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A B S T R A C T

This work presents a simple and efficient way of estimating the steady-state cost gradient 𝐽𝑢 based on available
uncertain measurements 𝑦. The main motivation is to control 𝐽𝑢 to zero in order to minimize the economic
cost 𝐽 . For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is
simply 𝐽𝑢 = 𝐻(𝑦𝑚 − 𝑦∗) where 𝐻 is a constant matrix, 𝑦𝑚 is the vector of measurements and 𝑦∗ is their
nominally unconstrained optimal value. The derivation of the optimal 𝐻-matrix is based on existing methods
for self-optimizing control and therefore the result is exact for a convex quadratic economic cost 𝐽 with
linear constraints and measurements. The optimality holds locally in other cases. For the constrained case,
the unconstrained gradient estimate 𝐽𝑢 should be multiplied by the nullspace of the active constraints and the
resulting ‘‘reduced gradient’’ controlled to zero.
1. Introduction

When the aim is to implement a control strategy to achieve optimal
steady-state operation, the common industrial approach is to add a
real-time optimization (RTO) layer (Engell, 2007) which adjusts the
setpoints to the control layer. RTO uses a two-step procedure where
first the available measurements are combined with a plant model to
derive an estimate of the states (including disturbances), and next,
in the optimization step, the nonlinear steady-state plant model is
used to find the optimal values of the degrees of freedom (decision
variables, here denoted 𝑢) that minimize the cost 𝐽 . Based on the first-
order optimality conditions of an unconstrained problem (Nocedal and
Wright, 2006), the cost minimization is often based on first obtaining
the cost gradient 𝐽𝑢1 and then finding the optimal 𝑢 which makes
𝐽𝑢 = 0. Because of this, there is an intrinsic link between real-time
optimization and gradient estimation methods (Krishnamoorthy and
Skogestad, 2022).

The success of RTO relies on estimating the disturbances, and
traditionally a steady-state model is used in the estimation step, which
means that the measurement values to be used should also be at
steady state. This imposes practical limitations regarding steady-state
detection, especially for large-scale processes (Câmara et al., 2016).
To avoid the steady-state wait time for the estimation, Krishnamoor-
thy et al. (2018) proposed to use a Kalman filter for dynamic state
and disturbance estimation, and the model is then linearized around
the expected steady-state operating point to give an estimate for the
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1 In this paper, the cost gradient 𝜕𝐽∕𝜕𝑢 is denoted 𝐽 , but it is denoted ∇ 𝐽 in some other works.

disturbances and the gradient 𝐽𝑢. There, this gradient is driven to
zero by feedback control, which can be done using a PI-controller or
pure I-controller. This is based on the ‘‘trick’’, also known as ‘‘dynamic
inversion’’ (e.g., Lee et al. (2016)), of using feedback control to solve
steady-state equations, that is, to find the value of 𝑢 that makes a
function of 𝑢 (in this case 𝐽𝑢) equal to zero. All these approaches are
referred to as ‘‘conventional RTO’’ in this paper.

Conventional RTO uses a steady-state or dynamic model for gra-
dient estimation. An alternative, model-free approach is to directly
estimate the cost gradient 𝐽𝑢 from plant data by input excitation, and
drive the estimated gradient to zero using feedback control, typically
an I-controller. This approach is known as extremum-seeking control
(ESC) (Tan et al., 2010; Scheinker, 2024). For gradient estimation in
ESC, the classical approach is to use a sinusoidal excitation of the inputs
combined with a trick of multiplying two sinusoidal signals to obtain
a gradient estimate in a simple way (Scheinker, 2024). However, other
model-free gradient estimation methods may also be used. This includes
finite difference methods (François et al., 2005; Jäschke and Skogestad,
2011), and more generally least-squares regression on other kinds of
perturbation data (Hunnekens et al., 2014), as well as machine learning
regression methods (Matias and Jäschke, 2019).

In theory, extremum seeking control (which we define to include all
model-free gradient estimation methods) is optimal in the sense that it
avoids the problem of model-plant mismatch (Tan et al., 2006). It can
also deal with constraints with specific formulations (Atta et al., 2019).
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Unfortunately, extremum-seeking control, based on input perturbations
to estimate the cost gradient, is of little practical significance for most
chemical processes. The reason is that the convergence time is typically
at least 100 times larger than the time constant of the process, so
as to account for gradient estimation dynamics and convergence to
the optimum. And since the time constant for a typical full process
(for which we want to minimize the economic cost 𝐽 ) is typically
several hours, the convergence time may be in the order of days
or even months, which is of course unsuitable for real applications
with frequent disturbances. There are also model-free methods that
estimate the cost gradient through local dynamic models identified
from data (Golden and Ydstie, 1989), but they must be continuously
excited to ensure convergence, similarly to ESC.

Of course, there do exist cases where purely model-free approaches,
like ESC, may be used alone, and this is when the dynamics (of the
controlled plant) are fast and a fast cost measurement 𝐽 is available.
In process control, this may apply to local optimization of part of a
process, but not for the full process where the economic cost 𝐽 has
to be computed based on knowing the value of all input and output
streams and utilities. In other cases, a combination of these model-free
gradient estimation methods and model-based RTO is favored, as it is
done in modifier adaptation schemes (Marchetti et al., 2016).

Both conventional RTO and ESC tend to be slow, meaning that op-
eration may be non-optimal for extended times following disturbances.
This problem can circumvented by feedback-optimizing control where
the aim is to move the optimization into the control layer (Morari
et al., 1980), so that the RTO or ESC layer may be eliminated or at
least less frequent updates are needed (Jäschke and Skogestad, 2011).
Importantly, these approaches are complementary and not compet-
ing (Jäschke and Skogestad, 2011). The most important decision for
feedback-optimizing control is the proper selection of the controlled
variables (CVs), which is the idea of self-optimizing control (Skogestad,
2000).

Another issue with these model-based and model-free optimization
schemes is that the gradient estimation and the use of the gradient
for control are divided into separate tasks. However, this separation
between estimation and control is not generally optimal. In other
words, since it is not clearly defined upfront what the gradient 𝐽𝑢

ill be used for, we cannot expect that the estimated gradient will
e optimal for minimizing the cost 𝐽 . This is also the theme of a
ecent work (Kashani et al., 2024) which attempts to bridge estimation
nd control into the same extremum-seeking control scheme. On the
ther hand, self-optimizing control aims at finding CVs that minimize
he cost, that is, the selection of CVs (which may be viewed as the
stimation step) is directly linked to their use of minimizing the cost
. In addition, self-optimizing methods are much easier to implement.

Note that the ideal self-optimizing CV is the cost gradient. The
resent work, which may be viewed as a third approach for estimating
he gradient, is based on self-optimizing control theory. The resulting
radient estimate is on the simple form:

𝑢̂ = 𝐻(𝑦𝑚 − 𝑦∗)

where 𝐻 is a constant matrix derived from self-optimizing theory, 𝑦𝑚
is the vector of measurements and 𝑦∗ is their nominally optimal values.
An important advantage of the proposed approach is simplicity, as
the resulting gradient estimate is a static linear combination of the
available measurements.

Depending on the assumptions, there are three different ways of
obtaining 𝐻 from self-optimizing theory. First, there is the ‘‘nullspace
method’’ (Alstad and Skogestad, 2007) for the case with no measure-
ment error and a sufficient number of measurements. Second, for the
case with even more measurements and with measurement error, there
is the ‘‘extended nullspace method’’ (Alstad et al., 2009). Third, there
is the ‘‘exact local method’’ (Alstad et al., 2009), which applies also to
2

cases with few measurements, and which we will show (Theorem 1)
gives the optimal gradient estimate. When used for obtaining self-
optimizing CVs, the matrix 𝐻 is not unique, as the expressions include
a matrix 𝑀𝑛 which is free to choose. However, as we show in this
paper, the estimation of the gradient requires the particular choice
𝑀𝑛 = 𝐽−1∕2

𝑢𝑢 , where 𝐽𝑢𝑢 is the Hessian of the cost 𝐽 . Actually, it has
been known for some time that the ‘‘nullspace method’’ is linked to
the cost gradient for the simple case with a sufficient number of noise-
free measurements (Jäschke and Skogestad, 2011); and an equivalent
result was obtained by Gros et al. (2009) with a neighboring-extremal
scheme for gradient estimation assuming output feedback. The main
contribution of the present work is to extend this link to the more
general case with measurement/implementation error where the 𝐻-
matrix may be obtained from the ‘‘extended nullspace method’’ and the
‘‘exact local method’’. The latter case is presented in Theorem 1 where
we use the notation 𝐻 = 𝐻𝐽 to avoid confusion with other 𝐻-matrices.

This paper focuses on estimating the unconstrained gradient, but
it can also be applied to constrained optimization, for example, by
multiplying it with the nullspace of the constraints to obtain the
reduced gradient (Theorem 2). This is illustrated for switching of PID
controllers in Examples 1 and 2, where active constraints change during
operation. The use of the unconstrained gradient estimate for real-
time optimization with changing active constraints is also discussed in
more detail in three recent publications (Dirza and Skogestad, 2024;
Bernardino and Skogestad, 2024a,b) in the Journal of Process Control
(2024). In fact, it was the work with these three papers that motivated
the need for a simpler gradient estimator (simpler than a Kalman filter
or perturbation-based estimator) which led to results in the present pa-
per. In Bernardino and Skogestad (2024b), the estimate of the reduced
gradient is based on the ‘‘nullspace method’’ of self-optimizing control,
whereas we in the present paper focus on presenting the more general
‘‘exact local method’’ (Theorem 1).

