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Abstract

Selector logic is a simple and effective tool to switch between different controlled variables associated with change in
active constraints. Selector blocks have been extensively used in the process control industry for decades, but their
design has been based on engineering intuition and experience. Currently, there is a lack of systematic procedure to
design selectors for active constraint switching. In this paper, we address this gap and provide a systematic procedure,
which can be applied without the need for detailed process models. Illustrative examples are used to demonstrate the
proposed framework.

1. Introduction

Selector logic blocks, also commonly known as over-
rides have been in use in the process industries for several
decades to switch between a plurality of controllers, and
are available as a part of any standard digital control sys-
tem (DCS) software package. Despite their widespread
use, not just in the process industries, but also in other
application domains, selectors are currently designed in
an ad-hoc fashion based on engineering know-how and ex-
perience [1, Section 1.17].

There is a lack of systematic design procedure that tells
when to use a max-selector, when to use a min-selector,
and when is it not feasible to use a selector. Industry-
oriented and process control books such as [2, Ch. 6],
[3, Ch. 12], [4, Ch. 18], [5, Ch. 10] and [6, Ch. 22]
demonstrate the use of selectors using various illustrative
examples, but there is no systematic procedure. [7] studies
several control structures, however the analysis is limited
to only one CV constraint, and does not address the case
with several CV constraints. Although there have been
a few works studying the stability of min-max selectors,
see for example [8, 9, 10] and the references therein, the
choices that affect design of the selectors itself still remains
an open problem.

In this paper, we address this gap by providing a sys-
tematic design procedure. In particular, we study the use
of selectors for active constraint switching in the context
of economic optimal operation.

Often optimal operation occurs when some of the con-
straints are at their limiting values. For example, when
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the market price for the product is high, then the pro-
cess should be operated at its maximum production ca-
pacity, in order to maximize the profit. Constraints that
are optimally at their limiting values are known as active
constraints. Because of changes in the operating condi-
tions (disturbances) and market prices, the set of active
constraints changes. An active constraint region is a dis-
turbance space that is defined by the set of constraints
that are active within it [11].

Typically, real-time optimization (RTO) involves solv-
ing a numerical optimization problem using rigorous non-
linear process models to compute the optimal setpoints,
which are given to the control layer below. Recently, there
is an increasing interest in achieving optimal operation,
without the need to solve numerical optimization problems
[12, 13, 14, 15, 16, 17, 18]. In other words, the economic
objectives are translated into control objectives, thereby
achieving optimal operation using simple feedback control
structures [19]. The idea of “feedback optimizing control”
dates back to [20]. The main idea of feedback optimiz-
ing control (also sometimes referred to as self-optimizing
control[19], or direct input adaptation [13]) is to find the
right set of controlled variables (CVs), which when held
constant, leads to economically optimal operation [20, 19].

When some of the constraints are optimally active,
then the simplest approach is to control the constraints
at their limits, possibly with some safety margin, known
as back-off. This is known as active constraint control.
If there are any remaining unconstrained degrees of free-
dom (manipulated variables), one should then identify self-
optimizing controlled variables, for example the steady-
state cost gradient. Note that, in [19], the active con-
straints were included as the “obvious” self-optimizing vari-
ables, and the theory of self-optimizing control was devel-
oped for the less obvious unconstrained CVs [21].

Mathematically, feedback optimizing control aims to
find a simple feedback solution to a steady-state real-time
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Figure 1: Schematic representation of active constraint switching
using selectors.

optimization problem of the form

min
u

J(x,u,d) (1a)

s.t.

g(x,u,d) 6 0 (1b)

where u ∈ Rnu are the set of manipulated variables (MV),
x ∈ Rnx denotes the internal variables, d ∈ Rnd denotes
the set of disturbances, J : Rnu × Rnx × Rnd → R is the
cost function, and g : Rnu × Rnx × Rnd → Rng are the
set of constraints. A constraint gi(x,u,d) 6 0 is said to
be active if gi(x,u,d) = 0. Let the set of na 6 ng active
constraints be denoted by gA ⊆ g (i.e. gA(x,u,d) = 0).

Note that here, the manipulated variables u denote the
available degrees of freedom for the given problem. It may
either be the actual physical manipulated variable, or the
setpoint to a lower level regulatory controller.

To transform the optimization problem into a feedback
control problem, we need to identify controlled variables
(CVs yi) associated with the constraints and the with the
goal of minimizing the cost J . The latter is a bit com-
plicated, as the best “self-optimizing” variables to con-
trol for minimizing the cost J depends on what the ac-
tive constraints are. Thus, for a steady-state optimization
problem of the form (1), the first step towards designing
a feedback optimizing control structure involves identify-
ing the relevant active constraint combinations. Once the
relevant active constraint combinations are identified, one
must make a decision on which unconstrained variables to
control. That is, in each active constraint region, we must
control [15],

1. The na active constraints at their limits (i.e. CV:=
gA → 0),

2. For the remaining nu − na unconstrained degrees of
freedom, control a self-optimizing controlled variable
(unconstrained CV), e.g. the steady-state cost gra-
dient.

It is then evident, that the active constraint regions
play an important role in feedback optimizing control,
since this determines “what to control”. However, most of
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Figure 2: Schematic representation of a gas turbine engine

the works considering feedback optimizing control (stud-
ied in the context of extremum seeking control [22], NCO-
tracking [23], self-optimizing control [19], hill-climbing con-
trol [24], neighboring extremal control [25] etc. to name a
few) focus on the unconstrained optimum, and switching
between active constraint sets has received relatively little
attention. One of the main reasons for this is probably that
active constraint control is often seen as simple/obvious.

When the set of active constraints changes, then this
requires a change in the controlled variables and reconfig-
uration of the control loops. The active constraints may
be on the controlled variables (CV), or on the manipulated
variables (MV). Therefore, optimal operation may involve
either CV-CV switching, MV-MV switching, or CV-MV
switching.

CV-CV switching occurs when there are several CV
constraints for one MV, but only one CV constraint is ac-
tive and can be controlled at any given time. To achieve
this using selectors, independent controllers may be de-
signed for each controlled variable, and a max/min-selector
is used to select either the maximum or the minimum value
of all the inputs computed by the different controllers as
shown in Fig. 1 for the case where all the constraints are
associated with a single input u. This is the case studied
in this paper.

