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Abstract

This work presents a simple and efficient way of estimating the steady-state cost gradient Ju based on available uncertain measure-
ments y. The main motivation is to control Ju to zero in order to minimize the economic cost J. For this purpose, it is shown that
the optimal cost gradient estimate for unconstrained operation is simply Ĵu = H(ym − y∗) where H is a constant matrix, ym is the
vector of measurements and y∗ is their nominally unconstrained optimal value. The derivation of the optimal H-matrix is based on
existing methods for self-optimizing control and therefore the result is exact for a convex quadratic economic cost J with linear
constraints and measurements. The optimality holds locally in other cases. For the constrained case, the unconstrained gradient Ju

should be multiplied by the nullspace of the active constraints and the resulting “reduced gradient” controlled to zero.
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1. Introduction

When the aim is to implement a control strategy to achieve
optimal steady-state operation, the common industrial approach
is to add a real-time optimization (RTO) layer [1] which ad-
justs the setpoints to the control layer. RTO uses a two-step5

procedure where first the available measurements are combined
with a plant model to derive an estimate of the states (including
disturbances), and next, in the optimization step, the nonlin-
ear steady-state plant model is used to find the optimal values
of the degrees of freedom (decision variables, here denoted u)10

that minimize the cost J. Based on the first-order optimality
conditions of an unconstrained problem [2], the cost minimiza-
tion is often based on first obtaining the cost gradient Ju

1 and
then finding the optimal u which makes Ju = 0. Because of
this, there is an intrinsic link between real-time optimization15

and gradient estimation methods [3].
The success of RTO relies on estimating the disturbances,

and traditionally a steady-state model is used in the estima-
tion step, which means that the measurement values to be used
should also be at steady state. This imposes practical limitations20

regarding steady-state detection, especially for large-scale pro-
cesses [4]. To avoid the steady-state wait time for the estima-
tion, Krishnamoorthy et al. [5] proposed to use a Kalman filter
for dynamic state and disturbance estimation, and the model is
then linearized around the expected steady-state operating point25

to give an estimate for the disturbances and the gradient Ju.
There, this gradient is driven to zero by feedback control, which
can be done using a PI-controller or pure I-controller. This is
based on the “trick”, also known as “dynamic inversion” (e.g.,
[6]), of using feedback control to solve steady-state equations,30

that is, to find the value of u that makes a function of u (in this

1In this paper, the cost gradient ∂J/∂u is denoted Ju, but it is denoted ∇u J
in some other works.

case Ju) equal to zero. All these approaches are referred to as
“conventional RTO” in this paper.

Conventional RTO uses a steady-state or dynamic model for
gradient estimation. An alternative, model-free approach is to35

directly estimate the cost gradient Ju from plant data by input
excitation, and drive the estimated gradient to zero using feed-
back control, typically an I-controller. This approach is known
as extremum-seeking control (ESC) [7, 8]. For gradient esti-
mation in ESC, the classical approach is to use a sinusoidal40

excitation of the inputs combined with a trick of multiplying
two sinusoidal signals to obtain a gradient estimate in a simple
way [8]. However, other model-free gradient estimation meth-
ods may also be used. This includes finite difference methods
[9, 10], and more generally least-squares regression on other45

kinds of perturbation data [11], as well as machine learning re-
gression methods [12].

In theory, extremum seeking control (which we define to in-
clude all model-free gradient estimation methods) is optimal
in the sense that it avoids the problem of model-plant mismatch50

[13]. It can also deal with constraints with specific formulations
[14]. Unfortunately, extremum-seeking control, based on input
perturbations to estimate the cost gradient, is of little practical
significance for most chemical processes. The reason is that the
convergence time is typically at least 100 times larger than the55

time constant of the process, so as to account for gradient esti-
mation dynamics and convergence to the optimum. And since
the time constant for a typical full process (for which we want
to minimize the economic cost J) is typically several hours, the
convergence time may be in the order of days or even months,60

which is of course unsuitable for real applications with frequent
disturbances. There are also model-free methods that estimate
the cost gradient through local dynamic models identified from
data [15], but they must be continuously excited to ensure con-
vergence, similarly to ESC.65

Of course, there do exist cases where purely model-free ap-
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proaches, like ESC, may be used alone, and this is when the
dynamics (of the controlled plant) are fast and a fast cost mea-
surement J is available. In process control, this may apply to
local optimization of part of a process, but not for the full pro-70

cess where the economic cost J has to be computed based on
knowing the value of all input and output streams and utilities.
In other cases, a combination of these model-free gradient esti-
mation methods and model-based RTO is favored, as it is done
in modifier adaptation schemes [16].75

Both conventional RTO and ESC tend to be slow, meaning
that operation may be non-optimal for extended times follow-
ing disturbances. This problem can circumvented by feedback-
optimizing control where the aim is to move the optimization
into the control layer [17], so that the RTO or ESC layer may be80

eliminated or at least less frequent updates are needed [10]. Im-
portantly, these approaches are complementary and not compet-
ing [10]. The most important decision for feedback-optimizing
control is the proper selection of the controlled variables (CVs),
which is the idea of self-optimizing control [18].85

Another issue with these model-based and model-free opti-
mization schemes is that the gradient estimation and the use of
the gradient for control are divided into separate tasks. How-
ever, this separation between estimation and control is not gen-
erally optimal. In other words, since it is not clearly defined90

upfront what the gradient Ju will be used for, we cannot ex-
pect that the estimated gradient will be optimal for minimiz-
ing the cost J. This is also the theme of a recent work [19]
which attempts to bridge estimation and control into the same
extremum-seeking control scheme. On the other hand, self-95

optimizing control aims at finding CVs that minimize the cost,
that is, the selection of CVs (which may be viewed as the es-
timation step) is directly linked to their use of minimizing the
cost J. In addition, self-optimizing methods are much easier to
implement.100

Note that the ideal self-optimizing CV is the cost gradient.
The present work, which may be viewed as a third approach
for estimating the gradient, is based on self-optimizing control
theory. The resulting gradient estimate is on the simple form:

Ĵu = H(ym − y∗)

where H is a constant matrix derived from self-optimizing the-
ory, ym is the vector of measurements and y∗ is their nominally
optimal values. An important advantage of the proposed ap-
proach is simplicity, as the resulting gradient estimate is a static
linear combination of the available measurements.105

Depending on the assumptions, there are three different ways
of obtaining H from self-optimizing theory. First, there is the
“nullspace method” [20] for the case with no measurement er-
ror and a sufficient number of measurements. Second, for the
case with even more measurements and with measurement er-110

ror, there is the “extended nullspace method” [21]. Third, there
is the “exact local method” [21], which applies also to cases
with few measurements, and which we will show (Theorem 1)
gives the optimal gradient estimate. When used for obtaining
self-optimizing CVs, the matrix H is not unique, as the expres-115

sions include a matrix Mn which is free to choose. However, as

we show in this paper, the estimation of the gradient requires
the particular choice Mn = J−

