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a b s t r a c t

Traditionally, soft sensors are developed based on measurement data only, but here we con-

sider an adaptive soft sensor that uses data generated from a fitted, first principles model

of the distillation columns. The contribution of the paper is a procedure for moving window

soft sensor design that incorporates a priori knowledge, which is especially suitable when

the training sample is small and contains measurement errors. In addition, we propose a

continuous adaptation of all model parameters based on new data, instead of the usual

procedure of only updating the bias. The accuracy of the predicted product quality is inves-

tigated by calculating the coefficient of determination and root mean squared error for the

test sample. Several approaches were considered, and we found that a constrained opti-

mization approach was superior. The constraints on the model parameters of soft sensors

are derived from a fitted, rigorous distillation unit model. The improved estimator quality

resulted in the successful industrial application of advanced process control systems.

© 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

One efficient way for an industrial company to gain additional bene-

fits or reduce production costs is to apply an advanced process control

(APC) system. Soft sensors belong to the main functional part of the

APC system’s structure. The estimation of product quality via soft sen-

sors (Funatsu, 2018; Kim et al., 2013) is an inexpensive and attractive

technique in industrial automation. Improving soft sensor evaluation

methods may be the subject of any innovative APC or real-time opti-

mization platform (Amrit et al., 2015; Fayruzov et al., 2017).

In the present work, the sequence of industrial multicomponent

distillation columns in the gas separation section of the fluidized cat-

alytic cracking (FCC) unit is investigated. The widespread approach in

industry for soft sensor evaluation is to use a data-driven approach

(Fortuna et al., 2007; Kadlec et al., 2009, 2011). Most of them are based

on the “black-box” concept with use of neural networks or statistical

methods (Rogina et al., 2011; Kaneko and Funatsu, 2014; Kaneko and

Funatsu, 2015; Shao and Tian, 2015; Xiong et al., 2017; Zhang et al., 2017).
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In practice, several obstacles are encountered, including a small train-

ing dataset, measurement errors, and an unsteady mode of distillation

operation. Moreover, unmeasured feed-composition disturbances and

variations in the efficiency of separation stages cause problems for

obtaining a reliable training sample. Also, some of the key (informative)

inputs have low variability ranges due to the operator seldom varying

them (for instance, the set point for the top pressure of the distilla-

tion column). This leads to statistical insignificance (via t-test) of the

corresponding coefficients in the regression model and may not be rec-

onciled with the physico-chemical meaning of the parameters of soft

sensors. A fitted rigorous multicomponent distillation model is helpful

to overcome these difficulties. It allows the ranges of the soft sensor’s

parameter values to be estimated (Torgashov et al., 2016).

The difference from the previous research of the developed

approach here is its using data from the first principal (rigorous) dis-

tillation model for the soft sensor design. One of its merits is that the

rigorous model dataset may give a priori information on the soft sen-

sor equation in terms of admissible parameter ranges, particularly for a

https://doi.org/10.1016/j.cherd.2019.08.017
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Fig. 1 – Industrial multicomponent distillation unit.

small industrial training sample. The accuracy of product quality pre-

dictions by soft sensors is investigated by calculating the coefficient

of determination (R2) and root mean squared error (RMSE) for the test

sample.

It should be noted about an alternative approach for the estimation

of compositions of products of chemical process systems with the use

of observers or Kalman Filter based observers (Mohd Ali et al., 2015;

Porru et al., 2013; Tronci et al., 2005). The observers are based on first

principles models of chemical processes. To implement observer, it is

necessary that the pair (A,C) be observable (for linearized plant) (Mohd

Ali et al., 2015). However, as will be shown in this paper (Section 3), the

multicomponent distillation process is unobservable. In addition, the

feed composition in industrial conditions is not measured in real time,

and this makes it even more difficult to use the rigorous model of the

observer in practice, since the problem of evaluation an unknown input

observer has no solution in the absence of observability of the plant.

Also, the presence of nonstationarity and uncertainty of the efficiency

values of the separation stages limits the use of observers in practice as

well as in some cases the parameters of the phase equilibrium model

of multicomponent mixture remain unknown.