The main contribution of this paper is the systematic
design procedure for active constraint switching using se-
lectors for the case when all the constraints are associ-
ated with a single input. Several illustrative examples are
provided to demonstrate the proposed systematic design
procedure.

2. Motivating example 1: Gas Turbine Control

Consider a gas turbine engine in Fig. 2 (e.g. for power
generation or for aircraft propulsion) with two MVs (de-
grees of freedom), namely the air inflow rate Fa and the
fuel injection rate u Suppose the objective is to control
the engine power y0 = W to a desired setpoint, subject
to a max-constraint on the rotational speed ω, a max-
constraint on the engine temperature Te, a min-constraint
on the engine pressure pe, a min-constraint on the air in-
let pressure pa, and a max-constraint on the fuel injection
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rate u (MV),

Desired: y0 = W = Wsp

CV constraints: y1 = ω 6 ωmax

y2 = Te 6 Te,max

y3 = pe > pe,min

y4 = pa > pa,min

MV constraint: u 6 umax

Assuming that the air inflow rate Fa is used to control the
engine temperature Te to its maximum value Te,max, the
fuel injection rate must be used to achieve the other objec-
tives. In the reduced system, we have one CV (y0 = W )
with a desired setpoint which may be given up if necessary,
three CVs yi, i = {1, 3, 4} with inequality constraints, and
one MV u with an upper limit.

Process insight tells us that increasing the fuel u will
increase the speed y1 = ω, increase the engine pressure
y3 = pe, and decrease the air inlet pressure y4 = pa. Based
on this, if one uses a min-selector to switch between the
CVs, the constraints on u, y1, and y4 would remain feasi-
ble, but the minimum constraint on y3 may be violated.
Similarly, with a max-selector, y3 would remain feasible,
but constraints on u, y1, y2 and y4 may be violated. It is
also not evident if the performance would be the same if
one were to use a max-min selector or a min-max selector
in series, if so under what conditions.

This simple example clearly shows that although one
can often design selector blocks using process insight in
such an ad-hoc fashion, it is clearly desirable to have a
more systematic procedure in order to design verifiable
control structures. Specifically, it may not be evident to an
engineer when a set of constraints are conflicting, whether
to use a min or a max-selector, or a combination of both,
or if such a switching scheme is feasible at all. Also, the
lack of a systematic design procedure means that all the
feasible alternatives may not be explored.

3. Systematic design of active constraint switching
using selectors

Consider a process with a single input (u) and many
potential controlled variables (CVs), such that we have

• At most one CV (y0) with a desired setpoint, that
may be given up if necessary.

• Any number of CV yi with inequality constraints
yi,lim, that may be optimally active.

• MV inequality constraints umin 6 u 6 umax

Note that the objective is to achieve feasible and op-
timal steady-state operation using simple feedback con-
trollers and selectors to switch between the active con-
straints. Therefore, the following results are based on
steady-state.

Notation:

• Let Gi denote the steady state gain from the input
u to the output yi.

• Let Y be the set of all inequality constraints yi,lim
( where yi,lim could be both yi,max or yi,min ) that
needs to be satisfied at steady-state for any given
operating condition.

Assumption 1. The gain Gi from u to yi does not change
sign (that is, dyi

du has the same sign for any du and any
operating point).

The set of constraints can be divided into two subsets
Y = Y+ ∪ Y− according to the following criteria.

1. Y+ is the set of constraints where reducing the input
u is better in terms of satisfying the constraints. This
means that

• For CVs where the gain Gi from u to yi is pos-
itive (Gi > 0), the set Y+ includes the corre-
sponding max-constraints (yi,max).

• For CVs where the gain Gi from u to yi is neg-
ative (Gi < 0), the set Y+ includes the corre-
sponding min-constraints (yi,min).

• The set Y+ also includes a possible max-constraint
on u (umax).

2. Y− is the set of constraints where increasing the in-
put u is better in terms of satisfying the constraints.
This means that

• For CVs where the gain Gi from u to yi is pos-
itive (Gi > 0), the set Y− includes the corre-
sponding min-constraints (yi,min).

• For CVs where the gain Gi from u to yi is neg-
ative (Gi < 0), the set Y− includes the corre-
sponding max-constraints (yi,max).

• The set Y− also includes a possible min-constraint
on u (umin).

Define
ui = u(yi = yi,lim) (2)

as the value of the input u which at steady-state satisfies
the constraint yi,lim, i.e., ui gives yi = yi,lim at steady
state.

Theorem 1 (Feasibility). Let

u = min
i∈Y+

ui (3)

denote the largest allowed input u that satisfies all the con-
straint in the set Y+, and similarly, let

u = max
i∈Y−

ui (4)

denote the smallest allowed input u that satisfies all the
constraint in the set Y−. Then to have feasible operation
using u as the manipulated variable, we must at any given
steady-state operating point have u 6 u.

3
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Figure 3: Schematic representation showing that the optimal input (marked with a red dot) can be achieved using a mid-selector. (a)
Unconstrainted Optimum u < u0 < u. (b) Constrained optimum u < u < u0. (c) Constrained optimum u0 < u < u.

Proof. To remain feasible, we need u 6 u to satisfy the
constraints in Y+ and u > u to satisfy the constraints in
Y−. Satisfying both these conditions is possible if and only
if u 6 u.

Theorem 1 tells when satisfying all constraints is feasi-
ble using a single input u, that is, when there is an allow-
able operating window for u ∈ [u, u]. If we have infeasibil-
ity (conflicting constraints) according to Theorem 1, then
we have two possibilities:

1. let another input (MV) v take over the control of one
of the constraints which is no longer controlled using
u. This will involve MV-MV switching from input u
to v (see discussions in Section 6.5).

2. If we dont have another MV v to take control of
the conflicting constraints, then one would have to
prioritize the constraints and give up the less impor-
tant constraint (this will be formally stated later in
Theorem 3).

Theorem 1 only tells us when the constraints are fea-
sible. To get a unique value for u we need to add another
objective. Typically, we have a controlled variable (y0)
with a desired setpoint, and if possible we want to use the
corresponding value of input (u0 ) which gives y = y0 at
steady-state. More generally, the desired input may result
from an optimization problem,

u∗ = arg min
u
{J(u, d) | s.t. CV and MV constraints} (5)

with u∗ being the unique minimizer of (5). Then u0 is the
value of u∗ for the corresponding unconstrained problem;

u0 = arg min
u
J(u, d) (6)

We may also have cases where the objective is to max-
imize or minimize some variable. This will correspond to
having u0 = ∞ or u0 = −∞ (for the corresponding un-
constrained problem).

