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Abstract

Model predictive control (MPC) allows for dealing with multivariable interactions, known future changes and dynamic satisfaction
of constraints. Standard MPC has a cost function that aims at keeping selected controlled variables at constant setpoints. This work
considers systems where the steady-state optimal active constraints change during operation. This situation is not handled optimally
by standard MPC which uses fixed controlled variables for the unconstrained degrees of freedom. We propose a simple framework
that detects the constraint changes and updates the controlled variables accordingly. The unconstrained controlled variables are
chosen to be the reduced cost gradients, which when controlled to zero minimizes the steady-state economic cost. In this paper, the
nullspace method for self-optimizing control is used to estimate the cost gradient using a static combination of the measurements.
This estimated gradient is also used for detecting the current set of active constraints, which in particular allows for giving up
constraints that were previously active. The proposed framework, here referred to as “region-based MPC”, is shown to be optimal
for linear constrained systems with a quadratic economic cost function, and it allows for good economic performance in nonlinear
systems in a neighborhood of the considered design points.

Keywords: self-optimizing control, model predictive control, optimal operation

1. Introduction

Model predictive control (MPC) denotes a class of control
strategies based on the online optimization of the predicted dy-
namic trajectory of the system [1]. It is a valuable tool for pro-
cess control, being able to deal with multivariable interactions,5

future known disturbances and setpoint changes, and constraint
satisfaction. In practice, MPC is usually implemented as a su-
pervisory control layer above the plant regulatory layer, where
stability is assessed, and is subordinate to a real-time optimiza-
tion (RTO) layer, which updates the setpoints for the controlled10

variables (CVs) based on economics, as presented in Figure 1.
It is possible to eliminate the controlled variables by combin-
ing the RTO layer, the supervisory control (MPC) layer and the
regulatory control (PID) layer into one layer. This alternative,
known as Economic MPC (EMPC) [2], is popular in academia15

but almost never used in industry and is not considered in this
paper.

The steady-state economic optimization of the plant, solved
at the RTO layer, can be defined as the following constrained
optimization problem:20

min
u

Jec(u, d)

s.t. g(u, d) ≤ 0
(1)

where Jec is the scalar economic cost function, u ∈ Rnu is the
vector of inputs or manipulated variables (MVs), d ∈ Rnd is the
vector of disturbances, and g(u, d) ∈ Rng is the vector of in-
equality constraints. Note that the model equations and corre-
sponding states have been formally eliminated from the formu-25

lation. The set of active constraintsA is defined for the optimal
solution u∗ as the set for which gi(u∗, d) = 0 with i ∈ A.
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Figure 1: Typical hierarchical control structure with standard setpoint-tracking
MPC in the supervisory layer. The cost function for the RTO layer is Jec and
the cost function for the MPC layer is JMPC . With no RTO layer (and thus
constant setpoints CV sp), this structure is not economically optimal when there
are changes in the active constraints. For some applications, the state estimator
and RTO estimator may be combined.
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Solving the problem in Equation (1) results in the optimal
plant inputs u∗, but as shown in Figure 1 the RTO layer usu-
ally implements the optimization results in the form of setpoint
updates CV sp to the MPC layer. We refer to this type of im-
plementation as setpoint-tracking MPC, or standard MPC. As
discussed in more detail later, see Equation (5), standard MPC
uses a control cost function of the form:

JMPC =

N∑
k=1

||CVk −CV sp||2Q + ||∆uk ||2R

where the first term penalizes setpoint deviations and the last
term penalizes dynamic input changes.

Standard MPC has two main elements: a state estimator and30

an open-loop moving horizon optimizer (which is often referred
to simply as MPC). The state estimator ensures feedback, cor-
recting the internal model according to the measurements, and
the MPC part uses this information to calculate the input se-
quence that drives the internal model to the desired operating35

point. The MPC problem can accommodate constraint satis-
faction, either as direct constraints in the optimization problem
or through the use of penalty terms. Additionally, most indus-
trial MPC implementations include a target calculation block,
which ensures that the setpoint that the MPC tracks is feasible40

at steady state [1].
In most MPC implementations, the CVs are selected based

on process intuition, and not in a systematic manner. In this
context, self-optimizing control (SOC) provides useful tools for
systematic selection of CVs, having optimal steady-state oper-
ation for changing disturbances as the main goal [3, 4]. For
quadratic problems, this gives for the unconstrained degrees of
freedom, the controlled variables [5]:

CV = Hy

where y denotes the available process measurements (possibly
including inputs u and measured disturbances d) and H is a
selection or combination matrix.

Most SOC approaches for CV selection assume that the45

steady-state active constraint set A is constant [4]. For exam-
ple, Graciano et al. [5] implemented MPC using the nominal
self-optimizing CVs, that is, with the nominally active con-
straints. This can reject disturbances in the fast timescales
and minimize the economic loss without the intervention of the50

RTO layer for the nominal set of active constraints. This is rela-
tively simple to implement and also satisfies the constraints un-
der changing operating conditions (disturbances). However, the
approach of Graciano et al. [5] is not economically optimal for
changing active constraints, because the optimal approach is to55

use different self-optimizing CVs for each set of active steady-
state constraints [6], that is, to update the matrix H for each
set of active constraints. Graciano et al. [5] write that: “When
considering active set changes, there are two fundamental cases
that must be handled by every method that attempts to give op-60

timal operation: 1) Detecting when a new constraint becomes
active: Here a degree of freedom is consumed for controlling
the new constraint, and control of one of the unconstrained self-
optimizing controlled variables must be given up. 2) Detecting

when a previously active constraint becomes inactive: Here the65

constraint that was enforced previously must be released, and
a new self-optimizing variable must be controlled instead.” To
handle case 2, the approach Graciano et al. [5] depends on RTO
updates to be optimal. The authors write: “Our approach does
not handle Case 2 in between RTO updates. That is, if a con-70

straint becomes inactive in between RTO runs, it will be kept at
its bound until the next RTO execution.”