Note that although the gradient estimation presented in this paper is
based on the plant model, this model is used only offline to obtain the
𝐻-matrix, so when implemented in combination with a control layer
(e.g., using PID or MPC) that drives the estimated gradient to zero, the
proposed approach is measurement-based and is believed to provide a
fast, simple and efficient alternative to conventional RTO.

The paper is organized as follows. Section 2 presents the math-
ematical problem considered in this work. Section 3 describes how
this problem is related to self-optimizing control. In Section 4 we
present the main result of this work which is a simple measurement-
based estimate of unconstrained cost gradient (Theorem 1). This is
complemented by the analysis of the constrained problem in Section 5
(Theorem 2). An application of these results to real-time optimization
using decentralized PID control is shown in Section 6 (Example 1),
showing its use with changing active constraints. Real-time optimiza-
tion of the more realistic Williams–Otto benchmark process is studied
in Section 7 (Example 2). Some remarks about the presented results are
made in Section 8, and the paper is concluded in Section 9.

2. Problem statement

The steady-state optimization problem considered in this work is of
the form:
min
𝑢

𝐽 (𝑢, 𝑑)

s.t. 𝑔(𝑢, 𝑑) ≤ 0
(1)

Here, 𝐽 : R𝑛𝑢 × R𝑛𝑑 ←←→ R denotes the objective (cost) function, 𝑔:
R𝑛𝑢×R𝑛𝑑 ←←→ R𝑛𝑔 the inequality constraints, 𝑢 ∈ R𝑛𝑢 the decision variables
(inputs; manipulated variables for steady-state control), and 𝑑 ∈ R𝑛𝑑

the disturbance variables (including model parameters) which are as-
sumed varying and generally unknown in this paper. The available
online information about the system is assumed to be the measured
variables 𝑦 ∈ R𝑛𝑦 (which usually include 𝑢 and may include measured
disturbances). Any internal states have been formally eliminated from

the mathematical formulation in (1).
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The optimal input, which is the solution to the problem in Eq. (1),
is in the paper denoted 𝑢𝑜𝑝𝑡(𝑑). It satisfies the following first-order KKT
conditions (Nocedal and Wright, 2006):

𝐽𝑢(𝑢𝑜𝑝𝑡, 𝑑) + 𝑔𝑢(𝑢𝑜𝑝𝑡, 𝑑)
𝑇 𝜆𝑜𝑝𝑡 = 0 (2a)

(𝑢𝑜𝑝𝑡, 𝑑) ≤ 0 (2b)
𝑜𝑝𝑡 ≥ 0 (2c)

(𝑢𝑜𝑝𝑡, 𝑑)𝑇 𝜆𝑜𝑝𝑡 = 0 (2d)

ere, 𝐽𝑢(𝑢, 𝑑) ∈ R𝑛𝑢 denotes the gradient of 𝐽 with respect to 𝑢,
𝑔𝑢(𝑢, 𝑑) ∈ R𝑛𝑔×𝑛𝑢 denotes the gradient of 𝑔 with respect to 𝑢, and
𝜆𝑜𝑝𝑡 ∈ R𝑛𝑔 denotes the Lagrange multipliers at the optimum. Note that
it is the unconstrained cost gradient 𝐽𝑢 that enters into the first-order
optimality conditions.

The cost 𝐽 (𝑢, 𝑑) and the constraints 𝑔(𝑢, 𝑑) in Eq. (1) can be ap-
proximated locally by the following Taylor expansions centered at the
nominal point (𝑢∗, 𝑑∗):

𝐽 (𝑢, 𝑑) = 𝐽 ∗ +
[

𝐽 ∗
𝑢
𝑇 𝐽 ∗

𝑑
𝑇 ]

[

(𝑢 − 𝑢∗)

(𝑑 − 𝑑∗)

]

+ 1
2
[

(𝑢 − 𝑢∗)𝑇 (𝑑 − 𝑑∗)𝑇
]

[

𝐽𝑢𝑢 𝐽𝑢𝑑
𝐽𝑇
𝑢𝑑 𝐽𝑑𝑑

]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟


[

(𝑢 − 𝑢∗)

(𝑑 − 𝑑∗)

]

(3)

𝑔(𝑢, 𝑑) = 𝑔∗ +
[

𝑔∗𝑢 𝑔∗𝑑
]

[

(𝑢 − 𝑢∗)

(𝑑 − 𝑑∗)

]

(4)

here (𝑢 − 𝑢∗) and (𝑑 − 𝑑∗) denote, respectively, the inputs and distur-
ances as their deviation from the nominal point.

The cost expression in Eq. (3) is exact for quadratic problems where
he Hessian  (including 𝐽𝑢𝑢) is independent of the operating point. In
eneral, there will be an approximation error if the actual operation
oves away from the nominal point. Strictly speaking, the elements in

he Hessian matrix  should have a superscript ∗ (e.g. 𝐽 ∗
𝑢𝑢), but this

s omitted to simplify notation, and also because it assumed that they
emain approximately constant.

The objective of this paper is to find from the available measure-
ents 𝑦 (which are subject to noise 𝑛𝑦) an optimal estimate of the

radient 𝐽𝑢 (which will vary as a function of 𝑢 and 𝑑) for use in real-
ime optimization. The expected magnitudes of the disturbances and
easurement errors are quantified by diagonal weight matrices 𝑊𝑑 and
𝑛𝑦 . That is, we assume that:

𝑑 − 𝑑∗) = 𝑊𝑑𝑑
′

𝑛𝑦 = 𝑊𝑛𝑦𝑛
𝑦′ (5)

here the combined generating set of possible 𝑑′ and 𝑛𝑦′ is unit
two-norm bounded, i.e.:
‖

‖

‖

‖

‖

[

𝑑′

𝑛𝑦′

]

‖

‖

‖

‖

‖2
≤ 1 (6)

ote that we are considering steady-state operation, so 𝑛𝑦 represents
he static measurement error, that is, the measurement bias. Often, 𝑛𝑦
s called measurement noise, but this may be a bit misleading because
he average (steady-state) value is not zero, as is usually assumed in
tochastic optimal control. For example, 𝑛𝑦 = 0.15 means that if the
ctual value is 𝑦 = 2.7, then the measured value is 𝑦𝑚 = 𝑦 + 𝑛𝑦 = 2.85.
inally, note that the objective of this paper is not to find the ‘‘optimal’’
radient 𝐽𝑢 in itself, but the optimal estimate 𝐽𝑢 to be used in the
irst-order optimality condition (2a) to solve the problem in (1).

. Optimal operation for the unconstrained case: Self-optimizing
ontrol

In the following consider the case with no constraints 𝑔 and assume
hat the nominal operating point is optimal, that is,
∗ = 𝑢𝑜𝑝𝑡(𝑑∗)
3

b

Fig. 1. Block diagram of closed-loop system. When 𝐻 is selected as proposed in this
paper, the input to the controller 𝐾 is the negative cost gradient, that is, 𝑐𝑠−𝐻𝑦𝑚 = −𝐽𝑢
ee Eq. (21). This achieves optimal steady-state operation if in addition any active
onstraints are controlled.

t then follows from the first-order KKT condition (2a) that:
∗
𝑢 = 0

his assumption is made to simplify the expressions for the loss, and
he controlled variables derived here do not depend on this assumption
see chapter 6 in Alstad (2005)).

Following Halvorsen et al. (2003), we can derive from Eq. (3) the
conomic loss encountered by applying an input 𝑢, compared to using
he optimal input 𝑢𝑜𝑝𝑡(𝑑):

= 𝐽 (𝑢, 𝑑) − 𝐽 𝑜𝑝𝑡(𝑑) = 1
2
(𝑢 − 𝑢𝑜𝑝𝑡)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡) = 1

2
‖𝑧‖22 (7)

where 𝐽 𝑜𝑝𝑡(𝑑) = 𝐽 (𝑢𝑜𝑝𝑡(𝑑), 𝑑) is the optimal cost for a given 𝑑 and the
oss variable 𝑧 is defined as:

≜ 𝐽 1∕2
𝑢𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) (8)

The idea of self-optimizing control is to achieve optimal operation
using feedback control. In this paper, the controlled variables (CVs)
𝑐 are assumed to be linear combinations of the measured variables,
𝑐 = 𝐻𝑦, and we use a linear steady-state measurement model:

𝑦 = 𝐺𝑦𝑢 + 𝐺𝑦
𝑑𝑑 (9)

Note that the actual measured value is 𝑦𝑚 = 𝑦+ 𝑛𝑦. The setpoints 𝑐𝑠 are
assumed to be constant; see Fig. 1. To be nominally optimal (with no
disturbances or measurement noise), we must choose 𝑐𝑠 = 𝑐∗ = 𝐻𝑦∗

where 𝑦∗ = 𝑦𝑜𝑝𝑡(𝑑∗). The controller 𝐾 has integral action, which means
that at steady state the control error

(𝑐𝑚 − 𝑐∗) = 𝐻(𝑦𝑚 − 𝑦∗)

is controlled to a constant value of zero. The controlled variables 𝑐
should use up all the available degrees of freedom, and therefore 𝑛𝑐 =
𝑛𝑢. In this paper, 𝐻 is allowed to be a full matrix, that is, there are no
structural limitations on 𝐻 .