1/2
uu , where Juu is the Hessian of

the cost J. Actually, it has been known for some time that
that the “nullspace method” is linked to the cost gradient for120

the simple case with a sufficient number of noise-free measure-
ments [10]; and an equivalent result was obtained by Gros et al.
[22] with a neighboring-extremal scheme for gradient estima-
tion assuming output feedback. The main contribution of the
present work is to extend this link to the more general case with125

measurement/implementation error where the H-matrix may be
obtained from the “extended nullspace method” and the “exact
local method”. The latter case is presented in Theorem 1 where
we use the notation H = HJ to avoid confusion with other H-
matrices.130

This paper focuses on estimating the unconstrained gradient,
but it can also be applied to constrained optimization, for ex-
ample, by multiplying it with the nullspace of the constraints
to obtain the reduced gradient (Theorem 2). This is illustrated
for switching of PID controllers in Examples 1 and 2, where135

active constraints change during operation. The use of the un-
constrained gradient estimate for real-time optimization with
changing active constraints is also discussed in more detail in
three recent publications [23, 24, 25] in the Journal of Process
Control (2024). In fact, it was the work with these three papers140

that motivated the need for a simpler gradient estimator (sim-
pler than a Kalman filter or perturbation-based estimator) which
led to results in the present paper. In [25], the estimate of the
reduced gradient is based on the “nullspace method” of self-
optimizing control, whereas we in the present paper focus on145

presenting the more general “exact local method” (Theorem 1).
Note that although the gradient estimation presented in this

paper is based on the plant model, this model is used only of-
fline to obtain the H-matrix, so when implemented in com-
bination with a control layer (e.g., using PID or MPC) that150

drives the estimated gradient to zero, the proposed approach
is measurement-based and is believed to provide a fast, simple
and efficient alternative to conventional RTO.

The paper is organized as follows. Section 2 presents the
mathematical problem considered in this work. Section 3 de-155

scribes how this problem is related to self-optimizing control.
In Section 4 we present the main result of this work which is
a simple mesurement-based estimate of unconstrained cost gra-
dient (Theorem 1). This is complemented by the analysis of the
constrained problem in Section 5 (Theorem 2). An application160

of these results to real-time optimization using decentralized
PID control is shown in Section 6 (Example 1), showing its
use with changing active constraints. Real-time optimization of
the more realistic Williams-Otto benchmark process is studied
in Section 7 (Example 2). Some remarks about the presented165

results are made in Section 8, and the paper is concluded in
Section 9.

2. Problem statement

The steady-state optimization problem considered in this
work is of the form:170
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min
u

J(u, d)

s.t. g(u, d) ≤ 0
(1)

Here, J: Rnu × Rnd −→ R denotes the objective (cost) func-
tion, g: Rnu × Rnd −→ Rng the inequality constraints, u ∈ Rnu

the decision variables (inputs; manipulated variables for steady-
state control), and d ∈ Rnd the disturbance variables (includ-
ing model parameters) which are assumed varying and gen-175

erally unknown in this paper. The available online informa-
tion about the system is assumed to be the measured variables
y ∈ Rny (which usually include u and may include measured dis-
turbances). Any internal states have been formally eliminated
from the mathematical formulation in (1).180

The optimal input, which is the solution to the problem in
Equation (1), is in the paper denoted uopt(d). It satisfies the
following first-order KKT conditions [2]:

Ju(uopt, d) + gu(uopt, d)T
λopt = 0 (2a)

g(uopt, d) ≤ 0 (2b)
λopt ≥ 0 (2c)

g(uopt, d)T
λopt = 0 (2d)

Here, Ju(u, d) ∈ Rnu denotes the gradient of J with respect to u,
gu(u, d) ∈ Rng×nu denotes the gradient of g with respect to u, and185

λopt ∈ Rng denotes the Lagrange multipliers at the optimum.
Note that it is the unconstrained cost gradient Ju that enters
into the first-order optimality conditions.

The cost J(u, d) and the constraints g(u, d) in Equation (1)
can be approximated locally by the following Taylor expansions190

centered at the nominal point (u∗, d∗):

J(u, d) = J∗ +
[
J∗u

T J∗d
T
] [(u − u∗)

(d − d∗)

]
+

1
2

[
(u − u∗)T (d − d∗)T

] [Juu Jud

JT
ud Jdd

]
︸      ︷︷      ︸

H

[
(u − u∗)
(d − d∗)

]

(3)

g(u, d) = g∗ +
[
g∗u g∗d

] [(u − u∗)
(d − d∗)

]
(4)

where (u − u∗) and (d − d∗) denote, respectively, the inputs and
disturbances as their deviation from the nominal point.

The cost expression in Equation (3) is exact for quadratic
problems where the Hessian H (including Juu) is independent195

of the operating point. In general, there will be an approxima-
tion error if the actual operation moves away from the nominal
point. Strictly speaking, the elements in the Hessian matrix H
should have a superscript ∗ (e.g. J∗uu), but this is omitted to
simplify notation, and also because it assumed that they remain200

approximately constant.
The objective of this paper is to find from the available mea-

surements y (which are subject to noise ny) an optimal estimate
of the gradient Ju (which will vary as a function of u and d) for
use in real-time optimization. The expected magnitudes of the205

disturbances and measurement errors are quantified by diagonal
weight matrices Wd and Wny . That is, we assume that:

(d − d∗) = Wdd′

ny = Wny ny′ (5)

where the combined generating set of possible d′ and ny′ is unit
two-norm bounded, i.e.: ∣∣∣∣∣∣

∣∣∣∣∣∣
[

d′

ny′

]∣∣∣∣∣∣
∣∣∣∣∣∣
2
≤ 1 (6)

Note that we are considering steady-state operation, so ny rep-210

resents the static measurement error, that is, the measurement
bias. Often, ny is called measurement noise, but this may be
a bit misleading because the average (steady-state) value is not
zero, as is usually assumed in stochastic optimal control. For
example, ny = 0.15 means that if the actual value is y = 2.7,215

then the measured value is ym = y + ny = 2.85. Finally, note
that the objective of this paper is not to find the “optimal” gra-
dient Ju in itself, but the optimal estimate Ĵu to be used in the
first-order optimality condition (2a) to solve the problem in (1).

3. Optimal operation for the unconstrained case: Self-220

optimizing control

In the following consider the case with no constraints g and
assume that the nominal operating point is optimal, that is,

u∗ = uopt(d∗)

It then follows from the first-order KKT condition (2a) that:

J∗u = 0

This assumption is made to simplify the expressions for the
loss, and the controlled variables derived here do not depend
on this assumption (see chapter 6 in Alstad [26]).

