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Abstract

In this paper, we study the optimal operation of heat exchanger networks with stream
splits. In particular, we extend previous approaches on the unconstrained optimization of
the system to the constrained case, with temperature constraints on each flow branch, and
with changing disturbances so that the set of optimally active constraints changes during
operation. The simplest way to achieve optimal operation when some of the constraints
are active, is to control the constraints to their limiting value, known as active constraint
control. For the remaining unconstrained degrees of freedom, we propose to control lin-
ear combinations of the gradient as self-optimizing controlled variables. To automatically
switch between the different active constraint regions, we use classical advanced control
elements such as selectors, thereby achieving optimal operation using only the temperature
measurements as feedback in different active constraint regions. The performance of the
proposed feedback optimizing control structure for the heat exchange network is compared
with the traditional model-based real-time optimization using simulations. In the presence
of structural plant-model mistmach, we show that our proposed approach performs op-
timally for all disturbances, while traditional real-time optimization fails to converge for
some cases, as the optimization problem becomes infeasible depending on the estimated
disturbances.
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1. Introduction

In the context of optimal operation of process systems, the choice of controlled variables
plays a vital role, as it will dictate how efficiently a process can operate without interfer-
ence of higher layers (Skogestad, 2000). The ideal design of a supervisory control layer
would result in a structure that is able to operate optimally under constant setpoints. This
concept is known as self-optimizing control, and recent developments aim for systematic
choice of control objectives (Krishnamoorthy and Skogestad, 2019). A known challenge
in supervisory layer design is the change in optimally active constraints during operation,
which can be caused by changes in disturbances that affect process objectives. When that
happens, reconfiguration of the controlled structure is usually desired to minimize the op-
erational losses. If that does not happen, interactions with the higher optimization layer
become stronger, as the sensitivity of the optimal setpoint values with relation to the chang-
ing disturbances is high when there are no changes in the control structure. Krishnamoor-
thy and Skogestad (2019) discusses the handling of changes in active constraints through
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feedback control, without the solution of online optimization problems, by selector-based
control structures. This approach is to be evaluated in this work, compared to the solution
of real-time optimization (RTO) problems, which can be problematic in the presence of
model-plant mismatch.

2. Case study modeling

The case study considered in this work consists of three heat exchangers in parallel, see
Figure 1. Each exchanger has its own source of hot fluid, such that the cold fluid is split and
sent to the exchangers, and the operational goal is to maximize the outlet temperature of
the cold fluid, subject to constraints related to the maximum temperature in the individual
exchangers.
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Figure 1: Heat exchanger network scheme

In addition to the mass and energy balances, an additional relation is necessary for calcu-
lating the total exchanged heat in each equipment, Qi. The analytic solution, assuming
constant heat capacities and countercurrent flow, is given by Eq.(1).

Qi = UAi ∆TLM,i (1)

In this equation, ∆TLM,i represents the logarithmic mean of temperature differences in-
side the heat exchanger. Although exact, this model presents some numerical challenges,
especially when the heat capacities are too close, or when the temperature differences as-
sume opposite signs during iteration. A simplified linear version of this model makes use
of the arithmetic mean of temperature differences, ∆TAM,i, and for this model, simple
analytic expressions for the gradient can be derived (Jäschke and Skogestad, 2014).

The steady-state optimization problem considered for the optimal operation of this system
can therefore be written as:

2



Optimal Operation of Heat Exchanger Networks 3

min
α

J = −T

s.t. gi = Ti − Tmax ≤ 0, i = 1, 2, 3
(2)

3. Proposed control structure

The optimal operation of heat exchanger networks has been extensively studied by Jäschke
and Skogestad (2014) for the unconstrained case. In this case, the gradient Ju to be driven
to zero can be approximately written in terms of the Jäschke temperatures. For the con-
strained case, however, the set of controlled variables need to change so that optimal op-
eration is achieved. Given that the active constraints gA are effectively controlled, there
are still unconstrained degrees of freedom that need to be used for optimal operation. As
proven by Krishnamoorthy and Skogestad (2019), we can find the additional controlled
variables as a linear combination of the gradient such that the necessary conditions of op-
timality are satisfied. These correspond to c = NTJu, where N is the nullspace of the
gradient of the active constraints with relation to the inputs, ∇ugA, at the optimal point.
This procedure results in a set of controlled variables per region, defined by the respective
set of active constraints.

