases simulated in Figs. 3-5.
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The decomposition in Egq. (51) and (52) which applies- at low
frequencies, explains the actual responses very well: Initially there is
a very fast response in the direction of ¥l = [-0.707 -0.708]. This
response has overall open loop transfer function k3(G) = 0.197/s
corresponding to a first order response with time constant 1/0.197 = 5.1

min. Added to this is a slow first order response with time constant
(0.1 0(G))™* = 720 min in the direction of.!T = [-0.708, 0.707]T.

Note that slow disturbance component d? is the "error" at t = 40
min, because the fast response has almost settled at this time. As an
example consider the disturbance in feed rate F (Fig. 4). At t = 40 min
the deviation from the desired setpoint, (0.394, 0.586)T, is approximately
equal to d2 = (-0.04, 0.04)T. Similarly, for the setpoint change in yp
(Fig. 5) the deviation from desired setpoint, (1,007, at t = 40 min is

approximately equal to d* = (0.55, -0.55)T.
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Abstract
I1l-conditioned plants are generally believed to be difficult to

control. Using a high-purity distillation column as an example, the
physical reason for the poor conditioning and its implications on control
system design and performance are explained. It is shown that an
cceptable performance/robustness trade-off cannot be obtained by simple
loop-shaping techniques (via singular values) and that a good understanding
of the model uncertainty is essential for robust control system design.
Physically motivated uncertainty descriptions (actuator uncertainty,
nonlinearities) are translated into the He/Structured Singular Value
framework, which is demonstrated to be a powerful tool to analyze and
understand the complex phenomena. For the particular example the most
effective solution to the control problem turns out to be an alternate

choice of manipulated variables (inputs) for which very simple controllers

yield robust high quality performance.
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I. INTRODUCTION
It is well known that ill-conditioned plants cause control br‘oblems
(Morari and Doyle, 1986, Skogestad and Morari, 1985). By ill-conditioned we
mean that the gain of the plant is strongly dependent on the input
direction, or equivalently that the plant has a high condition number
Y(G(jw)) = 3(G(Jw))/0(G(jw)) M

Here 3(G) and o(G) denote the maximum and minimum singular values of the

6(G) max HETJTL

u#0 uj |2
ol
u#0 I u lz

plant

o(G)

||:||. denotes the usual Euclidian norm. We also say that an ill-
conditioned plant is cheracterized by strong "directionality" because inputs
in directions corresponding to high plant gains are strongly amplified in
the plant, while inputs in directions corresponding to low plant gains are
not.

The main reason for the control problems associated with ill-
conditioned plants is "uncertainty". Uncertainty in the plant model may
have several origins:

1. There are always parameters in the linear model which are known only
approximately. For the distillation column such parameters may be
the relative volatility or the number of theoretical stages.

2. Measurement devices have imperfections. This may give rise to
uncertainty on the manipulated inputs in a distillation column, since
they are usually measured and adjusted in a cascade manner.

3. At high frequencies even the structure and the model order is
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unknown, and the uncertainty will exceed 100% at some frequency.

b, The parameters in the linear model may vary due to nonlinearities or
changes in the operating conditions. Examples of this are given in
Section V.

For "tight control" of ill-conditioned plants the controller has to
compensate for the strong directionality by applying large input signals in
the directions where the plant gain is low, that is, a controller similar
to G~! in directionality is desirable. However, because of uncertainty, the
direction of the large input may not correspond exactly to the low gain in
the plant and the amplification of these large input signals may be much
larger than expected from the model. This will result in large values of
the controlled variables y (Fig. 1), leading to poor performance or even
instability.

The concept of directionality is clearly unique to multivariable
systems, and extensions of design methods developed for SISO systems are
likely to fail for multivariable plants with a high degree of
directionality. Furthermore, since the problems with ill-conditioned
piants are closely related to how the uncertainty affects the particular
plant, it is very important to model the uncertainty as precisely as
possible. Most multivariable design methods (LQG, LQG/LTR, INA/DNA, IMC,
etc.) do not explicitly take the uncertainty description into account, and
these methods will in general not give acceptable designs for ill-
conditioned plants. .

A distillation column will be used as an example of an ill-conditioned
plant. Here the product compositions are very sensitive to changes in the

external flows (high gain in this direction), but quite insensitive to
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Figure 1. Classical linear feedback structure with error e as input to
the controller. d represents the effect of the disturbance
on the outputs'y.
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Figure 2. Two product distillation column with single feed and total

condenser. Details are shown of the flows and holdups on a
plate.
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changes in the internal flows (low gain in this direction). Distillation
columns are a major consumer of energy in the chemical industry, and there
is a large potential for savings by maintaining tighter control of the
product compositions. One interesting property of distillation columns is
that the condition number may be arbitrary large if the purity of the
products is sufficiently high. In this paper the main emphasis is on
general properties of ill-conditioned plants, rather than on the control
system design for a real distillation column.

II. DISTILLATION COLUMN EXAMPLE

Fundamentals of Distillation Control

The objective of a distillation column (Fig. 2) is to split the feed,
F, which is a mixture of a light and a heavy component, into a distillate
product, D, which contains most of the light component, and a bottom
product, B, which contains most of the heavy component. The compositions
zz, yp and xg of these streams refer to the mole fractions of light
component. Perfect separation would be obtained with yp = 1 and x5 = O.
The driving force for this separation is the difference in volatility
between the heavy (H) and light (L) component, which can be expressed by

the relative volatility

_YL/XL
YH/XH
X - mole fraction in liquid
¥ - mole fraction in vapor in equilibrium with x

For a binary separation yy = 1-yp, and xy = 1-x7,, and we get

aX

YT T @
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(the subscript L is generally dropped for the light component). In a
distillation column separation is improved over what can be obtained with
one stage (Eq. 2), by stacking stages on top of each other as shown in Fig.
2.

In such a distillation column there are five controlled variables

- Vapor holdup (expressed by the pressure p)
- Liquid holdup in accumulator (Mp)

- Liquid holdup in column base (Mp)

- Top composition (yp)

- Bottom composition (xp)

and five manipulated inputs
- Distillate flow (D)
-  Bottom flow (B)
- Reflux (L)
- Boilup (V) (controlled indirectly by the reboiler duty)
- Overhead vapor (V¢) (controlled indirectly by the condenser duty)

Because the composition dynamics are usually much slower than the flow
dynamics, we will make the simplifying assumption of perfect control of
holdup (i.e., p, Mp, Mp constant) and instantaneous flow responses. With
these assumptions and using the mole fractions of the light component at
each stage as state variables, we easily derive the nonlinear model shown
in the Appendix. Different control configurations are obtained by choosing
different inputs pairs (e.g., L and V) for composition control; the
remaining three manipulatea inputs are then determined by the requirement
of keeping p, Mp and Mp under perfect control. Irrespective of the control
configuration, the two operating variables corresponding to the high and

low plant gain are, as we shall see, the external flows (product flow
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rates, D and B) and the internal flows (which are changed by changing the

reflux L and boilup V while keeping D and B constant).

