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a b s t r a c t 

Selector logic is a simple and effective tool to switch between different controlled variables associated 

with change in active constraints. Selector blocks have been extensively used in the process control in- 

dustry for decades, but their design has been based on engineering intuition and experience. Currently, 

there is a lack of systematic procedure to design selectors for active constraint switching. In this paper, 

we address this gap and provide a systematic procedure, which can be applied without the need for 

detailed process models. Illustrative examples are used to demonstrate the proposed framework. 
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. Introduction 

Selector logic blocks, also commonly known as overrides have 

een in use in the process industries for several decades to switch 

etween a plurality of controllers, and are available as a part of 

ny standard digital control system (DCS) software package. De- 

pite their widespread use, not just in the process industries, but 

lso in other application domains, selectors are currently designed 

n an ad-hoc fashion based on engineering know-how and experi- 

nce (Liptak, 2003, Section 1.17) . 

There is a lack of systematic design procedure that tells when 

o use a max-selector, when to use a min-selector, and when is it 

ot feasible to use a selector. Industry-oriented and process con- 

rol books such as (Shinskey, 1996, Ch. 6), (Wade, 2004, Ch. 12), 

Seborg et al., 2010, Ch. 18), (Smith and Corripio, 2006, Ch. 10) and 

Marlin, 20 0 0, Ch. 22) demonstrate the use of selectors using var- 

ous illustrative examples, but there is no systematic procedure. 

lattfelder and Schaufelberger (2012) studies several control struc- 

ures, however the analysis is limited to only one CV constraint, 

nd does not address the case with several CV constraints. Al- 

hough there have been a few works studying the stability of min- 

ax selectors, see for example ( Foss, 1981 ), ( Imani and Montazeri- 

h, 2020 ), ( Glattfelder and Schaufelberger, 1983 ) and the refer- 

nces therein, the choices that affect design of the selectors itself 

till remains an open problem. 
� The authors gratefully acknowledge the financial support from SUBPRO, which 

s financed by the Research Council of Norway , major industry partners and NTNU. 
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In this paper, we address this gap by providing a systematic de- 

ign procedure. In particular, we study the use of selectors for ac- 

ive constraint switching in the context of economic optimal oper- 

tion. 

Often optimal operation occurs when some of the constraints 

re at their limiting values. For example, when the market price 

or the product is high, then the process should be operated at 

ts maximum production capacity, in order to maximize the profit. 

onstraints that are optimally at their limiting values are known 

s active constraints . Because of changes in the operating con- 

itions (disturbances) and market prices, the set of active con- 

traints changes. An active constraint region is a disturbance space 

hat is defined by the set of constraints that are active within it 

 Jacobsen and Skogestad, 2011 ). 

Typically, real-time optimization (RTO) involves solving a nu- 

erical optimization problem using rigorous nonlinear process 

odels to compute the optimal setpoints, which are given to 

he control layer below. Recently, there is an increasing in- 

erest in achieving optimal operation, without the need to 

olve numerical optimization problems ( Srinivasan and Bon- 

in, 2019 ), ( Chachuat et al., 20 09 ), ( Engell, 20 07 ), ( Krishnamoorthy

nd Skogestad, 2020, 2019 ), ( Reyes-Lúa and Skogestad, 2020 ), 

 Jagtap et al., 2013 ). In other words, the economic objec- 

ives are translated into control objectives, thereby achiev- 

ng optimal operation using simple feedback control struc- 

ures ( Skogestad, 20 0 0 ). The idea of ”feedback optimizing con- 

rol ” dates back to Morari et al. (1980) . The main idea of feed- 

ack optimizing control (also sometimes referred to as self- 

ptimizing control Skogestad (20 0 0) , or direct input adaptation 

 Chachuat et al., 2009 )) is to find the right set of controlled vari-

bles (CVs), which when held constant, leads to economically op- 

imal operation ( Morari et al., 1980 ), ( Skogestad, 20 0 0 ). 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic representation of active constraint switching using selectors. 
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Fig. 2. Schematic representation of a gas turbine engine. 
When some of the constraints are optimally active, then the 

implest approach is to control the constraints at their limits, pos- 

ibly with some safety margin, known as back-off. This is known as 

ctive constraint control . If there are any remaining unconstrained 

egrees of freedom (manipulated variables), one should then iden- 

ify self-optimizing controlled variables, for example the steady- 

tate cost gradient. Note that, Skogestad (20 0 0) included the active 

onstraints as the ”obvious” self-optimizing variables, and the the- 

ry of self-optimizing control was developed for the less obvious 

nconstrained CVs ( Jäschke et al., 2017 ). 

Mathematically, feedback optimizing control aims to find a 

imple feedback solution to a steady-state real-time optimization 

roblem of the form 

in 

u 
J(x , u , d ) (1a) 

.t. 

g (x , u , d ) � 0 (1b) 

here u ∈ R 

n u are the set of manipulated variables (MV), x ∈ R 

n x 

enotes the internal variables, d ∈ R 

n d denotes the set of distur- 

ances, J : R 

n u × R 

n x × R 

n d → R is the cost function, and g : R 

n u ×
 

n x × R 

n d → R 

n g are the set of constraints. A constraint g i ( x, u,

 ) ≤ 0 is said to be active if g i ( x , u , d ) = 0 . Let the set of n a ≤ n g 
ctive constraints be denoted by g A ⊆ g (i.e. g A ( x , u , d ) = 0 ). 

Note that here, the manipulated variables u denote the avail- 

ble degrees of freedom for the given problem. It may either be 

he actual physical manipulated variable, or the setpoint to a lower 

evel regulatory controller. 

To transform the optimization problem into a feedback control 

roblem, we need to identify controlled variables (CVs y i ) associ- 

ted with the constraints and the with the goal of minimizing the 

ost J . The latter is a bit complicated, as the best ”self-optimizing”

ariables to control for minimizing the cost J depends on what the 

ctive constraints are. Thus, for a steady-state optimization prob- 

em of the form (1), the first step towards designing a feedback 

ptimizing control structure involves identifying the relevant active 

onstraint combinations. Once the relevant active constraint com- 

inations are identified, one must make a decision on which un- 

onstrained variables to control. That is, in each active constraint 

egion, we must control ( Krishnamoorthy and Skogestad, 2020 ), 

1. The n a active constraints at their limits (i.e. CV: = g A → 0 ), 

2. For the remaining n u − n a unconstrained degrees of freedom, 

control a self-optimizing controlled variable (unconstrained 

CV), e.g. the steady-state cost gradient. 

