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Abstract 

This work considers the problem of minimizing economic losses due to system-wide 

production systems, where different subsystems share hard coupling constraints. The hard 

coupling constraints need to be tightly controlled, and it is important that it is done in a 

way that the overall system remains close to optimal in the time it takes for the much 

slower optimization layer to implement the required input changes. The particular 

application that we study is a large-scale subsea gas-lifted oil production network, where 

different subsystems have a local objective and the shared constraint can be a common 

compressor, but the method has general applicability to any system with time-scale 

separation between control and optimization layers.  

 

Keywords: Production Optimization, Self-optimizing Control, Active Constraint 

Control. 

1. Introduction 

Determining optimal operation of a large and complex process and production system, 

such as an oil and gas production system, is a challenging task. Decomposing the process 

into several subprocesses/subsystems is usually recommended since optimizing a small 

system is practically less complex. Thus, decomposition strategy requires each local 

process system/cluster/subsystem to have a local optimizer to ensure local optimal 

process operation. This decomposition strategy is also responsible for coordinating these 

subsystems to achieve system-wide optimal process operation. The optimal process 

operation involves making decisions in real-time to meet production goals. This is 

typically done in the context of real-time optimization (RTO) using process models and 

real-time measurements. RTO is developed based on mathematical concepts, and with it, 

production performance improved.  

In the 80s, there was an increasing interest in replacing model-based numerical solvers 

with a simple feedback loop, named feedback-optimizing control. The idea is to translate 

the economic objective into process control objective by finding a function of the 

controlled variables (CVs), and when it is held constant, it leads to the optimal adjustment 

of the manipulated variables (MVs) (Morari et al., 1980). Twenty years later, Skogestad 

(2000) introduced the concept of self-optimizing control (SOC). In SOC, when the 

optimum lies at some constraints, we use active constraint control where the available 

MVs tightly control the constrained variables. The idea of tight active constraint control 

is one of the primary motivations of this work to ensure the feasibility and obtain a (near-

) optimal process operation. 
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2. Problem Statement 

Consider the following steady-state optimization problem of 𝑁 different subsystems. 

min
𝐮

 𝐽(𝐮, 𝐝) = ∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁

𝑖=1
 (1a) 

𝑠. 𝑡.  𝑔(𝐮, 𝐝) ≤ 𝟎 (1b) 

where 𝐮𝑖 ∈ ℝ𝑛𝐮𝑖  denotes the MVs for subsystem 𝑖, 𝑛𝐮𝑖
 is the number of MVs in 

subsystem 𝑖, and 𝐮 = [𝐮1 . . . 𝐮𝑁]T, 𝐝𝑖 ∈ ℝ𝑛𝐝𝑖  denotes the disturbances in subsystem 

𝑖, 𝑛𝐝𝑖
 is the number of disturbances in subsystem 𝑖, and 𝐝 = [𝐝1 . . . 𝐝𝑁]T, 

𝐽𝑖: ℝ𝑛𝐮𝑖 ×  ℝ𝑛𝐝𝑖 →  ℝ is a function denoting the local objective of subsystem 𝑖, 
𝑔: ℝ𝑛𝐮 ×  ℝ𝑛𝐝 →  ℝ𝑛𝑔is a function denoting the inequality constraints. 𝑛𝑔 is the number 

of constraints.  

The Lagrangian function of problem (1) is 

ℒ(𝐮, 𝐝, 𝜆) = ∑ 𝐽𝑖(𝐮𝑖 , 𝐝𝑖)
𝑁

𝑖=1
+ 𝜆𝑇𝑔(𝐮, 𝐝) (2) 

where 𝜆 ∈ ℝ𝑛𝑔 is the shadow price/ Lagrange multiplier of active constraints 𝑔(𝐮, 𝐝). 

The goal of problem (1) is to determine optimal MVs to achieve system-wide steady-state 

optimal operation. Our motivation is to solve problem (1) using a feedback control 

structure that handles changing active constraints.  

One possible approach is primal-dual feedback-optimizing control that can eliminate the 

need for a numerical solver (Krishnamoorthy, 2020; Dirza et al., 2021). Moreover, this 

approach is flexible in handling active constraint changes. This method has a central 

coordinator acting as a central constraint controller in a slow timescale in the upper layer.  