Model of the Distillation Column

The distillation column described in Table 1 will be used as an
example. The overhead composition is to be controlled at yp = 0.99 and the
bottom composition at xg = 0.01. Consider first using reflux L and boilup

V as manipulated variables for composition control, i.e.,

8yp AL
= ’ u =
Axp AV
This choice is often made since L and V have an immediate effect on
the product compositions yp and xp, respectively. By linearizing the
steady state model and assuming that the dynamics may be approximated by a

first order response with time constant © = 75 min, we derive the

follcwing linear model

ayp|. dL 1 [o0.878  -0.864
{dxa} } GLV[dv} v LV = 15T [1.082 -1.096:] (3)

This is admittedly a very crude model of this strongly nonlinear plant, but
the model is simple and displays the main features of the distillétion
column behavior. The use of a low order model for this high order plant
turns out to be a good approximation, since one time constant is usually
dominating (Moczek, et al., 1965). 1In Section V we will consider the
nonlinearities in more detail, and discuss how these may be treated as
uncertainty on the linear model (3).

Singular Value Analysis of the Model

The condition number of the plant (3) is

Y(GLV) = 1411.7
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Binary separation, constant molar flows

Relative volatility a=1.5

No. of theoretical trays N = 50

Feed tray location Np = 21

Feed rate and composition F = 1 kmol/min, zp = 0.5
Fraction of liquid in feed qr = 1.0

Product compositions yp = 0.99, xp = 0.01

Product rates D = B = 0.5 kmol/min

Tray holdup M; = 0.5 kmol, i = 2,40
Accumulator and column base holdup Mp = 32.1 kmol, Mg = 11.1 kmol

Computed at steady state from nonlinear model (Appendix)

Reflux rate L = 2.71 kmol/min (1.39 Lpin)

3.21 kmol/min

Boilup rate \'f

Linearized steady state gains
[dyp] [0.878 -0.8647 [dL] , [0.394 0.881
{de] - [1.082 -1.096] \:d\l] ' [0.586] aF + [1.119] dzp

Table 1. Data for distillation column example.
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which shows a high degree of directionality in the plant. More specific
information about this directionality is obtained from the Singular Value

Decomposition (SVD) of the steady state gain matrix

G =U oV
or equivalently since VH = v~!
Gv = 3(G)a
Gv = o(Gu
where
T = diag(g, o) = diag(1.972, 0.0139)
o[ S vee o[ S

The large plant gain, 3(G) = 1.972, is obtained when the inputs are in
the direction [g%} -9 - L0'7O7]. Since

dB = -dD = dL - dV (4)
this physically corresponds to the direction with the largest change in the

external flows, D and B. From the direction of the output vector @ =

[0.625

-
0 781J’ we see that changes in the external flows move the outputs in the

Yp+¥
same direction, i.e., mainly affect the average composition D2 B

Any column with products of high purity is sensitive to changes in the
external flows because the distillate rate D has to be about equal to the
amount of light component in the feed. Any imbalance leads to large
changes in the product compositions. Assume in our example that the
distillate flow D is increased by 5% to 0.525 kmol/min. Since there is

only 0.5 kmol/min of light component in the feed at least 0.025 kmol/min
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of this has to be heavy component. The best attainable value for the top
composition, even with total reflux, is then yp = 0.5/0.525 = 0.952. This
is far from the desired yp = 0.99.

The low plant gain, o(G) = 0.0139, is obtained for inputs in the

oo fa] ., _ [o.708 . :
direction l:dv} =V = [0_707]. From (4) observe that physically this

corresponds to changing the internal flow only (dB = dD = 0), and from the

0.781

-0 625}’ we see that the effect is to move the outputs

output vector u = [

in different directions, i.e., to change yq4 - Xp. Thus, it takes a large
control action to move the compositions in different directions and to make
both products purer simultaneously.

The notion that some changes are more "difficult" than others is
important, since it implies that some disturbances may be "easier" to
reject than others. Let d be the effect of the disturbance on the outputs
(Fig. 1), or let d represent a setpoint change. A disturbance d which has a
direction close to U, is expected to be Measy" to reject since it
corresponds to the high plant gain. Similarly, a disturbance close to u in
direction is expected to be more difficult. The disturbance condition
number, Yq(G), gives a more precise measure of how the disturbance is

"aligned" with the directions of the plant (Skogestad and Morari, 1986a).

[167d] |.

Yd(G) = —rl—arl';— 3(G) (5)

Y4q(G) ranges in value between 1 and Y(G). A value close to 1 indicates
that the disturbance is in the "good" direction (@) corresponding to the
high plant gain, v(G). A value close to Y(G) indicates that the disturbance

is in the "bad" direction (u) corresponding to the low plant gain, o(G). We
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will consider the following two disturbances (actually setpoint changes) in

the simulations

Vs, * [(‘)] with Yq,(G) = 110.5

Vs, = {8:2] with 74,(Q) = 12.3

s, corresponds to a setpoint change in yp only, and is seen to be a
change with a large component in the "bad" direction. The direction of ysg,
corresponds to that of a feed flow rate disturbance (Table 1) and it is
seen to have a large component in the "good" direction corresponding to the
high plant gain.

Linear Closed Loop Simulations

gggggg.simulations of the distillation column-using the model (3) will
now be used to support the following three claims regarding ill-conditioned
plants:
1. Inverse-based controllers are potentially very sensitive to
uncertainty on the input variables.
2. Low condition-number controllers are less sensitive to uncertainty,
but the response is strongly dependent on the disturbance direction.
3. Changing the plant may make the plant insensitive to uncertainty on
the input variables.

1. Inverse-based controllers are potentially very sensitive to

uncertainty on the input variables

The inverse-based controller

= () k,(1+75s) 39.942 -31.487
LV s

Ky
Cl(s> = ? G = 39.}432 _31 .997] 3 kl = 0.7 min_l (6)

may be derived by using the IMC design procedure with a first order filter
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(Morari et al., 1987) or by using a steady state decoupler plus a PI
controller. This controller should in theory remove all the directionality
of the plant and give rise to a decoupled first order response with time
constant 1.43 min. This is indeed confirmed by the simulations in Fig. 3A
and Fig. 4A for the case with no uncertainty. In practice, the plant is
different from the model, and for the simulations in Fig. 3B and 4B an
error of 20% in the change of each of the manipulated inputs is assumed:

dL = 1.2 dLg, dV = 0.8 dVg (1)
(dL and dV are the actual changes in the manipulated flow rates, while dLe
and dV, are the desired values as computed by the controller). It is
important to stress that this kind of diagonal input uncertainty, which
stems from tne inability to know the exact values of the manipulated
variables, is always present, although the actual size of the uncertainty
mzy vary. For the setpoint change in yp (Fig. 3B) the simulated response
with uncertainty differs drastically from the one predicted by the model,
and the response is clearly not acceptable. The response is no longer
decoupled, and Ayp and AXp reach a value of about 6 before settling at
their desired values of 1 and O. The uncertainty has less deteriorating
effect for the feed rate "disturbance" (Fig. 4B) which occurs mostly in the
ngood" direction.