The paper is organized as follows. The second section describes an

industrial process and states the problem. The issues of observability

analysis of multicomponent distillation are reported in Section 3 from a

soft sensor evaluation point of view. The fitting procedure for a rigorous

distillation model is presented in Section 4. A comparative analysis of

the soft sensor parameters obtained from industrial and fitted rigorous

model datasets is described in Section 5 as well as the constrained opti-

mization approach for moving window (adaptive) soft sensor design is

reported. A description of how the dataset was integrated from rigor-

ous modelling into the soft sensor evaluation procedures based on the

raw industrial data is given. In conclusion, the superiority of using both

Table 1 – Main process variables.

Process variable Notation Soft sensor input

variable

K-8 25th tray pres., kgf/cm2 PIR 1 x1

K-8 bot. pres., kgf/cm2 PIR 2 x2

K-8 bot. temp., oC TIR 1 x3

K-9 bot. pres., kgf/cm2 PIR 3 х4

K-9 top temp., oC TIR 2 х5

K-9 25th tray temp., oC TIR 3 х6

Sum of C3 in BBF product, % – y

industrial and rigorous-model datasets for adaptive soft sensor design

is summarized.

2. Industrial process description and
statement of the problem

The gas-separation section of the FCC unit considered in

this paper is represented by two multicomponent distillation

columns, K-8 and K-9 (Fig. 1). The feed flow comes from the

FCC absorption unit and enters on the 25th tray of K-8. The

overhead product of K-8 is propane-propylene fraction (PPF).

The butane-butylene fraction (BBF) is withdrawn from the

top of K-9. Absorption gasoline (AG) is a residue of the gas-

separation unit and is recycled in the absorption section of

FCC unit. The main process variables of the industrial distil-

lation unit are shown in Table 1 and may be considered as

informative inputs of the soft sensor.



Chemical Engineering Research and Design 1 5 1 ( 2 0 1 9 ) 1–9 3

Table 2 – Feed composition and material balances of the multicomponent distillation unit.

No. Component Feed, kg/h PPF, kg/h BBF, kg/h AG, kg/h

1 Ethane 23.47 23.47 0.0 0.0

2 Propylene 6837 6732 105 0.0

3 Propane 1629 1342 287 0.0

4 i-Butane 4610 233 4377 0.0

5 Butene-1 5051 50 5001 0.0

6 n-Butane 1043 0.0 1042 1.0

7 t-Butene-2 2611 0.0 2604 7.9

8 c-Butene-2 1876 0.0 1840 36

9 3-Methylbutene-1 95.9 0.0 0.0 95.9

10 i-Pentane 571 0.0 0.0 571

11 2-Methylbutene-1 182 0.0 0.0 182

12 n-Pentane 24.2 0.0 0.0 24.2

13 t-Pentene-2 71.8 0.0 0.0 71.8

14 c-Pentene-2 80.4 0.0 0.0 80.4

15 3.3-Dimeth.but.-1 45.1 0.0 0.0 45.1

16 2-Methylpentane 5.54 0.0 0.0 5.54

17 3-Methylpentane 1.97 0.0 0.0 1.97

18 n-Hexane 2.70 0.0 0.0 2.70

19 Benzene 0.89 0.0 0.0 0.89

20 2-Methylhexane 0.46 0.0 0.0 0.46

The material balances and feed composition for the nomi-

nal steady-state operating point are presented in Table 2. The

mass balance in Table 2 for the nominal operating point is

derived by averaging industrial data based on the available

process statistics.

The main goal of this paper is to develop an approach to

moving window soft-sensor design based on industrial data

and rigorous modeling. It is necessary to overcome difficul-

ties such as small training datasets and laboratory errors. The

total concentrations of propylene and propane (C3) in the BBF

product is considered the soft sensor output.

3. Model analysis of multicomponent
distillation for purpose of product quality
estimation

The motivation for this analysis is to find out the limitations of

the application of observers (an alternative approach to a soft

sensor) for the process of multicomponent distillation. There-

fore, the full observability will be analyzed. It will be shown

that it is impossible to construct an observer or static estima-

tor due to immeasurable feed composition disturbances and

lack of full observability.

