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Abstract

Ratio control is the oldest control approach, dating back thousands of years
(think of food recipes), but despite this, there exists no theoretical basis for
its use. It is widely used in the process industry, in particular, for mixing
processes and chemical rectors. It is sometimes viewed as a special case of
feedforward control. However, feedforward control requires an explicit process
model, but this is not needed for ratio control. Instead, ratio control is based on
the physical insight that scaling all flows to keep constant flow ratios will result
in constant product properties, and this scaling assumption is discussed in detail
in the paper. Furthermore, the ratio setpoint may be set by an outer feedback
loop, again without the need for a process model. The paper also discusses
the practical implementation of ratio control, including dual ratio control for
the case with saturation and cross-limiting control for keeping one component
(typically oxygen) in excess during dynamic transients. Finally, it is shown that
the multiplication trick proposed to avoid the limbo-effect for dual ratio control
applies more generally to all split-range control solutions.

Keywords: control architecture, control structure design, feedforward control,
PID control, advanced regulatory control,

1. Introduction

Ratio control is the oldest of all control methods, originating from cooking
recipes thousands of years ago. Originally, the recipe for making porridge may
have been: “Mix 1 cup of grain with 2 cups of water and let it boil for 10
minutes”. But then someone realized that if you want three times as much
porridge then you just multiply all the amounts by the same factor k = 3.
This is the scaling assumption, which is discussed in detail in Section 2. The
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generalized recipe then becomes: “Mix 1 part of grain with 2 parts of water and
let it boil for 10 minutes”. The amount in “1 part” (also known as the “basis”)
is adjustable, so this is a statement of ratio control.

Also, industrially, ratio control is extensively used. An example is reagents
that are fed to a chemical reactor. The oldest automatic ratio device is probably
the carburetor, invented by Karl Benz in 1888, for mixing of air and fuel in the
correct ratio for combustion engines.
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Figure 1: Recommended ratio control scheme for mixing process The ratio setpoint (F2/F1)s
is set by an outer composition controller (CC). The signals denoted (meas.) need to be
measured or estimated.

Figure 1 shows a typical ratio control scheme for a continuous mixing process.
Note that no model is needed to design this control scheme, except for the insight
that a constant flow ratio will keep the property variable y constant. In the
figure, y is the composition, but in general y could be any intensive variable,
including taste and color. In Figure 1, the ratio setpoint Rs = (F2/F1)s is
obtained by “feedback trim” using an outer feedback controller (CC in this
case) which drives the measured property y to its setpoint ys.

The objective of the specific process in Figure 1 could be to mix concentrate
(1) (with composition x1 = 1 [kg/kg]) with water (2) (with x2 = 0) to obtain a
diluted product (F ) with a given concentrate composition y [kg/kg]. The con-
centrate flowrate F1 [kg/s] is a disturbance (at least as seen from the perspective
of concentration control) and may have large variations. The simplest control
system would be to implement a feedback composition controller (CC) which
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directly manipulates the dilution water F2 to keep the measured concentration
y at a given setpoint. However, the composition measurement may be unreli-
able and have a large delay (say, 5 minutes), and this motivates the use of ratio
control where R = F2/F1 is kept constant on a fast time scale to compensate
for variations in F1. The combination of the outer feedback controller (CC) and
ratio control (which makes use of an inner flow controller, FC) may be viewed
as a special case of cascade control. The outer feedback controller (CC) will
update the ratio setpoint when there are disturbances in the inlet concentration
(x1 in Figure 1) and will also correct for errors in the flow measurements for
F1 and F2. Finally, note that there will be an inventory (level) controller that
manipulates the product flow F (and makes F = F1 + F2 at steady state), but
this is not shown in Figure 1.

In terms of making food, the inner ratio control corresponds to following the
recipe given in the cook book, while the outer feedback (CC) corresponds to the
corrections done by tasting the product.

Figure 2: Multiplication element to compute F2 = (F2/F1)s · F1 where F1 is the basis and
(F2/F1)s is the desired ratio (setpoint).

The ratio control scheme in Figure 1 uses a multiplication element, as shown
more clearly in Figure 2. With the flow disturbance F1 as the basis, the mul-
tiplication element computes F2 = (F2/F1)s · F1. The computed value F2 is
typically sent as a setpoint F2s to a flow controller (FC) which manipulates the
valve position z2, as shown in Figure 1 and Figure 3a.

An alternative (but not recommended) implementation of ratio control, is
to use a division element as shown in Figure 3b. Here, we compute the ratio
R = F2/F1 (measured) with a division element and send this to a ratio controller
(RC). However, this scheme is not recommended, primarily to avoid division by
zero (Love, 2007, page 182) and also to avoid the related problem of introducing
nonlinearity into the inner RC control loop (Shinskey, 1967) as explained in more
detail in Section 3.2.2.

Liptak (2006) writes that “ratio systems maintain a relationship between
two variables to provide regulation of a third variable”. However, it should not
be any variables. We show in Section 2 that the first two should be extensive
variables (typically flowrates, F1, F2) whereas the third must be an intensive
property variable (y).
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Figure 3: Two alternatives schemes for implementing ratio control (Buckley (1964), Figures
17.5 and 17.7) (Shinskey, 1967) (Luyben, 1973).
(a) Ratio control with multiplication element and flow controller (FC) (used in this paper).
(b) Ratio control with division element and ratio controller (RC) (not recommended).
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More generally, we show in Section 2 that ratio control requires measuring
(or estimating/inferring) as many extensive variables as there are independent
extensive variables. These are typically flows and we may use flow meters (FI
= flow indicator) as shown in the figures. Figure 4 shows ratio control for a

Figure 4: Ratio control for process with three independent extensive variables (flows) where
F1 is a disturbance and F2 and F3 are manipulated. Here, we need to set two ratios, which
in this case are selected as F2/F1 and F3/F1.

case with three independent flows, where F1 is a disturbance and F2 and F3 are
manipulated. To apply ratio control for this case, we need to measure three flows
and set two ratios. In Figure 4, the ratios are R2 = F2/F1 and R3 = F3/F1,
that is, with F1 as the basis.
Ratio control is very flexible:

1. It is not required that the ratio variables have the same units. For example,
for the ratio R = F2/F1 we may have F2 in kg/s and F1 in m3/h. It is
also not required that the ratio variables are flows. For example, F1 or
F2 could be the heat input Q or the compression power W (e.g., in units
J/s).

2. It is not required that the flow controllers (e.g., FCs for F2 and F3 in
Figure 4) directly manipulate their own valves (z2 and z3), although we
want the response from valve position to measured flow to be fast with
a large gain to make the FC-loop fast and non-interactive. For example,
assume in Figure 4 that we cannot measure F3, but we can measure the
outflow F4 = F1 + F2 + F3 which is affected by z3. In this case, we get
the same result at steady state if a flow controller (FC) uses z3 to set the
ratio (F4/F1)s instead of (F3/F1)s.
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3. It is not required to measure the flow disturbance (F1 in Figures 1 and
4) to apply ratio control, but we need a measured flowrate that depends
on the flow disturbance. For example, in Figure 4 we would get the same
result at steady steady if we obtained the setpoints for F2 and F3 by
setting two other ratios, for example, R2 = F2/F4 and R3 = F3/F2 where
F4 is another measured extensive variable in the system that depends on
F1, e.g., the outflow F4 = F1 + F2 + F3.

