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A B S T R A C T

We study the optimal steady-state operation of processes where the active constraints change. The aim of this
work is to eliminate or reduce the need for a real-time optimization layer, moving the optimization into the
control layer by switching between appropriately selected controlled variables (CVs) in a simple way. The
challenge is that the best CVs, or more precisely the reduced cost gradients associated with the unconstrained
degrees of freedom, change with the active constraints. This work proposes a framework based on decentralized
control that operates optimally in all active constraint regions, with region switching mediated by selectors.
A key point is that the nullspace associated with the unconstrained cost gradient needs to be selected in
accordance with the constraint directions so that selectors can be used. A main benefit is that the number
of SISO controllers that need to be designed is only equal to the number of process inputs plus constraints.
The main assumptions are that the unconstrained cost gradient is available online and that the number of
constraints does not exceed the number of process inputs. The optimality and ease of implementation are
illustrated in a simulated toy example with linear constraints and a quadratic cost function. In addition, the
proposed framework is successfully applied to the nonlinear Williams–Otto reactor case study.
1. Introduction

The integration of optimization and control is very important when
designing the control system for a process. The main objective of
the control system is to keep the process stable and operating at the
economically optimal operating point. Although these two objectives
can be assessed simultaneously, for example, using economic model
predictive control (EMPC) [1], a simpler, and in most cases equally
optimal,1 approach is to decompose the system hierarchically into an
optimization and a control layer as shown in Fig. 1, where setpoints
𝐶𝑉 𝑠𝑝 are used to connect the two layers. The setpoints may need
to be updated due to disturbances that affect the process economics.
In the standard implementation in Fig. 1, the real-time optimization
(RTO) and setpoints update is performed on a slow time scale based
on a detailed nonlinear process model and the estimated states of the
process. In most cases, the RTO layer is static.

Based on the concept of Morari et al. [2] of feedback optimizing
control, the aim of the current paper is to move the real-time opti-
mization, or at least parts of it, into the control layer. A recent review

∗ Corresponding author.
E-mail address: skoge@ntnu.no (S. Skogestad).

1 In fact, in some cases a decomposed approach with separate optimization and control layers may be better performing economically than EMPC, because
the control layer may be tuned to be fast, whereas this is likely difficult to achieve with a centralized solution like EMPC. This may give economic benefits,
especially for fast-changing disturbances.

on this topic is given in Krishnamoorthy and Skogestad [3], where
the authors state some of the challenges with RTO implementation,
including the cost of developing the model, the uncertainty related to
the model and its parameters (or disturbances), and human aspects
related to the maintenance of an optimization layer in addition to
the already existing digital control system (DCS). The importance of
feedback optimizing control lies in being able to reject disturbances
that affect economic performance in a simple manner, without relying
on an upper optimization layer that may sometimes not even exist. To
that end, an appropriate selection of the controlled variables (CVs) for
the control layer is important. This is the main idea of self-optimizing
control [4]. It is particularly important to include the active constraints
as CVs, that is, the constraints that are optimally at their limiting
value [2,5]. If information about the cost gradient is available, the
optimal CVs are the active constraints plus the reduced cost gradients,
and by controlling these at a constant setpoint of zero we may eliminate
the optimization layer [6]. This choice of CVs is valid if the set of active
constraints does not change in the considered operating region.
959-1524/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
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Fig. 1. Standard optimizing control implementation with separate layers for real-
time optimization (RTO) and control (𝐾, which can be 𝑒.𝑔. MPC or PID). 𝐽 denotes
the (economic) cost function to be minimized, 𝑓 the process model, 𝑔 the process
constraints, 𝑥 the model states, 𝑑 the disturbances, and 𝑢 the process inputs (MVs).

Dealing with changes in active constraints has been a concern in
previous works. For example, Cao [7] implemented a cascade control
structure with selectors to avoid constraint violation by the lower
self-optimizing layer, and Graciano et al. [8] applied MPC with zone
control to the same end. A global self-optimizing control method for
changing active constraints has been proposed by Ye et al. [9], where
the goal is to minimize the average loss obtained with a single set
of CVs. However, in a new active constraint region, not only do the
active constraints change, but the directions related to the reduced
cost gradient change accordingly. This means that to eliminate the
RTO layer one needs to change the control layer in Fig. 1 during
operation, both in terms of the selected CVs and the corresponding
feedback controller 𝐾. With this perspective, Manum and Skogestad
[10] has considered a centralized, steady-state analysis on switching
control structures, with different CVs for each region.

However, the implementation of such a region-based control strat-
egy quickly becomes impractical. This is because the number of active
constraint regions grows exponentially with the number of constraints.
Let 𝑛𝑢 denote the number of process inputs or manipulated variables
(MVs) and 𝑛𝑔 the number of independent constraints. The upper bound
on the number of active constraint regions is 2𝑛𝑔 , which is reached when
all constraint combinations are feasible [11]. In each region, we ideally
need a new controller 𝐾, and if we want to use decentralized control
then we need to design 𝑛𝑢 single-input single-output (SISO) controllers
n each region. For example, with 𝑛𝑔 = 4 and 𝑛𝑢 = 5, there could be
p to 24 = 16 constraint regions, which may require the tuning of
𝑛𝑔 ⋅ 𝑛𝑢 = 16 ⋅ 5 = 80 SISO controllers. Even though some CVs are reused
etween regions, the number of necessary SISO loops will be high.

The key contribution of this paper is to propose a simple and generic
egion-based control structure with only 𝑛𝑔 + 𝑛𝑢 SISO controllers, as
epresented in Fig. 2, with the same set of unconstrained variables
𝐶𝑉 0 and 𝐶𝑉 0𝑔) in all operating regions.2 Considering the previous
xample, this structure would have only 4 + 5 = 9 SISO controllers. In
he paper, we show that the unconstrained variables are obtained from
𝑢 projections of the full cost gradient with respect to the inputs, ∇𝑢𝐽 .
his leads to 𝑛𝑢 gradient controllers (𝐾0 and 𝐾0𝑔) and 𝑛𝑔 constraint
ontrollers (𝐾𝑔). However, at any given time, only a subset with 𝑛𝑢 of
he 𝑛𝑢 + 𝑛𝑔 controller outputs is implemented as process inputs, with
he switching logic choosing between the controller outputs 𝑢0𝑔 and 𝑢𝑔 .

2 The superscript 0 is used to indicate the unconstrained case and 𝑔 the
onstrained case. The superscript 0𝑔 indicates unconstrained cases that are
ssociated with switching constraints.
2

Fig. 2. Proposed optimizing control implementation, assuming 𝑛𝑢 ≥ 𝑛𝑔 . The controllers
𝐾0, 𝐾0𝑔 and 𝐾𝑔 are usually single-variable PID controllers. The projection (nullspace)
matrices 𝑁0 and 𝑁 are defined in Eq. (7) and Eq. (8), respectively. There is no CV0 , 𝑁0,
and 𝐾0 if 𝑛𝑢 = 𝑛𝑔 . Note that the optimization layer in Fig. 1 is eliminated, and an
estimate ∇𝑢𝐽 of the cost gradient is needed. The switching logic takes care of the
change between active constraint regions. In this paper, this logic is decentralized to
𝑛𝑔 individual blocks, see Fig. 3, which can be implemented as min or max selectors
according to Theorem 3.

The second key contribution of this paper is to show that the
switching logic in Fig. 2 can be effectively implemented using 𝑛𝑔 min
or max selectors, which are well-known advanced control elements and
commonly used in practical control applications. An important decision
is to pair each constraint to an MV, but this pairing problem is not
addressed in this paper (the interested reader is referred to Skogestad
and Postlethwaite [12]). The main assumptions in this work are that
we have at least as many MVs as constraints (𝑛𝑢 ≥ 𝑛𝑔), and that
an estimator for the unconstrained cost gradient ∇𝑢𝐽 is available. In
terms of cost gradient estimation, there are several methods available
(see Krishnamoorthy and Skogestad [3]), and in this work, we use the
simple model-based approach of dynamic state estimation and model
linearization proposed by Krishnamoorthy et al. [13].

Selectors have been used in industry to switch between CVs since
the 1940s [14]. Selectors are also used in academic case studies on
optimal operation [11,15]. In these case studies, a control structure is
proposed for the nominal operating region, with added logic elements
and control loops to deal with the neighboring regions. However, the
treatment of the unconstrained degrees of freedom is not clear. Krish-
namoorthy and Skogestad [16] proposes a framework for constraint
handling using min and max selectors, focusing on systems with a single
MV, and therefore not considering the changes of reduced gradients
for the unconstrained variables. To the best of the authors’ knowledge,
even though a general scheme for the paradigm of region-based control
is proposed in the review paper by Krishnamoorthy and Skogestad [3],
a systematic procedure for designing a decentralized control structure
for optimal operation of generic multivariable systems has not yet been
explored, as well as whether there are any fundamental limitations for
the design of such systems. In this work, we explore these topics, and
we describe a class of multivariable systems for which a decentralized
control structure is always possible.