It is then evident, that the active constraint regions play an 

mportant role in feedback optimizing control, since this deter- 

ines ”what to control”. However, most of the works consider- 

ng feedback optimizing control (studied in the context of ex- 

remum seeking control ( Ariyur and Krstic, 2003 ), NCO-tracking 

 François et al., 2005 ), self-optimizing control ( Skogestad, 20 0 0 ),

ill-climbing control ( Kumar and Kaistha, 2014 ), neighboring ex- 

remal control ( Gros et al., 2009 ) etc. to name a few) focus on the

nconstrained optimum, and switching between active constraint 

ets has received relatively little attention. One of the main rea- 

ons for this is probably that active constraint control is often seen 

s simple/obvious. 

When the set of active constraints changes, then this requires 

 change in the controlled variables and reconfiguration of the 

ontrol loops. The active constraints may be on the controlled 

ariables (CV), or on the manipulated variables (MV). Therefore, 

ptimal operation may involve either CV-CV switching, MV-MV 

witching, or CV-MV switching. 

CV-CV switching occurs when there are several CV constraints 

or one MV, but only one CV constraint is active and can be con- 
2 
rolled at any given time. To achieve this using selectors, indepen- 

ent controllers may be designed for each controlled variable, and 

 max/min-selector is used to select either the maximum or the 

inimum value of all the inputs computed by the different con- 

rollers as shown in Fig. 1 for the case where all the constraints 

re associated with a single input u . This is the case studied in 

his paper. 

The main contribution of this paper is the systematic design 

rocedure for active constraint switching using selectors for the 

ase when all the constraints are associated with a single input. 

everal illustrative examples are provided to demonstrate the pro- 

osed systematic design procedure. 

. Motivating example 1: Gas turbine control 

Consider a gas turbine engine in Fig. 2 (e.g. for power genera- 

ion or for aircraft propulsion) with two MVs (degrees of freedom), 

amely the air inflow rate F a and the fuel injection rate u. Suppose 

he objective is to control the engine power y 0 = W to a desired

etpoint, subject to a max-constraint on the rotational speed ω, a 

ax-constraint on the engine temperature T e , a min-constraint on 

he engine pressure p e , a min-constraint on the air inlet pressure 

 a , and a max-constraint on the fuel injection rate u (MV), 

Desired: y 0 = W = W sp 

V constraints: y 1 = ω � ω max 

y 2 = T e � T e,max 

y 3 = p e � p e,min 

y 4 = p a � p a,min 

MV constraint: u � u max 

ssuming that the air inflow rate F a is used to control the engine 

emperature T e to its maximum value T e,max , the fuel injection rate 

ust be used to achieve the other objectives. In the reduced sys- 

em, we have one CV ( y 0 = W ) with a desired setpoint which may
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e given up if necessary, three CVs y i , i = { 1 , 3 , 4 } with inequality

onstraints, and one MV u with an upper limit. 

Process insight tells us that increasing the fuel u will increase 

he speed y 1 = ω, increase the engine pressure y 3 = p e , and de-

rease the air inlet pressure y 4 = p a . Based on this, if one uses a

in-selector to switch between the CVs, the constraints on u, y 1 , 

nd y 4 would remain feasible, but the minimum constraint on y 3 
ay be violated. Similarly, with a max-selector, y 3 would remain 

easible, but constraints on u, y 1 , and y 4 may be violated. It is also

ot evident if the performance would be the same if one were to 

se a max-min selector or a min-max selector in series, if so under 

hat conditions. 

This simple example clearly shows that although one can of- 

en design selector blocks using process insight in such an ad-hoc 

ashion, it is clearly desirable to have a more systematic procedure 

n order to design verifiable control structures. Specifically, it may 

ot be evident to an engineer when a set of constraints are con- 

icting, whether to use a min or a max-selector, or a combination 

f both, or if such a switching scheme is feasible at all. Also, the 

ack of a systematic design procedure means that all the feasible 

lternatives may not be explored. 

. Systematic design of active constraint switching using 

electors 

Consider a process with a single input ( u ) and many potential 

ontrolled variables (CVs), such that we have 

• At most one CV ( y 0 ) with a desired setpoint, that may be given

up if necessary. 

• Any number of CV y i with inequality constraints y i,lim 

, that may 

be optimally active. 

• MV inequality constraints u min � u � u max 

Note that the objective is to achieve feasible and optimal 

teady-state operation using simple feedback controllers and se- 

ectors to switch between the active constraints. Therefore, the fol- 

owing results are based on steady-state. 

otation: 

• Let G i denote the steady state gain from the input u to the out- 

put y i . 

• Let Y be the set of all inequality constraints y i,lim 

(where y i,lim 

could be both y i,max or y i,min ) that needs to be satisfied at 

steady-state for any given operating condition. 

ssumption 1. The gain G i from u to y i does not change sign (that

s, 
d y i 
d u 

has the same sign for any d u and any operating point). 

The set of constraints can be divided into two subsets Y = Y 

+ ∪
 

− according to the following criteria. 

1. Y 

+ is the set of constraints where reducing the input u is better 

in terms of satisfying the constraints. This means that 

• For CVs where the gain G i from u to y i is positive ( G i > 0),

the set Y 

+ includes the corresponding max-constraints 

( y i,max ). 

• For CVs where the gain G i from u to y i is negative ( G i < 0),

the set Y 

+ includes the corresponding min-constraints 

( y i,min ). 

• The set Y 

+ also includes a possible max-constraint on u 

( u max ). 