Following Halvorsen et al. [27], we can derive from Equa-225

tion (3) the economic loss encountered by applying an input u,
compared to using the optimal input uopt(d):

L = J(u, d) − Jopt(d) =
1
2

(u − uopt)T Juu(u − uopt) =
1
2
||z||22 (7)

where Jopt(d) = J(uopt(d), d) is the optimal cost for a given d
and the loss variable z is defined as:

z ≜ J
1/2
uu(u − uopt) (8)

The idea of self-optimizing control is to achieve optimal op-230

eration using feedback control. In this paper, the controlled
variables (CVs) c are assumed to be linear combinations of the
measured variables, c = Hy, and we use a linear steady-state
measurement model:

y = Gyu +Gy
dd (9)

Note that the actual measured value is ym = y+ny. The setpoints
cs are assumed to be constant; see Figure 1. To be nominally
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optimal (with no disturbances or measurement noise), we must
choose cs = c∗ = Hy∗ where y∗ = yopt(d∗). The controller K
has integral action, which means that at steady state the control
error

(cm − c∗) = H(ym − y∗)

is controlled to a constant value of zero. The controlled vari-235

ables c should use up all the available degrees of freedom, and
therefore nc = nu. In this paper, H is allowed to be a full matrix,
that is, there are no structural limitations on H.

+
+

Gy
d

GyK +
+

H

+−

d

u y

ny

ym

cm

cs

Figure 1: Block diagram of closed-loop system. When H is selected as pro-
posed in this paper, the input to the controller K is the negative cost gradient,
that is, cs − Hym = −Ĵu see eq. (21). This achieves optimal steady-state opera-
tion if in addition any active constraints are controlled.

For the expected disturbances and noise in Equation (6), Al-
stad et al. [21] derived the following analytical expression for240

the optimal H, known as the “exact local method”, which min-
imizes both the worst-case and average loss L in Equation (7):

H = M−1
n J

1/2
uu

[
GyT
(
F̃F̃T
)−1

Gy
]−1

GyT
(
F̃F̃T
)−1

(10)

where
F̃ = [FWd Wny ]

F =
dyopt

dd
= Gy

d −GyJ−1
uu Jud (11)

The solution for H is not unique as the matrix Mn = J
1/2
uu(HGy)−1

can be freely chosen. The non-uniqueness comes because if245

c − c∗ = 0 then so is D(c − c∗) = 0 for any non-singular D. In
the solution derived in Alstad et al. [21], the choice is Mn = I.
The simplest expression for the optimal H results if we select
Mn such that H = GyT

(
F̃F̃T
)−1

[28].
However, in the next section, we want to find an estimate for250

Ju (also when Ju , 0), and in this case directions matter. For
this reason, we will choose:

Mn = J−
1/2

uu (12)

and we show below that the optimal estimate for the gradient Ju

is then equal to HJ(y − y∗), where according to the exact local
method:255

HJ = Juu

[
GyT
(
F̃F̃T
)−1

Gy
]−1

GyT
(
F̃F̃T
)−1

(13)

With different assumptions, other expressions for H may be
derived. For the case with a sufficient number of independent

measurements (ny ≥ nu + nd) it is possible to achieve zero dis-
turbance loss for the case with no measurement noise by choos-
ing H such that HF = 0 (nullspace method). For the case260

ny = nu + nd, we have the following explicit expression for
the nullspace method:

H = M−1
n J̃(G̃y)−1 (14)

where G̃y = [Gy Gy
d] and J̃ = J

1/2
uu[I J−1

uu Jud]. The general-
ization to use all measurements (ny ≥ nu + nd) in a way that
also minimizes the effect of measurement noise is known as the265

extended nullspace method [21] for which we have:

H = M−1
n J̃(W−1

ny G̃y)†W−1
ny (15)

All these expressions for H can be used for gradient estimation,
provided that we choose Mn = J−

1/2
uu , or equivalently HGy = Juu.

4. Optimal gradient estimate for the unconstrained case

We will now use the results from self-optimizing control to270

derive the optimal gradient estimate, where by “optimal” we
mean that controlling the gradient estimate to zero achieves op-
timal steady-state operation, that is, it minimizes the loss L in
Equation (7) (worst-case or average value) for the expected dis-
turbances and noise as in Equation (6).275

To do this, we want to express the loss variable z from (8) in
terms of the gradient Ju. First, note that (Figure 1):

(c − copt(d)) = HGy(u − uopt)

Second, a first-order Taylor expansion of the gradient around
the optimal operating point gives:

Ju(u, d) = Ju(uopt, d)︸      ︷︷      ︸
Jopt

u (d)

+Juu(u − uopt(d))

Inserting the above two expressions into the definition of the280

loss variable z in (8) gives:

z ≜ J
1/2
uu(u− uopt) = J

1/2
uu(HGy)−1︸        ︷︷        ︸

Mn

(c− copt(d)) = J−
1/2

uu (Ju − Jopt
u (d))

(16)
For the unconstrained case, we have Jopt

u (d) = 0, and this is
assumed in the following. We then get z = J

− 1/2
uu Ju and to min-

imize the norm of z, and thereby the loss in (7), we conclude
that we ideally want Ju = 0 at steady state. However, as we will285

see, it is not possible to achieve Ju = 0 in practice because of
measurement error.

For the choice Mn = J−
1/2

uu (which we will use in the follow-
ing), we derive from (16) the following expression for the gra-
dient:

Ju = c − copt(d) = Hy − Hyopt(d)

which may be rewritten as:

Ju = H(ym − y∗) − H (ym − y)︸   ︷︷   ︸
ny

−H(yopt(d) − y∗) (17)
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where we choose y∗ = yopt(d∗) because the nominal point is
assumed optimal. Note from (11) that (yopt(d)− y∗) = F(d−d∗)290

for the unconstrained case. We then have:

Ju = H(ym − y∗) − Hny − HF(d − d∗) (18)

Note that with a fixed matrix H, the last two terms are unaf-
fected by the input u, that is, unaffected by control.

With no measurement error (ny = 0), the second term in
Equation (18) is zero. If we use the nullspace method to choose295

H, then HF = 0, and also the third term is zero. The opti-
mal control policy, according to self-optimizing control, is then
to adjust u such that the first term is zero, for example, to use
feedback control to keep the measurement combinations keep
cm = Hym at a constant setpoint c∗ = Hy∗. This gives Ju = 0300

and the loss is zero.
More generally, with measurement noise and disturbances,

we can use the exact local method to choose the H that mini-
mizes the combined effect of the second and third terms in (18).
The optimal control policy, similarly to the case without noise,305

is then to adjust u such that the first term in Equation (18) is
zero. This minimizes the expected norm of z as in (16), and
consequently the economic loss L in (7). More importantly,
and this is the main result of the paper, the optimal gradient
estimate for unconstrained operation, which should be kept at310

zero at steady state, is simply the first term in (18), that is:

Ĵu = H(ym − y∗) (19)

where ym is the measurement vector, y∗ = yopt(d∗) is the nom-
inal optimal value of the measurement y, and H is given by
HJ in Equation (13) (exact local method). This follows from
self-optimizing control theory, because choosing H = HJ min-315

imizes the effect of the second and third terms in Equation (18)
(it minimizes both the expected and worst-case loss when d and
ny vary as given in (6)).

