Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 56-2 (2023) 11841-11846

Fast Reinforcement Learning Based MPC

based on NLP Sensitivities *

Saket Adhau* Dirk Reinhardt ** Sigurd Skogestad *
Sébastien Gros **

* Department of Chemical Engineering, Norwegian University of
Science and Technology, 7491, Trondheim, Norway. (e-mail:
{saket.adhau,sigurd. skogestad} @ninu.no).

** Department of Engineering Cybernetics, Norwegian University of
Science and Technology, 7491 Trondheim, Norway (e-mail:
{dirk.p.reinhardt, sebastien.gros}@ntnu.no)

Abstract: This paper proposes a comprehensive approach to improve the computational
efficiency of Reinforcement Learning (RL) based Model Predictive Controller (MPC). Although
MPC will ensure controller safety and RL can generate optimal control policies, combining the
two requires substantial time and computational effort, particularly for larger data sets. In a
typical RL-based MPC and @Q—learning workflow, two not-so-different MPC problems must be
evaluated at each RL iteration, i.e. one for the action-value and one for the value function,
which is time-consuming and prohibitively expensive in terms of computations. We employ
nonlinear programming (NLP) sensitivities to approximate the action-value function using the
optimal solution from the value function, reducing computational time. The proposed approach
can achieve comparable performance to the conventional method but with significantly lower
computational time. We demonstrate the proposed approach on two examples: Linear Quadratic

Regulator (LQR) problem and Continuously Stirred Tank Reactor (CSTR).
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Reinforcement learning, Economic model predictive control, Nonlinear

programming, Sensitivity

1. INTRODUCTION

Model predictive control (MPC) has been widely used
for the control of dynamic systems due to its ability to
optimize future control actions based on a mathematical
model of the system (Qin and Badgwell, 2003). How-
ever, uncertainties in model parameters, measurement er-
rors, stochasticity, unmodeled dynamics, and incomplete
knowledge of the system can introduce errors, leading to
suboptimal control performance. To address these chal-
lenges, researchers have proposed combining data-driven
and model-based control. In particular, Gros and Zanon
(2019), proposed an approach that leverages data-driven
techniques to enhance the performance of MPC in com-
plex systems with nonlinear dynamics and uncertainties,
without relying solely on a precise mathematical model of
the system. This approach will hereafter be termed as RL
based MPC or simply RL-MPC.

The approach proposed by Gros and Zanon (2019) can
achieve good control performance for complex systems
with uncertain and nonlinear dynamics, but it is often
computationally inefficient due to the iterative nature of
updating the policy parameters. In their approach, an
MPC scheme is used to support the parametrization to

* This work was supported by the Research Council of Norway
(RCN), under the IKTPLUSS program (Project number 299585)
and through the project Safe Reinforcement Learning using MPC
(SARLEM), grant number 300172.

approximate the action-value function, which requires it-
erative updates of the policy parameters to converge to
an optimal solution. This iterative process can be time-
consuming and computationally expensive, especially for
systems with high-dimensional state and action spaces.
The usual workflow in this approach is to evaluate two
optimal control problems (OCP) in a single RL iteration,
as both the value function and action-value function are
parameterized using an MPC scheme. As a result, this
increases the computational burden, making the approach
less efficient for real-time control applications. Addition-
ally, RL algorithms require large amounts of data to train
to an acceptable level of performance, further increasing
the computational cost.

To mitigate these challenges, we propose a method to
reduce the computational burden by approximating the
action-value function using nonlinear programming (NLP)
sensitivities derived from the optimal solution of the value
function. By exploiting these sensitivities, we only need to
evaluate one optimal control problem (OCP) in a single
RL iteration, instead of two, resulting in a significant re-
duction of computational effort and time without compro-
mising control performance. This approach is particularly
well-suited for complex real-time control applications. We
demonstrate our approach on two benchmark methods
commonly used in the field of control engineering. We
show that even using NLP sensitivities for action-value
function approximation can provide comparable control

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.10.586

11842

performance to traditional RL methods. This highlights
the potential of our method to improve the computational
efficiency of RL-based control strategies.

