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Abstract
This paper considers the problem of steady-state optimal resource allocation in an industrial symbiotic oil
production network, or in general, a large-scale oil production system network, where different organizations
share common resources.

These allocation problems are typically solved in a distributed optimization framework, where the
optimization problem is decomposed into smaller subproblems, a central coordinator is used to coordinate
the different subproblems. However, the use of a central coordinator may introduce additional practical
challenges, such as impartiality issues, or additional operating costs, which is undesirable even in the
technological selection phase.

To eliminate the need for a central coordinator, this paper proposes a consensus-based optimal resource
allocation, where each subproblem or organization is locally optimized, and the coupling constraints are
negotiated among the different organizations over a fixed communication network with limited information
exchange.

The proposed approach is applied to a large-scale subsea oil production system, where the different wells
are operated by different organizations. The simulation results of the application show that the proposed
approach can optimally allocate the shared resources.

Introduction
Optimal process operation involves taking decisions in real-time to meet production goals, that is typically
done in the context of real-time optimization (RTO). RTO, also known as daily production optimization
(DPO), requires process models and real-time measurements. Initially, DPO is performed offline and
manually. Bieker et. al., 2006 stated that the use of mathematical tools has shown production improvement
by 2 %. Moreover, Chui et. al., 2018 reported that the use of Artificial Intelligence (AI) tools in the oil and
gas industry may improve the performance up to 79 % beyond the provided analytical techniques. Thus, it
is promising to utilize online and ‘smart’ RTO in day-to-day oil production operations. Due to the similarity
in terms of context, we use DPO and RTO interchangeably.

With increasing energy demand, market competition, the complexity of process system, and the necessity
for sustainable energy production, there is an explicit need for the oil industry to focus on resource and
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energy efficiency. Thus, it is expected to obtain optimal performance as a single entity instead of separated
organizations. Industrial symbiosis is an enabling technology towards sustainable energy production, where
different organizations share energy and resources in a mutually beneficial manner.

However, industrial symbiosis creates additional challenges that may impede practical application. For
example, DPO requires process models and real-time measurements, which the different companies or
organizations may not be willing to share due to intellectual property rights, process simplification, market
competitiveness, etc. Thus, there is a need to optimally allocate the shared resources with limited information
sharing across the different organizations. This kind of problem may occur when we operate a subsea oil
production network.

Operating subsea oil production network can be a challenging and risky task that several organizations or
even operator companies cooperate to operate the production oilfield. During the exploitation period or even
since exploration period, a case of remote reservoir location finding can exist. To exploit the oil, constructing
a local processing platform may not be an economic option. One possible solution is by doing subsea tie-in
and share common processing facilities. This solution has several subsea clusters (satellite wells) that may
be operated by different organizations or companies with different local objective. Moreover, the location
of the clusters can be far away such that centralizing the coordination may not be an economic option, too.

Distributed optimization methods such as the dual (Lagrangian) decomposition approach have been
shown as a potential solution for this resource sharing (Wenzel et al. 2016). In this framework, the different
subsystems representing different organizations, are locally optimized for a given shadow price of the shared
resources, and a central coordinator updates the shadow price for the shared resource to match the supply and
demand of the shared resource in this micro-market setting. This only requires sharing limited information,
such as shadow prices and total resource consumption. This coordination scheme imitates the tâtonnement
process, where the coordinator has the responsibility to find the equilibrium price iteratively by dynamic
pricing based on responses of the subsystems (Walker 1987 and Wenzel et al. 2016). To this end, the different
subproblems and the central coordinator are solved iteratively until the problem converges to a feasible and
optimal solution.

However, having a central coordinator, that updates the shadow price of the shared resource, may create
additional challenges that impede practical implementation. Since the shadow price is an important variable
that affects the local objectives of the different subsystems, such a role may lead to impartiality issues
and conflict of interest. Moreover, it may also lead to additional costs, such as technical support for the
central coordinator, or cost of communication. Furthermore, if the coordinator or the communication from
the central coordinator fails, then the entire system may fail to achieve system-wide optimal operation. To
this end, these issues lead to profit loss.