Interestingly, since the second and third terms in (18)
are generally nonzero (due to measurement noise and distur-320

bances), it follows that optimal operation (in terms of minimiz-
ing the economic loss) does not give Ju = 0 at steady state.
This may seem surprising, but it is expected because one can-
not achieve truly optimal steady-state operation (with Ju = 0
and zero loss) with unknown disturbances and static measure-325

ment bias (nonzero ny).
In summary, the steady-state loss L in Equation (7) is mini-

mized when we keep Ĵu = HJ(ym−y∗) = 0, and we have proven
the following theorem:

Theorem 1. Optimal unconstrained gradient estimate (“ex-330

act local method”). Consider the static optimization prob-
lem in (1) with no active constraints, where the quadratic ap-
proximation (3) holds. The available measurements are ym =

Gyu+Gy
dd + ny (linear approximation) where the unknown dis-

turbances d and static measurement errors ny are bounded as335

given in (5) and (6). Consider further that the point (u∗, d∗)
is an optimal unconstrained point, such that Ju(u∗, d∗) = 0,
u∗ = uopt(d∗) and y∗ = yopt(d∗). The cost gradient Ju is then
given in (18) and the estimate Ĵu = HJ(ym − y∗) with HJ in (13)

is an optimal estimate in the sense that adjusting the inputs u to340

make Ĵu = 0 (e.g., by feedback control, see Figure 1) minimizes
both the average and the worst-case value of the economic loss
(7).

If there is no measurement error (ny = 0, that is,Wny = 0)
and we have a sufficient number of measurement (ny = nu + nd)345

then instead of using H = HJ from the exact local method,
we may use H from the nullspace method (equation (14) with
Mn = J−

1/2
uu ). This gives H in the nullspace of F (HF = 0) and

achieves zero loss for disturbances (with no measurement er-
ror), that is, the last term in (18) is zero. If we have addi-350

tional measurements (ny > nu + nd) then we may use H from
the “extended nullpace method” (equation (15) with Mn = J−

1/2
uu )

which uses the extra measurements to minimize also the sec-
ond term in (18). However, in general we recommend using
H = HJ from the exact local method. It gives the optimal bal-355

ance between disturbances and measurement error (as it mini-
mizes both the average and worst-case sum of last two terms in
(18)) and importantly applies also to the case with fewer mea-
surements (ny < nu + nd).

5. Optimal gradient estimate for the constrained case360

Now, we focus on the use of the new estimate of the uncon-
strained cost gradient (Theorem 1) to real-time optimization for
the general case with changing active constraints. This is dis-
cussed in detail in three recent papers (2024) in the Journal of
Process Control [23, 24, 25], but we include a summary of the365

results here so that the reader can appreciate the usefulness of
our main result (Theorem 1). The application of the gradient es-
timate to constrained online optimization is further illustrated in
Examples 1 and 2.

We first state the following result for estimating the reduced370

cost gradient:

Theorem 2. Optimal gradient estimate in constrained case.
The optimal unconstrained gradient estimate Ĵu = HJ(ym − y∗)
(Theorem 1) is optimal also in the constrained case when used
in the first-order KKT conditions (2). This also means that the375

optimal estimate of the reduced gradient (which should be zero
at the optimal point) is NAT Ĵu = NAT HJ(ym − y∗) where NA is
a basis for the nullspace of gu,A, that is, gu,ANA = 0, and A
represents the set of active constraints.

The theorem may seem straightforward and require no fur-380

ther proof since Ju in (2a) is the unconstrained gradient, and the
gradient estimate Ĵu in (19) is the one that minimizes the loss
in the unconstrained case for a given measurement set y. Fur-
thermore, the idea of reduced gradient is well-established, be-
ing used in optimization methods [29, 30] and to solve control385

problems [31, 32]. Nevertheless, in Appendix A, we provide
a detailed proof that controlling the reduced gradient estimate
NAT Ĵu minimizes the loss for the constrained case.

It is important to note that Equation (19) is valid when the
nominal point (u∗, d∗) is an optimal unconstrained reference390
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point. If the reference point has a non-zero gradient, the op-
timal gradient estimate takes the form (the reader is referred to
Appendix B for a derivation of this expression):

Ĵu = H(ym − y∗) + J∗u (20)

where J∗u = Ju(u∗, d∗) (obtained from the nonlinear model).
Note here that both (19) and (20) can be written in the form:395

Ĵu = Hym − cs (21)

where cs is a constant (see Figure 1).
The simple gradient estimate in (19) and (20) avoids im-

plementing a model-based estimator, for example, a dynamic
Kalman filter, and thus greatly simplifies the practical use of
feedback-based real-time optimization, which is based on the400

first-order KKT condition (2a).
The gradient estimate can be used in a wide array of

feedback-optimizing control applications. In particular, it may
be used in the following approaches for optimal steady-state
operation with changes in active constraints:405

1. Primal-dual approaches [33] based directly on the optimal-
ity condition (2a) with a (slow) update of the Lagrange
multiplier λ. This may be done using a slow controller
Kdual which controls the measured constraints by manip-
ulating the dual variables (λ) and with max-selectors for410

switching active constraints, see Figure 2 [34, 23].

Process

H

Lu = Ĵu + λ
T gu

Kprimal

max

Kdual

d y

ĴuLu

SP = 0

u

g

SP = 0

λ

0

cs

−

Figure 2: Primal-dual optimizing control structure using the proposed gradient
estimate. The controller Kdual is always diagonal (decentralized), whereas the
controller Kprimal may be multivariable or diagonal.

2. Region-based control [31, 3] where we in each region i con-
trol the active constraints and the associated reduced gra-
dient NT

A,i Ĵu to zero, see Figure 3.

2A. Region-based control may be applied to multivari-415

able control, for example, model predictive control,
by changing the cost function for designing the con-
troller for each region [25]. There, the gradient esti-
mate is also used for constraint switching.

Process

H

Kgselector logic

NT
A,1
· · ·
NT
A,i
· · ·

Ku,1

· · ·

Ku,i

d
y

g

SP = 0

Ĵu

SP = 0

SP = 0

u0

ug

u

cs

−

Figure 3: Region-based optimizing control structure using the proposed gradi-
ent estimate. In this scheme, each projection matrix NA,i is linked to a differ-
ent set of active constraints Ai, and the resulting gradient projection NT

A,i Ĵu is
controlled by a different controller Ku,i (which in general is multivariable). If
nu ≥ ng, a fixed projection matrix can be used for allAi, and simple max/min-
selectors can be used (see Figure 4).

2B. Decentralized region-based control with constraint420

switching using selectors [35, 24] (Figure 4). This
approach requires at least as many inputs (degrees of
freedom) as constraints, that is, nu ≥ ng. An example
of its application is given next.

In summary, the cost gradient estimate presented in Equa-425

tion (20) (based on Theorem 1) can be used in a wide array of
control applications focused on optimal operation, eliminating
the need for a dynamic state estimator and thus greatly simpli-
fying implementation.