For the expected disturbances and noise in Eq. (6), Alstad et al.
(2009) derived the following analytical expression for the optimal
𝐻 , known as the ‘‘exact local method’’, which minimizes both the
worst-case and average loss 𝐿 in Eq. (7):

𝐻 = 𝑀−1
𝑛 𝐽 1∕2

𝑢𝑢

[

𝐺𝑦𝑇 (

𝐹𝐹 𝑇 )−1 𝐺𝑦
]−1

𝐺𝑦𝑇 (

𝐹𝐹 𝑇 )−1 (10)

where

𝐹 = [𝐹𝑊𝑑 𝑊𝑛𝑦 ]

𝐹 =
𝑑𝑦𝑜𝑝𝑡

𝑑𝑑
= 𝐺𝑦

𝑑 − 𝐺𝑦𝐽−1
𝑢𝑢 𝐽𝑢𝑑 (11)

The solution for 𝐻 is not unique as the matrix 𝑀𝑛 = 𝐽 1∕2
𝑢𝑢 (𝐻𝐺𝑦)−1 can

e freely chosen. The non-uniqueness comes because if 𝑐 − 𝑐∗ = 0
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then so is 𝐷(𝑐 − 𝑐∗) = 0 for any non-singular 𝐷. In the solution
derived in Alstad et al. (2009), the choice is 𝑀𝑛 = 𝐼 . The simplest
expression for the optimal 𝐻 results if we select 𝑀𝑛 such that 𝐻 =
𝐺𝑦𝑇 (

𝐹𝐹 𝑇 )−1 (Yelchuru and Skogestad, 2012).
However, in the next section, we want to find an estimate for 𝐽𝑢

also when 𝐽𝑢 ≠ 0), and in this case directions matter. For this reason,
e will choose:

𝑛 = 𝐽−1∕2
𝑢𝑢 (12)

nd we show below that the optimal estimate for the gradient 𝐽𝑢 is then
qual to 𝐻𝐽 (𝑦 − 𝑦∗), where according to the exact local method:

𝐽 = 𝐽𝑢𝑢
[

𝐺𝑦𝑇 (

𝐹𝐹 𝑇 )−1 𝐺𝑦
]−1

𝐺𝑦𝑇 (

𝐹𝐹 𝑇 )−1 (13)

With different assumptions, other expressions for 𝐻 may be derived.
or the case with a sufficient number of independent measurements
𝑛𝑦 ≥ 𝑛𝑢 + 𝑛𝑑) it is possible to achieve zero disturbance loss for the
ase with no measurement noise by choosing 𝐻 such that 𝐻𝐹 = 0
nullspace method). For the case 𝑛𝑦 = 𝑛𝑢 + 𝑛𝑑 , we have the following

explicit expression for the nullspace method:

𝐻 = 𝑀−1
𝑛 𝐽 (𝐺̃𝑦)−1 (14)

where 𝐺̃𝑦 = [𝐺𝑦 𝐺𝑦
𝑑 ] and 𝐽 = 𝐽 1∕2

𝑢𝑢 [𝐼 𝐽−1
𝑢𝑢 𝐽𝑢𝑑 ]. The generalization

to use all measurements (𝑛𝑦 ≥ 𝑛𝑢 + 𝑛𝑑) in a way that also minimizes
the effect of measurement noise is known as the extended nullspace
method (Alstad et al., 2009) for which we have:

𝐻 = 𝑀−1
𝑛 𝐽 (𝑊 −1

𝑛𝑦 𝐺̃𝑦)†𝑊 −1
𝑛𝑦 (15)

All these expressions for 𝐻 can be used for gradient estimation, pro-
vided that we choose 𝑀𝑛 = 𝐽−1∕2

𝑢𝑢 , or equivalently 𝐻𝐺𝑦 = 𝐽𝑢𝑢.

4. Optimal gradient estimate for the unconstrained case

We will now use the results from self-optimizing control to derive
the optimal gradient estimate, where by ‘‘optimal’’ we mean that
controlling the gradient estimate to zero achieves optimal steady-state
operation, that is, it minimizes the loss 𝐿 in Eq. (7) (worst-case or
average value) for the expected disturbances and noise as in Eq. (6).

To do this, we want to express the loss variable 𝑧 from (8) in terms
of the gradient 𝐽𝑢. First, note that (Fig. 1):

(𝑐 − 𝑐𝑜𝑝𝑡(𝑑)) = 𝐻𝐺𝑦(𝑢 − 𝑢𝑜𝑝𝑡)

Second, a first-order Taylor expansion of the gradient around the
optimal operating point gives:

𝐽𝑢(𝑢, 𝑑) = 𝐽𝑢(𝑢𝑜𝑝𝑡, 𝑑)
⏟⏞⏞⏟⏞⏞⏟

𝐽 𝑜𝑝𝑡
𝑢 (𝑑)

+𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡(𝑑))

Inserting the above two expressions into the definition of the loss
variable 𝑧 in (8) gives:

𝑧 ≜ 𝐽 1∕2
𝑢𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) = 𝐽 1∕2

𝑢𝑢 (𝐻𝐺𝑦)−1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑀𝑛

(𝑐 − 𝑐𝑜𝑝𝑡(𝑑)) = 𝐽−1∕2
𝑢𝑢 (𝐽𝑢 − 𝐽 𝑜𝑝𝑡

𝑢 (𝑑)) (16)

For the unconstrained case, we have 𝐽 𝑜𝑝𝑡
𝑢 (𝑑) = 0, and this is assumed in

the following. We then get 𝑧 = 𝐽−1∕2
𝑢𝑢 𝐽𝑢 and to minimize the norm of 𝑧,

and thereby the loss in (7), we conclude that we ideally want 𝐽𝑢 = 0
at steady state. However, as we will see, it is not possible to achieve
𝐽𝑢 = 0 in practice because of measurement error.

For the choice 𝑀𝑛 = 𝐽−1∕2
𝑢𝑢 (which we will use in the following), we

derive from (16) the following expression for the gradient:

𝐽𝑢 = 𝑐 − 𝑐𝑜𝑝𝑡(𝑑) = 𝐻𝑦 −𝐻𝑦𝑜𝑝𝑡(𝑑)

which may be rewritten as:

𝐽𝑢 = 𝐻(𝑦𝑚 − 𝑦∗) −𝐻 (𝑦𝑚 − 𝑦)
⏟⏞⏟⏞⏟

−𝐻(𝑦𝑜𝑝𝑡(𝑑) − 𝑦∗) (17)
4

𝑛𝑦
m

where we choose 𝑦∗ = 𝑦𝑜𝑝𝑡(𝑑∗) because the nominal point is assumed op-
timal. Note from (11) that (𝑦𝑜𝑝𝑡(𝑑)−𝑦∗) = 𝐹 (𝑑−𝑑∗) for the unconstrained
case. We then have:

𝐽𝑢 = 𝐻(𝑦𝑚 − 𝑦∗) −𝐻𝑛𝑦 −𝐻𝐹 (𝑑 − 𝑑∗) (18)

Note that with a fixed matrix 𝐻 , the last two terms are unaffected by
the input 𝑢, that is, unaffected by control.

With no measurement error (𝑛𝑦 = 0), the second term in Eq. (18)
is zero. If we use the nullspace method to choose 𝐻 , then 𝐻𝐹 = 0,
and also the third term is zero. The optimal control policy, according
to self-optimizing control, is then to adjust 𝑢 such that the first term
is zero, for example, to use feedback control to keep the measurement
combinations keep 𝑐𝑚 = 𝐻𝑦𝑚 at a constant setpoint 𝑐∗ = 𝐻𝑦∗. This
ives 𝐽𝑢 = 0 and the loss is zero.

More generally, with measurement noise and disturbances, we can
se the exact local method to choose the 𝐻 that minimizes the com-
ined effect of the second and third terms in (18). The optimal control
olicy, similarly to the case without noise, is then to adjust 𝑢 such
hat the first term in Eq. (18) is zero. This minimizes the expected
orm of 𝑧 as in (16), and consequently the economic loss 𝐿 in (7).
ore importantly, and this is the main result of the paper, the optimal

radient estimate for unconstrained operation, which should be kept at
ero at steady state, is simply the first term in (18), that is:

𝑢̂ = 𝐻(𝑦𝑚 − 𝑦∗) (19)

here 𝑦𝑚 is the measurement vector, 𝑦∗ = 𝑦𝑜𝑝𝑡(𝑑∗) is the nominal
ptimal value of the measurement 𝑦, and 𝐻 is given by 𝐻𝐽 in Eq. (13)
exact local method). This follows from self-optimizing control theory,
ecause choosing 𝐻 = 𝐻𝐽 minimizes the effect of the second and third
erms in Eq. (18) (it minimizes both the expected and worst-case loss
hen 𝑑 and 𝑛𝑦 vary as given in (6)).