However, this approach has no near-optimal performance strategy due to the non-

performing upper layer. There are many practical reasons why the central constraint 

controller may fail to update the Lagrange multipliers. For example, when the disturbance 

occurs much faster than the sampling time of the central constraint controller. Another 

example is when constrained variables from a local system are not updated on time since 

the optimizer of the other local system may need a numerical solver. This solver requires 

time to solve the optimization problem. Having different types of local optimizers is 

normal since every subprocess is unique. In addition, having a central constraint 

controller in a very slow timescale leads to a longer transient. Constraint violation may 

occur during this transient. These imply that it is essential to have a good pairing of a 

(primal) MV to a constrained variable. Thus, “a systematic pairing procedure is 

necessary to determine which MV should be paired with a constrained variable such that 

the pairing minimizes the loss most (near-optimal performance)”. Finally, this procedure 

is necessary for selecting the primal MV in primal-dual with direct constraint control 

proposed by Dirza et al., 2022. 

3. Systematic Pairing Formulation 

To pair the constrained variables with the right MV, we propose a pairing procedure based 

on MV’s sensitivities to its local disturbances, assuming no saturation issues in the 

possible MVs, no back-off problem, and equal value of constraints - MVs gain. 
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Meanwhile, the remaining MVs control their self-optimizing control variables. To 

describe this proposal, we consider an Indirect control problem formulation. 

Without losing the generality, we consider a case where we have two MVs (i.e., 𝑢1 ∈ ℝ1 

and 𝑢2 ∈ ℝ1), and we want to control the gradient of the Lagrange function w.r.t its input, 

denoted by ℒ𝐮(𝜆, 𝐮) ∈ ℝ2×1, and the active constrained variable, denoted by 𝑔(𝐮) ∈ ℝ1, 

where 𝜆 is Lagrange multiplier for constraint function 𝑔(𝐮), and 𝐮 = [u𝟏 u𝟐]T. 

ℒ𝐮(𝜆, 𝐮) consists of ℒu𝟏
(𝜆, u𝟏) ∈ ℝ1 and ℒu𝟐

(𝜆, u𝟐) ∈ ℝ1. 

Assume that we want to control the constrained variables tightly with u𝟐, and we consider 

the disturbance, 𝐝 ∈ ℝ2×1, influences input u𝟐. It could be the local disturbance of 

subsystem 2 or a change of u𝟐 caused by setpoint changing. This setpoint change may 

occur due to the changes in subsystem 1. Since 𝜆 is constant (due to the non-performing 

upper layer), and gu𝟏
(u1) is also in many cases (i.e., resource allocation), we only need 

to control 𝐽u1
(u1). This formulation can be written as an indirect control problem as 

follows, 

𝐽u𝟏
(u1) = 𝐺11𝑢1 + 𝐺12𝑢2 (3a) 

𝑔(𝐮) = 𝐺21𝑢1 + 𝐺22𝑢2 (3b) 

𝑢2 = 𝐺𝑑𝑑 + 𝑢̂2 (3c) 

where 𝐺11 is the gain from 𝑢1to 𝐽u1
(u1), 𝐺12 is the gain from 𝑢2to 𝐽u1

(u1), 𝐺21 is the gain 

from 𝑢1to 𝑔(𝐮), 𝐺22 is the gain from 𝑢2to 𝑔(𝐮) and 𝐺𝑑 is the disturbance gain that 

influences 𝑢2.  

Fig. 1 illustrates this formulation, 

where we want to ‘tightly’ control 

𝑔(𝐮) to reference 𝑟2 directly using a 

direct constraint controller (DCC). In 

addition, we also want to find the right 

𝑢2 such that 𝑢2 can also contribute to 

controlling 𝐽u1
(u1) to reference 𝑟1 

indirectly or by pairing 𝑢2 with 𝑔(𝐮). 

This control structure has a better 

ability to control 𝐽u1
(u1) than the other 

possible structure. 