2. Decentralized control framework for optimal operation

We consider a generic, steady-state optimization problem given by:

min
𝑢

𝐽 (𝑢, 𝑑)
(1)
s.t. 𝑔(𝑢, 𝑑) ≤ 0
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Here, 𝐽 ∶ R𝑛𝑢 × R𝑛𝑑 → R is a scalar cost function to be minimized,
∶ R𝑛𝑢 ×R𝑛𝑑 → R𝑛𝑔 is the function that returns the vector of inequality

onstraints, 𝑢 ∈ R𝑛𝑢 is the vector of decision variables (MVs), and
∈ R𝑛𝑑 is the vector of disturbances. Note that the states 𝑥 (see Fig. 1)

ave been formally eliminated from the equations, such that 𝐽 and
are functions only of the independent variables 𝑢 and 𝑑. Introduce

he Lagrange function (𝑢, 𝜆, 𝑑) = 𝐽 (𝑢, 𝑑) + 𝜆𝑇 𝑔(𝑢, 𝑑). Then, for a given
value of 𝑑, define 𝑢∗ as the solution of Eq. (1), which satisfies the
Karush–Kuhn–Tucker (KKT) conditions [17]:

∇𝑢(𝑢∗, 𝜆∗, 𝑑) = ∇𝑢𝐽 (𝑢∗, 𝑑) +
(

∇𝑢𝑔(𝑢∗, 𝑑)
)𝑇 𝜆∗ = 0 (2a)

(𝑢∗, 𝑑) ≤ 0 (2b)
∗ ≥ 0 (2c)
∗
𝑖 𝑔𝑖(𝑢

∗, 𝑑) = 0, 𝑖 = 1,… , 𝑛𝑔 (2d)

Here, 𝜆 is the vector of Lagrange multipliers associated with the
nequality constraints, and 𝜆∗ is its optimal value. We remark that the
KT conditions only imply that the solution is a stationary point, and

hey are also satisfied by local minima or maximum and saddle points.
e do not address these issues in this work, and we consider that the

ptimization problem in Eq. (1) is convex. While these optimization
roblems can be efficiently solved using numerical methods, we here
ocus on how to solve these problems with feedback control. For this,
e rewrite the KKT conditions as control objectives, which allows us

o embed the optimization into the control layer design.
The set of active constraints  is defined as the set that satisfies

𝑖(𝑢∗, 𝑑) = 0 for 𝑖 ∈ . For convenience, define 𝑔 ∶ R𝑛𝑢 ×R𝑛𝑑 → R𝑛𝑎 as
he function that returns the active constraints. Define the matrix:
𝑔 = ∇𝑢𝑔(𝑢, 𝑑) (3)

s the gradient of the constraints with respect to the MVs, and the
atrix 𝐺𝑔

 = ∇𝑢𝑔(𝑢, 𝑑) as the gradient of the active constraints with
espect to the MVs. If the set of active constraints  is known, Jäschke
nd Skogestad [6] prove that optimality can be attained by controlling
o zero the active constraints and the associated reduced cost gradient.
heir result is given by the following theorem:

heorem 1 (Optimal Controlled Variables). Consider the optimization
roblem in Eq. (1), where we assume that linear independence constraint
ualification (LICQ) holds. We assume that the set of optimally active
onstraints  is known. Let 𝑁 ∈ R𝑛𝑢×(𝑛𝑢−𝑛𝑎) be a basis for the nullspace
f 𝐺𝑔

 such that:

𝑔
𝑁 = 0 (4)

urther, define the reduced cost gradient as:

𝑢,𝐽 (𝑢, 𝑑) = 𝑁𝑇
∇𝑢𝐽 (𝑢, 𝑑) (5)

hen controlling 𝑔(𝑢, 𝑑) = 0 and ∇𝑢,𝐽 (𝑢, 𝑑) = 0 results in optimal
teady-state operation.

roof ([6]). If the active constraints  are known, the necessary
ptimality conditions (2) are equivalent to:

⎧

⎪

⎨

⎪

⎩

∇𝑢(𝑢∗, 𝑑) = ∇𝑢𝐽 (𝑢∗, 𝑑) +
(

𝐺𝑔


)𝑇
𝜆∗ = 0

𝑔(𝑢∗, 𝑑) = 0
(6)

here 𝜆∗ > 0 is the optimal vector of Lagrange multipliers for the
ctive constraints. Premultiplying ∇𝑢(𝑢∗, 𝑑) by 𝑁𝑇

 leads to:

𝑇
∇𝑢(𝑢∗, 𝑑) = 𝑁𝑇

∇𝑢𝐽 (𝑢∗, 𝑑) +
(

𝐺𝑔
𝑁

)𝑇
𝜆∗ = 0

ince by definition 𝐺𝑔
𝑁 = 0, the optimality conditions are equiv-

lent to 𝑔(𝑢∗, 𝑑) = 0 and 𝑁𝑇
∇𝑢𝐽 (𝑢∗, 𝑑) = 0, which are 𝑛𝑢 equa-

ions that fully determine 𝑢∗ because 𝑁 is full rank, and the as-
∗

3

ociated optimal Lagrange multiplier can always be found as 𝜆 =
⎩

(

𝐺𝑔
(𝐺

𝑔
)

𝑇
)−1

𝐺𝑔
∇𝑢𝐽 (𝑢∗, 𝑑). Therefore, enforcing 𝑔(𝑢∗, 𝑑) = 0 and

𝑁𝑇
∇𝑢𝐽 (𝑢∗, 𝑑) = 0 leads to satisfying (6), which is equivalent to

satisfying (2). □

In terms of feedback control, Theorem 1 says that 𝑔 and ∇𝑢,𝐽
both with setpoints 0) are the steady-state optimal CVs for a given
perating region where the active constraints do not change. Here, the
educed cost gradient ∇𝑢,𝐽 = 𝑁𝑇

∇𝑢𝐽 is defined as the gradient in the
nconstrained directions as given by the nullspace 𝑁 of the active
onstraints [6]. If the system is to operate at another active constraint
egion, however, the CVs need to change, and if shifts in operating
egions happen in real-time, the control system needs to automatically
etect these region switches. The main idea of this work is to design
decentralized control structure, see Fig. 2, for all possible active

onstraint regions of the optimization problem in Eq. (1). The main
ssumption for guaranteeing the existence of this decentralized control
tructure is as follows:

ssumption 1. The matrix 𝐺𝑔 is always full row rank, and the
umber of constraints is not greater than the number of MVs, that is,
ank(𝐺𝑔) = 𝑛𝑔 , and 𝑛𝑢 ≥ 𝑛𝑔 .

This not only guarantees LICQ for any set of constraints that may
e optimally active, but it also guarantees the existence of decoupled
Vs for optimal operation, as shown in the next theorem. For use in
he next theorem, define 𝑁0 as an orthonormal basis of the nullspace
f 𝐺𝑔 , that is:

𝐺𝑔𝑁0 = 0 (7)

The matrix 𝑁0 represents the unconstrained directions that are
never in conflict with constraint control. Note here that 𝑁0 is an empty
matrix (nonexistent) if we have as many constraints as inputs (𝑛𝑢 = 𝑛𝑔).
Further define 𝐺𝑔

−𝑖 as the matrix containing all but the 𝑖th row of 𝐺𝑔 ,
and define:

𝑁 =
[

𝑁1 ⋯ 𝑁𝑛𝑔

]

(8)

as a matrix of 𝑛𝑔 columns, where each column 𝑁𝑖 is a unitary vector
uch that:

⎡

⎢

⎢

⎣

𝐺𝑔
−𝑖

𝑁0𝑇

⎤

⎥

⎥

⎦

𝑁𝑖 = 0 (9)

Each vector 𝑁𝑖 represents the direction that may conflict with the
corresponding constraint 𝑔𝑖, as shown next.

heorem 2 (Optimal Switching Between CVs). Given that Assumption 1
holds and that the active constraint index set is , the following control
strategy allows for optimal operation:

• If 𝑛𝑢 > 𝑛𝑔 , which means 𝑁0 is non-empty, control 𝐶𝑉 0 = 𝑁0𝑇

∇𝑢𝐽 (𝑢, 𝑑) = 0;
• For 𝑖 = 1, 2,… , 𝑛𝑔 , if 𝑖 ∈ , control 𝐶𝑉 𝑔

𝑖 = 𝑔𝑖(𝑢, 𝑑) = 0; otherwise,
control 𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 (𝑢, 𝑑) = 0.

roof. To prove Theorem 2, it is sufficient to prove that the controlled
ariables are equivalent to the necessary first-order optimality condi-
ions. Firstly, it is useful to note that, due to its construction, 𝐺𝑔𝑁𝑖 =
𝐺𝑔
𝑖 𝑁𝑖)𝑒𝑖, with 𝐺𝑔

𝑖 being the 𝑖th row of 𝐺𝑔 , and 𝑒𝑖 being the 𝑖th unit
ector from the standard basis. Additionally, if the active constraint set
s , and the inactive constraint set is  = {1,… , 𝑛𝑔}−, the optimality
onditions can be written as:

∇𝑢(𝑢∗, 𝑑) = ∇𝑢𝐽 (𝑢∗, 𝑑) + 𝐺𝑔𝑇 𝜆∗ = 0

𝑔𝑖(𝑢∗, 𝑑) = 0, 𝑖 ∈ 
∗
𝜆𝑖 = 0, 𝑖 ∈ 
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Let 𝑁 be the matrix with columns equal to 𝑁𝑖 for 𝑖 ∈ . Then,
premultiplying ∇𝑢 by

[

𝑁 𝑁0]𝑇 leads to:

