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Abstract: This study presents a Model Predictive Control (MPC) interpretation of the Gener-
alized Split-Range Control (GSRC), focusing on a novel Mixed-Integer Quadratic Programming
(MIQP) formulation that enforces sequential actuator usage. By replicating the input sequencing
behavior of the GSRC, the proposed MPC controller allows for economically efficient decisions
regarding input usage. In order to show this behavior, the same case study of the original paper
on GSRC was simulated, comparing both approaches. The study suggests that while GSRC
implementation may be more suitable for smaller processes, integrating the proposed MPC
approach into larger industrial settings with existing MPC controllers could offer an equally
economic efficient alternative to incorporate split-range economic properties.
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1. INTRODUCTION

Multiple-Input Single-Output systems emerge in industrial
processes where two or more actuators operate together
to drive a single process variable. This is the case when
more than one input is required to cover the entire de-
sired output steady-state range (Reyes-Lúa and Skogestad,
2020). They emerge in many applications such as pulp
and paper industry (Allison and Ogawa, 2003), (Varshney
et al., 2022), gas-liquid separators (Fatani et al., 2017),
heat exchangers (Reyes-Lúa et al., 2018), chemical reactors
(Alsop, 2016), HVAC (Reyes-Lúa et al., 2019) and even in
medic drug delivery (Paw lowski et al., 2022).

The presence of multiple inputs allows for different control
strategies to coordinate the usage of each actuator. This
approaches can aim for improving dynamic behavior of
the system and even minimizing the operational cost by
prioritizing the usage of cheaper inputs (Pedrisch et al.,
2023). In fact, several works in the last few years have
proposed improvements on classic advanced control struc-
tures, which are able to deal with MISO systems, like mid-
ranging control (Alsop, 2016), (Hägglund, 2021) or split
range control.

In particular, split range control has been documented
in the literature since the 40s (Eckman, 1945) but has
received renewed attention in the recent years, as seem
in the works of D. Machado (2022), F. Garćıa (2021) e
Balbinot et al. (2021).
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As presented in Figure 1, for a TISO (two-input, single-
output) system, this control technique employs a single
primary controller C whose output is processed by a
splitter block which, through affine functions, assigns a
value to each control input ui.
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Figure 1. Split range control strategy for a Two-Input
Single-Output system.

The inputs can be sequenced following an economic cri-
teria, prioritizing cheaper inputs and only resorting to
tapping into the more expensive resources once the cheaper
inputs are saturated and can no longer drive the process
output toward the set-point. Figure 2 shows an example
for a two input system where u2 is only used after u1,
assumed cheaper, saturates.

One of the drawbacks of the split-range control approach
is that the primary controller must be tuned considering
the dynamics of each input channel, and often lead to
a compromise between what would have been chosen for
each actuator individually (Reyes-Lúa et al., 2019). This
issue has been addressed by Reyes-Lúa and Skogestad
(2020) who proposed a generalized split range control
(GSRC) based on a baton passing strategy. This approach
provide each input with its own controller Ci, in order
to overcome the tuning limitations present in the classic
split-range control.



Figure 2. Split-range profile input usage regarding the
controller output v.

Under a GSRC strategy, exemplified in Figure 3, at every
instant, only one of the controllers has the baton and is
allowed to actively control the process output by moving
its own input. Once this actuator saturates it passes the
baton to the next controller and remain saturated, thus
emulating the input sequencing behavior seen in the classic
split range control. This also enables the economic decision
regarding which input should be prioritized considering
their usage cost.

Figure 3. Generalized split-range control for a MISO sys-
tem as proposed in Reyes-Lúa and Skogestad (2020).

For the sake of comparison Reyes-Lúa and Skogestad
(2020) compared the performance of the GSRC with a
model predictive control (MPC) approach. Their paper ar-
gues that while the dynamic behavior is quite similar, the
MPC controller takes suboptimal decision regarding the
usage of more expensive inputs during transient response,
while the cheaper ones have not reached saturation yet.

While this could be improved by careful choice of the
weights in the objective function to discourage the usage
of the more expensive inputs or by the inclusion of input
targets, provided by an economic-oriented optimization
layer above, these solutions would not guarantee the input
sequencing behavior seem in the split range control.