The paper is organized as follows: In Section 2, we provide
a brief overview of parametric nonlinear programming and
sensitivity analysis. Section 3 introduces background on
RL-based MPC. The proposed approach for approximat-
ing the OCP associated with the action-value function is
presented in Section 4, followed by implementations and
numerical examples in Section 5. Finally, in Section 6, we
conclude the paper.

2. NLP SENSITIVITIES

Nonlinear model predictive control (NMPC) is a widely
used control technique in various fields due to its ability
to handle nonlinear and non-convex systems. However,
it is also known to pose significant computational chal-
lenges due to the need to solve a sequence of online opti-
mization problems repeatedly. Additionally, the presence
of constraints and nonlinearities can further exacerbate
these challenges (Santos et al., 2001). To tackle this prob-
lem, various real-time NMPC strategies have been pro-
posed, including explicit MPC for e.g. (Bemporad et al.,
2002), neighboring extremals for e.g. (Diehl et al., 2005a),
Newton-type controllers for e.g. (Diehl et al., 2005b), and
controllers based on NLP sensitivities for e.g. (Biiskens
and Maurer, 2001; Zavala et al., 2008).

The authors Zavala et al. (2008) and Zavala and Biegler
(2009) suggest the use of NLP sensitivities to predict
the future state of the plant based on the current con-
trol action. This allows for the approximation of the
future optimal control problem (OCP) in advance and
was later used to solve MPC problems with an economic
objective function by Jaschke et al. (2014). Alternatively,
the real-time iteration scheme proposed by Diehl et al.
(2005a) approximates the next control law by solving a few
quadratic programming (QP) problems, which are consid-
erably faster to evaluate. This real-time iteration (RTT)
scheme was also adapted as a function approximator for
RL by Zanon et al. (2020). This integration of RTT scheme
has enabled the implementation of the approach proposed
in (Gros and Zanon, 2019) to a wide range of real-time
systems. In the upcoming section, we will delve into a
concise explanation of the theory behind NLP sensitivities.

2.1 Parametric Nonlinear Optimization Problem

Parametric NLP involves solving a nonlinear optimization
problem where the objective function and constraints de-
pend on a set of parameters. In this context, we consider a
general parametric NLP with both equality and inequality
constraints, which can be written as:

?(p) =min F(w,p), (1a)
st. ¢i(w,p)=0, Viel, (1b)

where the decision variables are denoted by w € R™» and
the parameter vector by p € R". Further, F' : R™» X
R"™ — R is the scalar cost, Z denotes the set of indices of
inequality constraints, and £ denotes the set of indices of
equality constraints.

Saket Adhau et al. / IFAC PapersOnLine 56-2 (2023) 11841-11846

The Lagrangian function £ for the problem % (p) is given
by:

L(w, X, p,p) == F(w,p) + X' c(w,p) + p' g(w,p), (2)

where A and p are the Lagrangian multipliers correspond-
ing to the respective equality and inequality constraints.
Suppose that F(-,-), and g(-,-) are continuously differ-
entiable and w* is a local optimizer. If the linear inde-
pendence constraint qualification (LICQ) condition holds
at w*, then the first-order optimality or Karush-Kuhn-
Tucker (KKT) conditions for 9 (p) are given by

Vw‘c(w*’ A*a ,u*,p) =0, (3&)
ci(w*,p) =0, Vie¢E, (3b)
gi(w*,p) <0, Viel, (3c)

pr>0, Viel, (3d)
pigi(w*,p) =0, Viel (3e)

A point 2*(p) := [w*, A", pu*] of primal-dual variables
satisfying the KKT conditions (3) for a given initial
parameter p, is called a KKT point for p. If the parameter
p is clear from the context, we simply write z* instead of

2*(po)-

The set of indices of active constraints is denoted by Za,
and is defined as Zy = {i € Z : ¢g;(w*) = 0} UE.
However, for a local minimizer of (1) to be a KKT point, a
constraint qualification is required (Nocedal and Wright,
1999). Specifically, the LICQ condition must hold at w,
which means that the vectors {Vg;(w)};ez, are linearly
independent. Moreover, the strict complementarity condi-
tion holds if p; > 0 for all i € Z,.