This work proposes a solution to this problem by providing
a framework for self-optimizing control under changing active
constraints (Figure 2), labeled “region-based MPC”. which is75

optimal in both cases 1 and 2, without needing to rely on a
RTO layer. Here, the self-optimizing CVs tracked by MPC are
a function of the active constraint set. The detection of when
a constraint becomes inactive (case 2) is based on the work of
Woodward et al. [7]. In three case studies, we show that stan-80

dard MPC with a single (nominal) set of CVs leads to economic
loss when there are changes in active constraints during oper-
ation, whereas the proposed region-based MPC framework at-
tains steady-state optimal operation, at least locally where non-
linearity in the model is negligible.85
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Figure 2: Proposed region-based MPC structure with active set detection and
change in controlled variables, see Equations (17) and (18). The possible up-
dates from an upper RTO layer (y∗, J∗u etc.) are not considered in the present
work. Even with no RTO layer (and thus with constant setpoints CV sp

A in
each active constraint region), this structure is potentially economically opti-
mal when there are changes in the active constraints.

The rest of the paper is organized as follows. In Section 2 we
present some basic notions of MPC implementation. In Sec-
tion 3 we describe the control structure proposed in this work,
and the results of its application in some case studies are pre-
sented in Section 4. Based on these results and the theoretical90

aspects of the control structure, we discuss the proposed frame-
work in Section 5, and the paper is then concluded in Section 6.
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2. Standard MPC implementation

We first briefly discuss the standard MPC implementation
represented in Figure 1, which includes a state estimator and95

an open-loop optimizer (MPC block). For the estimator, con-
sider the following dynamic model used as an internal model
for MPC: 

dx
dt
= f (x, u, dc)

y = h(x, u, dc)
(2)

Here, x ∈ Rnx represents the vector of dynamic states,
u ∈ Rnu the vector of inputs (MVs), y ∈ Rny the vector of mea-100

surements and dc ∈ Rndc a vector of model disturbances.
There is usually one dc for each controlled variable, which

is used to account for uncertainty, for example, related to the
“true” disturbances d, measurement bias, or model parameter
changes. Note that dc does not need to have a physical interpre-105

tation and is used mainly to include integral action in MPC. In
other words, to attain offset-free control, the internal model is
augmented with the integrating states dc:

xaug =

[
x
dc

]
(3)

For a linear internal model, the number of additional integrating
states must be at least the number of controlled variables, and it110

need not be greater than the number of measurements [8]. The
dynamic model considered by the state estimator is therefore of
the form: 

dx̂aug

dt
=

d
dt

[
x̂
d̂c

]
=

[
f (x̂, u, d̂c)

0

]
+ ω

ŷ = h(x̂, u, d̂c) + ν
(4)

where ω ∼ N(0,Qe) and ν ∼ N(0,Re) are the random variables
present in most state estimation frameworks, and Qe and Re are115

the corresponding tuning parameters [9]. The estimated states
x̂ and d̂c are then used to solve a moving-horizon optimization
problem, which results in the next control action to be imple-
mented. A simple MPC optimization problem discretized using
multiple shooting [10] can be of the form:120

min
uk ,xk

JMPC =

N∑
k=1

||CVk −CV sp||2Q + ||∆uk ||2R

s.t. xk = ϕ(xk−1, uk−1, d̂c)

yk = h(xk, uk, d̂c)
CVk = Hyk

∆uk = uk − uk−1

x0 = x̂

ymin ≤ yk ≤ ymax

xmin ≤ xk ≤ xmax

umin ≤ uk ≤ umax

− ∆umax ≤ ∆uk ≤ ∆umax

(5)

Here, CV are the selected controlled variables, xk denotes the
state at the k-th time step, and ϕ(xk−1, uk−1, d̂c) is the result of the
integration of the dynamic model in Equation (2) from tk−1 to
tk = tk−1 +∆t with u = uk−1, dc = d̂c, and the initial condition as
the previous state x(tk−1) = xk−1. The objective function JMPC

125

aims to minimize the tracking error CV−CV sp while penalizing
large input changes ∆uk. N is the number of prediction steps,
and the weight matrices Q and R are tuning parameters.

The output, state, and input constraints in Equation (5) can
be used to embed the RTO constraint g(u, d) ≤ 0 from Equa-130

tion (1) in the MPC time scale. State constraints are not needed
if we assume that the constraints g(u, d) are measured (or esti-
mated) and included as elements in the measurements vector y.
Without loss of generality, we will assume that the constraints
can be estimated from the dynamic model as:135

g = hg(x, u, dc) (6)

We remark that an MPC in the form of Equation (5) has no
stability guarantees, but it can converge if the prediction hori-
zon N is large enough (the reader is referred to Mayne [11] for
an in-depth review of MPC formulations).

The focus of the present work is the case where the original140

setpoints CV sp must be given up due to constraints becoming
active at steady state. In theory, the RTO layer may update the
setpoints, but in most cases there is no RTO layer, so the set-
points are constant. Standard MPC satisfies the constraints, but
it is suboptimal in terms of steady-state economic performance.145

In the next section, we propose an optimal way of dealing with
changing active constraints, without the need for RTO updates.

3. Region-based MPC framework

The structure of the proposed region-based MPC scheme is
summarized in Figure 2. The state estimator, also present in150

standard MPC, serves as the feedback element for MPC as well
as for the active set detection block, which is the new element of
the framework when compared to standard MPC. The detected
active setA, is sent to the MPC block, which uses a different set
of predetermined CVs for each active set A. We next describe155

how the CVs for each active set are determined, and how the set
of active constraints can be estimated online.

3.1. Controlled variables for region-based MPC

The controlled variables (CVs) in region (or active constraint
set)A are:160

CVA =
[
gA
cA

]
(7)

Here, gA denotes the active constraints, and cA denotes the
unconstrained CVs (which we will see are the reduced gradi-
ents) for optimal steady-state operation. The dynamic control
problem for the proposed region-based MPC is very similar to
that of standard MPC in Equation (5), except that the objective165

function changes for each regionA:
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JMPC
A =

N∑
k=1

||CVA −CV sp
A ||2QA + ||∆uk ||2RA (8)

where QA and RA are tuning parameters that can be chosen
independently for each region A, and CV sp

A are setpoints that
will be calculated next.

