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Abstract:
Many processes in the industry often consist of several subsystems (i.e., clusters) that share
common constraints. Typically, each subsystem strives for its objective by competing in obtain-
ing the shared resource, e.g., raw materials extracted from mining activities and production
or processing plant capacity. A distributed optimization can solve such a problem, however,
it involves solving a numerical optimization problem online and is usually computationally
extensive. One can utilize online iteration of Dual decomposition (without numerical solver)
to solve such a problem. However, in this approach the constraint is typically controlled on
a slow time scale causing significant dynamic constraint violation in the transient, especially
in active constraint region switching. In practice, a ”back-off” strategy is necessary, and it
may lead to profit loss in the long run. To address this issue, we propose to utilize online
Primal decomposition instead, where the problem turns into a feedback-based problem, and the
constraint controller(s) distribute local setpoints without violating the common constraint. The
simulation results show that the proposed approach can reach the ideal steady-state optimum.

Keywords: Distributed optimization, Primal decomposition, Feedback control, Production
optimization

1. INTRODUCTION

In recent times process industries are committed to re-
ducing their environmental footprints to ensure long-term
sustainable production and thereby tackle climate change.
This action includes efforts to improve the efficiency of
energy and resource (e.g., raw materials extracted from
mining activities, and production or processing plant ca-
pacity) of the processes during operation, which can be
achieved by implementing real-time optimization (RTO).
For the most part, the scope of RTO, in general, was
restricted to simple tools for unit operations or small-
scale processes within a larger site. In large-scale systems,
this takes shape as a decentralized RTO structure where
some clusters of the operating units are optimized while
the system-wide optimal operation is not achieved.

One potential solution to achieve system-wide optimal
operation is distributed optimization framework (Wenzel
et al. (2016)). In this framework, the large-scale problem is
decomposed into several smaller sub-problems and a cen-
tral problem coordinates these local subsystems to achieve
global optimality. The different strategies for decomposing
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these large-scale problems can be broadly classified as
primal decomposition and dual decomposition methods
(Boyd et al. (2008)). In primal decomposition methods,
the central problem allocates existing shared resources by
directly giving each subproblem the number of resources
that it can use, hence these methods are sometimes re-
ferred to as auction-based algorithms. In dual decompo-
sition, usually referred to as price-based methods, the
central coordinator sets the price for the resources to each
subproblem, this marked price drives the decision on the
number of resources that the subproblem will use. To this
end in both primal and dual decomposition, the different
subproblems and the central problem are solved online
iteratively, until the problem converges to a feasible and
optimal solution.

Decomposition strategies are an active field of research
in both real-time optimizations (RTO) as well as model
predictive control (MPC) (Maestre et al. (2014)). These
strategies have several advantages, i.e., allowing dis-
tributed implementation (especially for a problem with
additively separable cost), and explicit constraint con-
trol. However, their adoption in practice requires solv-
ing a numerical optimization problem online which is a
fundamental limiting factor for process industries due to
issues related to numerical robustness and computational



cost. Additionally, the expected benefits of a numerical
optimization-based RTO are best realized with regular
maintenance and monitoring (Shook (2006)), which re-
quires expert knowledge. For these reasons, the imple-
mentation of a distributed RTO in large-scale process
systems with complex interconnections has been limited.
Lastly, and more importantly, it allows for a separation
in time scale of the subsystems (because of distributed
implementation).

To this end, there has been increased interest in the
development of feedback-optimizing control. In this ap-
proach, the economic objectives are translated into control
objectives and the optimal plant operation is achieved
by directly manipulating inputs using the feedback. This
concept was introduced in the 1980s by Morari et al.
(1980). Since then different feedback-based real-time op-
timization (RTO) methods have been developed further
(Engell, 2007; Jäschke et al., 2017).

Recent articles such as Krishnamoorthy (2021) and Dirza
et al. (2021) proposed a distributed RTO framework based
on a central price coordinator scheme (i.e. dual decompo-
sition) that uses simple feedback control tools to ensure
that the closed-loop trajectories of the different subsys-
tems converge to a stationary solution of the system-
wide optimization problem. This proposed framework was
limiting in the sense that the coupling constraint may
not be feasible during the transients. Hence, the primal
feasibility was guaranteed only upon the convergence to
the system-wide steady-state optimal solution. This would
require introducing back-off and accepting associated loss
to address primal infeasibility during transients.