Theorem 2 (Optimalilty). Assume the operational objec-
tive is to minimize J , and let u0 denote the value of the

input u that minimizes J for the unconstrained case. As-
suming feasible operation, so that u < u (Theorem 1), the
optimal input u is given by

u∗ = mid(u, u0, u) (7)

Proof. If u < u0 < u then the unconstrained optimum
is within the feasible region, and optimal operation occurs
when u∗ = u0. This is schematically represented in Fig. 3a.

If u < u < u0, then u0 is infeasible. Hence u∗ = u (see
Fig. 3b). Similarly, if u0 < u < u, then u0 is infeasible.
Hence u∗ = u (see Fig. 3c).

For implementation, we assume that we have several
SISO controllers that compute the desired input ui for
each CV yi ∈ Y. If these controllers have integral action,
then we must design a suitable anti-windup scheme [26],
which is discussed later in Section 6.4.

There are several ways the result in Theorem 2 can be
implemented using selectors. The most obvious is with
three selector blocks; a max- and min-selector for u and
u, respectively, and a mid-selector for u as shown with the
max/min-mid structure in Fig. 4a.

u = mid(u, u0, u) (8)

However implementations with only two selectors are also
generally possible. This is further discussed in the follow-
ing remark.

Remark 1 (Two selector blocks). If we have feasibility,
the mid-selector (8) is equivalent to using a combined min-
imum and maximum selector block in series which may be
in any order.
Min-Max structure (Fig. 4b)

u = max
j∈Y−

({uj}, min
i∈Y+

(u0, {ui})
︸ ︷︷ ︸

=u′

) (9)

Max-Min structure (Fig. 4c)

u = min
i∈Y+

({ui}, max
j∈Y−

(u0, {uj})
︸ ︷︷ ︸

=u′

) (10)
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Figure 4: CV-CV and CV-MV switching using selectors. The three
alternative structure (a), (b) and (c) are equivalent if we have feasi-
bility, that is, Theorem 1 holds.

Note that here, the last selector block will always be
satisfied. In the min-max structure, the constraints Y+

are masked and Y− will always be satisfied. Similarly, in
the max-min structure, the constraints Y− are masked and
Y+ will always be satisfied [7]. Table 1 shows a numerical
example to illustrate that the three structures studied in
Fig. 4 are equivalent when the set of constraints is feasible
(cases 1, 2 and 3). It also shows the difference in the
different structures in terms of responding to infeasibility
(cases 4, 5 and 6 when u < u), which is formalized in the
theorem below.

Theorem 3 (Selector design for conflicting constraints).
If the constraints are conflicting, that is, u < u and The-
orem 1 does not hold, then

• the min-max structure in Fig. 4b always gives up u
corresponding to the constraints in Y+

• the max-min structure in Fig. 4c always gives up u
corresponding to the constraints in Y−

• the mid-selector structure in Fig. 4a gives up u, u,
or both of them, depending on the value of u0.

Proof. The result follows quite trivially by considering what
happens if we don’t have feasibility, that is, when u < u.
Since any downstream selector masks all previous selec-
tions, a min-max selector always chooses u = u , and a
max-min selector always chooses u = u. This is also illus-
trated for a numerical example in Table 1, and by replacing
the entries in Table 1 with symbols, we would get a general
proof.

Often, the different constraints have different levels of
priority, and a common approach to handle infeasibility is
to “give-up” the less important constraints. As seen above,
the order of the selector blocks plays an important role in
deciding which constraints are given up. Consequently,
Theorem 3 can be used to decide which structure to use
based on the constraint priority level.

In short, Theorem 3 tells us that for the max-min and
min-max structures, the constraint entering the last se-
lector block will be prioritized in case of conflicting con-
straints. That is, the input u will in cases of conflict “give
up” controlling a masked constraint y with “low priority”.
However, this does not necessarily mean that we need to
give up controlling y, because it may be possible to let
another input (MV) v take over the task of controlling the
masked constraint y. This will involve MV-MV switching
from input u to v as discussed in Section 6.5.

One advantage of using the mid-selector in Fig. 4a is
that we have explicit calculation of both u (the largest al-
lowed input) and u (the smallest allowed input). This is
useful, since it can be used to verify feasibility by checking
whether u > u. If this is not satisfied, then we may use
the value of u0 to tell which constraint to give up, or even
to give up both constraints in a desired manner by select-
ing an appropriate value for u0 (see Table 1). The latter,
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Table 1: Numerical example illustrating that the three structures in
Fig. 4 are equivalent when the set of constraints are feasible (Cases
1-3), but when u < u (infeasibility), they differ (cases 4-6).

cases u u u0 mid min-max max-min
(Fig. 4a) (Fig. 4b) (Fig. 4c)

1 1 10 5 5 5 5
2 1 10 12 10 10 10
3 1 10 0 1 1 1
4 10 1 5 5 10 1
5 10 1 12 10 10 1
6 10 1 0 1 10 1

that is, giving up both of the conflicting constraints, is not
possible with the max-min or min-max structures.

There are also special cases where only a single selector
block is sufficient.

Remark 2 (Single selector block). If Y− = ∅ (i.e. we
only have constraints where reducing the input u is better
in terms of satisfying the constraints), then the solution
is always feasible and the optimal input u is given using a
minimum selector

u∗ = min(u0, u) (11)

This is a special case of Fig. 4b without the max-selector.
Similarly, if Y+ = ∅ (i.e. we only have constraints

where increasing the input u is better in terms of satisfying
the constraints), then the solution is always feasible and
the optimal input u is given using a max-selector

u∗ = max(u0, u) (12)

This is a special case of Fig. 4c without the min-selector.
Finally, if there is one constraint in the set Y+ and

one constraint in the set Y−, we can use a single mid-
selector. This is a special case of Fig. 4a without the min-
and max-selectors.

The systematic design procedure of the selectors for
the case with a single MV (u) can be summarized by the
following steps:

Step 1. Group the list of constraints into two sets, namely
the set Y+ and the set Y−.

Step 2. Design individual SISO controllers to compute the
input for each CV constraint (ui) and for the CV
setpoint controller (u0).