The unconstrained controlled variables cA should be selected170

to minimize the steady-state cost, given that the active con-
straints gA are being controlled. For this purpose, we follow
Halvorsen et al. [12] and consider a local QP approximation of
the steady-state economic optimization problem:

min
∆u

Jec = Jec⋆ +
[
∆uT ∆dT

] [J⋆u
J⋆d

]
+

1
2

[
∆uT ∆dT

] [ Juu Jud

Jud
T Jdd

] [
∆u
∆d

] (9a)

s.t. g = g⋆ +Gg∆u +Gg
d∆d ≤ 0 (9b)

Here, ∆d = d−d⋆ and ∆u = u−u⋆ represent the disturbances175

and inputs as their deviation from their reference values d⋆ and
u⋆, respectively, and Jec⋆, J⋆u , and Juu represent respectively the
cost function, its gradient, and its Hessian with respect to the
inputs, all evaluated at the steady state reference point ⋆. The
linearized expression in Equation (9b) for the constraints is not180

used by Halvorsen et al. [12], but it is needed here because we
consider changes in active constraints. Additionally, the mea-
surements y are locally approximated by a linear steady-state
model of the form:

∆y = Gy∆u +Gy
d∆d (10)

The optimal solution to the problem in Equation (9) can185

be implemented in a feedback fashion by selecting as uncon-
strained controlled variables c a static linear combination of the
measurements [12]:

c = Hy (11)

Assuming that there are enough (ny = nu + nd) 1 independent
noise-free measurements, we can find an analytical expression190

for H based on the nullspace method [14, 15]:

H0 =
[
Juu Jud

] [
Gy Gy

d

]†
(12)

where † denotes the pseudo inverse. The associated controlled
variables are:

c0 = H0y (13)

Actually, the expression for H0 is non-unique [14], and the par-
ticular formula given in Equation (12) is chosen because it can
be used to obtain an optimal first-order estimate of the uncon-
strained cost gradient Ju [15, 13]:195

Ĵu = c0 − csp
0 = H0(y − y⋆) + J⋆u (14)

1For cases with fewer measurements (i.e., ny < nu+nd) and/or measurement
noise we may apply the more general “exact local method” [13] for obtaining
the matrix H.

As we shall see, the unconstrained gradient estimate Ĵu is
very useful when considering the constrained case. The setpoint
csp

0 = H0y⋆ − J⋆u , is calculated based on the reference steady
state ⋆. If the reference steady state is an optimal operating
point in the fully unconstrained region, then J⋆u = 0. However,200

if the reference steady state is not optimal, or (more commonly)
if the reference steady state is in a constrained region, then J⋆u ,
0.

For the constrained case, we introduce the reduced gradient,
defined by:

Reduced Gradient = NT
AJu (15)

where the projection matrix NA is a basis for the nullspace of
the active constraints gradient, i.e.:

Gg
ANA = 0 (16)

Optimal steady-state operation is achieved when the reduced
gradient is zero [16, 6], that is, when NT

AJu = 0.205

Using the gradient estimate in Equation (14), we then have
that the optimal CVs related to the unconstrained degrees of
freedom are cA = NT

AH0y with setpoints csp
A = NT

Acsp
0 . In sum-

mary, the full set of controlled variables for each active con-
straint regionA becomes:

CVA =
[
gA
cA

]
=

[
gA

NT
AH0y

]
(17)

with corresponding setpoints:

CV sp
A =
[

0
NT
A(H0y⋆ − J⋆u )

]
(18)

This choice of CVs minimizes the steady-state economic loss
around the reference point (u⋆, d⋆). Furthermore, even if the
current operating point has a different active set A than that of
the reference point, the use of CVA minimizes the steady-state210

loss, as long as the approximations in Equations (9) and (10)
hold. However, for non-quadratic/nonlinear problems the ref-
erence point matters and there will be a steady-state loss, for
example, compare Figures 11 and 13 for case study 2 which are
linearized in two different reference points.215

We now discuss how to detect the active set using the avail-
able measurements, so as to select the correct controlled vari-
ables CVA.

3.2. Active constraint set detection

Woodward et al. [7] describes an active set detection algo-220

rithm for a feedback optimizing strategy which only depends
on the current value of the cost gradient Ju, the constraints g,
and the constraints gradient Gg. In our case, we assume that g
is directly measured, Ju is estimated using Equation (14), and
Gg is a constant, see Equation (9b). Thus, in our case the algo-225

rithm depends directly on the available measurements.
The steady-state cost gradient estimate Ĵu is obtained at the

(expected) steady state (denoted yss) that would result when the
CVs are driven to their setpoints. This expected steady state can
be determined using Equation (2), leading to:230
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0 = f (xss, uss, d̂c)

CVA(xss, d̂c) = CV sp
A

(19)

from which we obtain yss = h(xss, uss, d̂c) and
gss = hg(xss, uss, d̂c). With these values, we apply the al-
gorithm from Woodward et al. [7] to find the current set of
active constraints.

Algorithm 1 Active set estimation, adapted from Woodward
et al. [7].

1: Ĵu ← H0(yss − y⋆) + J⋆u ▷ from Equation (14)
2: Ak ← Ak−1 ∪ { i | gss

i ≥ 0 }
3: δu∗ ← solution of Equation (20)
4: Ak ← { i ∈ Ak | Gg

i δu
∗ = 0 }

5: if n
(
Ak
)
> nu then ▷ too many active constraints

6: FindA′ ⊂ Ak | gss(CVA′ = CV sp
A′ ) ≤ 0 ▷ re-solve

Equation (19)
7: Ak ← A′
8: end if

The algorithm is summarized in Algorithm 1. In step 1 we235

first find the expected steady-state measurements yss by solving
Equation (19), and then compute Ĵu using Equation (14). In
step 2 the constraints predicted to be violated, i.e. gss

i ≥ 0, are
added to the estimated active set. With this augmented active
setA, we solve in step 3 the following optimization problem:240

δu∗ = arg min
δu
−δuTδu

s.t.