MPC strategies, however, are a very flexible framework
that encompasses a large family of control methods that
share common ideas founded upon the concept of model
based prediction (Camacho et al., 2007). The general MPC
controller is composed of a process model and a optimizer,
as illustrated in Figure 4. The controller solves an opti-
mization problem on each sampling instant to compute
an optimal control sequence, but only the first value is
actually applied to the process, as the MPC will compute

a new optimal sequence on the next sampling instant. The
constraints of the optimization problem can be used to en-
force operational limitations and shape the behavior of the
control inputs. In regard, the seminal work by Morari and
Alberto (1999) proposed a predictive control scheme capa-
ble of dealing with mixed logic dynamic (MLD) systems.
Said systems are described by physical laws, independent
operating constraints and logical rules.

Figure 4. Basic MPC structure.

So, in order to emulate the desirable economic behavior
of split range control in an MPC framework, the present
study objective is to provide a novel formulation for
enforcing input sequencing by introducing binary decision
variables into the optimization problem.

2. GENERALIZED SPLIT RANGE CONTROL

The controller proposed by Reyes-Lúa and Skogestad
(2020) comprises a controller switching scheme based on
the so-called baton passing strategy. Each input is con-
trolled by an independent controller Ci, whose output u′

i
is considered a suggested control signal. Each suggested
control signal is fed to the baton passing logic block that
calculates the actual control signals ui. This scheme is
illustrated in Figure 3.

At any time during normal controller operation, only a
single input ui is actively controlling the process variable.
Meanwhile, the other actuators are saturated, whether in
the fully open or fully closed position. This is achieved
with the baton passing logic, in which only the controller
that owns the baton can move its control action, while the
other remains saturated until the baton is passed to then
eventually. On the other hand, the active input remains
active until it becomes saturated, when this happens, it
will pass the baton to the next input. And, because only
one input is actively controlling the output at any given
time, each Ci controller can be tuned independently as if it
were in a SISO process, avoiding the compromise required
in the conventional SRC primary controller.

As in the split-range control, the inputs in the GSRC are
sequenced in relation to their cost of use: the cheapest
input should be used first and, after saturation, the second,
more expensive input is used, then the third, even more
expensive, one and so on.

The baton passing strategy is implemented as follows. If
the i-th controller has the baton at the instant t, it will
calculate the suggested input u′

i(t). Assuming that every
input signal is scaled from 0 to 1, if 0 < u′

i(t) < 1, Ci

remains active and ui(t) = u′
i(t), while the other inputs



remain saturated. Otherwise, if u′
i(t) > 1 or u′

i(t) < 0,
then ui saturates at the relevant limit and the baton is
passed to the next or previous controller, depending on
whether ui is fully open or fully closed and if ui has direct
or reverse action.

3. INPUT SEQUENCING CONSTRAINTS

Analyzing the control behavior described in Reyes-Lúa
and Skogestad (2020), it is possible to formulate a set of
constraints that enforces the input sequencing behavior.

Initially, binary decision variables will be defined that
will describe the current state of the control action of
each actuator ui. When the i-th manipulated variable is
saturated at its maximum value, the binary variable σi

must be set to 1. When it is saturated at its minimum
value, the variable δi must be set as 1. As shown in (1)
and (2), respectively.

ui = umax
i → σi = 1 (1)

ui = umin
i → δi = 1 (2)

Firstly, the inputs should be grouped by their control
action, either direct or reverse. Then, among each group
the inputs must be ordered by their usage cost. For direct
acting inputs, they should be ordered from cheapest to
most expensive. Among the reverse acting inputs the
ordering is reversed: from most expensive to cheapest.

For sake of clarity, consider a process with n inputs:
u1, ..., um, ..., un. Inputs 1 to m have reverse action (neg-
ative static gain) and inputs m + 1 to n have direct
action (positive static gain). When properly ordered, u1

should be the most expensive reverse acting input and um

the cheapest one. Conversely, um+1 is the cheapest direct
acting input and un the most expensive.

Provided that the inputs have been ordered as prescribed,
the satisfaction of the following constraints for every step
j of the control horizon will replicate the split range
behavior:

0
1 − δ1(k + j)

...
1 − δm−1(k + j)
σm+1(k + j)

...
σn−1(k + j)

0


≤



u1(k + j)
u2(k + j)

...
um(k + j)

um+1(k + j)
...

un−1(k + j)
un(k + j)


≤



1 − δ1(k + j)
1 − δ2(k + j)

...
1 − δm(k + j)
δm(k + j)

...
σn−2(k + j)
σn−1(k + j)


(3)

Consider that, on a given moment, the process requires
the reverse action to move towards the set-point. If the
demand for reverse action is small enough and um is able
do supply it alone, um−1 is saturated at 0 and, therefore
δm−1 is set to 1, allowing um to move between 0 and 1,
given that δm is set to 0. Having δm set to 0 locks the
direct acting inputs turned off. If um saturates at 1 and
um−1 is needed δm−1 is set to 0, so um is constrained to
1 ≤ um ≤ 1, therefore saturating at its maximum value
and freeing um−1 to move up to 1. If um−1 saturates at 1
then δm−2 must be set to 0 so um−1 is locked saturated in
1 and um−2 can move freely between 0 and 1. This goes on
until reaching u1, the most expensive reverse acting input.