2. Y 

− is the set of constraints where increasing the input u is bet- 

ter in terms of satisfying the constraints. This means that 

• For CVs where the gain G i from u to y i is positive ( G i > 0),

the set Y 

− includes the corresponding min-constraints 

( y i,min ). 
3 
• For CVs where the gain G i from u to y i is negative ( G i < 0),

the set Y 

− includes the corresponding max-constraints 

( y i,max ). 

• The set Y 

− also includes a possible min-constraint on u 

( u min ). 

Define 

 i = u (y i = y i,lim 

) (2) 

s the value of the input u which at steady-state satisfies the con- 

traint y i,lim 

, i.e., u i gives y i = y i,lim 

at steady state. 

heorem 1 (Feasibility ) . Let 

 = min 

i ∈ Y + 
u i (3) 

enote the largest allowed input u that satisfies all the constraint in 

he set Y 

+ , and similarly, let 

 = max 
i ∈ Y −

u i (4) 

enote the smallest allowed input u that satisfies all the constraint in 

he set Y 

−. Then to have feasible operation using u as the manipulated 

ariable, we must at any given steady-state operating point have u � 

 . 

roof. To remain feasible, we need u � u to satisfy the constraints 

n Y 

+ and u � u to satisfy the constraints in Y 

−. Satisfying both 

hese conditions is possible if and only if u � u . �

Theorem 1 tells when satisfying all constraints is feasible using 

 single input u , that is, when there is an allowable operating win- 

ow for u ∈ [ u , u ] . If we have infeasibility (conflicting constraints) 

ccording to Theorem 1 , then we have two possibilities: 

1. let another input (MV) v take over the control of one of the 

constraints which is no longer controlled using u . This will in- 

volve MV-MV switching from input u to v (see discussions in 

Section 6.5 ). 

2. If we dont have another MV v to take control of the conflicting 

constraints, then one would have to prioritize the constraints 

and give up the less important constraint (this will be formally 

stated later in Theorem 3 ). 

Theorem 1 only tells us when the constraints are feasible. To 

et a unique value for u we need to add another objective. Typ- 

cally, we have a controlled variable ( y 0 ) with a desired setpoint, 

nd if possible we want to use the corresponding value of input 

 u 0 ) which gives y = y 0 at steady-state. More generally, the desired

nput may result from an optimization problem, 

 

∗ = arg min 

u 
{ J(u, d) | s.t. CV and MV constraints } (5) 

ith u ∗ being the unique minimizer of (5) . Then u 0 is the value of

 

∗ for the corresponding unconstrained problem; 

 0 = arg min 

u 
J(u, d) (6) 

We may also have cases where the objective is to maximize or 

inimize some variable. This will correspond to having u 0 = ∞ or 

 0 = −∞ (for the corresponding unconstrained problem). 

heorem 2 (Optimalilty ) . Assume the operational objective is to 

inimize J, and let u 0 denote the value of the input u that minimizes J

or the unconstrained case. Assuming feasible operation, so that u < u 

Theorem 1 ), the optimal input u is given by 

 

∗ = mid ( u , u 0 , u ) (7) 

roof. If u < u 0 < u then the unconstrained optimum is within the 

easible region, and optimal operation occurs when u ∗ = u 0 . This is 

chematically represented in Fig. 3 a. 



D. Krishnamoorthy and S. Skogestad Computers and Chemical Engineering 143 (2020) 107106 

Fig. 3. Schematic representation showing that the optimal input (marked with a red dot) can be achieved using a mid-selector. (a) Unconstrainted Optimum u < u 0 < u . (b) 

Constrained optimum u < u < u 0 . (c) Constrained optimum u 0 < u < u . 
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If u < u < u 0 , then u 0 is infeasible. Hence u ∗ = u (see Fig. 3 b).

imilarly, if u 0 < u < u , then u 0 is infeasible. Hence u ∗ = u (see

ig. 3 c). �

For implementation, we assume that we have several SISO con- 

rollers that compute the desired input u i for each CV y i ∈ Y . If

hese controllers have integral action, then we must design a suit- 

ble anti-windup scheme ( ̊Aström, 1987 ), which is discussed later 

n Section 6.4 . 

There are several ways the result in Theorem 2 can be imple- 

ented using selectors. The most obvious is with three selector 

locks; a max- and min-selector for u and u , respectively, and a 

id-selector for u as shown with the max/min-mid structure in 

ig. 4 a. 

 = mid ( u , u 0 , u ) (8) 

owever implementations with only two selectors are also gener- 

lly possible. This is further discussed in the following remark. 

emark 1 (Two selector blocks ) . If we have feasibility, the mid- 

elector (8) is equivalent to using a combined minimum and max- 

mum selector block in series which may be in any order. 

Min-Max structure ( Fig. 4 b) 

 = max 
j∈ Y −

({ u j } , min 

i ∈ Y + 
(u 0 , { u i } ) ︸ ︷︷ ︸ 

= u ′ 

) (9) 

ax-Min structure ( Fig. 4 c) 

 = min 

i ∈ Y + 
({ u i } , max 

j∈ Y −
(u 0 , { u j } ) ︸ ︷︷ ︸ 

= u ′ 

) (10) 

Note that here, the last selector block will always be satis- 

ed. In the min-max structure, the constraints Y 

+ are masked and 

 

− will always be satisfied. Similarly, in the max-min structure, 

he constraints Y 

− are masked and Y 

+ will always be satisfied 

 Glattfelder and Schaufelberger, 2012 ). Table 1 shows a numerical 

xample to illustrate that the three structures studied in Fig. 4 are 
able 1 

umerical example illustrating that the three structures in Fig. 4 are equivalent 

hen the set of constraints are feasible (Cases 1–3), but when u < u (infeasibility), 

hey differ (cases 4–6). 

cases u u u 0 mid min-max max-min 

( Fig. 4 a) ( Fig. 4 b) ( Fig. 4 c) 

1 1 10 5 5 5 5 

2 1 10 12 10 10 10 

3 1 10 0 1 1 1 

4 10 1 5 5 10 1 

5 10 1 12 10 10 1 

6 10 1 0 1 10 1 

a

c

a

h

(

v

t  

u

s

i

t

i

4 
quivalent when the set of constraints are feasible (cases 1, 2 and 

). It also shows the difference in the different structures in terms 

f responding to infeasibility (cases 4, 5 and 6 when u < u ), which 

s formalized in the theorem below. 