Step 3. Use a minimum selector block to choose the largest
allowed input u that satisfies all the constraints in
the set Y+ , and use a maximum selector block to
choose the smallest allowed input u that satisfies all
the constraints in the set Y−. The problem is feasi-
ble, that is, the set of constraints are not conflicting
if u > u (Theorem 1).

Step 4. When the problem is feasible, the optimal input is
given by u = mid(u, u0, u) where u0 is the control in-
put computed by the controller that controls the CV
with a setpoint that can be given up (Theorem 2).

Step 5. To handle infeasibility, use a max-min structure (Fig. 4c)
if the constraints in Y− can be given up, or use a
min-max structure (Fig. 4b) if the constraints in Y+

can be given up (Theorem 3).

4. Active constraint control using back-off

Due to imperfect control or measurement noise, some-
times it may be desirable to add a safety margin, known
as back-off, where the setpoint is offset by a constant value
from its limit. Back-off may also be used to simplify the
control structure design since the same controller may be
used in the different active constraint regions. However,
there is an economic loss introduced by back-off, and quan-
tifying this loss can help the designer in deciding whether
tight control is required for some CV constraints.

Consider the steady-state optimization problem (1),
which is now rewritten as

min
w

J(w) (13a)

s.t. gA(w) + ε = 0 (13b)

where w := [xT,uT]T denotes the combined input and
state variables, and ε > 0 is the back-off (safety margin)
for the set of active constraints gA. Note that we only
consider the active constraints and hence ε ∈ Rna . We
have also eliminated d for the sake of simplicity, since we
are interested in quantifying the loss w.r.t the back-off ε
for a given disturbance. This can be seen as a parametric
optimization problem, where we are interested in analyzing
the effect of the back-off parameter ε on the cost. The
following theorem says that the loss is given by the value
of the corresponding Lagrange multipliers, λ.

Theorem 4 (Loss of back-off). Assume that the optimiza-
tion problem (13) has an unique primal and dual solution
w∗(ε) and λ∗(ε) respectively. Then the steady-state loss
due to a small non-zero back-off ε is given by

Loss = J∗(0)− J∗(ε) = −λ∗(0)Tε (14)

Proof. See Appendix A

The main implications of Theorem 4 for control struc-
ture design are:

1. Determine which CVs need to be tightly controlled:
If the Lagrange multiplier λi for a given constraint is
large, then this constraint must be controlled tightly
in order to minimize the losses.

2. Simplify control structure design: If the Lagrange
multiplier λi for a given constraint is sufficiently small
such that the loss is negligible/acceptable, then one
can allow a large back-off, thus simplifying the con-
trol structure design [27].
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Figure 6: Example 2: Flow through a pipe with one MV (u = z1)

5. Illustrative Examples

5.1. Revisiting example 1 (Gas turbine)

We now apply the systematic approach presented in
the previous section to check for consistency and design
a control structure for the motivating example introduced
in Section 2.

Since the engine temperature y2 = Te is controlled to
its limit of Te,max using the air inflow rate Fa, we need to
design control structures for the rest of the CVs using the
fuel u as the MV. For this MV u, the constraints can be
grouped into

Y+ = {ωmax, pa,min, umax}
Y− = {pe,min}

Since we have both set Y+ and Y−, we do not have the
special case where we can use a single selector block. The
problem is feasible only if u > u (Theorem 1) where

u = min(u1, u4, umax)

u = u3

In the case of infeasibility, we will give up the constraint
on Y− = {pe,min}. From Theorem 3, the resulting control
structure is using a maximum followed by minimum (max-
min) selector block as shown in Fig. 5.

This example demonstrates that the use of the pro-
posed systematic procedure to design selector blocks is
straightforward and leads to simple design.

5.2. Example 2: Flow through a pipe

Consider a simple example of flow through a pipe with
a valve placed upstream of some processing equipment as

Table 2: Example 2: Controller gains.

FC PC for y1 = p1,max PC for y2 = p1,min

KP 0.2314 1.1091×10−5 1.1091×10−5

KI 0.0231 1.1091×10−6 1.1091×10−6

Kaw 0.1 0.1 0.1

shown in Fig. 6. There is no accumulation in the pro-
cessing equipment (i.e. inflow = outflow = F ), but there
is a pressure drop across the equipment from p1 to p2.
This could be for example, a filter, a long pipe section, or
some kind of a flow restriction or an orifice, the details of
which are not important, since the models nor information
about the equipment are not used in the control structure
design. The valve z1 is a control valve which is assumed
to be the only available degree of freedom. The objective
is to maximize the flow rate F by manipulating the valve
position u = z1, subject to constraints on the flow rate
F , downstream choke pressure p1 and valve opening z1.
The boundary pressures p0 and p2 are disturbances. The
optimization problem is:

max
z1

F

s.t.

F 6 Fmax (15)

p1 6 p1,max

p1 > p1,min

z1 6 z1,max

where Fmax =10 kg/s, z1,max = 1, p1,max = 2.5 bar, and
p1,min = 1.5 bar. Note that there are both max and min-
constraints on p1. Depending on the disturbances, one
of these constraints may be optimally active at any given
time, and the CV that needs to be controlled using z1
needs to be switched to remain optimal and feasible.

The constraints can be grouped into

Y+ = {Fmax, p1,max, z1,max}
Y− = {p1,min}

Since we have both sets Y+ and Y−, we need at least
two selector blocks, and we consider the max-min and min-
max structures in Fig. 7. Note that since the objective is
to maximize production, we have u0 = ∞ (for the imag-
inary unconstrained case). This value will not affect the
operation, except that it will lead to maximizing u.

We use three SISO controllers to control the three CV
constraints, namely,

1. Pressure controller that uses z1 to control y1 = p1 to
p1,max. The output from this controller is u1.

2. Pressure controller that uses z1 to control y2 = p1 to
p1,min. The output from this controller is u2.

3. Flow controller that uses z1 to control y3 = F to
Fmax. The output from this controller is u3.
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Figure 7: Example 2: Two alternative control structures for constraint switching using selectors. (a) Min-max structure, see (9) (b) Max-min
structure, see (10).