An alternative approach to eliminate the need for a central coordinator is by directly coordinating among
the different subsystems over a fixed communication network. This also further minimizes the information
exchange, since each subsystem communicates data with only a few subsystems, instead of broadcasting it
to the central coordinator. A similar intuitive cooperative game was implemented in interconnected Model
Predictive Controller (MPC) in Maestre et al. (2011) where each MPC cooperates with the other MPCs via
a communication channel to find the best input set-points for reference tracking. Cooperative game models
have also been proposed to find optimal set-points or trajectories of shared resources that will systematically
and gradually (via the neighborhood) obtain the optimal set points in the whole networked system (Arif
et al. 2017).

Although various forms of distributed RTO/DPO with a central coordinator has been studied for optimal
resource allocation problems (see Dirza et al. 2021, Gunnerud et al. 2010, Krishnamoorthy 2021, Marti et
al. 2012, Wenzel et al. 2016), decentralized frameworks without a central coordinator (such as Banjac et al.
2019) has received relatively little attention.

The main contribution of this paper is a consensus-based decentralized real-time optimization, denoted
as a consensus-RTO/DPO framework, applied to an oil and gas production network, where the different
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subsystems cooperate by negotiating the coupling constraints over a fixed communication channel. In our
proposed method, information from each subsystem is shared only with a subset of the agents that are
directly connected. The negotiated constraint is then used in solving the local subproblems thereby achieving
system-wide optimal operation.

In this paper, we use essential terms repetitively with the following definition:

• Centralized: This is a scheme where the information flow such as process models and real-time
measurements can be shared between organizations (no information boundary).

• (Centralized-) Distributed: This is a scheme where information boundary exists, and each
organization can only share limited information to a central coordinator.

• Decentralized: This is a scheme where information boundary exists and each organization can only
share limited information to its neighbors that has a fixed communication channel, and no central
coordinator.

This paper is organized as follows. The Problem Formulation section mathematically formulates generic
optimal resource sharing problems. In the Methodology section, the constraint negotiation is incorporated in
an RTO/DPO algorithm. The Implementation Results section demonstrates the performance of the proposed
consensus-RTO/DPO approach applied on a large-scale subsea oil production system before concluding the
paper in the Conclusion section.

Mathematical Problem Formulation
Consider a generic optimal resource sharing problem in N different subsystems.

(1a)

subject to:

(1b)

(1c)

(1d)

where  denotes the decision variables for subsystem i and  is the number of decision variables in
subsystem i,  is a matrix that couples different subsystems,  denotes the shared resource
constraints, mx is the number of shared resource constraints, and  is a function that denotes the
local objective of subsystem i. Without loss of generality xi > 0 implies that the shared resource is consumed
by subsystem i.

Linear constraint shown in Eq. (1b) is practically justified as we usually can linearize the constraint
function at operating point at regularly. A frequent regular update can minimize error due to linearization.
Mathematically, the constraint should be in specific constraint qualification i.e., Lineary Independent
Constraint Qualification (LICQ) to ensure that the optimal solution will satisfy Karush-Kuhn-Tucker (KKT)
conditions (Nocedal et al. 2006).

Defining  as shared resource constraints for subsystem i, we can decompose problem (1) into N

different local problems, where . To accommodate inequality constraint, we can introduce virtual
subsystem, named subsystem 0, to store unutilized shared resource. The local objective of virtual subsystem
0 is constant, thus, it does not influence the accumulated objective function. Mathematically, constraint (1b)

can be transformed to , and A0x0 ≥ 0, where  denotes the decision variables
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for virtual subsystem 0 that store unutilized shared resources, and  is a matrix that couples

virtual subsystem 0 to the ‘physical’ subsystems. Thus, , that represent inequality constraint.
For simplified illustration, consider a sample case where the availabled share resource of three physical

subsystems is , the coupling matrices are A0 = 1,A1 = 1,A2 = 2, and A3 = 0. The obtained optimal
decision variables are , , , and . This result shows that, physically, total utilized

shared resource is , which is less than . The unutilized shared resource is stored in
virtual subsystem 0 where A0x0 = 0.25.