𝑁 𝑁0]𝑇 ∇𝑢 =
[

𝑁 𝑁0]𝑇 ∇𝑢𝐽 +
(

𝐺𝑔 [𝑁 𝑁0])𝑇 𝜆∗

=
[

𝑁 𝑁0]𝑇 ∇𝑢𝐽 +
([

𝐺𝑔𝑁 0
])𝑇 𝜆∗

Here,
(

𝐺𝑔𝑁
)𝑇 𝜆∗ = 0, because 𝐺𝑔𝑁𝑖 = (𝐺𝑔

𝑖 𝑁𝑖)𝑒𝑖, and, from the
optimality conditions, 𝑒𝑇𝑖 𝜆

∗ = 𝜆∗𝑖 = 0 for 𝑖 ∈ . Therefore, the optimality
conditions become
[

𝑁 𝑁0]𝑇 ∇𝑢 =
[

𝑁 𝑁0]𝑇 ∇𝑢𝐽 = 0,

which are the CVs proposed in addition to 𝑔𝑖(𝑢, 𝑑) = 0 for 𝑖 ∈ . Sim-
ilarly to Theorem 1, this fully defines the operational degrees of free-
dom, and a suitable vector of Lagrange multipliers can be found. □

Note that the matrix

𝑁() =
[

𝑁 𝑁0] (10)

used in the proof of Theorem 2 is a particular parametrization of the
nullspace matrix 𝑁 from Theorem 1, and therefore both results are
equivalent for a given active constraint region. In Theorem 2 however,
we specify an ideal association between CVs such that the handling
of region switching may be done in a decentralized fashion, avoiding
changes in the rest of the control structure. For instance, if the 𝑖th
constraint changes from inactive to active, only the corresponding
unconstrained degree of freedom 𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 will become un-

controlled, and the remaining CVs are kept unaltered. In addition,
the matrix 𝑁() =

[

𝑁 𝑁0]𝑇 is designed to be full row rank, and
therefore all operational degrees of freedom are filled for any active
set . The choice of building the vectors 𝑁𝑖 unitary and orthogonal to
𝑁0 is purely for the uniqueness of the solution, as one could propose
another projection 𝑁 ′

𝑖 = 𝛼𝑁𝑖 + 𝑁0𝑤 for any nonzero scaling factor 𝛼
and any vector 𝑤, and optimal operation would still be attained, as
𝑁0𝑇∇𝑢𝐽 is always optimally zero.

Theorem 2 states a general set of feedback control objectives to
attain optimal operation. It does not specify the type of controller to be
used, and one may apply these results to obtain optimal operation with
conventional tracking MPC with switching objectives to eliminate the
RTO layer. This would be useful for cases where decentralized control
performs poorly, but one still wishes to propose a simple control layer.
In this work, however, we choose to explore the implications of this
result for decentralized control, which is often more easily implemented
in practice.

Pairing of MVs and CVs. It should be noted that Theorem 2 makes
no distinction about the pairing between MVs and CVs, and it is left for
the practitioner to make this pairing taking into account controllability
and performance aspects. However, the theorem states the optimal
association between CVs for region switching, which means that the
control of 𝐶𝑉 𝑔

𝑖 = 𝑔𝑖 and 𝐶𝑉 0𝑔
𝑖 = 𝑁𝑇

𝑖 ∇𝑢𝐽 must be performed by
the same MV in the case of a decentralized framework. From now
on, it is considered that the MVs are ordered such that 𝑢𝑖 is used to
control the pair 𝐶𝑉 𝑔

𝑖 = 𝑔𝑖 and 𝐶𝑉 0𝑔
𝑖 for 𝑖 ≤ 𝑛𝑔 . These considerations

lead to the control structure presented in Fig. 3. Here, ∇𝑢𝐽 represents
the estimate of the cost gradient (∇𝑢𝐽 ), 𝐾𝑔

𝑖 represent the individual
constraint controllers, 𝐾0𝑔

𝑖 represent the individual gradient controllers
that are conditionally active (𝑖.𝑒. only one of 𝐾𝑔

𝑖 and 𝐾0𝑔
𝑖 is active at

any given time), and 𝐾0
𝑖 represent the individual gradient controllers

that are always active. It is important that the controllers 𝐾𝑔
𝑖 and 𝐾0𝑔

𝑖
include anti-windup action so that the integral modes in the inactive
controllers do not grow indefinitely.

We finally focus on the applicability of min/max selectors as the
logic elements to switch between active constraint regions, which
were left undetermined in Fig. 3 as ‘‘select’’ blocks. These selectors
are applied on the controller outputs 𝑢𝑔𝑖 and 𝑢0𝑔𝑖 associated with the
controlled variables 𝑔𝑖 and 𝐶𝑉 0𝑔

𝑖 , respectively, resulting in the process
4

input (MV) 𝑢𝑖 to be applied to the system. This methodology was
Fig. 3. Decentralized control structure for optimal operation according to Theorem 2.
The ‘‘select’’ blocks are usually max or min selectors (see Theorem 3).

adopted in Krishnamoorthy and Skogestad [16] for optimal operation
in the scalar case, 𝑖.𝑒. with a single MV, where it was concluded that a
constraint with a positive gain (𝐺𝑔 > 0) requires a min selector, whereas
a negative gain (𝐺𝑔 < 0) requires a max selector. In the next theorem,
we present similar results for the multivariable case.

Theorem 3 (Decentralized Control. Applicability of Min/Max Selec-
tors). In addition to Assumption 1, assume that the Hessian of the cost
function with respect to the inputs is constant and positive definite, that is,
∇𝑢𝐽 (𝑢, 𝑑) = 𝐽𝑢𝑢𝑢 + 𝐽𝑢,𝑚(𝑑), with 𝐽𝑢𝑢 > 0 and arbitrary 𝐽𝑢,𝑚(𝑑), and that

𝑔 is constant. Consider the control structure in Fig. 3 and Theorem 2, and
ssume that every possible subsystem is stable.
Let 𝑢0𝑔𝑖 denote the value of 𝑢𝑖 that controls 𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 (𝑢, 𝑑) = 0,

nd let 𝑢𝑔𝑖 denote the value of 𝑢𝑖 that controls 𝑔𝑖(𝑢, 𝑑) = 0. For a given
ctive set , the associated nullspace of the active constraint gain matrix
𝑔
𝐴 is𝑁() =

[

𝑁 𝑁0]. Define the scaled projection matrix 𝑃 and the
ransformed constraint gain matrix 𝐺𝑔

𝑃
as:

 = 𝑁()

(

𝑁𝑇
()𝐽𝑢𝑢𝑁()

)−1
𝑁𝑇

() (11)

𝑔
𝑃

= 𝐺𝑔𝑃 (12)

The optimal input is given by 𝑢∗𝑖 = min (𝑢0𝑔𝑖 , 𝑢𝑔𝑖 ) if the 𝑖th diagonal
lement of the transformed gain matrix is positive ((𝐺𝑔

𝑃
)𝑖𝑖 > 0) for any

ctive set  that does not include 𝑖. Conversely, the optimal input is given
y 𝑢∗𝑖 = max (𝑢0𝑔𝑖 , 𝑢𝑔𝑖 ) if (𝐺

𝑔
𝑃

)𝑖𝑖 < 0 ∀ ∌ 𝑖.

Proof. See Appendix A □
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Fig. 4. Decentralized control structure for optimal operation, using an alternative
cascade implementation.

It is worth noting that the 𝑖th row of 𝐺𝑔
𝑃

is identically zero for
𝑖 ∈ , since 𝑃 involves a projection to the nullspace of the active
constraints. If (𝐺𝑔

𝑃
)𝑖𝑖 changes sign for different active sets, a single type

of selector would not account for all theoretical regions. The single-
input case of Theorem 3 can be easily verified by writing 𝑢𝑔 − 𝑢0𝑔 =
− 1

𝐽𝑢𝑢
𝐺𝑔𝜆𝑖. As 𝐽𝑢𝑢 > 0 for a convex optimization problem, 𝐺𝑔 > 0 leads

to 𝑢∗ = min (𝑢0𝑔 , 𝑢𝑔), and 𝐺𝑔 < 0 leads to 𝑢∗ = max (𝑢0𝑔 , 𝑢𝑔), which is
equivalent to the result in Krishnamoorthy and Skogestad [16].

Can some of the assumptions in Theorem 3 be removed? Ac-
cording to Theorem 3, the use of max- (or min-) selectors in Fig. 3
assumes that (𝐺𝑔

𝑃
)𝑖𝑖 remains positive (or negative) for any active set 

that does not include 𝑖. This is to rule out cases where the steady-state
gain for control of the constraint 𝑔𝑖 changes sign, as this would lead
to instability with integral action in the controller. In other words, this
is to rule out interacting processes where 𝑢∗𝑖 = min (𝑢0𝑔𝑖 , 𝑢𝑔𝑖 ) for a given
active set , and 𝑢∗𝑖 = max (𝑢0𝑔𝑖 , 𝑢𝑔𝑖 ) for another. However, it is not clear
whether this is a restriction in practice. Thus, it is possible that the
assumption about no sign change for the diagonal elements (𝐺𝑔

𝑃
)𝑖𝑖 is

not needed. This is left as an open research issue.
Cascade implementation. It is anyway possible to avoid this re-

striction by using the cascade switching implementation in Fig. 4. That
is, for this implementation the simple selector logic is always optimal
without the assumption about the sign of (𝐺𝑔

𝑃
)𝑖𝑖 in Theorem 3. In the

cascade implementation in Fig. 4, the constraints are always controlled
in the lower layer, and the optimal constraint setpoint 𝑔𝑠𝑝𝑖 will either
be the value 𝑔𝑠𝑝,0𝑖 that controls 𝐶𝑉 0𝑔

𝑖 = 0 or the constraint’s limit
value itself, such that 𝑔𝑠𝑝𝑖 = min (𝑔𝑠𝑝,0𝑖 , 0) leads to optimal operation.
This result can also be obtained by rewriting Theorem 3 in terms of
the transformed inputs 𝑣 =

[

𝑔1 ⋯ 𝑔𝑛𝑔 𝑢𝑛𝑔+1 ⋯ 𝑢𝑛𝑢
]𝑇

, where
it can be verified that the condition (𝐺𝑔,𝑣

𝑃
)𝑖𝑖 > 0 is always satisfied. This

result is presented in Appendix B.
The idea of using cascade control for self-optimizing control and

constraint satisfaction has been previously proposed in Cao [7]. There,
the cost gradient is controlled in the unconstrained case, while the
lower layer keeps the system feasible by saturating the setpoint from
the upper layer. This approach ensures feasibility and self-optimizing
behavior at the unconstrained region, but optimality at all active
constraint regions is only ensured by carefully selecting the CVs at the
upper layer, which is the main idea of the present work. In addition,
even though the cascade structure will always operate optimally at
steady state, it requires that the outer controllers 𝐾0𝑔 are sufficiently
5

𝑖

Fig. 5. Active constraint regions for case study 1 as a function of disturbances.

slower than the inner controllers 𝐾𝑔
𝑖 , and therefore the generic struc-

ture in Fig. 3 offers more flexibility in terms of loop tuning and
implementation of further control overrides. The simulations presented
in this paper are for the implementation in Fig. 3.