Figure 5: Ratio control of distillation column with fixed L/F and V/F . Another example
of a control scheme that gives no steady-state change in the product compositions (assuming
constant feed composition, constant pressure and constant stage efficiencies) is fixed L/D
and x (using V to control x at a fixed setpoint where x is any composition or temperature
in the column). Actually, all control schemes with two fixed intensive variables (flow ratios,
compositions) that manipulate L and V give the same steady state for disturbances in the
feedrate F (assuming vapor-liquid equilibrium with constant stage efficiencies).

An application of Figure 4 is a distillation column, see Figure 5, where the
disturbance is the feedrate (F1 = F ), the manipulated variables are liquid reflux
(F2 = L) and vapor boilup (F3 = V ), and we fix the ratios F2/F1 = L/F and
F3/F1 = V/F . However, we do not need to use F1 = F as the basis, that is,
we do not need to measure the feed disturbance F to apply ratio control. We
get the same result at steady steady if we use two other ratios, for example,
F2/F4 = L/D and F3/F2 = V/L where F4 = D is the measured distillate
product flowrate. Furthermore, in distillation, the boilup F3 = V is not directly
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manipulated by its own valve. Rather, it is indirectly manipulated by a valve
which changes the heat to the other side of the reboiler.

Ratio control is often viewed as a special case of feedforward and decoupling
control, because the “basis” in ratio control may be viewed as a disturbance d
(as in feedforward control) or as another process input ui (as in decoupling).
For example, Shinskey (1979) (page 173) writes that ”ratio control systems are
feedforward systems” and Liptak ((Liptak, 1970, 2006) writes that “ratio control
actually portray the most elementary form of feedforward control”. However,
this is misleading. First, as just explained, ratio control does not require that we
measure the disturbance. Another fundamental difference is that feedforward
control is model-based whereas ratio control is data-based. Feedforward control
requires explicit process models for how the disturbance d and the input u affect
the output y (e.g., ∆y = G∆u + Gd∆d for the linear case). The feedforward
controller then inverts the input model to compute the input u based on the
measured d (e.g. ∆u = −G−1Gd∆d). On the other hand, ratio control it based
on data (measurements of u and d) and the physical insight that a constant
ratio u/d will keep the variable y constant (and no explicit model is needed for
this). We do not even need a model to set the ratio setpoint, because this, as
shown in Figure 1, may be set by an outer feedback loop.

The published literature on ratio control is rather scarce. The text books
of Young (1955) and Hengstenberg et al. (1964) (p. 1351) show ratio control
systems similar to the proposed one in Figure 3a. Buckley (1964) (Fig. 17.7)
shows an example of a cascade system (similar to Figure 1) where a composition
controller updates the desired ratio of the two feeds to a reactor. Shinskey (1967)
considers the two schemes in Figure 3 and to avoid nonlinearity in the control
loop (involving FC or RC) he recommends the scheme in Figure 3a with an FC
and a multiplication element 1 A good and simple treatment of ratio control is
Riggs (1999). He uses the multiplication block for implementing ratio control
and also shows how to include feedback correction, similar to Figure 1, for a
neutralization process. Riggs (1999) is the only one who, to my knowledge, links
ratio control to the scaling property. More recently, Hägglund (2001, 2017) has
suggested flexible and robust ways of implementing ratio control.

The main theoretical assumption behind the use of ratio control is that the
system satisfies the scaling property, which is discussed in Section 2. In Section
3 we discuss implementation of ratio control. In Section 4, we discuss more
complex implementations, including the use of “dual” ratio control for the case
when the manipulated variable u may saturate, and cross-limiting control for
ratio control of combustion processes.

1The “multiplication element” was in earlier literature given some rather non-descriptive
names, such as “ratio relay” (Buckley, 1964, page 157) and “ratio station” (Shinskey, 1967,
page 161), presumably because performing multiplication was not straightforward with ana-
log (usually pneumatic) control equipment. Unfortunately, the non-descriptive term “ratio
station” is still (2025) used in some publications and text books.
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2. The scaling assumption and the theoretical basis of ratio control

Despite its long history, it seems that no one has provided a theoretical basis
for ratio control. Therefore, its use is usually based on intuition. However, intu-
ition and physical insight have imitations, and because of the lacking theoretical
basis for ratio control, it is sometimes used wrong. As an example, it has been
common to recommend using a fixed reflux-to-feed ratio L/F in a distillation
column (e.g., Young (1955) (p. 321), Luyben (2022b)). However, this is not a
good solution if the heat input (V ) is constant (Bang & Skogestad, 2025), for
example, due to saturation. This is because, as in discussed in detail below,
all independent extensive variables (including the boilup V ) must be increased
proportionally to apply ratio control.

2.1. The scaling assumption

Ratio control is based on the scaling assumption. To state the scaling as-
sumption, we need to understand the difference between intensive and extensive
variables (e.g., Modell & Reid (1983):

• Intensive variables are properties that do not depend on the size of the
system. Common examples are composition, density, viscosity, pressure
and temperature. Note that a ratio is an intensive variable.

• Extensive variables scale with the size of the system. Examples include
flowrate, heatrate, volume, mass, energy and area.

The scaling assumption may for a steady-state process be formulated as
follows:

For a process that satisfies the scaling assumption, we have that
scaling (changing) all independent extensive variables (Xi) by the
same factor k, with all independent intensive variables (xi) constant,
scales (changes) all dependent extensive variables (y) by the same
factor k and keeps all the dependent intensive variables (Y ) constant.

A simple example is a food recipe, where we know that when the amount of
all ingredients (extensive variables, Xi) are increased proportionally (with fixed
ratios, Xi/Xj), then all properties (intensive variables y) of the product will
remain constant, including the taste.

To state mathematically the scaling assumption, we consider, for simplicity,
a case with five independent variables (but it could by any number). The
independent variables are divided into two classes:

• Intensive variables: x1 and x2.