Remark 1: In practical context, we can see Problem (1) as an optimization problem where we aim to
maximize oil production rate and minimize gas lift rate consumption subject to given shared resources
constraints, process models and physical constraints.

Remark 2: Each subsystem i may also have local constraints that are assumed to be locally managed by
each organization and are not explicitly shown in the problem formulation (1).

Each subsystem i may also have local constraints that are assumed to be locally managed by each
organization and are not explicitly shown in the problem formulation (1).

The objective of the problem (1) is to determine optimal shared resource allocation in order to achieve
system-wide steady-state optimal operation in a decentralized fashion with limited information sharing over
a fixed communcation network. This can be described by an undirected graph  with the set of
subsystems , set of communication channel , and an adjency matrix . The
communication channel of  is denoted by ei,j = {i, j}, meaning that there exists a data transmission between
subsystems i and j. Since we consider an undirected graph, ei,j = ej,i. The adjacency elements associated with
the communication line of the graph are positive, i.e. ei,j # ε ⇔ vi,j = 1. Consequently, ei,j ∉ ε ⇔ vi,j = 0, and
we consider vi,i = 0 for all i.

The set of neighboring connected plant of subsystem i is defined as follows.

(2)

In other words, the set Ni represents the set of subsystems that directly communicates with subsystem i.
Fig. 1(b) illustrates the definition of neighboring subsystems.

The degree of the subsystem i is defined as

(3)

which denotes the number of directly connected neighbours of subsystem i.
We assume that undirected graph G is connected. Halin (1969) provides comprehensive definition of

connected graph. Thus, in order to use the proposed method, we need to look at if the graph G is connected
by evaluating the rank of its Laplacian matrix, L. G is connected, if and only if rank L(G) = N–1, where
L = D – VL, and [D]i,i = di.
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Figure 1—(a) (Centralized-) distributed RTO with central coordinator (MC), (b)
Decentralized RTO, where N1 = {2,3,4}, N2 = {1,3,5}, N3 = {1,2}, N4 = {1}, and N5 = {2}.

Methodology
In this paper, we aim to solve the optimal resource allocation problem (1) in a decentralized manner without
a central coordinator using consensus-based approach. To this end, we want to propose a framework that so-
called consensus-based decentralized RTO/DPO (consensus-RTO/DPO) as shown in Fig. 2 and Algorithm
1.

Figure 2—The schematic illustration of the proposed consensus-RTO.

Algorithm 1: Consensus-RTO/DPO Algorithm

Algorithm 1—Consensus-RTO Algorithm

given step length δ and initial constraint for each subsystem i, 

for every sampling time k do

1. solve local RTO/DPO problem (4) to get optimal decision and expected cost values: .
2. for negotiations with every neighboring subsystem do

a. execute Algorithm 2 to compute predicted rewards.
b.

receive predicted rewards from neiboring subsystem, .

c.
compute common predicted rewards, .

d.
determine the best decisions  based on one-step prediction using Table 1

e. compute fraction of constraint update as resource receiver by using Eq. (12). end
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6 SPE-206102-MS

3. compute fraction of constraint update as resource distributor by using Eq. (13).
4. update constraints by using Eq. (11).

end

Table 1—Possible Decisions and One-step Prediction

Δfi Δfi

0

1

−1

In Fig. 2, grey box represents the physical system and white box represents the computation block. Blue
box and lines represent constraint negotiation process between subsystem 2 and its neighbor (N2). Red
box and lines represent constraint negotiation process between subsystem 3 and N3. Green lines represent
information transmission from subsystem ‘…’ as a neighbor in a constraint negotiation process for other
subsystems. As local controllers, MPC needs estimated states, labelled by  and estimated disturbance, .
For PID as local controllers,  which is an outputs measurement, thus dynamic estimator is unnecessary for

Proportional Integral Derivative (PID) controller but important to estimate disturbance  for the optimizer.
The dashed line represents information boundary, where inside the information boundary, we have local
RTO/DPO. This local RTO/DPO estimate the parameters or disturbance regularly using local dynamic
estimator. The local steady-state optimizer updates its parameters and/or disturbance information using the
estimated parameters and/or disturbance given by local dynamic estimator.