Traditional observability analysis considers whether all the

process states are identifiable. However, in our case, only the

top and bottom compositions (quality indicators) are interest-

ing states for analysis. We consider a simplified model of the

multicomponent distillation process for one column but cover

important principles of the industrial unit.

j = 1:

dx̃1i

dt
= (R + D)(ỹ2i − x̃1i); (1)

j = 2. . ...f-1:

dx̃ji

dt
= R(x̃j−1,i − x̃ji) + (R + D)(ỹj+1,i − ỹji); (2)

j = f:

dx̃ji

dt
= R(x̃j−1,i − x̃ji) + F(x̃F,i − x̃ji) + (R + D)(ỹj+1,i − ỹji); (3)

j = f+1. . ...K-1:

dx̃ji

dt
= (R + F)(x̃j−1,i − x̃ji) + (R + D)(ỹj+1,i − ỹji); (4)

j = K:

dx̃Ki

dt
= (R + F)x̃K−1,i − (F − D)x̃Ki − (R + D)ỹKi, (5)

where i = 1. . .c; c – number of separated compounds; K – total

number of separation stages (trays); x̃ji, ỹji – concentrations of

ith compound on the jth tray in the liquid and vapor phases,

respectively;

ỹji = EjYji +

K∑

p=j+1

EpYpi

p−1
∏

q=j

(1 − Eq) for j = 2. . .K-1; ỹKi = EKYKi;

Ej =
ỹji−ỹj+1,i

Yji−ỹj+1,i
– the Murphree vapor phase tray efficiency, ∀i ∈

[1; c]; Yji =
˛i x̃ji

˛c+

c−1∑

i=1

x̃ji(˛i−˛c)

– vapor composition under equilib-

rium condition; x̃F,i – concentration of ith compound in the

feed (the feed is entered to the column in the liquid phase); R

– reflux flowrate; F – feed flowrate; D – distillate flowrate; ˛ –

relative volatility.

The system of differential Eqs. (1)–(5) may be linearized

and represented in the state-space form. The state vector is

formulated as x = (x̃1. . .x̃1. . .x̃1,c−1; . . .x̃K,1. . .x̃K,i. . .x̃k,c−1)T .

The temperature on each stage j may be expressed via

Antoine equation:

Tj =

Bb + Cblg

(
Pj


j

)

− CbAb

Ab − lg

(
Pj


j

)

where 
j = ˛c +

c−1∑

i=1

x̃ji (˛i − ˛c); Pj – stage pressure; Ab, Bb and

Cb – constants of Antoine equation for base compound.
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The system (1)–(5) can be linearized in the neighborhood of

the operating point and presented in the following continuous

state-space form:

ẋ = Ax + Bu + Dd

y = Cx, z = Zy

h = Hx,

(6)

where z is available temperature measurements; h contains

elements of state vector of top and bottom composition; Z and

H are transforming matrices. The matrix C =

(
∂Tj

∂x̃k,i

)K,K(c−1)

k,i
is

obtained as

k = j :
∂Tj

∂x̃k,i
= −

(˛i − ˛c)
(

Tj + Cb

)


j

[

Ab − lg

(
Pj


j

)]

ln10

k /= j :
∂Tj

∂x̃k,i
= 0

The observability analysis of system (6) is proper to do for

its analog in the discrete time because of digital implementa-

tion of control algorithms in industry:

xk+1 = Aıxk + Bıuk + Dıdk

yk = Cıxk, zk = Zyk

hk = Hxk.

(7)

The following proposition defines the conditions of observ-

ability of multicomponent distillation process (with states

related to product purity).

Proposition. The system (7) with state vector hk is observable

if:

1) the rank

(

ZCı|ZCıAı|. . .|ZCıA
K(c−1)−1
ı

)T

= K(c − 1)

2) the disturbance vector dk is measurable.

The disturbance vector d is unknown and associated with

the unmeasured feed composition fluctuations. Based on the

vectors u and d, the steady-state solution of x can be obtained

as

h = H(−A)−1(Bu + Dd). (8)

From Eq. (8), it follows that the solution of h is not unique,

i.e., under fixed <H,A,B,u,D>, we have infinite numbers of h for

the case of infinite numbers of values of unknown vector d.

This means that it is impossible to observe h via input u.