There is a simple physical explanation for the observed poor response
to the setpoint change in yp. To accomplish this change, which occurs
mostly in the "bad" direction corresponding to the low plant gains, the
inverse-based controller generates a large change in internal flows (dL +
dVv), while trying to keep the changes in the external flows (dB=-dD=dL-dV)

very small. However, uncertainty with respect to the values of dL and dV
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Nominal (No Unc.)

8.8
1 a.6
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0.2
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TIME (min)
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With Unc. (Eq. 7)

e 10 28 30
TIHE (min)
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TIME (min)

Figure 3 and 4. Closed loop responses Ayp and Axg with inverse-based
controller, C,(s), k, = 0.7 (time in minutes).
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makes it impossible to keep dL-dV small and the consequence is large
changes in the external flows. This results in large changes in the
compositions because of the high plant gain in this direction. This may be
avoided by controlling D or B directly as shown below.

A more mathematical way of showing how the uncertainty changes the
plant is as follows: Let the plant transfer model be G(s) and let A, and
A, represent the relative uncertainty for each manipulated input. Then the

actual ("perturbed") plant is

ﬂ1 0
Gp = G(I+d) , A = [0 &J

c(s)G(s)~*, the loop transfer

Witn an inverse-based controller, c(s)

matrix becomes

GpC = o(s)G(I+A)G™! = c(s)(I+GAG™) (8)

The error term

G, ,AG (9)

-1 35.1 A,=34.1 A, -27.7 A*27.T b
LV

LV T | 43.2 4,-43.2 A; -34.1 A,+35.1 A2
is worst when A, and A, have different signs. With 4, = 0.2 and A, = -0.2
(as used in the simulations, Eq. (7)) we find
-1 13.8 -11.1
GLyaG 1y = [17.2 -13.8]
The elements in this matrix are much larger than one, and the observed

poor response is not surprising.

2. Low condition number controllers are less sensitive to uncertainty,

but the response is étrongly dependent on the disturbance direction.

The poor response for the case with uncertainty in the example above

was caused by the high condition-number controller which generates large
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Nominal (No Unc.) With Unc. (Eq. 7)
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8 18 20 30 *] 10 20 3e
TIHE (min) TIME (min)

8.6

_______________________________
___________________

8.4
4 N
ya'z = 6 :
92'—_
a 1 L | I 1 1 LI | l LR L l_r 5 ' LI I L I LU L I LN A 1_'
%] 18 20 38 8 10 26 3@
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Figure 5 and 6. Closed loop responses Ayp and Axg with diagonal controller,
Cx(s), k. = 2.4 (time in minutes).
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input signals in the directions corresponding to the small plant gain. The
simplest way to make the closed loop system less sensitive to the input
uncertainty is to use a low condition number controller which does not
have large gains in any particular direction. The problem with such a
controller is that 1little or no correction is made for the strong
directionality of the plant. This results in a closed loop response which
depends strongly on the disturbance direction, as shown below. The
diagonal controller

2 +1
Cz(s) = Eﬁf__) [1 0

2 0 _J , kK, = 2.4 min™ (10)
consists of two equal single loop PI controllers and has a condition number
of one. As seen from the simulations in Fig. 5 and 6 the quality of the
closed loop response depends strongly on the disturbance direction, but is
only weakly influenced by uncertainty. The response to ys, is very
sluggish, while the response to ys, is fast initially, but approaches the

cinal steady state sluggishly. Note that a disturbance in the "good"

direction
ys = 1 = [0°625] with  Yq(G)=1

generates a first order nominal response with time constant 1/2.4:3(G) =

0.21 min. A disturbance in the "bad" direction

Yyg = U

- [—06768215] with Yd(G)=141.7
generates a first order nominal response with time constant 1/2.4-0(G) = 30
min. All other responses are linear combinations of these two extremes
(Fig.54 and 6A).

3. Changing the plant may make the system insensitive to uncertainty on
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the input variables

We already argued physically that the plant might be made less
sensitive to uncertainty by controlling the external flows directly.
Consider the case of distillate flow D and boilup V as manipulated
variables ("direct material balance control") (Shinskey, 1984). Assuming

perfect level and pressure control, i.e., dL = dV - dD, we have

BRI )
and the following linear model is derived from (3)
[dyp} . [dD]
dxg DV qv
S R R o oy (12)
In practice the condenser level loop introduces a lag between the change in
distillate flow, dD, and the reflux flow, dL (which is the input which
actually affects the compositions), put this is neglected here. It is
important to note that with (11) and without input uncertainty, identical
responses may be obtained with the LV-plant (3) and the DV-plant (12) by

using multivariable controllers. The plant (12) is also ill-conditioned;

Y(Gpy) = 70.8. In this case the SVD yields

;. [1:393 0 g o [1000 -0.0017 1y 0.630  0.777
=137 o.0197] ' V= {-0.001 1.000] " T [0.777 -0.630

The high gain corresponds to an input [23] in the direction of v(Gpy) =

[:g'gg?}, which, as expected, corresponds to 2 change in the external

flows. The low gain again corresponds to a change in the internal flows

(dD=0). Note that in this case there is one manipulated variable (dD) which
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Figure 7 and 8. DV-configuration. Closed loop responses Ayp and Axg with
inverse-based controller, Cs(s), ks = 0.7 (time in minutes).
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acts in the high gain direction, and another (dV) which acts ino the low
gain direction. This "decomposition" is significant, since uncertainty in
dVv, does not affect the external flows, dD.

To confirm that the system is much less sensitive to uncertainty in

this case, consider the following inverse-based controller

ky(1+75s) [-0.5102 -0.5102

Ks -
Ci(s) = < Gpy()™* = 5 39,43 -32.00

} , ks = 0.7 min~*(13)

Without uncertainty this controller gives the same response as controller
C,(s) with the LV-configuration. However, in this case the decoupled first
order response with time constant 1.43 min is maintained also when there is
uncertainty on the manipulated variables (Fig. 7 and 8). The following
error with respect to dD and dV was used
dD = 1.2 dDg, dV = 0.8 dV, (14)

From this example we see that ill-conditioned plants by themselves
may not give performance problems if the uncertainty is appropriately
aligned with the process. For the DV-configuration we find the error

matrix GAG™! in Eq. (8)

GpyAG

-1 0-45 A1+0055 Az O.us AI—O'“5 Az
DV - | 0.55 4,-0.55 A, 0.55 A,+0.U45 A,

and with A, = 0.2 and 4, = -0.2 corresponding to (14)

-1 [-0.02  0.18
GpvaG py =[0.22 0.02]

The elements in this matrix are small compared to one, and good
performance is maintained éven in the presence of uncertainty on each
input. The nonzero off-diagonal elements explain why the response in Fig.
7B is not completely decoupled.