G
g
Aδu ≤ 0

δuTδu = −δuT Ĵu

(20)

The idea is to find the largest projection of the negative of
the estimated cost gradient, −Ĵu, onto the feasible directions,
i.e. find directions that do not violate Gg

Aδu ≤ 0. The solu-
tion δu∗ therefore dictates the best feasible descent direction
for improving the economic cost function. In step 4, the inac-245

tive constraints at the solution (Gg
i δu

∗ < 0) are removed from
the active set A, as controlling these constraints would hinder
economic improvement. If the resulting active set has more
than nu elements, it is infeasible, because we can at most con-
trol nu constraints with nu inputs. In step 6, one picks a subset250

which is predicted to be feasible (gss
i ≤ 0 ∀i) by evaluating the

corresponding expected steady states with Equation (19).
One may also add a constraint priority list, such that, when

operation is infeasible for all candidate active sets, the less im-
portant constraint is given up.255

The problem given in Equation (20) is an NLP due to the
quadratic equality constraint. The work of Woodward et al.
[7] solves it using an efficient algorithm tailored to this prob-
lem, but here we solve the optimization problem with a general-
purpose NLP solver (IPOPT). To prevent premature switching,260

for example due to noise or estimator dynamics, the estimated
constraint set A is only selected as the new set of active con-
straints (resulting in switching of the CVs) if the estimated new

set has remained the same for Nsw time steps. Nsw is a tuning
parameter.265

4. Case studies

For the following case studies, consider the mixed
continuous-discrete time objective function for MPC:

JMPC
A =

∫ N∆t

0
||CVA −CV sp

A ||2QA dt +
N∑

k=1

||∆uk ||2RA (21)

This mixed formulation is used for convenience, as the inte-
gration of the MPC objective function and the internal model270

are done together using orthogonal collocation. The resulting
problem is solved using CasADi/IPOPT [17].

4.1. Case study 1 - toy example
We first consider a toy example with a quadratic cost func-

tion and linear dynamic and constraint models, for which the275

proposed region-based MPC is steady-state optimal. On the
other hand, standard MPC is expected to result in steady-state
losses is some constrained regions.

The system has two dynamic states x, three inputs (MVs)
u, two disturbances d, two constraints g and five independent280

measurements y. The first two measurements are the two con-
straints. Note that nu = 3, nd = 2 and ny = 5 which means
that we satisfy the requirement ny = nu + nd needed to apply
the nullspace method for estimating the gradient Ju (for cases
with fewer measurements and/or measurement noise we should285

instead apply the more general exact local method [13]).
The economic objective and constraints are represented by

the following steady-state optimization problem:

min
u

Jec =
1
2

xT
[
1 0
0 10

]
x +

1
2

uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

 u
s.t.
g1 = x1 − 0.8x2 ≤ 0

g2 = u1 + u2 + u3 ≤ 0

(22)

The dynamic states x are affected by the MVs u and the dis-
turbances d according to the following linear dynamic state-290

space model:



ẋ =
[− 1
τ1

0
0 − 1

τ2

]
x +
[ 0.2
τ1

0 0
0 0.2

τ2
0

]
u +
[ 1
τ1

0
0 1

τ2

]
d

y =


g1
g2
x2
u2
u3

 =

1 −0.8
0 0
0 1
0 0
0 0

 x +


0 0 0
1 1 1
0 0 0
0 1 0
0 0 1

 u
(23)

with τ1 = 1 and τ2 = 2 [hours]. For the vector of measurements
y, we consider the constraints as direct measurements, figuring
in the first two rows of the measurement vector. The remaining

5



measurements are chosen with the goal of satisfying a sufficient295

number of independent measurements (ny = nu + nd). We may
eliminate the state variables x from the steady-state optimiza-
tion problem in Equation (22), since from Equation (23) we
have at steady state:

x =
[
0.2 0 0
0 0.2 0

]
u +
[
1 0
0 1

]
d (24)

We may then write the steady-state optimization problem in300

the standard form:

min
u

Jec =
1
2

uT

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

︸                     ︷︷                     ︸
Juu

u + uT

0.2 0
0 2
0 0

︸    ︷︷    ︸
Jud

d

s.t. g =
[
0.2 −0.16 0
1 1 1

]
︸               ︷︷               ︸

Gg

u +
[
1 −0.8
0 0

]
︸      ︷︷      ︸

Gg
d

d ≤ 0

(25)

The following static measurements model is assumed:

y =


0.2 −0.16 0
1 1 1
0 0.2 0
0 1 0
0 0 1

︸               ︷︷               ︸
Gy

u +


1 −0.8
0 0
0 1
0 0
0 0

︸      ︷︷      ︸
Gy

d

d (26)

This problem has two inequality constraints and three MVs, so
optimal operation will always have between one and three un-
constrained degrees of freedom. As the system has only two305

disturbances, we can graphically illustrate the active constraint
regions as in Figure 3, where we can see all four possible com-
binations of active constraints. Note that this map is not needed
to apply the proposed region-based method; it is only made to
visualize the regions.310
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Figure 3: The four active constraint regions for case study 1 as a function of the
two disturbances. The upper green region is unconstrained.

For implementing a standard MPC controller, we follow the
strategy described by Graciano et al. [5]. We design the self-
optimizing controlled variables c = H0y in the unconstrained

region and from the nullspace method in Equation (12) we ob-
tain:315

H0 =

0.2 1 0.16 −1.1 −1.2
0 −0.1 2 0.9 0
0 −0.2 0 0.1 0.5


As the reference steady state, we choose the optimal oper-

ating point at d⋆ =
[
−4; +4

]
. The measurements at the op-

timal operating point are y⋆ = [−6.17 −9.86 2.62 −6.91
−2.56]T , and the resulting setpoints become csp = H0y⋆ =[
0 0 0

]T
.320

For the region-based MPC controller, we use the same un-
constrained nominal point, resulting in the same c0 = H0y.
The projection matrices NA for the constrained regions are pre-
sented in Table 1.

The tuning parameters for the MPC controllers are given in325

Table 2, where the standard MPC uses only the tuning parame-
ters for the fully unconstrained region (A = {}).

A NT
A

{}
1 0 0
0 1 0
0 0 1


{1}

[
0.625 0.781 0

0 0 1

]
{2}

[−0.577 0.789 −0.211
−0.577 −0.211 0.789

]
{1, 2}

[
−0.362 −0.453 0.815

]
Table 1: Gradient projection matrices for the four regions for case study 1.