heorem 3 (Selector design for conflicting constraints ) . If the con- 

traints are conflicting, that is, u < u and Theorem 1 does not hold, 

hen 

• the min-max structure in Fig. 4 b always gives up u corresponding 

to the constraints in Y 

+ 

• the max-min structure in Fig. 4 c always gives up u corresponding 

to the constraints in Y 

−

• the mid-selector structure in Fig. 4 a gives up u , u , or both of them,

depending on the value of u 0 . 

roof. The result follows quite trivially by considering what hap- 

ens if we don’t have feasibility, that is, when u < u . Since any 

ownstream selector masks all previous selections, a min-max 

elector always chooses u = u , and a max-min selector always 

hooses u = u . This is also illustrated for a numerical example in 

able 1 , and by replacing the entries in Table 1 with symbols, we 

ould get a general proof. �

Often, the different constraints have different levels of priority, 

nd a common approach to handle infeasibility is to ”give-up” the 

ess important constraints. As seen above, the order of the selector 

locks plays an important role in deciding which constraints are 

iven up. Consequently, Theorem 3 can be used to decide which 

tructure to use based on the constraint priority level. 

In short, Theorem 3 tells us that for the max-min and min-max 

tructures, the constraint entering the last selector block will be 

rioritized in case of conflicting constraints. That is, the input u 

ill in cases of conflict ”give up” controlling a masked constraint y 

ith ”low priority”. However, this does not necessarily mean that 

e need to give up controlling y , because it may be possible to let

nother input (MV) v take over the task of controlling the masked 

onstraint y . This will involve MV-MV switching from input u to v 

s discussed in Section 6.5 . 

One advantage of using the mid-selector in Fig. 4 a is that we 

ave explicit calculation of both u (the largest allowed input) and u 

the smallest allowed input). This is useful, since it can be used to 

erify feasibility by checking whether u > u . If this is not satisfied, 

hen we may use the value of u 0 to tell which constraint to give

p, or even to give up both constraints in a desired manner by 

electing an appropriate value for u 0 (see Table 1 ). The latter, that 

s, giving up both of the conflicting constraints, is not possible with 

he max-min or min-max structures. 

There are also special cases where only a single selector block 

s sufficient. 
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Fig. 4. CV-CV and CV-MV switching using selectors. The three alternative structure 

(a), (b) and (c) are equivalent if we have feasibility, that is, Theorem 1 holds. 
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emark 2 (Single selector block ) . If Y 

− = ∅ (i.e. we only have con-

traints where reducing the input u is better in terms of satisfying 

he constraints), then the solution is always feasible and the opti- 

al input u is given using a minimum selector 

 

∗ = min (u 0 , u ) (11) 

his is a special case of Fig. 4 b without the max-selector. 

Similarly, if Y 

+ = ∅ (i.e. we only have constraints where increas- 

ng the input u is better in terms of satisfying the constraints), then 

he solution is always feasible and the optimal input u is given us- 

ng a max-selector 

 

∗ = max (u 0 , u ) (12) 

his is a special case of Fig. 4 c without the min-selector. 
5 
Finally, if there is one constraint in the set Y 

+ and one con- 

traint in the set Y 

−, we can use a single mid-selector. This is a

pecial case of Fig. 4 a without the min- and max-selectors 

The systematic design procedure of the selectors for the case 

ith a single MV ( u ) can be summarized by the following steps: 

Step 1. Group the list of constraints into two sets, namely the set 

Y 

+ and the set Y 

−. 

Step 2. Design individual SISO controllers to compute the input 

for each CV constraint ( u i ) and for the CV setpoint con- 

troller ( u 0 ). 

Step 3. Use a minimum selector block to choose the largest al- 

lowed input u that satisfies all the constraints in the set 

Y 

+ , and use a maximum selector block to choose the 

smallest allowed input u that satisfies all the constraints 

in the set Y 

−. The problem is feasible, that is, the set of 

constraints are not conflicting if u > u ( Theorem 1 ). 

Step 4. When the problem is feasible, the optimal input is given 

by u = mid( u , u 0 , u ) where u 0 is the control input com-

puted by the controller that controls the CV with a set- 

point that can be given up ( Theorem 2 ). 

Step 5. To handle infeasibility, use a max-min structure ( Fig. 4 c) if 

the constraints in Y 

− can be given up, or use a min-max 

structure ( Fig. 4 b) if the constraints in Y 

+ can be given up 

( Theorem 3 ). 

. Active constraint control using back-off

Due to imperfect control or measurement noise, sometimes it 

ay be desirable to add a safety margin, known as back-off, where 

he setpoint is offset by a constant value from its limit. Back-off

ay also be used to simplify the control structure design since the 

ame controller may be used in the different active constraint re- 

ions. However, there is an economic loss introduced by back-off, 

nd quantifying this loss can help the designer in deciding whether 

ight control is required for some CV constraints. 

Consider the steady-state optimization problem (1), which is 

ow rewritten as 

in 

w 

J(w ) s.t. g A (w ) + ε = 0 (13b) 

here w := [ x T , u 

T ] T denotes the combined input and state vari-

bles, and ε ≥ 0 is the back-off (safety margin) for the set of active 

onstraints g A . Note that we only consider the active constraints 

nd hence ε ∈ R 

n a . We have also eliminated d for the sake of sim-

licity, since we are interested in quantifying the loss w.r.t the 

ack-off ε for a given disturbance. This can be seen as a paramet- 

ic optimization problem, where we are interested in analyzing the 

ffect of the back-off parameter ε on the cost. The following the- 

rem says that the loss is given by the value of the corresponding 

agrange multipliers, λ. 

heorem 4 (Loss of back-off ) . Assume that the optimization prob- 

em (13) has an unique primal and dual solution w 

∗( ε ) and λ∗( ε ) re-

pectively. Then the steady-state loss due to a small non-zero back-off

 is given by 

oss = J ∗(0) − J ∗( ε ) = −λ∗(0) T ε (14) 

roof. See Appendix A �

The main implications of Theorem 4 for control structure design 

re: 

1. Determine which CVs need to be tightly controlled: If the La- 

grange multiplier λi for a given constraint is large, then this 

constraint must be controlled tightly in order to minimize the 

losses. 
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Fig. 5. Example 1: Proposed max-min control structure design for gas turbine con- 

trol. 