6. Example 1: Decentralized region-based control430

Here, we consider a system with more inputs than constraints
(nu ≥ ng) and design a region-based decentralized control struc-
ture with simple min/max-selectors (Figure 4) that minimizes
the loss in all active constraint regions [24]. In order to use sim-
ple switching, the nullspace associated with the unconstrained435

gradients (Theorem 2) needs to be selected in accordance with
the constraint directions. This is done using the following steps
[24]:

• Define N0 as an orthonormal basis for the nullspace of gu,
such that guN0 = 0;440

• Find W =
[

gu

N0T

]−1

, and define the vectors Ni, i = 1, · · · , ng

as the first ng normalized columns of W.

Then, controlling the active constraints gi, for i ∈ A and the
remaining unconstrained degrees of freedom NT

i Ju, for i < A,
and N0T Ju will lead to optimal operation [24]. The final sim-445

ple decentralized control system with min or max selectors can
be implemented as shown in Figure 4 where all controllers (K)
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are single-input single-output (SISO), for example, PID con-
trollers. The controllers linked to selectors must have anti-
windup action, to cancel the integral action when the controllers450

are inactive.

Kg
1

NT
1 K0g

1

min/max

H
y

cs

−
Ĵu

g1 ug
1

u0g
1

u1

· · ·

Kg
ng

NT
ng K0g

ng

min/max

gng ug
ng

u0g
ng

ung

N0T

· · ·

K0
1

K0
nu−ng

ung+1

unu

SP = 0

SP = 0

SP = 0

SP = 0

SP = 0

SP = 0

Figure 4: Decentralized region-based optimizing control structure using the
proposed gradient estimate combined with SISO controllers and selectors.

As a case study, we consider a linear dynamic system with a
quadratic cost function given by:

min
u

1
2

xT
[
1 0
0 10

]
x +

1
2

uT

 1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

 u
s.t.

g1 = x1 − 0.8x2 ≤ 0
g2 = u1 + u2 + u3 ≤ 0

(22)

ẋ =
[− 1
τ1

0
0 − 1

τ2

]
x +
[ 0.2
τ1

0 0
0 0.2

τ2
0

]
u +
[ 1
τ1

0
0 1

τ2

]
d (23)

with τ1 = 1 and τ2 = 2. The set of optimal active constraint re-
gions can be visualized as a function of the two disturbances as455

shown in Figure 5. Here, the upper left green region is uncon-
strained and the lower middle grey region is with all constraints
being active (and one unconstrained degree of freedom).
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4

3

2

1

0

1

2

3

4

d 2

{}

{g1}

{g2}
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Figure 5: Optimality regions for Example 1

For estimating the cost gradient, the following measurements
are available:460

y =



g1
g2
x1
x2
u2
u3


=



1 −0.8
0 0
1 0
0 1
0 0
0 0


x +



0 0 0
1 1 1
0 0 0
0 0 0
0 1 0
0 0 1


u (24)

Note that both constraints and both states are measured. In
addition, we choose to include two of the three inputs. The
expected static disturbance and noise magnitudes are Wd =

diag([4, 4]) and Wny = diag([0, 0, 1, 2, 1.5, 5]). The two first
zeros in Wny imply that the constraints have no static measure-465

ment error, that is, the constraints can be perfectly controlled.
In general, static measurement error for a constraint may be
counteracted by using back-off for its setpoint, but this issue is
not explored in the case study.

To find the optimal cost gradient estimate using the formula-470

tion proposed in this work, we first use (23) with ẋ = 0 to derive
the steady-state relationship:

x =
[
0.2 0 0
0 0.2 0

]
u +
[
1 0
0 1

]
d (25)

This is used to eliminate the states x from the problem (22),
resulting in the following steady-state optimization problem:

min
u

J =
1
2

uT

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

︸                     ︷︷                     ︸
Juu

u + uT

0.2 0
0 2
0 0

︸    ︷︷    ︸
Jud

d

s.t. g =
[
0.2 −0.16 0
1 1 1

]
︸               ︷︷               ︸

gu

u +
[
1 −0.8
0 0

]
d ≤ 0

(26)

From the matrix gu, we can find the projections Ni and N0 to475

be multiplied with the unconstrained gradient Ju. N0 is the
nullspace of gu given by:

N0 =
[
−0.36214 −0.45268 0.81482

]T
(27)

7



The vectors Ni are the first ng normalized columns of

W =
[

gu

N0T

]−1

, calculated as:

W =

 2.8689 0.29508 −0.36214
−2.6639 0.36885 −0.45267
−0.20491 0.33607 0.81482

 (28)

N1 =
[
0.73179 −0.67952 −0.052271

]T
(29)

N2 =
[
0.50902 0.63627 0.57971

]T
(30)

To estimate the gradient from the measurements, we also480

need their corresponding steady-state model. Plugging the
steady-state expression for the states into (24) leads to:

y =



0.2 −0.16 0
1 1 1

0.2 0 0
0 0.2 0
0 1 0
0 0 1

︸               ︷︷               ︸
Gy

u +



1 −0.8
0 0
1 0
0 1
0 0
0 0

︸      ︷︷      ︸
Gy

d

d (31)

The optimal sensitivity is then:

F =
dyopt

dd
= Gy

d −GyJ−1
uu Jud =



0.9599 −0.5830
−0.4207 −2.8867
−0.0065 0.6479
−0.0324 −1.7605
−0.1618 −0.8026
0.9547 −0.0647


(32)

With this information and the matrices from Equation (26),
we can calculate the measurement combinations HJ from the485

“exact local method” in Equation (13), which gives:

HJ =

 0.2741 0.9842 0.1560 −1.0715 −1.1842 0.0050
−0.1897 −0.0735 1.7813 0.8869 −0.0265 0.0570
−0.0180 −0.1964 −0.0091 0.0953 0.4964 −0.0003


(33)

and the estimated gradient is Ĵu = HJ(y − y∗) = HJ − cs. Here,
we note that the approximations in (3) and (4) are exact for
this example, and therefore HJ does not depend on the nominal
point to be considered. However, we still need a reference point490

to calculate the constant cs = HJy∗, and for that, we choose an
optimal point with d∗ = [0, 0]T . This gives cs = [0, 0, 0]T .

Dynamic simulation results for the closed-loop system with
the proposed control structure in Figure 4 with H = HJ are
shown in Figure 6. The PI controllers tuning are given in Ta-495

ble 1. The simulated disturbances cover all four active con-
straint regions but we did not include measurement noise. The
responses are fairly smooth (see the three input profiles) and
there are as expected three changes in active constraints. The
gradient estimate with H = HJ is optimal in terms of minimiz-500

ing the average loss with the expected (assumed) disturbances
and noise. However, this means that the gradient estimates (and

resulting CVs) are not designed to reject the disturbances com-
pletely, as they simultaneously try to reduce the effect of mea-
surement noise. This is the reason why the resulting steady-505

state inputs ui (blue lines) do not match exactly the correspond-
ing optimal values (magenta dashed lines). At steady state, the
economic loss L resulting from this input mismatch is, however,
very small.