• Extensive variables: X1, X2 and X3 (typically flow rates, Fi)
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The dependent variables, which are either intenstive (y) or extensive (Y ), are
functions of the independent variables, and the steady-state model may be writ-
ten as

y intensive : y = fy(x1, x2, X1, X2, X3)

Y extensive : Y = fY (x1, x2, X1, X2, X3)

(1a)

(1b)

where fy and fY are nonlinear functions. Mathematically, if a system satisfies
the scaling assumption, the following relationships hold:

y intensive : fy(x1, x2, kX1, kX2, kX3)︸ ︷︷ ︸
y(k)

= fy(x1, x2, X1, X2, X3)︸ ︷︷ ︸
y

Y extensive : fY (x1, x2, kX1, kX2, kX3)︸ ︷︷ ︸
Y (k)

= k fY (x1, x2, X1, X2, X3)︸ ︷︷ ︸
Y

(2a)

(2b)

Here, y and Y are the original values of the dependent variables (with k = 1),
and y(k) and Y (k) are the values after scaling all the independent extensive
variables Xi by a factor k. Thus, the intensive variables y remain constant,
y(k) = y, whereas the extensive variables Y scale with the factor k, Y (k) =
kY . Mathematically, we say that the intensive variables are homogeneous to
the degree h = 0 (since kh = 1 for h = 0) and the extensive variables are
homogeneous to degree h = 1 (since kh = k for h = 1) (e.g., Appendix C
in Modell & Reid (1983)). (2) holds generally for thermodynamic systems in
equilibrium (Callen, 1960).

2.2. Implications of the scaling assumption for ratio control

The objective of control is to keep constant dependent variables. It then
follows that for ratio control, (2a) in terms of y (intensive variable) is the key
relationship. However, (2b) is also important since it emphasizes that all the
extensive variables Xi and Y need to increase by the same factor k. If only
one extensive variable fails to do this, for example, because it is kept constant
(Xj = constant for some j), then the scaling assumption does not hold. This
important point is also implicit in the underlined words same and all in the
scaling assumption.

In general, with n independent extensive variables Xi, all these n variables
need to increase by the same factor k for the scaling assumption to hold. To
understand what this implies in terms of ratios, assume that one independent
extensive variable, say X1, is changed by a factor k. Then for the scaling
assumption to hold, the remaining n−1 independent variablesXi need to change
by the same factor k, which will be satisfied if n−1 independent ratios are kept
constant (for example, Xi/X1 = constant for i = 2 to n). However, since
from (2a), all dependent intensive variables y remain constant when we scale
the system, me may more generally, instead of a ratio (e.g., Xi/X1), keep any
selected intensive variable yi constant (assuming yi is selected so that satisfying
(2a) results in unique values for Xi).
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In conclusion, from the scaling assumption, as formulated mathematically
in (2), we arrive at the following important rules for the use of ratio control:

• (R1) The controlled variable y is implicitly assumed to be an intensive
variable, for example, composition, density, viscosity, taste or tempera-
ture.

• (R2) The system must satisfy the scaling assumption (2).

• (R3) Since all extensive variables must be scaled by the same factor k,
there can only be one independent extensive disturbance variable. This
variable is sometimes called the “basis”, “wild variable”, “master vari-
able”, “flow disturbance” or “throughput manipulator” (TPM).

• (R4) If the system has n independent extensive variables Xi, then from
(2) we need to manipulate n − 1 of these variables to keep n − 1 ratios
(or more generally, n−1 dependent intensive variables yi) constant. For a
change (disturbance) in the throughput (basis, wild flow) this will result in
keeping all dependent intensive variables constant, including the controlled
variable(s) y (at steady state).

The terms “independent” and “dependent” variables here have the meaning
of “inputs/disturbances” and “outputs” from a control point of view. The
independent intensive variables (xi) are typically feed property disturbances,
and the dependent intensive variables are typically product properties (y).

For example, the process in Figure 4 has n = 3 independent extensive vari-
ables at steady state (F1, F2, F3). If the process satisfies the scaling assumption
(say, it’s a mixing process or a distillation column), then using n − 1 = 2 of
these variables (F2, F3) to keep n−1 = 2 ratios (or more generally, 2 dependent
intensive variables) constant, will keep all dependent intensive product variables
constant when there are disturbances in F1.

The scaling assumption, which is the basis for ratio control, only holds if the
independent intensive variables xi are constant, that is, if there are no intensive
variable disturbances (like feed composition). This is rarely satisfied, but in
practice this may not be a serious limitation if they change relatively slowly,
because such disturbances can be handled by an outer feedback controller which
adjusts the ratio setpoint(s) (see CC in Figure 1).

2.3. When does the scaling assumption hold?

The scaling assumption holds for all thermodynamic equilibrium systems.
Thus, the scaling assumption (and thus the use of ratio control) applies to
many process units, including

• Mixers

• Equilibrium reactors

• Equilibrium distillation with constant stage efficiency
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If in doubt, one can check if the system satisfies (2a) and (2b). More gener-
ally, for the scaling assumption to hold for a process, we must assume constant
“efficiencies”. Skogestad (2009) (page 66) writes: “An initial basis for a stream
is often chosen. We can later rescale (up or down) all the streams to the desired
quantity. Mass, energy, volumes, etc. (all extensive variables) will scale with
the same factor provided that the efficiencies of the units remain constant.”

2.4. When does the scaling assumption not hold?

However, there are also many process units where the scaling assumption
does not hold and therefore ratio control should not be used, or at least used
with care. This includes, for example, non-equilibrium reactors (where kinetics
are important and the reactor volume matters) and heat exchangers. For the
scaling assumption to hold for a heat exchanger, we would need to increase
the heat transfer area A proportionally to the flow rates. This is reasonable
during design, but not during operation (control) when the equipment is fixed.
Nevertheless, ratio control of a heat exchanger is suggested by Smith (2010)
(page 204) and simulations show that it works quite well. However, this is
probably by luck, because heat exchangers do not satisfy the scaling assumption.

From rule R3, ratio control requires that all extensive variables are scaled
by the same factor. This means that we need to be careful when applying ratio
control to processes with many independent extensive variables. The problem is
that if we keep one extensive variable constant (except for the basis disturbance),
then the scaling assumption does not hold. For example, a distillation column
with a fixed heat input V (and with the feedrate F as a disturbance) does not
satisfy the scaling assumption, which means that L/F ratio control should not
be used unless also V/F is constant (see the Discussion section for details).

3. Implementation of ratio control

The recommended implementation of ratio control for F2/F1, with a mul-
tiplication element and a flow controller, was shown in the introduction, see
Figures 1, 2 and 3a.

The implementation with a division element and ratio controller (RC) in
Figure 3b is not recommended. Flower & Parr (2003) writes that it is “an
intuitive, but incorrect, method of ratio control” where ”the loop gain varies
with throughput” (see (7) below). Love (2007) writes that it is “commonly used
throughout industry, although in two different accounts, the indirect method
[using the multiplication element] is superior”. The two different accounts are
the potential of zero division and the nonlinearity (see (7) below).