Remark 3: In practical context, several commercial softwares such as PROSPER, GAP and IPM by
Petex, to name a few, are available to executed estimation (i.e. dynamic estimator) based on measured
variables and (steady state) optimization (Bakshi et. al., 2015). Thus, local RTO/DPO tools are commercially
available, and this work focuses on introducing an alternative method to coordinate them. Meanwhile, for
local controllers, we can consider Distributed Control Systems (DCS) in practical context.

Algorithm 2: Compute Predicted Rewards

Algorithm 2—Compute Predicted Rewards

for every possible decision do

1. solve one-step prediction local RTO/DPO problem (9) get one-step-prediction optimal decision and expected cost

values: .

2. compute predicted rewards using Eq. (10).

end

To find local solution, consider an optimization problem of subsystem i at iteration k.

(4a)

subjects to:
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(4b)

(4c)

(4d)

where  and fi are shared resources constraints and local objective of subsystem i at iteration k, respectively.

Note that since  is time varying, we denote local objective as . The optimal solution of problem

(4) is .
For the constraint negotiation, subsystem i and its neighbour j ∈Ni have a common cost function as

follows.

(5)

Obtaining optimal decision  and  respectively, we can mathematically express the constraint
negotiation problem as follows.

(6a)

subject to:

(6b)

Since , it is not easy to solve problem (6) directly in order to compute . In order to circumvent this
issue, we discretize the decision space  and  and generate a look up table in order to find the best  and .

Starting from initial (guess) shared resources constraints in subsystem i, labelled by , and assuming one
shared resources constraint, to generate the look up table of one-step prediction, we consider three discrete
possible actions, Pi,j = {–1,0,1}, namely,

(7)

and the condition to its neighbor is as follows,

(8)

where δ > 0 is user defined step length. The size of δ will determine the speed of convergence and the steady-
state condition's accuracy. In general, . Note that we have three possible values for  bar given by
Eq. (7) and corresponding values for  given by Eq. (8).

Each subsystem will solve a one step prediction with the three possible actions to compute their
corresponding objective function value, by solving the following problem.

(9a)

subjects to:

(9b)

(9c)

(9d)
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8 SPE-206102-MS

As we have three members in Pi,j, problem (9) is solved three times in each subsystem to generate the
look up table as shown in Table 1.

Where  is the estimated ‘rewards’ that can be obtained by executing the following equation.

(10)

By summing up the expected rewards of each subsystems within the neighborhood, we obtain predicted

common cost function difference, , that we want to minimize using the look up table. Hence, we obtain

the agreed decisions combination, labelled by , that give the lowest predicted common cost function.
From a game theory point of view, at each time step both subsystems are playing a cooperative game.

The right most cells contain the predicted common cost functions difference for a particular combination of
future local constraint. At each iteration, the option that yields a lower predicted common cost difference is
chosen. Note that both subsystems share this information since they are neighbors, hence, they both choose
the same combinations of actions.

Note that without any specific condition, the number of possible action combinations is . When the
negotiated subsystems reach their shared resources constraints, the number of combinations will decrease
as some of the actions may lead to an infeasible solution. Moreover, some combinations will never yield

to the lowest .
Based on the agreed decisions combinations, subsystem i can update its constraints as follows.

(11)

where wr,i,j is the fraction of constraint update because dj may be more than 1, and wg,i is the fraction of
constraint update because di may be more than 1.

Fraction wr,i,j and wg,i can be computed by using eq. (12) and (13), respectively.

(12)

(13)

Where , and , and .
The updated shared resources constraint of subsystem i, is then used to solve the local problem (4). This

iteration will be executed in real-time fashion to minimize , until the steady-state condition is achieved,
where  and  keep choosing 0 at every iteration which means that consensus has achieved i.e.