Interestingly, since the second and third terms in (18) are generally
onzero (due to measurement noise and disturbances), it follows that
ptimal operation (in terms of minimizing the economic loss) does not
ive 𝐽𝑢 = 0 at steady state. This may seem surprising, but it is ex-
ected because one cannot achieve truly optimal steady-state operation
with 𝐽𝑢 = 0 and zero loss) with unknown disturbances and static
easurement bias (nonzero 𝑛𝑦).

In summary, the steady-state loss 𝐿 in Eq. (7) is minimized when we
eep 𝐽𝑢 = 𝐻𝐽 (𝑦𝑚−𝑦∗) = 0, and we have proven the following theorem:

heorem 1 (Optimal Unconstrained Gradient Estimate (‘‘exact local
ethod’’)). Consider the static optimization problem in (1) with no active

onstraints, where the quadratic approximation (3) holds. The available
easurements are 𝑦𝑚 = 𝐺𝑦𝑢 + 𝐺𝑦

𝑑𝑑 + 𝑛𝑦 (linear approximation) where
he unknown disturbances 𝑑 and static measurement errors 𝑛𝑦 are bounded
s given in (5) and (6). Consider further that the point (𝑢∗, 𝑑∗) is an
ptimal unconstrained point, such that 𝐽𝑢(𝑢∗, 𝑑∗) = 0, 𝑢∗ = 𝑢𝑜𝑝𝑡(𝑑∗) and
∗ = 𝑦𝑜𝑝𝑡(𝑑∗). The cost gradient 𝐽𝑢 is then given in (18) and the estimate
𝑢̂ = 𝐻𝐽 (𝑦𝑚 − 𝑦∗) with 𝐻𝐽 in (13) is an optimal estimate in the sense that
djusting the inputs 𝑢 to make 𝐽𝑢 = 0 (e.g., by feedback control, see Fig. 1)
inimizes both the average and the worst-case value of the economic loss

7).

If there is no measurement error (𝑛𝑦 = 0, that is, 𝑊𝑛𝑦 = 0) and we
ave a sufficient number of measurement (𝑛𝑦 = 𝑛𝑢 + 𝑛𝑑) then instead
f using 𝐻 = 𝐻𝐽 from the exact local method, we may use 𝐻 from
he nullspace method (Eq. (14) with 𝑀𝑛 = 𝐽−1∕2

𝑢𝑢 ). This gives 𝐻 in the
ullspace of 𝐹 (𝐻𝐹 = 0) and achieves zero loss for disturbances (with
o measurement error), that is, the last term in (18) is zero. If we have
dditional measurements (𝑛𝑦 > 𝑛𝑢 + 𝑛𝑑) then we may use 𝐻 from the
‘extended nullspace method’’ (Eq. (15) with 𝑀𝑛 = 𝐽−1∕2

𝑢𝑢 ) which uses the
xtra measurements to minimize also the second term in (18). However,
n general we recommend using 𝐻 = 𝐻𝐽 from the exact local method.
t gives the optimal balance between disturbances and measurement
rror (as it minimizes both the average and worst-case sum of last
wo terms in (18)) and importantly applies also to the case with fewer

easurements (𝑛𝑦 < 𝑛𝑢 + 𝑛𝑑).
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𝑁

5. Optimal gradient estimate for the constrained case

Now, we focus on the use of the new estimate of the unconstrained
cost gradient (Theorem 1) to real-time optimization for the general
case with changing active constraints. This is discussed in detail in
three recent papers (2024) in the Journal of Process Control (Dirza and
Skogestad, 2024; Bernardino and Skogestad, 2024a,b), but we include
a summary of the results here so that the reader can appreciate the
usefulness of our main result (Theorem 1). The application of the gra-
dient estimate to constrained online optimization is further illustrated
in Examples 1 and 2.

We first state the following result for estimating the reduced cost
gradient:

Theorem 2 (Optimal Gradient Estimate in Constrained Case). The optimal
unconstrained gradient estimate 𝐽𝑢 = 𝐻𝐽 (𝑦𝑚 − 𝑦∗) (Theorem 1) is optimal
also in the constrained case when used in the first-order KKT conditions (2).
This also means that the optimal estimate of the reduced gradient (which
should be zero at the optimal point) is 𝑁

𝑇 𝐽𝑢 = 𝑁
𝑇𝐻𝐽 (𝑦𝑚 − 𝑦∗) where

 is a basis for the nullspace of 𝑔𝑢,, that is, 𝑔𝑢,𝑁 = 0, and 
represents the set of active constraints.

The theorem may seem straightforward and require no further proof
since 𝐽𝑢 in (2a) is the unconstrained gradient, and the gradient estimate
𝐽𝑢 in (19) is the one that minimizes the loss in the unconstrained case
for a given measurement set 𝑦. Furthermore, the idea of reduced gra-
dient is well-established, being used in optimization methods (Rosen,
1960; Lasdon et al., 1974) and to solve control problems (Jäschke and
Skogestad, 2012; Torrisi et al., 2018). Nevertheless, in Appendix A, we
provide a detailed proof that controlling the reduced gradient estimate
𝑁

𝑇 𝐽𝑢 minimizes the loss for the constrained case.
It is important to note that Eq. (19) is valid when the nominal point

(𝑢∗, 𝑑∗) is an optimal unconstrained reference point. If the reference point
has a non-zero gradient, the optimal gradient estimate takes the form
(the reader is referred to Appendix B for a derivation of this expression):

𝐽𝑢 = 𝐻(𝑦𝑚 − 𝑦∗) + 𝐽 ∗
𝑢 (20)

where 𝐽 ∗
𝑢 = 𝐽𝑢(𝑢∗, 𝑑∗) (obtained from the nonlinear model). Note here

that both (19) and (20) can be written in the form:

𝐽𝑢 = 𝐻𝑦𝑚 − 𝑐𝑠 (21)

where 𝑐𝑠 is a constant (see Fig. 1).
The simple gradient estimate in (19) and (20) avoids implementing

a model-based estimator, for example, a dynamic Kalman filter, and
thus greatly simplifies the practical use of feedback-based real-time
optimization, which is based on the first-order KKT condition (2a).

The gradient estimate can be used in a wide array of feedback-
optimizing control applications. In particular, it may be used in the
following approaches for optimal steady-state operation with changes
in active constraints:

1. Primal–dual approaches (Krishnamoorthy, 2021) based directly on
the optimality condition (2a) with a (slow) update of the La-
grange multiplier 𝜆. This may be done using a slow controller
𝐾dual which controls the measured constraints by manipulating
the dual variables (𝜆) and with max-selectors for switching
active constraints, see Fig. 2 (Dirza et al., 2021; Dirza and
Skogestad, 2024).

2. Region-based control (Jäschke and Skogestad, 2012; Krishnamoorthy
and Skogestad, 2022) where we in each region 𝑖 control the
active constraints and the associated reduced gradient 𝑁𝑇

,𝑖𝐽𝑢 to
5

zero, see Fig. 3.
Fig. 2. Primal–dual optimizing control structure using the proposed gradient estimate.
The controller 𝐾dual is always diagonal (decentralized), whereas the controller 𝐾primal
may be multivariable or diagonal.

Fig. 3. Region-based optimizing control structure using the proposed gradient estimate.
In this scheme, each projection matrix 𝑁,𝑖 is linked to a different set of active
constraints 𝑖, and the resulting gradient projection 𝑁𝑇

,𝑖𝐽𝑢 is controlled by a different
controller 𝐾𝑢,𝑖 (which in general is multivariable). If 𝑛𝑢 ≥ 𝑛𝑔 , a fixed projection matrix
can be used for all 𝑖, and simple max/min-selectors can be used (see Fig. 4).

2 A. Region-based control may be applied to multivariable con-
trol, for example, model predictive control, by changing
the cost function for designing the controller for each
region (Bernardino and Skogestad, 2024b). There, the
gradient estimate is also used for constraint switching.

2B. Decentralized region-based control with constraint switch-
ing using selectors (Bernardino et al., 2022; Bernardino
and Skogestad, 2024a) (Fig. 4). This approach requires at
least as many inputs (degrees of freedom) as constraints,
that is, 𝑛𝑢 ≥ 𝑛𝑔 . An example of its application is given
next.

In summary, the cost gradient estimate presented in Eq. (20) (based
on Theorem 1) can be used in a wide array of control applications
focused on optimal operation, eliminating the need for a dynamic state
estimator and thus greatly simplifying implementation.

6. Example 1: Decentralized region-based control

Here, we consider a system with more inputs than constraints (𝑛𝑢 ≥
𝑛 ) and design a region-based decentralized control structure with
𝑔



Computers and Chemical Engineering 189 (2024) 108815L.F. Bernardino and S. Skogestad
Fig. 4. Decentralized region-based optimizing control structure using the proposed
gradient estimate combined with SISO controllers and selectors. This scheme, with
projection matrices (𝑁0 and 𝑁𝑖) computed according to Steps S1 and S2, applies when
there are at least as many inputs as constraints (Bernardino and Skogestad, 2024a).

simple min/max-selectors (Fig. 4) that minimizes the loss in all active
constraint regions (Bernardino and Skogestad, 2024a). In order to
use simple switching, the nullspace associated with the unconstrained
gradients (Theorem 2) needs to be selected in accordance with the
constraint directions. This is done using the following steps (Bernardino
and Skogestad, 2024a):

Step S1. Define 𝑁0 as an orthonormal basis for the nullspace of 𝑔𝑢,
such that 𝑔𝑢𝑁0 = 0;

Step S2. Find 𝑊 =

[

𝑔𝑢
𝑁0𝑇

]−1

, and define the vectors 𝑁𝑖, 𝑖 = 1,… , 𝑛𝑔

as the first 𝑛𝑔 normalized columns of 𝑊 .