3. Case study 1 - Toy example

In this section, to illustrate the implementation of the proposed
control structure, we consider a linear process with a quadratic cost
function and 2 linear constraints. The process has 2 dynamic states 𝑥,
3 inputs (MVs) 𝑢, and 2 disturbances 𝑑. The linear state-space model
is:

𝑥̇ =

[

− 1
𝜏1

0

0 − 1
𝜏2

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐴

𝑥 +

[ 0.2
𝜏1

0 0

0 0.2
𝜏2

0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵

𝑢 +

[ 1
𝜏1

0

0 1
𝜏2

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐵𝑑

𝑑
(13)

with 𝜏1 = 1 and 𝜏2 = 2. It is assumed that both states are measured,
that is, 𝑦 = 𝐶𝑥 +𝐷𝑢 with 𝐶 = 𝐼 and 𝐷 = 0.

The steady-state optimization problem in terms of the states is:

min
𝑢

1
2
𝑥𝑇

[

1 0
0 10

]

𝑥 + 1
2
𝑢𝑇

⎡

⎢

⎢

⎣

1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

⎤

⎥

⎥

⎦

𝑢

s.t.
{

𝑔1 = 𝑥1 − 0.8𝑥2 ≤ 0

𝑔2 = 𝑢1 + 𝑢2 + 𝑢3 ≤ 0

(14)

At steady state, the states can be eliminated to give the following
static optimization problem:

min
𝑢

𝐽 (𝑢, 𝑑) = 1
2
𝑢𝑇

⎡

⎢

⎢

⎣

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

⎤

⎥

⎥

⎦

𝑢 + 𝑢𝑇
⎡

⎢

⎢

⎣

0.2 0
0 2
0 0

⎤

⎥

⎥

⎦

𝑑

s.t. 𝑔(𝑢, 𝑑) =
[

0.2 −0.16 0
1 1 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺𝑔

𝑢 +
[

1 −0.8
0 0

]

𝑑 ≤ 0
(15)

For given disturbances 𝑑, we can solve the problem in Eq. (15) to
find the optimal steady-state inputs 𝑢∗ and the active set . From this,
we can graphically represent the active constraint regions as a function
of the two disturbances as shown in Fig. 5. Note that this is done for
visualization purposes only and is not a part of the proposed method.
In fact, for the proposed method we do not need to know what the
disturbances are; what is needed is measured or estimated values for
the constraints 𝑔 and the unconstrained cost gradient ∇𝑢𝐽 . We see in
Fig. 5 that all 2𝑛𝑔 = 22 = 4 combinations of constraints are possible.
Each region has a specific set of CVs for optimal operation, namely the
active constraints and the corresponding reduced gradients, as given in
Theorem 2.
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Table 1
Diagonal elements of 𝐺𝑔

𝑃
for all relevant

sets  for case study 1.
 (𝐺𝑔

𝑃
)11 (𝐺𝑔

𝑃
)22

{} 0.201 1.443
{1} – 1.801
{2} 0.155 –

Table 2
PI controller tunings for case study 1. Note that 𝐾𝐼 =
𝐾𝑐∕𝜏𝐼 is the integral gain. The first four controllers
have anti-windup with tracking time 𝜏𝑇 = 0.01 s.
Controller Parameter Value

𝐾𝑔
1

𝐾𝑐 50
𝜏𝐼 1.0

𝐾𝑔
2 𝐾𝐼 100

𝐾0𝑔
1 𝐾𝐼 −2.382

𝐾0𝑔
2 𝐾𝐼 3.055

𝐾0 𝐾𝐼 5.523

We have 𝑛𝑢 = 3 and 𝑛𝑔 = 2, so with the proposed method, we
need to design 𝑛𝑢 + 𝑛𝑔 = 5 SISO controllers with 𝑛𝑔 = 2 selectors to
obtain optimal steady-state operation. Since 𝑛𝑢 > 𝑛𝑔 , we always have
𝑛𝑢 − 𝑛𝑔 = 1 unconstrained degree of freedom corresponding to the
controlled variable 𝐶𝑉 0 = 𝑁0𝑇∇𝑢𝐽 . From the nullspace of the full 𝐺𝑔

matrix, we find that this direction is given by

𝑁0 =
[

−0.36214 −0.45268 0.81482
]𝑇 .

In addition, there are two unconstrained directions related to the two
constraints. We have that 𝐶𝑉 0𝑔

1 = 𝑁𝑇
1 ∇𝑢𝐽 should be controlled when

𝑔1 is not active, and 𝐶𝑉 0𝑔
2 = 𝑁𝑇

2 ∇𝑢𝐽 should be controlled when 𝑔2 is
not active. These directions are:
[

1 1 1
−0.36214 −0.45268 0.81482

]

𝑁1 = 0 ⟹ 𝑁1 =
⎡

⎢

⎢

⎣

−0.73179
0.67952
0.052271

⎤

⎥

⎥

⎦

[

0.2 −0.16 0
−0.36214 −0.45268 0.81482

]

𝑁2 = 0 ⟹ 𝑁2 =
⎡

⎢

⎢

⎣

0.50902
0.63627
0.57971

⎤

⎥

⎥

⎦

For designing a decentralized control structure, a pairing between
he constraints and the MVs must be performed. From the steady-
tate gain matrix 𝐺𝑔 we see that 𝑢3 should not be used to control 𝑔1
because of zero gain). Otherwise, there are no clear restrictions, and 𝑔1
s arbitrarily paired to 𝑢1, and 𝑔2 is paired to 𝑢2. We must require that
he corresponding unconstrained optimal CVs are paired accordingly,
eaning that 𝐶𝑉 0𝑔

1 is paired to 𝑢1, 𝐶𝑉 0𝑔
2 is paired to 𝑢2, and 𝐶𝑉 0 is

aired to 𝑢3.
For selector design, Table 1 shows the transformed constraint gains

alculated using Eq. (12) for all active constraint sets, and we verify
hat the gains are always positive for both constraints. This means that
electors are possible for both control loops and that both selectors
hould be ‘‘min’’-selectors. The resulting control structure is shown in
ig. 6.

The cost gradient is estimated through a relinearization of the
ynamic model at the current estimated state to obtain the following
inear model:
{

𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝐽 = 𝐶𝐽𝑥 +𝐷𝐽 𝑢

(16)

here, by setting 𝑥̇ = 0, the estimated steady-state cost gradient
ecomes [13]

̂ −1
6

𝑢𝐽 = −𝐶𝐽𝐴 𝐵 +𝐷𝐽 (17)
Fig. 6. Decentralized control structure for case study 1.

For state estimation, the model is augmented to include the distur-
bances as integrating states, according to:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝑥̇
𝑑̇

]

=
[

𝐴 𝐵𝑑
0 0

] [

𝑥
𝑑

]

+
[

𝐵
0

]

𝑢

𝑦 =
[

𝐶 0
]

[

𝑥
𝑑

] (18)

To estimate the states, a continuous-time Kalman filter is imple-
mented with this augmented model, and the estimated state 𝑥̂ and
current input 𝑢 are used to evaluate the matrices in Eq. (16) at all times,
leading to the estimated cost gradient ∇𝑢𝐽 in (17) . The matrices 𝐴, 𝐵,
𝐵𝑑 , 𝐶, and 𝐷 are as defined in Eq. (13), and 𝐶𝐽 and 𝐷𝐽 are calculated
rom Eq. (14) to give:

𝐽 = 𝑥̂𝑇
[

1 0
0 10

]

𝐽 = 𝑢𝑇
⎡

⎢

⎢

⎣

1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

⎤

⎥

⎥

⎦

We emphasize that analytical expressions for these derivatives are
available due to the simplicity of this case study, and we encourage the
use of automatic differentiation tools to obtain these matrices in more
realistic case studies.

The constraint controllers 𝐾𝑔
1 and 𝐾𝑔

2 were designed according to
the SIMC rules [18] with the choice 𝜏𝐶,1 = 0.1 s and 𝜏𝐶,2 = 0.01 s.
In terms of gradient control, we assume that the effect of the inputs
on the estimated ∇𝑢𝐽 is that of a pure gain process, neglecting any
dynamics associated with the gradient estimation, and therefore the
gradient controllers 𝐾0𝑔

1 , 𝐾0𝑔
2 , and 𝐾0 become pure integral controllers.

hese were tuned according to the SIMC rules with 𝜏𝐶 = 0.5 s. All
ontrollers linked to selectors are implemented with anti-windup action
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Fig. 7. Closed-loop simulation results for case study 1.

based on the back-calculation strategy [14,19], with a tracking time of
𝜏𝑇 = 0.01 s. The resulting controller tunings are summarized in Table 2.