Conversely, if direct action is needed to drive the process
towards the set-point, in order to start using um+1 the
binary decision variable δm must be set to 1, thus forcing
um to be locked at 0 and blocking all reverse action inputs.
If um+1 saturates at its maximum value σm+1 is set to
1, forcing um+1 to stay saturated and allowing um+2 to
increase up until 1. This repeats until reaching un, which
is the most expensive direct acting input.

If the system has only direct or reverse acting actuators
a sliced up version of the constraint (3) should be used.
From u1 up until um if only reverse action is available and
from um+1 up until un if only direct action is available. In
the later case the upper bound for um+1 is simply 1.

The addition of these constraints turn the quadratic pro-
gramming (QP) optimization problem of a conventional
MPC controller into a mixed-integer quadratic program-
ming (MIQP) programming problem. MIQPs are still con-
vex problems and, therefore, have a single global minimum
which can be found with well known optimization tech-
niques, so this should not be a hindrance to its usage
as many modern commercial solvers are able to tackle
MIQPs.

4. SIMULATION CASE STUDY

To compare the proposed GSRC structure with other tech-
niques available in the literature, Reyes-Lúa and Skogestad
(2020) carried out the simulation of a case study of temper-
ature control in an indoor environment with four actuators
present: two cooling sources and two heating sources.

• uAC : air conditioning control signal;
• uCW : cooling water control signal;
• uHW : hot water control signal;
• uEH : electric heater control signal;

The objective of the control is to maintain the temperature
at T = T ref , with the system constantly receiving the dis-
turbance of external temperature T amb being the nominal
ambient temperature T amb

0 = 17◦C. The same process will
be used as a benchmark here for comparison purposes.

For simplicity the indoor space is described as a linear
MISO system:

y(s) = Gp(s) · u(s) + Gd(s) · d(s) (4)

where y(s) = T (s), u = [uAC uCW uHW uEH ]T , Gp(s) =
[GAC(s) GCW (s) GHW (s) GEH(s)], which are the transfer
functions between the temperature and the air condition-
ing, cooling water, hot water and electric heater control
signals, respectively, and d = T amb.

Table 1 shows the static gains (Kj), the time constants
(τj) and dead times (θj) for Gp and Gd, modeled as first
order transfer functions plus dead time.

Aiming to validate the novel formulation, a comparison
between the GSRC and an MPC controller with the
proposed set of constraints is presented below.

4.1 GSRC Results

The design of the GSRC starts with the definition of
the sequence of inputs given their economic cost. In this



Table 1. Parameters for the first order plus
dead time transfer function for Gp,i(s) relating
uj to output y = T and the disturbance d =

T amb to y = T .

Gp,i Kp,i τi(min) θi(min)

GAC -5 8 2
GAR -10 15 3
GAQ 12 10 3
GAE 8 5 1
Gd 1 15 6

case both cooling water and air conditioning are used to
decrease the temperature, with the first being the cheaper
input to use. Conversely, the hot water and the electric
heater are the heating sources, with the hot water being
the cheapest of the two. So, the control should favor using
the cold and hot water first, and only tap into the most
expensive actuators after the cheaper ones saturate.

Given that the dynamics for each channel are described
by first order plus dead-time models, four PI controllers
are used. For sake of comparison the same tuning of the
original paper of Reyes-Lúa and Skogestad (2020) was used
here:

Table 2. Tuning parameters for each PI con-
troller.

Cj Kc,j Ti,j

C1 - 0.4000 8
C2 -0.2500 15
C3 0.1389 10
C4 0.3125 5

Each controller was discretized with a sample time of 0.1
minute and the GSRC was deployed in the simulation
with the anti-windup scheme discussed in Reyes-Lúa and
Skogestad (2020) where the integral action is turned off
when a given controller does not have the baton.

For the simulated scenario the set-point temperature is
held constant at 17◦C and the external temperature, the
disturbance, suffer six step changes. While the abrupt
changes are unrealistic, they make easier to show the
controller behavior than a smooth temperature profile
would. The changes are akin to the scenario described in
Reyes-Lúa and Skogestad (2020).This temperature profile
and the behavior of the closed-loop system are shown in
Figure 5.