Fig. 6. Example 2: Flow through a pipe with one MV ( u = z 1 ). 

5

5

o

f

o  

s  

t

Y

Y

S  

w

o

u

u

I  

{
a

s

t

l

5

p

T

=
f  

t

w

t

v  

a

F

o

i

t

m

w  

b  

p

t

t

b

Y

Y

2. Simplify control structure design: If the Lagrange multiplier λi 

for a given constraint is sufficiently small such that the loss is 

negligible/acceptable, then one can allow a large back-off, thus 

simplifying the control structure design ( Govatsmark and Sko- 

gestad, 2005 ). 

. Illustrative examples 

.1. Revisiting example 1 (gas turbine) 

We now apply the systematic approach presented in the previ- 

us section to check for consistency and design a control structure 

or the motivating example introduced in Section 2 . 

Since the engine temperature y 2 = T e is controlled to its limit 

f T e,max using the air inflow rate F a , we need to design control

tructures for the rest of the CVs using the fuel u as the MV. For

his MV u , the constraints can be grouped into 

 

+ = { ω max , p a,min , u max } 
 

− = { p e,min } 
Fig. 7. Example 2: Two alternative control structures for constraint switching usin

6 
ince we have both set Y 

+ and Y 

−, we do not have the special case

here we can use a single selector block. The problem is feasible 

nly if u > u ( Theorem 1 ) where 

 = min (u 1 , u 4 , u max ) 

 = u 3 

n the case of infeasibility, we will give up the constraint on Y 

− =
 p e,min } . From Theorem 3 , the resulting control structure is using 

 maximum followed by minimum (max-min) selector block as 

hown in Fig. 5 . 

This example demonstrates that the use of the proposed sys- 

ematic procedure to design selector blocks is straightforward and 

eads to simple design. 

.2. Example 2: Flow through a pipe 

Consider a simple example of flow through a pipe with a valve 

laced upstream of some processing equipment as shown in Fig. 6 . 

here is no accumulation in the processing equipment (i.e. inflow 

 outflow = F ), but there is a pressure drop across the equipment 

rom p 1 to p 2 . This could be for example, a filter, a long pipe sec-

ion, or some kind of a flow restriction or an orifice, the details of 

hich are not important, since the models nor information about 

he equipment are not used in the control structure design. The 

alve z 1 is a control valve which is assumed to be the only avail-

ble degree of freedom. The objective is to maximize the flow rate 

 by manipulating the valve position u = z 1 , subject to constraints 

n the flow rate F , downstream choke pressure p 1 and valve open- 

ng z 1 . The boundary pressures p 0 and p 2 are disturbances. The op- 

imization problem is: 

ax 
z 1 

F 

s.t. 

F � F max (15) 

p 1 � p 1 ,max 

p 1 � p 1 ,min 

z 1 � z 1 ,max 

here F max = 10 kg/s, z 1 ,max = 1 , p 1 , max = 2 . 5 bar, and p 1 , min = 1 . 5

ar. Note that there are both max and min- constraints on p 1 . De-

ending on the disturbances, one of these constraints may be op- 

imally active at any given time, and the CV that needs to be con- 

rolled using z 1 needs to be switched to remain optimal and feasi- 

le. 

The constraints can be grouped into 

 

+ = { F max , p 1 ,max , z 1 ,max } 
 

− = { p 1 ,min } 
g selectors. (a) Min-max structure, see (9) (b) Max-min structure, see (10) . 
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Fig. 8. Example 2: Simulation results (a) using the min-max control structure in Fig. 7 a (b) using the max-min control structure in Fig. 7 b. The control structures behave 

identical except between time t = 300 s and t = 600 s when operation is infeasible, and the structures violates different constraints (indicated by red dotted ellipses). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Example 2: Controller gains. 

FC PC for y 1 = p 1 ,max PC for y 2 = p 1 ,min 

K P 0.2314 1.1091 ×10 −5 1.1091 ×10 −5 

K I 0.0231 1.1091 ×10 −6 1.1091 ×10 −6 

K aw 0.1 0.1 0.1 
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1 For the plant simulator, the model for the flow F is given by, F = 

c v 1 z 1 
√ 

(p 0 − p 1 ) /ρ where c v 1 = 2 × 10 −3 m 

2 , ρ = 10 0 0 kg/m 

3 and the processing 
−3 2 
Since we have both sets Y 

+ and Y 

−, we need at least two selec-

or blocks, and we consider the max-min and min-max structures 

n Fig. 7 . Note that since the objective is to maximize production, 

e have u 0 = ∞ (for the imaginary unconstrained case). This value 

ill not affect the operation, except that it will lead to maximizing 

 . 

We use three SISO controllers to control the three CV con- 

traints, namely, 

1. Pressure controller that uses z 1 to control y 1 = p 1 to p 1, max . The

output from this controller is u 1 . 

2. Pressure controller that uses z 1 to control y 2 = p 1 to p 1, min . The

output from this controller is u 2 . 

3. Flow controller that uses z 1 to control y 3 = F to F max . The out-

put from this controller is u 3 . 

In addition, we have that the manipulated variable is con- 

trained. Therefore, the input to one of the blocks is 

4. u max = z 1 ,max 

At any given time the control action u = z 1 computed by one of

hese four controllers is implemented on the plant. We have that 

or this example, 

 = min (u 1 , u 3 , u max ) 

 = u 2 
e

7 
he controllers have integral action, so an anti-windup scheme is 

equired to avoid integral windup when the controller is not se- 

ected. We use the back-calculation scheme, which is discussed in 

ection 6.4 . The controller tuning parameters are shown in Table 2 . 