Then, controlling the active constraints 𝑔𝑖, for 𝑖 ∈  and the remain-
ing unconstrained degrees of freedom 𝑁𝑇

𝑖 𝐽𝑢, for 𝑖 ∉ , and 𝑁0𝑇 𝐽𝑢 will
lead to optimal operation (Bernardino and Skogestad, 2024a). The final
simple decentralized control system with min or max selectors can be
implemented as shown in Fig. 4 where all controllers (𝐾) are single-
input single-output (SISO), for example, PID controllers. The controllers
linked to selectors must have anti-windup action, to cancel the integral
action when the controllers are inactive.
6

Fig. 5. Optimality regions for Example 1.

As a case study, we consider a linear dynamic system with a
quadratic cost function given by:

min
𝑢

1
2
𝑥𝑇

[

1 0
0 10

]

𝑥 + 1
2
𝑢𝑇

⎡

⎢

⎢

⎣

1 −0.1 −0.2
−0.1 0.8 −0.1
−0.2 −0.1 0.3

⎤

⎥

⎥

⎦

𝑢

s.t.
{

𝑔1 = 𝑥1 − 0.8𝑥2 ≤ 0

𝑔2 = 𝑢1 + 𝑢2 + 𝑢3 ≤ 0

(22)

𝑥̇ =
⎡

⎢

⎢

⎣

− 1
𝜏1

0

0 − 1
𝜏2

⎤

⎥

⎥

⎦

𝑥 +
⎡

⎢

⎢

⎣

0.2
𝜏1

0 0

0 0.2
𝜏2

0

⎤

⎥

⎥

⎦

𝑢 +
⎡

⎢

⎢

⎣

1
𝜏1

0

0 1
𝜏2

⎤

⎥

⎥

⎦

𝑑 (23)

with 𝜏1 = 1 and 𝜏2 = 2. The set of optimal active constraint regions can
be visualized as a function of the two disturbances as shown in Fig. 5.
Here, the upper left green region is unconstrained and the lower middle
gray region is with all constraints being active (and one unconstrained
degree of freedom).

For estimating the cost gradient, the following measurements are
available:

𝑦 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔1
𝑔2
𝑥1
𝑥2
𝑢2
𝑢3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −0.8
0 0
1 0
0 1
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑥 +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
1 1 1
0 0 0
0 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑢 (24)

Note that both constraints and both states are measured. In addition,
we choose to include two of the three inputs. The expected static
disturbance and noise magnitudes are 𝑊𝑑 = diag([4, 4]) and 𝑊𝑛𝑦 =
diag([0, 0, 1, 2, 1.5, 5]). The two first zeros in 𝑊𝑛𝑦 imply that the
constraints have no static measurement error, that is, the constraints
can be perfectly controlled. In general, static measurement error for a
constraint may be counteracted by using back-off for its setpoint, but
this issue is not explored in the case study.

To find the optimal cost gradient estimate using the formulation
proposed in this work, we first use (23) with 𝑥̇ = 0 to derive the
steady-state relationship:

𝑥 =
[

0.2 0 0
0 0.2 0

]

𝑢 +
[

1 0
0 1

]

𝑑 (25)

This is used to eliminate the states 𝑥 from the problem (22), resulting
in the following steady-state optimization problem:

min
𝑢

𝐽 = 1
2
𝑢𝑇

⎡

⎢

⎢

⎣

1.04 −0.1 −0.2
−0.1 1.2 −0.1
−0.2 −0.1 0.3

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽𝑢𝑢

𝑢 + 𝑢𝑇
⎡

⎢

⎢

⎣

0.2 0
0 2
0 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝐽𝑢𝑑

𝑑

s.t. 𝑔 =
[

0.2 −0.16 0
1 1 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑢 +
[

1 −0.8
0 0

]

𝑑 ≤ 0

(26)
𝑔𝑢
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From the matrix 𝑔𝑢, we can find the projections 𝑁𝑖 and 𝑁0 to be
multiplied with the unconstrained gradient 𝐽𝑢. 𝑁0 is the nullspace of
𝑔𝑢 given by:

𝑁0 =
[

−0.36214 −0.45268 0.81482
]𝑇 (27)

The vectors 𝑁𝑖 are the first 𝑛𝑔 normalized columns of 𝑊 =
[

𝑔𝑢
𝑁0𝑇

]−1

, calculated as:

𝑊 =
⎡

⎢

⎢

⎣

2.8689 0.29508 −0.36214
−2.6639 0.36885 −0.45267
−0.20491 0.33607 0.81482

⎤

⎥

⎥

⎦

(28)

𝑁1 =
[

0.73179 −0.67952 −0.052271
]𝑇 (29)

𝑁2 =
[

0.50902 0.63627 0.57971
]𝑇 (30)

To estimate the gradient from the measurements, we also need their
corresponding steady-state model. Plugging the steady-state expression
for the states into (24) leads to:

𝑦 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.2 −0.16 0
1 1 1
0.2 0 0
0 0.2 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺𝑦

𝑢 +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −0.8
0 0
1 0
0 1
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐺𝑦
𝑑

𝑑 (31)

The optimal sensitivity is then:

𝐹 =
𝑑𝑦𝑜𝑝𝑡

𝑑𝑑
= 𝐺𝑦

𝑑 − 𝐺𝑦𝐽−1
𝑢𝑢 𝐽𝑢𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9599 −0.5830
−0.4207 −2.8867
−0.0065 0.6479
−0.0324 −1.7605
−0.1618 −0.8026
0.9547 −0.0647

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

With this information and the matrices from Eq. (26), we can
calculate the measurement combinations 𝐻𝐽 from the ‘‘exact local
method’’ in Eq. (13), which gives:

𝐻𝐽 =
⎡

⎢

⎢

⎣

0.2741 0.9842 0.1560 −1.0715 −1.1842 0.0050
−0.1897 −0.0735 1.7813 0.8869 −0.0265 0.0570
−0.0180 −0.1964 −0.0091 0.0953 0.4964 −0.0003

⎤

⎥

⎥

⎦

(33)

and the estimated gradient is 𝐽𝑢 = 𝐻𝐽 (𝑦− 𝑦∗) = 𝐻𝐽 − 𝑐𝑠. Here, we note
that the approximations in (3) and (4) are exact for this example, and
therefore 𝐻𝐽 does not depend on the nominal point to be considered.
However, we still need a reference point to calculate the constant
𝑐𝑠 = 𝐻𝐽 𝑦∗, and for that, we choose an optimal point with 𝑑∗ = [0, 0]𝑇 .
This gives 𝑐𝑠 = [0, 0, 0]𝑇 .

Dynamic simulation results for the closed-loop system with the
proposed control structure in Fig. 4 with 𝐻 = 𝐻𝐽 are shown in
Fig. 6. The PI controllers tuning are given in Table 1. The simulated
disturbances cover all four active constraint regions but we did not
include measurement noise. The responses are fairly smooth (see the
three input profiles) and there are as expected three changes in active
constraints. The gradient estimate with 𝐻 = 𝐻𝐽 is optimal in terms of
minimizing the average loss with the expected (assumed) disturbances
and noise. However, this means that the gradient estimates (and re-
sulting CVs) are not designed to reject the disturbances completely, as
they simultaneously try to reduce the effect of measurement noise. This
is the reason why the resulting steady-state inputs 𝑢𝑖 (blue lines) do
not match exactly the corresponding optimal values (magenta dashed
lines). At steady state, the economic loss 𝐿 resulting from this input
mismatch is, however, very small.
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Table 1
Proportional and integral gains of controllers for example 1. All controllers have
anti-windup with tracking time 𝜏𝑇 = 0.01.

Controller Parameter Value

𝐾𝑔
1

𝐾𝑐 50
𝐾𝐼 50

𝐾𝑔
2 𝐾𝐼 100

𝐾0𝑔
1 𝐾𝐼 −1.191

𝐾0𝑔
2 𝐾𝐼 1.528

𝐾0 𝐾𝐼 2.761

Fig. 6. Dynamic simulation over all active constraint regions using the proposed
control structure with 𝐻 = 𝐻𝐽 (exact local method) (Example 1).

In Fig. 7, we present the steady-state loss obtained in closed loop
both without and with static measurement noise (bias). The loss is
shown as a heatmap for each disturbance combination. The much larger
loss (note the difference in scale) with measurement noise in Fig. 7(b)
is for the worst-case measurement error satisfying 𝑛𝑦 = 𝑊𝑛𝑦𝑛𝑦

′ with
‖𝑛𝑦′‖2 ≤ 1. The optimal active constraint regions (same as Fig. 5) are
shown by black lines whereas the actual operating regions resulting
from using the control structure are shown by blue lines. Note that
the constraint switching is moved away from the optimal, which is not
surprising (see discussion).