The closed-loop simulations are shown in Fig. 7. To validate the
optimality of the control structure, the disturbances were changed
stepwise every 15 s (see lower left plots) to make the system operate
in all four active constraint regions (see lower right plot). It can be
seen that constraint changes are effectively handled, giving up the cor-
responding gradient projection when a constraint becomes active, and
that operation is driven to the optimal steady state for all disturbances.

4. Case study 2 - Williams–Otto reactor

The control structure proposed in Section 2 depends on using pro-
jection matrices. These are constant only when the constraints are
linear in the MVs. We now consider a nonlinear case study where
this assumption is not satisfied and one may expect economic losses
in some regions. The case study is based on the process described
by Williams and Otto [20] and studied in [16], see Fig. 8. It consists of
a continuously stirred reactor tank with perfect level control, in which
A and B are mixed, generating the main product P, the less interesting
product E and the undesired byproduct G. The reactions and reaction
rates are given by:

𝐴 + 𝐵
𝑘1
←←←←←←←←←←→ 𝐶 𝑘1 = 𝑘0,1𝑒−𝐸1∕𝑇𝑟

𝐶 + 𝐵
𝑘2
←←←←←←←←←←→ 𝑃 + 𝐸 𝑘2 = 𝑘0,2𝑒−𝐸2∕𝑇𝑟

𝑃 + 𝐶
𝑘3
←←←←←←←←←←→ 𝐺 𝑘3 = 𝑘0,3𝑒−𝐸3∕𝑇𝑟

The component mass balances for the six components give the
following set of ODEs:
𝑑𝑥𝐴
𝑑𝑡

=
𝐹𝐴
𝑊

−
(𝐹𝐴 + 𝐹𝐵)𝑥𝐴

𝑊
− 𝑘1𝑥𝐴𝑥𝐵 (19a)

𝑑𝑥𝐵 =
𝐹𝐵 −

(𝐹𝐴 + 𝐹𝐵)𝑥𝐵 − 𝑘 𝑥 𝑥 − 𝑘 𝑥 𝑥 (19b)
7

𝑑𝑡 𝑊 𝑊 1 𝐴 𝐵 2 𝐶 𝐵
Fig. 8. Schematic representation of Williams–Otto reactor, with MVs in red.

Table 3
Model parameters for case study 2.
Parameter Value

𝑊 2105 kg
𝑘0,1 1.6599 × 10−6 kg∕s
𝑘0,2 7.2117 × 10−8 kg∕s
𝑘0,3 2.6745 × 10−12 kg∕s
𝐸1 6666.7 K
𝐸2 8333.3 K
𝐸3 11111 K
𝑝𝐴 79.23 $/kg
𝑝𝐵 118.34 $/kg
𝑝𝑃 1043.38 $/kg
𝑝𝐸 20.92 $/kg

𝑑𝑥𝐶
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝐶

𝑊
+ 2𝑘1𝑥𝐴𝑥𝐵 − 2𝑘2𝑥𝐶𝑥𝐵 − 𝑘3𝑥𝑃 𝑥𝐶 (19c)

𝑑𝑥𝑃
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝑃

𝑊
+ 𝑘2𝑥𝐶𝑥𝐵 − 0.5𝑘3𝑥𝑃 𝑥𝐶 (19d)

𝑑𝑥𝐸
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝐸

𝑊
+ 2𝑘2𝑥𝐶𝑥𝐵 (19e)

𝑑𝑥𝐺
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝐺

𝑊
+ 1.5𝑘3𝑥𝑃 𝑥𝐶 (19f)

The model parameters for this case study are summarized in Table 3.
The economic cost 𝐽 includes the cost of reactants 𝑝𝐴 and 𝑝𝐵 and the
selling price of products 𝑝𝑃 and 𝑝𝐸 , and the operational constraints are
related to maximum allowed values for 𝑥𝐴 and 𝑥𝐸 . The steady-state
optimization problem becomes

min
𝑢

𝐽 = 𝑝𝐴𝐹𝐴 + 𝑝𝐵𝐹𝐵 − (𝐹𝐴 + 𝐹𝐵)
[

𝑝𝑃 (1 + 𝛥𝑝𝑃 )𝑥𝑃 + 𝑝𝐸𝑥𝐸
]

s.t. 𝑔1 = 𝑥𝐸 − 0.30 ≤ 0

𝑔2 = 𝑥𝐴 − 0.12 ≤ 0

(20)

The degrees of freedom (MVs) are 𝑢 =
[

𝐹𝐵 𝑇𝑟
]𝑇 , and the distur-

bances are 𝑑 =
[

𝐹𝐴 𝛥𝑝𝑃
]𝑇 , where 𝛥𝑝𝑃 is the relative change in the

price of the main product, as defined in Eq. (20).
The active constraint regions as a function of the two disturbances

are shown in Fig. 9. In contrast to the previous case study, the lines
delimiting each region are not straight. This alone should not affect the
optimality of the proposed framework, as the optimality only requires
that the constraints are linear in the MVs. However, since the latter does
not hold for the case study, the use of constant projection matrices will
lead to some economic loss.

We have 𝑛𝑢 = 𝑛𝑔 = 2 so Assumption 1 is satisfied. With the proposed
method we need to design 𝑛 + 𝑛 = 4 SISO controllers with 𝑛 = 2
𝑢 𝑔 𝑔
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Fig. 9. Active constraint regions for case study 2 as a function of disturbances.

Fig. 10. Complete control structure for case study 2.

Table 4
Nominal operating point for case
study 2.
Variable Value

𝐹𝐴 0.5 kg/s
𝛥𝑝𝑃 0
𝐹𝐵 1.4587 kg/s
𝑇𝑟 342.537 K
𝑥𝐴 0.0712 kg/kg
𝑥𝐵 0.4107 kg/kg
𝑥𝐶 0.0173 kg/kg
𝑥𝑃 0.1246 kg/kg
𝑥𝐸 0.3 kg/kg
𝑥𝐺 0.0762 kg/kg

selectors to obtain optimal steady-state operation. To obtain the gain
matrix 𝐺𝑔 from the MVs to the constraints, we need to linearize the
steady-state model of the constraints. In the following simulations,
we use the linearization performed at the nominal operating point
presented in Table 4, leading to fixed CVs for operation in all regions.
This linearization gives:

𝐺𝑔 =
[

−0.1045 0.003268
−0.04379 −0.00241

]

8

Table 5
Diagonal of 𝐺𝑔

𝑃
for all relevant sets  for case study

2.
 (𝐺𝑔

𝑃
)11 (𝐺𝑔

𝑃
)22

{} −6.01 × 10−4 −0.0279
{1} – −0.0287
{2} −5.05 × 10−4 –

Table 6
PI controller tunings for case study 2.
Controller Parameter Value

𝐾𝑔
1

𝐾𝑐 −430.6
𝜏𝐼 0.225 h

𝐾𝑔
2

𝐾𝑐 −2988
𝜏𝐼 0.072 h

𝐾0𝑔
1 𝐾𝐼 −1.833

𝐾0𝑔
2 𝐾𝐼 202.5

Since 𝑛𝑢 = 𝑛𝑔 , the system has no completely unconstrained de-
grees of freedom, so there are no variables 𝐶𝑉 0 that are always
controlled. The gradient projections 𝑁1 and 𝑁2 for the two potentially
unconstrained degrees of freedom become:

[

−0.04379 −0.00241
]

𝑁1 = 0 ⟹ 𝑁1 =
[

−0.05499
0.9985

]

[

−0.1045 0.003268
]

𝑁2 = 0 ⟹ 𝑁2 =
[

0.03126
0.9995

]

For MV–CV pairing, we choose 𝑢1 = 𝐹𝐵 for controlling 𝑔1 and
𝐶𝑉 0𝑔

1 = 𝑁𝑇
1 ∇𝑢𝐽 , and 𝑢2 = 𝑇𝑟 controlling 𝑔2 and 𝐶𝑉 0𝑔

2 = 𝑁𝑇
2 ∇𝑢𝐽 . This

pairing choice was made based on the steady-state RGA for constraint
control, which gives 𝜆 = 0.638 for the chosen pairing. For designing the
selectors according to Theorem 3, a local analysis of the transformed
constraint gains given in Eq. (12) was made at the nominal point and
is summarized in Table 5. The projected gains are negative for both
constraints regardless of the active set, which means that both selectors
should be ‘‘max’’ selectors. The resulting control structure is presented
in Fig. 10.

To tune the controllers, we obtained the following transfer functions
from the MVs to the constraints (with time in hours):

𝐺11(s) =
−0.1045

0.225 s + 1
, 𝐺22(s) =

−0.00241
0.072 s + 1

Based on this, the PI controllers for the constraints were tuned using
the SIMC rules [18] with 𝜏𝐶,1 = 0.005 h and 𝜏𝐶,2 = 0.01 h. Similar to
the previous case study, the method for gradient estimation is again
considered to be instantaneous with respect to the inputs, meaning that
the gradient controllers become integral controllers, tuned using the
SIMC rules with 𝜏𝐶 = 0.05 h. All four controllers were implemented
with anti-windup action based on back-calculation with a tracking time
of 𝜏𝑇 = 0.01 h. The controller tunings are summarized in Table 6.