For disturbances in the boundary pressures p 0 and p 2 , simula- 

ion results with the two structures in Fig. 7 are shown in Fig. 8 a

nd Fig. 8 b, respectively 1 . We see that the responses are good 

nd the simulation results are identical, except in the time pe- 

iod between t = 300 s and t = 600 s, where operation with all

onstraints being satisfied is infeasible, since u > u which violates 

heorem 1 . 

For the min-max structure in Fig. 7 a, we violate the maximum 

ow limit F max which belongs to Y 

+ (marked by a red dotted el- 

ipse in Fig. 8 a). 
quipment is modeled as a flow through a restriction with c v 2 = 10 m . 
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Fig. 9. Example 3: Feasible control structure to switch between the three active 

constraint regions R-I, R-II and R-III. 

Fig. 10. Example 3: Proposed max-min control structure design for optimal oper- 

ation of a two product distillation column over regions R-I, R-II, and R-III. Control 

loops that does not have an impact on the steady-state economics are shown in 

green. The the most valuable product that will always be active is shown in red. 

The control structure with the max and min-selectors to switch between R-I,R-II 

and R-III is shown in blue. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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2 Detailed model description and the MATLAB codes can be found in the attached 

supplementary information or in http://folk.ntnu.no/skoge/distillation/ . 
For the max-min structure in Fig. 7 b, we instead violate the 

inimum pressure limit p 1, min which belongs to Y 

− (marked by 

 red dotted ellipse in Fig. 8 b). 

In order to say which structure is the best, this would depend 

n whether it is acceptable to violate the constraint on F max or 

 1, min (cf. Theorem 3 ). If its not possible to violate any of these

onstraints, then the safety system will need to be activated. Of 

ourse, it will be not activated immediately, because some back-off

o the hard constraint has most likely been used. 

.3. Example 3: Distillation column 

We consider a standard two-product distillation column, which 

s based on the “Column A” model used by Jacobsen and Skoges- 

ad (2011) . The distillation column has 41 stages, including the re- 

oiler and the total condenser, with the feed entering at stage 21. 

he column splits a binary mixture with relative volatility of α= 

.5 into a top product D and a bottom product B as shown in

ig. 10 . The model assumes constant relative volatility, constant 
8 
olar flows, no vapour holdup, linearized liquid dynamics and 

quilibrium on all stages 2 . 

For a given feed rate of F , the distillation column has five dy- 

amic degrees of freedom, namely, the reflux L , boilup V , overhead 

apour V D , distillate D and the bottom flow B . However, stable op- 

ration of the column requires control of the two levels M B and M D 

nd the column pressure, which does not have any affect on the 

teady-state economics. The distillate D , bottom flow B and over- 

ead vapour V D are thus used in the regulatory layer to tightly 

ontrol the levels M D , M B , and the column pressure respectively as 

hown in Fig. 10 (in green). This leaves us with two steady-state 

egrees of freedom, namely, the reflux L and boilup V that can be 

sed to optimize the process. 

The objective is to minimize the operating costs and maximize 

evenue from the products. In addition, there are purity constraints 

n the top and bottom products, and constraints on the boilup V . 

he steady-state optimization problem is formulated as, 

in 

L,V 
J = p F F + p V V − p D D − p B B 

s.t. 

x D � x D,min (always active ) (16) 

x B � x B,min 

V � V max 

here p F , p V , p D , and p B are the prices for the feed, energy, top

roduct, and bottom product respectively. We assume that the 

nergy price is a disturbance and varies between p V ∈ [0.007, 

.02]$/ mol , whereas the other prices are constant at p F = 1$ /mol,

p B = 1$ /mol and p D = 2$ /mol. 

The most valuable product constraint x D,min will always be ac- 

ive at the optimum, because this avoids product giveaway, as ex- 

lained by Jacobsen and Skogestad (2011) . Thus we always have 

 D = x D,min . Therefore the relevant active constraint combinations 

re 

• only x D active (R-I) 

• x D and y c = x B active (R-II) 

• x D and u = V active (R-III) 

Due to the pair-close rule, the reflux L is used to control x D to

ts limit of x D,min = 0 . 95 as shown in Fig. 10 (in red). 

This leaves one degree of freedom, namely the boilup u = V . For 

his MV, we may need to control the concentration x B at its limit 

f x B min 
= 0 . 99 (R-II), or control a self-optimizing variable y 0 to a

esired setpoint (R-I). In this example, we consider y 0 = x B con- 

rolled to an economically optimal setpoint given as a function of 

he energy price x B,sp ( p V ) which is determined offline. 

We use two SISO controllers to control the two CVs, namely, 

1. Concentration controller that uses V to control y 1 = x B to x B,min . 

The output from this controller is u 1 (x B = x B,min ) . (Active in R-

II) 

2. Concentration controller that uses V to control y 0 = x B to x B,sp 

(unconstrained case). The output from this controller is u 0 (x B = 

x B,sp ) . (Active in R-I) 

In addition, we have that the manipulated variable is con- 

trained. Therefore, we also have 

3. u max = V max . (Active in R-III) 

Note that the limit V max could be to avoid flooding in the col- 

mn, and may, for example, be computed by a pressure drop (DP) 

ontrollers as shown in Fig. 10 . 

http://folk.ntnu.no/skoge/distillation/
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Fig. 11. Example 3: Closed loop simulation results for the distillation column with varying energy prices ( d = p V ). The control scheme in Fig. 10 achieves optimal steady- 

state operation in all the three constraint regions. The initial response is the start-up period because the column is not operated optimally at t = 0 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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In this case, 

 

+ = { V max } 
 

− = { x B,min } 

Optimal operation can be achieved using a mid-selector, or a 

ombination of maximum and minimum selectors. Since we can- 

ot give-up on the constraint V max ∈ Y 

+ , we choose to use a max-

in selector as shown in Fig. 10 ( Theorem 3 ). Furthermore, since 

he max-selector is used to switch between x B being controlled to 

 B,min and x B being controlled to x B,sp ( p V ), we can instead move the

ax-selector to the setpoint of the composition controller (CC), as 

hown in Fig. 10 . 