Fig. 7(a) shows that the measurement combination 𝐻 = 𝐻𝐽 (which
is based on the exact local method of self-optimizing control) does
not perfectly reject disturbances, even without measurement error. To
achieve zero loss for disturbances, 𝐻 must be in the nullspace of 𝐹 .
For instance, if we apply the extended nullspace method (15) to this
problem (with 𝑀𝑛 = 𝐽−1∕2

𝑢𝑢 ), we get:

𝐻 =
⎡

⎢

⎢

0.195 1 0.156 −1.1 −1.2 0.005
−0.0624 −0.1 1.95 0.9 0 0.0624

⎤

⎥

⎥

(34)

⎣ 0 −0.2 0 0.1 0.5 0 ⎦
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Fig. 7. Steady-state loss for closed-loop operation with 𝐻 = 𝐻𝐽 from the exact local
method (Example 1).

With the resulting gradient estimate (and set of CVs), the steady-
state closed loop loss for the extended nullspace method (without
noise and with the worst-case noise) are presented in Fig. 8. We
see that in the case without noise (Fig. 8(a)), the economic loss is
exactly zero in all constraint regions. This is expected since the original
problem is linear with a quadratic cost. However, we see that the exact
local method (𝐻𝐽 ) is better at locally rejecting noise (note that the
worst-case loss in Fig. 7(b) is smaller around the nominal point), but
the extended nullspace method (Fig. 8(b)) handles large disturbances
better, as expected.

7. Example 2: Williams-Otto reactor

This case study is a well-known benchmark for process control
introduced by Williams and Otto (1960). The reactor is illustrated in
Fig. 9.

The following chemical reactions take place in the system:

𝐴 + 𝐵
𝑘1
←←←←←←←←←←→ 𝐶 𝑘1 = 𝑘0,1𝑒−𝐸1∕𝑇𝑟

𝐶 + 𝐵
𝑘2
←←←←←←←←←←→ 𝑃 + 𝐸 𝑘2 = 𝑘0,2𝑒−𝐸2∕𝑇𝑟

𝑃 + 𝐶
𝑘3
←←←←←←←←←←→ 𝐺 𝑘3 = 𝑘0,3𝑒−𝐸3∕𝑇𝑟

The component mass balances for the six components give the
following set of ODEs:

𝑑𝑥𝐴
𝑑𝑡

=
𝐹𝐴
𝑊

−
(𝐹𝐴 + 𝐹𝐵)𝑥𝐴

𝑊
− 𝑘1𝑥𝐴𝑥𝐵 (35a)

𝑑𝑥𝐵 =
𝐹𝐵 −

(𝐹𝐴 + 𝐹𝐵)𝑥𝐵 − 𝑘 𝑥 𝑥 − 𝑘 𝑥 𝑥 (35b)
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𝑑𝑡 𝑊 𝑊 1 𝐴 𝐵 2 𝐶 𝐵
Fig. 8. Steady-state loss for closed-loop operation with 𝐻 from the extended nullspace
method (Example 1).

Fig. 9. Schematic representation of Williams–Otto reactor with control inputs in red
(Example 2).

𝑑𝑥𝐶
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝐶

𝑊
+ 2𝑘1𝑥𝐴𝑥𝐵 − 2𝑘2𝑥𝐶𝑥𝐵 − 𝑘3𝑥𝑃 𝑥𝐶 (35c)

𝑑𝑥𝑃
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝑃

𝑊
+ 𝑘2𝑥𝐶𝑥𝐵 − 0.5𝑘3𝑥𝑃 𝑥𝐶 (35d)

𝑑𝑥𝐸
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝐸

𝑊
+ 2𝑘2𝑥𝐶𝑥𝐵 (35e)
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Fig. 10. Active constraint regions as a function of disturbances for example 2.

𝑑𝑥𝐺
𝑑𝑡

= −
(𝐹𝐴 + 𝐹𝐵)𝑥𝐺

𝑊
+ 1.5𝑘3𝑥𝑃 𝑥𝐶 (35f)

The steady-state optimization problem to be considered for this
system is:

min
𝑢

𝐽 = 𝑝𝐴𝐹𝐴 + 𝑝𝐵𝐹𝐵 − (𝐹𝐴 + 𝐹𝐵)
[

𝑝𝑃 (1 + 𝛥𝑝𝑃 )𝑥𝑃 + 𝑝𝐸𝑥𝐸
]

s.t. 𝑔1 = 𝑥𝐸 − 0.30 ≤ 0

𝑔2 = 𝑥𝐴 − 0.12 ≤ 0

(36)

The inputs considered for this example are 𝑢 =
[

𝐹𝐵 𝑇𝑟
]𝑇 . The

active constraint regions of the problem are shown in Fig. 10 as a
function of the disturbances 𝑑 =

[

𝐹𝐴 𝛥𝑝𝑃
]𝑇 . The vector of available

measurements is:

𝑦 =
[

𝑔1 𝑔2 𝑥𝐵 𝑥𝐶 𝑥𝑃 𝑥𝐺 𝛥𝑝𝑃
]𝑇

Similarly to the first example, we calculate the optimal measure-
ment combinations to be used for gradient estimation. For that, we
approximate Eq. (36) as a quadratic programming (QP) problem around
a nominal point, here considered as the optimal point for 𝑑∗ =

[

2 0
]𝑇 .

To scale the disturbances and measurement error, 𝑊𝑑 was chosen
as 𝑊𝑑 = diag

([

1.5 0.3
])

, and 𝑊𝑛𝑦 was chosen as the maximum
deviation between the approximate and the true model predictions,
which resulted in 𝑊𝑛𝑦 = diag

([

0, 0, 0.076, 0.0089, 0.0056, 0.038, 0
])

.
The optimal measurement combinations for the exact local method

and the extended nullspace method are, respectively:

𝐻𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1388 136.5
−508 −5.5

6.57153 −1.71026
143.648 −37.3849
786.6 −204.715

−51.2488 13.3377
−116 0.6875

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

(37)

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1363.26 129.003
−511.492 −4.98053
8.00163 −2.08245
174.909 −45.5206
957.78 −249.265

−62.4016 16.2402
−115.267 0.428895

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

(38)

The steady-state loss obtained in closed loop with the control struc-
ture proposed in Fig. 4 and using the exact local method (𝐻 = 𝐻𝐽 ) is
shown in Fig. 11 as a function of the disturbances. Similarly, the results
for using the extended nullspace method are shown in Fig. 12. The
economic performance of both methods is reasonable (for comparison,
the optimal cost at the nominal point is 𝐽 ∗ = −88.24). For this example,
choosing the exact local method results in a smaller maximum loss,
9

Fig. 11. Steady-state loss for closed-loop operation with 𝐻 = 𝐻𝐽 from the exact local
method for example 2.

Fig. 12. Steady-state loss for closed-loop operation with 𝐻 from the extended nullspace
method for example 2.

which comes at the expense of having a higher loss than the extended
nullspace method for certain disturbance realizations.

8. Discussion

8.1. Local gradient estimation (block-diagonal 𝐻)

The matrix 𝐻𝐽 in (14) for the optimal gradient estimate is a full
matrix. This means that control systems in Figs. 2 and 4 may not be
decentralized, even if the controllers 𝐾 themselves are decentralized.
To obtain a decentralized control system, the relationship from 𝑦 (mea-
surements) to 𝑢 (inputs) needs to be decoupled. For example, if we
have a complex process with many units, then decentralized control
implies that only measurements from unit 𝑘 should be used by the
control system to compute the inputs for unit 𝑘. To accomplish this,
the matrix 𝐻 needs to be block-diagonal. There exists no analytical
solution in this case so the optimal block-diagonal 𝐻 must be obtained
numerically. Depending on the case study, there may be a small or large
performance loss compared to using a full 𝐻 . This problem has been
studied in detail by Yelchuru and Skogestad (2012) using mixed-integer
quadratic programming (MIQP). However, their objective was to find
self-optimizing controlled variables 𝑐 = 𝐻𝑦𝑚 + 𝑐𝑠, so their results need
to be modified to estimate instead the gradient, 𝐽𝑢 = 𝐻𝑦𝑚 + 𝑐𝑠.

Finally, note that for the primal–dual optimizing control structure
in Fig. 2, the Lagrange multiplier (𝜆) may introduce a coupling from
the measured constraint (𝑔) to the inputs (𝑢) even for cases where
the gradient controller (𝐾primal) is diagonal and the gradient estimator
(matrix 𝐻) is block-diagonal.
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8.2. Addition of RTO layer and model mismatch

The optimality of the static gradient estimate is based on a quadratic
approximation (3) of the cost, and a linear approximation of the
constraints (4) and of the measurement model (9). In general, these
assumptions are not satisfied, and in this case, a static real-time op-
timization layer may be used to provide updates of the constants
presented in this work, namely the controller setpoints 𝑐𝑠, the measure-
ment combinations 𝐻 , and the projection matrices 𝑁𝑖 and 𝑁0 (or 𝑁

hen generalizing to centralized approaches).
Using the RTO layer to update the setpoints 𝑐𝑠 is the simplest and

ost important, being sufficient to drive the system to optimality in
new operating condition. That is, 𝑐𝑠 is optimally updated, while the
atrix 𝐻 and the projection matrices constant can be kept constant.
he use of constant matrices implies the self-optimizing properties (re-

ated to optimality on a shorter time scale) may degrade somewhat in a
ew operating point. On the other hand, changing these matrices will
ffect the control problem and, consequently, the controllers’ tuning
hat should be used. Thus, updating only 𝑐𝑠 is recommended in most

practical applications.
As an alternative to a model-based RTO layer, an upper data-based

layer based on perturbing the process, for example, extremum-seeking
control, may be used to update 𝑐𝑠. However, data-based methods are
not realistic for most process control applications because the conver-
gence of these methods is too slow to track changing disturbances.
Regardless, these methods are complementary to the method discussed
in this work, as they are applied on an upper layer.