Closed-loop dynamic simulations are presented in Fig. 11. The dis-
turbances were changed so that all four active constraint regions were
explored. Since we consider that the cost gradient ∇𝑢𝐽 is an available
measurement (from an estimator with a perfect model), operation in
the fully unconstrained region (from 𝑡 = 21 h to 𝑡 = 27 h) is optimal at
steady state, which can be seen by the input values converging to the
exact steady-state optimal value. Since we assume that the constraints
are directly measured (which is a mild assumption), the same logic
applies to the fully constrained region from 𝑡 = 9 h to 𝑡 = 15 h. In
addition, operation is optimal at the nominal point by design. In the
two remaining partly constrained regions, the system does not converge
exactly to the steady-state optimum, but the constraints are always
satisfied (except for short dynamic transients, which may be avoided
by introducing a back-off for the constraints).
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Fig. 11. Closed-loop simulation results for case study 2.

It is interesting to note that for the third set of disturbances (𝑑 =
[1.0, −0.2]𝑇 from 𝑡 = 6 h to 9 h), the second constraint (𝑔2 = 0) is not
controlled, even though it should be optimally controlled together with
𝑔1 = 0. Instead, the selector logic results in the control of 𝐶𝑉 0𝑔

2 = 0,
which can be done without violation of 𝑔2, that is, constraint 𝑔2 is
‘‘over-satisfied’’. The reason for this non-optimal operation is that the
selected value for projection matrix 𝑁2 is not optimal in this operating
region.

The steady-state economic loss is better visualized as a function of
the disturbances in Fig. 12. The highest losses are observed around
where we ideally should switch between the partly constrained and the
fully constrained regions. The optimal switch between these regions
(black lines) does not coincide with the actual switch obtained with
the selectors (blue lines). Economic loss is observed before the optimal
switch due to the inaccuracy of the projection matrices. For the same
reason, and because this further leads to suboptimal performance of the
selectors, economic loss is also seen between the optimal and actual
switch of CVs. However, the optimal switch between the fully uncon-
strained and the partly constrained regions coincides with the actual
switch between the corresponding CVs. This happens because, before
the switch, the full cost gradient ∇𝑢𝐽 is controlled to zero, leading
to zero economic loss, and the constraint becomes active immediately
at the switch. Therefore, at this switch, the economic loss is zero,
and it continuously grows as the system moves further into the partly
constrained region.

5. Discussion

5.1. Steady-state cost gradient estimation

The results in this paper assume the availability of the steady-
state cost gradient ∇𝑢𝐽 during operation. This can be fulfilled through
model-based estimation, model-free estimation, or a combination of
both methods [3]. Model-free methods usually depend on the pertur-
bation of the inputs, and when the constraints are being controlled the
9

Fig. 12. Steady-state closed-loop economic loss for case study 2.

perturbation can be done in their setpoints instead. In the presented
case studies, we used a model-based approach, where a Kalman Filter
was used to estimate the current dynamic state 𝑥 and disturbance 𝑑
with an augmented model (18), and then setting 𝑥̇ = 0 in the linearized
model (16) leads to the gradient estimate (17).

Because the cost gradient ∇𝑢𝐽 is, by definition, a steady-state vari-
able, it is not well-defined during a dynamic transition, and any gradi-
ent estimator must make some steady-state assumption or prediction.
The necessity of estimating the cost gradient is related to ensuring exact
optimality. In practice, one would wish to use an approximation of the
cost gradient that is more easily implementable, even if that means
accepting some economic loss. In that sense, data-driven approaches for
this estimation would be appealing, as well as self-optimizing control
methods that provide an approximation for the cost gradient through
a static combination of measurements [6].

However, a simpler approach is to use a static estimation of ∇𝑢𝐽
directly based on the measurements 𝑦. In another paper [21], we prove
the optimality of a simple linear steady-state gradient estimate of the
form

∇𝑢𝐽 = 𝐻𝑦 − 𝑐𝑠

where 𝑦 are the measurements, and the constant vector 𝑐𝑠 and the
constant matrix 𝐻 are obtained using the ‘‘exact local method’’ of self-
optimizing control. In addition, a correction of 𝑐𝑠 from a more accurate
gradient estimator may be applied on a slower time scale, for example,
using a model-based approach like RTO or a data-based perturbation
method like extremum-seeking control.

5.2. Handling of constraints

Constraints in process systems are usually measured or estimated,
and our approach is optimal for such cases, as control loops are
implemented to handle these constraints. In MPC applications, where
the problem is formulated as a dynamic trajectory optimization, it
is common that process constraints are posed as constraints on the
dynamic states, but this is not how our approach handles this issue.
Rather, our method is focused on process constraints that may become
active at steady state and influence process economics.

5.3. Updating of projection matrices

In the simulations presented in this paper, we assumed that a
linearization of the constraints at a nominal operating point would
be sufficiently accurate for capturing the transitions between active
constraint regions. This simplification was primarily made to ensure a
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control structure that can be easily implemented, and it led to accept-
able results even for a nonlinear case study (see Fig. 12). However, it is
possible to enhance economic performance by updating the projection
matrices 𝑁 and 𝑁0 during operation. To accomplish this, an accurate
estimator for the complete constraint gradient matrix 𝐺𝑔 is required,
and typically such an estimator is only available at a time scale similar
to that of RTO. However, our primary objective is to achieve acceptable
economic losses in fast time scales, and this could be accomplished by
using constant projection matrices.

5.4. Controller tuning

Even though the proposed control structure only has 𝑛𝑢 + 𝑛𝑔 SISO
controllers to be designed, the tuning of these controllers may prove to
be challenging. This is because these controllers must work in many
different regions (up to 2𝑛𝑔 theoretical regions), and the interaction
between loops will change depending on which controllers are active.
The pairing between MVs and CVs should consider this, and the tuning
for the loops should be robust in the sense that acceptable performance
is attained for every operation mode. This issue was not noticed in
the case studies in this work, but it is easy to see that it may arise
in practice.

5.5. Limitations for systems with many constraints

In this paper, we consider a class of problems with 𝑛𝑢 ≥ 𝑛𝑔 , so it
s possible to devise a simple, decentralized control structure. There
s a particular case of systems with more constraints than inputs that
an fit into the framework proposed in this work. That would be the
ase where the constraints can be arranged into 𝑛𝑔 groups, where each
roup is comprised of constraints that have parallel gain vectors with
espect to the inputs, 𝑖.𝑒. the constraints 𝑔𝑖 and 𝑔𝑗 would belong to
he same group if ∇𝑢𝑔𝑖 = 𝛼∇𝑢𝑔𝑗 for some nonzero 𝛼. In practice, this
ould represent a process variable with lower and upper bounds, or

onstraints of similar nature caused by different factors, 𝑒.𝑔. a maximum
rocessing rate due to upstream or downstream conditions. Each of
hese groups has a unique characteristic direction in terms of the rows
f 𝐺𝑔 , which can be used to calculate the gradient projections with
he methodology described in Theorem 2. Each of these groups should
hen be organized internally following the single-variable methodology
escribed by Krishnamoorthy and Skogestad [16]. As the methodology
evised in this paper mitigates the correlation between each group
f constraints, the gradient projections that serve as unconstrained
Vs remain constant with respect to changes in the remaining loops,
nd therefore no additional logic is required in the implementation of
ax/min selectors for constraint handling.

The main case not covered by the present methodology is when
here are 𝑛𝑔 > 𝑛𝑢 independent constraints that may become active,
xpressly violating Assumption 1. In this case, considering that some
airing between MVs and constraints is done, the first problem that
rises is the possibility of constraints paired with the same MV becom-
ng active at the same time, requiring that one or several constraints
ecome controlled by other MVs. A heat exchanger case with 𝑛𝑔 = 3 >
𝑢 = 2 was studied in Bernardino et al. [22], where it was shown that a
egion-based approach similar to the one studied in the present paper
ails to achieve optimality for some disturbance scenarios, whereas
he primal–dual approach always reaches the optimal steady state. To
chieve optimality with a region-based approach, an adaptive pairing
trategy may be used, as described for this case study in Bernardino
t al. [23]. This gives optimal operation for all disturbances, but the
daptive pairing becomes quite complicated (see Figure 2 in [23]).

In this sense, general strategies for switching pairings require more
omplex logic, and currently, there is no systematic arranging of classi-
al control logic blocks that can account for that. On top of that, even
f conflicting constraints are not an issue for the considered operating
indow, 𝑖.𝑒. constraints paired to the same MV do not become active at
10
he same time for the considered disturbances, the design of controllers
or the unconstrained degrees of freedom becomes more complicated.
s the constraints are assumed to be independent, the gradient projec-

ions optimally controlled to zero will be different when each of them
s active. This entails that the remaining control loops have to change
epending on which controller related to this MV is active. Therefore,
roposing decentralized control structures for the optimal operation of
ystems with more constraints than MVs inevitably leads to complex
nd interacting control loops, and centralized strategies such as the
rimal–dual feedback optimizing control presented in Krishnamoorthy
24] or MPC become more appealing.

For the same reason, the proposed framework has limitations in
ptimal dealing with input saturation. In real systems, every MV has
hysical bounds 𝑢𝑙𝑏 ≤ 𝑢 ≤ 𝑢𝑢𝑏 in addition to the process constraints

𝑔. Therefore, every physical system in a way has more constraints
than MVs, and one must identify the constraints that are more likely
to become active if one follows Theorem 2 for designing a control
structure. The choice of not pairing an MV that may saturate with an
important CV, in this case, an economic constraint, agrees with the rule
of thumb ‘‘pair an MV that may saturate with a CV that may be given
up’’ [25], as the gradient projections paired to that MV should by design
be given up in case of MV saturation.