(a) (b)

Figure 8: Example 2: Simulation results (a) using the min-max control structure in Fig. 7a (b) using the max-min control structure in Fig. 7b
. The control structures behave identical except between time t = 300 s and t = 600 s when operation is infeasible, and the structures violates
different constraints (indicated by red dotted ellipses).
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In addition, we have that the manipulated variable is con-
strained. Therefore, the input to one of the blocks is

4. umax = z1,max

At any given time the control action u = z1 computed
by one of these four controllers is implemented on the
plant. We have that for this example,

u = min(u1, u3, umax)

u = u2

The controllers have integral action, so an anti-windup
scheme is required to avoid integral windup when the con-
troller is not selected. We use the back-calculation scheme,
which is discussed in Section 6.4. The controller tuning
parameters are shown in Table 2.

For disturbances in the boundary pressures p0 and p2,
simulation results with the two structures in Fig. 7 are
shown in Fig. 8a and Fig. 8b, respectively 1. We see that
the responses are good and the simulation results are iden-
tical, except in the time period between t = 300 s and
t = 600 s, where operation with all constraints being sat-
isfied is infeasible, since u > u which violates Theorem 1.

For the min-max structure in Fig. 7a, we violate the
maximum flow limit Fmax which belongs to Y+ (marked
by a red dotted ellipse in Fig. 8a).

For the max-min structure in Fig. 7b, we instead vio-
late the minimum pressure limit p1,min which belongs to
Y− (marked by a red dotted ellipse in Fig. 8b).

In order to say which structure is the best, this would
depend on whether it is acceptable to violate the constraint
on Fmax or p1,min (cf. Theorem 3). If its not possible to
violate any of these constraints, then the safety system will
need to be activated. Of course, it will be not activated
immediately, because some back-off to the hard constraint
has most likely been used.

5.3. Example 3: Distillation column

We consider a standard two-product distillation col-
umn, which is based on the “Column A” model used in
[11]. The distillation column has 41 stages, including the
reboiler and the total condenser, with the feed entering at
stage 21. The column splits a binary mixture with rela-
tive volatility of α= 1.5 into a top product D and a bottom
product B as shown in Fig. 10. The model assumes con-
stant relative volatility, constant molar flows, no vapour
holdup, linearized liquid dynamics and equilibrium on all
stages2.

For a given feed rate of F , the distillation column has
five dynamic degrees of freedom, namely, the reflux L,

1For the plant simulator, the model for the flow F is given by, F =
cv1z1

√
(p0 − p1)/ρ where cv1 = 2 × 10−3 m2, ρ = 1000 kg/m3 and

the processing equipment is modeled as a flow through a restriction
with cv2 = 10−3 m2.

2Detailed model description and the MATLAB codes can be found
in http://folk.ntnu.no/skoge/distillation/
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Figure 9: Example 3: Feasible control structure to switch between
the three active constraint regions R-I, R-II and R-III.
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Figure 10: Example 3: Proposed max-min control structure design
for optimal operation of a two product distillation column over re-
gions R-I, R-II, and R-III. Control loops that does not have an impact
on the steady-state economics are shown in green. The the most valu-
able product that will always be active is shown in red. The control
structure with the max and min-selectors to switch between R-I,R-II
and R-III is shown in blue.

boilup V , overhead vapour VD, distillateD and the bottom
flow B. However, stable operation of the column requires
control of the two levels MB and MD and the column pres-
sure, which does not have any affect on the steady-state
economics. The distillate D, bottom flow B and overhead
vapour VD are thus used in the regulatory layer to tightly
control the levels MD, MB , and the column pressure re-
spectively as shown in Fig. 10 (in green). This leaves us
with two steady-state degrees of freedom, namely, the re-
flux L and boilup V that can be used to optimize the
process.

The objective is to minimize the operating costs and
maximize revenue from the products. In addition, there
are purity constraints on the top and bottom products,
and constraints on the boilup V . The steady-state opti-

9



Figure 11: Example 3: Closed loop simulation results for the distillation column with varying energy prices (d = pV ). The control scheme
in Fig. 10 achieves optimal steady-state operation in all the three constraint regions. The initial response is the start-up period because the
column is not operated optimally at t = 0.
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mization problem is formulated as,

min
L,V

J = pFF + pV V − pDD − pBB

s.t.

xD > xD,min (always active) (16)

xB > xB,min

V 6 Vmax

where pF , pV , pD, and pB are the prices for the feed,
energy, top product, and bottom product respectively. We
assume that the energy price is a disturbance and varies
between pV ∈ [0.007, 0.02]$/mol, whereas the other prices
are constant at pF = 1$/mol, pB = 1$/mol and pD =
2$/mol.

The most valuable product constraint xD,min will al-
ways be active at the optimum, because this avoids prod-
uct giveaway[11]. Thus we always have xD = xD,min.
Therefore the relevant active constraint combinations are

• only xD active (R-I)

• xD and yc = xB active (R-II)

• xD and u = V active (R-III)

Due to the pair-close rule, the reflux L is used to control
xD to its limit of xD,min = 0.95 as shown in Fig. 10 (in
red).

This leaves one degree of freedom, namely the boilup
u = V . For this MV, we may need to control the concen-
tration xB at its limit of xBmin = 0.99 (R-II), or control
a self-optimizing variable y0 to a desired setpoint (R-I).
In this example, we consider y0 = xB controlled to an
economically optimal setpoint given as a function of the
energy price xB,sp(pV ) which is determined offline.

We use two SISO controllers to control the two CVs,
namely,

1. Concentration controller that uses V to control y1 =
xB to xB,min. The output from this controller is
u1(xB = xB,min). (Active in R-II)

2. Concentration controller that uses V to control y0 =
xB to xB,sp (unconstrained case). The output from
this controller is u0(xB = xB,sp). (Active in R-I)

In addition, we have that the manipulated variable is con-
strained. Therefore, we also have

3. umax = Vmax. (Active in R-III)

Note that the limit Vmax could be to avoid flooding in the
column, and may, for example, be computed by a pressure
drop (DP) controllers as shown in Fig. 10.

In this case,

Y+ = {Vmax}
Y− = {xB,min}
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Figure 12: Auctioneering as a special case of CV-CV switching,
where the CVs y1 . . . yn all have the same units and same setpoint
ysp.

Optimal operation can be achieved using a mid-selector,
or a combination of maximum and minimum selectors.
Since we cannot give-up on the constraint Vmax ∈ Y+,
we choose to use a max-min selector as shown in Fig. 10
(Theorem 3). Furthermore, since the max-selector is used
to switch between xB being controlled to xB,min and xB
being controlled to xB,sp(pV ), we can instead move the
max-selector to the setpoint of the composition controller
(CC), as shown in Fig. 10.