Parameter A Value

QA

{} diag([1, 1, 100])
{1} diag([1, 1, 1])
{2} diag([1, 1, 1])
{1, 2} diag([1, 1, 1])

RA diag([0.01, 0.01, 0.01])

N 30

∆t 0.333

Qe diag([0.05, 0.05, 1, 1])

Re diag([0.01, 0.01, 0.01, 0.01, 0.01])

Nsw 2

Table 2: Tuning parameters for MPC controllers and estimator for case study 1.
The standard MPC uses only the tuning parameters for the fully unconstrained
region (A = {}), that is Q =diag([1, 1, 100]).

The closed-loop dynamic responses for both standard and
region-based MPC are shown in Figure 4. The responses go
through eight sets of disturbances; two inside each region as330

illustrated by the lower right plot.
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With standard MPC, the controlled variables c0 = H0y ob-
tained in the unconstrained region (A = {}) are not steady-
state optimal when applied to the constrained regions. This
is most easily seen by comparing the inputs (u1, u2, u3) from335

standard MPC (green) with the steady-state optimal inputs (ma-
genta). On the other hand, the inputs obtained with the pro-
posed region-based MPC (blue) are optimal at steady state in all
four regions. In addition, the switching of CVs between regions
is seen to be smooth. Both strategies satisfy the constraints at340

steady state but with some dynamic violations. The “loss” in
the lower left plot in Figure 4 is the difference between the cur-
rent (dynamic) economic cost and the optimal value of the cost
at steady state for the corresponding disturbances, and therefore
both negative and positive dynamic spikes are possible.345
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Figure 4: Dynamic simulation results for case study 1 - comparison between
standard MPC (green) and the proposed region-based MPC (blue).

The steady-state economic loss is of more interest. This loss
is zero for the proposed region-based MPC. For standard MPC,
the steady-state loss is shown in more detail in Figure 5. As
expected, the steady-state loss is strictly positive. It can be
seen that the loss is nonzero whenever the system leaves the350

unconstrained region. Note that the lines delimiting the operat-
ing regions (blue) do not coincide with the optimal boundaries

(magenta) at the partly constrained regions, because the use of
fixed controlled variables is not optimal. Therefore, standard
MPC may result in control of constraints which should not be355

active.
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Figure 5: Economic loss of standard MPC for case study 1 as a function of
disturbances. Magenta lines delimit optimal active constraint regions, blue lines
delimit operating regions of standard MPC. Region-based MPC attains zero
loss for all disturbance values.

It is worth mentioning that the proposed region-based MPC
method does not rely on RTO updates of the setpoints for deal-
ing with changes in active constraints. Instead, it relies on a
switching logic for the CVs which is solely based on measure-360

ments.

4.2. Case study 2 - Williams-Otto reactor
This case study is based on the process described by Williams

and Otto [18], see Figure 6. It consists of a continuously stirred
reactor tank with perfect level control, in which A and B are365

mixed, generating the main product of interest P, along with the
less interesting product E and the undesired byproduct G. The
three reactions are:

A + B
k1−→ C k1 = k0,1e−E1/Tr

C + B
k2−→ P + E k2 = k0,2e−E2/Tr

P +C
k3−→ G k3 = k0,3e−E3/Tr

TC 

FB

TR

FA

FC 

xA, xB, xC

xP, xE, xG

Figure 6: Schematic representation of Williams-Otto reactor, with MVs in red

The component balances result in the following system of
ODEs:370
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dxA

dt
=

FA

W
− (FA + FB)xA

W
− k1xAxB (27a)

dxB

dt
=

FB

W
− (FA + FB)xB

W
− k1xAxB − k2xC xB (27b)

dxC

dt
= − (FA + FB)xC

W
+ 2k1xAxB − 2k2xC xB − k3xPxC (27c)

dxP

dt
= − (FA + FB)xP

W
+ k2xC xB − 0.5k3xPxC (27d)

dxE

dt
= − (FA + FB)xE

W
+ 2k2xC xB (27e)

dxG

dt
= − (FA + FB)xG

W
+ 1.5k3xPxC (27f)

Here, xi represents the mass fraction of component i. The
model parameters for this case study are summarized in Table 3.
The economic optimization problem to be considered is:

min
u

Jec = pAFA + pBFB − (FA + FB)
[
pP(1 + ∆pP)xP + pE xE

]
s.t. xE ≤ 0.30

xA ≤ 0.12
(28)

Parameter Value

W 2105 kg
k0,1 1.6599 × 10−6 kg/s
k0,2 7.2117 × 10−8 kg/s
k0,3 2.6745 × 10−12 kg/s
E1 6666.7 K
E2 8333.3 K
E3 11111 K
pA 79.23 $/kg
pB 118.34 $/kg
pP 1043.38 $/kg
pE 20.92 $/kg

Table 3: Model parameters for case study 2.

The available degrees of freedom for the MPC layer are
u =
[
FB TR

]T
, which are the mass inflow of pure B and the375

reactor temperature. Note that the physical degrees of freedom
are valve positions, so in practice there will be a lower-layer
regulatory (PID) layer, with a flow controller and a temperature
controller. However, the regulatory layer is not considered in
this paper, that is, we assume perfect regulatory control where380

the inflow rate and reactor temperature are set directly. As long
as we have an acceptable time scale separation (typically, a fac-
tor 4 or higher [19]) between the MPC and regulatory layers,
this assumption has no effect on the results.

The considered disturbances are d =
[
FA ∆pP

]T
, namely385

the mass inflow of pure A and the relative variation of the price
pP. Similar to case study 1, we can optimize the system for var-
ious disturbances, and visualize in Figure 7 the resulting active
constraint regions as a function of the two disturbances.
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{g1, g2}

Figure 7: The four active constraint regions for case study 2 as a function of the
two disturbances.