The proposed framework attains optimal operation in a wide op-
erating range, by enforcing optimality conditions at steady state for
all possible active set combinations for a maximum of 𝑛𝑢 independent
constraints. It should also be emphasized that less frequent constraints
can still be dealt with in the current framework by the implementation
of more selectors, even if 𝑛𝑔 > 𝑛𝑢, bearing in mind that steady-state
optimal operation will not be guaranteed when those become active
due to changes in the unconstrained CVs. However, violation of such
infrequent constraints would be prevented, which is the main goal of
such additional control loops.

5.6. Stability and optimal convergence of selectors

The control strategy proposed in this work relies on switching
blocks to perform optimal operation in different operating regions.
Analyzing the stability of switched systems is more complex, as the
stability of a switched system may not necessarily match that of its
corresponding continuous subsystems [26]. In Theorem 3, we assume
that each subsystem within the switching system is stable, which is a
condition already present and well described when using decentralized
control in multivariable systems. By ensuring that every subsystem is
stable, the overall stability of the switching system can be guaranteed.
This can be achieved by enforcing a sufficiently large average dwell
time [27], which is a practical and easily implementable solution.

The conditions for implementing min/max selectors to detect
switches in active constraints optimally are outlined in Theorem 3. This
theorem is based on a local analysis of the optimization problem and
is rigorously applicable to problems with a constant positive definite
Hessian 𝐽𝑢𝑢 and constant constraints gain 𝐺𝑔 . A relevant case in practice
is that of linear economic objectives, for which 𝐽𝑢𝑢 is positive semidef-
inite, but this case is always solved by active constraint control, as
there are no unconstrained degrees of freedom to be determined. While
the presented proof does not address generic nonlinear optimization
problems, it provides a useful local test that can eliminate certain
impossible configurations resulting from the chosen MV–CV pairings
or the formulation of the optimal operation problem itself. If the
conditions specified in Theorem 3 are not satisfied, we recommend
utilizing the cascade framework presented in Fig. 4.

The condition derived in Theorem 3 for applicability of selectors
would only be violated by highly interacting systems, where the sign
of the transformed constraint gain (𝐺𝑔

𝑃
) would change depending on

the active loops. This condition is conjectured to be associated with
the decentralized integral controllability (DIC) of each potential subsys-
tem [28]. In our study, we could not find an example of a linear system
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with a convex objective function and without DIC that does not satisfy
the conditions stated in the selector theorem. This further suggests a
connection between these concepts and that the DIC conditions possibly
imply the applicability of selectors. The link between the conditions of
Theorem 3 and controllability aspects remains an open challenge that
requires further investigation.

5.7. Other switching approaches

In this work, we have proposed the use of selectors in the controller
outputs for detecting switches in active constraints. However, other
strategies for adaptively controlling constraints in the context of opti-
mal operation have been proposed. Manum and Skogestad [10] studied
the problem of active constraint switching in self-optimizing control
by tracking the self-optimizing CVs in neighboring regions, where the
switching happens when there is a change of sign in the monitored
variable. In the notation herein presented, this would be equivalent to
the following switching logic:

• If 𝐶𝑉 0𝑔
𝑖 = 𝑁𝑇

𝑖 ∇𝑢𝐽 is being controlled to zero, a change of sign in
𝑔𝑖 means that the 𝑖th constraint became active, as this sign change
corresponds to constraint violation;

• Conversely, if 𝑔𝑖 is being controlled to zero, a change of sign in
𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 means that the 𝑖th constraint became inactive, as

this sign change corresponds to a change in the objective function
slope.

The problem with implementing such logic lies in the resulting
ynamics of the control system. As this logic implies that the reference
ariable is perfectly controlled for accurate detection, the logic should
perate in a slower time scale than that of the closed-loop system,
hich would in turn result in undesired behavior, especially constraint
iolation. Operating the switching logic in fast time scales could in turn
ead to the appearance of limit cycles, due to self-sustained switching
etween control loops.

We have also presented the cascade control structure in Fig. 4 as an
lternative switching strategy. A similar idea has been proposed by Cao
7] to promote self-optimizing operation at the nominal region while
ub-optimally coping with constraint satisfaction. There are however
ome disadvantages to this approach related to the limitations that
he cascade structure imposes. If constraint control is slow, controlling
he corresponding gradient projection becomes unnecessarily slow.
oreover, even though constraint control may help with decoupling

he system, it may also cause the opposite problem, and the interaction
etween loops may impose limitations on the performance of the upper
ayer. Therefore, the use of a cascade framework for optimal operation
ay be beneficial, but the improvement that it may bring must be

ssessed for each particular case study.
Recently, the work of Ye et al. [29] has tackled the problem of

hanging active constraints by embedding the switching constraints
nto the CV design, generating a single nonlinear CV. Because the
esulting CV design problem was deemed intractable in most cases, a
eural network was used to approximate the behavior of this theoretical
V. It is interesting to note that the switching behavior still happens in
he designed CV, with the exact ideal CV being in general non-smooth.
his is expected because of the nature of the problem, and although
eural networks can approximate these variables, the interpretability
f the resulting CV is lost, and constraint control must be explicitly
erformed elsewhere. In the present work, we deal with the switching
xplicitly, controlling the constraints directly when it is optimal.

. Conclusion

We propose a simple framework for decentralized optimizing con-
rol with changing active constraints. The starting point is that at steady
tate, optimal economic operation in a given active constraint region 
11
s achieved by keeping the controlled variables 𝐶𝑉 =
[

𝑔;𝑁𝑇
∇𝑢𝐽 (𝑢∗, 𝑑)

t constant setpoints 𝐶𝑉 𝑠𝑝 = 0 (Theorem 1 [6]). Here 𝑔 denotes the
et of active steady-state constraints, and 𝑁𝑇

∇𝑢𝐽 (𝑢∗, 𝑑) is the reduced
teady-state cost gradient for the remaining unconstrained degrees of
reedom.

There are some degrees of freedom in the choice of the directions in
he unconstrained nullspace 𝑁 and to implement constraint switching
n a simple manner, these should be chosen in accordance with the
onstraint directions. The main contribution of this paper is to prove
n Theorem 2 for the case with 𝑛𝑢 ≥ 𝑛𝑔 , that we should control the
nconstrained variables 𝐶𝑉 0 = 𝑁0𝑇∇𝑢𝐽 (which are not affected by
he constraints), and in addition, depending on whether the constraint
𝑖 is active or not, either control the constraint 𝐶𝑉 𝑔

𝑖 = 𝑔𝑖 or the
ssociated unconstrained variable 𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 , where 𝑁0 and 𝑁𝑖

are calculated according to (7)–(9). This can be implemented with the
simple control structure in Fig. 2. Furthermore, Theorem 3 shows that
the switching can be performed with min/max selectors, which leads to
the simple control structure in Fig. 3. Here, no centralized supervisor is
needed to determine the active constraints, as the switching logic uses
local feedback controllers.

CRediT authorship contribution statement

Lucas Ferreira Bernardino: Writing – review & editing, Writ-
ing – original draft, Visualization, Validation, Software, Methodology,
Conceptualization. Sigurd Skogestad: Writing – review & editing,
Visualization, Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank Johannes Jäschke for fruitful discussions.

Funding

This work was funded by the Research Council of Norway through
the IKTPLUSS programme (project number 299585).

Appendix A. Proof of Theorem 3

Proof. Define a set 𝐴 ⊂ {1, 2,… , 𝑛𝑔} and an index 𝑖 such that 𝑖 ∉ 𝐴,
and another set 𝐴∗ such that 𝐴∗ = 𝐴 ∪ {𝑖}. We prove the theorem by
comparing the solution of the optimization problems with active sets
𝐴∗ and 𝐴, 𝑖.𝑒. what is the effect of controlling 𝑔𝑖 = 0 instead of the
corresponding unconstrained degree of freedom 𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 = 0

for arbitrary 𝐴 and 𝑖.
The optimality conditions for 𝐴∗ as the active set are given by:

{

∇𝑢 = 𝐽𝑢𝑢𝑢
𝐴∗

+ 𝐽𝑢,𝑚(𝑑) + (𝐺𝑔
𝐴∗ )𝑇 𝜆𝐴

∗
= 0

𝑔𝐴∗ (𝑢𝐴
∗
, 𝑑) = 𝐺𝑔

𝐴∗𝑢𝐴
∗
+ 𝑔𝑚𝐴∗ (𝑑) = 0

in which the constraint-related matrices are partitioned with relation to
the active set 𝐴 and the remaining index 𝑖 as 𝐺𝑔

𝐴∗ =
[

(𝐺𝑔
𝐴)

𝑇 (𝐺𝑔
𝑖 )

𝑇 ]𝑇

and 𝑔𝑚𝐴∗ (𝑑) =
[

𝑔𝑚𝐴(𝑑)
𝑇 𝑔𝑚𝑖 (𝑑)

𝑇 ]𝑇 .
Eliminating 𝑢𝐴∗ from the first equation gives:

𝐴∗ −1 −1 𝑔 𝑇 𝐴∗

𝑢 = −𝐽𝑢𝑢 𝐽𝑢,𝑚(𝑑) − 𝐽𝑢𝑢 (𝐺𝐴∗ ) 𝜆
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Substituting this equation into the second optimality condition gives
the following expression for 𝜆𝐴∗ :