We assume that 𝐺22 is square and 

invertible. Otherwise, we can replace 

the solution with the pseudoinverse. By 

rearranging Eq. 1 and assuming a 

‘perfect’ control 𝑔(𝐮) ≈ 𝑟2, we obtain  𝐽u1
(u1) ≈ 𝐺12𝐺22

−1𝑟2. Thus, we must choose 𝑟2 

such that 𝑟2 ≈ 𝐺22𝐺12
−1𝑟1. According to Skogestad and Postlethwaite (2005), 𝐺12𝐺22

−1 

should be small. Usually, it implies that we need to select the pairing that gives the largest 

𝐺22, where 𝐺22 = ∇𝑢2
𝑔(𝐮). However, based on this formulation, selecting the pairing 

based on 𝐺22 is insufficient. This formulation shows that we should also consider small 

𝐺12 in addition to large 𝐺22 in the framework of primal-dual approach with direct 

constraint control, especially when we have faster disturbances (or non-performing upper 

layer). Selecting based on 𝐺12 is then essential and complementary to the common rule. 

 

Figure 1: Indirect control problem formulation 

for systematic pairing 
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We consider these rules as a near-optimal performance strategy for the primal-dual with 

direct constraint controls framework (Dirza et. al., 2022). 

Defining 𝑑̂ = 𝐺𝑑𝑑, then 𝐺12 ≈
∆𝐽u1

∆𝑢2
≈

∆𝐽u1

∆(𝑑̂+𝑢2)
. If one keeps 𝑢̂2 at the same value to 

control 𝑔(𝐮), then a change in 𝑑̂ can represent any change. Considering Eq. 1c, then 

𝐺12 ≈
∆𝐽u1

∆𝑑̂
. Furthermore, assuming that the stationary point is at the local optimum and 

knowing that 𝐽u1
is controlled by u1, and 𝐽u𝟐

 is uncontrolled, then any disturbance on 𝐽u𝟏
 

leads to ∆𝐽u𝟐
(ℒu𝟐

being drifted away from 0). It implies that any disturbance on 𝐽u1
leads 

to the total profit loss ∆𝐽. Therefore, we can estimate 𝐺12 as 
∆𝐽

∆𝑑̂
  (𝐺12 ≈

∆𝐽

∆𝑑̂
). 

4. Numerical Results 

We demonstrate the presented rules in a subsea gas-lifted oil production optimization 

problem with a fixed gas lift compressor described in Dirza et al. (2022). Moreover, we 

consider a subsea gas-lifted oil production well network that consists of two wells to 

provide a better demonstration. Fig. 2 illustrates the case study. 

The objective function is to maximize the oil production income while minimizing the 

cost of the gas lift. The optimization problem is as follows, 

min
𝐰𝑔𝑙

𝐽 =  ∑ (− 𝑝𝑜,𝑖𝑤𝑝𝑜,𝑖 + 𝑝𝑔𝑙,𝑖𝑤𝑔𝑙,𝑖)
𝑁

𝑖=1
 (4a) 

𝑠. 𝑡.   𝐟(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝟎 (4b) 

         𝐠(𝐱, 𝐰𝑔𝑙 , 𝐝) ≤ 𝟎 (4c) 

        𝐠s(𝐱, 𝐰𝑔𝑙 , 𝐝) = 𝑃𝑜𝑤𝑔𝑙 - 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 ≤ 0 (4d) 

where 𝑝𝑜,𝑖, 𝑝𝑔𝑙,𝑖, and 𝑤𝑝𝑜,𝑖 are the price of produced oil, the cost of gas-lift, and the oil 

production rate of well 𝑖, respectively. 𝑃𝑜𝑤𝑔𝑙  is 

the total power consumed by a fixed compressor 

to inject the sum of gas-lift rate 𝑖, and 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥  

is the maximum available power. The vector 

𝐱 ∈ ℝ𝑛𝐱 , and 𝐝 ∈ ℝ𝑛𝐝  are the vectors of states, 

and disturbance (i.e., gas-oil ratio) for the entire 

system. 𝑛𝐱 is the number of states. 𝐰𝑔𝑙 ∈ ℝ
𝑛𝐰𝑔𝑙  

is the vector of inputs for the entire system, 

where 𝐰𝑔𝑙 = [𝑤𝑔𝑙,1 . . . 𝑤𝑔𝑙,𝑁]T. Constraint 

(4b) and (4c) represent model and physical 

constraints, respectively. We assume that 

Constraint (4c) is locally managed to maintain 

the focus of the discussion. Eq. (4a) is additively 

separable, and eq. (4d) is a linear and hard 

constraint. The total gas lift rate is supplied by a 

fixed-efficiency gas lift compressor.  