We remark that these RTO updates address the mismatch between
the model used for the design of the gradient estimate and the plant
behavior, but the improvement obtained is often small. In fact, for the
unconstrained part of the optimization problem, model uncertainty is
usually not critical as long as we are reasonably close to the optimum
where the cost function is flat. Regardless of this, even though model
mismatch is an important challenge for RTO problems to ensure exact
plant optimality, it is not the main challenge that hinders its imple-
mentation. The main challenges for practical RTO implementation are
slow convergence and numerical problems in performing disturbance
estimation and optimization for given disturbances and high costs of
implementation and maintenance.

8.3. Required model information

The methods for self-optimizing control used to obtain the matrix 𝐻
for the gradient estimate use model information only offline. Further-
more, they only need model information in the form of the sensitivity
matrix 𝐹 and the gain matrix 𝐺𝑦, both of which can be estimated from
lant data or steady-state simulations with relative ease. For estimating
he gradient 𝐽𝑢, we additionally require knowledge of the Hessian
atrix 𝐽𝑢𝑢 so that the directions of the unconstrained gradient are

etrieved. The Hessian is harder to estimate from measurement infor-
ation, as it requires more data. In addition, the constraint gradient 𝑔𝑢

s needed to find the nullspace matrix for the reduced gradient 𝑁𝑇
𝐽𝑢,

ut 𝑔𝑢 is easy to estimate from data similarly to 𝐺𝑦. However, if a
teady-state model is available for control structure design, all of these
atrices can easily be obtained.

.4. Discussion of example 1

In this work, we illustrate the method with a case study where the
ormulation is exact, that is, Eqs. (3), (4) and (9) hold. It was shown
hat the exact local method (13) is not designed to perfectly reject
isturbances, that is 𝛥𝑐𝑜𝑝𝑡 = 𝐻𝐹𝛥𝑑 ≠ 0, which results in non-zero loss
s shown in Fig. 7(a). Therefore, if a new estimate of the disturbances
s available, an update of 𝑐𝑠 will lead to improved performance around
he new operating point, even if the optimal 𝐻 is unchanged. This is not
he case for the extended nullspace method, where we see in Fig. 8(a)
10

i

hat the obtained loss is zero for all disturbance values, which means
hat the optimal setpoint value is constant, i.e. 𝛥𝑐𝑜𝑝𝑡 = 𝐻𝐹𝛥𝑑 = 0.

We see from Fig. 7 that measurement bias has a comparatively
bigger effect on the economic loss than the disturbances in this numer-
ical example, which is worsened the further the disturbances are from
their design value. We also see that the measurement bias may trigger
control of constraints that are not optimally active, which could be a
problem if there were no constraint controllers. This is the reason why
the pattern of the operating regions is so different from the optimal in
Fig. 7(b). Overall, we see that for the nominal case (Fig. 7(a)), opti-
mal behavior is well captured, with the closed-loop operating regions
closely resembling the optimal active constraint regions. For the worst-
case loss (Fig. 7(b)), the resulting economic loss is still small when
compared to the values attained dynamically in Fig. 6.

8.5. Discussion of example 2

This example illustrates the application of the proposed method to
nonlinear systems. If a nonlinear model is available, it must be first
locally approximated as a QP problem with linear measurements, see
Eqs. (3), (4) and (9). With this, the method is applied in the same way as
described for example 1, and the results illustrate the obtained steady-
state performance. It is no longer possible to attain perfect disturbance
rejection as there is model mismatch, but the performance can still
be deemed acceptable, with small losses in the neighborhood of the
design point. The use of a gradient estimate based on the exact local
method led to a lower maximum loss in the domain of interest when
compared to the extended nullspace method, which favors the effect of
the modeled disturbances over the possible measurement errors.

The values chosen for 𝑊𝑑 and 𝑊𝑛𝑦 reflect the expected behavior
of the real system when compared to that of the approximate model
used for design. This was possible because the nonlinear model was
available for evaluation. In practice, these are tuning parameters that
weight the importance of disturbance rejection versus the presence of
measurement error, and they can therefore be chosen based on process
knowledge.

9. Conclusion

The optimal local gradient estimate for use in steady-state real-time
optimization is simply 𝐽𝑢 = 𝐻𝐽 (𝑦𝑚 − 𝑦∗) + 𝐽 ∗

𝑢 with 𝐻𝐽 as in Eq. (13)
Theorem 1). This gradient estimate is optimal also in the constrained
ase when used with the KKT optimality conditions (2) (Theorem 2).
he gradient estimate 𝐽𝑢 may be used in a multitude of control ap-
lications (Figs. 1 to 4) where it is desired to include the optimality
onditions (2) directly into the feedback control layer. In summary, the
roposed gradient estimate is simple to implement and may form the
asis for solving industrial RTO problems in an efficient manner.
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Appendix A. Proof: Optimal gradient estimate for the constrained
case

We begin by describing the loss function for the constrained opti-
mization problem, resulting in a simple form. Then, we show that the
ideal variables for a given set of active constraints are the projection of
the unconstrained gradient estimate onto the nullspace of the gradient
of the active constraints, in the sense that they minimize the expected
loss.

A.1. Loss for constrained optimization problem

From Eq. (3), we have:

𝐿 = 𝐽 (𝑢, 𝑑) − 𝐽 𝑜𝑝𝑡(𝑑) = 𝐽 ∗
𝑢
𝑇 (𝑢 − 𝑢𝑜𝑝𝑡)

+ 1
2
(𝑢 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗) + (𝑑 − 𝑑∗)𝑇 𝐽𝑇

𝑢𝑑 (𝑢 − 𝑢𝑜𝑝𝑡)

− 1
2
(𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗)

=
(

𝐽 ∗
𝑢 + 𝐽𝑢𝑑 (𝑑 − 𝑑∗)

)𝑇 (𝑢 − 𝑢𝑜𝑝𝑡) + 1
2
(𝑢 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗)

− 1
2
(𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗)

(39)

The optimality conditions state that:

𝑢(𝑢𝑜𝑝𝑡, 𝑑, 𝜆𝑜𝑝𝑡) = 𝐽𝑢(𝑢𝑜𝑝𝑡, 𝑑) + 𝑔∗𝑇𝑢 𝜆𝑜𝑝𝑡 = 0

⟹ 𝐽 ∗
𝑢 + 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗) + 𝐽𝑢𝑑 (𝑑 − 𝑑∗) + 𝑔∗𝑢

𝑇 𝜆𝑜𝑝𝑡 = 0

⟹ 𝐽 ∗
𝑢 + 𝐽𝑢𝑑 (𝑑 − 𝑑∗) = −(𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗) + 𝑔∗𝑢

𝑇 𝜆𝑜𝑝𝑡)

(40)

We can therefore rewrite Eq. (39) as:

𝐿 = −
(

𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗) + 𝑔∗𝑢
𝑇 𝜆𝑜𝑝𝑡

)𝑇
(𝑢 − 𝑢𝑜𝑝𝑡)

+ 1
2
(𝑢 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗) − 1

2
(𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗)

= − 𝜆𝑜𝑝𝑡𝑇 𝑔∗𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) + 1
2
(𝑢 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗)

− 1
2
(𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗) − (𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡)

= − 𝜆𝑜𝑝𝑡𝑇 𝑔∗𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) + 1
2
(𝑢 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗)

− 1
2
(𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗) − (𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗)

+ (𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗)

= − 𝜆𝑜𝑝𝑡𝑇 𝑔∗𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) + 1
2
(𝑢 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗)

− (𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢∗) + 1
2
(𝑢𝑜𝑝𝑡 − 𝑢∗)𝑇 𝐽𝑢𝑢(𝑢𝑜𝑝𝑡 − 𝑢∗)

From this, we conclude that:

= 1
2
(𝑢 − 𝑢𝑜𝑝𝑡)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡) − 𝜆𝑜𝑝𝑡𝑇 𝑔∗𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) (41)

This expression is very similar to Eq. (7), the difference being the
linear term 𝜆𝑜𝑝𝑡𝑇 𝑔∗𝑢 (𝑢 − 𝑢𝑜𝑝𝑡), which is related to constraint control.
Because the optimal Lagrange multipliers for the inactive constraints
are zero, we have that 𝜆𝑜𝑝𝑡𝑇 𝑔∗𝑢 (𝑢 − 𝑢𝑜𝑝𝑡) = 𝜆𝑜𝑝𝑡

𝑇
𝑔𝑢,(𝑢 − 𝑢𝑜𝑝𝑡), with 𝑔𝑢,

defined as the gradient of the active constraints with respect to the
inputs. If the optimal active constraint set  is perfectly controlled,
we have:
{

𝑔(𝑢𝑜𝑝𝑡, 𝑑) = 𝑔∗ + 𝑔𝑢,(𝑢𝑜𝑝𝑡 − 𝑢∗) + 𝑔𝑑,(𝑑 − 𝑑∗) = 0

𝑔(𝑢, 𝑑) = 𝑔∗ + 𝑔𝑢,(𝑢 − 𝑢∗) + 𝑔𝑑,(𝑑 − 𝑑∗) = 0
𝑜𝑝𝑡

(42)
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⟹ 𝑔𝑢,(𝑢 − 𝑢 ) = 0
This means that only the quadratic term on Eq. (41) is relevant when
the correct constraints are controlled, with the additional restriction
on the allowed directions of (𝑢 − 𝑢𝑜𝑝𝑡), which are in the nullspace of
𝑔𝑢,. Define 𝑁 as a basis for the nullspace of 𝑔𝑢,. This means that
the loss from Eq. (41) is further simplified when the correct constraints
are controlled to give:

𝐿 = 1
2
(𝑢 − 𝑢𝑜𝑝𝑡)𝑇 𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡) = 1

2
𝑤𝑇𝑁

𝑇 𝐽𝑢𝑢𝑁𝑤 (43)

Here, 𝑤 is an appropriately sized vector that represents the uncon-
strained degrees of freedom.