This set of KKT conditions is typically expressed as
a system of nonlinear equations and inequalities in the
primal and dual variables, and is used to solve parametric
NLP problems numerically, using optimization algorithms
such as sequential quadratic programming (SQP) and
interior point methods.

VauL(2*(p),p)
c(w*, p)

~0. (4)
p* ' g(w*,p)

©(z*(p),p) =

Theorem 1. Let F(-,-), ¢(-,-) and g(-,-) of the parametric
NLP problem 2 (p) be twice continuous differentiable in
a neighborhood of the KKT point z*(pg). Further, as-
sume strict complementarity (SC), linear independence
constraint qualification (LICQ), and second order suffi-
cient condition (SOSC) hold for the solution vector z*(py).
Then,

e 2*(po) is an isolated local minimizer of % (py) and the
associated Lagrangian multipliers A* are unique.

e For parametric perturbations Ap in the neighborhood
of pg, there exits a unique, continuous and differen-
tiable vector function z*(po 4+ Ap) which is a local
minimizer satisfying SOSC and LICQ for 2 (po+Ap).

e For parametric perturbations Ap in the neighborhood
of pg, the set of active constraints remain unchanged.

Proof. See Fiacco (1983).

The above results allow us to apply the implicit function
theorem to (4) at z*(po), such that:

Saket Adhau et al. / IFAC PapersOnLine 56-2 (2023) 11841-11846

dp
87)_0' (5)

0 . _ Op 0z~
T 0z Op
pP=po
Since the nominal solution satisfies both the SOSC and
LICQ conditions, the KKT matrix (4) at the KKT point
z*(po) is non-singular (Nocedal and Wright, 1999), and
hence, can be used to calculate the sensitivity matrix
from (5). The first-order estimates of the solution for
neighboring problems can then be obtained as:

0z*(po)
o Ap, (6)

where Z(p) is the approximate primal-dual solution of
the optimization problem 2 (pg + Ap). This is a compu-
tationally efficient approach, as the cost of solving this
linear system is typically much lower than that of solving
P (po + Ap) through a conventional optimization routine,
especially when the number of decision variables is large,
provided the solution z*(pg) is available. This makes sen-
sitivity analysis a powerful tool in optimizing and control-
ling complex systems.

z(p) = 2" (po) +

Similarly, the first order Taylor expansion of the optimal
cost for the problem % (py + Ap) can be expressed as
~ B OF(z*(po))
F(z(p)) = F(z*(po)) + TAP, (7)
where the first order sensitivity derivative of the objective
function is given by (Biiskens and Maurer, 2001)

0

+F (2*(p),p)

- - L&)

pP=Po
and the second order Taylor expansion of the optimal cost
is given as

F(z(p)) = F(z*(po)) + IF (2" (po))

Ap

L1
2 Op?

3. REINFORCEMENT LEARNING BACKGROUND

Consider a real system having state transition dynamics
described by a Markov Process (MP) with state s and
action a and a state transition s,a — s described by a
probability density

P[st]|s,a]. (10)
To model the system as a Markov Decision Process
(MDP), we augment this model with a stage cost function
{(s,a) and a discount factor 0 < v < 1.

Let us consider a deterministic policy that delivers the con-
trol action @ = 7(s), giving a Markov Chain distribution
77. The ultimate goal of RL is to find the best policy 7*
by evaluating the cumulative cost of the policy =, i.e. by
solving,

7 :=argmin J(7) :=E~

Z'ykf(sk,ﬂ'(sk))] . (11)
k=0

The optimal action-value function Q*, value function V*,
and optimal policy 7*(s) associated to the MDP, are
defined by the Bellman equations (Bertsekas, 2005):

11843
Q" (s,a) = l(s,a) +7E[V*(s1)|s,al, (12a)
Vi(s) = Q" (s,7" (8)) = min Q" (s,@). (12b)

Various RL methods have been proposed in the literature
to generate the optimal policy 7*. However, in this paper,
we will be specifically focusing on the classical Q—-learning
algorithm.