By iteratively solving problem (4) and executing constraint negotiations, we can avoid the need of central
coordinator. Moreover, to execute constraint negotiation, we do not need local information such as the detail
models, measurements, and local constraints, across the different subsystems. The only information that
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needs to be shared in the negotiation are the local objective and estimated ‘rewards’ within the neighborhood
Ni only.

Local measurements yi for each subsystem i are used for online model update and local setpoint tracking
control, and this information is not shared with any of the other subsystems as shown in Fig. 2.

The model update step is performed using the dynamic model, such that one can use transient
measurements and hence does not need to wait for the local subsystem to reach steady-state condition
(Krishnamoorthy et al. 2018).

Any suitable parameter estimator using dynamic models can be used for the online model update by
augmenting the states and the parameters/disturbances  as explained in Simon (2006).

Each subsystem may also have local controllers such as PID controllers or Model Predictive Control
(MPC) to track the setpoint provided by the local RTO/DPO, as shown in Fig. 2.

Implementation

Case Descriptions
In this section, we apply the proposed consensus-RTO approach on a subsea gas-lifted oil production well
network with N = 5 subsystems (subsea clusters), operated by different organizations as shown in Fig. 3 and
Table 2. The overall network G and its neighboring sets (Ni) is given by Fig. 1(b) and Table 2. Rank L(G)
= 4, indicating that G is a connected graph/network. Note that, if we want to create a centralized approach
in a given network shown in Fig. 1(b), it is required to install another communication channel to create an
entity as a central coordinator. This installation work can be costly and undesirable especially for marginal
oil production field.

Figure 3—A simplified process diagram of a large-scale offshore field with
shared gas-lift resource, equipped with constraints in gas-lift compressor.
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Table 2—Subsea Clusters, Oil Production Wells, Neighboring Sets

Subsystem (Cluster) Oil Production Well ID (wid) Neighboring Set (Ni)

1 1,2 {2, 3, 4}

2 3,4 {1, 3, 5}

3 5,6,7 {1, 2}

4 8,9,10 {1}

5 11,12 {2}

The produced oil and gas from each subsystem gather in a common topside process facility that has the
gas compression station as shown in Fig. 3. In gas lifted wells (see Fig. 4), compressed gas is injected into
the well tubing in order to reduce the hydrostatic pressure losses and increase oil production. However,
injecting too much compressed gas can increases the frictional pressure drop in the well tubing, which may
reduce the oil production. It means that each well has a local optimum associated to maximizing its oil
production. Thus, the lift gas supplied from the gas compressor is a common shared resource that must be
optimally allocated among the different subsystems. The gas-lift can be part of produced gas or supplied
by other common processing facilities.

Figure 4—A schematic of a gas lift oil well.

The objective is to maximize the revenue from the oil production from each subsystem and minimize the
costs associated with the gas lift compression. The lift gas wgl is a shared resource that must be optimally
allocated amongst the subsystems. Thus, the optimization problem for problem (1) is given as follows.

(14a)

subjects to:

(14b)

(14c)
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(14d)

where $o is the oil price, and $gl is the cost of gas compression. Total gas lift constraint is labelled by .
Gas-lift injection rate, wgl,i, are the decision variables, wpo,i is the oil production rates, which depend on
wgl,i, and wgl,o is decision variable for virtual subsystem 0 that can be attached individually to any physical
subsystem. The local objective function is given by

Defining  as local shared gas lift constraint for subsystem i at iteration k, the local subproblem can
be expressed as follows.

(15a)

subject to:

(15b)

(15c)

(15d)

where .
The gas-to-oil ratio (GOR), which is a reservoir property, is a time varying disturbance for the different

wells. In this simulation study, the GOR are assumed to vary as shown in Fig. 5. High GOR indicates the
well that has a lighter fluid requires less amount of gas-lift rate compared to the wells with lower GOR to
produce the same amount of oil. GOR is normally local information.

Figure 5—GOR variations. labelled by  of well wid in subsystem i.

Local RTO/DPO problem (15) is solved every 150 sec. We use extended kalman filter (EKF) as the local
dynamic estimator to update the model parameters using transient measurements (Krishnamoorthy et al.,
2018). Note that the proposed consensus-RTO/DPO framework is not just restricted to this local RTO/DPO
approach, and one may instead use any other approach such as dynamic RTO.