The simulation results for varying energy price pV us-
ing the proposed control structure is show in Fig. 11. It
can be clearly seen that the proposed control structure
is able to handle the active constraint switching as the
disturbance changes. The concentration controller for xB
was implemented with anti-windup using input resetting
to avoid integral windup. The detailed model and control
structure design procedure for this example can be found
in the supplementary information.

5.4. Example 4: Williams-Otto reactor

The use of selector to switch between different active
constraint regions is also tested on a benchmark Williams-
Otto reactor example [28], which can be found in the at-
tached supplementary information.

6. Discussion

Some switching logic blocks commonly used in prac-
tice can be seen as a special case of the CV-CV and CV-
MV switching structures presented above. The developed
framework is also applicable to such special cases. In this
section, we first point out some of these special cases, and
also discuss dynamic implementation aspects.

6.1. Mid-selector for zone control

Mid-selector block is often used in zone control (also
known as range control), where the same output has both
an upper and lower limit, ymax and ymin, respectively,
and we have a desired value for the input u0 which may be
varying. In this case, Y+ = {ymax} and Y− = {ymin}, and
we have two different controllers to control y to ymax, and
y to ymin, respectively. Since the limits are on the same
output y, Theorem 1 is always satisfied. For example,
y may be the temperature in a room, which we want to
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Figure 13: PI controller with anti-windup.

maintain between Tmin and Tmax, with a desired value for
the input u0. It is also possible to let u0 be the output
of a third controller that controls y to a variable setpoint,
which may be the optimal value for y when the constraints
are not active.

6.2. Auctioneering

The proposed framework can also be used in autioneer-
ing control [2], which is a special case of CV-CV switching
where we have similar CVs, i.e. the CVs have the same
units and same setpoint. For example, we want to control
the maximum temperature along a reactor or control the
maximum opening for two valves. Then the selector may
be on the output instead, i.e. y = max(yi) or y = min(yi).
In this case, we only need one controller, and a selector
block chooses the lowest or highest measurement as feed-
back, as shown in Fig. 12. Another special case is when one
needs to switch between a setpoint control and constraint
control on the same variable. In this case, the selector
may be used on the setpoint such that we only need one
controller. This is also shown for the distillation column
example in Fig. 10.

6.3. Input saturation

Typically in process control, the MV represents the
actual physical manipulated variable. In this case, one
does not even need the selector block for umax or umin,
since the MV will physically saturate, e.g. max opening of
a valve. However, when we use cascade control, the MV
may be the setpoint to another controller. In this case, we
need to include the constraint (umax or umin) explicitly as
shown in Fig. 4. This is sometimes referred to as clipping
the controller output.

6.4. Dynamic implementation and anti wind-up

The theorems presented in Section 3 are based on steady-
state analysis. Recall that ui was defined as the value of
the input u which at steady-state satisfies the constraint
yi = yi,lim. However, the values for ui computed by the
controllers not selected are not equal to the correct values
for ui even at steady-state, but this is not a problem in
practice.

When using selectors, only one of the control actions
computed by a plurality of controllers is implemented on
the plant at any given time. For the controllers that are
not selected, the feedback loop is “broken” and the integral

term may build up (known as windup), since the tracking
error ei = yi,sp − yi is non-zero3.

This windup can be avoided using the back-calculation
scheme where an additional feedback path is generated by
using the difference between the output of the controller
ui, and the actual output u implemented on the plant u
[29, 30]. This signal, denoted by esi := u− ui is fed back
to the integrator with gain Kawi

(as shown in Fig. 13)
such that esi goes towards zero when the controller is des-
elected. The PI controller with feedback anti-windup can
be expressed as:

ui(t) = KPi
ei(t) +

∫ t

0

(KIiei(τ) +Kawi
esi(τ)) dτ (17)

where ei = yi,sp− yi is the tracking error, ui is the control
action computed by the ith controller and u is the actual
control action implemented on the plant, KPi

and KIi are
the proportional and integral gains respectively, and Kawi

is the anti-windup feedback gain.
The integral action will drive the term in the integral

to zero, so that at steady state we have

KIiei +Kawi
esi = 0 (18)

In other words, at steady-state we have

ui − u =
KIi

Kawi

ei

If the controller is selected, then at steady-state ei = 0 and
the feedback controller will generate the correct steady-
state value for ui. However, the steady-state value of ui
computed by the controller when ui is not selected, de-
pends on the parameter Kawi

. So, it is clearly not the
steady-state value that would give ei = 0. Here, Kawi is
a tuning parameter, and a large value of Kawi means that
ui(t) is close to u. A too large value of Kawi

may activate
ui when its not necessary, for example, due to measure-
ment noise for yi or a change in yi or yi,sp, since changes
in ei = yi,sp − yi will affect ui through the proportional
term KPiei(t).

A reasonable value for the anti-windup gain to avoid
unnecessary activation for small change in yi or yi,sp is

Kawi
=
KIi

KPi

(19)

which means at steady-state we have

ui − u = KPi
ei

In this case the proportional action KPi
ei will activate ui

only if ei(t) = yi,sp − yi crosses zero, i.e. if yi reaches it’s
setpoint/constraint value.

To illustrate this, consider the flow example (Example
2 from Section 5.2). For p0 = 1.75 bar and p2 = 3 bar,

3Note that for the active constraint controllers yi,sp = yi,lim
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Figure 14: Illustrative example showing that too large value of the
anti-windup gain Kaw may lead to unnecessary switching of the con-
trollers. The left had side suplot shows the performance with the
feedback gain chosen according to (19), and the right had side sub-
plot shows the same with Kaw 10 times larger.

the optimal operation occurs when the p1,max constraint
is active, with a flow rate of F = 8.66 kg/s, as shown in
Fig. 14. At time t = 300 s, the maximum flow rate Fmax is
reduced from Fmax = 10 kg/s to Fmax = 9 kg/s. This, in
principle, should not affect the operation, since Fmax = 9
kg/s will not be active. Indeed, with the chosen feedback
gain of Kaw = 0.1, given by (19), we see from Fig. 14 (left
hand side subplots) that the operation remains unchanged
as one would expect. However, if we use the larger value
of Kaw = 1 we get unnecessary switching, with the flow
controller becoming dynamically active before switching
back to the pressure controller as shown in Fig. 14 (right
hand side subplots).