3.1. Flow controller

In Figures 1 and 3a, F1 denotes the “master flow” (wild variable, basis or
flow disturbance) and the flow controller for the manipulated flow F2 has the
setpoint

F2s = (F2/F1)sF1 (3)
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The F2 flow controller usually uses the corresponding valve position z2 as the
manipulated variable (MV). The response from z2 (MV) and F2 (CV) is usually
very fast and often the dynamic process model is assumed to be static, ∆F2 =
kv∆z2. In such cases, the best controller is a pure I-controller with integral gain
KI = 1

kvτc
, where τc is the closed-loop time constant (including any process

time delay) (Skogestad, 2003). A typical value for τc for a flow controller is
between 5s and 15s. It is also possible to use a PI-controller with integral time
τI equal to the process time constant τ for the valve, and controller gain Kc

selected such that the integral gain KI = Kc/τI remains unchanged, that is,
Kc =

1
kv

τ
τc
.

It is possible to implement ratio control without a flow controller, for exam-
ple, using feedforward control from F2s to the valve position z2. However, this
is usually not sufficiently accurate because it involves inverting the valve equa-
tion relating the flowrate F2 [kg/s, m3/s, mol/s] to the valve position z2. This
equation is uncertain and depends on the pressure drop over the valve which
may vary.

Flower & Parr (2003) refer to the flow controller for F2 as the slave loop
and to F1 as the master flow. If there is also a flow controller for the master
flow F1, then we may use the setpoint F1,s instead of F1 as the basis for the
multiplication element when computing the setpoint for F2 in (3) (Buckley, 1964,
page 158). It is also possible to use a “blend” of the two variables as the basis,
for example, γF1,s+(1−γ)F1 where γ is an adjustable parameter between 0 and
1 (Hägglund, 2001). Using F1s as a replacement for F1 may be advantageous to
speed up the response for F2, but the disadvantage is that logic must be added
for the case when the controller is not active or if F1 does not reach its setpoint,
for example, because of valve saturation for z1 (Hägglund, 2017). To speed up
the response for F2, a better solution may be to tune the flow controller for F2

to be fast (with a small value of τc) or to add some “feedforward action” from
F1,s, for example, from F1,s to z2.

3.2. Nonlinearity

We here show that the implementation with the multiplication element in
Figures 1 and 3a, results in a linear response with a constant gain, both for the
inner flow controller (FC) as well as for the outer property controller that sets
the ratio setpoint (CC in Figure 1).

3.2.1. Outer loop nonlinearity (for controller CC in Figure 1)

One advantage with ratio control is that it makes the response from the
ratio setpoint Rs = (F2/F1)s to y for the outer controller (CC in Figure 1)
independent of the flow disturbance (F1). In some sense this is obvious, because
the scaling assumption, which is the basis for ratio control, says that y will be
constant when the ratio R is constant, independent of the values of the extensive
variables.

Nevertheless, to understand it better, consider the simple mixing process in
Figure 1 where F1 is the disturbance and F2 is the manipulated variable (the true
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MV is usually the valve position z2, but assume we have a flow controller for F2

as shown in Figure 1). Assume that y is the fraction of a given component in the
product and that x1 and x2 are the feed fractions. Then, from the component
material balance, we have that y is the average of the feed fractions,

y =
x1F1 + x2F2

F1 + F2
(4)

Next, we linearize this model for two cases:

1. No ratio control. In this case, the MV for the outer loop (CC) is F2 (rather
than F2/F1). The process as seen from the outer loop is then from F2 to
y, and the linearized model becomes ∆y = K∆F2 with gain

K =
F1(x2 − x1)

(F1 + F2)2
=

x2 − x1

F1(1 +R)2
(5)

Note that the gain K depends on the disturbance F1 and becomes infinite
as the throughput F1 + F2 approaches zero.

2. With ratio control. Here, the process as seen from the outer loop is from
R = F2/F1 to y, and the linearized model becomes ∆y = KR∆R with
gain

KR =
x2 − x1

(1 +R)2
(6)

With constant ratio R = F2/F1, the gain KR is independent of the dis-
turbance F1 (as expected).

In summary, the use of ratio control makes the process gain for the outer
loop (CC in Figure 1) independent of the throughput (e.g., F1). This makes it
possible to use linear controllers over a wider range of throughputs.

3.2.2. Inner loop nonlinearity (for controllers FC and RC in Figure 3))

We here compare the two ratio control schemes in Figure 3 using the anal-
ysis of Shinskey (1967) (page 160) and show that the implementation with a
multiplication element is better than with a division element.

For the scheme with the multiplication element in Figure 3a, we have lin-
earity for the inner flow controller FC (provided the valve is linear) This follows
since for a linear valve, the response for the FC, from the manipulated variable
z2 (valve position) to the controlled variable F2, is

∆F2 = kv∆z2

where kv is a constant.
On the other hand, for the scheme with the division element in Figure 3b, we

have a strong nonlinearity for the inner ratio controller RC. This follows since
the response for the RC, from the manipulated variable z2 (valve position) to
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the controlled variable R = F2/F1, is (again assuming a linear valve)

∆R =
kv
F1

∆z2 =
1

F1
∆F2 (7)

The gain becomes infinite if F1 goes to zero. It does not help to control the
inverse ratio, R′ = F1/F2, because here we get ∆R′ = − F1

F 2
2
∆F2 and the gain

becomes zero if F1 goes to zero and infinite if F2 goes to zero. Another option
is to control the normalized ratio, RN = F2/(F1 + F2), which gives ∆RN =

F1

(F1+F2)2
∆F2, but here the gain becomes zero if F1 goes to zero.

3.3. Dynamic elements

The scaling assumption, which is the basis of ratio control, applies to the
steady-state behavior. To achieve better dynamic behavior for the recommended
scheme in Figure 3a, one may introduce dynamic compensation as shown in
Figure 6. Typically, we use a lead-lag element with delay on the form

Dynamic element =
Ts+ 1

(τ1s+ 1)(τ2s+ 1)
e−θs

where any of the parameters (T, τ1, τ2, θ) may be zero. Note that the steady-
state gain is 1. The dynamic element is usually on the “basis” signal F1 (see
Figure 6), to avoid that it becomes part of the outer control loop which adjusts
the ratio setpoint (F2/F1)s.

For example, if we in a distillation column use the flow ratio F2/F1 = V/F
(where F2 = V is the boilup and F1 = F the feedrate), we may use the dynamic
element to delay the measurement of the feedrate F (disturbance) because it
takes some time for a change in F to reach the bottom of the column (which
is where we want to control the composition y and where the boilup V enters).
On the other hand, if the flow control loop (FC) for F2 = V is slow, maybe
due to the slow dynamics in the reboiler in the distillation column, then we can
speed up the response for F2 by choosing T > τ1 in the dynamic element. In
this case, T is the closed-loop time constant of the FC-loop.

Luyben (2022a) Luyben (2022b) compares linear dynamic feedforward con-
trol (which he calls “additive” feedforward control) with static ratio control
(which he calls “multiplicative” feedforward control), and concludes that the
“additive” structure is often better. However, this is not a fair comparison,
because dynamic compensation can easily be added to ratio control, as shown
in Figure 6. This would make ratio control the preferred choice (assuming that
the scaling assumption holds), because ratio control gives the correct action at
steady state. That is, it corrects for the nonlinearity in the process, for example,
as given by the nonlinear relationship from F1 and F2 to y in (4).
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Figure 6: Ratio control with dynamic compensation. The dynamic element has no effect at
steady state.