The simulation results for varying energy price p V using the 

roposed control structure is show in Fig. 11 . It can be clearly seen

hat the proposed control structure is able to handle the active 

onstraint switching as the disturbance changes. The concentration 

ontroller for x B was implemented with anti-windup using input 

esetting to avoid integral windup. The detailed model and control 

tructure design procedure for this example can be found in the 

upplementary information. 
9 
.4. Example 4: Williams-Otto reactor 

The use of selector to switch between different active constraint 

egions is also tested on a benchmark Williams-Otto reactor exam- 

le ( Williams and Otto, 1960 ), which can be found in the attached

upplementary information. 

. Discussion 

Some switching logic blocks commonly used in practice can be 

een as a special case of the CV-CV and CV-MV switching struc- 

ures presented above. The developed framework is also applicable 

o such special cases. In this section, we first point out some of 

hese special cases, and also discuss dynamic implementation as- 

ects. 

.1. Mid-selector for zone control 

Mid-selector block is often used in zone control (also known 

s range control), where the same output has both an upper and 

ower limit, y max and y min , respectively, and we have a desired 

alue for the input u 0 which may be varying. In this case, Y 

+ =
 y max } and Y 

− = { y } , and we have two different controllers to
min 
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Fig. 12. Auctioneering as a special case of CV-CV switching, where the CVs y 1 . . . y n 
all have the same units and same setpoint y sp . 
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Fig. 13. PI controller with anti-windup. 
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ontrol y to y max , and y to y min , respectively. Since the limits are

n the same output y , Theorem 1 is always satisfied. For example, 

 may be the temperature in a room, which we want to maintain 

etween T min and T max , with a desired value for the input u 0 . It is

lso possible to let u 0 be the output of a third controller that con-

rols y to a variable setpoint, which may be the optimal value for 

 when the constraints are not active. 

.2. Auctioneering 

The proposed framework can also be used in autioneering con- 

rol ( Shinskey, 1996 ), which is a special case of CV-CV switch- 

ng where we have similar CVs, i.e. the CVs have the same units 

nd same setpoint. For example, we want to control the maximum 

emperature along a reactor or control the maximum opening for 

wo valves. Then the selector may be on the output instead, i.e. 

 = max (y i ) or y = min (y i ) . In this case, we only need one con-

roller, and a selector block chooses the lowest or highest mea- 

urement as feedback, as shown in Fig. 12 . Another special case 

s when one needs to switch between a setpoint control and con- 

traint control on the same variable. In this case, the selector may 

e used on the setpoint such that we only need one controller. This 

s also shown for the distillation column example in Fig. 10 . 

.3. Input saturation 

Typically in process control, the MV represents the actual phys- 

cal manipulated variable. In this case, one does not even need the 

elector block for u max or u min , since the MV will physically satu- 

ate, e.g. max opening of a valve. However, when we use cascade 

ontrol, the MV may be the setpoint to another controller. In this 

ase, we need to include the constraint ( u max or u min ) explicitly 

s shown in Fig. 4 . This is sometimes referred to as clipping the

ontroller output. 

.4. Dynamic implementation and anti wind-up 

The theorems presented in Section 3 are based on steady-state 

nalysis. Recall that u i was defined as the value of the input u 

hich at steady-state satisfies the constraint y i = y i,lim 

. However, 

he values for u i computed by the controllers not selected are not 

qual to the correct values for u i even at steady-state, but this is 

ot a problem in practice. 

When using selectors, only one of the control actions computed 

y a plurality of controllers is implemented on the plant at any 

iven time. For the controllers that are not selected, the feedback 

oop is ”broken” and the integral term may build up (known as 

indup ), since the tracking error e i = y i, sp − y i is non-zero 3 . 
3 Note that for the active constraint controllers y i, sp = y i,lim . 

9

F

g  

10 
This windup can be avoided using the back-calculation scheme 

here an additional feedback path is generated by using the differ- 

nce between the output of the controller u i , and the actual output 

 implemented on the plant u ( Fertik and Ross, 1967 ), ( ̊Aström and

urray, 2010 ). This signal, denoted by e s i := u − u i is fed back to

he integrator with gain K aw i 
(as shown in Fig. 13 ) such that e s i 

oes towards zero when the controller is deselected. The PI con- 

roller with feedback anti-windup can be expressed as: 

 i (t) = K P i e i (t) + 

∫ t 

0 

(
K I i e i (τ ) + K aw i 

e s i (τ ) 
)
d τ (17) 

here e i = y i, sp − y i is the tracking error, u i is the control action 

omputed by the i th controller and u is the actual control action 

mplemented on the plant, K P i 
and K I i 

are the proportional and 

ntegral gains respectively, and K aw i 
is the anti-windup feedback 

ain. 

The integral action will drive the term in the integral to zero, 

o that at steady state we have 

 I i e i + K aw i 
e s i = 0 (18) 

n other words, at steady-state we have 

 i − u = 

K I i 

K aw i 

e i 

f the controller is selected, then at steady-state e i = 0 and the 

eedback controller will generate the correct steady-state value for 

 i . However, the steady-state value of u i computed by the con- 

roller when u i is not selected, depends on the parameter K aw i 
. So, 

t is clearly not the steady-state value that would give e i = 0 . Here,

 aw i 
is a tuning parameter, and a large value of K aw i 

means that 

 i ( t ) is close to u . A too large value of K aw i 
may activate u i when

ts not necessary, for example, due to measurement noise for y i or 

 change in y i or y i,sp , since changes in e i = y i,sp − y i will affect u i 
hrough the proportional term K P i 

e i (t) . 

A reasonable value for the anti-windup gain to avoid unneces- 

ary activation for small change in y i or y i,sp is 

 aw i 
= 

K I i 

K P i 

(19) 

hich means at steady-state we have 

 i − u = K P i e i 

n this case the proportional action K P i 
e i will activate u i only if 

 i (t) = y i,sp − y i crosses zero, i.e. if y i reaches its setpoint/constraint 

alue. 