From the other side, consider the inference of h via matrix

C and vector of measurements y (temperatures). The equation

for output y may be written via block-diagonal form of matrix

C as











T1

−−

Tj

−−

TK











=













c1 | 0 | 0

−−
. . . −− −− −−

0 | cj | 0

−− | −−
. . . −−

0 | 0 | cK























x̃1

−−

x̃j

−−

x̃K











,

where cj =

(
∂Tj

∂x̃j,1
. . .

∂Tj

∂x̃j,c−1

)

– single string matrix;

x̃j =
(

x̃j,1. . .x̃j,c−1

)T
– vector of liquid composition on stage j.

For the case of top and bottom composition,






T1

−−

TK




 =






c1 | 0

−− −− −−

0 | cK






︸ ︷︷ ︸

G






x̃1

−−

x̃K






︸ ︷︷ ︸

h

. (9)

From Eq. (9), it is obvious that h cannot be reconstructed

(observed) because matrix G is non-square and has dimension

2 × K(c-1). We can find the solution only via pseudo-inversion

of G (to compute G+) in order to get h. It is well known that

the pseudoinverse provides a least squares solution for Eq.

(9) (Albert, 1972; Lawson and Hanson, 1974). This motivates

the building of regression models of soft sensor and shows

the limitation of direct use of rigorous model or its linearized

analog for product quality estimation.

4. Fitting of rigorous distillation model on
industrial data

In order to build adequate regression models of soft sen-

sors the large samples including data of steady-states for a

wide range are required. In practice, it is a problem to have

a big training sample. A rigorous tray-by-tray (with physico-

chemical essence) distillation model was used because it is

necessary to extend the training sample with input variables

that have low variability ranges and investigate the soft sensor

model without measurement errors.

The principles of mass, energy balances, and phase-

equilibrium equations of a rigorous model of multicomponent

distillation are well known. The fitting procedure involves

selecting the value of tray efficiency that minimizes the mis-

match between industrial data and the rigorous model. In

order to reduce the number of optimized variables involved

in the fitting of rigorous model, the sectional Murphree effi-

ciencies are used: E<column name>
j1,j2

, where the indexes j1 and

j2 correspond to the trays numbers in the section in such

a way that the following inequality should hold: j2 > j1,

j1 = 2. . .K-1, j2 = 3. . .K. For example, for the section above the

feed tray of the column model (1)–(5): j1 = 2, j2 = f and E2 = ... =

Ef = E<column name>
2,f

; for the stripping section: Ef +1 = ... = EK =

E<column name>
f +1,K

.

The average (nominal) steady-state operating point is

involved when estimating the Murphree efficiency with indus-

trial data. The data-reconciliation problem of reflux ratio (RR)

for each column is solved in conjunction with the residual

functions minimization. For K-8 and K-9 columns the residual

functions JPPF
C4 and JAG

C4 are utilized in the following optimization

problems:

JPPF
C4 (EK-8

2,25, EK-8
26,60, RRK-8) =

(

h̃C4,PPF − h̃meas
C4,PPF

�
h̃C4,PPF

)2

+

(
RRK-8 − RRK-8,meas

�RRK-8

)2

→ min
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Fig. 2 – The results of fitting the sectional efficiencies on industrial data. (a) for column K-8 under E
K-8
26,60 = 0.54. (b) for

column K-9.

Table 3 – Correlation coefficients of feed components in the groups C3 and C4.

Propylene Propane i-Butane n-Butane t-Butene-2

Propane 0,967

i-Butane 0,096 0,106

n-Butane 0,067 0,155 0,803

t-Butene-2 −0,006 0,036 0,703 0,817

c-Butene-2 0,040 0,087 0,662 0,782 0,833

s.t.

EK-8
2,25 ≤ EK-8

2,25 ≤ EK-8
2,25 ,

EK-8
26,60 ≤ EK-8

26,60 ≤ EK-8
26,60 ,

RRK-8 ≤ RRK-8 ≤ RRK-8

;

JAG
C4 (EK-9

2,60, RRK-9) =

(

h̃C4,AG − h̃meas
C4,AG

�
h̃C4,AG

)2

+

(
RRK-9 − RRK-9,meas

�RRK-9

)2

→ min

s.t.