3.1 ENMPC as a Function Approzimator

The use of an ENMPC scheme as a generic function
approximator for RL has been proposed by Gros and
Zanon (2019). The authors, have demonstrated that an
ENMPC scheme can support the parametrization of the
action-value function Qg, Vy and the policy my. The central
result is that with some modifications in the stage cost,
terminal cost, and constraints, ENMPC scheme can deliver
optimal control policy even when the model underlying the
MPC scheme is incorrect. We briefly summarize the main
results of Gros and Zanon (2019) in the following.

Let us use a parameter vector 8 and consider the following
parametrization of an ENMPC scheme to approximate the
value function:

N-1

Vs(s) = min Xo(@o) + 7V Vi (@n) + D 7 lo(wr, ur)
= (13a)
s.t. xp=s, (13b)
Tp+1 = Fo(xp, ug), (13c)
g(ug) <0, (13d)
ho(zr, up) <0, hi(zy) <0, (13e)

where the stage and terminal cost Eg,Vef, the system
dynamics fy and the constraints hg,hg and the storage
cost \g are parametric functions of 6. To ensure feasibility
of (13), Gros and Zanon (2019) propose to use an exact
relaxation of the state-dependent constraints. We define
the policy

mg(s) = u’, (14)
where ug is the first element of the optimal input sequence
ug, ..., ul_, solution of (13) for a given state s. Further,
we define the action-value function Qg (s, a) as

Qo(s,a) = rqrtnfil (13a), (15a)
s.t. (13b) — (13e), (15b)
ug = a, (15¢)

Note that the two problems i.e. (13) and (15) differ
only with an additional constraint wg = a in (15).
The proposed parametrization satisfies the fundamental
equalities underlying the bellman equations, i.e.,

mo(s) = argmin Qp(s,a), Vp(s) =min Qy(s,a). (16)

a a

Additionally, the Lagrange function underlying the param-
eterized ENMPC scheme in (15) is given as:

Lo(y) =o(xo) +7V Vg (@n) + X0 (€0 — 8) + wihy ()

N-—1
+) X (Fo(@r, ur) — zin) + v gous)
k=0
k T T
+ 7 g (g, ur) + py, ho(xp, u) + ¢ (uo — a),

(17)

11844

where x, p, v, ¢ are the multipliers associated to the con-
straints (15b)-(15¢), and y = (x,u,Xx,,v,¢) are the
primal-dual variables associated to (15). Note that for
¢ =0, Ly(y) is the Lagrange function associated to the
problem (13), or Vy(s). Using the results in (8), we observe
that,
0 0

%VG(S) = %Ee(yo)v

where ¢ is the primal-dual solution of (13).

(18)

3.2 Q— Learning for ENMPC

In Q—learning, the action-value function is parameterized
as Qo(s, a), where 0 is a vector of parameters. The classical
Q—learning algorithm updates these parameters based on
temporal differences, with instantaneous policy updates.

Ok = U(sp,ay) + Wg:f} Qo (Skt1,0541) — Qo (Sk, ax),
(19a)

0 — 0+ adrVeQy (.S}€7 ak) s (19b)

where the scalar a > 0 is the learning rate.

4. SENSITIVITY ANALYSIS

To use ENMPC as a function approximator in RL using
the @Q—learning method, one needs to evaluate Qy(s, a),
Vo(s) in (19a) and its parametric sensitivities, i.e VyQq
in (19b). The terms Qy(s,a), Vp(s) are conventionally
obtained by evaluation of two parametric nonlinear pro-
gramming problems, i.e. (13), and (15), of which, both
need to be solved at each iteration. The evaluation of these
two NLP problems can be computationally demanding
and on a closer observation, (13) and (15) differ only
with a single constraint, i.e. ug = a. Hence, Qq(s,a)
can be approximated with the help of parametric NLP
sensitivities using the optimal solution from (13). Approx-
imation of Qg (s, @) from the optimal value function Vp(s),
avoiding the evaluation of one extra NLP, and reducing the
computational time required for a single RL iteration.