6.5. Multiple inputs and conflicting constraints

This paper has considered the important case where
all the constraints can be associated with a single input u.
It is then possible to divide the constraints into the two
sets Y+ and Y−, which can be associated with min- and
max-selectors, respectively.

In the case of multiple inputs, the proposed systematic
design of selectors can be applied if each MV is paired
with a set of constraints a-priori. For example, consider
a process with n inputs vi. If each MV vi is paired with
a set of constraints Yi, then this can be divided into two
subsets Y+

i and Y−i for all i = 1, . . . , n, which can each be
associated with min- and max-selectors, respectively in a
decentralized fashion. This was also seen in the gas turbine
example in Fig. 5, where the air inlet flow was paired with
Te,max, and the fuel u was paired with the other remaining
CVs.

In the case where two hard constraints from the set Yi

cannot be satisfied at the same time, that is, we have in-
feasibility according to Theorem 1, then one needs to find

some other input to take over one of the control tasks. Usu-
ally, this means that we need to give up some other control
objective. For example, we may no longer be able to set
the throughput freely, since we have reached a bottleneck
for the process. In either case, this involves an MV-MV
switching, which is not the scope of this paper. MV-MV
switching may be achieved using split range control, input
position control, and controllers with different setpoints.
This has been studied in detail in [17, 31, 32]. For ex-
ample, in the distillation column example, when Vmax is
active, control of xB,min is lost. If this is a hard con-
straint, then we would need to find another MV, such as
the feed rate F , to control xB to xB,min. This is an MV-
MV switching and this example is shown in detail in [17]
using a combination of split range control and controllers
with different setpoints.

A similar “override” distillation example with MV-MV
switching from V to F using two controllers with different
setpoints is given in [33, Fig. 5] for a reactor-separator-
recycle process. Note that since F is already used to con-
trol another task (reactor level), the MV-MV switching
from V to F has to be combined with a CV-CV switching
(min-selector) for F . However, since also this task (reactor
level) cannot be given up, this has to be combined with
yet another override, MV-MV switch from F to FB (the
throughput manipulator) which will reduce the feed FB
to the reactor system.

In large multivariable systems with a lot of such CV-
CV, CV-MV and MV-MV switchings, the control struc-
ture can quickly become complex, and perhaps one would
then be better off with multivariable controllers such as
model predictive control (MPC).

7. Conclusion

In this paper, we have presented a systematic proce-
dure for designing selectors for CV-CV switching. The-
orem 1 establishes the condition under which the con-
straints are feasible, and Theorem 2 shows that optimal
operation can be achieved using minimum and maximum
selector blocks in series. Theorem 3 tells us how the max-
min and min-max selectors behave when used at condi-
tions where satisfaction of the constraint is infeasible, and
Theorem 3 tells us which structure to use based on the
constraint priority list. The proposed systematic design
framework does not require detailed process models, mak-
ing it easily applicable and usable in industrial applica-
tions. The proposed framework was successfully demon-
strated using illustrative examples.
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Appendix A. Proof of Theorem 4

The Lagrangian function of (13) is given as

L(w, ε,λ) = J(w) + λT(gA(w) + ε) (A.1)

The necessary conditions of optimality

∂L
∂w

=
∂J

∂w
+ λT ∂gA

∂w
= 0 (A.2a)

gA + ε = 0 (A.2b)

determines the optimal primal and dual variables w∗(ε)
and λ∗(ε) respectively, as a function of the back-off pa-
rameter ε, assuming there exists a unique solution for each
ε.

Since L and g depends on ε through w, λ and ε, dif-
ferentiating (A.2) gives

∂2L
∂w2

∂wT

∂ε
+

∂2L
∂w∂ε

+
∂gT

A
∂w

∂λ

∂ε
= 0 (A.3a)

∂gA
∂w

∂wT

∂ε
+ 1 = 0 (A.3b)

Let the optimal value function be denoted as J∗(ε) =
J(w∗(ε)), and the sensitivity of the optimal value function
w.r.t ε can be expressed as

∂J∗(ε)
∂ε

=
∂J

∂w

∂wT

∂ε
(A.4)

From (A.2a) and (A.3b), this can be rewritten as,

∂J∗

∂ε
= −λ∗(ε)T

∂gA
∂w

∂wT

∂ε
= λ∗(ε)T (A.5)

The loss due to a back-off of ε > 0 is the where λ∗(0)
is the Lagrange multiplier for the active constraints with-
out back-off. Therefore it can be seen that the loss scales
linearly with the back-off.
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A. Example 3: Distillation column

A.1. Simulator Model

We consider a two-product distillation column with NT stages as shown in
Fig. 1 . The following assumptions are made about the model:

• Binary mixture

• constant pressure, relative volatility and molar flows

• no vapor holdup

• linear liquid dynamics

• equilibrium on all stages

The total mass balance and the mass balance for the light component on
stage i, except in the condenser (i = NT ), feed stage (i = Nf ) and reboiler
(i = 1) is given by:

dMi

dt
= Li+1 − Li + Vi−1 − Vi (1)

dMixi
dt

= Li+1xi+1 + Vi−1yi−1 − Lixi − Viyi (2)

∀i ∈ {2, . . . , NT − 1} \ {Nf}

where Li and Vi are the liquid and vapor flows from the ith stage (in kmol/min),
respectively, and Mi is the liquid holdup in the ith stage (in kmol). xi and yi

∗Corresponding author
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Figure 1: Schematic representation of the distillation column

are the liquid and vapor mole fractions of light component on the ith stage,
respectively.

The mass balance on the feed stage (i = Nf ) is given by,

dMNf

dt
= LNf+1 − LNf

+ VNf−1 − VNf
+ F (3)

dMNf
xNf

dt
= LNf+1xNf+1 + VNf−1yNf−1 − LNf

xNf
− VNf

yNf
+ FzF (4)

The mass balance on the reboiler (i = 1) is given by,

dMB

dt
= L2 − V −B (5)

dMBx1
dt

= L2x2 − V y1 −Bx1 (6)

where B is the bottom flow rate and V is the boilup as shown in Fig. 1.
The mass balance on the condenser (i = NT ) is given by,

dMD

dt
= VNT−1 − L−D (7)

dMDxNT

dt
= VNT−1yNT−1 − LxNT

−DxNT
(8)

where D is the distillate flow rate and L is the reflux as shown in Fig. 1.