For this case study, there are 7 feasible operating regions, one of which is fully uncon-
strained, 3 being partially constrained (one active constraint per region), and the remaining
being fully constrained (two active constraints per region). The case with all 3 constraints
being active is infeasible with the available degrees of freedom, and will therefore not be
considered. The fully unconstrained region can be optimally operated by controlling the
plant gradient to zero, and the fully constrained regions are optimally operated through
active constraint control. For the optimal operation in the partially constrained regions,
the combinations of the gradient to be controlled in addition to the active constraints are
given in Table 1.

Active constraint NT

g1
[
0 1

]
g2

[
1 0

]
g3

[
− 1√

2
1√
2

]
Table 1: Linear combinations of gradient per active constraint

The next step for the design of a simple control structure is defining the pairing between
manipulated and controlled variables, and the switching between active controllers. In
the current case study, there are 2 manipulated variables and 3 constraints, which means
that the constraints cannot be assigned to one specific input if optimal operation over all
regions is desired. Therefore, at least one of the constraints needs to be controlled by
multiple inputs.

Based on this reasoning, this work proposes an adaptive control structure to deal with all
possible active constraint regions. The full control structure, showing the logic blocks and
controllers, is presented in Figure 2. and the pairing between manipulated and controlled
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variables is summarized in Table 2. All presented controllers have integral action, so that
steady-state offset is eliminated.
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Figure 2: Proposed adaptive control structure

α1 α2 (T1 inactive) α2 (T1 active)

T1 T2 T2[
1 0

]
Ju

[
0 1

]
Ju

[
0 1

]
Ju

T3

[
− 1√

2
1√
2

]
Ju T3

Table 2: Proposed adaptive pairing for all operating regions

4. Simulation results and discussion

The control structure previously presented is now evaluated in closed-loop simulation face
to changing disturbances. Figure 3 shows the simulation results, where all 7 possible
regions are explored. As the process itself is considered to be at steady state at all times,
the dynamics of the system is fully attributed to the tuning of the controllers. Operation
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in the fully constrained regions is optimal at steady state, whereas there is some deviation
from the optimal conditions in the partially constrained and unconstrained regions. This is
due to the estimation of gradients by Jäschke temperatures, which does not fully represent
the plant model, but gives a reasonable estimate for control, so that low operational loss is
achieved.

Figure 3: Simulation of region-based control structure using Jäschke temperatures

These results are compared with a traditional RTO implementation, see Figure 4. This
implementation consists of a two-step approach, with disturbance estimation followed by
model-based constrained optimization. The system converges in few iterations, with sim-
ilar steady-state behavior to the region-based control structure. The unconstrained and
partially constrained regions suffer from deviations from the true optima, due to model-
plant mismatch, and the converged state is quite similar to that of the region-based control
structure. This is to be expected, as Jäschke temperatures represent the gradient informa-
tion extracted from the model used in the RTO framework.

In the RTO simulation, a curious undesired behavior is observed. From t = 40, in the fifth
simulated region, the system converges to an infeasible point. This happens because the
disturbance estimation step returns parameter values that make the optimization problem
infeasible, meaning that there are no inputs that satisfy all constraints on the model with
the given parameters, even if the estimation step returns parameters that agree with the
plant measurements. Some workarounds are therefore deemed necessary for the effective
implementation of the RTO strategy, such as the adaptation of the optimization problem
itself, based on the estimation of gradients from the true plant (Marchetti et al., 2009).

5. Conclusion

In this work, we extended previous work on the optimal operation of heat exchanger net-
works to the constrained case, where the ideal self-optimizing variables known as Jäschke
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Figure 4: Simulation of steady-state RTO with model-plant mismatch

temperatures cannot be applied to every operating condition. Instead, control of the active
constraints becomes necessary for optimal operation, and the challenge lies in deciding au-
tomatically what are the best controlled variables during operation. This has been achieved
with the use of selectors, with steady-state performance comparable to a traditional model-
based RTO implementation. With the proposed control implementation, one avoids the
solution of online optimization problems, which can be problematic, as highlighted by the
presented results. However, the simultaneous use of the presented tools is encouraged, so
that near-optimal operation is achieved in the faster timescales, and optimization tools can
correct for mismatches under more careful evaluation of the results.
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