In this work, we aim to address the issue of primal in-
feasibility and propose an online optimization method for
optimal resource sharing based on primal decomposition
using simple feedback controllers. The proposed frame-
work is especially attractive wherein the associated sub-
systems share their local Lagrange multiplier of the shared
resources (also known as local shadow price).

The main contribution of this paper is a distributed
feedback-based real-time optimization framework based on
primal decomposition, that achieves optimal steady-state
operation in a distributed manner, without the need to
solve numerical optimization problems online and with
minimum dynamic constraint violation.

We demonstrate the proposed method in a network of
gas-lifted oil wells production system. These oil wells are
operated locally and share a common processing facil-
ity at the topside. Using recent technology, the subsea
production wells have capabilities for the measurement
of the multi-phase flow rates (i.e. multiphase flowmeter,
MPFM or virtual flowmeter, VFM technology solutions)
at respective wellheads (Hansen et al., 2019). Since the
produced gas handling capacity available on a platform is
usually limited, it is necessary to optimally allocate the
lift gas among the different wells.

The remainder of the paper is organized as follows. Section
2 describes the optimization problem formulation for the
overall production facility. Section 3 describes the pro-
posed method. Section 4 presents the simulation example
of gas-lifted oil production optimization with limited pro-

duced gas handling capacity before concluding the paper
in Section 5.

2. PROBLEM FORMULATION

In this section, we describe the optimization problem for
the entire system consisting of a network of N subsystems.
These subsystems are denoted by the set N = {1, . . . , N}.
Due to practical reasons, i.e., it is easier to operate a small
system, we assume each subsystem is optimized locally.

Let subsystem i be modeled as a nonlinear state-space
system.

ẋi = fi(xi,ui,di)

yi = hi(xi,ui,di)
(1)

where xi ∈ Rnx,i , ui ∈ Rnu,i , di ∈ Rnd,i and yi ∈ Rny,i de-
note the vector of states, inputs, disturbances/parameters
and available measurements of each subsystem, respec-
tively. Each subsystem may also have local constraints.

We consider the overall network as a nonlinear state-space
system and define all inputs, states, and disturbances as
shown in the following.

u = [u1, . . . ,uN ]
⊤
;x = [x1, . . . ,xN ]

⊤
;d = [d1, . . . ,dN ]

⊤
(2)

The steady-state optimization problem is

min
ui,∀i ∈ N

JN =
∑

i∈N
JNi

(3a)

s.t. f(x,u,d) = 0, (3b)

g(x,u,d) ≤ 0 (3c)

where constraint (3b) is related to the entire system model,
and constraint (3c) is a (coupling) (in-)equality constraint.

3. DISTRIBUTED FEEDBACK-OPTIMIZING
CONTROL USING ONLINE PRIMAL

DECOMPOSITION

3.1 Distributed Optimization using Primal Decomposition

Solving the integrated optimization problem (3) requires
a detailed model and their interactions in addition to the
constraints and measurements, which may be undesirable
or unnecessary in the practical context. Therefore, we
propose to solve problem (3) in a distributed manner by
decomposing the problem. In this paper, we propose an
online optimization method, i.e., using simple feedback
controllers, based on primal decomposition and addressing
the issue of primal infeasibility.

First, we introduce a virtual subsystem denoted as sub-
system 0, in which the cost function is JN ,0 = 0. As a
consequence, we define the set N0 = {0, 1, . . . , N}.
Defining constraint (3c) as linear constraint (if it is non-
linear, one can consider to linearize it at the operating

point), g(x,u,d) =
∑N

i=1 gi(xi,ui,di) − gmax, we intro-
duce a slack variable, g0, to convert any inequality con-
straint in (3c) into equality constraints, where g(x,u,d)+
g0 = 0. This modification does not change the structure
that (3a) is additively separable in the cost, and the system
model (3b) are imposed for each subsystem independently.

By providing an initial value of local constraint for the
variables of the coupling constraint, labeled by gspi , where



gsp =
∑N

i=1 g
sp
i , and letting a central problem deal with

the active coupling constraint satisfaction, integrated op-
timization problem (3) can be seen as the following sepa-
rable problem.

min
ui,∀i ∈ N0

JN =
∑

i∈N
JN ,i (4a)

s.t. fi(xi,ui,di) = 0,∀i ∈ N , (4b)

gi(xi,ui,di)− gspi = 0,∀i ∈ N0, (4c)∑

i∈N0

gspi = gmax (4d)

Note that here we introduce auxiliary primal variables
gspi . Moreover, as long as Eq. (4d) is satisfied, the primal
feasibility of the coupling constraint (3c) is guaranteed.