4.1 Approzimation of Qp(s,a) and VeQy wusing NLP
Sensitivities

In this section, we detail on how to approximate the action-
value function Qg(s,a) and its gradient VyQy from the
optimal solution of (13) using the results presented in
Section 2.1. More specifically, we propose to solve problem
(13) to full convergence and avoid solving (15). Using (9),
the second order Taylor expansion of the optimal value
function can be written as
0Qy(s,a)

Qo(s,a) = Vy(s) + TACL

a=my(s)

+0%Qq(s,0a)

942 Aa

+ = (Aa) , (20)

a=mo(s)
where Aa = a — my(s) and my(s) is the policy (14).
Note that the first order Taylor expansion cannot be used
because the term,

0Qy(s,a)

oa

1
2

0
= 7£9(y*) = Oa

90 (21)

a=my(s)

where Lg(y*) and y* are associated to the problem (15).

Saket Adhau et al. / IFAC PapersOnLine 56-2 (2023) 11841-11846

Next, we detail on how to approximate the gradient of
Qo(s,a) as required in (19b) using Taylor expansion:

0 0%Qq(s,a)

%Qe(s, a)~ %Va(s) + (@—mn(s)) .

000a
m(s)
(22)
where,
#Qo(s,a) d dQe(s,a) d ILy(y*)
000a d§ Oa dd Oa

_PLW) | PLW)

000a dady 00’

5. SIMULATIONS

In this section, we demontsrate the capabilities of our pro-
posed method by applying it to two benchmark problems.
We apply the approach to a simple LQR case study and an
example from the process industry, namely continuously
stirred tank reactor (CSTR). These simulations serve to
illustrate the potential of our approach for practical appli-
cations in economic MPC.

5.1 LQR case

Consider the trivial linear dynamics and quadratic stage
cost of a regulator LQR, problem.

L(s,a) =s*+a*>+4sa 0 (24)
The optimal steady-state, denoted as (ss,as) = (0,0),
can be easily calculated for the given linear dynamics and

quadratic stage cost. Using the Riccati equation, the exact
optimal value function and policy can be given as:

V*(s) = 11.7446s%, 7*(s) = 1.6861s

Sp41 = 28 — ay,

The parameterized stage cost EA(;, the terminal cost Ty and
the storage function Ag are selected as

No(s) = 0152, Tp(s) = 0257, (25a)
fo(s) = | " {65 04 [s (25D)
0 “a 05 06 al’

where the vector of parameters @ = 64,...,0 can be

adjusted using @)—learning. We initialize these parameters
as 6y = [0.1,1,1,0,0,0]". For our simulations, we set the
prediction horizon to N = 5, learning rate to a = 5e~3
and the discount factor to v = 1.

The iterative updates of the parameters 8 using (Q—learning
are compared between two methods: solving Qg(s,a) to
full convergence and approximating it using NLP sensi-
tivities, as shown in Fig.1. The results indicate that the
update steps are similar for both methods. Furthermore,
Fig.2 demonstrates that ()—learning can capture the op-
timal value function even when Qg(s,a) and VyQo(s, a)
are approximated using NLP sensitivities.

5.2 CSTR Case Study

We demonstrate the proposed method using the isother-
mal Van de Vusse reaction in a continuous stirred tank
reactor as an illustrative example (Chen et al., 1995; Klatt
and Engell, 1993). This model includes both material and

Saket Adhau et al. / IFAC PapersOnLine 56-2 (2023) 11841-11846

0.10 1.0004

1.60 =

=
-0.01 1.0003 1.48
-0.12 1.0002 1.36
< s <
-0.22 1.0002 1.24
-0.33 1.0001 1.12
-0.44 1.0000 1.00
0 25 50 0 0 25 50
1.02 1.02 1.8
0.82 0.82 1.44
0.61 0.61 1.08
= - <
< < <
0.41 0.41 0.72
0.20 0.20 0.36
0.00 0.00 0
25 50 0 25 50 0 25 50
RL iterations RL iterations RL iterations
‘—Full Convergence =— =NLP Sensilivilies‘

Fig. 1. Comparison of the iterative update of parameter
vector 6 using ()—learning when the action-value
function Qg(s,a) is solved until full convergence vs.
when it is approximated using NLP sensitivities. The
plots show the progress of the parameter updates
over time for both methods. Note that the scales are
different.