Controller Parameter Value

Kg
1

Kc 50
KI 50

Kg
2 KI 100

K0g
1 KI -1.191

K0g
2 KI 1.528

K0 KI 2.761

Table 1: Proportional and integral gains of controllers for Example 1. All con-
trollers have anti-windup with tracking time τT = 0.01.
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Figure 6: Dynamic simulation over all active constraint regions using the pro-
posed control structure with H = HJ (exact local method) (Example 1).

In Figure 7, we present the steady-state loss obtained in510

closed loop both without and with static measurement noise
(bias). The loss is shown as a heatmap for each disturbance
combination. The much larger loss (note the difference in scale)
with measurement noise in Figure 7b is for the worst-case mea-
surement error satisfying ny = Wny ny′ with ||ny′||2 ≤ 1. The515

optimal active constraint regions (same as Figure 5) are shown
by black lines whereas the actual operating regions resulting
from using the control structure are shown by blue lines. Note
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that the constraint switching is moved away from the optimal,
which is not surprising (see discussion).520
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(a) Loss without measurement error (ny = 0). Note from the scale that the loss is very
small.
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(b) Worst-case loss with measurement error. The new narrow operating region (which
starts from point d = [−2.8, −4]T ) has both constraints g1 and g2 active.

Figure 7: Steady-state loss for closed-loop operation with H = HJ from the
exact local method (Example 1).

Figure 7a shows that the measurement combination H = HJ

(which is based on the exact local method of self-optimizing
control) does not perfectly reject disturbances, even without
measurement error. To achieve zero loss for disturbances, H
must be in the nullspace of F. For instance, if we apply the ex-525

tended nullspace method (15) to this problem (with Mn = J−
1/2

uu ),
we get:

H =

 0.195 1 0.156 −1.1 −1.2 0.005
−0.0624 −0.1 1.95 0.9 0 0.0624

0 −0.2 0 0.1 0.5 0

 (34)

With the resulting gradient estimate (and set of CVs), the
steady-state closed loop loss for the extended nullspace method
(without noise and with the worst-case noise) are presented in530

Figure 8. We see that in the case without noise (Figure 8a),
the economic loss is exactly zero in all constraint regions. This
is expected since the original problem is linear with a quadratic
cost. However, we see that the exact local method (HJ) is better
at locally rejecting noise (note that the worst-case loss in Fig-535

ure 7b is smaller around the nominal point), but the extended
nullspace method (Figure 8b) handles large disturbances better,
as expected.
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(a) Zero loss without measurement error (ny = 0).
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(b) Worst-case loss with measurement error.

Figure 8: Steady-state loss for closed-loop operation with H from the extended
nullspace method (Example 1)

7. Example 2: Williams-Otto reactor

This case study is a well-known benchmark for process con-540

trol introduced by Williams and Otto [36]. The reactor is illus-
trated in Figure 9.

TC 

FB

TR

FA

FC 

xA, xB, xC

xP, xE, xG

Figure 9: Schematic representation of Williams-Otto reactor with control inputs
in red (Example 2).

The following chemical reactions take place in the system:

A + B
k1−→ C k1 = k0,1e−E1/Tr

C + B
k2−→ P + E k2 = k0,2e−E2/Tr

P +C
k3−→ G k3 = k0,3e−E3/Tr
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The component mass balances for the six components give
the following set of ODEs:545

dxA

dt
=

FA

W
− (FA + FB)xA

W
− k1xAxB (35a)

dxB

dt
=

FB

W
− (FA + FB)xB

W
− k1xAxB − k2xC xB (35b)

dxC

dt
= − (FA + FB)xC

W
+ 2k1xAxB − 2k2xC xB − k3xPxC (35c)

dxP

dt
= − (FA + FB)xP

W
+ k2xC xB − 0.5k3xPxC (35d)

dxE

dt
= − (FA + FB)xE

W
+ 2k2xC xB (35e)

dxG

dt
= − (FA + FB)xG

W
+ 1.5k3xPxC (35f)

The steady-state optimization problem to be considered for
this system is:

min
u

J = pAFA + pBFB − (FA + FB)
[
pP(1 + ∆pP)xP + pE xE

]
s.t. g1 = xE − 0.30 ≤ 0

g2 = xA − 0.12 ≤ 0
(36)

The inputs considered for this example are u =
[
FB Tr

]T
.

The active constraint regions of the problem are shown in Fig-
ure 10 as a function of the disturbances d =

[
FA ∆pP

]T
. The550

vector of available measurements is:

y =
[
g1 g2 xB xC xP xG ∆pP

]T
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Figure 10: Active constraint regions as a function of disturbances for example
2.

Similarly to the first example, we calculate the optimal mea-
surement combinations to be used for gradient estimation. For
that, we approximate Equation (36) as a quadratic programming
(QP) problem around a nominal point, here considered as the555

optimal point for d∗ =
[
2 0

]T
. To scale the disturbances and

measurement error, Wd was chosen as Wd = diag
([

1.5 0.3
])

,
and Wny was chosen as the maximum deviation between the

approximate and the true model predictions, which resulted in
Wny = diag

([
0, 0, 0.076, 0.0089, 0.0056, 0.038, 0

])
.560

The optimal measurement combinations for the exact local
method and the extended nullspace method are, respectively:

HJ =



−1388 136.5
−508 −5.5

6.57153 −1.71026
143.648 −37.3849

786.6 −204.715
−51.2488 13.3377
−116 0.6875



T

(37)

H =



−1363.26 129.003
−511.492 −4.98053
8.00163 −2.08245
174.909 −45.5206
957.78 −249.265
−62.4016 16.2402
−115.267 0.428895



T

(38)

The steady-state loss obtained in closed loop with the control
structure proposed in Figure 4 and using the exact local method
(H = HJ) is shown in Figure 11 as a function of the distur-565

bances. Similarly, the results for using the extended nullspace
method are shown in Figure 12. The economic performance of
both methods is reasonable (for comparison, the optimal cost at
the nominal point is J∗ = −88.24). For this example, choos-
ing the exact local method results in a smaller maximum loss,570

which comes at the expense of having a higher loss than the
extended nullspace method for certain disturbance realizations.
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Figure 11: Steady-state loss for closed-loop operation with H = HJ from the
exact local method for example 2.

8. Discussion

8.1. Local gradient estimation (block-diagonal H)

The matrix HJ in (14) for the optimal gradient estimate is a575

full matrix. This means that control systems in Figures 2 and 4
may not be decentralized, even if the controllers K themselves
are decentralized. To obtain a decentralized control system, the
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Figure 12: Steady-state loss for closed-loop operation with H from the extended
nullspace method for example 2.

relationship from y (measurements) to u (inputs) needs to be
decoupled. For example, if we have a complex process with580

many units, then decentralized control implies that only mea-
surements from unit k should be used by the control system to
compute the inputs for unit k. To accomplish this, the matrix H
needs to be block-diagonal. There exists no analytical solution
in this case so the optimal block-diagonal H must be obtained585

numerically. Depending on the case study, there may be a small
or large performance loss compared to using a full H. This
problem has been studied in detail by [28] using mixed-integer
quadratic programming (MIQP). However, their objective was
to find self-optimizing controlled variables c = Hym + cs, so590

their results need to be modified to estimate instead the gradi-
ent, Ĵu = Hym + cs.