4. More complex ratio control implementations

4.1. Dual ratio control

Conventional ratio control, as shown Figure 1, fails if the manipulated vari-
able (MV) used to control the ratio (z2 in Figure 1) saturates (e.g., at a fully
open valve position) or if its value is set by some other more important control
task (override). If keeping the desired ratio has high priority, then the solution
is to use “dual” ratio control, where we let a second manipulated variable (MV)
take over the task of ratio control when the original MV cannot be manipulated.
This is an example of MV-MV switching for which there generally are three
alternatives (Skogestad et al., 2023):

1. Split-range control (SRC; one controller with two MVs)

2. Split-parallel control (SPC; two controllers, one for each MV, with setpoint
separation)

3. Valve position control (VPC; the second MV is used, when necessary, to
avoid saturation for the original MV)

The last alternative (VPC) has the advantage that the original MV (say
z2) is always used to control the ratio. However, this means that this MV (z2)
is not allowed to saturate (at 100%), which may result in an economic loss.
Furthermore, the outer VPC loop (e.g., using z1 to control z2 at 80% position)
may be too slow to avoid saturation in z1, which may lead to temporary loss of
ratio control. The VPC alternative may be attractive for cases where the second
MV (z1) is an on/off variable, for example, an extra pump which may be turned
on under certain conditions, because then we cannot use z1 (alone) to control the
ratio. If tight ratio control is required, then the second alternative (SPC) is not
desirable as it requires a quite large setpoint separation to work well (Forsman
et al., 2025). This has also been confirmed by simulations (not included) for
the dual ratio control case. It therefore seems that the first alternative (SRC) is
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usually the best for dual ratio control, and this is in line with industrial practice
(K. Forsman, personal communication, 2025). In many cases, the second MV
(z1) is already paired with some other controlled variable( CV), like control of
flowrate, so we need to change the CV for the second MV. We then need to
combine the MV-MV switching with CV-CV switching (Skogestad, 2023). The
latter normally requires a MIN- or MAX-selector, although we will see below
that sometimes a multiplication element may be used instead.

An example of dual ratio control using split-range control is shown in Fig-
ure 7. This is a process with two feeds (F1 and F2) and two controlled variables
(flowrate F1 and ratio F2/F1, where ratio control has priority). Valve position
z2 is the “original” MV for controlling the ratio F2/F1, and valve position z1
is the second MV that takes over if z2 saturates at 100% (fully open valve).
However, z1 is normally used for controlling the flowrate F1 at a given setpoint,
so we use a MIN-selector to perform the override. In the implementation Fig-
ure 7, the ratio block (multiplication element) multiplies the measured value of
F1 with the ratio setpoint (F2/F!)s to compute the setpoint F2s. This is send
to the the split-range flow controller FC-SR for F2 which computes the internal
variable u and sends it to the logic SR-block. The SR-block manipulates the
original MV z2 when u is less than 50% and the second MV z1 when u is above
50%. The table for the SR-block in Figure 7 gives the values where we change
the linear relationship between the input signal u and the output signals z2 and
z12. The valve positions z1 and z2 are here assumed to be in the range 0-100%.
Note that the split value u = 50% may be adjusted to make the effective gains
for the two control loops different (but the integral and derivative times are
the same). For example, changing 50% in the first column to 25% gives a 3
(=75%/25%) times higher effective gain for z2 than for z1.

The proposed scheme scheme works well as shown by the dynamic simula-
tions in Figure 8 where there are flowrate setpoint changes at times 1, 2 and 3
[min] and ratio setpoint changes at times 5, 6 and 8 [min]. The increase in ratio
setpoint at t=6, results in F2 reaching its maximum value (F2MAX=1 kg/s at
z2 = 100%) and the split range block switches to using z1 for ratio control. To
reach the new ratio setpoint of 1.4, F1 is then reduced to 1/1.4=0.71 kg/s which
is below its setpoint (F1SP=0.8 kg/s), that is, we have to give up control of F1

and we get an “unavoidable offset”. Importantly, the SRC scheme in Figure 8
is able to maintain ratio control under all conditions, as desired. However, the
dynamic response for reaching the new ratio setpoints at t=6 and t=8 is a bit
delayed. The reason is a “limbo” effect because the switch to using z1 for ratio
control does not occur immediately when z12 in Figure 7 drops below 100%,
because z11 (the output from the flow controller for F1) starts at about 80%.
This means that the integral action in the split-range flow controller (FC-SR)
needs to increase u to a value above 50% before z12 drops to 80% and switching
with the MIN-selector occurs.

The “limbo” effect is discussed in Appendix E in Zotică et al. (2022) who
propose to speed up the switching by using bias updates. However, a much
simpler solution is proposed by the modified SRC scheme in Figure 9. Here,
the signal z12 from the split-range block (which must be in the range 1 to 0) is
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Figure 7: “Dual” ratio control using split-range control (SRC)

Figure 8: Simulation of dual ratio SRC scheme in Figure 7 The limbo-effect, caused by a delay
from the MIN-selector, is seen for the ratio at times 6 and 8.
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multiplied by the valve position z11 desired by the flow controller and the switch
occurs immediately when z12 drops below 1. The MIN-selector may be omitted
because z12 ≤ 1. Initially, when z12 drops below 1, there will be some “fighting”
between controllers FC and FC-SR, because both controllers are connected to z1,
but the fighting will stop quite soon due to the anti-windup action in controller
FC which manipulates z11. The split-range controller FC-SR does not have
anti windup. The “multiplication trick” in Figure 9 results in much better
ratio control at times 6 and 8 as shown by the simulation in Figure 10. In
conclusion, the modified split-range scheme in Figure 9 is recommended for
dual ratio control applications. In the discussion section, it is argued that the
“multiplication trick” may be used more generally to avoid the “limbo effect”
for split-range control (see Figures 15 and 16).

In the simulations in Figures 8 and 10, the only dynamics come from the two
flow controllers. These are pure I-controllers which give a loop transfer function
5/s (corresponding to a closed-loop time constant of 0.2 [min]). Controller FC
for F1 has anti-windup with tracking coefficient Kt equal to 5 (using the PID
controller in Matlab Simulink) (corresponding to a tracking time τT = 1

Kt
= 0.2

[min]. In summary, the PI-controller is (Skogestad, 2023)

u(t) = u0 +Kce(t) +

∫ t

t0

(KIe(t
′) +KteT (t

′))dt′ (8)

with e(t) = y − ys and eT = ũ− u, where for controller FC for y = F1, we have
u = z11 and ũ = z1. In the simulations, Kc = 0,KI = 5 and Kt = 5. Controller
FC-SR for y = F2 has Kc = 0,KI = 5 and Kt = 0, that is, this controller does
not have anti windup. The valves (process) are linear and static with gain 1,
that is, F1 = k1z1 and F2 = k2z2 with k1 = k2 = 1 [%/%]. The flowrates in the
simulations have been divided by 100% for better visualization.