enthalpy balances, and is described by the following equa-
tions:
ca =ra(ca,T) + [cin — calua
cp =rp(cA, cp,T) — cpu,
T = h(ca,cp, T) + @[T — T) + [Tin (26¢
T. = B[T — T.] + sus, (26d
with ca(t),cp(t) the concentrations of A and B respec-
tively, T'(t) and T¢(t) the temperatures in the reactor and

in the cooling jacket. The reaction rates r4 and rp, and
the reaction enthalpy contribution h are described by

(26a
(26b

)
)
— Tu,)
)

ralca,T) = — ki (T)ca — ka(T)CA, (27)
rg(ca,cg,T) = ki(T)[ca — cg], (28)

h(CA, cB, T) =— ﬁ[kl(T)[CAAHAB + CBAHBC]
+ ko (T)AAHap) (29)

with the functions k1 (T") and ko (T) of the Arrhenius type:

—E
ki(T) = k; —), i=12.
(T) = ko exp (T+273.15) '

The above mentioned concentrations and temperatures
constitute the state © = [ca,cp,T,T.] with dynamics
given by (26a)—(26d). The control inputs u = [u1,uz] are
normalized input flow rate uj(¢) > 0 through the reactor
and the cooling power us(t) < 0 applied in the cooling

(30)

——RL Step 1

RL Step 2
——RL Step 3
RL Step 4
RL Step 5
——RL Step 6
——RL Step 8
——RL Step 10
RL Step 15
——RL Step 20
RL Step 25
RL Step 35
——RL Step 50

— T

Fig. 2. Convergence of the approximated value function to
the optimal V* using the proposed approach..

11845

jacket. The model parameters are summarized in Table 1.

Table 1. Model Parameters and the considered
setpoints of the CSTR system (Chen et al.,

1995).
® =30.8285h1 B = 86.688h~1
s = 3.556 x 1074 m3K/kJ S =0.1KkJ!
k1o = (1.287) x 1012 h~! E1 =09758.3
k2o =(9.043) x 10 m?/molh | B2 = 8560
AHsp =4.2kJmol !
AHpc = —11kJmol™!
AHu,p = —41.85kJmol~!
Cin = 5100 % 600 mol/m? Ty, = 104.9K™1
CAp = 3517.5mol/m3 cg, = 740mol/m3
To =87K Tey =T9.8K

We consider the problem of maximizing the production
rate of cp:

F = —cpuy, (31)

and the ENMPC scheme is designed as depicted in (13),
with N = 12min and sampling time of Ty, = 6,

1’;111{1 No(z0) + YNV (2n +w ' op) (32a)

N—-1
+) A (Flaw, ur) + w ox) (32b)
k=0

(32¢)
(32d)

st xpy1 = fo(xr,up), xo=s,
g(uk) <0, he(zx) < o

In this work, for formulating the MPC problem, we use
CasADi (Andersson et al., 2019) with IPOPT as the
Nonlinear Programming (NLP) solver. For learning the
optimal policy, we use (J—learning with a learning rate of
a = 1073, The discount factor, was set to v = 0.99. All the
simulations have been performed on a MacBook Pro with
Intel Core i7 running at 2.6 GHz and 16 GB of memory.

We conducted a closed-loop simulation to compare the
performance of the proposed method with the conventional
approach, wherein both optimization problems are solved.
The experimental results of state evaluation for c¢g, T', and
the control inputs u; and uo are depicted in Figure 3. As
observed, the performance of both methods is remarkably
similar, thereby establishing that the proposed approach
would not impede the closed-loop performance.

Table 2 presents the computational time required to solve
problem (15) to full convergence and to approximate prob-
lem (13) using NLP sensitivities in a single RL iteration.
Notably, the proposed approach substantially reduces the
average CPU time needed for a single RL iteration, with-
out compromising the average cost.

Table 2. Comparison of average cost and com-

putation time for the CSTR system when solv-

ing (13) until full convergence and when ap-
proximating it using NLP sensitivities.