A.2. Connection with the unconstrained problem

We now show that the ideal controlled variables for this problem
are directly linked to the ones from the unconstrained problem. First,
note that the matrix 𝐽𝑤𝑤 = 𝑁

𝑇 𝐽𝑢𝑢𝑁 is invertible by definition, and
therefore we can write:

𝐿 = 1
2
𝑤𝑇 𝐽𝑤𝑤𝐽

−1
𝑤𝑤𝐽𝑤𝑤𝑤 (44)

From this, we can see that the loss variable 𝑧𝑤 for this problem can
e represented by:

𝑤 = 𝐽−1∕2
𝑤𝑤 𝑁

𝑇 𝐽𝑢𝑢𝑁𝑤 = 𝐽−1∕2
𝑤𝑤 𝑁

𝑇 𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡) (45)

Similarly to Eq. (8), we can write 𝑧𝑤 in terms of the unconstrained
Vs 𝑐 as:

𝑤 = 𝐽−1∕2
𝑤𝑤 𝑁

𝑇 𝐽𝑢𝑢(𝐻𝐺𝑦)−1(𝑐 − 𝑐𝑜𝑝𝑡)

= 𝐽−1∕2
𝑤𝑤 𝑁

𝑇 𝐽 1∕2
𝑢𝑢 𝑀𝑛(𝑐 − 𝑐𝑜𝑝𝑡)

We can similarly write 𝑧𝑤 in terms of the unconstrained gradient:

𝑢 = 𝐽𝑢(𝑢𝑜𝑝𝑡, 𝑑) + 𝐽𝑢𝑢(𝑢 − 𝑢𝑜𝑝𝑡)

⟹ 𝑧𝑤 = 𝐽−1∕2
𝑤𝑤 𝑁

𝑇 (𝐽𝑢 − 𝐽𝑢(𝑢𝑜𝑝𝑡, 𝑑))

Note that, because of the optimality conditions, we have that:

𝑢(𝑢𝑜𝑝𝑡, 𝑑) + 𝑔∗𝑢
𝑇 𝜆𝑜𝑝𝑡 = 0 ⟹ 𝑁

𝑇 𝐽𝑢(𝑢𝑜𝑝𝑡, 𝑑) = 0

nd with the choice of 𝑀𝑛 = 𝐽−1∕2
𝑢𝑢 , we compare both expressions for 𝑧𝑤

and we see that:
𝑁

𝑇 𝐽𝑢 = 𝑁
𝑇 (𝑐 − 𝑐𝑜𝑝𝑡)

= 𝑁
𝑇 (

𝐻(𝑦𝑚 − 𝑦∗) −𝐻𝑛𝑦 −𝐻(𝑦𝑜𝑝𝑡(𝑑) − 𝑦∗)
) (46)

This formulation is similar to that of Eq. (18), with the exception
that now 𝑢𝑜𝑝𝑡(𝑑) and 𝑦𝑜𝑝𝑡(𝑑) represent a constrained optimal point, and
therefore are a different function of the disturbances, (𝑦𝑜𝑝𝑡(𝑑) − 𝑦∗) =
𝐹(𝑑 − 𝑑∗). We can determine 𝐹 from the constrained optimization
roblem as follows:

𝐽𝑢𝑢 𝑔𝑇𝑢,
𝑔𝑢, 0

][

𝛥𝑢𝑜𝑝𝑡

𝛥𝜆𝑜𝑝𝑡

]

=

[

−𝐽𝑢𝑑
−𝑔𝑑,

]

𝛥𝑑 (47)

First we eliminate 𝛥𝑢𝑜𝑝𝑡 by premultiplying both sides by
𝑔𝑢,𝐽−1

𝑢𝑢 −𝐼
]

, leading to the solution 𝛥𝜆𝑜𝑝𝑡 = 𝑊𝛥𝑑, where

 =
(

𝑔𝑢,𝐽
−1
𝑢𝑢 𝑔

𝑇
𝑢,

)−1
(

𝑔𝑑, − 𝑔𝑢,𝐽
−1
𝑢𝑢 𝐽𝑢𝑑

)

The solution for the new optimal inputs follows as 𝛥𝑢𝑜𝑝𝑡 = −𝐽−1
𝑢𝑢

(

(𝑔𝑢,)𝑇𝑊 + 𝐽𝑢𝑑
)

𝛥𝑑, and the optimal sensitivity matrix 𝐹 can be
obtained as:

𝐹 = 𝐹 − 𝐺𝑦𝐽−1
𝑢𝑢 𝑔

𝑇
𝑢,𝑊 (48)

ith 𝐹 being the unconstrained optimal sensitivity matrix. The second
erm of 𝐹 is related to constraint control, and we can see that, with
𝑛 = 𝐽−1∕2

𝑢𝑢 :


𝑇𝐻𝐹 = 𝑁

𝑇𝐻𝐹 −𝑁
𝑇

= 𝐼
⏞⏞⏞⏞⏞
𝐻𝐺𝑦𝐽−1

𝑢𝑢 𝑔𝑇𝑢,𝑊

𝑇

= 0
⏞⏞⏞⏞⏞⏞⏞

𝑇 𝑇 𝑇
= 𝑁 𝐻𝐹 −𝑁 𝑔𝑢, 𝑊 = 𝑁 𝐻𝐹
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This means that the last two terms in Eq. (46) are minimized by the
unconstrained self-optimizing control solution for 𝐻 = 𝐻𝐽 (13), and
therefore the reduced gradient estimate

𝑁
𝑇 𝐽𝑢 = 𝑁

𝑇𝐻𝐽 (𝑦𝑚 − 𝑦∗) (49)

is the unconstrained CV that should be kept at zero to minimize the
expected norm of 𝑧𝑤.

Appendix B. Effect of nominal setpoint

Here, we evaluate the effect of having a non-optimal reference
point. From Eq. (16) and choosing 𝑀𝑛 = 𝐽−1∕2

𝑢𝑢 , we have:

𝑐(𝑢, 𝑑) − 𝑐(𝑢𝑜𝑝𝑡(𝑑), 𝑑) = 𝐽𝑢(𝑢, 𝑑) − 𝐽𝑢(𝑢𝑜𝑝𝑡(𝑑), 𝑑)

The same expression is valid for the nominal point, according to:

𝑐(𝑢∗, 𝑑∗) − 𝑐(𝑢𝑜𝑝𝑡(𝑑∗), 𝑑∗) = 𝐽𝑢(𝑢∗, 𝑑∗) − 𝐽𝑢(𝑢𝑜𝑝𝑡(𝑑∗), 𝑑∗)

Here, we assume that 𝑢∗ ≠ 𝑢𝑜𝑝𝑡(𝑑∗), that is, the nominal point is not
optimal. For the unconstrained problem, 𝐽𝑢(𝑢𝑜𝑝𝑡(𝑑), 𝑑) = 𝐽𝑢(𝑢𝑜𝑝𝑡(𝑑∗), 𝑑∗)
= 0, and we subtract the two equations to give:

𝐽𝑢(𝑢, 𝑑) = 𝐽𝑢(𝑢∗, 𝑑∗) + 𝑐(𝑢, 𝑑) − 𝑐(𝑢∗, 𝑑∗)

−
(

𝑐(𝑢𝑜𝑝𝑡(𝑑), 𝑑) − 𝑐(𝑢𝑜𝑝𝑡(𝑑∗), 𝑑∗)
)

or

𝐽𝑢(𝑢, 𝑑) = 𝐽𝑢(𝑢∗, 𝑑∗) +𝐻(𝑦𝑚 − 𝑦∗) −𝐻 (𝑦𝑚 − 𝑦)
⏟⏞⏟⏞⏟

𝑛𝑦

−𝐻𝐹 (𝑑 − 𝑑∗) (50)

Choosing the exact local method solution for 𝐻 from (13), we
minimize the last two terms from the previous equation, and the
optimal gradient estimate to be controlled is given by:

𝐽𝑢(𝑢, 𝑑) = 𝐻𝐽 (𝑦𝑚 − 𝑦∗) + 𝐽𝑢(𝑢∗, 𝑑∗)

as stated in Eq. (20). As previously shown, this gradient estimate is
also valid for the constrained region, with the corresponding reduced
gradient estimate being the optimal variable to be controlled.
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