ITI. ROBUSTNESS ANALYSIS WITH u
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It is quite evident from the linear simulations above that
multivariable systems exhibit a type of "directionality" which may make the
closed loop response strongly dependent on the particular disturbance and
model error assumed. One of the major weaknesses with the simulation
approach is that it may be very difficult and time-consuming to find by
trial-and-error the particular disturbance and model error which causes
control problems. Therefore there is a need for a tool which solves the

following robust performance problem in a more systematic manner:

Given a nominal plant, an uncertainty description, a set of possible
disturbances and setpoint changes, a desired performance objective, and a
controller: Will the "worst case" response satisfy the desired performance
objectives?

If performance (allowed size of input and output signals) is defined
using the Hy-norm and the uncertainty is described in terms of norm bounds
in the frequency domain, this problem is solved fairly easily by computing
Structured Singular Value u (Doyle, 1982) of a particular matrix N at each
frequency (Doyle et al., 1982). The elements in the matrix N are
determined by the nominal model, the size and nature of the uncertainty,
the performance specifications and the controller. Robust performance is
guaranteed if and only if u(N) < 1 for all frequencies.

Some Definitions

Let us make a pause to define some of the terms used above more
carefully. Achieving robust performance is clearly the ultimate goal of
the controller design. However, it may be easier to solve this problem by
first considering some subobjectives which have to be satisfied in order to

achieve this:
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Nominal Stability (NS): The model is assumed to be a reasonable

approximation of the true plant. Therefore the closed loop system with
the controller applied to the (nominal) plant model has to be stable.

Nominal Performance (NP): In addition to stability, the quality of the

response should satisfy some minimum requirements - at least when the
controller is applied to the plant model. For mathematical convenience we
will define performance in terms of the weighted He-norm of the closed-
loop transfer function between external inputs (disturbances and setpoints)
and "errors" (may include yp-yps, XB-XBs, manipulated inputs u, ete.). The
simplest example of such a performance specification is a bound on the
weighted sensitivity operator

3(W,pSW,p) < 1 Wu, S = (I+GC)™" (16a)
The input weigbt wzp is often equal to the disturbance model. The output
weignt W,p is used to specify the frequency range over which the errors are
to be small and (if W,p is not equal to wp(s)I) which outputs are more
important.

Robust Stability (RS): The closed loop system must remain stable for

all possible plants as defined by the uncertainty description.

Robust Performance (RP): The closed loop system must satisfy the

performance requirements for all possible plants as defined by the
uncertainty description. As an example we may require (16a) to be
satisfied when G is replaceq by any of the possible perturbed plants Gp as
defined by the uncertainty description.
6(w1p(1+cpc)-*w2p)_g 1 Yo, ¥Gp (16b)
Most controller design methods (even "modern" optimal control, LQG),

only address the problems of Nominal Stability and Nominal Performance.
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The stability margins in the classical frequency domain design methods, are
an attempt to address the Robust Stability problem, but these margins may
be misleading and are a very indirect method.

conditions for Robust Stability and Robust Performance

The definition of Robust pPerformance given above is of no value
without simple methods to test if conditions like (16b) are satisfied for
all possible perturbed plants Gp. Below we will state computationally
useful conditions for RS and RP using the Structured Singular Value u for
the case when the uncertainty (the possible plants Gp) is modelled in terms
of a set of norm-bounded perturbations on the nominal system. By use of
weights each perturbation is normalized to be of size one:

3(a1) <1 ¥

The perturbations, which may occur at different locations in the system,
are collected in the diagonal matrix 4

A = diag{A,, ..., Bp}
and the system is rearranged to match the structure in Fig. 9. We will not
go into detail on how this is done at this point. This will become clearer
by studying the distillation column example in Section IV and V. The
signal d in Fig. 9 represents the external inputs (weighted disturbances
and setpoint changes) affecting the system. The signal e represents the
weighted errors, or more generally the signals which are to be kept
nsmall”. The interconnection matrix N in Fig. 9 is a function of the
nominal plant G, the coﬁfroller C and the uncertainty weights.
Performance weights are also absorbed into N such that the performance

specifications involving € and d are normalized:

Robust Performance Specification: (Fig. 9)
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5(E) < 1 Yu , YA a7
where & = E4, E = Ny, + NuyA(I-N;, A)7'Nye
An example of such a performance specification is Eq. {(16b). With these
assumptions for the uncertainty and performance we have the following

results (Doyle et al., 1982).

N.S. <=> N stable (internally) (18)
N.P. <=> uyp = sup 3(Npz) <1 (19)
W
R.S. <=> upg = sup wWp(Ny) <1 (20)
W
R.P. <=> = su (N) <1 (21
HRP 1D H(App)

The quantities uyp, Wgs and wgp represent the "u-norms" and are introduced
as a convenient notation. The conditions for N.P. and R.S. are necessary in
order to satisfy the R.P. condition. Note that up(Ny,) is a function of both
the matrix N,, and the structure of the uncertainty A. The Robust
performance condition (21) is computed with respect to the structure
diag(A,Ap), where Ap is a full matrix of the same size as N,,. The use of u
is less conservative than using any other matrix norm. In particular,

pa(N) < G(N)
and the equality holds only when A is a full matrix. The use and
implications of conditions (19)-(21) will hopefully become clearer by
studying how these results apply to the distillation column example.

IV. w-ANALYSIS OF THE DISTILLATION COLUMN

Problem Definition

To study Robust Stability and Robust Performance of the distillation
column using u, the uncertainty and performance specifications must Dbe
defined. The same uncertainty and performance specifications will be

assumed for the LV-configuration (3) and the DV-configuration (12). (In
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N = [Nn N12}
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Figure 9. represents weighted external inputs, € represents weighted
errors.
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Figure 10. Block diagram of system with input uncertainty and with

setpoints as external inputs. Rearranging this system to fit
Fig. 9 gives N as in Eq. (27).
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general, it is reasonable to use the same performance specifications, but
the uncertainty may be different).