By relaxing the local constraint (4c), problem (4) can be
re-written as a Lagrange function that can be decomposed
into smaller subproblems, and each subproblem solves the
optimization problem for subsystem i.

Pi(g
sp
i ) := min

ui

Li(ui, g
sp
i , λi) (5)

where Li(ui, g
sp
i , λi) = JN ,i + λigi(xi,ui,di). The local

Lagrange multiplier, labeled by λi, is associated with local
constraint (4c). The local constraint converges to the same
value in steady-state optimal conditions.

3.2 Controllers and Estimators

Each subsystem solves its local optimization problem by
considering the setpoints (auxiliary primal variables, gspi )
provided by the central constraint controllers (Boyd et al.,
2008).

Central constraint controllers: These controllers up-
date the setpoints iteratively, based on given local La-
grange multipliers computed by each subproblem. The
goal of these controllers in a central problem is to provide
setpoints that satisfy the primal feasibility (4d).

min
gsp0 , gsp1 , . . . , gspN

∑

i∈N0

Pi(g
sp
i ) (6a)

s.t.
∑

i∈N0

gspi = gmax (6b)

where Pi(g
sp
i ) is given by (5), and constraint (6b) comes

from Eq.(4d).

Compensator subsystem: To ensure primal feasibility, one
local setpoint (e.g., subsystem N) is given by

gsp,k+1
N = gmax −

(
gsp,k+1
0 + . . .+ gsp,k+1

N−1

)
(7)

We call this subsystem as compensator subsystem.

Normal subsystem: Each local setpoint gspi at time step
k + 1 can be determined using the steepest descent di-
rection of the central problem (6a), which is given by the
subgradient. For j = {0, ..., N − 1},

∇gsp
j

(∑

i∈N0

Pi(g
sp,k
i )

)
= −λk

j + λk
N , (8)

The updated local setpoint at the next time step is,

gsp,k+1
i = gsp,ki +KI,i∇gsp

i

(∑

i∈N0

Pi(g
sp,k
i )

)
(9)

where we may consider an integrating controllers with
integral gain KI,i =

1
Ki(τc,i)

, and Ki is the step response

gain, and τc,i is the desired closed-loop time constant.
Note that the desired time constant should be slow enough
to satisfy the time-scale separation concept (Baldea and
Daoutidis, 2007). This concept is necessary to avoid unde-
sired behaviors such as oscillatory and deviating behavior.

Note that to compensate any change in the normal sub-
system, we assume that each subsystem informs its local
Lagrange multipliers λk

i to the compensator subsystem,
and receive the local Lagrange multipliers λk

N of the com-
pensator subsystem.

Virtual subsystem: Since we introduce a slack variable gsp0
to store un-utilized resource, and the storage is physically
never been negative, it is necessary to use max selector as
follows.

gsp,k+1
0 = max

[
0, gsp,k0 +KI,0∇gsp

0

(∑

i∈N0

Pi(g
sp,k
i )

)]

(10)

By implementing these strategies, i.e., compensator, nor-
mal, and virtual subsystem, the setpoints, provided by
these controllers, guarantee the primal feasibility.

Local setpoint controllers: Given the local setpoint
gspi , the local setpoint controller regulates the actual local
primal variables gi to gspi . The updated local input at the

next time step usp,k+1
i is given by

usp,k+1
i = usp,k

i +KIL,i

(
gi − gsp,ki

)
(11)

where we may consider an integrating controllers with
integral gain KIL,i = 1

KL,i(τcL,i)
, and KL,i is the step

response gain, and τcL,i is the desired closed-loop time
constant. Typically, the desired time constant is designed
as fast as possible. However, it is necessary to carefully
choose the desired time constant τcL,i to ensure that the
local setpoint controller does not too aggressively track the
setpoint given by central constraint controllers.

Remarks: Note that the setpoint controller is not necessary
when we have a shared input constraint because the central
constraint controller has provided the optimal input.

Local Lagrange Multiplier estimation: Subgradi-
ent (8) is the evaluation of local Lagrange multipliers
from each subproblem. According to KKT (Karush-Kuhn-
Tucker) conditions, the stationary point is reached when

∇ui
Li(ui, g

sp
i , λi) = 0

for all subsystems, and all λi converge to the same optimal
value. Thus, the local Lagrange Multiplier λi can be
computed as follows.