EK-9
2,60 ≤ EK-9

2,60 ≤ EK-9
2,60 ,

RRK-9 ≤ RRK-9 ≤ RRK-9
.

where h̃C4,PPF and h̃C4,AG are the sum of C4 content in PPF and

AG, respectively, calculated using the rigorous model, h̃meas
C4,PPF

and h̃meas
C4,AG are the sum of C4 content in PPF and AG, respec-

tively, (industrial data), �(.) is the standard deviation of the

optimized variable.

The calculation results of fitting procedure and Murphree

efficiencies’ values are shown in Fig. 2. The points J∗ PPF
C4 and

J∗ AG
C4 correspond to the best fitted values of sectional efficien-

cies with optimal reconciled RR values.

The behavior of functions JPPF
C4 and JAG

C4 were studied visually

in the neighborhood of optimal solutions due to the presence

of local minima. For the K-8 column, two sectional efficien-

cies were used since the diameter and type of tray differ for

the absorption and stripping sections. To show the behav-

ior of function JPPF
C4 in three-dimensional space on Fig. 2a in

the neighborhood of the optimum the value of Murphree effi-

ciency for stripping section was fixed at the optimum value

EK-8
26,60 = 0.54.

It will be noted that the fitting of efficiency values for

each individual separation stages did not provide significant

improvements of fitting results.

Based on the fitted rigorous model of industrial distillation

unit, it will be possible to generate a training dataset. But the

main problem for multicomponent mixture was to generate

the feed composition vectors for simulation, which are close

to industrial situations. For that reason, we study the redistri-

bution of individual components among the main separated

groups C3 and C4 in the feed composition (Table 3). It was help-

ful to reduce the numerical experiments with a fitted rigorous

model. For highly correlated concentrations of components in

the feed (e.g., propylene and propane), it is possible to express

variation of both compounds via one.

5. Evaluation of moving window soft
sensor based on the constrained optimization

The soft sensor model equation is considered in the following

linear form:

ŷ = b0 +

m∑

k=1

bkxk ,

where ŷ is the soft sensor’s output (prediction), xk is the

measured input of the soft sensor (Table 1); bk is the model

parameter, and m is the number of inputs.

The comparative analysis of the soft sensor model param-

eters for predicting C3 concentration in the BBF product may

be done from Table 4.

The parameters of the model 1 are obtained using the boot-

strapping regression approach (Chernick, 2008) because it was

found that the ordinary regression gave the positive signs of

the parameters b1 and b4 (they should be negative due to the

first principles of distillation). t-statistics (tind) are calculated

for each model 1 parameter and are given in Table 4. The total

number of the model parameters (including bias b0) is 7. The

training sample size is 70. Therefore the number of degrees of

freedom is 63. From a table of values of Student’s t-distribution



6 Chemical Engineering Research and Design 1 5 1 ( 2 0 1 9 ) 1–9

Table 4 – Comparison of model parameters.

Model parameter Model 1 (based on

industrial data): bind

Model 1: |tind| Model 2 (based on rigorous

simulation data): brig

t-statistic

b1 −3.21 2.69 −0.06

b2 5.66 6.44 2.63

b3 −0.75 12.60 −0.97

b4 −0.30 2.23 −3.82

b5 −0.95 5.88 −1.02

b6 1.03 15.77 1.53

b0 (bias) 26.30 3.33 47.6

Fig. 3 – The histograms and kernel density estimates of the parameters b1 (multimodal pattern) and b4 (bimodal pattern).

Table 5 – Moving window soft-sensors performance.

Robust reg. with all prev. data Robust reg. moving window Bootstrap moving window Constrained moving window

R2 0.65 0.68 0.70 0.81

RMSE 0.62 0.60 0.53 0.45

Table 6 – Variance (std.) of the soft sensors’ parameters.