Uncertainty: The uncertainty with respect to the manipulated inputs
which was discussed in Section II may be represented as multiplicative
input uncertainty (Fig. 10)

Gp = G(1+w1(s)A1), s(ap) <1 ¥u (22)
where wy(s) describes the magnitude of the relative uncertainty on each
manipulated input

arls) = 0.2 et (23)
This implies an input error of up to 20% in the low frequency range as was
assumed for the simulations. The uncertainty increases at high
frequencies, reaching a value of one at about w = 1" min~!'. The increase at
high frequency may take care of the neglected flow dynamics. It allows
for a time delay of about 1 minute in the responses petween L and V and
the outputs yp and Xp. It may also represent neglected valve dynamics,
dynamics for the heat transfer in the reboilar (for V), etc.

At first the uncertainty will be assumed to be unstructured, i.e., the
perturbation matrix A1 is a full 2x2 matrix. This does not make much sense
from a physical point of view, but is done for mathematical convenience.
7t will turn out that this assumption does not make any difference for the
Lv-configuration. The set of possible plants is now generated from Eq.
(22) by allowing any 2x2 ma_trix A7 which satisfies d(Ap) £ 1, Wu.

Performance: We will consider the simple case with setpoint changes
in (yg) as external inputs and e =y - ¥Vs @8 errors. These signals are

related through the sensitivity function
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e = 'Sp Ys Sp = (I*GpC)-l

Ys and e are related to the weighted external inputs (d) and errors (e) by
Ys = Wop d, e-= W,p e
and we have
e = Ed, E = -W,pSpWep (W)
We choose to express the performance specifications through the weights

W.p = I, Wip = wpl , wp(s) = 0.5 -1—(1)—8;—1 (25)

The Robust Performance specification (17) then becomes

5(Sp) < 1/|wP| , Yw (26)
This bound on the sensitivity function Sp should be satisfied for all
allowable Gp given by (22). The performance weight wp(s) (25) implies that
we require integral action (wp(0) = =) and allowsan amplification of
disturbances at high frequencies of at most a factor of two (&im lwp(im)l"

wr®

2). A particular sensitivity function which exactly matches the

performance bound (26) at low freguencies and satisfies it easily at high

frequencies is S = %—% I. This corresponds to a first order response

with time constant 20 min.

Performance and Stability Conditions

With the information given above the matrix N in the AN-structure
(Fig. 9) becomes

-w1CSG wiCSsS -
= [ WPSG _wPS ] S = (I+GC) (27)
This matrix is found from Fig. 10 by breaking the loops (A1=0) at the input
and output of the block A7. As an example with A1=0, the transfer function

from the external inputs (d) to the errors (e) is
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N., = -wp(I+GC)™!
Similarly, the transfer function from @ to the input of A1 is
Ny, = wp C(I+GC)™
Conditions for Nominal Performance and Robust Stability are derived from
(19) and (20) by using (27)
N.P.  <=> 3(S) < V/|wp| ¥w, S = (I+GC)~* (28)
R.S. <=> d(Hp < V/|wr|  ¥e, Hp = CG(I+CG ™' = CSG (29)
The condition for Robust Stability is expressed in terms of T since A7 is
assumed to be a full matrix. Note that S is the nominal sensitivity
function at the output of the plant, while Hy is the closed loop transfer
function as seen from tne input of the plant. In some cases GC = CG (in
particular this is the case for the controllers C,(s), Cy(s) and Ci(s) in our
examples) and we have Hy = H, where
H = GC(I+GC)™' =1 - S
is the closed loop transfer function as seen from the output of the plant.
However, Hy = H does not generally hold for multivariable systems. The
Robus: Performance specification (26) should be satisfied for all plants
given by (22). From (21) one finds
R.P. <=> u(AIAp)(N)-S 1, Yw (30)

Analysis of the LV-Configuration

The set of possible plants is given by (22) with G = Gy (3). We will

analyze the LV-configuration for the inverse-based and the diagonal

controller.

|
|
C,(s) = cl(s)c;w_’(s) (31) ‘

Cols) = ez(s)[g ﬂ] (32)
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We will first consider the choices ¢, (s) = OT7 and c,(s) = Z—'L‘Q—sﬁ
used in the simulations in Section II, and then let
K k,(1+75s)
ei(s) = =, Cos) = —5— (33)

and see if Robust Performance can be improved with other choices for Kk,
and k,. Finally, we will consider the "u-optimal™ controller, Cu(s), i.e.,
the controller which minimizes pgp. We found this controller through a
software package which uses a somewhat simplified version of the
u-synthesis procedure described Dby Doyle (1985). The simplification
involves only considering the upper left corner when minimizing the
He-norm of Eq. (7.3) in Doyle's paper (1985). This means that the resulting
controller is not necessarily optimal.

Nominal Performance and Robust Stability. One way of designing controllers

which meet the N.P. and R.S. specifications is to use multivariable loop
shaping (Doyle and Stein, 1981). For Nominal Performance, o(GC) must be
above |wP| at low frequencies. For Robust Stability with input
uncertainty, 8(CG) must lie below 1/|w1l at high frequencies (Fig. 11).

For the inverse-based controller (31) we get 3(C,G) = o(GC,) = |01| and
it is trivial to choose a c,(s) to satisfy these conditions. The choice

c,(s) = 957— which was used in the simulations gives a controller which has

much better nominal performance than required, and which can allow about
two times more uncertainty than assumed. This is also seen from Fig. 12
and 13 where the Nominal Performance and Robust Stability conditions (28)

and (29) are displayed graphically.
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Multivariable loop shaping. For Nominal Performance, 0(GC)
must lie above JJwP| at low frequencies. For Robust
Stability with input 'uncertainty, G(CG) must lie below V|WI|
at high frequencies.
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Figure 12. The inverse-based controller, C,(s), k; = 0.7 has much better
Nominal Performance than required by the condition &(S) <
1/Lw , ¥w. The diagonal controller, C,(s), k, = 2.4, does
not satisfy the N.P. condition at low frequency.
Figure 13. The inverse-based controller, C,(s), k; = 0.7 is guaranteed

Robust Stability since &(Hy) £ 1/|w1| , Yw. The diagonal
controller, C,(s), k, = 2.4 will give ‘an unstable system for
some of the plants defined by (22), since the R.S condition
is not satisfied at all frequencies.
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For the diagonal controller (32) we find §(C,G) = 1.972 |czl and o(GC,)
= 0.0139 |02|, and the difference between these two singular values is so

large that no choice of ¢, is able to satisfy both N.P. and R.S. This is

2.4(1+755s)

shown graphically in Fig. 12 and 13 for the choice cy(s) = S

Robust Performance. In the case with input uncertainty sufficient

("conservative™) tess for Robust Performance in terms of singular values are

easily derived:

R.P. <« ’1-5’(10;:51) +6(w1H;) <1 Vw (340,)
or RP. « &(wpS)+~-0(wH)L1 W (34b)
or RP. <« (1+.7) - (6(wpS)+0(wrHr)) <1 Vw (34¢)

KHere Y deno-es the condition numbder of the plant or the controller (the

s~2llest onz shouid be used). These conditions indicate that the use of an

i1toagmii-isnes corcrciler (7(C,)=141.7) may give very poor Robust
Serforrance evar though both the Nominal Performance (3(wpS)<1) and Robust
S=zniliny conditicns {(Z{wsHp)<1) are individuzlly satisfied. If a controller
witm 2 low condition number (¥(C,)=1) is used we see that we get R.P. for

nfrog” provided we have satisfied N.P. and R.S. This is always the case for
SI32 systems and gives a partial explanation for why Robust Performance

as never an important issue in the classical control literature.

b

Turthermore, for SISO systems (3k4a)is necessary and sufficient for R.P.