In this paper, we use PI controllers for each well for local setpoint, which are tuned using the SIMC
tuning rules (Skogestad, 2003). The controller is designed with a sampling time of 1 sec. Each well uses this
controller to drive the wellhead pressure, pwh,i,wid, to an optimal setpoint computed by the local optimizer (15).

D
ow

nloaded from
 http://onepetro.org/SPEATC

E/proceedings-pdf/21ATC
E/2-21ATC

E/D
021S032R

004/2487853/spe-206102-m
s.pdf/1 by N

orw
egian U

niversity of Science & Technology user on 07 July 2022



12 SPE-206102-MS

Simplified Model
The overall plant is modelled as an Index-1 Discrete Algebraic Equation (DAE) with a total of 12 inputs,
36 differential and 144 algebraic states. The model equations can be found in Appendix A. It is important
to emphasize that the main contribution of this work is not the modelling part. Similar models can be found
in Aamo et. al., 2005, Eikrem et. al., 2008, and Krishnamoorthy et. al., 2018 with some relatively strong
assumptions. The model parameters used in this paper are shown in Table 3.

Table 3—Model Parameters

Parameter [units] Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 9 Well 10 Well 11 Well 12

Lw[m] 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

Hw[m] 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Dw[m] 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121

Lbh[m] 500 500 500 500 500 500 500 500 500 500 500 500

Hbh[m] 500 500 500 500 500 500 500 500 500 500 500 500

Dbh[m] 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121

La[m] 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

Ha[m] 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Da[m] 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189

ρo[kg m−3] 800 800 700 900 820 805 800 800 700 900 820 805

Civ [m2] 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Cpc[m2] 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3 2e-3

pres[bar] 150 155 155 160 155 155 150 155 155 160 155 155

PI[kg s−1 bar−1] 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Ta [°C] 28 28 28 28 28 28 28 28 28 28 28 28

Tw [°C] 32 32 32 32 32 32 32 32 32 32 32 32

pm[bar] 20 20 20 20 20 20 20 20 20 20 20 20

Simulator
The plant simulator is developed using the CasADi ver. 3.5.1 toolbox (Andersson et al. 2019) in MATLAB
R2019b and is simulated using the IDAS integrator (Hindmarsh et al. 2005). The simulations are performed
on a 2.11 GHz processor with 16 GB memory. The simulations are performed for a total simulation time
of 15 hours.

Remark 4: In practical context, several commercial softwares can be a valuable resource to generate,
validate (process) models or to simulate a process. The following is a list of the softwares or high-fidelity
simulators, but not limited to:

• LedaFlow (by Kongsberg) and OLGA (by Schlumberger): to model fluid "dynamics" including
multiphase flow.

• PipeSim (by Schlumberger): to simulate "steady-state" multiphase flow.

• PROSPER (by Petex): a well performance, design and optimisation program for modelling of the
well.

• GAP (by Petex); steady-state multiphase network optimiser that consider integrated mod-elling.

• ECLIPSE (by Schlumberger): to simulate reservoir.
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• tNavigator (by Rock Flow Dynamics): integrated static and dynamic modelling from reservoir to
surface networks.

• MBAL (by Petex): analytical studies of the reservoir.

• HYSYS (by AspenTech) and K-spice (by Kongsberg): to simulate process dynamic at processing
facilities.

• Integrated Production Modeling or IPM (by Petex): to model the integrated production and
processing system.

Readers are advised to contact the development company for a more comprehensive description of each
software.

Results and Discussions

System-wide optimality
First, we solve the centralized optimization problem (14) to obtain ideal optimal setpoints as the baseline to
measure the performance of the consensus-RTO/DPO method. During constraint negotiation, we consider
δ = 0.005 and the possible actions combination is only 3 in this case. If the proposed approach can achieve
similar near-optimal steady-state condition to the baseline, then the proposal satisfies the goal of this work
in terms of system-wide optimal performance.