𝐺𝑔
𝐴∗𝐽−1

𝑢𝑢 (𝐺
𝑔
𝐴∗ )𝑇 )𝜆𝐴

∗
= 𝑔𝑚𝐴∗ (𝑑) − 𝐺𝑔

𝐴∗𝐽−1
𝑢𝑢 𝐽𝑢,𝑚(𝑑)

The variables can be partitioned as follows:

⎡

⎢

⎢

⎣

𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝑖 )

𝑇

𝐺𝑔
𝑖 𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 𝐺𝑔
𝑖 𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝑖 )

𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜆(𝐴)

𝜆𝑖

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑔𝑚𝐴(𝑑) − 𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 𝐽𝑢,𝑚(𝑑)

𝑔𝑚𝑖 (𝑑) − 𝐺𝑔
𝑖 𝐽

−1
𝑢𝑢 𝐽𝑢,𝑚(𝑑)

⎤

⎥

⎥

⎦

The same procedure with 𝐴 as the active set leads to:
{

𝑢𝐴 = −𝐽−1
𝑢𝑢 𝐽𝑢,𝑚(𝑑) − 𝐽−1

𝑢𝑢 (𝐺
𝑔
𝐴)

𝑇 𝜆𝐴

(𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 )𝜆𝐴 = 𝑔𝑚𝐴(𝑑) − 𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 𝐽𝑢,𝑚(𝑑)

The term (𝐺𝑔
𝐴∗ )𝑇 𝜆𝐴

∗ = (𝐺𝑔
𝐴)

𝑇 𝜆(𝐴)+(𝐺𝑔
𝑖 )

𝑇 𝜆𝑖 can be expressed in terms
of the solution for 𝐴, as follows:

𝜆(𝐴) = (𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 )−1
(

𝑔𝑚𝐴(𝑑) − 𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 𝐽𝑢,𝑚(𝑑) − 𝐺𝑔

𝐴𝐽
−1
𝑢𝑢 (𝐺

𝑔
𝑖 )

𝑇 𝜆𝑖
)

= 𝜆𝐴 − (𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 )−1𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝑖 )

𝑇 𝜆𝑖

⟹ (𝐺𝑔
𝐴∗ )𝑇 𝜆𝐴

∗
= (𝐺𝑔

𝐴)
𝑇 𝜆𝐴 +

(

𝐼 − (𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 )−1𝐺𝑔
𝐴𝐽

−1
𝑢𝑢

)

(𝐺𝑔
𝑖 )

𝑇 𝜆𝑖

Therefore, 𝑢𝐴∗ can be expressed in terms of 𝑢𝐴 as follows:

𝑢𝐴
∗
= −𝐽−1

𝑢𝑢 𝐽𝑢,𝑚(𝑑) − 𝐽−1
𝑢𝑢 (𝐺

𝑔
𝐴∗ )𝑇 𝜆𝐴

∗

= 𝑢𝐴 − 𝐽−1
𝑢𝑢

(

𝐼 − (𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 )−1𝐺𝑔
𝐴𝐽

−1
𝑢𝑢

)

(𝐺𝑔
𝑖 )

𝑇 𝜆𝑖

The transformation 𝑃 = 𝐽−1
𝑢𝑢

(

𝐼 − (𝐺𝑔
𝐴𝐽

−1
𝑢𝑢 (𝐺

𝑔
𝐴)

𝑇 )−1𝐺𝑔
𝐴𝐽

−1
𝑢𝑢

)

is equiv-
alent to a scaled projection to the nullspace of 𝐺𝑔

𝐴, 𝑁() [17], according

to the identity 𝑃 = 𝑁()

(

𝑁𝑇
()𝐽𝑢𝑢𝑁()

)−1
𝑁𝑇

() = 𝐽−1
𝑢𝑢

(

𝐼 − (𝐺𝑔
𝐴𝐽

−1
𝑢𝑢

(𝐺𝑔
𝐴)

𝑇 )−1𝐺𝑔
𝐴𝐽

−1
𝑢𝑢

)

, and is therefore positive semidefinite. The effect of
inclusion of an arbitrary constraint 𝑔𝑖 is therefore given by:

𝑢𝐴
∗
− 𝑢𝐴 = −𝑃(𝐺

𝑔
𝑖 )

𝑇 𝜆𝑖 (A.1)

We can see that the 𝑖th component of the vector 𝑃(𝐺
𝑔
𝑖 )

𝑇 dictates
the steady-state behavior of the 𝑖th MV when the 𝑖th constraint becomes
active and the system is operating at the active set 𝐴. Following the
notation introduced in the statement of Theorem 3 and in Fig. 3, we
have 𝑢𝑔𝑖 = (𝑢𝐴∗ )𝑖 and 𝑢0𝑔𝑖 = (𝑢𝐴)𝑖, since these are the MV values such
that 𝑔𝑖 = 0 and 𝐶𝑉 0𝑔

𝑖 = 𝑁𝑇
𝑖 ∇𝑢𝐽 = 0, respectively. This means that, for

(𝑃(𝐺
𝑔
𝑖 )

𝑇 )𝑖 > 0, 𝑢𝑔𝑖 − 𝑢0𝑔𝑖 < 0 when 𝜆𝑖 > 0 and consequently 𝑢𝑔𝑖 should be
selected, and 𝑢𝑔𝑖 − 𝑢0𝑔𝑖 > 0 when 𝜆𝑖 < 0 and consequently 𝑢0𝑔𝑖 should be
selected, meaning that we must use 𝑢∗𝑖 = min (𝑢0𝑔𝑖 , 𝑢𝑔𝑖 ) for guaranteeing
optimality. Similar analysis can be performed for (𝑃(𝐺

𝑔
𝑖 )

𝑇 )𝑖 < 0,
leading to 𝑢∗𝑖 = max (𝑢0𝑔𝑖 , 𝑢𝑔𝑖 ). Since this analysis is performed for
arbitrary 𝑖 and  ∌ 𝑖, guaranteeing that (𝑃(𝐺

𝑔
𝑖 )

𝑇 )𝑖 = (𝐺𝑔
𝑃

)𝑖𝑖 has the
same sign for any possible  is sufficient for guaranteeing the theorem
statement, which completes the proof. □

Appendix B. Optimality of min selectors in cascade structure

In this section, we restate Theorem 3 for the cascade case illustrated
in Fig. 4, proving its optimality. In this control structure, the manip-
ulated variables as seen from the higher layer can be represented at
steady-state as:

𝑣 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔1
⋮
𝑔𝑛𝑔
𝑢𝑛𝑔+1
⋮
𝑢𝑛𝑢

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⟹ 𝛥𝑣 =

[

𝐺𝑔

0(𝑛𝑢−𝑛𝑔 )×𝑛𝑔 𝐼𝑛𝑢−𝑛𝑔

]

𝛥𝑢 = 𝑊𝛥𝑢

With this change of variables, the transformed optimization problem
ecomes:
in
𝑣

𝐽 (𝑣, 𝑑)
(B.1)
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s.t. 𝑣𝑖 ≤ 0, 𝑖 = 1,… , 𝑛𝑔
Note that we must require that 𝑊 , the Jacobian for the change of
ariables, is full rank, such that the optimality conditions for Eq. (B.1)
nd Eq. (1) are equivalent. This is a mild assumption related to the
teady-state controllability of the constraints in the lower layer with the
hosen pairing, and it results in a transformed Hessian 𝐽𝑣𝑣 = 𝑊 𝑇 𝐽𝑢𝑢𝑊
hat is also positive definite. Also, for the transformed problem, we have
he gain matrix 𝐺𝑔,𝑣 from the transformed inputs to the constraints:

𝑔,𝑣 =
[

𝐼𝑛𝑔 0𝑛𝑔×(𝑛𝑢−𝑛𝑔 )
]

This allows us to write the optimal CVs in terms of the projection
atrices 𝑁𝑖 and 𝑁0 for the transformed problem as:

0 =

[

0𝑛𝑔×(𝑛𝑢−𝑛𝑔 )
𝐼𝑛𝑢−𝑛𝑔

]

𝑖 = 𝑒𝑖, 𝑖 = 1,… , 𝑛𝑔

The procedure for obtaining the difference in the optimal solution
for neighboring regions presented in Appendix A is also valid for
the transformed problem, and we must therefore analyze the sign
of the diagonal of the matrix product 𝐺𝑔,𝑣𝑃. Recall that 𝑃 =

𝑁()

(

𝑁𝑇
()𝐽𝑣𝑣𝑁()

)−1
𝑁𝑇

(), where the matrix 𝑁𝑇
()𝐽𝑣𝑣𝑁() is positive

efinite, being here a principal submatrix of 𝐽𝑣𝑣 which selects the rows
nd columns with indexes not in . Therefore, 𝑃 becomes a positive
emidefinite 𝑛𝑢 × 𝑛𝑢 matrix, where the diagonal elements 𝑃𝑖𝑖

are zero
or 𝑖 ∈  and positive for 𝑖 ∉ .

Finally, we can see that (𝐺𝑔,𝑣𝑃)𝑖𝑖 > 0 for 𝑖 ∉ , since the first
𝑔 elements of the diagonal of 𝐺𝑔,𝑣𝑃 are the same as those of 𝑃. It
ollows that, according to Eq. (A.1) and the results here obtained, the
ptimal solution is given by 𝑣∗𝑖 = min (𝑣0𝑔𝑖 , 0) for 𝑖 = 1,… , 𝑛𝑔 , which
ompletes the proof.
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