Figure 9: Modified split-range control (SRC) scheme for “dual” ratio control where the MIN-
selector in Figure 7 is replaced by multiplication to avoid the limbo effect.
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Figure 10: Simulation of modified dual ratio SRC scheme in Figure 9.

An alternative to the dual ratio schemes in Figures 7 and 9 is the “tracking
ratio station” scheme of Hägglund (2017). However, this scheme is rather com-
plicated to implement, and, more seriously, it results in undesirable frequent
switching.

4.2. Cross-limiting ratio control

Another common, but fairly complex, application of ratio control is cross-
limiting control in combustion power plants (Liptak, 1973; Wade, 2004). Here,
the objective is to mix air (2) and fuel (1) in a given ratio, but during dynamic
transients, when there will be deviations from the given ratio, one should make
sure that there is always an excess of air, that is, we should always have F1/F2 <
(F1/F2)s.

A conventional ratio control scheme for combustion processes is shown in
Figure 11. The setpoint for the ratio, (F1/F2)s, could be set by a feedback
controller (not shown) which controls, for example, the remaining oxygen after
combustion. The setpoint for the fuel, F1,s could be set a feedback controller
(not shown) which controls, for example, the power or the steam pressure. The
conventional scheme in Figure 11 is not able to main excess of air under all
dynamic transients, because normally (and always in the linear case) if F1/F2 <
(F1/F2)s during one transient then F1/F2 > (F1/F2)s for the opposite transient
(e.g., see the ratio for changes down and up in the flow setpoint in Figure 8 at
times 1 and 2).

Interestingly, the scheme in Figure 12 with crossing min- and max- selectors
achieves F1/F2 < (F1/F2)s during all transients. The scheme is widely used in
industry and is mentioned in many industrial books (e.g., Liptak (1973); Wade
(2004).
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Figure 11: Conventional ratio control implementations for combustion. The two schemes are
equivalent for practical purposes. The second scheme with the inverse ratio is shown as an
intermediate step to the cross-limiting scheme in Figure 12.
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A dynamic simulation is shown in Figure 13 for an increase in flow setpoint
(F1,s) at times 1 an 3, decrease at time 5, and finally a change down and up in
the ratio setpoint at times 7 and 9. How does it work?

Let us first consider the change in fuel rate (F1), which is the most important.
When we increase the fuel setpoint (F1,s), the air flow (F2) will increase first,
while the MIN-selector holds back the fuel increase. On the other hand, when
we decrease the fuel setpoint (F1,s), the fuel flow (F1) decreases first while the
MAX-selector holds back the air flow (so it remains high for a longer time). In
summary, we always have excess of air during the dynamic transients in fuel
rate.

However, when we decrease the ratio setpoint (F1/F2)s (at time 7), the ratio
F1/F2 is initally above its setpoint, although the control system reduces the fuel
(F1) to help decrease the ratio during the transient. In any case, this situation
is unavoidable, since it is not possible to react immediately to a setpoint change
using feedback control. Furthermore, setpoint changes in the fuel ratio are not
expected to be large and frequent.

Fuel (1) Air (2)

FC FC

min

max

X

F1,s

F ′′
1,s F ′

1,s F ′
1 (

F1

F2

)
s

F2
F1

Figure 12: Cross-limiting ratio control for combustion where air (2) should always be in excess
of fuel (1) (Smith & Corripio, 1997; Wade, 2004).

In the simulations, the valves are assumed to be linear (∆F = kv∆z) and the
only dynamics come from the two flow controllers. These are pure I-controllers
which give a loop transfer function 5/s for F1 (corresponding to a closed-loop
time constant of 0.2 [min]) and 10/s for F2 (corresponding to a closed-loop time
constant of 0.1 [min]). Note that the cross-limiting solution works well in all
cases, independent of the tuning of the flow controllers.
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Figure 13: Simulation of the cross-limiting ratio control scheme in Figure 12.

5. Discussion

5.1. The scaling assumption

In the literature, there appears to be no clear statement of the scaling as-
sumption and its relationship to ratio control. The one who comes closest is
Riggs (1999) who writes the following in the first paragraph in his section on ra-
tio control: “Many processes scale directly with the feedrate to the process, e.g.
distillation columns and wastewater neutralization. For distillation columns,
all the liquid and vapor flow rates within the column are directly proportional
to the column feed rate if the product purities are maintained and the tray
efficiency is constant”.

The idea of scaling all flowrates (and more generally all extensive variables)
with respect to a “basis” is extensively used for mass and energy balance calcu-
lations in process engineering. However, its theoretical basis, namely the scaling
assumption, is not mentioned in most standard text books. One exception is
Reklaitis (1983) who proves the homogeneity (2b) (with h = 1) of the material
balance equations (page 40) and shows that this leads to the scaling assumption:
“If any set of flows Fi satisfies the balance equations and if α is any number,
the flow rates αFi also satisfy the balance equations”. He notes that the same
applies to the energy flows in the energy balance (page 460).

However, this is not enough to guarantee that we get the same steady-
state solution with constant intensive variables (y). For example, it will not
be the case for a non-equilibrium reactor or a distillation column where the
stage efficiency depends on the load. Riggs (1999) and Skogestad (2009) state
that also constant efficiencies are required for the scaling assumption and (2) to
hold. Skogestad (2009) writes (page 66): “An initial basis for a selected stream
is often chosen, for example 1 kg or 100 mol/s. If necessary, we can later rescale

22



(up or down) all the streams to the desired quantity. Mass, energy, volumes,
etc. (all extensive variables) will scale with the same factor provided that the
efficiencies of the units remain constant.”

In thermodynamics, (2b) (with h = 1) is used to derive Euler’s theorem and
from this we may derive the fundamental equation of thermodynamics, Leg-
endre transformations and the Gibbs-Duhem equation (Modell & Reid, 1983).
Skogestad (1991) states the scaling assumption and stresses the difference be-
tween extensive and intensive variables. Following Modell & Reid (1983), he
derives Euler’s theorem in thermodynamics and uses this to derive consistency
relationships (eq. 27 in his paper) for linear steady-state models for systems
that satisfy the scaling assumption, and shows that many published models do
not satisfy this and therefore are incorrect. The counterpart of these consistency
equations in thermodynamics is the integrated Gibbs-Duhem equation.