We choose to scale the constraints relative to the maximum390

optimal constraint value in the disturbance window shown in
Figure 7. This gives the following scaled constraints:

g1 =
xE − 0.30
0.0287329

≤ 0

g2 =
xA − 0.12

0.0714527
≤ 0

(29)

The measurements are the two constraints, the frac-
tion of component P and the price of P, that is, y =[
g1 g2 xp ∆pP

]T
.395

For the two MPC controllers, we use a linear approximation
of the dynamic model, and estimate disturbances and additional
integrating states using a linear Kalman filter that ensures zero
offset [20]. Similarly, to find the matrix H0 needed to design the
controlled variables (CVs) for MPC, we must first obtain, by400

linearization at the nominal design point (⋆), the matrices Juu,
Jud, Gy, Gy

d, and Gu. The choice of nominal design point is im-
portant, especially for the CV selection, as it affects the steady-
state losses that we may result when operating away from the
nominal point. To understand this better we shall consider two405

different nominal design points (I and II).
The first set of results are based on linearization in de-

sign point I, at the vertex between the regions (d⋆I =

[1.543; −0.089]), where the resulting H0 is given by:

H0 =

[−42.0785 −36.0878 1153.68 −126.066
3.42257 −0.370313 −232.921 0.369661

]
and the corresponding gradient projections and controller tun-410

ings are given in Tables 4 and 5, respectively.
From the closed-loop dynamic simulations in Figure 8, we

see that in the unconstrained region (until t = 4 h), the behav-
ior of standard MPC and region-based MPC is identical (as ex-
pected, since H0, and thus the two CVs, are the same). How-415

ever, note that the presence of nonlinearity leads to non-optimal
steady-state optimal operation, even for the region-based MPC.
This is most easily seen by comparing the process inputs u1 and
u2 with the steady-state optimal dashed magenta lines. The op-
eration in the subsequent region with constraint g1 active (from420
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A NT
A

{}
[
1 0
0 1

]
{1}

[
0.1208 0.9927

]
{2}

[
−0.0849 0.9964

]
{1, 2} -

Table 4: Gradient projections for case study 2 with linearization at vertex (d⋆I =
[1.543; −0.089]).

t = 4 to t = 8 h) highlights the difference between the two MPC
approaches. The region-based MPC framework detects quite
accurately the region change and switches to two new CVs (one
constraint and one reduced gradient), whereas standard MPC,
while using one degree of freedom to control the constraint, at-425

tempts to track (one average, with the remaining single degree
of freedom) both the two original CVs from the unconstrained
region. This is not optimal, as seen most easily from the plot
of u2. For the fully constrained region ({g1, g2} from t = 8
to t = 12 h), the two MPC schemes behave similarly, attain-430

ing zero steady-state loss by taking all the constraints to their
limit values. The region-based MPC attains this through direct
constraint control, whereas standard MPC relies on its dynamic
constraint handling, which has its own issues regarding stability
and performance.435

In Figures 9 and 10 we can see in more detail the steady-state
loss for the two MPC schemes as a function of the two distur-
bances. The difference between the two MPC controllers is not
so large because there are losses also with region-based MPC
due to nonlinearity in the model. However, in standard MPC,440

the prioritization of CVs in the constrained regions depends on
the cost function weights, and therefore the steady state eco-
nomic loss depends on the MPC tuning parameters. This fact is
illustrated in Figure 11, where a different standard MPC tuning
(different choice of the weight Q) led to much larger losses in445

the constrained regions. For the proposed region-based MPC,
this is not an issue because the choice of CVs is consistent with
the active constraints, making the steady-state performance in-
dependent of the MPC tuning.

We now design the region-based MPC and the standard MPC450

by linearizing at a different optimal nominal point, namely at
d⋆II = [2.0; +0.2], which lies in the interior of the unconstrained
region. Here, the resulting H0 is:

H0 =

[−46.0296 −32.6404 1577.81 −96.6946
5.50426 −2.61125 −393.808 0.342395

]
and the corresponding gradient projections and controller tun-
ings are given in Tables 6 and 7, respectively.455

For this linearization point, the results are shown in Fig-
ures 12 to 14. In this case, the region-based MPC overall gives
much smaller economic losses than standard MPC. Also, the re-
gions obtained in Figure 13 are shaped similarly to the optimal
regions, which does not happen with standard MPC, see Fig-460

ure 14. Because the linearization of the system is in the interior
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Figure 8: Dynamic closed-loop simulation results for case study 2 - comparison
between standard MPC (green) and the proposed region-based MPC (blue) -
linearized at vertex (d⋆I = [1.543; −0.089]).
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Figure 9: Steady-state economic loss for region-based MPC for case study 2 -
linearized at vertex (d⋆I = [1.543; −0.089]).
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Parameter A Value

QA

{} diag([0.01, 1])
{1} diag([30, 1])
{2} diag([30, 1])
{1, 2} diag([3, 30])

RA diag([0.5, 0.02])

N 60

∆t 0.0333 h

Qe diag([10−3, 10−3, 10−3, 10−3, 10−3, 10−3, 8, 8, 0.8, 0.8])

Re diag([10−12, 10−12, 10−12, 10−12])

Nsw 2

Table 5: Tuning parameters for MPC controllers and estimator for case study 2 - linearization at vertex (d⋆I = [1.543; −0.089]).
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Figure 10: Steady-state economic loss for standard MPC for case study 2 -
linearized at vertex (d⋆I = [1.543; −0.089]). Q = diag([0.01, 1])
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Figure 11: Steady-state economic loss for standard MPC depends on tuning
(choice of weight Q). Results are for case study 2 - linearized at vertex (d⋆I =
[1.543; −0.089]) with Q = diag([5 × 10−4, 5]).

A NT
A

{}
[
1 0
0 1

]
{1}

[
0.1110 0.9938

]
{2}

[
−0.1685 0.9857

]
{1, 2} -

Table 6: Gradient projections for case study 2 with linearization at d⋆II =

[2.0; +0.2].

Parameter A Value

QA

{} diag([5 × 10−4, 5])
{1} diag([30, 1])
{2} diag([30, 1])
{1, 2} diag([3, 30])

Table 7: Tuning of controllers and estimator for case study 2 - linearization at
d⋆II = [2.0; +0.2] (omitted parameters are the same as in Table 5).

of the unconstrained region, the economic loss in that region is
smaller when compared to that of Figure 9, while (somewhat
surprisingly) not resulting in a larger loss for the remaining re-
gions for the region-based MPC.465
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Figure 12: Dynamic simulation results for case study 2 - comparison between
standard MPC (green) and the proposed region-based MPC (blue) - linearized
at d⋆II = [2.0; +0.2].
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Figure 13: Steady-state economic loss for region-based MPC for case study 2 -
linearized at d⋆II = [2.0; +0.2].
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Figure 14: Steady-state economic loss for standard MPC for case study 2 -
linearized at d⋆II = [2.0; +0.2].