Model

parameter

Robust reg. with

all prev. data

Robust reg.

moving window

Bootstrap

moving window

Constrained

moving window

b1 2.56 4.61 4.67 0.02

b2 1.74 3.12 3.26 0.48

b3 0.05 0.16 0.15 0.09

b4 1.11 5.31 5.22 0.63

b5 0.11 0.29 0.29 0.30

b6 0.06 0.24 0.22 0.15

b0 (bias) 40.63 54.22 50.63 19.45

the critical value of t-statistic tc = 1.998 may be found in case

of 95% confidence level and degrees of freedom 63. The condi-

tion of statistical significance of the model 1 parameters (differ

from zero) is fulfilled, since for each parameter the tind > tc

inequality is valid.

The industrial dataset was used to evaluate model 1. The

bootstrap analysis provides the interesting facts of the mul-

timodal (b1) and bimodal (b4) patterns of kernel densities

estimates of these parameters (Fig. 3). The reason for mul-

timodal patterns is a small training sample. For example, the

training dataset does not contain operating point data for the

entire range of plant load changes. Therefore, multimodal pat-

terns may indicate a poor performance of soft sensor on the

test sample.

The training sample for model 2 in Table 4 was gener-

ated based on simulations with a fitted, rigorous model of

the industrial distillation unit (Section 4). The model 2 was

derived by use of the robust regression M-estimator (Maronna

et al., 2006) without constraints on the parameter values. The

main advantage of model 2 is the absence of influence of lab-

oratory errors and incorrect input values (due to sampling

time uncertainty) on the soft sensor parameters. Interest-

ingly, the 1st and 4th parameters (b1 and b4) are different

in several times and maybe statistically significant for both

models. However, the values of b1 and b4 are only consis-

tent with the physico-chemical essence of distillation for

model 2.

The model parameters of the soft sensor are subject to

change. This is due to the nonstationarity of the plant: reboil-

ers can become fouled; variations of the feed flow rate and

composition can lead to a change in the hydrodynamic mode

of operation of the trays and the mass transfer efficiency. To

adjust the soft sensor model, the moving window method

is well proven. It is that the model is updated based on the

selected dataset from the process history (window). As new

laboratory data occurrence, the window “slides” over the his-

tory data in such a way that new data is included in the training

sample and old data is excluded.
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Fig. 4 – Adaptation of parameters b1 and b4 (test dataset).

The parameters of the soft sensor’s model are recalculated

after occurrence of new laboratory data. The new lab mea-

surement values are added to the training sample and the last

ones are removed. Thus, we get a moving training dataset or

moving window. The least-squares fitting procedure (within

the moving training dataset) under restriction of the model

parameters is transformed into an optimization problem:

min
b

1

2

∣
∣|Xb − y

∣
∣ |

2

2
such that Ib ≤ b ≤ ub, (10)

where b = (b1. . .bm)T is the vector of the model’s parameters,

X is the input data matrix, y is the vector of output measure-

ments, and lb and ub are the lower and upper bounds of the soft

sensor parameter values, respectively. Vectors lb and ub play

an important role in integrating a fitted first-principle (rigor-

ous) model into the soft sensor design procedure. The values

of these vectors may only be obtained numerically because

of the high dimensionality of the multicomponent distillation

model.

The comparative summary of the application of soft sen-

sor for the industrial distillation process can be seen in

Tables 5 and 6. Table 5 compares the RMSE and R2 val-

ues of the M-estimators for a conventional unconstrained

(robust reg.) case and constrained optimization approach. The

vectors of the lower and upper bounds of model 2’s (brig)

parameters from Table 4 are derived as follows: lb = (1 − v)

· brig and ub = (1 + v) · brig, where the value of v (variation

range parameter) is assigned for vector brig from the solu-

tion the of optimization problem (RMSE is criterion), as given

below.

For the testing dataset of R2 and RMSE, soft sen-

sor performance improved compared to bootstrap moving

window (Table 6) by 100· (0.81 − 0.70)/0.81 ≈ 14% and 100·

(0.53 − 0.45)/0.53 ≈ 15%, respectively.

The variability of the moving window soft-sensor parame-

ters was lower in the case of constrained optimization (Fig. 4)

for the test dataset. Therefore, the use of vectors lb and ub

made the performance of the adaptive soft sensor more stable

and reliable.

The deep comparative analysis of the moving window soft

sensors performance was done (Table 6) in order to validate

the superiority of proposed soft sensor (constrained moving

window).