5.2. Distillation

An example where it is important to keep all ratios constant is distillation.
Typically, for distillation we need keep two ratios constant (and not only one),
see Figure 5. More generally, Rule R4 says that for an application with n =
2 independent extensive variables at steady state (like distillation with fixed
pressure), we need to keep n = 2 ratios constant. In addition, from rule R3,
we can only have a single extensive disturbance. This means that ratio control
should not be applied a distillation column with a fixed heat input V (and
with the feedrate F as a disturbance). Nevertheless, reflux-to-feed (L/F ) ratio
control is often used in practice, even for cases where the heat input (which
is an extensive variable) is constant. However, Bang & Skogestad (2025) show
with simulations that with constant heat input (that is, boilup V is constant),
a constant reflux ratio L/F gives the wrong (opposite) response in reflux L to a
change in feedrate F . This is easy to explain: For an increase in the feedrate F ,
we need to increase the distillate product flowrate D to maintain approximately
constant product composition (y). With constant boilup V and a liquid feed,
the vapor rate VT up the column is approximately constant (see Figure 5). At
steady state VT = L + D, so to increase D we need to reduce the reflux L
(and certainly not to increase L as would result from keeping the ratio L/F
constant).

5.3. Generalized ratio control using transformed inputs

One limitation with ratio control is that it assumes that there are no changes
(disturbances) in the independent intensive variables (xi in (1) and (2); x1 in
Figure 1). These disturbances may be handled by updating the ratio setpoint
using an outer feedback controller (controller CC in Figure 1), but if this is not
sufficient, then we need to make use of model-based feedforward control. For the
static case, a simple and powerful nonlinear feedforward approach is provided
with the use of ideal transformed inputs (Skogestad et al., 2023; Skogestad,
2023).
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Consider the steady-state model (the subscript 0 is used to emphasize that
we use a static model)

y = f0(u, d) (9)

where y is the controlled variable (CV), u is the manipulated variable (MV)
and d is the disturbance variable (including both extensive and intensive dis-
turbances). All variables are vectors in the general case. The ideal transformed
input v0 (controller output) is selected as the right-hand-side of the steady-state
model,

v0 = f0(u, d) (10)

For implementation, one needs to invert the model by solving (10) with respect
to u for given values of v0 and d. We can formally write the solution as

u = f−1
0 (v0, d) (11)

At steady state, the resulting transformed system then trivially becomes

y = v0 (12)

That is, we have y = Iv0, so we have perfect feedforward control, decoupling
and linearization at steady state. It looks like magic, but it works in practice.
To have perfect control, we must assume that all disturbances d are measured
(or at least estimated), but if this is not the case then one may use a simpler
variant of f0 as the transformed input v, where we fix the value of unmeasured
disturbances to get partial feedforward or decoupling. To correct for model error
and unmeasured disturbances, the value (setpoint) for v0 may be adjusted by
an outer controller C (usually a decentralized PID controller).

As an example, consider the simple mixing process in Figure 14 where u = F2

is the manipulated variable (the true MV is usually the valve position z2, but
assume we have a flow controller for F2 as shown in Figure 14) and y (product
mass fraction) is the controlled variable. The disturbance (d) variables are F1

and the feed compositions x1 and x2 (mass fractions).
From the steady-state component material balance, we have that y is the

weighted average of the feed fractions (recall (4))

y = f0(u, d) =
x1F1 + x2F2

F1 + F2
(13)

Note that u = F2. The transformed input is defined as the right-hand side of this
equation, v0 = f0(u, d). Note that v0 is the output from the feedback controller.
Inverting (13), we find how the input u = F2 depends on the transformed input
v0:

u = F2 = f−1
0 (v0, d) =

x1 − v0
v0 − x2

F1 (14)

This may realized using the improved ratio control scheme in Figure 14 where,
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compared to Figure 1 we have added a computation block which uses (14) to
compute the setpoint for F2/F1. This will result in constant composition y
at steady state for all disturbances, even without a feedback controller (CC)
to update v0. Of course, this assumes that the model is correct and that we
measure or estimate the feed disturbances x1 and x2.

Figure 14: Improved ratio control scheme for mixing process using transformed input v0. The
feed mass fractions x1 and x2 that enter the computation block, need to be measured or
estimated.

5.4. Normalized ratio

In the paper, we have considered the ratio

R = F2/F1

(or sometimes the inverse F1/F2) which is simple to implement using a mul-
tiplication element. An somewhat more complex alternative is the normalized
ratio (King, 2011; Skogestad, 2023)

RN =
F2

F1 + F2
(15)

The two ratios are equivalent in the sense that fixing one keeps the other con-
stant (since RN = (R−1+1)−1). However, the normalized ratio has some prop-
erties that may makes it better for implementation (Skogestad et al., 2023).
First, RN is always in the range 0 to 1, whereas R may vary between 0 and ∞.
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Second, for many applications, the ratio RN is a special case of the ideal static
transformed input (v0) and provides linearization (e.g. see (13)) (Skogestad
et al., 2023). To understand this better, consider again the mixing process in
Figure 1. The steady-state model equation (4) becomes (King, 2011)

y = x1(1−RN ) + x2RN

which is linear in RN , so the linearized model as seen from the outer controller
(CC in Figure 1) becomes ∆y = KN∆RN with (King, 2011)

KN = x2 − x1 (16)

Notice that the KN for the normalized ratio RN is independent of both R and
the throughput F1, whereas the gain KR for R in (6) depends quite strongly on
R when R is large. One way to reduce this nonlinearity for R = F2/F1, would be
to use the inverse ratio R′ = F1/F2 for cases when R = F2/F1 is large. However,
more generally, if large variations in R are expected (which is not so common),
an even better solution is to use the normalized ratio RN = F2/(F1+F2) as the
output of the outer controller.

However, the process gain KN will still vary if there are changes in x2 − x1,
and in particular this may be a problem if the quality difference x2 − x1 is
small, because then a relatively small change in either x1 or x2 will cause a
proportionately large change in the difference. This problem is noted by King
(2011) who considers a very similar mixing example, but with temperature
rather than composition. King (2011) proposes to add some feedforward action
to compensate for changes in the temperature difference T2 − T1. Probably,
the best way to add steady-state feedforward action is to use the transformed
input v0 = f0(u, d) in (13) as the outer controller output, which results in the
implementation in Figure 14. Here, the steady-state model ∆y = K0v0 has a
constant process gain K0 = 1.

5.5. MPC and ratio control

Unlike conventional feedforward control, ratio control does not need an ex-
plicit model of how the controlled property variable y depends on the extensive
variables (Xi, Fi). This makes ratio control more powerful and simpler to apply
than many people think. However, it also implies that conventional model-based
control approaches, like model predictive control (MPC), are not ideally suited
for implementing ratio control.

First, MPC may be a good solution if maintaining a given ratio setpoint is
a primary control objective and may be defined as a controlled variable (CV)
for MPC. One application is MPC for air-to-fuel ratio (AFR) control in engines
(Trimboli et al., 2009; Honek et al., 2015). In this case, we may use a con-
ventional industrial linear MPC implementation (with MV constraints). MPC
is also a good alternative to achieve “dual” ratio control (as in Figures 7 and
9). However, the use of MPC with ratio as a CV, requires a ratio element to
compute the measured ratio (e.g., F2/F1). This is similar to the ratio controller
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(RC) implementation in Figure 3b and it shares some of its problems, including
the danger of dividing by zero and the nonlinearity from the MV (e.g., F2) to the
CV (e.g., F2/F1), see (7). The nonlinearity may be handled by using nonlinear
MPC.