Coniitions (34) are very useful since they directly relate Robust
Performance to N.P., R.S. and the condition number. However, (34) may be
very conservative and in order to get a "tight" condition for R.P. the
u-condition (30) has to be used with N given by (27). u for R.P. is plotted
in Fig. 14 and 15 for the two controllers C,(s) and C,(s) used in the

simulations. As expected, the inverse-based controller C.,(s) is far from
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Figure 14. y-plots for inverse-based controller, C.(s), k, = 0.7. The
system has very good performance when the plant is equal to
the plant model, and is guaranteed stability for all plants
given by (22), but robust performance is poor.
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Figure 15. u-plots for diagonal controller, C,(s), k, = 2.4,

Figure 16. p-plots for My-optimal" controller, C,(s).
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meeting the Robust Performance requirements (ugp is about 5.8), even though
the controller was shown to achieve both N.P. and R.S. On the other hand,
the performance of the diagonal controller C,(s) is much less affected by
uncertainty. (ugp = 1.71).

Optimizing k, and K» wrt. R.P. For the inverse-based controller the

moptimal™ value for k, is 0.14 corresponding to a value of wgp equal to 3.3
which still implies poor performance. This value for k, seems reasonable
since it corresponds to a 1o0p shape k,/s which is further away from the
R.S. constraint in Fig. 11.

For the PI-controller, the optimal gain is k, = 2.4, which 1is the value
already used (ugp = 1- 70). It is not clear how 1low ugp can be made if C(s)
is only restricted to be diagonal (decentralized control); we were able to

i ecch loe
get ppp down to 1.42 by a s;zgiian;fggﬁggibeeeeaég;i-—o1 P

u-Optimal Controller. The synthesis method (Doyle, 1985) used to design

the '"u-ophtimal" controller gives controllers of very high order, but by
employing model reduction, we were able to find a "y-optimal” controller
with 6 states. u for R.P. for this controller is shown as a function of
frequency in Fig. 16. (The p-plot is not quite f1at as it should be for the
optimal case). The peak value for u is 1.06, which means that this
controller "almost" satisfies the Robust Performance condition. This value
for ugp is significantly lower than for the diagonal PI controller, C.(s),
and the time responses are also petter as shown in Fig. 17 and 18. In
particular, the approach to steady state is much faster. The state space
realization of this p-optimal controller is shown in Fig. 19. At low
frequencies the controller is approximately
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Nominal (No Unc.) With Unc. (Eq. 7)
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Figure 17 and 13. Closed-locp responses Ayp and 4xg with "u-optimal"
controller, Ci(s) {time in minutes).

r—1.002-10"7 0 0 0 0 0 F—65.13 —90.09
0 -3.272 107 0 0 ] 72.24  90.31
4= 0 0 -0.1510 0 0 0 B | 5492 -4.304
- 0 0 0 -9.032 0 0 —-90.86 —113.6
0 0 0 0 —538.2 0 1867  —1494
L 0 0 0 0 0 ~586.8 [ 672.2  840.3
C . [06564 0.7171 4949 5033 -1601 -311.2 D [ 5866 -3816
T |0.6555 05425 4.941 -5040 -1689 311.6 | 5002 —4878
Figure 19. State space realization of "p-optimal" controller, Cu(s) =

C(sI-A)™'B + D.
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The condition number at low frequency is 2.1, and the controller gives some
compensation for the directionality of the plant (Y(G) = 141.7, while Y(GC})
- Y(C,&) = 66.5).

Structure of A;. Note that A was assumed to be a "full" matrix in all the

calculations above. It turns out that for this particular plant (3), the
same values are found for ugs and ugp also when Ag is assumed to be
diagonal, which is a more reasonable assumption from physical consideration
(there is no reason to expect that the manipulated variables will influence
each other). For the DV-configuration below. It is of crucial importance
to model A7 as a diagonal matrix and not as a full matrix.

Analysis of the DV-Configuration

The set of possible plants is given by (22) with G = Gpy (12), but with
A1 restricted to be diagonal. We will again consider an inverse-based and

a diagonal PI controller
ex(s) = 26 7(s) (13)
3 s DV

o - LB [015 0] (36)

In the simulations in Section II we studied the controller C,(s) with kK; =
0.7. For this controller the Nominal Performance and Robust Stability
conditions are identical to those of controller C,(s) and the LV-
configuration. However, based on the simulations and other arguments

presented before, u for Robust Performance is expected to be much better.
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Figure 20. DV-configuration. u-plots for inverse-based controller,
Cis(s), k; = 0.7.

Figure 21, DV-configuration. Robust Stability for controller C.(s).
Using 5(Hy) instead of w(H;) will be very conservative in
this case, and one would mistakenly conclude that the
system does not satisfy the R.S. condition u(Hp) < 1/| WII'
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This is indeed the case, as seen from the p-plots in Fig. 20. ugp is 0.965,
which means that the performance criterion is satisfied for all possible
model errors. The uncertainty block A7 was assumed to be diagonal. If Af
were full (which is not the case) the value of ugp is about 4.1.  The
reason for the high value in this case is that the of f-diagonal elements in
A7 introduce errors in D when V is changed.

Even lower values for y are obtained by reducing the gain Kk, in Ci(s)
from 0.7 to 0.13. K, = 0.13 gives wgp = 0.63. In fact, this controller
seems to be very close to the p-optimal controller for this plant, as we
were not able to reduce pgp below this value by applying the software.

With C.(s) which consists of two PI-controllers, wgp = 1.15. This is
almost acceptable, although the value of uwRp is significantly higher than
for the inversed-based controller C,(s) with k, = 0.13. Thus a
decentralized controller gives acceptable performance.

The potential conservativeness in using  instead of u is clearly
iliustrated by considering the Robust Stability test for this case (Fig.
21). Using upp(Hp) (81 diagonal) we see that the system satisfies the R.S.
condition. However, by looking at G(Hp) (or equivalently by computing u
with A7 a full matrix), we would erroneocusly expect the system to become
unstable for very small errors on the inputs.