The width of moving window (w) is an important parameter

of adaptive soft sensors. The calculation of w is proposed by

the following formula:

w = q·m, (11)

Fig. 5 – Selection of optimal values of v and q for

constrained moving window soft sensor.

where q is the window width parameter.

The optimal parameters of the moving window soft sensor

(based on the constrained optimization) are shown in Fig. 5.

The function RMSE(v,q) may have a well-defined global mini-

mum (Fig. 5). This allows to select the optimal parameters v*

and q* of adaptive soft sensor. The optimal values (in the sense

of the RMSE criterion) of the parameters are v* = 50% and q* = 10

in Eq. (11) for the considered adaptive soft sensor (v is variation

range parameter considered above).

The evaluation of a constrained moving window soft sensor

can be described by the following stepwise procedure:

• Step 1. Divide the industrial data into a training dataset and

a test dataset.

• Step 2. Evaluate model 1 based on the training dataset and

obtain the vector of parameters bind (Table 4).

• Step 3. Fit (jointly with data reconciliation) the rigorous dis-

tillation unit model with the training dataset, as described

in Section 4.

• Step 4. Evaluate model 2 based on the dataset from the sim-

ulator with the fitted, rigorous distillation unit model and

obtain the vector of parameters brig (Table 4).

• Step 5. Calculate bounds lb and ub based on the vector brig

and study parameter v belonging to the interval 0.3–0.5. The

use of bind is not valid because the signs and values of b1 and

b4 (in model 1) are inconsistent with the physico-chemical

essence of distillation.

• Step 6. Analyze the performance of the adaptive soft sensor

with the test dataset. Calculate the prediction error (PE) for

each new point of the test dataset to solve the optimization
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problem (10) based on the previous historical data, X,y. The

mean value of the set of PEs is the RMSE for the test dataset.

For each point of the test dataset, vector b is updated using

Eq. (10). The application of a rigorous distillation unit model

is realized via bounds lb and ub.

6. Conclusions

This article improves soft sensor evaluation based on the mov-

ing window adaptation technique. A way to account for all

available a priori information about a multicomponent distil-

lation process, along with the physico-chemical meaning in

the frame of a rigorous model, was proposed. This method

can reduce the RMSE of the test sample in conditions when the

training sample is small and contains measurement errors.

The fitted, rigorous multicomponent distillation model is

useful for checking the correctness of the soft sensor’s param-

eter values and for obtaining brig. The introduction of vectors

lb and ub may be considered an indirect use of data of rigor-

ous modeling for evaluating soft sensors in multicomponent

distillation columns. The selection of soft sensor inputs also

becomes reliable in that case and is reconciled with the ther-

modynamic essence of the distillation. Finally, the use of

constraints lb and ub reduces the variability of the moving

window soft-sensor parameters and leads to more stable and

accurate estimations of product quality for industrial distilla-

tion processes.
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Appendix A. Proof the proposition

Consider the m observations of the each element of the output

vector zk of system (7):

zk+m−1 = Zyk+m−1 = ZCıA
m−1
ı +

m−1∑

i=1

ZCıA
i−1
ı Ūıūk+m−1−i (A1)

where Ūı = (Bı|Dı)
T ; ū(.) =

(
u(.)|d(.)

)T
. Introduce the following

vectors:

zm = (zk|zk+1|...|zk+m−1)T ; ūm = (ūk+m−1|...|ūk+1|ūk)T . Then

the Eq. (A1) can be written as

zm = Qxk + Sūk (A2)

where Q =
(

ZCı|ZCıAı|. . .|ZCıA
m−1
ı

)T
;

S =















0 0 0 0 0

0 0 0 0 ZCıŪı

0 0 0 ZCıŪı ZCıAıŪı

0 0 ZCıŪı ZCıAıŪı ZCıA2
ı Ūı

...
...

...
...

...

0 ZCıŪı ZCıAıŪı . . . ZCıA
m−2
ı Ūı















From Eq. (A2) it will be possible to obtain xk and after that

to find interesting state vector hk:

hk = HQ−1(zm − Sūm) (A3)

In case of the state vector xk in Eq. (A2) the m is to equal

to K(c-1) and the solution of Eq. (A3) exists if the disturbance

vector is known and rank(Q) = K(c-1).
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