While the external temperature is equal to the desired
internal temperature there is no need for cooling or heat-
ing. However, at the first step change the controller uses
only the cold water to drive the temperature back to the
set-point. After the second step change the sequencing
behavior is noticeable, as the PI controller increases uCW

until it saturates. At this point the baton passing logic
passes the baton to the air conditioning, forcing the cold
water to stay saturated while uAC actively controls the
temperature.

After the third step change, uAC reaches zero, and the
baton is passed back to the cold water keeping the air
conditioning off. As the external temperature drops, cold
water input is set to zero, passing the baton to the hot
water, which then saturates and hands over to the electric
heater, maximizing the use of the cheaper heating source.

Figure 5. GSRC results. Top: Temperature profile for
the scenario. Middle: Internal temperature. Bottom:
manipulated variables for each actuator.

When the fifth step change arrives, the heating demand
reduces, allowing for the electric heater controller to hand
the baton back to the hot water controller. Finally, at the
350 minutes mark, the disturbance goes above the desired
internal temperature, thus the hot water controller drives
uHW to 0 and hands the baton to the cold water, which
works towards rejecting the disturbance.

4.2 MPC Approach

In order to control the internal temperature of the housing
using an MPC controller with the addition of the input
sequencing constraints, a Generalized Predictive Control
(GPC) was adopted. The GPC is a well-established MPC
controller that uses an input-output model known as
CARIMA (Controller AutoRegressive Moving-Average)
model (D.W. Clarke, 1987), which for the four input, single
output case can be written as:

A(z−1)y(k) =

4∑
i=1

z−diBi(z
−1)ui(k − 1) +

C(z−1)

∆
ε(k),

(5)
where A, Bi and C are polynomials in the time delay
operator z−1, y(k) is the output of the system, ui(k) is
the i-th manipulated variable, ε(k) is gaussian white noise
and ∆ = 1 − z−1. Here it is assumed that C(z−1) = 1.

The function to be minimized in the optimization problem
is:

J =

N2∑
j=N1

γ(w(k+j)− ŷ(k+j))2+

4∑
i=1

Nu−1∑
j=0

λi(∆ui(k+j))2

(6)
where N1 and N2 are the limits of the prediction horizon,
Nu is the size of the control horizon, w(k + j) is the
reference trajectory, ŷ(k + j) is the predicted output, ∆ui

is is the control increment for the i-th input and γ and λi



are the weights for the error and control effort terms of the
cost function. This objective function can be understood
as a trade-off between eliminating the error quickly and
having a smooth control action.

For this four inputs case, the constraints shown in (3)
become:

0 ≤
j∑

i=0

∆u1(k + i) + u1(k − 1) ≤ 1 − δ1(k + j)

1 − δ1(k + j) ≤
j∑

i=0

∆u2(k + i) + u2(k − 1) ≤ 1 − δ2(k + j)

σ3(k + j) ≤
j∑

i=0

∆u3(k + i) + u3(k − 1) ≤ δ2(k + j)

0 ≤
j∑

i=0

∆u4(k + i) + u4(k − 1) ≤ σ3(k + j)

(7)

These four constraints should be enforced for every sample
in the control horizon j ∈ [0, Nu − 1] 1 . Additionally,
since the GPC uses control increments ∆ui instead of
the absolute control value ui as decision variables for the
optimization problem, each absolute control value, which
should be bounded by (3) is found as:

ul(k + j) =

j∑
i=0

∆ul(k + i) + ul(k − 1). (8)

The GPC runs at the same 0.1 min sampling time used
for the GSRC. The prediction horizon was chosen as
N1 = 10, the smaller dead time among the four channels,
and N2 = 65. The control horizon is chosen as Nu = 3
for each input. The weights of the objective function are

chosen as γ =
0.5

N2 −N1
and λi =

1

NuK2
p,i

for all the

four inputs. The error term is divided by the length of the
horizon and the control effort is divided by the length of
the control horizon to normalize the terms and simplify the
tuning. The 0.5 value was chosen experimentally aiming to
encourage the control to take smoother control actions.

Finally, while it is simple to include the measurement of
the disturbance to give the GPC some feedfoward capa-
bilities, provided that the disturbance-to-output model is
known, the simulation presented here does not include it,
for the sake of a fair comparison.

The behavior of the system under the GPC with the
proposed input sequencing mixed-integer constraints is
show in Figure 6.