Fig. 6(a) shows the simulation results comparing the ideal optimum obtained by solving problem (14),
and the consensus-RTO. The absolute errors between the ideal optimum and consensus-RTO are shown in
Fig. 6(b) and 6(d) for total oil production rate and total gas lift injection rate respectively, which indicate
that the proposed method is able to converge to the ideal optimum at steady-state with insignificant absolute
error. Moreover, Fig. 6(c) shows that the gas lift rate of each subsystem satisfies the negotiated gas-lift

constraints. Note that starting from time 13 hour (due to change of GOR), . Therefore,
wgl,0 ≥ 0 In addition, Fig. 6(d) also shows that δ = 0.005 is good enough user choice to achieve relatively
insignificant absolute error. Step length δ plays crucial role in this method. Too large step length may lead
to significant absolute error even though the entire network can converge faster. Too small step length may
lead to slower convergence rate for the entire network even though the absolute error can be insignificant.
The speed of convergance, in fact, does not solely depend on step length, but also the algebraic connectivity
of the graph.

Fig. 7(a) and 7(b) show that the total common cost function differences have reached 0,

indicating that no gas-lift allocation transfer anymore amongst immediate connected clusters, meaning that
the consensus has reached every time consensus-RTO converges to the ideal optimum at steady-state.
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Figure 6—Simulation results showing the performance of the consensus-RTO framework can reach optimal steady-state
setpoints, along with the absolute error between them (total produced oil in top-right subplot, and total gas lift rate in bottom-

right subplot). The bottom-left subplot shows all negotiated gas-lift constraints and gas-lift rate from each cluster (N =5).

Figure 7—The left subplot shows common cost function differences between two connected
subsystems. The right subplot shows total common cost function differences of the entire

network, that stay at 0 every time consensus-RTO converges to the ideal optimum at steady-state.

Robustness
The proposed method can achieve system-wide optimal performance if and only if G is a connected graph/
network. Losing the rank L(G) due to communication failure creates isolated subsystem(s). This condition
leads to profit loss. In this part, we compare the following case:

• Case 1: Consensus-RTO method with G as shown in Fig. 1(b).

• Case 2: Consensus-RTO method with G as shown in Fig. 1(b) and communication failure happens
between subsystem 1 and 3 (v1,3 = 0).

• Case 3: Consensus-RTO method with G as shown in Fig. 1(b) and communication failure happens
between subsystem 1 and 3 (v1,3 = 0), and subsystem 1 and 2 (v1,2 = 0).

• Case 4: (Centralized-) Distributed RTO method with G as shown in Fig. 1(a) and communication
failure happens between central coordinator and subsystem 1 (v0,1 = 0), and subsystem 4 (v0,4 = 0).

Note that both case 3 and 4 have subsystem 1 and 4 are isolated from most of the other subsystems i.e.,
subsystem 2,3 and 5. At time 3-hour, disturbance occurs in subsystem 4.

Fig. 8 shows that Case 2 is still able to reach the same performance as Case 1 because eventhough
communication failure happens between subsystem 1 and 3, network G loses no rank in this case. However,
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Case 2 takes more time to converge, which is expected. It is also interesting to observe that when other
3 subsystems ‘lose’ subsystem 1, and 4, Case 3 is still able to produce more oil than Case 4. This benefit
is obtained because unlike Consensus-RTO, (Centralized-) Distributed RTO framework does not provide
communication channel between subsystem 1 and 4. Having communication channel between isolated
subsystems allows a new network with another system-wide optimization problem. Thus, in terms of
robustness, Consensus-RTO outperforms (Centralized-) Distributed RTO in some cases.

Figure 8—The left subplot shows the production rate in the aforementioned cases. The right
subplot shows total common cost function differences of the entire network for case 1,2, and 3.

Speed of Convergence
One interesting open issue in the class of system-wide optimization problem is convergence rate. This is
a natural issue since having several subsystems with limited information sharing is fundamentally slowing
down the process to find the optimal set point for the entire network. This issue not only occurs in
Decentralized RTO but also in Centralized-Distributed RTO. There are several interesting works that have
proposed methods to speed up the convergence rate. To name a few, Wenzel et al., 2020 proposed a quadratic
approximation for coupling constraints, and Rahman et al., 2020 proposed a gain adaptation to improve
the convergence rate.