2



From this, we get the expression for the rate of change of liquid mole fraction

dxi
dt

=
1

Mi

(
dMixi
dt

− xi
dMi

dt

)
∀i ∈ {1, . . . , NT } (9)

The model therefore has 2NT differential states denoted by [{xi}NT
i=1, {Mi}NT

i=1]T.
The liquid flows depend on the liquid holdup on the stage above and the

vapor flow as follows

Li = L0i +
1

τi
(Mi −M0i) + (V − V 0)i−1λ (10)

where L0i ( in kmol/min) and M0i (in kmol) are the nominal values for the
liquid flow and holdup on stage i. The effect of vapor flow on the liquid flow is
captured by λ.

The vapor composition can then be computed from the vapor-liquid equilib-
rium

yi =
αxi

1 + (α− 1)xi
(11)

where α is the constant relative volatility.

A.2. Controller design

We assume that the overhead vapour VD is used to maintain a constant
pressure. Stable operation of the column requires the levels MB and MD to be
controlled. In this model, the column is stabilized using the LV-configuration
where we use D to control MD, and B to control MB as shown in Fig. 1. We
use a P-controllers for each level control loop, with the controller gain KP = 10
for both the loops.

As mentioned in the manuscript, the purity constraint on xD will always be
active, since this is the most valuable product. The xD composition is controlled
using the reflux L using a PI controller that is tuned using the SIMC tuning
rules. For a desired closed loop time constant of τc = 10, this results in the
proportional gain KP = 7.8947 and KI = 0.2193.

The composition control for the bottom product xB is also achieved using
a PI controller that is tuned using the SIMC rules. For a desired closed loop
time constant of τc = 10, this results in the proportional gain KP = 2.2140 and
KI = 0.123.

The MATLAB scripts for the distillation column example is given below or can
be found in https://github.com/dinesh-krishnamoorthy/Feedback-based-RTO/

tree/master/Selectors/ColA.
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B. Example 4: Williams-Otto reactor

B.1. Simulator model

The benchmark Williams-Otto reactor converts the raw materials A and B
into useful products P and E along with a byproduct G via a series of reactions,

A+B → C k1 = 1.6599× 106e−6666.7/Tr

B + C → P + E k2 = 7.2177× 108e−8333.3/Tr

C + P → G k3 = 2.6745× 1012e−11111/Tr

The reactor is modeled as,

dxA
dt

=
1

W
(FA − FxA)− k1xAxB

dxB
dt

=
1

W
(FB − FxB)− k1xAxB − k2xBxC

dxC
dt

=
−FxC
W

+ 2k1xAxB − 2k2xBxC − k3xCxP
dxP
dt

=
−FxP
W

+ k2xBxC − 0.5k3xCxP

dxE
dt

=
−FxE
W

+ 2k2xBxC

dxG
dt

=
−FxG
W

+ 1.5k3xCxP

where the mass holdup W = 2105 kg. The reactor is controlled using the reactor
temperature MV1 := Tr and the feed rate MV2 := FB with pure B component.
Feed rate FA with pure A component is a disturbance and we assume that it
is expected to vary between 1kg/s and 2kg/s. We assume perfect level control
such that the outflow F = FA + FB .

B.2. Controller design

The objective is to maximize the production of useful products P and E.
In addition, there are purity constraints on G and A on the product stream,
and a minimum outflow rate Fout. The steady-state optimization problem is
formulated as,

min
Tr,FB

− 1043.38xPF − 20.92xEF

+ 79.23FA + 118.34FB

s.t. (12)

xG 6 xGmax

xA 6 xAmax

F > Fmin
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Figure 2: Example 4: Proposed control structure design for optimal operation of a Williams-
Otto reactor over regions R-I and R-II.

where xG,max = 0.08, xA,max = 0.12, and Fmin = 4.4 kg/s.
Since the purity constraint on xG is very low, it will always be active for

the assumed disturbance range of FA ∈ [1, 2]kg/s. Therefore the relevant active
constraint combinations are

• only xG active (R-I)

• xG and xA active (R-II)

• xG and F active (R-III)

Since we have two MVs, we first pair the reactor temperature u1 = Tr to
tightly control xG to its limit of xG,max = 0.08 using a PI control. This leaves
us with one degree of freedom, namely u2 = FB , which will be used to control
either the self-optimizing CV y0 to a desired setpoint in region R-I, or control
xA to its limit of xA,max = 0.12 in region R-II, or control F to its minimum
limit of Fmin = 4.4 kg/s in region R-III. In this case,

Y− = {xA,max, Fmin}

and since we have only Y−, a single maximum selector block can be used to
switch between the different active constraint regions ( cf. Remark ??).

Therefore, we use four SISO controllers to control the CVs in each active
constraint region, namely,

1. Composition controller denoted by CCG that uses Tr to control xG to
xG,max (in regions R-I, RII, and R-III).

2. Composition controller denoted by CCA that uses FB to control xA to
xA,max (in region R-II).
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Table 1: Example 4: Controller gains.

CCG CCA JC FC
KP 193.4236 -66.2252 0.1251 0
KI 1.2895 -0.1104 1.5640×10−4 1
Kaw - 0.0017 0.0013 0.005

3. Flow controller denoted by FC that uses FB to control F to Fmin (in
region R-III).

4. Self-optimizing controller denoted by JC that uses FB to control the self-
optimizing CV y0 to y0,sp (in region R-I).

In region R-I, we have used a linear gradient combination as the self-optimizing
CV y0 = NT∇uJ controlled to a constant setpoint of y0,sp = 0. In this example,
the linear gradient combination is given by y0 = 0.9959∇FB

J + 0.0906∇Tr
J .

The control structure design is shown in Fig. 2. The controller tuning pa-
rameters are shown in Table 1.

Fig. 3 shows the simulation results using the proposed control structure de-
sign. It can be clearly seen that as the disturbance changes, the max selector
block is able to automatically handle the CV-CV switching between R-I, R-II
and R-III. The MATLAB scripts for the distillation column example is given below
or can be found in https://github.com/dinesh-krishnamoorthy/Feedback-based-RTO/

tree/master/Selectors/WilliamsOtto.
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Figure 3: Example 4: Simulation results showing the automatic switching between the active
constraint regions as the disturbance changes using selectors designed according to Theorem
1.
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