4.3. Case study 3 - Williams-Otto reactor revisited

We now revisit case study 2, and consider a case with three
rather than two constraints. The main reason for adding a con-
straint is because then the standard decentralized selector-based
region-based control does not work because ng > nu [21]. The470

cost function is the same as in case study 2, except that we do
not consider price changes. We consider the following con-
straints (all of which are new):

FB ≤ 4.0
Tr ≤ 355.0
xG ≤ 0.105

(30)

The MVs are the same, u =
[
FB Tr

]T
, but to make it easier

to plot the results, we only consider one disturbance, d = FA,475

which is in the range 0.5 ≤ d ≤ 3.5. The nominal value is
d⋆ = 1, which corresponds to an optimal operating point where
constraint g3 is active. We again normalize the constraints, and
the normalized steady-state optimization problem is given by:

min
u

J = pAFA + pBFB − (FA + FB) (pPxP + pE xE)

s.t. g1 =
FB − 4.0
2.68018

≤ 0

g2 =
Tr − 355.0

9.55095
≤ 0

g3 =
xG − 0.105
0.00411912

≤ 0

(31)

Figure 15 shows the active constraint regions as a function480

of the disturbance FA. It can be seen that all seven feasible
combinations of active constraints appear in the considered dis-
turbance range.2

2In general, with nc constraints, there are 2nc = 23 = 8 possible constraint
combinations. However, since there are only nu = 2 degrees of freedom, it is
not possible to control three constraints at the same time, thus only seven of the
eight regions are feasible.

11



0.5 1.0 1.5 2.0 2.5 3.0 3.5
d

1.0

0.8

0.6

0.4

0.2

0.0

g i

g1 g2 g3

Figure 15: Optimal values of the three constraints gi for case study 3 as a func-
tion of the disturbance d. The vertical lines represent region switches. Fully
unconstrained operation occurs when d is small.

The available measurements are the normalized constraints,
y = g. We design the unconstrained controlled variables based485

on the nominal point, for which the resulting H0 is given by:

H0 =

[−36.6848 36.887 −6.57349
−2.0782 1.18001 0.170281

]
and the corresponding gradient projections and controller tun-
ings are given in Tables 8 and 9, respectively.

A NT
A

{}
[
1 0
0 1

]
{1}

[
0 1

]
{2}

[
1 0

]
{3}

[
0.07129 0.99746

]
{1, 2} -
{1, 3} -
{2, 3} -

Table 8: Gradient projections for case study 3.

Dynamic closed-loop simulations with standard and region-
based MPC appear in Figure 16. The tuning used for stan-490

dard MPC was done such that it operates acceptably when con-
straints become active, which reduces the performance in some
regions. Because the region-based MPC can be tuned inde-
pendently for every active constraint region, its dynamic per-
formance is better (although it is not so easy to see from the495

graphs).
Figures 17 and 18 shows the steady-state values of the con-

straints as a function of the disturbance for region-based MPC
and standard MPC, respectively. The corresponding steady-
state losses in Figure 19 show large benefits of the proposed500

region-based MPC. The region-based MPC is optimal at and
around d = d⋆ = 1.0. but this not the case for standard MPC.
The reason is that the nominal operating point is partly con-
strained (with g3 = 0 being active). While the region-based
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Figure 16: Dynamic simulation results for case study 3 - comparison between
standard MPC (green) and the proposed region-based MPC (blue).

MPC is able to use the correction J⋆u in Equation (14), the same505

correction applied to the standard MPC does not lead to optimal
operation. In addition, standard MPC performs poorly at driv-
ing the system to the correct constraints to be controlled, which
leads to large steady-state losses for d > 2, approximately.
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Figure 17: Steady-state constraint values for standard MPC for case study 3
(optimal values as dashed lines).

As mentioned, the standard decentralized selector-based510

region-based control cannot cover all regions. For example, as-
sume u1 is paired to g1, and u2 is paired to g2, then we cannot
allow g3 to be active at the same time as any of the other con-
straints. Thus, we would need to use some sort of adaptive pair-
ing, if decentralized control is to be achieved (see Bernardino515

et al. [22] for an example).
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Parameter A Value

QA

{} diag([1, 8])
{1} diag([10, 2])
{2} diag([50, 1])
{3} diag([5, 20])
{1, 2} diag([100, 100])
{1, 3} diag([50, 10])
{2, 3} diag([50, 5])

RA diag([0.5, 2])

N 40

∆t 0.025 h

Qe diag([10−3, 10−3, 10−3, 10−3, 10−3, 10−3, 5000, 500])

Re diag([10−6, 10−6, 10−12])

Nsw 5

Table 9: Tuning parameters for MPC controllers and estimator for case study 3.
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Figure 18: Steady-state constraint values for region-based MPC for case study
3 (optimal values as dashed lines).
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Figure 19: Steady-state loss as a function of the disturbance for case study 3
(the y-axis is scaled quadratically for better visualization of low loss values).

5. Discussion

5.1. Exact local method for gradient estimation

The unconstrained gradient Ju is a key element in the pro-
posed region-based MPC approach, as it used both to deter-520

mine the unconstrained CVs and to detect switches in active
constraints. In this work, see Equation (14), the gradient is esti-
mated using the nullspace method of self-optimizing control, as
first suggested by Jäschke and Skogestad [15]. The nullspace
method is simple, but it assumes that we have a sufficient num-525

ber of measurements and it does not take into account measure-
ment error. In another paper [13], we propose a more general
gradient estimation approach, based on the exact local method
of self-optimizing control [14] which accounts for static mea-
surement error and can be applied with any number of measure-530

ments. It is not much more difficult to use than the nullspace
methods, but it requires the user to specify the expected magni-
tude of disturbances and measurement errors.

5.2. Optimal operation under changing active constraints

The region-based MPC proposed in this work depends on a535

logic element (the active set detection block) that detects the
current active constraint set. From this, we obtain the optimal
controlled variables (which are the active constraints plus the
corresponding reduced gradients, see Equation (17)). The use
of simple logic elements for switching control structures is very540

common in industrial practice, but we lack a good theory of
such systems, including stability analysis [19]. In general, it is
necessary to analyze and possibly simulate the proposed control
system for the range of expected disturbances. The proposed
system includes a switching strategy, along with a pairing be-545

tween MVs and CVs. This approach, however, depends on the
case study and the engineering insight, and, as mentioned, one
may find cases where a decentralized strategy is impossible or
at least too complex to be considered for practical use [22].
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In addition, even if the disturbance range is such that con-550

straints paired to the same MV are never active at the same time,
the control structure should be changed according to which set
of constraints is active, because the optimal CVs related to the
unconstrained degrees of freedom will change, that is, the re-
duced gradient will change. In summary, in terms of optimal555

operation of such systems, there needs to be some centralized
logic, as the region-based MPC proposed in this paper.