Conclusions
In this paper, we presented a consensus-RTO/DPO strategy using constraint negotiation for optimal resource
allocation with limited information sharing applied to a large-scale subsea oil production system, where
we showed that the proposed approach can be an alternative to eliminate the need for central coordinator.
The simulation results show that the proposed strategy can converge to optimal steady state setpoint.
The consensus-RTO/DPO framework also allows the negotiation among subsystems within connected
neighborhood and enables system-wide optimal operation. Moreover, this approach has relatively no
additional cost, making it possibly attractive for marginal oil production field. Interesting research directions
are first, to improve the optimality of this approach as mathematically the performance of consensus-RTO/
DPO is near-optimal performance and depending on user defined step size, and second, to improve the rate
of convergence.
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Appendix A
Simplified Model

The model equations can be divided into simple gas-lift system model and simple oil production well model.

Simple gas-lift system model
The mass balance equation is as follows.

(A.1)

where mga,i is the mass of gas each well inside the annulus from gas-lift choke valve up to injection valve,
wgl,i is gas mass flow rate of each well injected to the annulus, and wiv,i is gas mass flow rate of each injected
to well tubing.

The mass flow rate equation is as follows.

(A.2)

where Civ,i is the valve coefficient of injection valve, ρai,i is gas mass density in annulus of each well, pai,i is
gas pressure inside annulus, and pwi,i is injection pressure inside well tubing.

The gas density is defined as follows.

(A.3)

where Mw is the molecular weight, R is Reynold number, and Ta,i is the temperature of the gas in annulus
in each well.

The pressure is defined as follows.

(A.4)

where  and , Da,i and Dw,i are the diameter of gas-lift supply and annulus respectively,
La,i is the length of annulus, g is the gravity force, and Ha,i is the height of the annulus.

Simple oil production well model
The mass balance equations are as follows.

(A.5a)

(A.5b)

where mgt,i is the mass of gas inside well tubing, mot,i is the mass of oil inside well tubing, wrg,i is gas mass
flow rate from reservoir, wro,i is oil mass flow rate from reservoir, wpg,i is produced gas mass flow rate, and
wpo,i is produced oil mass flow rate.

The mass flow rate equations are as follows.

(A.6a)

(A.6b)

(A.6c)
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(A.6d)

(A.6e)

where wpc,i is the produced hydrocarbon (both oil and gas) mass flow rate, cpc,i is the valve coefficient of
production choke valve, ρmix,i is mixed mass density in the well tubing, pres,i is reservoir pressure of each well,
pbh,i is bottomhole pressure of each well, pwh,i is wellhead pressure of each well, pm is manifold pressure,
GORi is gas-to-oil ratio of each well, and PIi is well productivity index.

The mass density is defined as follows.

(A.7)

where ρo,i is oil density, , and Dbh,i is the diameter of bottomhole, and Lbh,i and Lw,i are the length
of bottomhole, and well tubing respectively.

The pressures are defined as follows.

(A.8a)

(A.8b)

(A.8c)

where Tw,i is the temperature in well tubing, Δpfric,w,i is pressure drop due to friction in well tubing, Hw,i is
the height of well tubing from well head to injection point, and Hbh,i is the height from injection point to
the bottomhole.

As seen from (A.1) - (A.8), the process model can be represented as a semi-explicit DAE system. This
model was also compared with high fidelity dynamic simulator such as OLGA which ensures that the models
used are representative of the real system (Codas et al., 2016).

Some important assumptions that we consider are that the oil density ρo,i is relatively constant, the mass of
oil computed for mixture density excludes the mass of oil in the bottomhole, and we assume that the impact
of water produced is relatively insignificant. Similar simplified modelings can also be found in Aamo et.
al., 2005, Eikrem et. al., 2008, and Krishnamoorthy et. al., 2018, to name a few.
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