Similarly to the GSRC results, the MPC controller uses
the inputs sequentially, always favoring the cheaper one
for either cooling or heating demands. The controller only
taps into the air conditioning or electric heater when the
cheaper options are already saturated.

1 In a standard GPC the lower and upper limits would simply be 0
and 1 for each manipulated variable. Further discussion is available
in the supplementary material https://github.com/jdiogoforte/

split-range-MPC-2024/
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Figure 6. SRGPC results for the same disturbance se-
quence. Top: Internal temperature. Bottom: manip-
ulated variables for each actuator.

4.3 Analysis of the results

To provide a quantitative comparison between the MPC
approach and the GSRC the integral of the absolute error
(IAE) and the cost of usage of the inputs was computed.
While the original case study never stated actual values
for the cost of each input, here, for simple illustration,
the cost for hot water and cold water is considered to
be the same and the cost of using the air conditioning
and the electric heating is five times that much, reflecting
the weights used in the MPC formulation used in (Reyes-
Lúa and Skogestad, 2019). The comparison is presented in
Table 3.

Table 3. Performance indexes for each ap-
proach.

Controller IAE Input Usage Cost

GSRC 269.1754 55.0938
GPC 34.1586 218.4820

SRGPC 31.5887 58.6588
SRGPC+FF 9.9120 50.1253

The comparison include both the GSRC and the GPC
with the input sequencing constraints, dubbed SRGPC
in the table, which were detailed in the previous sec-
tion, along with a conventional GPC controller without
binary decision variables, and a version of SRGPC with
the inclusion of the measurement of the disturbance to
provide feedforward capabilities for the controller (thus
SRGPC+FF in the table) 2 .

Firstly, when comparing the conventional GPC with the
GSRC it is noticeable that the input usage cost for the
MPC controller is significantly larger, as the controller has
no incentive in the formulation to abstain from using the
more expensive inputs. This could be tackled by increasing
the λi terms associated with the electric heater and the air
conditioner, but would not completely stop the GPC from
using them simultaneously with the cheaper inputs.

The GPC with the proposed constraints, however, is able
to improve the IAE in more than seven times with only
a 6.7% increase in the operation cost when compared to
the GSRC. It is arguable that with the inclusion of the
constraints that replicate the input sequencing behavior of

2 The GPC and SRGPC with FF response curves are available in
the supplementary material.



the GSRC, the GPC controller will take an economically
efficient decision regarding the usage of the available
inputs, and the performance difference should be reported
to the tuning of both controllers.

Moreover, given that the external temperature measure-
ment could be easily implemented on a real system, the
inclusion of the disturbance model into the GPC further
improves the performance.

Finally, it is important to remark that, while the imple-
mentation of the GSRC is possibly more convenient for
smaller processes, due to its lower computational power
requirement, in an industrial setting with multiple con-
trol loops, specially where MPC controllers are already
deployed, the usage of the proposed approach could prove
to be a suitable alternative to integrate the split-range eco-
nomic properties into the MPC framework. Additionally,
the flexibility of the MPC approach is desirable when some
of the sequenced inputs share limited resources with other
inputs controlling different outputs.

5. CONCLUSIONS

This study has presented a MPC interpretation of the
Generalized Split Range Control, based on a novel MIQP
formulation that consists in the inclusion of a set of con-
straints that enforce the sequential usage of the actuators.
This allow an MPC to emulate the behavior seen in Split
Range Controllers where a cheaper input is favored and
only when that input saturates the next, more expensive,
input is used. Furthermore, the proposal is flexible enough
to accommodate applications where the costs associated
with using specific inputs can vary depending on produc-
tion campaigns or market conditions. In such cases, the
prioritization order of inputs could be adjusted by the
control panel operator, which would simply require inter-
nal switching between multiple versions of the constraints
sent to the MIQP solver.

The results from the simulation have shown that the
proposed formulation works as intended, granting the
MPC controller the same properties seen in the GSRC. It
is important to remark that formulating the optimization
problem as an MIQP instead of a QP due to the addition
of binary decision variables does not hinder the convexity
of the problem, so the global optimality remains ensured.
Furthermore, the similar input usage cost is a convincing
evidence that the proposed controller is suitable to address
this class of MISO systems where different inputs have
different usage costs.

The improvement in the IAE when compared to the
GSRC can be reputed to the tuning of both controllers
and the GPC capabilities of dealing with dead time.
Therefore, future work could revisit the comparison using
Smith Predictors as the primary controllers for the GSRC.
Additionally, further investigation should be devoted to
cases where overlap between inputs is used in conventional
split-range control to mitigate non-linearities and improve
controllability near valve travel extremes.
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