V. UNCERTAINTY MODELLING

In this section we will first discuss in somewhat general terms how
to quantify uncertainty and then consider as an example, other sources than
input uncertainty for the distillation column. In order to use the
framework for analyzing systems with uncertainty outlined in Section III,

we need to model the uncertainty as norm bounded perturbations. Since the
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uncertainty structure is very problem dependent, it is difficult to give
general methods for how to do this. However, the examples given below for
the distillation column should be sufficient to show that most
uncertainties occurring in process control can be modelled as norm bounded
perturbations.

Choosing the Right Structure

It may be very important that the correct structure is chosen for the
uncertainty description, i.e., that the uncertainty is modelled as it occurs
physically. We will illustrate this by considering the following two
examples:

- multiplicative uncertainty at the input (Fig. 22A) or at the
output of the plant (Fig. 22B)

- output uncertainty as multiplicative (Fig. 22B) or inverse
multiplicative uncertainty (Fig. 22C)

Choices of Multiplicative Uncertainty. The distillation column (and any

other plant) has multiplicative uncertainty at the input of the plant.
Simply shifting this uncertainty to the output of the plant (and using
wo=w1) will, in general, give a completely different system. As an
example, for the LV-configuration using controller C,(s) we found ugp =
5.78 with the uncertainty at the input of the plant, but ugp is only 0.96 if
this uncertainty is shifted to the output. Recall condition (34) which
showed that with input uncertainty and using an ill-conditioned controller,
Robust Performance might be- poor even when the R.S. and N.P. conditions
were satisfied individually. We do not have tnis problem when the
uncertainty is at the output. In this case we get a R.P. condition similar

to (34) but without the condition number
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R.P. <= o(wpS) + B(wgH) < 1 W¥u
This illustrates that output uncertainty usually puts much less constraints
on the design of the controller than input uncertainty, and for ill-
conditioned plants one should be careful to model the uncertainty at the
1ocation where it is actually occurring.

Choices of Output Uncertainty. We will show below that parametric

uncertainty in the time constant may be represented as inverse multiplicative
uncertainty
(I + weA)T'G (37)
Approximating it as the seemingly similar multiplicative uncertainty
(I + wplp)G (38)
has drastically different implications. For Robust -Stability (37) imposes a
constraint on the sensitivity
u(s) < 1/|wT‘ , S = (I+GC)7* (39)
and (38) on the complementary sensitivity
u(i) < 1/(lwo‘) , H = GC(I+GC)™} (40)
(37) is best suited to describe pole variations while (38) is better for the
modelling of zero variations. (37) cannot be used to describe uncertain
high frequency dynamics. (38) cannot be used to model plants which have
poles that can cross the ju-axis.

Simplify if possible. The two examples above illustrated that it may be

very important to model the uncertainties as they occur physically.
However, this is not always of crucial importance, and whenever possible
the uncertainty description should be simplified by lumping various
uncertainties into a single perturbation. There are two reasons for this:

1) Computations are simpler, 2) Introducing too many sources of uncertainty
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may be very conservative since it becomes very unlikely for the "worst
case" to occur in practice. In particular, the individual uncertainties may
be correlated, and it may be impossible for the "worst case" to occur.
This will be illustrated for the distillation column later.

Representing Nonlinearities as Uncertainty for the Distillation Column

In addition to the input uncertainty, the main source of "uncertainty"
for the distillation column are nonlinearities. All the developments below
are for the LV-configuration. However, because of (11) they also apply to
the DV-configuration.

A simulation using the equations given in the Appendix and the input
uncertainty (7) reveals that the system is unstable with the inverse-based
controller C,(s) (5). Our linear analysis predicted Robust Stability, and
the reason for the discrepancy is nonlinearities which were neglected.
One way of handling nonlinearities within a linear frameworx is to treat
them as uncertainty. This is clearly not a rigorous way of handling
nonlinearities, but this approach is taken in lack of anything better.

Nonlinear open loop responses to large changes (:5.2%) and a small
change (0.003%) in boilup V (keeping L constant) are shown in Fig. 23.
These responses may be approximated by linear first order responses:

-1.380
T3s+1

dyp -0.047
V + 6.2%: |:de] = T@T dv (lHa)
~0.933

267s+1

dyp 1.027
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0.045
[Es+1

V- 6.2%: [gg] . —}4'—%3% av (41c)
Note that the smallest eigenvalue of the linearized plant corresponds to a
time constant of 220 min. The value 1 = 75 min used in the nominal model
(3) represents an average value of the time constants found in the

nonlinear simulations.

Time constant uncertainty. From the following simple formula for

estimating the linearized time constant (Skogestad and Morari, 1986b).

NTM;i /F

Tc = 7zInS 42)

z = %-(1-YD) yp + % xp(1-xg)

yp(1-xp)
InS = 1n X1V D

we find that the time constant reaches its largest value when both
products have equal purity (xg=1-yp=0.01), and this explains the observation
that the time constant is large for small changes in V and much smaller
for large changes. In our case Ny = 41, Mj/F = 0.5 min, z = 0.01,-1nS =
9.19 and we find 1o = 223 min. The new steady state reached by increasing
V by 6.2% is yp = 0.71403, xp = 0.000602. For this operating point we find
1nS = 8.33, z = 0.102 and ¢ = 24 min. The observed variations in the time
constant may be captured with the following linear model

1

s 0
- 1+
oo = | |6 (132)
# T+188
D = 1(14r7agy), |ATD| <1 Y (43b)
15 = T(1+r{Arg) "ATB| <1 Yu (43c)
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Figurs 23.
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Figure 24. Block diagram representation of gain uncertainty and time

constant uncertainty.
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Here' 1 = 75 min and r{ is a constant expressing the relative uncertainty in
the time constants. The scalars Aqp and Arp are independent which allows
for different values for tp and 1g. Note that this model implies that both
inputs always have the same time constant with respect to yp and xg. This
is indeed what is observed when linear analysis is applied at different
operating points, and this also applies to disturbances in F, zp, etc. This
pole uncertainty may be written in terms of an inverse multiplicative
uncertainty at the output of the plant as shown in Fig. 24, It is
fortunate that it occurs at the output since we know that the system is
less sensitive to uncertainty at the output than at the input of the plant.
Also note that this kind of inverse output uncertainty puts a constraint on
the sensitivity function S, similar to a performance requirement. The

Robust Stability test for this uncertainty alone is

Hp,(S) £ /| we | we(s) = ry ?é%T

where A; 1s a diagonal 2x2 matrix. Clearly, we need rp < 1 to satisfy this
bound. It may seem strange that we have chosen the nominal value of 1 to
bs 75 minutes, since it is clearly not possible to include even the
linearized time constant (230 min) in the model (43). Recall, however, that
we are trying to represent a nonlinear system. The linearized time
constant only applies in a very small operating region, and as the system
moves away from this steady state (maybe because of instability) the time
constant will be small. It is therefore much more important to include
the smallest value observed for the time constants in the approximation
(43).