CSTR Average Cost

28463
28943

Average CPU time [s]

9.57
3.48

Full Convergence
NLP Sensitivities

11846

1000

Saket Adhau et al. / IFAC PapersOnLine 56-2 (2023) 11841-11846

120

950 -
. 110+
= 900} .
3 =
Lm 850 F & 100+
A8
800
90
750 b . b .
0 10 20 30 40 50 0 10 20 30 40 50
4
\
-4.5
@ St
3
-5.5
-6+
O L L L L L L L L
0 10 20 30 40 50 0 10 20 30 40 50
Time [min] Time [min]
‘ ——Full Convergence = =NLP Sensitivities ‘

Fig. 3. Performance comparison of two approaches for states cg, T', and control inputs uy, us. The first approach involves
solving (13) until full convergence, while the second approach approximates (13) using NLP sensitivities

6. CONCLUSION

In this paper, we have presented a simple yet effective
approach to enhance the computational efficiency of RL-
based MPC by utilizing NLP sensitivities. Our proposed
method approximates the action-value function by exploit-
ing similarities between consecutive nonlinear program-
ming problems and leveraging NLP sensitivities. Through
numerical simulations on two benchmark problems, we
have demonstrated that our approach is capable of signifi-
cantly reducing computational time without compromising
controller performance. Our results suggest that the pro-
posed framework offers a promising direction for future
research aimed at further improving the computational
efficiency of RL-based MPC.

REFERENCES

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). CasADi — A software framework for
nonlinear optimization and optimal control. Mathemat-
ical Programming Computation, 11, 1-36.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38, 3—20.

Bertsekas, D.P. (2005). Dynamic programming and opti-
mal control, volume 1 of optimization and computation
series. Athena Scientific, Belmont, MA, USA, 8rd edi-
tion. Cited on, 2.

Biiskens, C. and Maurer, H. (2001). Online optimization of
large scale systems, chapter sensitivity analysis and real-
time optimization of parametric nonlinear programming
problems. Berlin Heidelberg, Berlin, Heidelberg, 3—16.

Chen, H., Kremling, A., and Allgéwer, F. (1995). Nonlin-
ear predictive control of a benchmark CSTR. Proceed-
ings of 3rd European control conference, 3247-3252.

Diehl, M., Bock, H.G., and Schloder, J.P. (2005a). A
real-time iteration scheme for nonlinear optimization in
optimal feedback control. STAM Journal on Control and
Optimization, 43, 1714-1736.

Diehl, M., Findeisen, R., Allgéwer, F., Bock, H.G., and
Schléder, J.P. (2005b). Nominal stability of real-time

iteration scheme for nonlinear model predictive control.
IEE Proceedings-Control Theory and Applications, 152,
296-308.

Fiacco, A.V. (1983). Introduction to sensitivity and sta-
bility analysis in nonlinear programming, volume 165.
Academic press.

Gros, S. and Zanon, M. (2019). Data-driven economic
NMPC using reinforcement learning. IEEE Transac-
tions on Automatic Control, 65, 636—648.

Jaschke, J., Yang, X., and Biegler, L.T. (2014). Fast
economic model predictive control based on NLP-
sensitivities. Journal of Process Control, 24, 1260-1272.

Klatt, K. and Engell, S. (1993). Kontinuierlicher
rithrkesselreaktor mit neben—und folgereaktionen.
Nichtlineare Regelung—Methoden, Werkzeuge,

Anwendungen, VDI-Berichte, 101-108.

Nocedal, J. and Wright, S.J. (1999). Numerical optimiza-
tion. Springer.

Qin, S.J. and Badgwell, T.A. (2003). A survey of industrial
model predictive control technology. Control engineer-
ing practice, 11, 733-764.

Santos, L.O., Afonso, P.A., Castro, J.A., Oliveira, N.M.,
and Biegler, L.T. (2001). On-line implementation of
nonlinear MPC: an experimental case study. Control
FEngineering Practice, 9, 847-857.

Zanon, M., Kungurtsev, V., and Gros, S. (2020). Rein-
forcement learning based on real-time iteration NMPC.
IFAC-PapersOnLine, 53, 5213-5218.

Zavala, V.M. and Biegler, L.T. (2009). The advanced-step
NMPC controller: Optimality, stability and robustness.
Automatica, 45, 86-93.

Zavala, V.M., Laird, C.D., and Biegler, L.T. (2008). Fast
implementations and rigorous models: Can both be
accommodated in NMPC? International Journal of
Robust and Nonlinear Control: IFAC-Affiliated Journal,
18, 800-815.