The simulation considers a case where we have 

a non-performing upper layer (𝜆 is not updated). We show the numerical results of the 

presented near-optimal performance strategy (Structure 1). As a benchmark, we also 

show the results of the asynchronous protocol (Structure 0), that the local controllers keep 

controlling the gradient of the Lagrange function w.r.t input to 0, given any value of the 

 

Figure 2: Field illustration 
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Lagrange multipliers from the central constraint controllers. In addition, we also show the 

results of another possible structure (Structure 2).  

We solve the steady-state optimization problem (4) to obtain the ‘true’ optimal cost for 

any considered disturbance cases. We assume that based on historical data, the largest 

possible error of the disturbance is ± 5%. The (profit-) loss is the difference between the 

steady-state cost of structure 𝑗 to the optimal cost, which can be expressed mathematically 

as ∆𝐽𝑗 = 𝐽𝑗 − 𝐽∗, where 𝑗 is the index of the structure (𝑖. 𝑒., 𝑗𝜖{0,1,2}). 

First, we simulate for any possible largest error for Structure 0. The simulation shows that 

the above case study experiences the largest possible disturbance that happens 

sequentially starting from 𝐺𝑂𝑅1 + 5%, 𝐺𝑂𝑅1 − 5%, 𝐺𝑂𝑅2 + 5%, 𝐺𝑂𝑅2 − 5%, 

𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥 + 5%, and finally 𝑃𝑜𝑤𝑔𝑙

𝑚𝑎𝑥 −  5%. 

As it can be seen in Fig. 3, Structure 0 fails 

to satisfy steady-state constraint when 

either 𝐺𝑂𝑅1, 𝐺𝑂𝑅2, or 𝑃𝑜𝑤𝑔𝑙
𝑚𝑎𝑥  decreases 

5% (see time window 18-32 hr, 48-62 hr, 

and 78-90 hr), which validates the 

necessity to have a near-optimal strategy 

in the primal-dual approach. 

As mentioned in Section 3, the first 

general rule is pairing input and active 

constraint with the largest 𝐺22,𝑗 =

∇w𝑔𝑙,𝑗
𝐠s(𝐱, 𝐰𝑔𝑙 , 𝐝). Based on this 

definition, 𝐺22,1 = 3.6740, and 𝐺22,2 =
3.6740, which corresponds to the 

assumption of equal value of constraints - 

MVs gain. This also validates the necessity to have an additional rule to select the pairing 

that gives the most economic-oriented result. 

The additional rule is pairing input and active constraint with the smallest 𝐺12,𝑗, which 

one can estimate by calculating 
∆𝐽𝑗

∆𝐺𝑂𝑅𝑗
  using the finite difference method. The obtained 

result is that the smallest 𝐺12,1 is 1.4441, and the smallest 𝐺12,2 is 1.4642. According to 

 

Figure 3: Steady-state constraint satisfaction 

 

Figure 4: Left figure: Profit loss comparison. Right figure: Loss difference between 

Structure 1 and Structure 2. 
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the presented method in Section 3, this result indicates that the most economic-oriented 

pairing is Structure 1, where we pair the active constraint with w𝑔𝑙,2.  

Fig. 4 shows the profit loss comparison between Structure 1 and Structure 2, and the right 

figure shows that, at any possible extreme disturbance, Structure 1 can minimize more 

the steady-state loss than Structure 2. Additionally, Tab. 1 shows the steady-state profit 

loss for 24 hours with different extreme disturbance cases. 

5.  Conclusion 

In this paper, we have shown that the proposed rule (smallest 𝐺12) is complementary to 

the existing pairing rule (largest 𝐺22), especially in the framework of the primal-dual 

approach. This systematic pairing selection procedure can assist the designer in pairing 

for economic-oriented constraint control in the primal-dual with direct constraint 

controls. In addition, this procedure can minimize steady-state loss in the primal-dual 

framework when we have a non-performing upper layer. 
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Table 1:  Steady-state profit loss for 24 hours 

Structure 
𝐺𝑂𝑅1 𝐺𝑂𝑅2 𝑃𝑜𝑤𝑔𝑙

𝑚𝑎𝑥 

+5% −5% +5% −5% +5% −5% 

0 630.7200 sscv*  751.6800 sscv* 656.6400 sscv* 

1 136.3423 151.6720 214.7048 238.8445 151.4331 168.2676 

2 139.7161 151.6730 215.0000 243.8771 153.3618 169.9576 

sscv*: steady-state constraint violation. 