Next, consider the mixing process in Figure 1, where the main measured
disturbance is the flowrate d = F1 and the primary objective is to use the input
u = F2 (MV) to control the composition y (CV). Assuming that there is some
delay associated with the measurement of y, we know intuitively that it may
be an advantage to use ratio control, where u/d = F2/F1 is kept constant on a
fast time scale. How are we going to make MPC do this? The obvious solution
is to supply MPC with a model, such as (4), which tells MPC that y will be
constant when the ratio u/d = F2/F1 is constant. This should work well if
we also tell MPC that there is some delay associated with y, so that it knows
that feedforward action from d = F1 will improve control of y. However, note
that the use of ratio control gives nonlinear feedforward action, so this require
a nonlinear MPC implementation (which is not commonly used in industry
today). Also, what should we do if we do not have a good model for how y
depends on u and d, for example, if y is a more complex property variable, such
as viscosity or color? In this case, we may have to create an artificial model
which tells MPC that y will be constant if we keep the ratio u/d constant.

Alternatively, for the mixing process in Figure 1, we may use a cascade imple-
mentation where MPC is combined with another controller (e.g., PID control),
and the ratio is defined as either a CV or MV for MPC. This avoids some of
the modelling issues and allows for using a linear MPC implementation. The
simplest, as was discussed initially, is to let MPC be a slave controller and de-
fine the ratio as a controlled variable (CV) for MPC. The ratio setpoint is set
by a separate slower master controller which controls y (like CC in Figure 1).
An alternative cascade implementation is to use MPC as the master controller.
Here, the ratio setpoint, like (F2/F1)s, is defined as a degree of freedom (MV)
for MPC, and the ratio setpoint is implemented by the faster regulatory layer,
below MPC, for example using the simple implementation in Figure 3a or a
“dual” ratio implementation (e.g., Figure 9).

5.6. Generality of multiplication trick for split range control with override

The trick of replacing the MIN-selector with a multiplication element to
avoid the limbo-effect with split-range control (SRC) for dual ratio control (see
Figures 7 and 9) may be generalized and shown in Figures 15 and 16. It is
assumed that control of y2 has higher priority than control of y1. Controller
C1 has anti-windup but not the split-range controller C2. (Note that if the
controlled variables y1 and/or y2 are not flows, then one may add slave flow
controllers (not shown in Figures 15 and 16) to compensate for valve nonlin-
earity and pressure disturbances, and in such cases, z1 would be the setpoint
F1,s and z2 the setpoint F2,s.)

Consider first the standard implementation in Figure 15. In the unsaturated
case, the two MVs (valve positions z1 and z2) are used to control their associ-
ated CVs (y1 and y2) using single-loop controllers (C1 and C2) (usually PID
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Figure 15: General split-range control for MV-MV switching combined with override MIN-
selector for CV-CV switching (for case where control of y2 has higher priority than control of
y1). Controller C1 has anti-windup but not the split-range controller C2. (*The split value
of 50% in the table may be changed to adjust the effective controller gain).

Figure 16: Avoiding limbo-effect with split-range control by replacing the MIN-selector in
Figure 15 by a multiplication element. Controller C1 has anti-windup but not the split-range
controller C2. (*The split value of 50% in the table may be changed to adjust the effective
controller gain for C2).
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controllers). Control of y2 is has higher priority than control of y1, so if z2 sat-
urates fully open (100%), the SR block and the MIN-selector make the system
switch to using z1 for control of y2. However, as noted in the simulation in
Figure 7 (at times 6 and 8), the switching does not occur immediately because
z12 has to “wind down” from 100% to the present value of z11.

This limbo effect may be avoided if we replace the MIN-selector with a mul-
tiplication element, as shown in Figure 16. Here, the switching occurs immedi-
ately when z12 drops below 1. There will be some “fighting” initially between
controllers C1 and C2, because both controllers are connected to z1, but the
fighting will stop quite soon because of the anti-windup action in C1.

A minor problem with the solution in Figure 16 is that it introduces a non-
linearity through the multiplication with z11. That is, a value of z11 less than
100% will reduce the effective gain from z12 to y2 and slow down the control of
y2 when z2 is saturated.

The trick of avoiding the limbo-effect by replacing the selector by multi-
plication with a signal between 1 and 0 only works to replace a MIN-selector.
However, note that a MAX-selector may be replaced by a MIN-selector by sim-
ply redefining the sign of the variables, for example, by defining a fully open
valve to be 0% rather than 100% and a closed valve to be 100% rather than 0%.
Thus, the multiplication trick can be used also to replace a MAX-selector.

6. Conclusion

Ratio control is very simple to use and it gives nonlinear feedforward action
without needing an explicit process model. It is almost always used for chemical
processes to set the ratio of the reactant feed streams. Ratio control is sometimes
viewed as a special case of feedforward control, but note that we do not need a
model for the controlled property y for ratio control, whereas such a model is
needed for feedforward control.

The theoretical basis for ratio control is the scaling assumption which says
that we get the same steady-state solution if we increase all extensive variables
(flows and heat rates) by the same factor compared to a basis. Similar to the
use in thermodynamics, the scaling assumption holds for equilibrium systems
with constant efficiencies.

The scaling assumption is formulated mathematically in (2). From this we
derived the following rules for the use of ratio control:

• (R1) The controlled variable y is implicitly assumed to be an intensive
variable, for example, composition, density, viscosity, taste or tempera-
ture.

• (R2) The system must satisfy the scaling assumption (2).

• (R3) Since all extensive variables must be scaled by the same factor k,
there can only be one independent extensive disturbance variable. This
variable is sometimes called the “basis”, “wild variable”, “master vari-
able”, “flow disturbance” or “throughput manipulator” (TPM).
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• (R4) If the system has n independent extensive variables Xi, then from
(2) we need to manipulate n − 1 of these variables to keep the n − 1
ratios constant (or more generally, n−1 dependent intensive variables yi).
For a change (disturbance) in the throughput (basis, wild flow), this will
result in keeping all dependent intensive variables constant, including the
controlled variable(s) y (at steady state).

The paper has also discussed the practical implementation of ratio control
using a multiplication element. Figure 1 shows a typical cascade implementation
where an outer loop controls y and sets the ratio setpoint. Note that no model
is needed to implement this solution. More advanced implementations are dual
ratio control for the case with saturation (Figure 10) and cross-limiting control
to keep one component (typically oxygen) in excess during dynamic transients
(Figure 12). Ratio control can be generalized to include model information
using the idea of transformed inputs (Figure 14). Finally, Figure 16 shows how
the multiplication trick (used in Figure 12) applies more generally to avoid the
limbo effect in split-range control.
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Supplementary material

The MATLAB/Simulink files for the dynamic simulations are available at
the home page of Sigurd Skogestad.
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