Finally, note that for the primal-dual optimizing control
structure in Figure 2, the Lagrange multiplier (λ) may intro-
duce a coupling from the measured constraint (g) to the inputs595

(u) even for cases where the gradient controller (Kprimal) is di-
agonal and the gradient estimator (matrix H) is block-diagonal.

8.2. Addition of RTO layer and model mismatch

The optimality of the static gradient estimate is based on a
quadratic approximation (3) of the cost, and a linear approx-600

imation of the constraints (4) and of the measurement model
(9). In general, these assumptions are not satisfied, and in this
case, a static real-time optimization layer may be used to pro-
vide updates of the constants presented in this work, namely the
controller setpoints cs, the measurement combinations H, and605

the projection matrices Ni and N0 (or NA when generalizing to
centralized approaches).

Using the RTO layer to update the setpoints cs is the sim-
plest and most important, being sufficient to drive the system
to optimality in a new operating condition. That is, cs is opti-610

mally updated, while the matrix H and the projection matrices
constant can be kept constant. The use of constant matrices im-
plies the self-optimizing properties (related to optimality on a
shorter time scale) may degrade somewhat in a new operating
point. On the other hand, changing these matrices will affect615

the control problem and, consequently, the controllers’ tuning

that should be used. Thus, updating only cs is recommended in
most practical applications.

As an alternative to a model-based RTO layer, an upper
data-based layer based on perturbing the process, for example,620

extremum-seeking control, may be used to update cs. However,
data-based methods are not realistic for most process control
applications because the convergence of these methods is too
slow to track changing disturbances. Regardless, these meth-
ods are complementary to the method discussed in this work,625

as they are applied on an upper layer.
We remark that these RTO updates address the mismatch be-

tween the model used for the design of the gradient estimate
and the plant behavior, but the improvement obtained is often
small. In fact, for the unconstrained part of the optimization630

problem, model uncertainty is usually not critical as long as we
are reasonably close to the optimum where the cost function is
flat. Regardless of this, even though model mismatch is an im-
portant challenge for RTO problems to ensure exact plant opti-
mality, it is not the main challenge that hinders its implemen-635

tation. The main challenges for practical RTO implementation
are slow convergence and numerical problems in performing
disturbance estimation and optimization for given disturbances
and high costs of implementation and maintenance.

8.3. Required model information640

The methods for self-optimizing control used to obtain the
matrix H for the gradient estimate use model information only
offline. Furthermore, they only need model information in the
form of the sensitivity matrix F and the gain matrix Gy, both
of which can be estimated from plant data or steady-state sim-645

ulations with relative ease. For estimating the gradient Ju, we
additionally require knowledge of the Hessian matrix Juu so that
the directions of the unconstrained gradient are retrieved. The
Hessian is harder to estimate from measurement information,
as it requires more data. In addition, the constraint gradient650

gu is needed to find the nullspace matrix for the reduced gra-
dient NT

AJu, but gu is easy to estimate from data similarly to
Gy. However, if a steady-state model is available for control
structure design, all of these matrices can easily be obtained.

8.4. Discussion of example 1655

In this work, we illustrate the method with a case study where
the formulation is exact, that is, Equations (3), (4) and (9) hold.
It was shown that the exact local method (13) is not designed to
perfectly reject disturbances, that is ∆copt = HF∆d , 0, which
results in non-zero loss as shown in Figure 7a. Therefore, if a660

new estimate of the disturbances is available, an update of cs

will lead to improved performance around the new operating
point, even if the optimal H is unchanged. This is not the case
for the extended nullspace method, where we see in Figure 8a
that the obtained loss is zero for all disturbance values, which665

means that the optimal setpoint value is constant, i.e. ∆copt =

HF∆d = 0.
We see from Figure 7 that measurement bias has a compara-

tively bigger effect on the economic loss than the disturbances
in this numerical example, which is worsened the further the670
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disturbances are from their design value. We also see that the
measurement bias may trigger control of constraints that are
not optimally active, which could be a problem if there were no
constraint controllers. This is the reason why the pattern of the
operating regions is so different from the optimal in Figure 7b.675

Overall, we see that for the nominal case (Figure 7a), optimal
behavior is well captured, with the closed-loop operating re-
gions closely resembling the optimal active constraint regions.
For the worst-case loss (Figure 7b), the resulting economic loss
is still small when compared to the values attained dynamically680

in Figure 6.

8.5. Discussion of example 2

This example illustrates the application of the proposed
method to nonlinear systems. If a nonlinear model is available,
it must be first locally approximated as a QP problem with lin-685

ear measurements, see Equations (3), (4) and (9). With this, the
method is applied in the same way as described for example 1,
and the results illustrate the obtained steady-state performance.
It is no longer possible to attain perfect disturbance rejection
as there is model mismatch, but the performance can still be690

deemed acceptable, with small losses in the neighborhood of
the design point. The use of a gradient estimate based on the
exact local method led to a lower maximum loss in the domain
of interest when compared to the extended nullspace method,
which favors the effect of the modeled disturbances over the695

possible measurement errors.
The values chosen for Wd and Wny reflect the expected behav-

ior of the real system when compared to that of the approximate
model used for design. This was possible because the nonlin-
ear model was available for evaluation. In practice, these are700

tuning parameters that weight the importance of disturbance re-
jection versus the presence of measurement error, and they can
therefore be chosen based on process knowledge.

9. Conclusion

The optimal local gradient estimate for use in steady-state705

real-time optimization is simply Ĵu = HJ(ym − y∗) + J∗u with HJ

as in Equation (13) (Theorem 1). This gradient estimate is op-
timal also in the constrained case when used with the KKT op-
timality conditions (2) (Theorem 2). The gradient estimate Ĵu

may be used in a multitude of control applications (Figures 1710

to 4) where it is desired to include the optimality conditions (2)
directly into the feedback control layer.
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Appendix A Proof: Optimal gradient estimate for the con-
strained case

We begin by describing the loss function for the constrained
optimization problem, resulting in a simple form. Then, we

show that the ideal variables for a given set of active constraints720

are the projection of the unconstrained gradient estimate onto
the nullspace of the gradient of the active constraints, in the
sense that they minimize the expected loss.