λi = −∇ui
JN ,i (∇ui

gi(xi,ui,di))
−1

(12)

where the number of local manipulated variables must
be equal to or more than the number of constraints in
common, and the solution must be unique.

In order to evaluate (12), each subsystem i is required to
estimate its local steady-state cost and constraint gradient,
which can be achieved locally using any model-based or
model-free gradient estimation. This estimation takes into
account the effect of the updated input calculated in (11).



For a list of gradient estimation techniques for RTO see
Srinivasan et al. (2011), and François et al. (2012).

Virtual subsystem, λ0 is always 0 because JN ,0 is defined
as 0, and to limit the dual variable to be non-negative in
a steady-state condition (i.e., to satisfy steady-state dual
feasibility).

In a practical context, if a local problem is simple enough
that it takes almost no time to find the local solution and
no possible numerical issues, then there is no reason to
avoid an equation solver to estimate the local Lagrange
multiplier.

3.3 Online Primal Decomposition Framework

By combining the concept of primal decomposition, the
idea of central constraint controllers, local setpoint con-
trollers, and local Lagrange multiplier estimation as de-
scribed above, we propose to solve the problem of real-
time resource allocation in handling coupling constraint
using distributed feedback-optimizing control using Primal
decomposition framework. This framework theoretically
can reach steady-state optimal condition and guarantees
primal feasibility.

Fig. 1 illustrates the implementation of this framework
in solving the above problem. The central constraint
controllers, containing virtual, normal and compensator
subsystems, provide new set points for local coupling
constraint, gi (see eq. (7),(9), and (10)). These set points
will be tracked by local setpoint controllers (see eq. (11)).
Should there be any disturbance di, one can use the
current plant information to estimate the plant’s current
state and parameters/disturbance using local dynamic
estimator such as Extended Kalman Filter (EKF). Using
the inputs, estimated states and parameters/disturbance,
one can estimate both cost and constraint gradient to
compute the local Lagrange multipliers as shown in eq.
(12). Thereafter, these multipliers are used to determine
the new setpoints central constraint controllers.

Central Constraint Controller

𝑔𝑠𝑝,𝑘+10 = max
[
0, 𝑔𝑠𝑝,𝑘0 + 𝐾𝐼,0 (−𝜆0 + 𝜆𝑁 )

]
𝑔𝑠𝑝,𝑘+11 = 𝑔𝑠𝑝,𝑘1 + 𝐾𝐼,1 (−𝜆1 + 𝜆𝑁 )

...

𝑔𝑠𝑝,𝑘+1𝑁 = 𝑔𝑚𝑎𝑥 −
(∑𝑁−1

𝑖=0 𝑔𝑠𝑝,𝑘+1𝑖

)
𝝀0 𝝀1

𝑔𝑠𝑝1 𝝀𝑁
𝑔𝑠𝑝𝑁

𝜆0 = 0

Setpoint
controllers

SS 1

u1

Subsystem
(SS) 1

y1
d1

EKF +
Gradient
estimator

𝑔1

Setpoint
controllers

SS N

u𝑁

Subsystem
(SS) 𝑁

y𝑁
d𝑁

EKF +
Gradient
estimator

𝑔𝑁

Fig. 1. The proposed online primal decomposition control
structure for optimal operation using simple PID
controllers and selector. The grey and white boxes
represent the physical system and the computation
block, repectively.

The generality: Note that we have two types of shared
resources here, the shared input, that we need to optimally
allocate, and the shared constraint, g, that all subsystem

should cooperate optimally to satisfy. The shared input
can be total flow of materials, steam, or energy that
any kind of process industries usually need. The shared
constraint can be any type of constraint that two or
more subsystems have influence on, i.e., plant capacity.
Specifically for the solid mining industry, we could consider
the extracted earth deposit as the flow of materials,
and the maximum capacity of the processing plant, e.g.,
smelter, as the shared constraint.