Alternatively, a general decentralized approach is the primal-
dual feedback optimizing control scheme proposed by [23, 24].
Here, there is a decentralized master constraint controller which560

controls the constraints on a slow time scale by manipulating
the corresponding Lagrange multipliers. The active constraint
set is detected by using max-selectors on the Lagrange mul-
tiplier. The approach has been further developed by [25] to
include override control on the fast time scale for critical con-565

straints.

5.3. Estimation of active constraints

To determine the active set during operation, we use the
method by Woodward et al. [7], which is proven optimal for
measured gradients. In this work, the cost gradient is estimated570

through a linear combination of the measurements, which is
consistent with the CVs being used.

Another approach for detecting changes in the active con-
straint region is to track the values of the CVs in the neigh-
boring regions [6, 26]. The CVs determined for each region575

must be consistent to result in a unique solution to the switch-
ing problem. If this is not the case, one may encounter multiple
steady-state solutions or lack of convergence where the control
structures switch indefinitely. This was observed when apply-
ing this approach to the case studies. On the other hand, the580

solution presented in this work relies on a single model realiza-
tion, and all CVs obtained from it are consistent.

5.4. Use of direct measurements for the constraint switching
block

To simplify the active constraint detection block, one may585

consider using a gradient estimate based directly on the current
measurements y, instead of solving for the predicted steady-
state yss as described in Algorithm 1. A simulation with direct
measurements for case study 2 is shown in Figure 20 (dashed
green lines), and is compared to the approach proposed in590

this work (blue lines). However, this is not a good solution,
for example, consider the controller activation plots (shown as
true/false) for constraints g2 and g3. Here, we see that the use
of direct measurements in some cases delays the detection of an
active set change, and in other cases switches unnecessarily.595

5.5. Region-based MPC tuning

The proposed region-based MPC can be seen as a set of mul-
tivariable feedback controllers coordinated by a logic element.
This logic element introduces an additional information loop,
besides the feedback controller itself, which may cause stability600

problems. Rapid changes in which of the controllers is active
may occur from the interaction between the switching element
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Figure 20: Comparison of active set detection using the proposed prediction of
the new steady state (blue) and using direct measurements (green dashed; not
recommended). The simulations are for region-based MPC for case study 3.

and the closed-loop dynamics, generating high-frequency, self-
sustained switching. This is a well-known problem in closed-
loop systems with selectors or other logical elements, and it605

may be counteracted by restricting how fast the logical element
may change, leading to overall system stability [27]. In this
work, this is attained by the tuning parameter Nsw.

Additionally, the cost functions in Equation (8) for the
region-based MPC must be independently tuned. This is neces-610

sary because different CVs usually have different dynamic be-
haviors. Careful evaluation of the MPC tunings for different
regions is therefore advised, so that good dynamic performance
is attained in all relevant operating conditions.

5.6. Constraint handling with standard MPC615

The simulations verify that standard setpoint-tracking MPC
is unable to deal optimally with changing steady-state con-
straints. To satisfy a steady-state constraint which is not in
the nominal region, standard MPC gives up on tight control of
its CVs. In our simulations of standard MPC, this is done in620

an average manner, as determined indirectly by the weight Q
for setpoint tracking. A better way of implementing this, used
in most industrial implementations before solving the dynamic
MPC problem, is to use a steady-state target calculation block
[1], which, based on the predicted disturbances, computes the625

new steady state and from this updates feasible setpoints for the
unconstrained CVs. A further improvement, used in many in-
dustrial MPC implementations, is to solve a sequence of steady-
state target calculations, giving up constraints in a predefined
order, until one obtains a feasible steady-state solution (satisfy-630

ing all constraints) [28].
The approach presented in this work could then be used in

the target calculation block only, and the dynamic MPC prob-
lem remains unchanged for every active constraint region. The
main benefit of this would be that the stability properties of the635

MPC problem would remain the same regardless of the detected
active set. This does not completely solve the stability issue, as
the estimator and the target calculator blocks must converge,
but it would still be an appealing approach.
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5.7. Addition of RTO layer640

The present work has not focused on integrating the proposed
tool with RTO, as other works have covered [29]. Instead, the
region-based MPC was formulated to be independent of the
RTO layer, such that it operates near optimally without its up-
dates. Naturally, the proposed tool can be integrated with RTO,645

by updating the gain matrices and reference values in Figure 2.
Because these updates are associated with the steady-state con-
ditions of optimality, the economic performance of the region-
based MPC will be as good as the quality of these updates.

5.8. EMPC650

We must also note that the proposal of this work is fundamen-
tally different from that of centralized approaches such as eco-
nomic model predictive control (EMPC). In these approaches,
the dynamic and economic problems are solved together, which
requires a high level of detail in the available dynamic model655

[2]. In the proposed region-based MPC, we only require a rea-
sonable dynamic model to ensure closed-loop stability for the
tracking of CVs and an accurate economic steady-state problem
that will define these CVs.

6. Conclusion660

A framework for optimal switching of the MPC cost function
under changing active constraints was presented, see Figure 2.
The two main elements are (1) the active set detection block
(see Algorithm 1), and (2) the use of self-optimizing CVs (re-
duced gradients) in each active constraint region for the uncon-665

strained degrees of freedom; see cA = NT
AH0y in Equation (17)

with corresponding setpoint csp
A in Equation (18). In this paper,

we estimated the measurement combination matrix H0 using
the nullspace method from self-optimizing control, but more
generally, with measurement error and any number of measure-670

ments y, it is recommended to obtain H0 using the exact local
method [13]. We highlight that the switching of control objec-
tives is done without the need for pairing MVs and CVs and
without the need for RTO updates of the setpoints, making it
applicable to a wide class of problems.675
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