Gain uncertainty. We observe from (41) that the linearized gains vary
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tremendously with operating conditions. However, the gains are clearly
correlated and it is of crucial importance to take this into account to
avoid a hopelessly conservative uncertainty description. If the elements
in the steady state gain matrix (3) were assumed to be independent, the
gain matrix would become singular for relative errors in each of the

elements exceeding (Skogestad & Morari, 1985)

1 1

—_ = = 0.007 Ly

Vo | 7R3 e
Here Y*(G) is the minimized condition number

Y¥(G) = min Y(D,GD,) (45)

142
(D, and D, are diagonal matrices with real, positive entries). Physically

we know that the distillation column will not become singular and a more
structured uncertainty description is needed. Skogestad and Morari (1986¢)
have suggested that for small changes in D/B the variations in the steady

state gains may be captured with additive uncertainty on the elements using

a single perturbation Ag. For the LV-configuration

1 -1
GLVp(O) = GLy(0) + rg Ag \:__D_ 2]
B B
6Ly (0) + {11)] rg bg 11 -11, [dg] <1 (46)

This model does not match our data (41) too well, where large variations in
D/B are observed. However, under closed loop we do not expect large
changes in D/B (though the changes in L and V individually may be large)
and (46) with D/B = 1 will be used to represent the gain variations.

It is important to note that the additive uncertainty in (46) does not

change the singular vectors ¢ and v. A SVD of the perturbation matrix
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[11 '11} in (46) yields

v - [0.707] q - [0.707]

-0.707] "’ -0.707
The direction of the ninput" singular vector ¥ is the same as that of the
nominal plant (3), while the "output" singular vector @ is almost
perpendicular to that of the nominal plant. This means that this source of
nonlinearity is also "nice" in that it mainly changes the plant at the
output. Physically this means that changes in the external flow (D and B)
are always the changes with the largest effect, and this is exactly what
we would expect from physical considerations, also for the nonlinear plant.

Choice of values for rp and rg. There is clearly a correlation between

the variations in the time constant and gains which is not captured by the
proposed uncertainty description (Fig. 2H). However the main effect of
both these uncertainties is to change the direction of the QEEEBE singular
vectors, u and d. None of tnem add RHP-zeros. In order to make
computations simpler and to avoid conservative results (by neglecting the
correlation between A and Ag), a reasonable approach may therefore be to
use only one of these uncertainties to describe the effect of nonlinearity.
This is the approach taken here and we choose to use the time constant
uncertainty only. One reason for not choosing the gain uncertainty, 1is
that this introduces uncertainty at steady state, which will normally not
be the case since the setpqints are not changed significantly.

The trajectory taken by the plant under closed loop may be very

different from the open 1oop responses, and open loop data such as (41)

may not be appropriate to determine the value of . We therefore decided
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to use nonlinear closed 1loop simulations to find an appropriate value for

re. In particular, closed loop simulations which are at the limit to

instability are convenient, since these results may easily be compared to

values of wgg for the robust stability of the linear approximation. To

determine the value of r; the following procedure was used:

1. Nonlinear closed loop simulations were carried out for a large feed
rate disturbance (+30%) with the inverse-based controller C,(s), kK =

0.7. The feed rate disturbance was chosen as the most difficult

disturbance (Skogestad and Morari, 1986a) which would take the

system furthest away from the nominal steady state. To make the
elements in the matrix (9) large, the relative errors on the
manipualated inputs L and V were chosen with different signs. These
errors were increased until the system was at the limit to
instapility. The limiting values were
dL = 1.04 dL, dv = 0.96 dVg
2. MRS Was computed for the LV-configuration with 4% input uncertainty

(w1=0.04) and with various values for the relative uncertainty on the

time constants, r{. rg = 0.35 was found to give wgs = 1, i.e.,

correspond to a system at the limit to instability.

The value found for r; using this procedure is clearly not the only
possible (note that no error was assume in the gains), but hopefully
represents a reasonable compromise between representing all possible
plants and avoiding & very conservative uncertainty description.

Effect of additional uncertainty on upg and ugp. With the additional time

constant uncertainty (43) the interconnection matrix N becomes
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-wiCSG  -wiCS  wiCS

NTSG WTS WT(I-S)

N = wpSG wpS -wpS (47)

u(N) for R.P. (Table 2) is computed with respect to the structure
diag{A1,A¢,Ap} where A7 and Ap are nfy11" 2x2 matrices and A, is a diagonal
ox2 matrix. For computational convenience the matrix A is assumed
complex.

The inverse-based controller C,(s), is, of course, not robustly stable.
(It was shown to be unstable with 4% input uncertainty and now there is
20%). pg is increased from 0.53 to .77 by adding 35% time constant
uncertainty. The u-values for the diagonal controller, C.,(s), and the
"y-optimal", Cu(s), are seen to be only weakly influenced by adding the pole
uncertainty. Robust stability is still predicted for the u-optimal
controller. This is confirmed by nonlinear simulations.

To confirm that the gain uncertainty does not significantly change

these results, similar calculations were also done with the nonlinearities
represented as uncertainty on the gains (Table 3). Interestingly enough, it
turns out that choosing rg = 0.35, rp = 0 gives very similar results as rg
=0, rp =0.35 (Fig. 25). Furthermore, combinationsof these uncertainties
were found to add up approximately in a linear fashion with respect to the
value of u. This confirms that in this case, these two sources of
uncertainty (pole and gain uncertainty) have a very similar effect on the
plant, and that for computational simplicity we need to use only one of
them. Similar results are found for the DV-configuration (Table 3),
although the pole uncertainty is found to be worse than the gain

uncertainty.




LV-configuration
Inverse-Controller,C,(s),k,=0.7
Diagonal PI,C,(s),k,=2.4
Optimal Inverse,C,(s),k, = 0.14

"u-optimal™,C,(s)

DV-configuration
Inverse-controller,C,(s),k;=0.7
Diagonal PI,C.(s)

Optimal Inverse,C,(s),k;=0.13
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) 55+1
Input Uncertainty, wy = 0.2 575557

PT =Pg=0 I‘-l- =0035 P8’0035

HNP MRS MRP MRS MRP MRS  WRP

0.50 0.53 5.78 L.77 7.50 4.83 7.53
1.50 1.39 1.70 1.61 1.91 1.47 1.82
0.50 0.20 3.29 2.60 4.18 2.62 4.19
0.79 0.72 1.06 0.99 1.29 0.87 1.24

0.50 0.53 0.97 0.83 1.18 0.53 1.07
0.81 0.37 1.14 0.85 1.61 0.61 1.45
0.50 0.20 0.63 0.47 0.81 0.20 0.73

Table 2. Values of wyp, MRS and wgp for distillation column with diagonal
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