4. SIMULATION EXAMPLE

In this section, we apply the proposed method control
structure on a gas-lifted well network (liquid and gas
extraction activities) with N = 2 wells, that are oper-
ated locally. The optimization objective of this case is to

maximize total oil production, wto =
∑N

i=1 wpo,i while

minimizing the cost of total gas lift, wgl =
∑N

i=1 wgl,i.
Thus, JNi

= −powpo,i+ pglwgl,i, where po, and pgl are the
oil price and the gas lift cost, respectively. The coupling

constraint is g(x,u,d) =
∑N

i=1 wpg,i − wmax
pg , where wpg,i

is the local produced gas, and wmax
pg is the maximum ca-

pacity to handle total produced gas. Fig. 2 illustrates this
case study completed with the proposed control structure,
where well 2 is assigned to ensure the setpoint primal
feasibility (see Eq. (7)). Note that each well has an MPFM
to measure the actual local produced gas.

1 2

wpo + wpg

Separator

MPFM

ŵpg,1

K
wsp

pg,1

Act

Gradient
Estimator+
Calculate

Lang. Mult.

λ̂1

− +

K

K+
wsp

pg,0

Max

0

+
− wmax

pg

MPFM

ŵpg,2

K
wsp

pg,2

Act

Gradient
Estimator+
Calculate

Lang. Mult.

λ̂2

λ̂0 = 0

0

Produced Oil

Produced Gas

Produced Gas Compressor

wmax
pg

wgl,1 wgl,2

∑2
i=1 wgl,i

Fig. 2. A simplified process diagram of a gas-lifted oil
production network with constraints in maximum
produced gas handling capacity, and equipped with
the proposed control structure. Dashed lines represent
data transmission in the proposed control structure.
Act stands for actuator. K represents controllers.

The gas-oil ratio (GOR), one of the essential reservoir
properties, is a time-varying disturbance for the different
wells (feed disturbance). The manifold pressure is con-
trolled, and the setpoint is time-varying due to the change
in the processing facility or other connected wells. Thus,
we consider disturbance d consisting of GOR and manifold
pressure. In addition to these disturbances, the produced
gas processing capacity (wmax

pg ) varies, which affects the
optimal allocation of the lift gas. The disturbances may



also lead to an unconstrained case, where the coupling
constraint (3c) is inactive.

The controllers are tuned using SIMC (Simple/Skogestad
Internal Model Control) rules introduced by Skogestad
(2003). The desired timescale of the local setpoint con-
trollers is τcL,1 = τcL,2 = 75 seconds. To satisfy the
timescale separation concept, the chosen timescale for
the central constraint controllers is τc,1 = τc,2 = 131.25
seconds. Thus, the timescale ratio ϵ = τcL,i/τc,i is 0.5714.
Since the time delay is insignificant, one could consider
integrating controllers. However, we use PI controllers in
this simulation. Tab 1 displays the controllers’ parameters.

Table 1. The Parameters of Controllers

Gain Time Constant [sec] Time Delay [sec]

KI,0 0.375 τ1,0 617 θ0 0
KI,1 0.375 τ1,1 617 θ1 0
KIL,1 1.031 τ1L,1 643 θL,1 9
KIL,2 1.039 τ1L,2 614 θL,2 2

To estimate the local Lagrange multiplier, we execute
three steps. First, we use the current plant information
to estimate the plant’s current state and parameters using
EKF. Next, we use the updated model to evaluate the
steady-state gradients. These first two steps utilize the
same methods we use in Dirza et al. (2021). Finally, we
evaluate Eq. (12)

First, we solve the integrated production optimization
problem (3) to obtain the ideal steady-state optimal set-
point as the baseline. Then, we implement the proposed
framework described in Section 3.

Fig. 3 shows the simulation results of the produced gas
setpoints. These are the output of the central constraint
controllers’ performance, where we can observe that the
total setpoint of the produced gas is not violating the
constraint. As a consequence, the compensator subsys-
tem (subsystem 2) ’absorbs’ the violation, indicated by
oscillations during transient. These associated oscillations
can also be observed in Fig.4-5. Moreover, the produced
gas setpoint of each well reaches the steady-state optimal
setpoint labeled by wsp,⋆

pg,i . Furthermore, the steady-state

slack variable wsp
pg,0 also reaches 0 in the constrained case

and wsp
pg,0 > 0 in unconstrained case.

Fig. 4 depicts the simulation results showing the per-
formance of the local setpoint controllers and the local
Lagrange multiplier estimator. The top plot shows that
the local setpoint controllers have successfully tracked the
produced gas setpoints given by the central constraint
controllers. The middle one shows that the manipulated
variable, i.e., gas-lift rates, reached the optimal steady-
state conditions. Additionally, the local Lagrange multi-
pliers converge to the optimal steady-state conditions and
satisfy the dual feasibility in the steady-state shown in the
bottom plot. Note that, in unconstrained case, the steady-
state local Lagrange multiplier is 0. These results confirm
the applicability of using a virtual variable to store the
unutilized produced gas handling capacity.