To illustrate this, consider the flow example (Example 2 from 

ection 5.2 ). For p 0 = 1 . 75 bar and p 2 = 3 bar, the optimal op-

ration occurs when the p 1, max constraint is active, with a flow 

ate of F = 8 . 66 kg/s, as shown in Fig. 14 . At time t = 300 s, the

aximum flow rate F max is reduced from F max = 10 kg/s to F max =
 kg/s. This, in principle, should not affect the operation, since 

 max = 9 kg/s will not be active. Indeed, with the chosen feedback 

ain of K aw 

= 0 . 1 , given by (19) , we see from Fig. 14 (left hand side
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Fig. 14. Illustrative example showing that too large value of the anti-windup gain 

K aw may lead to unnecessary switching of the controllers. The left had side suplot 

shows the performance with the feedback gain chosen according to (19) , and the 

right had side subplot shows the same with K aw 10 times larger. 
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ubplots) that the operation remains unchanged as one would ex- 

ect. However, if we use the larger value of K aw 

= 1 we get unnec-

ssary switching, with the flow controller becoming dynamically 

ctive before switching back to the pressure controller as shown 

n Fig. 14 (right hand side subplots). 

.5. Multiple inputs and conflicting constraints 

This paper has considered the important case where all the 

onstraints can be associated with a single input u . It is then pos- 

ible to divide the constraints into the two sets Y 

+ and Y 

−, which

an be associated with min- and max-selectors, respectively. 

In the case of multiple inputs, the proposed systematic design 

f selectors can be applied if each MV is paired with a set of con-

traints a-priori . For example, consider a process with n inputs v i . 

f each MV v i is paired with a set of constraints Y i , then this can

e divided into two subsets Y 

+ 
i 

and Y 

−
i 

for all i = 1 , . . . , n, which

an each be associated with min- and max-selectors, respectively 

n a decentralized fashion. This was also seen in the gas turbine 

xample in Fig. 5 , where the air inlet flow was paired with T e,max ,

nd the fuel u was paired with the other remaining CVs. 

In the case where two hard constraints from the set Y i can- 

ot be satisfied at the same time, that is, we have infeasibility 

ccording to Theorem 1 , then one needs to find some other in- 

ut to take over one of the control tasks. Usually, this means that 

e need to give up some other control objective. For example, we 

ay no longer be able to set the throughput freely, since we have 

eached a bottleneck for the process. In either case, this involves an 

V-MV switching, which is not the scope of this paper. MV-MV 

witching may be achieved using split range control, input posi- 

ion control, and controllers with different setpoints. This has been 

tudied in detail by Reyes-Lúa and Skogestad (2020, 2019) ; Reyes- 

úa et al. (2018) . For example, in the distillation column example, 

hen V max is active, control of x B,min is lost. If this is a hard con-

traint, then we would need to find another MV, such as the feed 

ate F , to control x B to x B,min . This is an MV-MV switching and this

xample is shown in detail by Reyes-Lúa and Skogestad (2020) us- 

ng a combination of split range control and controllers with dif- 

erent setpoints. 

A similar ”override” distillation example with MV-MV switch- 

ng from V to F using two controllers with different setpoints is 

iven in (Kumar and Kaistha, 2019, Fig. 5) for a reactor-separator- 

ecycle process. Note that since F is already used to control another 
11 
ask (reactor level), the MV-MV switching from V to F has to be 

ombined with a CV-CV switching (min-selector) for F . However, 

ince also this task (reactor level) cannot be given up, this has to 

e combined with yet another override, MV-MV switch from F to 

B (the throughput manipulator) which will reduce the feed FB to 

he reactor system. 

In large multivariable systems with a lot of such CV-CV, CV-MV 

nd MV-MV switchings, the control structure can quickly become 

omplex, and perhaps one would then be better off with multivari- 

ble controllers such as model predictive control (MPC). 

. Conclusion 

In this paper, we have presented a systematic procedure 

or designing selectors for CV-CV switching. Theorem 1 estab- 

ishes the condition under which the constraints are feasible, and 

heorem 2 shows that optimal operation can be achieved using 

inimum and maximum selector blocks in series. Theorem 3 tells 

s how the max-min and min-max selectors behave when used 

t conditions where satisfaction of the constraint is infeasible, and 

heorem 3 tells us which structure to use based on the constraint 

riority list. The proposed systematic design framework does not 

equire detailed process models, making it easily applicable and 

sable in industrial applications that are verifiable by design. The 

roposed framework was successfully demonstrated using several 

llustrative examples. 
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ppendix A. Proof of Theorem 4 

The Lagrangian function of (13) is given as 

 (w , ε , λ) = J(w ) + λT 
(g A (w ) + ε ) (A.1)

he necessary conditions of optimality 

∂L 

∂w 

= 

∂ J 

∂w 

+ λT ∂g A 

∂w 

= 0 g A + ε = 0 (A.2b) 

etermines the optimal primal and dual variables w 

∗( ε ) and λ∗( ε )
espectively, as a function of the back-off parameter ε , assuming 

here exists a unique solution for each ε . 
Since L and g depends on ε through w, λ and ε , differentiating 

A.2) gives 

∂ 2 L 

∂w 

2 

∂w 

T 

∂ ε 

+ 

∂ 2 L 

∂ w ∂ ε 

+ 

∂g 

T 
A 

∂w 

∂ λ

∂ ε 

= 0 

∂g A 

∂w 

∂w 

T 

∂ ε 

+ 1 = 0 (A.3b) 

Let the optimal value function be denoted as J ∗( ε ) = J(w 

∗( ε )) ,
nd the sensitivity of the optimal value function w.r.t ε can be ex- 

ressed as 

∂ J ∗( ε ) 

∂ ε 

= 

∂ J 

∂w 

∂w 

T 

∂ ε 

(A.4) 

rom (A.2a) and (A.3b) , this can be rewritten as, 

∂ J ∗

∂ ε 

= −λ∗( ε ) T 
∂g A 

∂w 

∂w 

T 

∂ ε 

= λ∗( ε ) T (A.5) 

he loss due to a back-off of ε > 0 is the where λ∗(0) is the

agrange multiplier for the active constraints without back-off. 

herefore it can be seen that the loss scales linearly with the back- 

ff. 
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