A.1 Loss for constrained optimization problem

From Equation (3), we have:725

L = J(u, d) − Jopt(d) = J∗u
T (u − uopt)

+
1
2

(u − u∗)T Juu(u − u∗) + (d − d∗)T JT
ud(u − uopt)

− 1
2

(uopt − u∗)T Juu(uopt − u∗)

L =
(
J∗u + Jud(d − d∗)

)T (u − uopt) +
1
2

(u − u∗)T Juu(u − u∗)

− 1
2

(uopt − u∗)T Juu(uopt − u∗)

(39)

The optimality conditions state that:

Lu(uopt, d, λopt) = Ju(uopt, d) + g∗u
Tλopt = 0

=⇒ J∗u + Juu(uopt − u∗) + Jud(d − d∗) + g∗u
Tλopt = 0

=⇒ J∗u + Jud(d − d∗) = −(Juu(uopt − u∗) + g∗u
Tλopt)

(40)

We can therefore rewrite Equation (39) as:

L = −
(
Juu(uopt − u∗) + g∗u

Tλopt
)T

(u − uopt)

+
1
2

(u − u∗)T Juu(u − u∗) − 1
2

(uopt − u∗)T Juu(uopt − u∗)

= − λoptT g∗u(u − uopt) +
1
2

(u − u∗)T Juu(u − u∗)

− 1
2

(uopt − u∗)T Juu(uopt − u∗) − (uopt − u∗)T Juu(u − uopt)

= − λoptT g∗u(u − uopt) +
1
2

(u − u∗)T Juu(u − u∗)

− 1
2

(uopt − u∗)T Juu(uopt − u∗) − (uopt − u∗)T Juu(u − u∗)

+ (uopt − u∗)T Juu(uopt − u∗)

= − λoptT g∗u(u − uopt) +
1
2

(u − u∗)T Juu(u − u∗)

− (uopt − u∗)T Juu(u − u∗) +
1
2

(uopt − u∗)T Juu(uopt − u∗)

From this, we conclude that:

L =
1
2

(u − uopt)T Juu(u − uopt) − λoptT g∗u(u − uopt) (41)

This expression is very similar to Equation (7), the difference
being the linear term λoptT g∗u(u − uopt), which is related to con-730

straint control. Because the optimal Lagrange multipliers for
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the inactive constraints are zero, we have that λoptT g∗u(u−uopt) =
λ

opt
A

T
gu,A(u − uopt), with gu,A defined as the gradient of the ac-

tive constraints with respect to the inputs. If the optimal active
constraint setA is perfectly controlled, we have:735

{
gA(uopt, d) = g∗A + gu,A(uopt − u∗) + gd,A(d − d∗) = 0
gA(u, d) = g∗A + gu,A(u − u∗) + gd,A(d − d∗) = 0

=⇒ gu,A(u − uopt) = 0
(42)

This means that only the quadratic term on Equation (41) is
relevant when the correct constraints are controlled, with the
additional restriction on the allowed directions of (u − uopt),
which are in the nullspace of gu,A. Define NA as a basis for the
nullspace of gu,A. This means that the loss from Equation (41)740

is further simplified when the correct constraints are controlled
to give:

L =
1
2

(u − uopt)T Juu(u − uopt) =
1
2

wT NAT JuuNAw (43)

Here, w is an appropriately sized vector that represents the
unconstrained degrees of freedom.

A.2 Connection with the unconstrained problem745

We now show that the ideal controlled variables for this prob-
lem are directly linked to the ones from the unconstrained prob-
lem. First, note that the matrix Jww = NAT JuuNA is invertible
by definition, and therefore we can write:

L =
1
2

wT JwwJ−1
wwJwww (44)

From this, we can see that the loss variable zw for this prob-750

lem can be represented by:

zw = J−
1/2

ww NAT JuuNAw = J−
1/2

ww NAT Juu(u − uopt) (45)

Similarly to Equation (8), we can write zw in terms of the
unconstrained CVs c as:

zw = J−
1/2

ww NAT Juu(HGy)−1(c − copt)
= J−

1/2
ww NAT J

1/2
uuMn(c − copt)

We can similarly write zw in terms of the unconstrained gra-
dient:755

Ju = Ju(uopt, d) + Juu(u − uopt)
=⇒ zw = J−

1/2
ww NAT (Ju − Ju(uopt, d))

Note that, because of the optimality conditions, we have that:

Ju(uopt, d) + g∗u
Tλopt = 0 =⇒ NAT Ju(uopt, d) = 0

and with the choice of Mn = J−
1/2

uu , we compare both expressions
for zw and we see that:

NAT Ju = NAT (c − copt)

= NAT
(
H(ym − y∗) − Hny − H(yopt(d) − y∗)

) (46)

This formulation is similar to that of Equation (18), with the
exception that now uopt(d) and yopt(d) represent a constrained
optimal point, and therefore are a different function of the dis-760

turbances, (yopt(d) − y∗) = FA(d − d∗). We can determine FA
from the constrained optimization problem as follows:[

Juu gT
u,A

gu,A 0

] [
∆uopt

∆λ
opt
A

]
=

[ −Jud

−gd,A

]
∆d (47)

First we eliminate ∆uopt by premultiplying both sides by[
gu,AJ−1

uu −I
]
, leading to the solution ∆λopt

A = WA∆d, where

WA =
(
gu,AJ−1

uu gT
u,A
)−1 (

gd,A − gu,AJ−1
uu Jud

)
The solution for the new optimal inputs follows as ∆uopt =765

−J−1
uu

(
(gu,A)T WA + Jud

)
∆d, and the optimal sensitivity matrix

FA can be obtained as:

FA = F −GyJ−1
uu gT

u,AWA (48)

with F being the unconstrained optimal sensitivity matrix. The
second term of FA is related to constraint control, and we can
see that, with Mn = J−

1/2
uu :770

NAT HFA = NAT HF − NAT

= I︷   ︸︸   ︷
HGyJ−1

uu gT
u,AWA

= NAT HF −
= 0︷    ︸︸    ︷

NAT gT
u,AWA = NAT HF

This means that the last two terms in Equation (46) are mini-
mized by the unconstrained self-optimizing control solution for
H = HJ (13), and therefore the reduced gradient estimate

NAT Ĵu = NAT HJ(ym − y∗) (49)

is the unconstrained CV that should be kept at zero to minimize
the expected norm of zw.775

Appendix B Effect of nominal setpoint

Here, we evaluate the effect of having a non-optimal refer-
ence point. From Equation (16) and choosing Mn = J−

1/2
uu , we

have:

c(u, d) − c(uopt(d), d) = Ju(u, d) − Ju(uopt(d), d)

The same expression is valid for the nominal point, according780

to:

c(u∗, d∗) − c(uopt(d∗), d∗) = Ju(u∗, d∗) − Ju(uopt(d∗), d∗)
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Here, we assume that u∗ , uopt(d∗), that is, the nominal point
is not optimal. For the unconstrained problem, Ju(uopt(d), d) =
Ju(uopt(d∗), d∗ = 0, and we subtract the two equations to give:

Ju(u, d) = Ju(u∗, d∗) + c(u, d) − c(u∗, d∗)

−
(
c(uopt(d), d) − c(uopt(d∗), d∗)

)
or785

Ju(u, d) = Ju(u∗, d∗)+H(ym−y∗)−H (ym − y)︸   ︷︷   ︸
ny

−HF(d−d∗) (50)

Choosing the exact local method solution for H from (13),
we minimize the last two terms from the previous equation, and
the optimal gradient estimate to be controlled is given by:

Ĵu(u, d) = HJ(ym − y∗) + Ju(u∗, d∗)

as stated in Equation (20). As previously shown, this gradient
estimate is also valid for the constrained region, with the corre-790

sponding reduced gradient estimate being the optimal variable
to be controlled.
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