Fig. 5 displays the simulation results for the actual cost
and the produced gas. The top plot shows that the pre-
sented method can reach the optimal steady-state cost.
Moreover, the total produced gas satisfies the constraint
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0 3 6 9 12 15 18 21 24 27 30 33 36
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Fig. 3. Top: Total produced gas optimal setpoint and its
constraint. Middle: Produced gas setpoints. Bottom:
Optimal unutilized produced gas capacity setpoint.
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Fig. 4. Top plot: Gas-lift rates (ui = wgl,i) and the op-
timal steady-state conditions. Middle plot: Produced
gas rates and the setpoints. Bottom plot: The local
Lagrange multipliers and the optimal steady-state.

with relatively short duration and insignificant magnitude
violations during the transients. As mentioned above, this
violation only depends on the tuning parameter we choose
in the local setpoint controllers because the central con-
straint controllers have given the setpoints that guarantee
the primal feasibility (see Fig. 3).

Fig. 6 shows the comparison with dual decomposition used
in Dirza et al. (2021), where the central constraint con-
trollers has to be slower (in timescale) than the presented
method in active constraint switching (i.e., unconstrained
to a constrained case). This requirement may lead to dy-
namic constraint violation when local gradient controllers
are too aggressive, whereas central constraint controllers
of the dual approach has no specific strategy to regulate
the primal feasibility. During the transient, the Lagrange
multiplier is suboptimal. This condition significantly con-
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Fig. 6. Comparison with different timescales separation (ϵ)
and method. Small ϵmeans the method of interest has
slow timescale central constraint controller, and vice
versa.

tributes to constraint violation. Unlike dual, the central
constraint controller of the presented approach ensures the
total setpoint to satisfy the constraint. Thus, the ’small’
violation is purely the product of the aggressive local set-
point controllers, which can be tuned more independently.
Even this method does not need local setpoint controllers
when it only has input constraints. Meanwhile, the dual
approach may have an issue in tight constraint control
as the central constraint controller has to be in a slow
timescale. Forcing a faster timescale central constraint
controller (larger ϵ) may lead to oscillatory behavior.

When it comes to solid extraction activities, one may con-
sider a network of mines and smelters in a metal mining in-
dustry (Wei et al., 2004), which fundamentally has similar
class of problem as the gas-lift well network. These mines
produce concentrates that should be sold and transported
to the smelters for processing. The optimization problem
is to optimally allocate the raw materials from the mines
in order to achieve maximum revenue since production
capacity of the smelters is limited.

5. CONCLUSION

In this paper, we presented a real-time optimal resource
allocation using the framework of online primal decompo-
sition. We showed that such a problem turns into a feed-
back control problem by introducing virtual subsystems
or slack variables to store unutilized resources, implement-
ing central constraint controls and local setpoint controls,
and estimating Lagrange multipliers. The goals of central
constraint controls are to directly control the constraint,
update the local constrained variables setpoints, and regu-
late the primal feasibility of the constrained variables. The
objective of local setpoint controls is to control constrained

variables to the given setpoint. For the case study we
consider in the simulation example, this proposed frame-
work leads to a system-wide optimal operation without
a numerical solver. Moreover, the setpoints provided by
the central constraint controls satisfy the primal feasibil-
ity. Furthermore, similar class of problems from different
industries, i.e., metal, mining, and metal processing, can
also be solved using the proposed framework.

REFERENCES

Baldea, M. and Daoutidis, P. (2007). Control of integrated
process networks—Amulti-time scale perspective. Com-
puters & Chemical Engineering, 31(5), 426–444.

Boyd, S., Xiao, L., Mutapcic, A., and Mattingley, J.
(2008). Notes on Decomposition methods.

Dirza, R., Skogestad, S., and Krishnamoorthy, D.
(2021). Optimal Resource Allocation using Distributed
Feedback-based Real-time Optimization. IFAC-
PapersOnLine, 54(3), 706–711.

Engell, S. (2007). Feedback control for optimal process
operation. Journal of Process Control, 17(3), 203–219.

François, G., Srinivasan, B., and Bonvin, D. (2012). Com-
parison of six implicit real-time optimization schemes.
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